WO2017217677A1 - Method for extracting lignin from biomass, and high-strength environmentally-friendly plastic material comprising lignin obtained thereby - Google Patents

Method for extracting lignin from biomass, and high-strength environmentally-friendly plastic material comprising lignin obtained thereby Download PDF

Info

Publication number
WO2017217677A1
WO2017217677A1 PCT/KR2017/005675 KR2017005675W WO2017217677A1 WO 2017217677 A1 WO2017217677 A1 WO 2017217677A1 KR 2017005675 W KR2017005675 W KR 2017005675W WO 2017217677 A1 WO2017217677 A1 WO 2017217677A1
Authority
WO
WIPO (PCT)
Prior art keywords
lignin
biomass
plastic
present
plastic material
Prior art date
Application number
PCT/KR2017/005675
Other languages
French (fr)
Korean (ko)
Inventor
김용환
Original Assignee
에스이켐 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스이켐 주식회사 filed Critical 에스이켐 주식회사
Publication of WO2017217677A1 publication Critical patent/WO2017217677A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H6/00Macromolecular compounds derived from lignin, e.g. tannins, humic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/005Lignin

Definitions

  • Lightweight plastic materials can improve fuel efficiency when applied to vehicles, thereby reducing carbon dioxide emissions, which are global warming materials.
  • plastic materials emit large amounts of carbon dioxide when incinerated after disposal.
  • Lignin is typically recovered and commercialized from the Black Liquor wastewater generated in the pulp manufacturing process. Processes for producing pulp are classified according to the pulping agent used, but in recent years, the process for producing kraft pulp has become common. The type of lignin is classified differently depending on the pulp process and the raw material from which it is derived. The types of lignin or lignin derivative products which are by-produced and refined in the pulp process are typically Hardwood Kraft Lignin, Softwood Kraft Lignin, Acetylated Lignin and Lignin Sulfonate. Sulfonate).
  • Lignin-based materials are used as cement additives, feed additives, phenolic resin raw materials, carbon fiber precursor raw materials, carbon plate precursor raw materials, and manufacturing materials for interior resins. When utilized for such purposes, it is necessary to overcome the inherent brittleness of the lignin material. The brittleness may adversely affect the physical properties of the final product or make it difficult to process to the final product, increase the defective rate of the final product may cause loss in terms of the overall manufacturing process.
  • the prior art uses a method in which lignin and polyester are melted and mixed using a single screw extruder or a twin skew extruder to obtain a processing mixed raw material in which a lignin polymer and a polyester polymer are mixed.
  • high temperature mixing conditions proceed at a condition very close to the temperature at which most lignin is pyrolyzed, so that lignin is chemically decomposed and denatured.
  • the highly hydrophilic lignin contains a large amount of water, and even dried lignin easily absorbs water from the air, thus containing a small amount of water.
  • the powdered processing is required in order to mix well with the lignin in the powder state before the melting, mixing and processing.
  • a method of freeze grinding using very inefficient liquid nitrogen is required. Loss of the pulverized polyester sample due to nitrogen vaporized in the above process occurs, and the molecular weight of the polyester is also affected, resulting in a change in lowering the viscosity index. As a result, when mixed with lignin, it becomes more difficult to achieve the original purpose of improving the brittleness of lignin.
  • [Korean Patent Laid-Open Publication No. 10-2011-0052242] provides a lignin polymer, an environmentally friendly composite for automobile interior using the same, and a manufacturing method thereof. Specifically, lignin and sebacoyl chloride are mixed so that the hydroxyl group and the carboxyl chloride group are 1: 1 to 3 molar ratio, thereby providing an lignin polymer polymerized by ester polymerization at a temperature of 100 to 130 ° C. and a method for preparing the same.
  • the lignin polymer is produced according to the above-described manufacturing method, it is possible to manufacture composite materials for automobile interior materials that are environmentally friendly and have excellent mechanical properties, but low molecular weight materials are generated during ester polymerization.
  • Plant cell walls consist of lignocellulosic material, the structure of which is briefly represented by cellulose (linear glucose polymer), hemicellulose (highly branched heteropolymer) and lignin (crosslinked aromatic polymer).
  • microfibrils wood cellulose has about 10,000 glucose units.
  • the cellulosic material is composed of an amorphous region in which chemical and biochemical reactions are easy and the microfibrils are irregularly arranged, and the microfibrils orderly arranged crystal regions are relatively difficult to react.
  • Hemicellulose is a binding material of cellulose and lignin. Wood hemicellulose is composed of uronic acid as well as glucose, mannose, galactose and arabinose with high content of xylose, short chains (polymerization degree 100 to 200), and highly branched heteropolymers. Hemicelluloses are linked through 1,3, 1,6 and 1,4 glucosidic bonds and are often acetylated.
  • PLA, starch, modified starch, etc. which leads to a decrease in physical properties while continuing research to achieve the ultimate goal of developing a plastic composite material which can be increased in weight and light weight of the plastic can be achieved
  • hydrophobic lignin powder is obtained from the biomass using strong acid, and it is used as a filling material of plastic material, which is not only economically advantageous, but also breakthrough lignin plastic which can increase the physical properties of the plastic and achieve weight reduction.
  • the present invention was completed by developing a composite material.
  • Another technical problem to be solved in the present invention is to provide a method for producing a plastic material using the obtained lignin.
  • Another technical problem to be solved in the present invention is to provide a high-strength eco-friendly plastic material containing lignin prepared according to the above production method.
  • the present invention provides a method for purifying lignin from biomass using a strong acid in high yield.
  • the present invention provides a high-strength eco-friendly plastic material containing lignin prepared according to the manufacturing method.
  • 1 is a graph showing the measurement of methylation (FT-IR analysis) of lignin according to dimethyl carbonate treatment, where red color represents lignin powder before methylation reaction and black color lignin powder after methylation reaction.
  • FIG. 2 is a graph showing the measurement of methylation of lignin (analysis using 31 P-NMR) according to dimethyl carbonate treatment, where red color represents lignin powder before methylation reaction and black color lignin powder after methylation reaction. .
  • the method for purifying lignin from the biomass of the present invention is characterized by using a strong acid.
  • strong acids used to extract lignin from biomass in the present invention include sulfuric acid, hydrochloric acid, or mixtures thereof, with hydrochloric acid being particularly preferred.
  • weak acids such as acetic acid and succinic acid are not suitable because the efficiency of extracting lignin is quite low.
  • the method of extracting lignin using a strong acid may consist of the following steps:
  • step (S2) neutralizing the lignin dissociated in step (S1) with alkali to obtain lignin solid particles
  • the strong acid used at this time is a high concentrated strong acid of 70% or more, and particularly preferably hydrochloric acid.
  • hydrochloric acid as the strong acid in the step (S1)
  • the first hydrolysis is 20 to 40 It is preferably carried out at 1 ° C. for 1 to 6 hours, and secondary hydrolysis at 90 to 115 ° C. for 1 to 3 hours.
  • Step (S3) is a step of obtaining neutralized form of lignin solid particles by neutralizing the dissociated lignin using an alkali such as NaOH and Ca (OH) 2 and then washing with wash water.
  • an alkali such as NaOH and Ca (OH) 2
  • the lignin obtained by washing only without neutralization has a considerable acidity, it may cause mechanical and chemical properties to be reduced later when mixed with petroleum-based plastics.
  • the step (S4) is a step of drying and pulverizing the obtained lignin, dried lignin solid particles obtained at 95 to 105 °C and then micronized by a grinder to obtain a lignin powder having an average particle diameter of 1 to 50 ⁇ m have.
  • the particle size of the lignin powder is 10 ⁇ m or less, it may have better mechanical properties, but there is a difficulty in that a significant reduction in yield is accompanied during grinding.
  • the amount of chemical species such as hydroxyl groups present on the surface can be estimated.
  • lignin extracted with strong acid, especially concentrated sulfuric acid, dehydration condensation effect of sulfuric acid, hydroxyl group, carboxyl group etc. mutually dehydration condensation to form ester group, so the amount of species of hydroxyl group, carboxyl group when analyzed by FT-IR It can be seen that this greatly decreases.
  • This reduction in hydroxyl and carboxyl groups results in increased hydrophobicity of lignin, resulting in more intimate mixing with petroleum-based plastic polymers when subsequently mixed with petroleum-based plastics. This intimate mixing results in an increase in the mechanical properties of the lignin plastic composites.
  • the hydroxyl group of the lignin can be chemically changed using a silane, a halogenated alkane or the like.
  • these treatment methods require highly expensive materials such as silanated materials and halogenated alkanes, and there is a problem of remaining hydrophilic compounds such as methanol and halogenated compounds after the reaction. There is a problem that can lead to degradation.
  • a low-cost and highly reactive dimethylcarbonate is used to further convert the methyl group to a hydroxyl group and a phenolic hydroxyl group to methoxy, thereby maximizing the hydrophobicity of the lignin powder.
  • the present invention is characterized by increasing the hydrophobicity of lignin by methylating lignin with dimethylcarbonate.
  • the present invention provides a method for producing a plastic material using the obtained lignin.
  • lignin powder obtained by the strong acid treatment according to the present invention or lignin powder maximized more hydrophobic through dimethyl carbonate treatment, such as thermoplastic resins such as petroleum plastic resins, for example, polypropylene, polyethylene, PVC After mixing with a certain form and cooled to produce a composite plastic product containing the lignin of the desired shape.
  • thermoplastic resins such as petroleum plastic resins, for example, polypropylene, polyethylene, PVC
  • polypropylene grafted with maleic anhydride group to improve the physical properties of the plastic material of 1 to 10% by weight based on the total weight of the plastic material It is further characterized by the addition of the amount.
  • the present invention provides a high-strength eco-friendly plastic material containing lignin prepared according to the above production method.
  • Biomass used to extract lignin using strong acid is mixed with pine, fir, lychee pine, oak, acacia and palm empty fruit bunch in equal proportions, and then crushed.
  • the mesh part was selected and used as an acid hydrolysis material.
  • Volumetric ratio of crushed wood flour and sulfuric acid is 1: 1.5, and 24.0 N sulfuric acid is added, followed by primary hydrolysis for 1 hour at 30 ° C., followed by addition of boiling water corresponding to four times the amount of primary sulfuric acid, at 105 ° C. Secondary hydrolysis was carried out for 1 hour.
  • the reaction mixture was cooled and filtered to collect liquid saccharified liquid, and the remaining lignin as a solid was washed three times or more with alkaline water. Adjusted to 7.0. The washed lignin solids were left to dry for at least 24 hours in a 100 °C dryer. Table 1 shows the separation efficiency of lignin using an acid.
  • Secondary hydrolysis acid treatment condition Lignin Recovery (%) 24 N sulfuric acid, 30 ° C. 1 hour 6.0 N sulfuric acid, 105 DEG C, 1 hour 90 24 N sulfuric acid, 30 ° C. 1 hour 6.0 N sulfuric acid, 105 DEG C, 2 hours 92 24 N sulfuric acid, 30 ° C. 1 hour 6.0 N sulfuric acid, 105 DEG C, 3 hours 95 24 N sulfuric acid, 30 ° C. 2 hours 6.0 N sulfuric acid, 105 DEG C, 1 hour 80 24 N sulfuric acid, 30 ° C. 4 hours 6.0 N sulfuric acid, 105 DEG C, 1 hour 82 24 N sulfuric acid, 30 ° C.
  • DMC Dose (g) Reaction temperature (°C) Response time (hrs) Lignin methylation conversion (%) 103 120 15 20 206 120 15 24 412 120 15 76 1,236 120 15 90 2,472 120 15 92
  • FIG. 1 is a graph showing the measurement of methylation (FT-IR analysis) of lignin according to dimethyl carbonate treatment, where red color represents lignin powder before methylation reaction and black color lignin powder after methylation reaction.
  • FT-IR analysis FT-IR analysis
  • FIG. 2 is a graph showing the measurement of methylation of lignin (analysis using 31 P-NMR) according to dimethyl carbonate treatment, where red color represents lignin powder before methylation reaction and black color lignin powder after methylation reaction. .
  • red color represents lignin powder before methylation reaction
  • black color lignin powder after methylation reaction As shown in FIG. 2, it was confirmed that various types of hydroxyl groups present on the surface of the lignin were methylated according to the dimethyl carbonate treatment, thereby greatly reducing the characteristic peaks corresponding to the hydroxyl groups.
  • silane coupling compounds may be used to react with the hydroxyl groups present on the surface of the lignin to cause silanization, resulting in increased hydrophobicity of the lignin.
  • three representative silane coupling compounds (3-aminopropyltriethoxysilane, glycidoxypropyltrimethoxysilane, methylacryloxypropyltrimethoxysilane) were used to modify the surface of lignin. After adding lignin powder to a silane coupling compound solution of a certain concentration, the reaction was performed at 90 ° C. for 12 hours. After filtration, washing and drying, the reacted lignin powder was obtained. The degree of silane reaction of lignin powder was estimated through elemental analysis of Si.
  • Silane Coupling Compound Reaction condition Silane Reaction Conversion Rate (%) 3-aminopropyltriethoxysilane 2% silane coupling compound (w / w) 35 glycidoxypropyltrimethoxysilane 2% silane coupling compound (w / w) 20 methylacryloxypropyltrimethoxysilane 2% silane coupling compound (w / w) 23
  • the best silane coupling compound was found to be 3-aminopropyltriethoxysilane, but the conversion was less than 35%.
  • 5% lignin powder was polypropylene (PP; polypropylene), 1.0 wt% calcium stearate (calcium stearate), 0.5 wt% antioxidant, and titanium oxide (titanium oxide) )
  • PP polypropylene
  • 1.0 wt% calcium stearate calcium stearate
  • 0.5 wt% antioxidant titanium oxide
  • titanium oxide titanium oxide
  • the smaller the lignin powder size shows a tendency to increase the physical properties such as tensile strength, impact strength and decrease the specific gravity is suitable for producing excellent lignin-containing composite plastic resin.
  • the 5% lignin powder was polypropylene (PP; polypropylene), 1.0 wt% calcium stearate, 0.5 wt% antioxidant, and titanium oxide (Titanium oxide) 5.0wt% composite resin prepared by injection molding to prepare a plastic composition for automobiles.
  • Table 5 shows the physical properties of the petroleum crab plastic resin according to the particle size of the methylated hydrophobic lignin powder.
  • the smaller the particle size of the methylated hydrophobic lignin powder shows a tendency to increase the physical properties such as tensile strength, impact strength and decrease the specific gravity, which is suitable for producing excellent lignin-containing composite plastic resin.
  • 5% lignin powder was polypropylene (PP; polypropylene), calcium stearate (1.0 wt%), antioxidant 0.5 wt %, And 5.0 wt% of titanium oxide (titanium oxide) was injected into a composite resin prepared by injection molding a plastic composition for automobiles.
  • Table 6 shows the physical properties of the petroleum-based plastic resin according to the particle size of the lignin powder silanized by the sealing coupling.
  • lignin powder After atomizing the methylated hydrophobic lignin powder obtained in Example 2, varying amounts of lignin powder was polypropylene (PP; polypropylene), 1.0 wt% calcium stearate, 0.5 wt% antioxidant, and oxidation A composite resin prepared by adding 5.0 wt% of titanium oxide was injection molded to prepare a plastic composition for automobiles. Table 7 shows the physical properties of the petroleum-based plastic resin according to the mixing ratio of the methylated hydrophobic lignin powder.
  • the 5% lignin powder was polyethylene (PE; polyethylene), calcium stearate (1.0 wt%), antioxidant 0.5 wt%, and titanium oxide (titanium oxide) Injection molding a composite resin prepared by adding 5.0wt% to prepare a plastic composition for automobiles.
  • Table 8 shows the physical properties of the petroleum-based plastic resin according to the lignin powder particle diameter.
  • the smaller the lignin powder size shows a tendency to increase the physical properties such as tensile strength, impact strength and decrease the specific gravity is suitable for producing excellent lignin-containing composite plastic resin.
  • the 5% lignin powder was mixed with polyvinylchloride (PVC), 1.0 wt% calcium stearate, 0.5 wt% antioxidant, and titanium oxide (titanium oxide).
  • PVC polyvinylchloride
  • TiO titanium oxide
  • a plastic composition for automobiles was prepared by injection molding the composite resin prepared by adding 5.0 wt%.
  • Table 9 shows the physical properties of the petroleum-based plastic resin according to the lignin powder particle diameter.
  • the smaller the lignin powder size shows a tendency to increase the physical properties such as tensile strength, impact strength and decrease the specific gravity, which is suitable for producing excellent lignin-containing composite plastic resin.
  • Example 10 After atomizing the lignin powder obtained in Example 1, 5% lignin powder (average particle diameter 20-50 micrometers), maleic anhydride grafted polypropylene grafted with maleic anhydride group, polypropylene (PP; polypropylene), 1.0 wt% of calcium stearate, 0.5 wt% of antioxidant, and 5.0 wt% of titanium oxide (titanium oxide) were injected into a composite resin prepared to prepare an automotive plastic composition.
  • Table 10 shows the physical properties of the petroleum-based plastic resin according to the content of the polypropylene grafted with maleic anhydride group.
  • Plastic composite material using the lignin obtained from the biomass according to the present invention can make a so-called light weight material that is significantly reduced in weight compared to the plastic composite material containing a mineral filler such as conventional talc, calcium carbonate.
  • Plastic composite material containing lignin produced through the present invention as compared to a simple plastic material is greatly improved in mechanical and chemical properties, etc. It is easy to be used in automotive, building, packaging, electronic interior materials.
  • the plastic composite material including the lignin prepared according to the present invention is economically advantageous and can be applied and used in large quantities in various industries such as automobiles and constructions by replacing the existing plastic material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to: a method for extracting lignin from biomass; and a high-strength environmentally-friendly plastic material comprising lignin obtained thereby. A plastic composite material using lignin obtained from biomass according to the present invention, which extracts lignin in a high yield from biomass by using a strong acid such as sulfuric acid or hydrochloric acid, can make a so-called lightweight material having remarkably reduced weight compared to that of a conventional plastic composite material comprising a mineral-based filling material such as talc and calcium carbonate. Compared with a simple plastic material, the plastic composite material comprising the lignin produced by the present invention has greatly improved mechanical and chemical properties and the like, and thus can be readily used in an interior material for vehicles, construction, packaging and electronics. In addition, the plastic composite material is an environmentally-friendly material having environmentally-friendly characteristics since the plastic composite material, compared with a conventional petroleum plastic material, emits remarkably less fossil fuel-derived carbon dioxide, which is a greenhouse gas, when incinerated after being disposed. Additionally, the plastic composite material, comprising the lignin, manufactured according to the present invention, is economically advantageous, and thus can be mass-applied and used in various industries such as those of vehicles and construction by replacing a conventional plastic material.

Description

바이오매스로부터 리그닌을 정제하는 방법 및 이에 따라 수득된 리그닌을 포함하는 고강도 친환경적인 플라스틱 소재Method for purifying lignin from biomass and high strength environmentally friendly plastic material comprising lignin obtained accordingly
본 발명은 바이오매스로부터 리그닌(lignin)을 정제하는 방법 및 이에 따라 수득된 리그닌을 포함하는 고강도 친환경적인 플라스틱 소재에 관한 것으로, 보다 구체적으로는 강산을 이용하여 바이오매스로부터 리그린을 고수율로 정제하는 방법 및 이에 따라 수득된 리그닌을 포함하는 고강도 친환경적인 플라스틱 소재에 관한 것이다. The present invention relates to a method for purifying lignin from biomass and a high-strength, environmentally friendly plastic material comprising lignin obtained according to the present invention, and more specifically, to purifying ligrin from biomass using a strong acid in high yield. It relates to a high strength environmentally friendly plastic material comprising the method and thus obtained lignin.
최근 에너지원의 고갈과 환경오염 문제가 심각하게 대두되면서 대체에너지 및 환경오염문제의 해결책이 시급함에 따라 석유자원의 대체와 온실가스의 저감효과를 동시에 창출할 수 있는 바이오소재에 대한 관심이 커지고 있다. 그 중 심각한 기후변화를 야기시키는 이산화탄소 때문에 전 세계의 이목이 집중되고 있으며, 이러한 이산화탄소 감축문제를 놓고 단순히 산업분야뿐만이 아닌 에너지와 경제 분야 등 사회 여러 분야에서 관심이 커져가고 있다. Recently, due to the serious depletion of energy sources and environmental pollution, there is an urgent need for solutions to alternative energy and environmental pollution problems, and interest in biomaterials that can simultaneously create petroleum resource replacement and greenhouse gas reduction effects is increasing. . Carbon dioxide, which causes severe climate change, has attracted much attention from all over the world, and attention is being paid not only to the industrial sector but also to various fields of society such as energy and economics.
플라스틱 소재는 대부분 석유계 화석연료에서 유래하는 것으로 상당히 많은 양이 자동차 내장재, 건축용 내장재 등에 사용된다. 플라스틱의 기계적, 화학적 물성을 개량하려는 목적으로 댜량의 탈크와 같은 광물유래 분말이 충진재료로 혼합하여 사용되고 있다. 그러나 이러한 탈크와 같은 광물유래 분말은 플라스틱 소재에 비하여 비중이 상당히 크기 때문에 결과적으로 플라스틱 소재의 중량이 증가하는 경향이 있다. Plastic materials are mostly derived from petroleum-based fossil fuels, and a considerable amount is used for automobile interiors and building interiors. For the purpose of improving the mechanical and chemical properties of plastics, mineral-derived powders, such as talc, are used as fillers. However, such mineral-derived powders such as talc tend to have a higher specific gravity than plastic materials, resulting in an increase in the weight of the plastic material.
최근 자동차 산업을 중심으로 연비에 대한 관심이 크게 증가하고 있어, 특히 자동차 내장재에 사용되고 있는 플라스틱에 대해서는 동일한 기계적, 화학적 물성을 유지하면서도 동시에 중량을 감소하려는 시도가 활발히 이루어지고 있다. 경량화된 플라스틱 소재는 차량에 적용할 경우 결과적으로 연비를 개선할 수 있으며, 이를 통하여 지구온난화 물질인 이산화탄소 배출량을 감소시킬 수 있다. Recently, the interest in fuel economy has increased significantly, especially in the automobile industry, and efforts are being actively made to reduce weight while maintaining the same mechanical and chemical properties, particularly for plastics used in automobile interior materials. Lightweight plastic materials can improve fuel efficiency when applied to vehicles, thereby reducing carbon dioxide emissions, which are global warming materials.
이러한 플라스틱 소재는 폐기 후 소각 시 대량의 이산화탄소를 배출한다. 최근 자동차산업, 건설산업, 포장산업, 전자산업 등에서는 사용 후 폐기되는 플라스틱 소재에서 유래하는 지구온난화 물질인 이산화탄소 배출량을 억제하려는 시도가 활발히 이루어지고 있다. 만약 소각시에 화석연료에서 기인하는 이산화탄소를 배출하지 않는 재료를 대량으로 포함하는 플라스틱 소재를 생산하고 이를 자동차산업, 건설산업, 포장산업, 전자산업 등에 적용한다면 폐기 후에 발생하는 이산화탄소의 배출량을 획기적으로 저감하여 결과적으로 친환경적 플라스틱 소재 산업을 만드는데 기여할 수 있을 것이다.These plastic materials emit large amounts of carbon dioxide when incinerated after disposal. Recently, in the automobile industry, construction industry, packaging industry, and electronics industry, attempts have been actively made to suppress carbon dioxide emission, a global warming material derived from plastic materials that are disposed of after use. If incineration produces plastic materials that contain large quantities of materials that do not emit carbon dioxide from fossil fuels and apply them to automobiles, construction, packaging, and electronics industries, the carbon dioxide emissions generated after disposal are significantly reduced. Reduction and consequently contribute to the creation of environmentally friendly plastic materials industry.
21세기를 살아가는 인류는 화석연료 대체자원 개발이라는 숙제를 안고 있으며, 이산화탄소 방출저감 등 국제 환경규제에 대응하기 위하여 태양에너지, 풍력, 수력, 원자력 및 바이오매스 등을 주요 대상으로 연구하고 있다.Human beings living in the 21st century are facing the challenge of developing fossil fuel alternative resources and researching solar energy, wind power, hydropower, nuclear power, and biomass in order to cope with international environmental regulations such as carbon dioxide emission reduction.
리그닌은 통상적으로 펄프의 제조 공정에서 발생하는 흑액(Black Liquor) 폐수로부터 회수되어 제품화된다. 펄프를 제조하는 공정은, 사용하는 펄핑 약제에 따라 분류하는데, 최근에는 크래프트(Kraft) 펄프 제조 공정이 보편화되어 있다. 리그닌의 종류는 유래된 펄프 공정과 공정 원료에 따라 서로 다르게 분류된다. 펄프 공정에서 부생되어 정제된 리그닌 또는 리그닌 유도체 제품들의 종류는 대표적으로 하드우드 크래프트 리그닌(Hardwood Kraft Lignin)과 소프트우드 크래프트 리그닌(Softwood Kraft Lignin), 아세틸화 리그닌(Acetylated Lignin) 그리고 리그닌 설포네이트(Lignin Sulfonate) 등이 있다.Lignin is typically recovered and commercialized from the Black Liquor wastewater generated in the pulp manufacturing process. Processes for producing pulp are classified according to the pulping agent used, but in recent years, the process for producing kraft pulp has become common. The type of lignin is classified differently depending on the pulp process and the raw material from which it is derived. The types of lignin or lignin derivative products which are by-produced and refined in the pulp process are typically Hardwood Kraft Lignin, Softwood Kraft Lignin, Acetylated Lignin and Lignin Sulfonate. Sulfonate).
리그닌 계열의 물질들은 시멘트 첨가제, 사료 첨가제, 페놀계 수지 원료, 탄소섬유 전구체 원료, 탄소판 전구체 원료, 내장재용 수지의 제조 원료 등으로 사용되고 있다. 상기와 같은 용도로 활용될 때, 리그닌 소재의 고유한 취성(brittleness)을 극복하는 것이 필요하다. 상기 취성은 최종 제품의 물성에 부정적인 영향을 미치거나 최종제품으로의 가공 과정을 어렵게 만들고, 최종 제품의 불량률을 높여 전체적인 제조 공정 측면에서 손실을 일으킬 수 있다.Lignin-based materials are used as cement additives, feed additives, phenolic resin raw materials, carbon fiber precursor raw materials, carbon plate precursor raw materials, and manufacturing materials for interior resins. When utilized for such purposes, it is necessary to overcome the inherent brittleness of the lignin material. The brittleness may adversely affect the physical properties of the final product or make it difficult to process to the final product, increase the defective rate of the final product may cause loss in terms of the overall manufacturing process.
상기와 같은 이유로 리그닌의 취성해소를 위한 많은 물리, 화학적인 방법들이 개발되고 있다. 구체적으로 리그닌 사슬의 운동성을 향상시키기 위하여 리그닌 사슬 간의 수소결합에 의한 상호작용을 약화시키기 위한 화학적인 방법으로 아세틸화 방법, 메틸화 방법, 그리고 수소화 방법들이 시도된 바 있다. 물리적인 방법으로는 유연성이 좋은 고분자 종류와 혼합하는 방법이 있고, 종래의 기술로서 폴리올레핀과 폴리에스테르, 폴리에틸렌옥사이드(PEO) 등의 합성 고분자들을 여러 종류의 리그닌과 혼합하여 응용하는 방법에 대하여 연구된 바 있다. 그러나 폴리프로필렌, 폴리에틸렌 등의 폴리올레핀의 경우에는 블렌드에서의 상분리 현상이 일어나 리그닌과 혼합하여 사용하는 것이 거의 어려운 것으로 알려져 있다. 폴리에틸렌옥사이드 수지를 리그닌과 섞어 사용하는 것은 사슬의 운동성이 결핍된 리그닌의 연화를 위한 것으로서, 리그닌의 연화를 위하여 많은 양을 혼합하는 것이 필요하나, 이를 이용하여 탄화시켜 만든 탄소 소재의 물성이 취약해져 그 사용이 제약을 받고 있다. 반면, 폴리에틸렌테레프탈레이트(PET)와 폴리부틸렌테레프탈레이트(PBT) 등의 범용 폴리에스테르를 리그닌과 혼합하는 연구에 대해서는 상분리 현상에 의한 문제점이 없는 것으로 보고되고 있다.For these reasons, many physical and chemical methods for the brittleness of lignin have been developed. Specifically, acetylation, methylation, and hydrogenation methods have been attempted as chemical methods to weaken the hydrogen bond interaction between lignin chains in order to improve the motility of the lignin chains. As a physical method, there is a method of mixing with a flexible polymer type, and as a conventional technique, a method for mixing and applying synthetic polymers such as polyolefin, polyester, and polyethylene oxide (PEO) with various kinds of lignin has been studied. There is a bar. However, in the case of polyolefins such as polypropylene and polyethylene, phase separation in the blend occurs, and it is known that it is almost difficult to use the mixture with lignin. The mixed use of polyethylene oxide resin with lignin is for softening lignin, which lacks the mobility of the chain, and it is necessary to mix a large amount for softening of lignin. Its use is limited. On the other hand, studies on mixing general purpose polyesters such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT) with lignin have been reported to have no problems due to phase separation.
종래의 기술은 리그닌 고분자와 폴리에스테르 고분자를 혼합한 가공용 혼합 원료를 얻기 위해, 리그닌과 폴리에스테르를 싱글 스크류 익스트루더 또는 트윈 스큐류 익스트루더를 사용하여 용융하고 혼합하는 방법을 사용한다. 그런데 이러한 고온 혼합 조건은 대부분의 리그닌이 열분해하는 온도에 매우 근접한 조건에서 진행되어 리그닌이 화학적으로 분해되고 변성되게 된다. 또 친수성이 매우 강한 리그닌은 많은 양의 수분을 포함하고 있으며, 건조된 리그닌조차도 공기 중에서 쉽게 수분을 흡수하여, 적지 않은 양의 수분을 포함하게 된다.The prior art uses a method in which lignin and polyester are melted and mixed using a single screw extruder or a twin skew extruder to obtain a processing mixed raw material in which a lignin polymer and a polyester polymer are mixed. However, such high temperature mixing conditions proceed at a condition very close to the temperature at which most lignin is pyrolyzed, so that lignin is chemically decomposed and denatured. The highly hydrophilic lignin contains a large amount of water, and even dried lignin easily absorbs water from the air, thus containing a small amount of water.
또한 폴리에스테르 칩(chip) 등의 경우에는 용융, 혼합 및 가공하기 전에 분말 상태인 리그닌과 거시적으로 잘 혼합되기 위하여 분말화 가공이 필요하다. 이 경우 매우 비효율적인 액체 질소를 사용하는 냉동 분쇄의 방법이 필요한 것으로 알려져 있다. 상기 과정에서 기화되는 질소에 의한 분쇄된 폴리에스테르 시료의 손실이 발생하고, 또 폴리에스테르의 분자량도 영향을 받아 점도지수가 낮아지는 변화가 초래된다. 그 결과로 리그닌과 혼합되었을 때, 리그닌의 취성을 개선시키려는 본래 목적의 달성이 더 어려워진다. 리그닌과 폴리에스테르 분말을 혼합하여 위에 설명한 익스트루더를 사용하여 용융 혼합하여 균일하게 혼합된 칩을 제조할 때, 그 가공 조건에서 리그닌으로부터 혼입된 수분에 의하여 폴리에스테르의 가수분해 반응이 상당히 진행된다. 그 해중합의 결과로 폴리에스테르 고분자 사슬이 와해되어 저분자량의 폴리에스테르 또는 구성하는 모노머 형태로까지 분자량이 낮아지게 된다. 이렇게 해중합된 저분자량 물질들은 휘발성 물질로 간주되는데, 통상적으로 리그닌과 폴리에스테르 수지 혼합물에서 제거되어야 할 대상 물질로 간주되고 있다. 또 저분자량의 물질이 존재하면, 리그닌과 폴리에스테르 수지 혼합물의 점도가 낮아져서 저분자량의 액체처럼 흐르는 현상이 일어나며, 이 경우에도 수지 혼합물 칩으로 가공이 어렵다. 그러므로, 리그닌과 폴리에스테르가 균질하게 혼합되어 가공 원료로 사용될 수 있는 칩을 제조하기 위해서는 위에 열거한 비효율적인 냉동 분쇄의 문제, 물의 혼입 문제, 리그닌의 열분해 문제, 가수분해 반응에 의한 폴리에스테르의 해중합 문제, 저분자량의 휘발성 물질들의 생성 문제, 혼합 용융물의 점도 저하 문제 등이 해결되어야 한다.In addition, in the case of a polyester chip (powder), the powdered processing is required in order to mix well with the lignin in the powder state before the melting, mixing and processing. In this case it is known that a method of freeze grinding using very inefficient liquid nitrogen is required. Loss of the pulverized polyester sample due to nitrogen vaporized in the above process occurs, and the molecular weight of the polyester is also affected, resulting in a change in lowering the viscosity index. As a result, when mixed with lignin, it becomes more difficult to achieve the original purpose of improving the brittleness of lignin. When lignin and polyester powder are mixed and melt mixed using the extruder described above to produce a uniformly mixed chip, the hydrolysis reaction of the polyester proceeds considerably due to the moisture mixed from the lignin under the processing conditions. . As a result of the depolymerization, the polyester polymer chain is broken and the molecular weight is lowered up to low molecular weight polyester or constituent monomer. These depolymerized low molecular weight materials are considered to be volatile, and are generally considered to be substances to be removed from the lignin and polyester resin mixture. In addition, when a low molecular weight substance is present, the viscosity of the lignin and the polyester resin mixture is lowered, causing a phenomenon of flowing like a low molecular weight liquid, and in this case, it is difficult to process the resin mixture chip. Therefore, in order to produce chips that can be used as raw materials by homogeneously mixing lignin and polyester, the above-mentioned problems of inefficient freeze grinding, water mixing, thermal decomposition of lignin, and depolymerization of polyester by hydrolysis reaction Problems, the production of low molecular weight volatiles, the problem of lowering the viscosity of the mixed melt, etc. have to be solved.
종래의 기술로서 예를 들면 [대한민국 공개특허 10-2011-0052242]에서는 리그닌 중합체, 이를 이용한 친환경 자동차 내장재용 복합재 및 이들의 제조방법을 제공하고 있다. 구체적으로 리그닌과 세바코일 클로라이드를 수산기와 카르복실클로라이드기가 1 : 1 ~ 3 몰비가 되도록 혼합하여 100 ~ 130 ℃의 온도에서 에스테르 중합반응을 시켜서 중합한 리그닌 중합체 및 이의 제조방법을 제공한다. 상기의 제조방법에 따라 리그닌 중합체를 생성할 경우, 환경친화적이고 기계적 물성이 뛰어난 자동차 내장재용 복합재의 제조가 가능하나 에스테르 중합반응시 저분자량 물질들이 생성되는 단점이 있다.As a conventional technology, for example, [Korean Patent Laid-Open Publication No. 10-2011-0052242] provides a lignin polymer, an environmentally friendly composite for automobile interior using the same, and a manufacturing method thereof. Specifically, lignin and sebacoyl chloride are mixed so that the hydroxyl group and the carboxyl chloride group are 1: 1 to 3 molar ratio, thereby providing an lignin polymer polymerized by ester polymerization at a temperature of 100 to 130 ° C. and a method for preparing the same. When the lignin polymer is produced according to the above-described manufacturing method, it is possible to manufacture composite materials for automobile interior materials that are environmentally friendly and have excellent mechanical properties, but low molecular weight materials are generated during ester polymerization.
한편, 식물 세포벽은 리그노셀룰로오스 물질로 구성되어 있고, 상기 물질의 구조는 간략히 셀룰로오스(선형 글루코오스 폴리머), 헤미셀룰로오스(고 분지된 헤테로폴리머) 및 리그닌(가교-결합된 방향족 폴리머)에 의해 대표된다.Plant cell walls, on the other hand, consist of lignocellulosic material, the structure of which is briefly represented by cellulose (linear glucose polymer), hemicellulose (highly branched heteropolymer) and lignin (crosslinked aromatic polymer).
다당류(셀룰로오스 및 헤미셀룰로오스) 및 비-다당류(리그닌) 성분의 결합은 기계적 및 생물학적 저항성의 주된 원인이 된다. 지구상에서 가장 풍부한 다당류인 셀룰로오스는, 목재 중량의 50% 이상을 차지하는, 셀로바이오스(D-글루코피라노실-β-1,4-D-글루코피라노오스)가 매우 질서정연하게 배열된 폴리머이다.The combination of polysaccharides (cellulose and hemicellulose) and non-polysaccharide (lignin) components is a major cause of mechanical and biological resistance. Cellulose, the most abundant polysaccharide on earth, is a highly ordered polymer of cellobiose (D-glucopyranosyl-β-1,4-D-glucopyranose), which accounts for more than 50% of the weight of wood.
분자의 긴 번들(bundle)인 마이크로피브릴(microfibril)을 형성하는 셀룰로오스 사슬에 있어, 목재 셀룰로오스는 약 10,000 글루코오스 유닛을 가진다. 셀룰로오스 물질은 화학적 및 생화학적 반응이 쉽고 마이크로피브릴 배열이 불규칙하게 배열된 비결정영역과 상대적으로 반응이 어려운 마이크로피브릴 질서정연하게 배열된 결정영역으로 구성된다.For cellulose chains that form a long bundle of molecules, microfibrils, wood cellulose has about 10,000 glucose units. The cellulosic material is composed of an amorphous region in which chemical and biochemical reactions are easy and the microfibrils are irregularly arranged, and the microfibrils orderly arranged crystal regions are relatively difficult to react.
셀룰로오스 분해 효소는 셀룰로오스 폴리머를 모노머인 글루코오스로 가수분해할 수 있고, 이렇게 생산된 글루코오스는 자연적으로 6탄당 발효 효모인 사카로마이시스 세레비시애에 의해 에탄올로 발효된다. 따라서, 이러한 생촉매(효소)는 바이오매스 에탄올 기술의 중심이다.Cellulolytic enzymes can hydrolyze cellulose polymers into glucose, the monomer, and the glucose produced is naturally fermented into ethanol by Saccharomyces cerevisiae, a hexasaccharide fermentation yeast. Thus, such biocatalysts (enzymes) are central to biomass ethanol technology.
헤미셀룰로오스는 셀룰로오스 및 리그닌의 결합 물질이다. 목재 헤미셀룰로오스는 높은 함량의 크실로오스와 아울러 글루코오스, 만노스, 갈락토오스 및 아라비노스 뿐만아니라 우론산(uronic acid)으로 구성되어 있으며, 사슬이 짧고(중합도 100 내지 200), 고분지된 헤테로폴리머이다. 헤미셀룰로오스는 1,3, 1,6 및 1,4 글루코시딕 결합을 통해 연결되고 종종 아세틸화되어 있다.Hemicellulose is a binding material of cellulose and lignin. Wood hemicellulose is composed of uronic acid as well as glucose, mannose, galactose and arabinose with high content of xylose, short chains (polymerization degree 100 to 200), and highly branched heteropolymers. Hemicelluloses are linked through 1,3, 1,6 and 1,4 glucosidic bonds and are often acetylated.
또한, 리그닌은 p-하이드록시시나밀 알코올으로부터 유래된, 0-2개의 메톡시기 붙어있는 페닐프로파노이드 유닛의 3-차원 폴리페놀릭 구조이다. 리그닌은 소수성이고 화학적 및 생물학적 분해에 대한 저항성이 매우 높다. 리그닌은 구조적으로 헤미셀룰로오스와 셀룰로오스 피브릴 주위를 둘러싸고 있기 때문에 이러한 물질의 생분해에 대한 저항성을 제공하며, 비결정 물질로 식물 세포사이에 접합제로서 작용한다. 식물 조직의 비-구조적 성분(페놀, 탄닌, 지방, 스테롤, 당, 전분, 단백질 및 재(ashes))은 일반적으로 목재 건조 중량의 5% 이하를 차지한다.Lignin is also a three-dimensional polyphenolic structure of 0-2 methoxy group-attached phenylpropanoid units derived from p-hydroxycinamyl alcohol. Lignin is hydrophobic and very resistant to chemical and biological degradation. Lignin structurally surrounds hemicellulose and cellulose fibrils, providing resistance to the biodegradation of these materials and acting as a binder between plant cells as an amorphous material. Non-structural components of plant tissues (phenols, tannins, fats, sterols, sugars, starches, proteins and ashes) generally comprise up to 5% of the dry weight of wood.
친환경적 플라스틱 소재를 생산하기 위하여 기존 석유계 플라스틱인 폴리프로필렌, 폴리에틸렌, PVC 등에 추가적인 이산화탄소를 배출하지 않는 바이오매스 분말을 혼합하여 사용하려는 시도가 상당히 많이 이루어졌다. 이때 바이오매스로는 목재분말, 종이분말, 셀룰로오즈분말 등이 사용되어졌다. "폴리올레핀-식물섬유계 성형용 수지 조성물(한국 등록특허 제0105629호)", 및 "압출사출성형용 생분해성수지 조성물(한국 등록특허 제10-0443275호)" 등에는 생분해성 플라스틱, 바이오베이스 플라스틱 등 친환경 플라스틱에 대하여 기술하고 있다. 그러나 이러한 바이모매스 분말을 플라스틱 소재와 혼합할 경우 기계적, 화학적 물성이 증가하는 대신에 상당히 저하되는 결과를 가져왔다. In order to produce environmentally friendly plastic materials, many attempts have been made to mix biomass powders that do not emit additional carbon dioxide to existing petroleum plastics such as polypropylene, polyethylene, and PVC. At this time, wood powder, paper powder, cellulose powder, etc. were used as biomass. "Polyolefin-plant fiber-based resin composition (Korean Patent No.0105629)", and "Extruded biodegradable resin composition (Korean Patent No. 10-0443275)" and the like biodegradable plastics, bio-based plastics Eco-friendly plastics are described. However, the mixing of these bimomass powders with plastics has resulted in a significant decrease in mechanical and chemical properties instead of an increase.
이에 본 발명에서는 플라스틱의 물성이 증가되고 경량화가 달성될 수 있는 플라스틱 복합소재를 개발하고자 하는 궁극적인 목적을 달성하기 위해 계속 연구를 진행하던 중 물성의 감소를 가져오는 PLA, 전분, 변성 전분 등을 사용하는 대신에 바이오매스로부터 강산을 이용하여 소수성 리그닌 분말을 획득하고, 이를 플라스틱 소재의 충전재료로 이용함으로써 결과적으로 경제적으로 유리할 뿐만 아니라 플라스틱의 물성이 증가되고, 경량화를 달성할 수 있는 획기적인 리그닌 플라스틱 복합소재를 개발함으로써 본 발명을 완성하였다. Therefore, in the present invention, PLA, starch, modified starch, etc., which leads to a decrease in physical properties while continuing research to achieve the ultimate goal of developing a plastic composite material which can be increased in weight and light weight of the plastic can be achieved Instead of using it, hydrophobic lignin powder is obtained from the biomass using strong acid, and it is used as a filling material of plastic material, which is not only economically advantageous, but also breakthrough lignin plastic which can increase the physical properties of the plastic and achieve weight reduction. The present invention was completed by developing a composite material.
따라서, 본 발명에서 해결하고자 하는 기술적 과제는 바이오매스로부터 리그닌을 고수율로 정제하는 방법을 제공하기 위한 것이다.Therefore, the technical problem to be solved in the present invention is to provide a method for purifying lignin from biomass in high yield.
또한, 본 발명에서 해결하고자 하는 다른 기술적 과제는 상기 수득된 리그닌을 이용하여 플라스틱 소재를 제조하는 방법을 제공하기 위한 것이다.In addition, another technical problem to be solved in the present invention is to provide a method for producing a plastic material using the obtained lignin.
또한, 본 발명에서 해결하고자 하는 또다른 기술적 과제는 상기 제조방법에 따라 제조된 리그닌이 포함된 고강도 친환경적인 플라스틱 소재를 제공하기 위한 것이다.In addition, another technical problem to be solved in the present invention is to provide a high-strength eco-friendly plastic material containing lignin prepared according to the above production method.
상기한 기술적 과제를 해결하기 위하여, 본 발명에서는 강산을 이용하여 바이오매스로부터 리그닌을 고수율로 정제하는 방법을 제공한다.In order to solve the above technical problem, the present invention provides a method for purifying lignin from biomass using a strong acid in high yield.
상기한 다른 기술적 과제를 해결하기 위하여, 본 발명에서는 상기 수득된 리그닌을 이용하여 플라스틱 소재를 제조하는 방법을 제공한다.In order to solve the above technical problem, the present invention provides a method for producing a plastic material using the obtained lignin.
상기한 또다른 기술적 과제를 해결하기 위하여, 본 발명에서는 상기 제조방법에 따라 제조된 리그닌이 포함된 고강도 친환경적인 플라스틱 소재를 제공한다.In order to solve the above another technical problem, the present invention provides a high-strength eco-friendly plastic material containing lignin prepared according to the manufacturing method.
본 발명에 따라 바이오매스로부터 수득된 리그닌을 이용한 플라스틱 복합소재는 기존 탈크, 탄산칼슘 등의 광물계 충진재료를 포함하는 플라스틱 복합소재에 비하여 현저히 중량이 감소되는 소위 경량화 소재를 만들 수 있다. 단순 플라스틱 소재에 비하여 본 발명을 통하여 생산된 리그닌을 포함하는 플라스틱 복합소재는 기계적, 화학적 물성 등이 크게 개량되어 자동차용, 건축용, 포장용, 전자용 내장재에 사용되기가 용이하다. 또한 기존 석유계 플라스틱 소재에 비하여 폐기 후 소각시 지구온난화 가스인 화석연료 유래 이산화탄소를 현저하게 덜 배출함으로써 친환경적인 특성을 가지는 친환경 소재이다. 뿐만 아니라 본 발명에 따라 제조된 리그닌을 포함하는 플라스틱 복합소재는 경제적으로도 유리하여 기존 플라스티 소재를 대체하여 자동차용, 건축용 등 다양한 산업에 대량으로 적용되고 이용될 수 있다. Plastic composite material using the lignin obtained from the biomass according to the present invention can make a so-called light weight material that is significantly reduced in weight compared to the plastic composite material containing a mineral filler such as conventional talc, calcium carbonate. Plastic composite material containing lignin produced through the present invention as compared to a simple plastic material is greatly improved in mechanical and chemical properties, etc. It is easy to be used in automotive, building, packaging, electronic interior materials. In addition, compared to the existing petroleum-based plastic material, when discarded after incineration, it emits significantly less carbon dioxide derived from fossil fuel, which is a global warming gas. In addition, the plastic composite material including the lignin prepared according to the present invention is economically advantageous and can be applied and used in large quantities in various industries such as automobiles and constructions by replacing the existing plastic material.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.The following drawings, which are attached to this specification, illustrate preferred embodiments of the present invention, and together with the contents of the present invention serve to further understand the technical spirit of the present invention, the present invention is limited to the matters described in such drawings. It should not be construed as limited.
도 1은 다이메틸카보네이트 처리에 따른 리그닌의 메틸화 (FT-IR 이용 분석)를 측정하여 나타낸 그래프로서, 여기에서 붉은색은 메틸화 반응 전 리그닌 분말을 나타내고, 검은색은 메틸화 반응후 리그닌 분말을 나타낸다.1 is a graph showing the measurement of methylation (FT-IR analysis) of lignin according to dimethyl carbonate treatment, where red color represents lignin powder before methylation reaction and black color lignin powder after methylation reaction.
도 2는 다이메틸카보네이트 처리에 따른 리그닌의 메틸화 (31P-NMR 이용 분석)를 측정하여 나타낸 그래프로서, 여기에서 붉은색은 메틸화 반응 전 리그닌 분말을 나타내고, 검은색은 메틸화 반응후 리그닌 분말을 나타낸다.2 is a graph showing the measurement of methylation of lignin (analysis using 31 P-NMR) according to dimethyl carbonate treatment, where red color represents lignin powder before methylation reaction and black color lignin powder after methylation reaction. .
본 발명의 바이오매스로부터 리그닌을 정제하는 방법은 강산을 이용하는 것을 특징으로 한다.The method for purifying lignin from the biomass of the present invention is characterized by using a strong acid.
본 명세서에서, 용어‘바이오매스’는 재생가능한 에너지원으로서 살아있거나 최근에 죽은 생물로부터 얻는다. 바이오매스는 탄소, 수소 및 산소를 기본으로 구성하고, 직접 이용하거나 바이오연료(biofuel)와 같은 다른 에너지 산물로 전환하여 이용할 수 있다. 쓰레기, 목재, 폐기물, 매립지가스 및 알코올연료의 5 가지 에너지원으로부터 바이오매스 에너지를 얻을 수 있다. 목재 에너지는 목재를 수확하거나 폐목재를 이용한다. As used herein, the term "biomass" is obtained from living or recently dead creatures as a renewable energy source. Biomass is based on carbon, hydrogen and oxygen and can be used directly or converted to other energy products such as biofuels. Biomass energy can be obtained from five energy sources: waste, wood, waste, landfill gas and alcohol fuel. Wood energy harvests wood or uses waste wood.
본 발명에서는 초본계, 목질계 유래 바이오매스 등 다양한 리그닌 함유 바이오매스가 사용될 수 있다. 초본계 바이오매스에 비하여 목질계 바이오매스는 리그닌의 함량이 많아 강산에 추출될 수 있는 리그닌의 양이 많아 유리하다. 목질계 바이오매스는 침엽수, 활엽수 등 수종에 크게 관계하지 않고 모두 사용이 가능하다. In the present invention, various lignin-containing biomass such as herbal and wood-based biomass may be used. Compared with herbal biomass, wood-based biomass has a high content of lignin, which is advantageous because a large amount of lignin can be extracted in strong acid. Woody biomass can be used regardless of species such as conifers and hardwoods.
본 발명에서 바이오매스로부터 리그닌을 추출하기 위하여 사용되는 강산으로는 황산, 염산 또는 이들의 혼합물을 예로 들 수 있으며, 특히 염산이 바람직하다. 한편, 초산, 숙신산 등의 약산은 리그닌을 추출하는데 효율이 상당히 낮기에 적당하지 않다. Examples of strong acids used to extract lignin from biomass in the present invention include sulfuric acid, hydrochloric acid, or mixtures thereof, with hydrochloric acid being particularly preferred. On the other hand, weak acids such as acetic acid and succinic acid are not suitable because the efficiency of extracting lignin is quite low.
본 발명의 하나의 구체적인 실시양태에 따르면, 강산을 이용하여 리그닌을 추출하는 방법은 하기 단계로 이루어질 수 있다:According to one specific embodiment of the present invention, the method of extracting lignin using a strong acid may consist of the following steps:
(S1) 강산을 이용하여 리그닌을 포함하는 바이오매스의 분자구조를 해체 및 해리시키는 단계; (S1) dissolving and dissociating the molecular structure of the biomass containing lignin using a strong acid;
(S2) 상기 단계 (S1)에서 해리된 리그닌을 알칼리를 이용하여 중화시킴으로써 리그닌 고형입자를 수득하는 단계; 및 (S2) neutralizing the lignin dissociated in step (S1) with alkali to obtain lignin solid particles; And
(S3) 상기 단계 (S2)에서 수득된 리그닌 고형입자를 건조 및 분말화하는 단계.(S3) drying and powdering the lignin solid particles obtained in the step (S2).
본 발명의 바람직한 하나의 구체적인 실시양태에 따르면, 상기 (S1) 단계는 (1) 70% 이상의 고농도 강산을 이용하여 리그닌을 포함하는 바이오매스의 분자구조를 해체하는 단계; 및 (2) 상기에서 분자구조가 해체된 바이오매스에 10 내지 15% 농도의 강산을 이용하여 리그닌을 감싸고 있는 다당류를 가수분해하여 액화시킴으로써 리그린으로부터 해리시키는 단계를 포함한다. According to one preferred embodiment of the present invention, step (S1) comprises the steps of: (1) dissolving the molecular structure of the biomass comprising lignin using a high concentration strong acid of at least 70%; And (2) dissociating from the ligrin by hydrolyzing and liquefying the polysaccharide surrounding the lignin using a strong acid at a concentration of 10 to 15% in the biomass in which the molecular structure is dissolved.
상기 (1)은 바이오매스의 분자구조, 즉, 결정화구조를 해체하는 단계이다. 이 때 사용되는 강산은 70% 이상의 고농도 강산으로서 특히 염산이 바람직하다. (1) is a step of dismantling the molecular structure of the biomass, that is, the crystallization structure. The strong acid used at this time is a high concentrated strong acid of 70% or more, and particularly preferably hydrochloric acid.
상기 (2)에서는 산에 의해 가수분해되는 5 % 미만의 소량의 리그닌을 제외하고 대부분의 리그닌은 산에 용해되지 않고 고형물로 추출될 수 있다. In (2), most of the lignin can be extracted as a solid without being dissolved in acid except a small amount of less than 5% of lignin hydrolyzed by acid.
본 발명의 바람직한 하나의 구체적인 실시양태에 따르면, 상기 (S1) 단계에서 강산으로 염산을 사용할 경우에는 20 내지 40℃에서 20 내지 40 시간 동안 가수분해를 수행하는 것이 바람직하다.According to one preferred embodiment of the present invention, when using hydrochloric acid as the strong acid in the step (S1), it is preferable to perform hydrolysis at 20 to 40 ℃ for 20 to 40 hours.
본 발명의 바람직한 하나의 구체적인 실시양태에 따르면, 상기 (S1) 단계에서 강산으로 황산을 이용할 경우 상기 (1) 및 (2)의 2단계로 수행하는 것이 바람직하며, 1차 가수분해는 20 내지 40℃에서 1 내지 6 시간 동안 수행하고, 2차 가수분해는 90 내지 115℃에서 1 내지 3 시간 동안 수행하는 것이 바람직하다.According to one preferred embodiment of the present invention, when using sulfuric acid as a strong acid in the step (S1), it is preferable to perform in two steps of (1) and (2), the first hydrolysis is 20 to 40 It is preferably carried out at 1 ° C. for 1 to 6 hours, and secondary hydrolysis at 90 to 115 ° C. for 1 to 3 hours.
상기 단계 (S3)은 NaOH 및 Ca(OH)2와 같은 알칼리를 이용하여 해리된 리그닌을 중화한 후 세척수로 세척하여 중화된 형태의 리그닌 고형입자를 획득하는 단계이다. 이 때 중화를 하지 않고 세척만 할 경우 획득된 리그닌은 상당한 산도를 가지기 때문에 나중에 석유계 플라스틱과 혼합시 기계적, 화학적 물성을 감소시키는 원인이 된다. Step (S3) is a step of obtaining neutralized form of lignin solid particles by neutralizing the dissociated lignin using an alkali such as NaOH and Ca (OH) 2 and then washing with wash water. In this case, if the lignin obtained by washing only without neutralization has a considerable acidity, it may cause mechanical and chemical properties to be reduced later when mixed with petroleum-based plastics.
상기 단계 (S4)는 획득된 리그닌을 건조 및 분말화하는 단계로서, 95 내지 105℃에서 수득된 리그닌 고형입자를 건조한 다음 분쇄기로 미분화하여 1 내지 50 ㎛의 평균입경을 가지는 리그닌 분말을 수득할 수 있다. 이 때 리그닌 분말의 입경이 10 ㎛ 이하일 경우 더 좋은 기계적 물성을 가질 수는 있으나 분쇄 시에 상당한 수율감소가 동반되는 어려움이 있다.The step (S4) is a step of drying and pulverizing the obtained lignin, dried lignin solid particles obtained at 95 to 105 ℃ and then micronized by a grinder to obtain a lignin powder having an average particle diameter of 1 to 50 ㎛ have. In this case, if the particle size of the lignin powder is 10 μm or less, it may have better mechanical properties, but there is a difficulty in that a significant reduction in yield is accompanied during grinding.
본 발명에 따라 수득된 리그닌 분말의 표면을 FT-IR과 같은 분석장비를 이용하여 분석하면 표면에 존재하는 수산화기 등의 화학종의 양을 추정할 수 있다. 다른 리그닌에 비하여 강산, 특히 진한 황산을 이용하여 추출한 리그닌은 황산의 탈수 축합작용에 의하여 수산화기, 카르복실기 등이 상호 탈수축합되어 에스테르기를 형성하기 때문에 FT-IR로 분석 시 수산화기, 카르복실기의 화학종의 양이 크게 감소하는 것을 알수 있다. 이러한 수산화기, 카르복실기의 감소는 결과적으로 리그닌의 소수성을 증가시켜 이후 석유계 플라스틱과 혼합할 때, 석유계 플라스틱 고분자와 더 밀접하게 혼합되는 결과를 가져온다. 이러한 밀접한 혼합은 리그닌 플라스틱 복합재료의 기계적 물성의 증가를 가져온다. If the surface of the lignin powder obtained according to the present invention is analyzed using an analytical device such as FT-IR, the amount of chemical species such as hydroxyl groups present on the surface can be estimated. Compared with other lignin, lignin extracted with strong acid, especially concentrated sulfuric acid, dehydration condensation effect of sulfuric acid, hydroxyl group, carboxyl group etc. mutually dehydration condensation to form ester group, so the amount of species of hydroxyl group, carboxyl group when analyzed by FT-IR It can be seen that this greatly decreases. This reduction in hydroxyl and carboxyl groups results in increased hydrophobicity of lignin, resulting in more intimate mixing with petroleum-based plastic polymers when subsequently mixed with petroleum-based plastics. This intimate mixing results in an increase in the mechanical properties of the lignin plastic composites.
강산 처리를 통하여 분리 획득한 리그닌의 소수성을 증가시키기 위하여 실란, 할로겐화 알칸 등의 물질을 이용하여 리그닌의 수산화기를 화학적으로 변화시킬 수 있다. 그러나 이러한 처리방법은 상당히 고가의 물질인 실란화 물질, 할로겐화 알칸 등의 물질이 필요하며, 반응 후 친수성 화합물인 메탄올, 할로겐화 화합물이 잔류되는 문제가 발생하고 이것이 향후 석유계 플라스틱과 혼합할 때, 물성 저하로 이어질 수 있는 문제가 있다. 이러한 문제를 해결하기 위하여 본 발명에서는 저가이면서 매우 반응성이 좋은 다이메틸카보네이트 (dimethylcarbonate)를 이용하여 추가로 수산화기, 페놀계 수산화기에 메틸기를 전이하여 메톡시로 전환하고 이를 통하여 리그닌 분말의 소수성을 극대화하는 방안을 제시한다. In order to increase the hydrophobicity of the lignin obtained separately by the strong acid treatment, the hydroxyl group of the lignin can be chemically changed using a silane, a halogenated alkane or the like. However, these treatment methods require highly expensive materials such as silanated materials and halogenated alkanes, and there is a problem of remaining hydrophilic compounds such as methanol and halogenated compounds after the reaction. There is a problem that can lead to degradation. In order to solve this problem, in the present invention, a low-cost and highly reactive dimethylcarbonate is used to further convert the methyl group to a hydroxyl group and a phenolic hydroxyl group to methoxy, thereby maximizing the hydrophobicity of the lignin powder. Present a plan.
본 발명의 바람직한 하나의 구체적인 실시양태에 따르면, 본 발명에서는 다이메틸카보네이트 (dimethylcarbonate)를 이용하여 리그닌을 메틸화시킴으로써 리그닌의 소수성을 증가시키는 것을 특징으로 한다.According to one preferred embodiment of the present invention, the present invention is characterized by increasing the hydrophobicity of lignin by methylating lignin with dimethylcarbonate.
한편, 본 발명에서는 상기 수득된 리그닌을 이용하여 플라스틱 소재를 제조하는 방법을 제공한다.On the other hand, the present invention provides a method for producing a plastic material using the obtained lignin.
본 발명에 따라 강산 처리에 의하여 획득된 리그닌 분말 또는 다이메틸카보네이트 처리를 통하여 좀더 소수성이 극대화된 리그닌 분말 1 내지 30 중량%를 석유계 플라스틱 수지, 예를 들어 폴리프로필렌, 폴리에틸렌, PVC 등의 열가소성 수지와 혼합한 후 일정한 형태로 만들고 식히면 원하는 모양의 리그닌 함유 복합 플라스틱 제품을 만들 수 있다. 리그닌 분말이 1 중량%에 비하여 너무 적게 함유되면 리그닌 분말 혼합에 따른 경량화 효과가 미미해지며, 역시 기계적 물성, 특히 충격강도의 개선이 이루어지는 것을 기대하기가 어렵다. 반면 30 중량% 초과의 리그닌 분말이 혼입될 경우 경량화 효과는 증가하는 리그닌 분말의 완전한 분산이 어려워져 결과적으로 기계적 물성, 특히 굴곡강도의 저하가 뚜렷해질 가능성이 높아진다. 1 to 30% by weight of lignin powder obtained by the strong acid treatment according to the present invention or lignin powder maximized more hydrophobic through dimethyl carbonate treatment, such as thermoplastic resins such as petroleum plastic resins, for example, polypropylene, polyethylene, PVC After mixing with a certain form and cooled to produce a composite plastic product containing the lignin of the desired shape. When the lignin powder is contained in an amount less than 1% by weight, the weight reduction effect due to the lignin powder mixing is insignificant, and it is difficult to expect the improvement of the mechanical properties, particularly the impact strength. On the other hand, when more than 30% by weight of lignin powder is incorporated, the weight reduction effect becomes difficult to fully disperse the lignin powder, which increases, and as a result, there is a high possibility that the decrease in mechanical properties, particularly flexural strength, becomes apparent.
본 발명의 바람직한 하나의 구체적인 실시양태에 따르면, 본 발명에서는 플라스틱 소재의 물성을 향상시키기 위하여 말레익 안하이드라이드기로 그래프팅된 폴리프로필렌을 플라스틱 소재의 총 중량을 기준으로 하여 1 내지 10 중량%의 양으로 추가로 첨가하는 것을 특징으로 한다.According to one preferred embodiment of the present invention, in the present invention, polypropylene grafted with maleic anhydride group to improve the physical properties of the plastic material of 1 to 10% by weight based on the total weight of the plastic material It is further characterized by the addition of the amount.
한편, 본 발명에서는 상기 제조방법에 따라 제조된 리그닌이 포함된 고강도 친환경적인 플라스틱 소재를 제공한다.On the other hand, the present invention provides a high-strength eco-friendly plastic material containing lignin prepared according to the above production method.
이하, 본 발명의 이해를 돕기 위하여 실시예 등을 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다. Hereinafter, examples and the like will be described in detail to help understand the present invention. However, embodiments according to the present invention can be modified in many different forms, the scope of the invention should not be construed as limited to the following examples. Embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art.
<실시예 1> 산 처리 조건에 따른 바이오매스로부터 리그닌의 분리 Example 1 Isolation of Lignin from Biomass under Acid Treatment Conditions
강산을 이용하여 리그닌을 추출하기 위하여 사용된 바이오매스는 소나무, 전나무, 리키다소나무, 참나무, 아카시아 및 팜공과방 (Palm empty fruit bunch)을 각각 동일한 비율로 혼합한 다음 마쇄하여 분말크기 20-40 mesh 부분을 선별하여 산 가수분해 재료로 사용하였다. Biomass used to extract lignin using strong acid is mixed with pine, fir, lychee pine, oak, acacia and palm empty fruit bunch in equal proportions, and then crushed. The mesh part was selected and used as an acid hydrolysis material.
마쇄된 목분과 황산의 부피 비율을 1:1.5로 하여 24.0 N의 황산을 가해 30℃에서 1시간 반응하는 1차 가수분해 후 1차 황산 첨가량의 4배에 해당하는 끓는 물을 첨가하여 105 ℃에서 1시간 동안 2차 가수분해를 실시하였다. Volumetric ratio of crushed wood flour and sulfuric acid is 1: 1.5, and 24.0 N sulfuric acid is added, followed by primary hydrolysis for 1 hour at 30 ° C., followed by addition of boiling water corresponding to four times the amount of primary sulfuric acid, at 105 ° C. Secondary hydrolysis was carried out for 1 hour.
또한, 산으로 염산을 사용하여 1차 가수분해를 수행하였다.In addition, primary hydrolysis was performed using hydrochloric acid as the acid.
상기 황산을 이용한 2단계의 가수분해 및 염산을 이용한 1단계 가수분해가 끝난 후 반응물을 냉각하고 여과하여 액상의 당화액을 수집하고, 고형물로 남은 리그닌을 알카리 물로 3회 이상 세척하였으며, 최종 pH를 7.0으로 조정하였다. 세척된 리그닌 고형물을 100℃ 건조기에서 24시간 이상 방치하여 건조하였다. 하기 표 1에는 산을 이용한 리그닌의 분리 효율을 나타낸 것이다. After completion of the two-stage hydrolysis with sulfuric acid and one-stage hydrolysis with hydrochloric acid, the reaction mixture was cooled and filtered to collect liquid saccharified liquid, and the remaining lignin as a solid was washed three times or more with alkaline water. Adjusted to 7.0. The washed lignin solids were left to dry for at least 24 hours in a 100 ℃ dryer. Table 1 shows the separation efficiency of lignin using an acid.
1차 가수분해 산처리 조건Primary hydrolysis acid treatment conditions 2차 가수분해 산처리 조건Secondary hydrolysis acid treatment condition 리그닌 회수율 (%)Lignin Recovery (%)
24 N 황산, 30℃ 1시간24 N sulfuric acid, 30 ° C. 1 hour 6.0 N 황산, 105 ℃, 1시간6.0 N sulfuric acid, 105 DEG C, 1 hour 9090
24 N 황산, 30℃ 1시간24 N sulfuric acid, 30 ° C. 1 hour 6.0 N 황산, 105 ℃, 2시간6.0 N sulfuric acid, 105 DEG C, 2 hours 9292
24 N 황산, 30℃ 1시간24 N sulfuric acid, 30 ° C. 1 hour 6.0 N 황산, 105 ℃, 3시간6.0 N sulfuric acid, 105 DEG C, 3 hours 9595
24 N 황산, 30℃ 2시간24 N sulfuric acid, 30 ° C. 2 hours 6.0 N 황산, 105 ℃, 1시간6.0 N sulfuric acid, 105 DEG C, 1 hour 8080
24 N 황산, 30℃ 4시간24 N sulfuric acid, 30 ° C. 4 hours 6.0 N 황산, 105 ℃, 1시간6.0 N sulfuric acid, 105 DEG C, 1 hour 8282
24 N 황산, 30℃ 6시간24 N sulfuric acid, 30 ° C. 6 hours 6.0 N 황산, 105 ℃, 1시간6.0 N sulfuric acid, 105 DEG C, 1 hour 8585
20 % (w/w) 염산, 30℃ 0.5시간20% (w / w) hydrochloric acid, 30 ° C 0.5 hours -- 7575
25 % (w/w) 염산, 30℃ 0.5시간25% (w / w) hydrochloric acid, 30 ° C 0.5 hour -- 8080
35 % (w/w) 염산, 30℃ 0.5시간35% (w / w) hydrochloric acid, 30 ° C 0.5 hours -- 9292
상기 표 1에서 보듯이, 산으로서 황산을 처리할 경우는 1차, 2차 가수분해 모두 시간을 길게 처리할 경우 리그닌 회수율이 증가하는 경향을 볼 수 있다. 이는 가수분해 사용되는 황산의 처리 시간이 길면 리그닌과 결합되어 있거나 주변에 위치하는 다당류를 가수분해하면서 다당류가 액상의 형태로 제거되기가 용이하기 때문이다. 염산을 처리하는 경우는 2단계 가수분해가 필요없이 1단계 처리만으로 리그닌을 회수할 수 있는 장점이 있다. 다만 황산에 비하여 염산은 금속에 대한 부식성이 크며, 낮은 온도에서도 기화되는 등 실험상의 어려움이 있으나, 염산에 내부식 재료를 이용하여 실험할 경우 표 1과 같이 높은 효율로 리그닌을 회수할 수 있다. As shown in Table 1, in the case of treating sulfuric acid as an acid it can be seen that the lignin recovery rate increases when the first and second hydrolysis treatment for a long time. This is because when the treatment time of sulfuric acid used for hydrolysis is long, it is easy to remove the polysaccharides in the form of a liquid while hydrolyzing the polysaccharides bound to or located in the vicinity of lignin. When hydrochloric acid is treated, there is an advantage in that lignin can be recovered by only one step without the need for two-step hydrolysis. However, compared to sulfuric acid, hydrochloric acid is more corrosive to metals and has difficulty in experiments such as vaporization even at low temperatures. However, when hydrochloric acid is used as a corrosion resistant material, lignin can be recovered with high efficiency as shown in Table 1.
<실시예 1> 다이메틸카보네이트 처리에 따른 리그닌의 소수성 증가 측정Example 1 Measurement of Hydrophobicity Increase of Lignin According to Dimethylcarbonate Treatment
800 g 미분화된 리그닌 분말을 15 L의 DMSO (dimethyl sulfoxide) 용매에 넣고 용해시켰다. 가성소다 373 g 과 DMC (dimethyl carbonate)의 양을 변화시켜 가면서 DMSO 용해액에 투입하였다. 이 후 120 ℃에서 15시간정도 반응을 수행하였으며, 반응 종료 후에 상온으로 반응용액을 냉각시킨 후 2 N HCl을 가하여 침전시켜, 메틸기가 전이된 리그닌을 회수하였다. 회수된 리그닌의 메틸화 정도를 31P NMR을 이용하여 정량화하였다. 하기 표 2는 DMC 투입 조건 변화에 따른 반응조건에 따른 리그닌의 메틸화 정도를 나타낸 것이다.800 g of micronized lignin powder was dissolved in 15 L of DMSO (dimethyl sulfoxide) solvent. 373 g of caustic soda and DMC (dimethyl carbonate) were added to the DMSO solution with varying amounts. Thereafter, the reaction was performed at 120 ° C. for about 15 hours. After completion of the reaction, the reaction solution was cooled to room temperature and then precipitated by addition of 2N HCl to recover lignin to which the methyl group was transferred. The methylation degree of the recovered lignin was quantified using 31 P NMR. Table 2 shows the degree of methylation of lignin according to the reaction conditions according to the change of DMC input conditions.
DMC 투여량 (g) DMC Dose (g) 반응온도 (℃)Reaction temperature (℃) 반응시간 (hrs)Response time (hrs) 리그닌 메틸화 전환율 (%)Lignin methylation conversion (%)
103 103 120 120 1515 2020
206206 120 120 1515 2424
412412 120 120 1515 7676
1,2361,236 120 120 1515 9090
2,4722,472 120 120 1515 9292
상기 표 2에서 볼 수 있듯이, DMC 투여량을 증가시키면 리그닌의 메틸화 전환율이 증가하며, 90% 이상 전환율에 도달하는 것을 볼 수 있다. 이렇게 전환율이 90 % 이상되는 리그닌 분말을 대상으로 FT-IR 기기를 이용하여 반응 전후의 페놀계 수산화기의 존재와 전환여부를 관찰하여 그 결과를 도 1에 나타내었다. As can be seen in Table 2 above, increasing the DMC dose increases the methylation conversion of lignin, reaching a conversion rate of 90% or more. Thus, the presence and conversion of phenol-based hydroxyl groups before and after the reaction using the FT-IR apparatus for lignin powder having a conversion rate of 90% or more are shown in FIG. 1.
도 1은 다이메틸카보네이트 처리에 따른 리그닌의 메틸화 (FT-IR 이용 분석)를 측정하여 나타낸 그래프로서, 여기에서 붉은색은 메틸화 반응 전 리그닌 분말을 나타내고, 검은색은 메틸화 반응후 리그닌 분말을 나타낸다. 도 1에서 보듯이, 다이메틸카보네이트 처리에 따라 리그닌 표면에 존재하는 페놀계 수산화기가 메틸화되어 wavelength 3,500 nm 전후의 피크가 크게 감소하는 것을 확인할 수 있었다. 이러한 결과로부터 DMC의 처리에 의하여 수산화기가 메틸화되어 결과적으로 소수성이 크게 증가할 것으로 기대된다. 1 is a graph showing the measurement of methylation (FT-IR analysis) of lignin according to dimethyl carbonate treatment, where red color represents lignin powder before methylation reaction and black color lignin powder after methylation reaction. As shown in FIG. 1, the phenolic hydroxyl group present on the surface of the lignin was methylated according to the dimethyl carbonate treatment, and the peak around wavelength 3,500 nm was significantly reduced. From these results, the hydroxyl group is methylated by the treatment of DMC, and consequently, the hydrophobicity is expected to increase greatly.
도 2는 다이메틸카보네이트 처리에 따른 리그닌의 메틸화 (31P-NMR 이용 분석)를 측정하여 나타낸 그래프로서, 여기에서 붉은색은 메틸화 반응 전 리그닌 분말을 나타내고, 검은색은 메틸화 반응후 리그닌 분말을 나타낸다. 도 2에서 보듯이, 다이메틸카보네이트 처리에 따라 리그닌 표면에 존재하는 다양한 종류의 수산화기가 메틸화되어 수산화기에 해당하는 특성 피크가 크게 감소하는 것을 확인할 수 있었다. 이러한 결과로부터 DMC의 처리에 의하여 리그닌에 존재하는 수산화기가 메틸화되어 결과적으로 소수성이 크게 증가할 것으로 추측된다. 2 is a graph showing the measurement of methylation of lignin (analysis using 31 P-NMR) according to dimethyl carbonate treatment, where red color represents lignin powder before methylation reaction and black color lignin powder after methylation reaction. . As shown in FIG. 2, it was confirmed that various types of hydroxyl groups present on the surface of the lignin were methylated according to the dimethyl carbonate treatment, thereby greatly reducing the characteristic peaks corresponding to the hydroxyl groups. These results suggest that the hydroxyl group present in the lignin is methylated by the treatment of DMC, and consequently, the hydrophobicity is greatly increased.
<실시예 3> 실란커플링 화합물 처리에 따른 리그닌의 소수성 증가 측정Example 3 Measurement of Hydrophobicity Increase of Lignin According to Treatment of Silane Coupling Compound
다양한 실란커플링 화합물을 이용하여 리그닌 표면에 존재하는 수산화기와 반응시켜 실란화를 시킴으로써 결과적으로 리그닌의 소수성을 증가시킬 수 있다. 본 실험에서는 3가지의 대표적인 실란커플링 화합물 (3-aminopropyltriethoxysilane, glycidoxypropyltrimethoxysilane, methylacryloxypropyltrimethoxysilane)을 이용하여 리그닌의 표면을 개질하였다. 일정 농도의 실란커플링 화합물 용해액에 리그닌 분말을 가한 후 90 ℃에서 12시간 반응을 진행하였다. 이후 여과 및 세척, 건조 과정을 거친 후 반응된 리그닌 분말을 획득하였다. 리그닌의 분말의 실란 반응 정도는 Si의 원소분석을 통하여 추정이 되었다. Various silane coupling compounds may be used to react with the hydroxyl groups present on the surface of the lignin to cause silanization, resulting in increased hydrophobicity of the lignin. In this experiment, three representative silane coupling compounds (3-aminopropyltriethoxysilane, glycidoxypropyltrimethoxysilane, methylacryloxypropyltrimethoxysilane) were used to modify the surface of lignin. After adding lignin powder to a silane coupling compound solution of a certain concentration, the reaction was performed at 90 ° C. for 12 hours. After filtration, washing and drying, the reacted lignin powder was obtained. The degree of silane reaction of lignin powder was estimated through elemental analysis of Si.
실란커플링 화합물Silane Coupling Compound 반응조건Reaction condition 실란 반응 전환율(%)Silane Reaction Conversion Rate (%)
3-aminopropyltriethoxysilane3-aminopropyltriethoxysilane 2 % 실란커플링 화합물 (w/w)2% silane coupling compound (w / w) 3535
glycidoxypropyltrimethoxysilaneglycidoxypropyltrimethoxysilane 2 % 실란커플링 화합물 (w/w)2% silane coupling compound (w / w) 2020
methylacryloxypropyltrimethoxysilanemethylacryloxypropyltrimethoxysilane 2 % 실란커플링 화합물 (w/w)2% silane coupling compound (w / w) 2323
상기 표 3에서 볼 수 있듯이, 가장 좋은 실란 커플링 화합물은 3-aminopropyltriethoxysilane으로 나타났으나 전환율은 35 % 미만이었다. As shown in Table 3, the best silane coupling compound was found to be 3-aminopropyltriethoxysilane, but the conversion was less than 35%.
<실시예 4> 리그닌을 포함하는 석유계 플라스틱 수지 (폴리프로필렌) 제조Example 4 Preparation of Petroleum Plastic Resin (Polypropylene) Containing Lignin
상기 실시예 1에서 수득한 리그닌 분말을 미립화시킨 후, 5 % 리그닌 분말을 폴리프로필렌(PP; polypropylene), 스테아르산칼슘(calcium stearate) 1.0wt%, 산화방지제 0.5 wt%, 및 산화티타늄(titanium oxide) 5.0wt%를 투입하여 제조된 복합수지를 사출성형하여 자동차용 플라스틱 조성물을 제조하였다. 하기 표 4에는 리그닌 분말 입경에 따른 석유계 플라스틱 수지의 물성을 나타내었다.After atomizing the lignin powder obtained in Example 1, 5% lignin powder was polypropylene (PP; polypropylene), 1.0 wt% calcium stearate (calcium stearate), 0.5 wt% antioxidant, and titanium oxide (titanium oxide) ) A plastic composition for automobiles was prepared by injection molding the composite resin prepared by adding 5.0 wt%. Table 4 shows the physical properties of the petroleum-based plastic resin according to the lignin powder particle diameter.
리그닌 분말 평균 입경 (㎛)Lignin Powder Average Particle Size (㎛) 인장강도 (MPa)Tensile Strength (MPa) 아이조드 충격강도(J/m)Izod impact strength (J / m) 비중 importance
20 이하20 or less 4040 4545 0.980.98
20 ~ 5020-50 3838 4242 0.980.98
50 ~ 10050-100 3636 3535 0.990.99
100 이상More than 100 3232 3030 0.990.99
상기 표 4에서 보듯이, 리그닌 분말 사이즈가 작을수록 인장강도, 충격강도 등의 물성이 증가하고 비중이 감소하는 경향을 나타내어 우수한 리그닌 함유 복합플라스틱 수지 제조에 적합하다.As shown in Table 4, the smaller the lignin powder size shows a tendency to increase the physical properties such as tensile strength, impact strength and decrease the specific gravity is suitable for producing excellent lignin-containing composite plastic resin.
<실시예 5> 메틸화된 소수성 리그닌과 석유계 플라스틱 수지 (폴리프로필렌) 혼합물 제조 Example 5 Preparation of Methylated Hydrophobic Lignin and Petroleum Plastic Resin (Polypropylene) Mixture
상기 실시예 2에서 수득한 메틸화된 소수성 리그닌 분말을 미립화시킨 후, 5 % 리그닌 분말을 폴리프로필렌(PP; polypropylene), 스테아르산칼슘(calcium stearate) 1.0wt%, 산화방지제 0.5 wt%, 및 산화티타늄(titanium oxide) 5.0wt%를 투입하여 제조된 복합수지를 사출성형하여 자동차용 플라스틱 조성물을 제조하였다. 하기 표 5에는 메틸화된 소수성 리그닌 분말 입경에 따른 석유게 플라스틱 수지의 물성을 나타내었다.After atomizing the methylated hydrophobic lignin powder obtained in Example 2, the 5% lignin powder was polypropylene (PP; polypropylene), 1.0 wt% calcium stearate, 0.5 wt% antioxidant, and titanium oxide (Titanium oxide) 5.0wt% composite resin prepared by injection molding to prepare a plastic composition for automobiles. Table 5 shows the physical properties of the petroleum crab plastic resin according to the particle size of the methylated hydrophobic lignin powder.
리그닌 분말 평균 입경 (㎛)Lignin Powder Average Particle Size (㎛) 인장강도 (MPa)Tensile Strength (MPa) 아이조드 충격강도(J/m)Izod impact strength (J / m) 비중 importance
20 이하20 or less 5050 5555 0.970.97
20 ~ 5020-50 4242 5151 0.970.97
50 ~ 10050-100 4040 4747 0.980.98
100 이상More than 100 3636 4242 0.990.99
상기 표 5에서 알 수 있듯이, 메틸화된 소수성 리그닌 분말 입경이 작을수록 인장강도, 충격강도 등의 물성이 증가하고 비중이 감소하는 경향을 나타내어 우수한 리그닌 함유 복합플라스틱 수지 제조에 적합하다.As can be seen in Table 5, the smaller the particle size of the methylated hydrophobic lignin powder shows a tendency to increase the physical properties such as tensile strength, impact strength and decrease the specific gravity, which is suitable for producing excellent lignin-containing composite plastic resin.
<실시예 6> 실링커플링으로 실란화된 리그닌과 석유계 플라스틱 수지 (폴리프로필렌) 혼합물 제조 Example 6 Preparation of Silane-Lignin and Petroleum Plastic Resin (Polypropylene) Mixture by Sealing Coupling
상기 실시예 3에서 3-aminopropyltriethoxysilane을 이용하여 실란화된 소수성 리그닌 분말을 미립화시킨 후, 5 % 리그닌 분말을 폴리프로필렌(PP; polypropylene), 스테아르산칼슘(calcium stearate) 1.0wt%, 산화방지제 0.5 wt%, 및 산화티타늄(titanium oxide) 5.0wt%를 투입하여 제조된 복합수지를 사출성형하여 자동차용 플라스틱 조성물을 제조하였다. 하기 표 6에는 실링커플링으로 실란화된 리그닌 분말 입경에 따른 석유계 플라스틱 수지의 물성을 나타내었다.After atomizing the silanated hydrophobic lignin powder using 3-aminopropyltriethoxysilane in Example 3, 5% lignin powder was polypropylene (PP; polypropylene), calcium stearate (1.0 wt%), antioxidant 0.5 wt %, And 5.0 wt% of titanium oxide (titanium oxide) was injected into a composite resin prepared by injection molding a plastic composition for automobiles. Table 6 shows the physical properties of the petroleum-based plastic resin according to the particle size of the lignin powder silanized by the sealing coupling.
리그닌 분말 평균 사이즈 (㎛)Lignin Powder Average Size (㎛) 인장강도 (MPa)Tensile Strength (MPa) 아이조드 충격강도(J/m)Izod impact strength (J / m) 비중 importance
20 이하20 or less 4141 4646 0.980.98
20 ~ 5020-50 3939 4343 0.980.98
50 ~ 10050-100 3636 3636 0.990.99
100 이상More than 100 3434 3131 0.990.99
상기 표 6에서 알 수 있듯이, 실링커플링으로 실란화된 리그닌 분말 사이즈가 작을수록 인장강도, 충격강도 등의 물성이 증가하고 감소하는 경향을 나타내어 우수한 리그닌 함유 복합플라스틱 수지 제조에 적합하다.As can be seen in Table 6, the smaller the lignin powder size silanized by the sealing coupling shows a tendency to increase and decrease the physical properties such as tensile strength, impact strength is suitable for producing excellent lignin-containing composite plastic resin.
<실시예 7> 메틸화된 소수성 리그닌의 혼합량 조절을 변화를 통한 석유계 플라스틱 수지 (폴리프로필렌) 혼합물 제조Example 7 Preparation of Petroleum Plastic Resin (Polypropylene) Mixture by Changing the Mixing Amount of Methylated Hydrophobic Lignin
상기 실시예 2에서 획득한 메틸화된 소수성 리그닌 분말을 미립화시킨 후, 다양한 양의 리그닌 분말을 폴리프로필렌(PP; polypropylene), 스테아르산칼슘(calcium stearate) 1.0wt%, 산화방지제 0.5 wt%, 및 산화티타늄(titanium oxide) 5.0wt%를 투입하여 제조된 복합수지를 사출성형하여 자동차용 플라스틱 조성물을 제조하였다. 하기 표 7에는 메틸화된 소수성 리그닌 분말의 혼합비에 따른 석유계 플라스틱 수지의 물성을 나타내었다.After atomizing the methylated hydrophobic lignin powder obtained in Example 2, varying amounts of lignin powder was polypropylene (PP; polypropylene), 1.0 wt% calcium stearate, 0.5 wt% antioxidant, and oxidation A composite resin prepared by adding 5.0 wt% of titanium oxide was injection molded to prepare a plastic composition for automobiles. Table 7 shows the physical properties of the petroleum-based plastic resin according to the mixing ratio of the methylated hydrophobic lignin powder.
리그닌 혼합 비율 (%) Lignin Blend Rate (%) 인장강도 (MPa)Tensile Strength (MPa) 아이조드 충격강도(J/m)Izod impact strength (J / m) 비중 importance
00 5151 5353 1.021.02
55 5050 5555 0.980.98
1010 4747 5252 0.950.95
3030 4040 4343 0.920.92
상기 표 7에서 알 수 있듯이, 메틸화된 소수성 리그닌 혼합비가 5 % 정도가 될 경우는 도리어 기계적 물성이 증가하고, 비중 또한 크게 감소하는 유리한 효과가 나타난다. 그러나 일정량 이상의 과도한 리그닌 혼합은 비중의 감소는 뚜렷하게 감소되는 효과를 가져오나, 결과적으로 인장강도 및 충격강도의 감소로 나타나는 것을 알 수 있었다. As can be seen in Table 7, when the methylated hydrophobic lignin mixing ratio is about 5%, the mechanical properties are increased, and the specific gravity is also greatly reduced. However, it was found that excessive lignin mixing over a certain amount resulted in a decrease in specific gravity, but resulted in a decrease in tensile strength and impact strength.
<실시예 8> 리그닌을 포함하는 석유계 플라스틱 수지 (폴리에틸렌) 혼합물 제조Example 8 Preparation of Petroleum Plastic Resin (Polyethylene) Mixture Containing Lignin
상기 실시예 1에서 수득한 리그닌 분말을 미립화시킨 후, 5 % 리그닌 분말을 폴리에틸렌(PE; polyethylene), 스테아르산칼슘(calcium stearate) 1.0wt%, 산화방지제 0.5 wt%, 및 산화티타늄(titanium oxide) 5.0wt%를 투입하여 제조된 복합수지를 사출성형하여 자동차용 플라스틱 조성물을 제조하였다. 하기 표 8에는 리그닌 분말 입경에 따른 석유계 플라스틱 수지의 물성을 나타내었다.After atomizing the lignin powder obtained in Example 1, the 5% lignin powder was polyethylene (PE; polyethylene), calcium stearate (1.0 wt%), antioxidant 0.5 wt%, and titanium oxide (titanium oxide) Injection molding a composite resin prepared by adding 5.0wt% to prepare a plastic composition for automobiles. Table 8 shows the physical properties of the petroleum-based plastic resin according to the lignin powder particle diameter.
리그닌 분말 평균 입경 (㎛)Lignin Powder Average Particle Size (㎛) 인장강도 (MPa)Tensile Strength (MPa) 아이조드 충격강도(J/m)Izod impact strength (J / m) 비중 importance
20 이하20 or less 1717 2727 0.980.98
20 ~ 5020-50 1515 2222 0.980.98
50 ~ 10050-100 1313 1818 0.990.99
100 이상More than 100 1111 1414 0.990.99
상기 표 8에서 보듯이, 리그닌 분말 사이즈가 작을수록 인장강도, 충격강도 등의 물성이 증가하고 비중이 감소하는 경향을 나타내어 우수한 리그닌 함유 복합플라스틱 수지 제조에 적합하다.As shown in Table 8, the smaller the lignin powder size shows a tendency to increase the physical properties such as tensile strength, impact strength and decrease the specific gravity is suitable for producing excellent lignin-containing composite plastic resin.
<실시예 9> 리그닌을 포함하는 석유계 플라스틱 수지 (폴리비닐클로라이드) 혼합물 제조 Example 9 Preparation of Petroleum Plastic Resin (Polyvinyl Chloride) Mixture Containing Lignin
실시예 1에서 수득한 리그닌 분말을 미립화시킨 후, 5 % 리그닌 분말을 폴리비닐클로라이드(PVC; polyvinylchloride), 스테아르산칼슘(calcium stearate) 1.0wt%, 산화방지제 0.5 wt%, 및 산화티타늄(titanium oxide) 5.0wt%를 투입하여 제조된 복합수지를 사출성형하여 자동차용 플라스틱 조성물을 제조하였다. 하기 표 9에는 리그닌 분말 입경에 따른 석유계 플라스틱 수지의 물성을 나타내었다.After atomizing the lignin powder obtained in Example 1, the 5% lignin powder was mixed with polyvinylchloride (PVC), 1.0 wt% calcium stearate, 0.5 wt% antioxidant, and titanium oxide (titanium oxide). ) A plastic composition for automobiles was prepared by injection molding the composite resin prepared by adding 5.0 wt%. Table 9 shows the physical properties of the petroleum-based plastic resin according to the lignin powder particle diameter.
리그닌 분말 평균 입경 (㎛)Lignin Powder Average Particle Size (㎛) 인장강도 (MPa)Tensile Strength (MPa) 아이조드 충격강도(J/m)Izod impact strength (J / m) 비중 importance
20 이하20 or less 2525 2626 0.980.98
20 ~ 5020-50 2121 2121 0.980.98
50 ~ 10050-100 1818 1717 0.990.99
100 이상More than 100 1717 1313 0.990.99
상기 표 9에서 보듯이, 리그닌 분말 사이즈가 작을수록 인장강도, 충격강도 등의 물성이 증가하고 비중이 감소하는 경향을 나타내어 우수한 리그닌 함유 복합플라스틱 수지 제조에 적합하다.As shown in Table 9, the smaller the lignin powder size shows a tendency to increase the physical properties such as tensile strength, impact strength and decrease the specific gravity, which is suitable for producing excellent lignin-containing composite plastic resin.
<실시예 10> 리그닌과 말레익 안하이드라이드기로 그래프팅된 폴리프로필렌을 포함하는 석유계 플라스틱 수지 (폴리프로필렌) 제조<Example 10> Preparation of petroleum-based plastic resin (polypropylene) including polypropylene grafted with lignin and maleic anhydride group
실시예 1에서 수득한 리그닌 분말을 미립화시킨 후, 5 % 리그닌 분말 (평균 입경 20 ~ 50 마이크로메터), 말레익 안하이드라이드기로 그래프팅된 폴리프로필렌 (maleic anhydride grafted polypropylene), 폴리프로필렌(PP; polypropylene), 스테아르산칼슘(calcium stearate) 1.0wt%, 산화방지제 0.5 wt%, 및 산화티타늄(titanium oxide) 5.0wt%를 투입하여 제조된 복합수지를 사출성형하여 자동차용 플라스틱 조성물을 제조하였다. 하기 표 10에는 말레익 안하이드라이드기로 그래프팅된 폴리프로필렌의 함량에 따른 에 따른 석유계 플라스틱 수지의 물성을 나타내었다.After atomizing the lignin powder obtained in Example 1, 5% lignin powder (average particle diameter 20-50 micrometers), maleic anhydride grafted polypropylene grafted with maleic anhydride group, polypropylene (PP; polypropylene), 1.0 wt% of calcium stearate, 0.5 wt% of antioxidant, and 5.0 wt% of titanium oxide (titanium oxide) were injected into a composite resin prepared to prepare an automotive plastic composition. Table 10 shows the physical properties of the petroleum-based plastic resin according to the content of the polypropylene grafted with maleic anhydride group.
말레익 안하이드라이드기로 그래프팅된 폴리프로필렌 (%)Polypropylene grafted with maleic anhydride group (%) 인장강도 (MPa)Tensile Strength (MPa) 아이조드 충격강도(J/m)Izod impact strength (J / m) 비중 importance
00 3838 4242 0.980.98
1One 4949 5151 0.980.98
22 5555 5656 0.990.99
1010 4343 4343 0.990.99
상기 표 9에서 알 수 있듯이, 말레익 안하이드라이드기로 그래프팅된 폴리프로필렌을 첨가할 경우 상당히 큰 폭으로 인장강도, 충격강도 등의 물성이 증가하고 비중이 감소하는 등 바람직한 리그닌 함유 복합플라스틱 수지가 된다. 이는 말레익 안하이드라이드기로 그래프팅된 폴리프로필렌과 리그닌 사이의 공유결합이 형성되어 리그닌과 석유계 수지간의 계면사이에 종전에 존재하지 않았던 화학적 결합을 형성하였기 때문으로 추정된다. As can be seen in Table 9, when the polypropylene grafted with a maleic anhydride group is added, preferable lignin-containing composite resins such as physical properties such as tensile strength and impact strength are greatly increased and specific gravity is reduced. do. This is presumably due to the formation of a covalent bond between polypropylene and lignin grafted with maleic anhydride group to form a chemical bond that did not exist previously between the interface between lignin and petroleum resin.
본 발명에 따라 바이오매스로부터 수득된 리그닌을 이용한 플라스틱 복합소재는 기존 탈크, 탄산칼슘 등의 광물계 충진재료를 포함하는 플라스틱 복합소재에 비하여 현저히 중량이 감소되는 소위 경량화 소재를 만들 수 있다. 단순 플라스틱 소재에 비하여 본 발명을 통하여 생산된 리그닌을 포함하는 플라스틱 복합소재는 기계적, 화학적 물성 등이 크게 개량되어 자동차용, 건축용, 포장용, 전자용 내장재에 사용되기가 용이하다. 또한 기존 석유계 플라스틱 소재에 비하여 폐기 후 소각시 지구온난화 가스인 화석연료 유래 이산화탄소를 현저하게 덜 배출함으로써 친환경적인 특성을 가지는 친환경 소재이다. 뿐만 아니라 본 발명에 따라 제조된 리그닌을 포함하는 플라스틱 복합소재는 경제적으로도 유리하여 기존 플라스티 소재를 대체하여 자동차용, 건축용 등 다양한 산업에 대량으로 적용되고 이용될 수 있다. Plastic composite material using the lignin obtained from the biomass according to the present invention can make a so-called light weight material that is significantly reduced in weight compared to the plastic composite material containing a mineral filler such as conventional talc, calcium carbonate. Plastic composite material containing lignin produced through the present invention as compared to a simple plastic material is greatly improved in mechanical and chemical properties, etc. It is easy to be used in automotive, building, packaging, electronic interior materials. In addition, compared to the existing petroleum-based plastic material, when discarded after incineration, it emits significantly less carbon dioxide derived from fossil fuel, which is a global warming gas. In addition, the plastic composite material including the lignin prepared according to the present invention is economically advantageous and can be applied and used in large quantities in various industries such as automobiles and constructions by replacing the existing plastic material.

Claims (14)

  1. 강산을 이용하여 바이오매스로부터 리그닌을 고수율로 정제하는 방법.A high yield purification of lignin from biomass using strong acid.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 강산이 황산, 염산 또는 이들의 혼합물인 것을 특징으로 하는 방법.The strong acid is sulfuric acid, hydrochloric acid or a mixture thereof.
  3. 제 1 항에 있어서,The method of claim 1,
    하기 단계를 포함하는 것을 특징으로 하는 방법:A method comprising the following steps:
    (S1) 강산을 이용하여 리그닌을 포함하는 바이오매스의 분자구조를 해체 및 해리시키는 단계; (S1) dissolving and dissociating the molecular structure of the biomass containing lignin using a strong acid;
    (S2) 상기 단계 (S1)에서 해리된 리그닌을 알칼리를 이용하여 중화시킴으로써 리그닌 고형입자를 수득하는 단계; 및 (S2) neutralizing the lignin dissociated in step (S1) with alkali to obtain lignin solid particles; And
    (S3) 상기 단계 (S2)에서 수득된 리그닌 고형입자를 건조 및 분말화하는 단계.(S3) drying and powdering the lignin solid particles obtained in the step (S2).
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 단계 (S1)이 (1) 70% 이상의 고농도 강산을 이용하여 리그닌을 포함하는 바이오매스의 분자구조를 해체하는 단계; 및 (2) 상기에서 분자구조가 해체된 바이오매스에 10 내지 15% 농도의 강산을 이용하여 리그닌을 감싸고 있는 다당류를 가수분해하여 액화시킴으로써 리그린으로부터 해리시키는 단계를 포함하는 것을 특징으로 하는 방법.Step (S1) is to (1) dismantle the molecular structure of the biomass containing lignin using a high concentration strong acid of 70% or more; And (2) dissociating from ligrin by hydrolyzing and liquefying the polysaccharide surrounding the lignin using a strong acid at a concentration of 10 to 15% in the biomass in which the molecular structure is decomposed.
  5. 제 3 항에 있어서,The method of claim 3, wherein
    상기 단계 (S1)에서 강산이 염산일 경우 20 내지 40℃에서 20 내지 40 시간 동안 가수분해를 수행하는 것을 특징으로 하는 방법.If the strong acid in the step (S1) is hydrochloric acid, characterized in that the hydrolysis is carried out for 20 to 40 hours at 20 to 40 ℃.
  6. 제 3 항에 있어서,The method of claim 3, wherein
    상기 단계 (S1)에서 강산이 황산일 경우 20 내지 40℃에서 1 내지 6 시간 동안 1차 가수 분해를 수행하고, 90 내지 115 ℃에서 1 내지 3 시간 동안 2차 가수분해를 수행하는 것을 특징으로 하는 방법.In the step (S1), when the strong acid is sulfuric acid, the first hydrolysis is performed at 20 to 40 ° C. for 1 to 6 hours, and the second hydrolysis is performed at 90 to 115 ° C. for 1 to 3 hours. Way.
  7. 제 3 항에 있어서,The method of claim 3, wherein
    상기 단계 (S3)에서 알칼리가 NaOH 또는 Ca(OH)2인 것을 특징으로 하는 방법.In the step (S3) the alkali is characterized in that NaOH or Ca (OH) 2 .
  8. 제 3 항에 있어서,The method of claim 3, wherein
    상기 단계 (S4)는 95 내지 105℃에서 리그닌 고형입자를 건조한 다음 1 내지 50 ㎛의 평균입경으로 리그린을 분말화하는 것을 특징으로 하는 방법.The step (S4) is characterized in that for drying the lignin solid particles at 95 to 105 ℃ and then lignin powdered to an average particle diameter of 1 to 50 ㎛.
  9. 제 3 항에 있어서,The method of claim 3, wherein
    상기 단계 (S4) 이후 다이메틸카보네이트 (dimethylcarbonate)를 이용하여 리그닌을 메틸화시키는 단계를 추가로 포함하는 것을 특징으로 하는 방법.And methylating lignin using dimethylcarbonate after step (S4).
  10. 제 1 항 내지 제 9 항 중 어느 한 항에 따른 방법에 제조된 리그닌.Lignin prepared in a process according to any one of claims 1 to 9.
  11. 제 10 항에 따른 리그닌을 이용하여 플라스틱 소재를 제조하는 방법.Method for producing a plastic material using the lignin according to claim 10.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 리그닌을 플라스틱 소재의 총 중량을 기준으로 하여 1 내지 30 중량%의 양으로 첨가하는 것을 특징으로 하는 방법.The lignin is added in an amount of 1 to 30% by weight based on the total weight of the plastic material.
  13. 제 11 항에 있어서,The method of claim 11,
    말레익 안하이드라이드기로 그래프팅된 폴리프로필렌을 플라스틱 소재의 총 중량을 기준으로 하여 1 내지 10 중량%의 양으로 추가로 첨가하는 것을 특징으로 하는 방법.The polypropylene grafted with maleic anhydride group is further added in an amount of 1 to 10% by weight based on the total weight of the plastic material.
  14. 제 11 항 내지 제 13 항 중 어느 한 항에 따른 방법에 따라 제조된 리그닌을 포함하는 친환경적인 플라스틱 소재.Eco-friendly plastic material comprising lignin prepared according to the method according to any one of claims 11 to 13.
PCT/KR2017/005675 2016-06-14 2017-05-31 Method for extracting lignin from biomass, and high-strength environmentally-friendly plastic material comprising lignin obtained thereby WO2017217677A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0074110 2016-06-14
KR1020160074110A KR101809564B1 (en) 2016-06-14 2016-06-14 A method for purifying lignin from the biomass and the plastic materials comprising lignin prepared therefrom

Publications (1)

Publication Number Publication Date
WO2017217677A1 true WO2017217677A1 (en) 2017-12-21

Family

ID=60664090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005675 WO2017217677A1 (en) 2016-06-14 2017-05-31 Method for extracting lignin from biomass, and high-strength environmentally-friendly plastic material comprising lignin obtained thereby

Country Status (2)

Country Link
KR (1) KR101809564B1 (en)
WO (1) WO2017217677A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3722350A4 (en) * 2017-12-06 2021-08-25 Lignum Inc. Method for preparing bio-filler to be added to plastic, and bio-filler to be added to plastic, prepared thereby

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109111153A (en) * 2018-08-22 2019-01-01 河南东贵电子科技有限公司 A kind of PPM environment-friendly materials and preparation method thereof
KR102176167B1 (en) * 2018-12-18 2020-11-09 주식회사 리그넘 Polymer Composite Resin for Manufacturing of Artificial Honeycomb and Preparation Method of the Same
KR102508349B1 (en) 2019-12-27 2023-03-13 무림피앤피 주식회사 Thermosetting resin containing repeat unit derived from lignin and composite using thereof
KR102400400B1 (en) 2020-10-28 2022-05-20 주식회사 리그넘 Method for Manufacturing Antimicrobial Bio-fillers for Plastics and Antimicrobial Bio-fillers by Using the Same
US20220356308A1 (en) 2020-10-28 2022-11-10 Lignum Inc. Method for preparation of antibacterial bio-filler for plastic and antibacterial bio-filler for plastic prepared thereby
KR102660285B1 (en) * 2022-02-24 2024-04-24 주식회사 리그넘 Method for manufacturing anti-scratch bio-additives for plastics and anti-scratch bio-additives for plastics using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169134A (en) * 2004-12-13 2006-06-29 Furukawa Battery Co Ltd:The Method for producing lignin from which organic acid is removed and lead storage battery obtained by adding lignin from which organic acid is removed to negative electrode active substance
WO2010094697A1 (en) * 2009-02-17 2010-08-26 Bergen Teknologioverføring As Liquefaction of lignin with gaseous components
JP2014133835A (en) * 2013-01-11 2014-07-24 Doshisha Resin composition
KR20140138435A (en) * 2013-05-23 2014-12-04 씨제이제일제당 (주) Preparation method of low molecular weight lignin derivatives
KR20160007537A (en) * 2013-05-03 2016-01-20 버디아, 인크. Methods for preparing thermally stable lignin fractions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169134A (en) * 2004-12-13 2006-06-29 Furukawa Battery Co Ltd:The Method for producing lignin from which organic acid is removed and lead storage battery obtained by adding lignin from which organic acid is removed to negative electrode active substance
WO2010094697A1 (en) * 2009-02-17 2010-08-26 Bergen Teknologioverføring As Liquefaction of lignin with gaseous components
JP2014133835A (en) * 2013-01-11 2014-07-24 Doshisha Resin composition
KR20160007537A (en) * 2013-05-03 2016-01-20 버디아, 인크. Methods for preparing thermally stable lignin fractions
KR20140138435A (en) * 2013-05-23 2014-12-04 씨제이제일제당 (주) Preparation method of low molecular weight lignin derivatives

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3722350A4 (en) * 2017-12-06 2021-08-25 Lignum Inc. Method for preparing bio-filler to be added to plastic, and bio-filler to be added to plastic, prepared thereby
US11220580B2 (en) 2017-12-06 2022-01-11 Lignum Inc. Method for preparation of bio-filler for plastic and bio-filler for plastic prepared thereby

Also Published As

Publication number Publication date
KR101809564B1 (en) 2017-12-15

Similar Documents

Publication Publication Date Title
WO2017217677A1 (en) Method for extracting lignin from biomass, and high-strength environmentally-friendly plastic material comprising lignin obtained thereby
Narendar et al. Chemical treatments of coir pith: morphology, chemical composition, thermal and water retention behavior
US20220081517A1 (en) METHOD FOR SEPARATING AND RECOVERING LIGNIN and MELTABLE FLOWABLE BIOLIGNIN POLYMERS
Khalil et al. Exploring isolated lignin material from oil palm biomass waste in green composites
US10377890B2 (en) Nanocellulose-polystyrene composites
Joy et al. Preparation and characterization of poly (butylene succinate) bionanocomposites reinforced with cellulose nanofiber extracted from Helicteres isora plant
CN107474374B (en) A kind of lignin/polyolefin thermoplastic elastomer composite material and preparation method
CN111471285B (en) Epoxidized lignin modified biodegradable film and preparation method thereof
CN111978690B (en) Anti-ultraviolet PBT (polybutylene terephthalate) compound as well as preparation method and application thereof
Chen et al. All‐straw‐fiber composites: Benzylated straw as matrix and additional straw fiber reinforced composites
US20160215143A1 (en) Resin composition, molded body, and production method
CN111073325A (en) Lignin/fiber thermoplastic composite material and preparation method thereof
Chen et al. Corncob residual reinforced polyethylene composites considering the biorefinery process and the enhancement of performance
Lu et al. Torrefaction pretreatment facilitated solvents-resistant and stable wood-plastic composites
WO2019112138A1 (en) Method for preparing bio-filler to be added to plastic, and bio-filler to be added to plastic, prepared thereby
CN111218727B (en) In-situ EPDM microfiber reinforced polylactic acid composite material and preparation method and application thereof
CN107141833A (en) A kind of Wood-plastic material injection moulding process
Suradi et al. Influence pre-treatment on the properties of lignocellulose based biocomposite
Ma et al. Co-production of additive manufacturing composites with solid residue from enzymatic hydrolysis of reed
WO2022092343A1 (en) Method for preparing antibacterial bio-filler to be added to plastics, and antibacterial bio-filler to be added to plastics, prepared thereby
Sotenko et al. Biodegradation as natural fibre pre-treatment in composite manufacturing
JP2012167192A (en) Method of manufacturing heat plasticization lignocellulose composite material
CN111454497B (en) Graphene modified lignin enhanced polyolefin wood-plastic composite material and preparation method thereof
WO2023163498A1 (en) Method for preparing scratch-resistant bio-additive for addition to plastics, and scratch-resistant bio-additive for addition to plastics prepared thereby
KR102400400B1 (en) Method for Manufacturing Antimicrobial Bio-fillers for Plastics and Antimicrobial Bio-fillers by Using the Same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 17813502

Country of ref document: EP

Kind code of ref document: A1