WO2017217634A1 - Graphene composite electrode and method for manufacturing same - Google Patents

Graphene composite electrode and method for manufacturing same Download PDF

Info

Publication number
WO2017217634A1
WO2017217634A1 PCT/KR2017/001120 KR2017001120W WO2017217634A1 WO 2017217634 A1 WO2017217634 A1 WO 2017217634A1 KR 2017001120 W KR2017001120 W KR 2017001120W WO 2017217634 A1 WO2017217634 A1 WO 2017217634A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
graphene
transparent conductive
metal catalyst
substrate
Prior art date
Application number
PCT/KR2017/001120
Other languages
French (fr)
Korean (ko)
Inventor
김형근
김예경
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160075686A external-priority patent/KR20170142361A/en
Priority claimed from KR1020160075700A external-priority patent/KR102252956B1/en
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Publication of WO2017217634A1 publication Critical patent/WO2017217634A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a graphene composite electrode and a method for manufacturing the same, and more specifically, it is possible to grow low-defect graphene more quickly, and heal the defects of graphene to finally contain graphene containing high quality graphene.
  • a composite electrode and a method of manufacturing the same are examples of materials.
  • Graphene which has been in the spotlight recently, has very high electrical conductivity and flexibility as well as a transparent property. Therefore, active researches are being made to use it as a flexible transparent electrode or as an electron transport material such as an electron transport layer in an electronic device. It is becoming.
  • methods of synthesizing graphene include a peeling method (also known as a scotch tape method) for physically separating graphene from graphite, and a direct growth method for directly growing graphene on a metal catalyst.
  • Exfoliation is a method of separating graphene from graphite by physical force, which can produce graphene with low energy, but is defective in graphene and is not suitable for large-area synthesis and mass production.
  • the direct growth method is a method of directly growing on a metal catalyst by supplying a carbon source such as methane gas to the metal catalyst and performing heat treatment at atmospheric pressure.
  • FIG. 1 is an SEM image of graphene synthesized by the direct growth method. Referring to FIG. 1, the boundary and wrinkles of the graphene domain may be identified, and a large number of predecessors and point defects may be present. The boundaries, wrinkles and dots due to the collision between the graphene domains act as defects that adversely affect the electrical properties of the graphene.
  • the present invention has been made to solve the above problems, an object of the present invention, it is possible to grow a low-defect graphene faster, heal the defects of graphene to finally include a high quality graphene
  • the present invention provides a graphene composite electrode and a method of manufacturing the same.
  • Graphene composite electrode for achieving the above object is a graphene layer; An atomic layer formed on the graphene layer; And a transparent conductive layer formed on the atomic layer.
  • the atomic layer may be formed by arranging atoms in a defect region existing on the graphene layer.
  • the atomic layer may be a layer of atoms of a metal or metal oxide.
  • the graphene growth step of growing graphene on the metal catalyst growth substrate Performing an atomic layer deposition process on the graphene layer to form an atomic layer; And a transparent conductive layer forming step of forming a transparent conductive layer on the atomic layer.
  • the graphene composite electrode manufacturing method according to the present invention may further include a metal catalyst growth substrate pretreatment step in which at least one pretreatment step of a light irradiation process and a heat treatment process is performed on the metal catalyst growth substrate before the graphene growth step. have.
  • the atomic layer may be formed by repeating the atomic layer deposition process a plurality of times.
  • the transparent conductive layer forming step may be performed by a deposition process or a coating process.
  • Graphene composite electrode manufacturing method comprises the steps of removing the metal catalyst growth substrate; And attaching the flexible substrate on the graphene layer.
  • Electrode manufacturing method for a transparent substrate based electronic device is a graphene growth step of growing graphene on a metal catalyst growth substrate; Performing an atomic layer deposition process on the graphene layer to form an atomic layer; Forming a transparent conductive layer on the atomic layer; Removing a portion of the metal catalyst growth substrate to form a bus electrode; And attaching the bus electrode to the flexible substrate.
  • the forming of the atomic layer may be performed by arranging atoms in a defect region existing on the graphene layer.
  • Metal catalyst growth substrates include Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, brass, bronze, cupronickel and stainless steel.
  • the forming of the bus electrode may be performed by removing a portion of the metal catalyst growth substrate so that the graphene layer is exposed.
  • Forming the bus electrode includes placing a mask on the metal catalyst growth substrate; And etching the metal catalyst growth substrate.
  • Flexible substrates include polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polyethylenenaphthalate (PEN), polycarbonate (PC) and polyimide (PI). It may include any one of).
  • PMMA polymethyl methacrylate
  • PET polyethylene terephthalate
  • PEN polyethylenenaphthalate
  • PC polycarbonate
  • PI polyimide
  • the graphene growth step of growing graphene on the metal catalyst growth substrate Performing an atomic layer deposition process on the graphene layer to form an atomic layer;
  • a first transparent conductive layer forming step of forming a transparent conductive layer on the atomic layer Forming an electrochromic part including an electrochromic layer, an electrolyte layer, and an ion storage layer on the first transparent conductive layer;
  • the flexible substrate A bus electrode formed on the flexible substrate; A graphene layer formed on the electrical connection portion; An atomic layer formed on the graphene layer; And a transparent conductive layer formed on the atomic layer.
  • the graphene layer is grown on the metal catalyst substrate on which the substrate is pretreated.
  • the crystal structure of the metal catalyst substrate is aligned by the pretreatment, and the occurrence of defects in the graphene layer is suppressed under the influence of the aligned catalyst substrate, thereby forming a high quality graphene layer.
  • the pretreatment of the growth substrate enables the growth of graphene in a faster time than the conventional, it is possible to obtain a manufacturing cost reduction effect due to efficient process execution.
  • the defects caused by breakage between the grain boundaries of the prepared graphene that is, graphene domains, which seriously degrade the electrical properties of the graphene, are healed by applying an atomic layer of homogeneous or heterogeneous material.
  • This healing process it is possible to improve the quality of graphene, and thereafter, there is an effect of minimizing the quality deterioration due to a high energy application process such as an ITO layer deposition process.
  • graphene acts as a barrier between the transparent conductive layer and the growth substrate to prevent constituents of the growth substrate from diffusing into the transparent conductive layer, thereby maintaining high conductivity and transparency of the transparent conductive layer, thereby producing a high-quality high reliability transparent electrode. It can be effective.
  • the electrode for a transparent substrate-based electronic device constituting the bus electrode using the graphene growth metal catalyst layer according to the embodiments of the present invention and a method of manufacturing the same defects that the graphene retains have a size similar to that of the defect. Since the atomic layer is applied and cured, high quality graphene can be used as an electrode substrate, and the quality degradation due to defects can be minimized even in a process of applying high energy such as a transparent conductive layer, for example, an ITO layer forming process. There is an effect that can maintain the quality of the transparent electrode used in the electrochromic device.
  • the conductivity of the device is ensured due to the high quality graphene, thereby minimizing the thickness of the transparent conductive layer, thereby obtaining an electrode having excellent flexibility and transparency of the device.
  • graphene acts as a barrier between the transparent conductive layer and the growth substrate, thereby preventing the constituents of the growth substrate from diffusing into the transparent conductive layer, thereby maintaining the conductivity and transparency of the transparent conductive layer, thereby producing a high-quality high-reliability transparent substrate. It has an effect.
  • the formation of a bus electrode for applying electricity is essential for the operation of the device using the graphene composite electrode.
  • the conductive substrate used for graphene growth is removed and a flexible substrate is attached.
  • a part of the graphene growth substrate is left behind only a desired pattern in the removing step of the conductive substrate.
  • 1 is an SEM image of graphene synthesized by the direct growth method.
  • FIGS 2 to 7 are views provided for the description of the graphene composite electrode manufacturing method according to an embodiment of the present invention.
  • FIG. 11 to 13 are views provided to explain an electrode manufacturing method for a transparent substrate-based electronic device according to another embodiment of the present invention
  • Figure 14 is a cross-sectional view taken along line AA 'of FIG.
  • 15 to 17 are views provided to explain a method of manufacturing an electrochromic device among transparent substrate-based electronic devices according to another embodiment of the present invention.
  • the graphene composite electrode manufacturing method according to the present embodiment includes a graphene growth step of growing graphene on a metal catalyst growth substrate; Performing an atomic layer deposition process on the graphene layer to form an atomic layer; And a transparent conductive layer forming step of forming a transparent conductive layer on the atomic layer.
  • the metal catalyst growth substrate pretreatment step in which at least one pretreatment of the light irradiation process and the heat treatment process is performed on the metal catalyst growth substrate may be further performed before the graphene growth step.
  • Graphene to be prepared in the present invention is a plurality of carbon atoms are covalently linked to each other to form a polycyclic aromatic molecule to form a layer or sheet form.
  • the carbon atoms covalently linked in the graphene layer form a 6-membered ring as a basic repeating unit, but the graphene layer may further include a 5-membered ring or a 7-membered ring.
  • each domain collides to form a 5-membered ring or a 7-membered ring, and such irregular crystal arrangements cause the degradation of graphene.
  • the domain of graphene refers to a region in which crystal grows as a result of graphene growth from any point and thus causes horizontal expansion. That is, the graphene within the boundary formed at the point where the region of the graphene formed from one point and the region of the graphene formed at the other point meets is called a domain.
  • a domain the graphene within the boundary formed at the point where the region of the graphene formed from one point and the region of the graphene formed at the other point meets.
  • irregular contact is generated when the domains contact each other due to the difference in growth direction of different domains, and such irregularity acts as a defect of graphene.
  • Graphene is a single layer of covalently bonded carbon atoms (usually sp2 bonds). Graphene may have a variety of structures, such a structure may vary depending on the content of 5-membered and / or 7-membered rings that can be included in the graphene.
  • the graphene may be composed of a single layer of graphene as described above, but it is also possible to form a plurality of layers by stacking them together with each other, and the side end portion of the graphene may be saturated with hydrogen atoms.
  • Graphene may be synthesized in various ways.
  • the graphene is synthesized by a direct growth method in which graphene is directly synthesized on a metal catalyst growth substrate.
  • the metal catalyst growth substrate 110 functions as a base layer for growing graphene, and is not limited to a specific material.
  • the metal catalyst growth substrate 110 may include Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, and brass. And one or more metals or alloys thereof selected from the group consisting of bronze, copper, copper, stainless steel and Ge.
  • the metal catalyst growth substrate pretreatment step in which at least one pretreatment of the light irradiation process and the heat treatment process is performed on the metal catalyst growth substrate may be further performed.
  • the crystal structure of graphene is influenced by the crystal structure of the metal catalyst growth substrate 110.
  • the crystal structure of the metal catalyst growth substrate 110 is uniform, the graphene is grown to have a uniform crystal structure.
  • the metal catalyst growth substrate 110 has a polycrystalline structure, the crystals of graphene do not grow more uniformly than the monocrystalline structure, and thus the quality of the graphene may be degraded.
  • a pretreatment process of the metal catalyst growth substrate 110 may be performed before the growth of graphene.
  • the pretreatment process performed on the metal catalyst growth substrate 110 is to rearrange the crystal structure of the metal catalyst growth substrate 110 and may include at least one of light irradiation and heat treatment (FIG. 2).
  • FOG. 2 light irradiation and heat treatment
  • the light irradiation may be performed by irradiating at least one of an intense pulsed light (IPL) and a laser light. That is, the crystals of the catalyst substrate are aligned by light irradiation to the metal catalyst growth substrate 110 having a polycrystalline structure.
  • IPL intense pulsed light
  • the IPL irradiation may align the crystal structure of the metal catalyst growth substrate 110.
  • IPL generally means light of a wide band of 350 nm to 1200 nm, and may be irradiated using a flash lamp or a xenon lamp.
  • IPL irradiation has the advantage that the surface of the growth substrate can be recrystallized without damaging the substrate because it irradiates light at a high speed in a pulse form and heats only a specific region instantly.
  • Irradiation of the laser light may be irradiated using any one selected from among Nd: YAG laser, CO 2 laser, argon laser, excimer laser and diode laser.
  • the heat treatment of the metal catalyst growth substrate may be performed by heating the metal catalyst growth substrate 110 at a temperature of 200 ° C. or more and 1000 ° C. or less.
  • the metal catalyst growth substrate 110 may further include a catalyst layer (not shown) that adsorbs carbon well to facilitate the growth of graphene.
  • the catalyst layer is not limited to a specific material and may be formed of the same or different material as the metal catalyst growth substrate 110.
  • the thickness of the catalyst layer is also not limited, and may also be a thin film or a thick film.
  • a graphene growth step of growing graphene on the metal catalyst growth substrate 110 is performed.
  • CVD chemical vapor deposition
  • the chemical vapor deposition method is a high temperature chemical vapor deposition (RTCVD), inductively coupled plasma chemical vapor deposition (ICP-CVD), low pressure chemical vapor deposition (LPCVD), atmospheric pressure chemical vapor deposition (APCVD), metal organic chemical vapor deposition (MOCVD) Or chemical vapor deposition (PECVD) or the like.
  • the metal catalyst growth substrate 110 is introduced into the reactor, and under the conditions of supplying a reaction gas utilized as a carbon source, the graphene layer 120 may be formed through atmospheric pressure heat treatment.
  • Heat treatment temperature for graphene growth may be 300 °C to 2,000 °C.
  • the metal catalyst growth substrate 110 is reacted with a carbon source at a high temperature and normal pressure, the supplied carbon is dissolved or adsorbed on the metal catalyst growth substrate 110, and then the dissolved carbon atoms are dissolved and adsorbed on the metal catalyst growth substrate 110. Crystallization at the surface forms a graphene crystal structure.
  • the number of layers of the graphene layer 120 may be adjusted by adjusting the type and thickness of the metal catalyst growth substrate 110 (including the catalyst layer), the reaction time, the cooling rate, the reaction gas concentration, and the like.
  • Carbon sources may include carbon monoxide, carbon dioxide, methane, ethane, ethylene, ethanol, acetylene, propane, butane, butadiene, pentane, pentene, cyclopentadiene, hexane, cyclohexane, benzene, toluene and the like.
  • Graphene is synthesized while supplying a reaction gas containing a carbon source to the gas phase, controlling the temperature to form a hexagonal plate-like structure on the surface of the metal catalyst growth substrate 110 by controlling the temperature (FIG. 3).
  • a graphene crystal structure 121 having a hexagonal structure is formed on the graphene layer 120, and three graphene domains collide with each other to form a graphene domain boundary 122.
  • This graphene domain boundary 122 breaks the crystal structure of the ideal hexagonal structure of the graphene layer 120, which acts as a defect 122 of graphene. That is, since the conductivity of the graphene layer 120 is deteriorated and leakage current is generated, there is a problem that product reliability deteriorates when manufacturing a transparent electrode using the graphene layer 120.
  • the graphene defect 122 becomes a region in which energy and the like aggregate at high temperature and high pressure when performing the post process, thereby further damaging the graphene layer 120.
  • the atomic layer 130 is formed by performing an atomic layer deposition process on the graphene layer as a method of curing the graphene defect 122.
  • an atomic layer is deposited on the graphene defect 122.
  • the meaning that the atomic layer 130 is formed on the graphene layer 120 means that the graphene is positioned on the upper surface of the graphene layer 120 in addition to the state in which the atomic layers are arranged in layers such as one layer and two layers. It is a concept including an atomic line forming a portion of a state where an atomic line is arranged to apply a defect to a portion of the fin defect 122. This type of atomic arrangement can be realized by performing an atomic layer deposition (ALD) process.
  • ALD atomic layer deposition
  • a precursor gas of an atom to be deposited is injected and a reaction gas is injected together to form a thin film by laminating atoms in a deposition target layer in a layer.
  • one atomic layer 130 is formed on the graphene layer 120 through a plurality of ALD processes.
  • the atomic layer 130 is not formed as a single layer over the graphene layer 120 as the ALD process is performed. 122). That is, an atomic layer formed by ALD is formed along the graphene defect 122 as shown in FIG. 4.
  • the graphene defect 122 is a region where energy is easily collected, damage may be intensified in the defect region if a process of applying high energy (heat or plasma) is performed in a subsequent process.
  • high energy heat or plasma
  • the atomic layer 130 is applied to the graphene defect 122, it is possible to prevent the energy from being concentrated in the defect portion of the graphene. Formation of the atomic layer 130 will be further described below with reference to FIGS. 8 to 10.
  • the transparent conductive layer 140 is formed on the atomic layer 130 (FIG. 5).
  • the transparent conductive layer 140 is formed of a transparent material, for example, indium tin oxide (ITO), indium zinc oxide (IZO), F-doped tin oxide (FTO), antimony tin oxide (ATO), AZO (ZnO: Al), GZO (ZnO: Ga), a-IGZO (In 2 O 3 : Ga 2 O 3 : ZnO), MgIn 2 O 4 , Zn 2 SnO 4 , ZnSnO 3 , (Ga, In) 2 At least one metal oxide selected from O 3 , Zn 2 In 2 O 5 , InSn 3 O 12 , In 2 O 3 , SnO 2 , Cd 2 SnO 4 , CdSnO 3, and CdIn 2 O 4 , or Cu, Al, Sn, One or more metals selected from Ni, W, Ti, Cr
  • the transparent conductive layer 140 may be formed using a physical or chemical deposition process such as thermal deposition, chemical vapor deposition, or sputtering, or may be formed using a coating process.
  • the graphene composite electrode 100 according to the present invention may be used as a transparent electrode.
  • the flexibility and transparency of the graphene layer 120 can be used alone as a transparent electrode by using the advantages of thin thickness, but it is difficult to use alone as it is difficult to achieve the required level of conductivity as an electrode.
  • the transparent conductive layer 140 exhibits high transparency and conductivity, it is difficult to be implemented as a flexible electrode because of its low flexibility, and the thickness of the electrode becomes thick in order to secure high conductivity, thereby decreasing transparency and flexibility, and thus desired quality when used alone. Is difficult to achieve.
  • the graphene composite electrode 100 according to the present invention includes the transparent conductive layer 140 together on the graphene layer 120 to compensate for the low conductivity of the graphene layer 120 and the thickness of the transparent conductive layer 140. To increase transparency and flexibility.
  • a graphene layer 120 is formed between the metal catalyst growth substrate 110 and the transparent conductive layer 140 to heat-process the transparent conductive layer 140. In order to prevent impurities from flowing through the metal catalyst growth substrate 110, the conductivity and transparency of the transparent conductive layer 140 may be maintained.
  • the graphene composite electrode 100 from which the metal catalyst growth substrate is removed includes a graphene layer 120; An atomic layer 130 formed on the graphene layer 120; And a transparent conductive layer 140 formed on the atomic layer 130.
  • the flexible substrate 150 is a substrate exhibiting flexibility, and for example, a plastic substrate, for example, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polyethylene naphthalate (polyethylenenaphthalate), and the like. , PEN), polycarbonate (PC), and polyimide (PI).
  • PMMA polymethyl methacrylate
  • PET polyethylene terephthalate
  • PET polyethylene naphthalate
  • PEN polycarbonate
  • PI polyimide
  • Removal of the metal catalyst growth substrate 110 may be performed using a roll to roll apparatus including a chamber containing an etching solution and a chamber containing the etching solution for selectively removing the metal catalyst growth substrate 110.
  • the etching solution may be selected according to the type of the metal catalyst growth substrate 110. Examples of the etching solution may include hydrogen fluoride (HF), buffered oxide etch (BOE), ferric chloride (FeCl 3 ) solution, or second nitrate. Iron (Fe (NO 3 ) 3 ) solution.
  • FIGS. 8 to 10 are graphs illustrating graphene in which an atomic layer is formed according to different embodiments of the present invention.
  • the atomic layer 130 is intensively arranged on the graphene defect 122 of the graphene layer 120, which is preferentially deposited on the graphene defect 122 in which the arrangement of atoms according to the ALD process is relatively energy-aggregated. It can be interpreted as.
  • An atomic layer 130 of a metal or a metal oxide may be formed as the atomic layer 130.
  • a metal oxide atomic layer such as aluminum oxide or zinc oxide may be formed. Since the aluminum oxide has an atomic layer diameter of about 0.67 ⁇ , in the case of the graphene layer 120 having a thickness of 1 to 10 nm, the graphene domain is formed inside the graphene defect 122 or gathers near the graphene defect 122. It may be formed in a line shape along the boundary 122.
  • the graphene defect 122 is performed when a high temperature / high energy process for forming the transparent conductive layer 140, for example, a plasma deposition process, is performed. This can prevent the energy from being concentrated. Therefore, the expansion of the graphene defects 122 and the deterioration of the physical properties of the graphene layer 120 may be prevented when the transparent conductive layer 140 is formed.
  • the atomic layer 130 may be formed by repeating the atomic layer deposition process a plurality of times. Referring to FIG. 9, an additional atomic line is formed in the atomic layer of FIG. 8 by further performing the atomic layer deposition process.
  • the number of depositions of the atomic layer may be selected in consideration of the thickness of the graphene layer 120 and the size or frequency of the graphene defects 122.
  • the atomic layer 130 may be implemented as one layer as shown in FIG.
  • the atomic layer 130 may include a metal or a metal oxide as described above, but may be formed so as not to adversely affect the conductivity of the graphene layer 120 or the transparent conductive layer 140. That is, a slight drop in conductivity may occur in the graphene layer 120 due to the introduction of a heterogeneous material of an oxide type, but because it is an atomic unit layer, it does not adversely affect the conductivity of the transparent conductive layer 140. Since the defects generated while forming the 140 are minimized, the influence of the atomic layer on the graphene composite electrode 100 can be ignored.
  • Electrode manufacturing method for a transparent substrate-based electronic device includes a graphene growth step of growing the graphene layer 120 on the metal catalyst growth substrate 110; Forming an atomic layer 130 by performing an atomic layer deposition process on the graphene layer 120; A transparent conductive layer forming step of forming a transparent conductive layer 140 on the atomic layer 130; Removing a portion of the metal catalyst growth substrate 110 to form a bus electrode 110 ′; And attaching the bus electrode 110 ′ to the flexible substrate 150.
  • a method for manufacturing an electrode for a transparent substrate-based electronic device using a part of the graphene growth metal catalyst layer as a bus electrode in a graphene composite electrode in which physical properties of the electrode are supplemented by using a transparent conductive layer and a graphene layer together is disclosed. do.
  • the metal catalyst growth substrate 110 when the metal catalyst growth substrate 110, the graphene layer 120, the atomic layer 130, and the transparent conductive layer 140 are formed, the metal catalyst growth substrate 110 may be used as a transparent substrate of the electrochromic device.
  • the flexibility and transparency of the graphene layer 120 can be used alone as a transparent substrate by using the advantages of thin thickness, but it is difficult to use alone because it is difficult to achieve the required level of conductivity as an electrode.
  • the transparent conductive layer 140 exhibits high transparency and conductivity, it is difficult to be implemented as a flexible electrode due to its low flexibility, and the thickness of the electrode is thick to secure high conductivity, and thus, transparency and flexibility are reduced, thereby providing desired quality when used alone. There is a difficulty to achieve.
  • Electrode of the electrochromic device including a bus electrode according to the present invention includes a transparent conductive layer 140 on the graphene layer 120, to complement the low conductivity of the graphene layer 120, transparent conductive layer 140 ) To increase transparency and ensure electrode flexibility.
  • the transparent conductive layer 140 is formed on the graphene layer 120 and transferred to the flexible substrate, crystallization of the transparent conductive layer 140 through high temperature treatment is possible, thereby achieving high conductivity as well as metal.
  • the graphene layer 120 may prevent the inflow of impurities from the growth substrate 110 between the catalyst growth substrate 110 and the transparent conductive layer 140 to maintain conductivity and transparency of the transparent conductive layer 140.
  • the bus electrode 110 ′ is a path through which voltage or current can be applied to the electrochromic device.
  • the applied voltage or current is applied to the entire surface of the graphene composite electrodes 120 to 140 through the bus electrode, and the voltage or current applied through the graphene layer 120 is applied on the transparent conductive layer 140. That is, the electrical signal for the operation of the transparent substrate-based electronic device is transferred to the upper surface of the transparent conductive layer 140 through the transparent conductive layer 140 through the graphene layer 120 and the graphene layer 120 through the bus electrode.
  • the bus electrode connects only the outer portion of the graphene layer 120 and may be formed only in a partial region.
  • the structure of the bus electrode is not limited to the shape as shown in FIG. 12, but may be formed in various patterns in consideration of the size of the electrode or the element, the distribution of the electric field, and the like.
  • the metal to be removed before transferring to the flexible substrate instead of separately forming the bus electrode 110 ′ through an additional process, the metal to be removed before transferring to the flexible substrate. Instead of removing all of the catalyst growth substrate 110, a portion of the catalyst growth substrate 110 is left to form the bus electrode 110 ′. This is based on the characteristics of the metal catalyst growth substrate 110 having conductivity. Therefore, since the bus electrode 110 'may be manufactured in a single process in the manufacturing process without separately configuring the bus electrode 110' forming process, the process may be easy and the manufacturing cost may be reduced. In addition, since the graphene layer 120 is grown on the bus electrode, a separate process of attaching the bus electrode 110 ′ on the graphene layer 120 is unnecessary, and thus the formation of an adhesive layer may be omitted.
  • Removal of the metal catalyst growth substrate 110 for forming the bus electrode 110 ′ uses an etching solution capable of selectively removing the metal catalyst growth substrate 110.
  • the etching solution may be selected according to the type of metal catalyst growth substrate 110. Examples of the etching solution may include hydrogen fluoride (HF), buffered oxide etch (BOE), ferric chloride (FeCl 3 ) solution, or Ferric nitrate (Fe (NO 3 ) 3 ) solution.
  • the formation of the bus electrode 110 ′ by removing the metal catalyst growth substrate 110 may be performed using a mask M fabricated in a pattern to form the bus electrode 110 ′, or an etching solution and a metal catalyst growth substrate ( In order to limit the contact of the 110, the pattern of the bus electrode 110 ′ may be formed by masking the metal catalyst growth substrate 110 in a desired pattern and then etching the metal catalyst growth substrate 110 (FIG. 11).
  • the bus electrode 110 ′ is formed with a portion removed as shown in FIG. 12, whereby the graphene layer 120 contacting the metal catalyst growth substrate 110 is exposed to the outside. Thereafter, the flexible substrate 150 is attached to the bus electrode 110 ′ to manufacture a flexible electrode for an electrochromic device. 13 and 14, a portion of the metal catalyst growth substrate 110 is removed to form an empty space 111 in the bus electrode 110 ′, which is formed in a state surrounded by the flexible substrate 150. do.
  • the transparent substrate based electronic device electrode 100 includes a flexible substrate 150; A bus electrode 110 ′ formed on the flexible substrate 150; A graphene layer 120 on the bus electrode 110 '; An atomic layer 130 formed on the graphene layer 120; And a transparent conductive layer 140 formed on the atomic layer 130.
  • the flexible substrate 150 that can be used in the present invention is a substrate showing flexibility, for example, poly (methyl methacrylate), PMMA, polyethylene terephthalate (PET), polyethylene or It may include any one of phthalate (polyethylenenaphthalate, PEN), polycarbonate (PC), and polyimide (PI).
  • Electrochromic device manufacturing method is a graphene growth step of growing a graphene layer 220 on the metal catalyst growth substrate 210; Forming an atomic layer 230 by performing an atomic layer 230 deposition process on the graphene layer 220; Forming a first transparent conductive layer 241 to form a transparent conductive layer on the atomic layer 230; Forming an electrochromic part 260 including an ion storage layer 261, an electrolyte layer 262, and an electrochromic layer 263 on the first transparent conductive layer 241; And a second transparent conductive layer 242 forming a transparent conductive layer on the outermost layer of the electrochromic part 260; Removing a portion of the metal catalyst growth substrate 210 to form a bus electrode 210 '; And bonding the bus electrode 210 'to the flexible substrate 250.
  • an electrochromic part 260 capable of discoloring through voltage application is formed on the first transparent conductive layer 241.
  • the electrochromic portion 260 may be sequentially formed with an ion storage layer 261, an electrolyte layer 262, and an electrochromic layer 263 on the first transparent conductive layer 241.
  • the electrochromic layer 263, the electrolyte layer 262, and the ion storage layer 261 may be formed on the first transparent conductive layer 241.
  • the ion storage layer 261 is involved in the entry and exit of ions participating in the electrochromic reaction. In the case of the reaction of emitting ions from the electrochromic layer 263 In the case of receiving the ions from the electrochromic layer 263 in the ion storage layer 261 and receiving the ions from the electrochromic layer 263 Provides ions in the ion storage layer 261.
  • the ion storage layer 261 may be an ion storage material or an oxidation / reduction coloring material for storing a plurality of cations such as hydrogen ions or lithium ions or other kinds of ions participating in electrochromic.
  • the ion storage layer 261 may function as another electrochromic layer for increasing the color change efficiency of the device.
  • the ion storage layer 261 of the electrochromic device may be made of an electrochromic material having a reaction corresponding to the electrochromic layer 263 in a redox reaction. That is, when the electrochromic layer 263 is a reducing discoloring material, the ion storage layer 261 may be an oxidizing discoloring material and vice versa.
  • the ion storage layer 261 of the electrochromic device is constituted by another electrochromic layer, the color transmittance of the device is reduced to increase the color change efficiency.
  • the electrochromic layer 263 may be formed using an electrochromic material whose color changes according to an electrical signal, and the electrochromic material may be an inorganic material or an organic material.
  • the electrochromic material used as the ion storage layer 261 and the electrochromic layer 263 may be fluidly selected depending on whether the color change is caused by oxidation or reduction, and the color change with the ion storage layer 261. When the layer 263 is connected to the device, the redox reaction may be selected to correspond.
  • the electrochromic material used as the ion storage layer 261 and the electrochromic layer 263 is an inorganic material, a transition metal oxide deposited in the form of a thin film may be used.
  • NiO, Cr 2 O 3 , MnO 2 , Rh 2 At least one selected from O 3 , CoO x , Ir (OH) x , Fe 2 O 3 , WO 3 , ZnO, NbO 5 , V 2 O 5 , TiO 2 , MoO 3 , and the like may be used.
  • the electrochromic material which is an organic material, is based on a viologen compound, a diphtahlocyanine compound, a tetrathiafulvalene compound, or the like based on polyaniline, polythiophene, or PEDOT (3,4-ethylenedioxythiophene). There is one various high molecular compound.
  • Organic electrochromic materials have a disadvantage in that they can be decomposed by sunlight and shorten their lifespan, but they can be widely used because they can give a desired color when properly mixed.
  • a second transparent conductive layer 242 is formed as an electrode facing the first transparent conductive layer 241 (FIG. 15).
  • the second transparent conductive layer 242 may be formed of a transparent, conductive metal oxide or the like that is the same as or similar to the first transparent conductive layer 241.
  • the electrolyte layer 262 is formed between the ion storage layer 261 and the electrochromic layer 263, and may include a material containing ions involved in the electrochromic reaction.
  • the electrolyte layer 262 is Ta 2 O 5, LiClO 4, LiNbO 3, Li 3 + x PO 4 - x N x (LiPON), LiVO 3 / SiO 2 / Li 4 SiO 4 -Li 3 VO 4 (LVSO), LiPF 6 , Li 3 PO 4 or the like may be formed using at least one.
  • the electrolyte may be a solid electrolyte or a gel electrolyte.
  • the electrochromic portion 260 sequentially forms the ion storage layer 261, the electrolyte layer 262, and the electrochromic layer 263 on the first transparent conductive layer 241. It can be formed by laminating.
  • the graphene layer 220 is not formed together on the second transparent conductive layer 242. Accordingly, the second transparent conductive layer 242 may be formed to have a larger thickness than the first transparent conductive layer 241 or a material having higher conductivity as necessary.
  • the metal catalyst is grown. A portion of the substrate 210 is removed to form a bus electrode 210 '(FIG. 16). Then, the flexible substrate 250 is attached to the bus electrode 210 '(FIG. 11).
  • the forming of the electrochromic portion 260 and the forming of the second transparent conductive layer 242 may include forming an electrochromic layer on the first transparent conductive layer 241. Forming a layer of any one of 263 and the ion storage layer 261; Forming another layer of the electrochromic layer 263 and the ion storage layer 261 on the second transparent conductive layer 242; And a laminating step of applying and laminating the electrolyte layer 262 between the electrochromic layer 263 and the ion storage layer 261.
  • the electrochromic layer, the electrolyte layer, and the ion storage layer are not sequentially formed to form the electrochromic portion, but the ion storage layer is formed on the first transparent conductive layer, and the second transparent conductive layer is formed. After the remaining electrochromic layer is formed on the surface, an electrolyte layer is applied therebetween, and then both are laminated to produce an electrochromic device.
  • the gel electrolyte is a material containing a polymer in a solvent in which a salt containing ions participating in an electrochromic reaction is dissolved, and may further include additives such as an initiator and a crosslinking agent to be cured by light or heat in a subsequent process.
  • the salt in the gel electrolyte are LiClO 4, LiPF 6, LiTFSI ( CF 3 SO 2 NLiSO 2 CF 3), LiFSI (F 2 LiNO 4 S 2) Li + commonly used boundaries, such as, but involved in the electrochromic reaction It can be used variously according to the kind of ion.
  • the polymer material used in the gel electrolyte may be a polymer based on polyethylene oxide (PEO), poly (ethylene glycol) (PEG), poly acrylonitrile (PAN), or other types of polymers.
  • PEO polyethylene oxide
  • PEG poly (ethylene glycol)
  • PAN poly acrylonitrile
  • a solvent an organic solvent that is stable in electrochemical reactions and low in volatility is mainly used. Examples of the solvent include PC (propylene carbonate) and EC (ethylene carbonate).
  • the material used in the electrolyte layer 262 may be variously selected in connection with the redox reaction occurring in the electrochromic layer 263 and the ion storage layer 261 as well as the above examples, and the electrochromic reaction may be smoothly performed. Various other types of additives may be introduced to make this.
  • an electrode for a transparent substrate-based electronic device including a bus electrode may be manufactured using a graphene composite electrode having improved conductivity and flexibility, while maintaining the growth substrate of the graphene layer as it is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Disclosed is a graphene composite electrode and a method for manufacturing same, the graphene composite electrode capable of quickly growing graphene with little defect and treating defects of the graphene to ultimately comprise a high-quality graphene. The graphene composite electrode comprises: a graphene layer; an atomic layer formed on the graphene layer; and a transparent conductive layer formed on the atomic layer.

Description

그래핀 복합전극 및 이의 제조방법Graphene composite electrode and method for manufacturing same
본 발명은 그래핀 복합전극 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 저결함의 그래핀을 보다 빠르게 성장시킬 수 있으며, 그래핀의 결함을 치유하여 최종적으로 고품질의 그래핀을 포함하는 그래핀 복합전극 및 이의 제조방법에 관한 것이다.The present invention relates to a graphene composite electrode and a method for manufacturing the same, and more specifically, it is possible to grow low-defect graphene more quickly, and heal the defects of graphene to finally contain graphene containing high quality graphene. A composite electrode and a method of manufacturing the same.
최근 각광받고 있는 그래핀(graphene)은 전기 전도도와 유연성이 매우 높을 뿐만 아니라 투명한 특성을 가지고 있기 때문에, 유연투명전극으로 사용하거나 또는 전자 소자에서 전자 수송층과 같은 전자 전송 물질로 활용하려는 연구가 활발히 진행되고 있다. Graphene, which has been in the spotlight recently, has very high electrical conductivity and flexibility as well as a transparent property. Therefore, active researches are being made to use it as a flexible transparent electrode or as an electron transport material such as an electron transport layer in an electronic device. It is becoming.
그래핀 기반 필름의 대량 생산을 위해서는 그래핀의 합성 온도, 합성 속도, 대면적 합성 가능 여부 등과 같은 기준들이 고려되어야 한다. 이와 관련하여, 그래핀을 합성하는 방법으로는 흑연으로부터 물리적으로 그래핀을 분리해내는 박리법(일명 스카치 테이프법), 금속 촉매 상에 그래핀을 직접 성장시키는 직접성장법 등이 있다.For mass production of graphene-based films, criteria such as graphene synthesis temperature, rate of synthesis, and the possibility of large-area synthesis should be considered. In this regard, methods of synthesizing graphene include a peeling method (also known as a scotch tape method) for physically separating graphene from graphite, and a direct growth method for directly growing graphene on a metal catalyst.
박리법(exfoliation)은 물리적인 힘으로 흑연에서 그래핀을 분리하는 방법으로 낮은 에너지로 그래핀을 생성할 수 있으나, 그래핀의 결함이 많고, 대면적 합성 및 대량생산에는 적합하지 않다.Exfoliation is a method of separating graphene from graphite by physical force, which can produce graphene with low energy, but is defective in graphene and is not suitable for large-area synthesis and mass production.
직접 성장법은 통상적으로 금속 촉매에 메탄 가스 등의 탄소원을 공급하고 상압에서 열처리를 함으로써 금속 촉매 위에 직접 성장시키는 방법으로 이루어진다.In general, the direct growth method is a method of directly growing on a metal catalyst by supplying a carbon source such as methane gas to the metal catalyst and performing heat treatment at atmospheric pressure.
대면적 그래핀의 성장은 금속촉매 성장기판의 임의의 여러 지점에서 그래핀의 핵(성장 지점)이 형성되는 것으로부터 시작된다. 각각의 핵 사이트에서부터 그래핀이 성장하고, 성장한 그래핀 도메인들이 만나는 경계 지점(grain boundary)에서 결함이 발생하게 된다. 뿐만 아니라, 그래핀의 성장 지점이 임의로 선택됨으로 인하여 그래핀 도메인의 크기가 일정하지 않다는 문제점이 발생하며, 이러한 문제점은 대면적 그래핀 합성에서 더욱 심각하게 발생한다.Growth of large area graphene begins with the formation of nuclei (growth points) of graphene at any of several points on the metal catalyst growth substrate. Graphene grows from each nucleus site and defects occur at the grain boundaries where the grown graphene domains meet. In addition, since the growth point of the graphene is arbitrarily selected, a problem arises that the size of the graphene domain is not constant, and this problem occurs more seriously in large-area graphene synthesis.
도 1은 직접성장법에 의해 합성된 그래핀의 SEM이미지이다. 도 1을 참조하면, 그래핀 도메인의 경계(boundary)와 주름(wrinkle)을 확인할 수 있고, 선결함 및 점결함도 다수 존재하는 것을 알 수 있다. 이러한 그래핀 도메인간의 충돌로 인한 경계, 주름 및 점들은 그래핀의 전기적 특성에 악영향을 미치는 결함으로 작용한다. 1 is an SEM image of graphene synthesized by the direct growth method. Referring to FIG. 1, the boundary and wrinkles of the graphene domain may be identified, and a large number of predecessors and point defects may be present. The boundaries, wrinkles and dots due to the collision between the graphene domains act as defects that adversely affect the electrical properties of the graphene.
따라서, 그래핀의 결함을 최소화하여 우수한 특성의 대면적 그래핀을 제조할 수 있는 기술개발에 대한 필요성이 있다.Therefore, there is a need for the development of technology capable of producing large-area graphene of excellent characteristics by minimizing defects of graphene.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, 저결함의 그래핀을 보다 빠르게 성장시킬 수 있으며, 그래핀의 결함을 치유하여 최종적으로 고품질의 그래핀을 포함하는 그래핀 복합전극 및 이의 제조방법을 제공함에 있다.The present invention has been made to solve the above problems, an object of the present invention, it is possible to grow a low-defect graphene faster, heal the defects of graphene to finally include a high quality graphene The present invention provides a graphene composite electrode and a method of manufacturing the same.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 그래핀 복합전극은 그래핀층; 그래핀층 상에 형성된 원자층; 및 원자층 상에 형성된 투명전도성층;을 포함한다. Graphene composite electrode according to an embodiment of the present invention for achieving the above object is a graphene layer; An atomic layer formed on the graphene layer; And a transparent conductive layer formed on the atomic layer.
원자층은 그래핀층 상에 존재하는 결함영역에 원자들이 배열되어 형성될 수 있다. 원자층은 금속 또는 금속산화물의 원자의 층일 수 있다. The atomic layer may be formed by arranging atoms in a defect region existing on the graphene layer. The atomic layer may be a layer of atoms of a metal or metal oxide.
본 발명의 다른 측면에 따르면, 금속촉매 성장기판 상에서 그래핀을 성장시키는 그래핀 성장단계; 그래핀층 상에 원자층 증착공정을 수행하여 원자층을 형성하는 단계; 및 원자층 상에 투명전도성층을 형성하는 투명전도성층 형성단계;를 포함하는 그래핀 복합전극 제조방법이 제공된다. According to another aspect of the invention, the graphene growth step of growing graphene on the metal catalyst growth substrate; Performing an atomic layer deposition process on the graphene layer to form an atomic layer; And a transparent conductive layer forming step of forming a transparent conductive layer on the atomic layer.
본 발명에 따른 그래핀 복합전극 제조방법은 그래핀 성장단계 전, 금속촉매 성장기판에 광조사 공정 및 열처리 공정 중 적어도 어느 하나의 전처리 공정이 수행되는 금속촉매 성장기판 전처리 단계;를 더 포함할 수 있다. The graphene composite electrode manufacturing method according to the present invention may further include a metal catalyst growth substrate pretreatment step in which at least one pretreatment step of a light irradiation process and a heat treatment process is performed on the metal catalyst growth substrate before the graphene growth step. have.
원자층은 원자층 증착공정이 복수회 반복되어 형성될 수 있다. The atomic layer may be formed by repeating the atomic layer deposition process a plurality of times.
투명전도성층 형성단계는 증착공정 또는 코팅공정에 의해 수행될 수 있다. The transparent conductive layer forming step may be performed by a deposition process or a coating process.
본 발명에 따른 그래핀 복합전극 제조방법은 금속촉매 성장기판을 제거하는 단계; 및 그래핀층 상에 연성기판을 부착시키는 단계;를 더 포함할 수 있다. Graphene composite electrode manufacturing method according to the present invention comprises the steps of removing the metal catalyst growth substrate; And attaching the flexible substrate on the graphene layer.
본 발명의 또다른 측면에 따른 투명기판 기반 전자소자용 전극제조방법은 금속촉매 성장기판 상에서 그래핀을 성장시키는 그래핀성장단계; 그래핀층 상에 원자층 증착공정을 수행하여 원자층을 형성하는 단계; 원자층 상에 투명전도성층을 형성하는 투명전도성층 형성단계; 금속촉매 성장기판의 일부를 제거하여 버스전극을 형성하는 단계; 및 버스전극을 연성기판에 부착하는 단계;를 포함한다. Electrode manufacturing method for a transparent substrate based electronic device according to another aspect of the present invention is a graphene growth step of growing graphene on a metal catalyst growth substrate; Performing an atomic layer deposition process on the graphene layer to form an atomic layer; Forming a transparent conductive layer on the atomic layer; Removing a portion of the metal catalyst growth substrate to form a bus electrode; And attaching the bus electrode to the flexible substrate.
원자층을 형성하는 단계는 그래핀층 상에 존재하는 결함영역에 원자들을 배열하여 수행될 수 있다. The forming of the atomic layer may be performed by arranging atoms in a defect region existing on the graphene layer.
금속촉매 성장기판은 Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, 황동, 청동, 백동, 스테인리스 스틸 및 Ge로 이루어진 그룹으로부터 선택된 하나 이상의 금속 또는 이들의 합금을 포함할 수 있다. Metal catalyst growth substrates include Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, brass, bronze, cupronickel and stainless steel. One or more metals or alloys thereof selected from the group consisting of steel and Ge.
버스전극을 형성하는 단계는 그래핀층이 노출되도록 금속촉매 성장기판의 일부를 제거하여 수행될 수 있다. The forming of the bus electrode may be performed by removing a portion of the metal catalyst growth substrate so that the graphene layer is exposed.
버스전극을 형성하는 단계는 금속촉매 성장기판 상에 마스크를 위치시키는 단계; 및 금속촉매 성장기판을 에칭하는 단계;를 포함할 수 있다. Forming the bus electrode includes placing a mask on the metal catalyst growth substrate; And etching the metal catalyst growth substrate.
연성기판은 폴리메틸메타크릴레이트(poly(methyl methacrylate), PMMA), 폴리에틸렌테레프탈레이트(polyethyleneterephthalate, PET), 폴리에틸렌나프탈레이트(polyethylenenaphthalate, PEN), 폴리카보네이트(polycarbonate, PC) 및 폴리이미드(polyimide, PI) 중 어느 하나를 포함할 수 있다. Flexible substrates include polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polyethylenenaphthalate (PEN), polycarbonate (PC) and polyimide (PI). It may include any one of).
본 발명의 또다른 측면에 따르면, 금속촉매 성장기판 상에서 그래핀을 성장시키는 그래핀성장단계; 그래핀층 상에 원자층 증착공정을 수행하여 원자층을 형성하는 단계; 원자층 상에 투명전도성층을 형성하는 제1투명전도성층 형성단계; 제1투명전도성층 상에 전기변색층, 전해질층 및 이온저장층을 포함하는 전기변색부를 형성하는 단계; 전기변색부 중 최외곽층에 투명전도성층을 형성하는 제2투명전도성층 형성단계; 금속촉매 성장기판의 일부를 제거하여 버스전극을 형성하는 단계; 및 버스전극을 연성기판에 부착하는 단계;를 포함하는 전기변색소자 제조방법이 제공된다.According to another aspect of the invention, the graphene growth step of growing graphene on the metal catalyst growth substrate; Performing an atomic layer deposition process on the graphene layer to form an atomic layer; A first transparent conductive layer forming step of forming a transparent conductive layer on the atomic layer; Forming an electrochromic part including an electrochromic layer, an electrolyte layer, and an ion storage layer on the first transparent conductive layer; A second transparent conductive layer forming step of forming a transparent conductive layer on the outermost layer of the electrochromic part; Removing a portion of the metal catalyst growth substrate to form a bus electrode; And attaching a bus electrode to the flexible substrate.
본 발명의 또다른 측면에 따르면, 연성기판; 연성기판 상에 형성된 버스전극; 전기적 연결부 상에 형성된 그래핀층; 그래핀층 상에 형성된 원자층; 및 원자층 상에 형성된 투명전도성층;을 포함하는 투명기판 기반 전자소자용 전극이 제공된다. According to another aspect of the invention, the flexible substrate; A bus electrode formed on the flexible substrate; A graphene layer formed on the electrical connection portion; An atomic layer formed on the graphene layer; And a transparent conductive layer formed on the atomic layer.
이상 설명한 바와 같이, 본 발명의 실시예들에 따른 그래핀 복합전극은 기판의 전처리가 수행된 금속 촉매 기판 상에 그래핀층이 성장하게 된다. 전처리에 의해 금속 촉매 기판의 결정 구조가 정렬되고, 정렬된 촉매 기판의 영향으로 그래핀층의 결함 발생이 억제되어 고품질 그래핀층 형성이 가능하다. 또한, 성장 기판의 전처리를 통하여 기존보다 빠른 시간에 그래핀 성장이 가능하게 되어 효율적인 공정 수행으로 인한 제조비용 절감 효과를 얻을 수 있다. As described above, in the graphene composite electrode according to the exemplary embodiments of the present invention, the graphene layer is grown on the metal catalyst substrate on which the substrate is pretreated. The crystal structure of the metal catalyst substrate is aligned by the pretreatment, and the occurrence of defects in the graphene layer is suppressed under the influence of the aligned catalyst substrate, thereby forming a high quality graphene layer. In addition, the pretreatment of the growth substrate enables the growth of graphene in a faster time than the conventional, it is possible to obtain a manufacturing cost reduction effect due to efficient process execution.
또한, 제조된 그래핀의 grain boundary, 즉 그래핀의 전기적 특성을 심각하게 저하시키는 그래핀 도메인 사이의 단절로 인한 결함을 동종 또는 이종 물질의 원자층을 도포하여 치유한다. 이와 같은 치유 공정을 통하여 그래핀의 품질 향상이 가능하고, 이후 ITO층 증착 공정과 같은 고에너지 적용 공정으로 인한 품질저하를 최소화 할 수 있는 효과가 있다. In addition, the defects caused by breakage between the grain boundaries of the prepared graphene, that is, graphene domains, which seriously degrade the electrical properties of the graphene, are healed by applying an atomic layer of homogeneous or heterogeneous material. Through this healing process, it is possible to improve the quality of graphene, and thereafter, there is an effect of minimizing the quality deterioration due to a high energy application process such as an ITO layer deposition process.
또한, 그래핀의 물리적 강도뿐만이 아니라, 고품질 그래핀으로 인하여 소자의 전도도가 보장되어 투명전도성층의 필요 두께가 최소화되어 소자의 유연성이 증대되고, 투명성이 우수해진다. 또한, 그래핀이 투명전도성층과 성장 기판 사이에서 배리어 역할을 하여 성장기판의 구성성분이 투명전도성층으로 확산되는 것을 방지하여, 투명전도성층의 전도도 및 투명도가 유지되어 고품질 고신뢰성 투명전극을 제작할 수 있는 효과가 있다. In addition, not only the physical strength of the graphene but also the high-quality graphene ensures the conductivity of the device, thereby minimizing the required thickness of the transparent conductive layer, thereby increasing the flexibility of the device and excellent transparency. In addition, graphene acts as a barrier between the transparent conductive layer and the growth substrate to prevent constituents of the growth substrate from diffusing into the transparent conductive layer, thereby maintaining high conductivity and transparency of the transparent conductive layer, thereby producing a high-quality high reliability transparent electrode. It can be effective.
또한, 본 발명의 실시예들에 따른 그래핀 성장 금속촉매층을 이용하여 버스전극을 구성한 투명기판 기반 전자소자용 전극 및 그의 제조방법을 이용하면, 그래핀이 보유하는 결함을, 결함과 유사한 크기의 원자층을 도포하여 치유하므로 고품질의 그래핀을 전극 기판으로 사용할 수 있고, 이후 투명전도성층, 예를 들면 ITO층 형성공정과 같은 높은 에너지를 적용하는 공정에서도 결함에 의한 품질저하를 최소화 할 수 있어서 전기변색소자에 사용되는 투명 전극의 품질을 유지할 수 있는 효과가 있다. In addition, when the electrode for a transparent substrate-based electronic device constituting the bus electrode using the graphene growth metal catalyst layer according to the embodiments of the present invention and a method of manufacturing the same, defects that the graphene retains have a size similar to that of the defect. Since the atomic layer is applied and cured, high quality graphene can be used as an electrode substrate, and the quality degradation due to defects can be minimized even in a process of applying high energy such as a transparent conductive layer, for example, an ITO layer forming process. There is an effect that can maintain the quality of the transparent electrode used in the electrochromic device.
또한, 고품질 그래핀으로 인하여 소자의 전도도가 보장되어 투명전도성층의 두께가 최소화되고, 이로 인해 소자의 유연성 및 투명성이 우수한 전극을 얻을 수 있다. 또한, 그래핀이 투명전도성층과 성장기판 사이의 배리어 역할을 하여 성장기판의 구성성분이 투명전도성층으로 확산되는 것을 방지하여 투명전도성층의 전도도 및 투명도가 유지되어 고품질 고신뢰성 투명기판을 제작할 수 있는 효과가 있다. In addition, the conductivity of the device is ensured due to the high quality graphene, thereby minimizing the thickness of the transparent conductive layer, thereby obtaining an electrode having excellent flexibility and transparency of the device. In addition, graphene acts as a barrier between the transparent conductive layer and the growth substrate, thereby preventing the constituents of the growth substrate from diffusing into the transparent conductive layer, thereby maintaining the conductivity and transparency of the transparent conductive layer, thereby producing a high-quality high-reliability transparent substrate. It has an effect.
또한, 그래핀 복합전극을 이용하고 구성한 소자의 작동을 위해서는 전기를 인가하기 위한 버스전극의 추가적인 형성이 필수적이다. 유연투명기판을 구성하기 위해서는 그래핀 성장에 사용되는 전도성 기판을 제거하고 연성기판을 부착하여야 하는데, 본 발명의 실시예들에 따르면 전도성 기판의 제거 단계에서 그래핀 성장기판의 일부를 원하는 패턴만 남기고 제거하여 추가적인 버스전극의 구성 단계를 생략하고도 소자의 구동에 필요한 버스전극을 형성할 수 있다.In addition, the formation of a bus electrode for applying electricity is essential for the operation of the device using the graphene composite electrode. In order to configure the flexible transparent substrate, the conductive substrate used for graphene growth is removed and a flexible substrate is attached. According to the embodiments of the present invention, a part of the graphene growth substrate is left behind only a desired pattern in the removing step of the conductive substrate. By eliminating the additional bus electrode configuration step, the bus electrode required for driving the device can be formed.
도 1은 직접성장법에 의해 합성된 그래핀의 SEM 이미지이다. 1 is an SEM image of graphene synthesized by the direct growth method.
도 2 내지 도 7은 본 발명의 일 실시예에 따른 그래핀 복합전극 제조방법의 설명에 제공되는 도면이다. 2 to 7 are views provided for the description of the graphene composite electrode manufacturing method according to an embodiment of the present invention.
도 8 내지 도 10은 본 발명의 각각 다른 실시예에 따라 원자층이 형성된 그래핀을 도시한 도면들이다. 8 to 10 are graphs illustrating graphene in which an atomic layer is formed according to different embodiments of the present invention.
도 11 내지 도 13은 본 발명의 다른 실시예에 따른 투명기판 기반 전자소자용 전극제조방법의 설명에 제공되는 도면들이고, 도 14는 도 13의 A-A' 단면도이다. 11 to 13 are views provided to explain an electrode manufacturing method for a transparent substrate-based electronic device according to another embodiment of the present invention, Figure 14 is a cross-sectional view taken along line AA 'of FIG.
도 15 내지 도 17은 본 발명의 다른 실시예에 따른 투명기판 기반 전자소자 중 전기변색소자 제조방법의 설명에 제공되는 도면들이다.15 to 17 are views provided to explain a method of manufacturing an electrochromic device among transparent substrate-based electronic devices according to another embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 실시형태를 설명한다. 그러나, 본 발명의 실시형태는 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시형태로 한정되는 것은 아니다. 본 발명의 실시형태는 당업계에서 통상의 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 첨부된 도면에서 특정 패턴을 갖도록 도시되거나 소정두께를 갖는 구성요소가 있을 수 있으나, 이는 설명 또는 구별의 편의를 위한 것이므로 특정패턴 및 소정두께를 갖는다고 하여도 본 발명이 도시된 구성요소에 대한 특징만으로 한정되는 것은 아니다.Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, embodiments of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. Embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art. In the accompanying drawings, there may be a component having a specific pattern or having a predetermined thickness, but this is for convenience of description or distinction. It is not limited only.
도 2 내지 도 7은 본 발명의 일 실시예에 따른 그래핀 복합전극 제조방법의 설명에 제공되는 도면이다. 본 실시예에 따른 그래핀 복합전극 제조방법은 금속촉매 성장기판 상에서 그래핀을 성장시키는 그래핀 성장단계; 그래핀층 상에 원자층 증착공정을 수행하여 원자층을 형성하는 단계; 및 원자층 상에 투명전도성층을 형성하는 투명전도성층 형성단계;를 포함하는 그래핀 복합전극 제조방법이 제공된다. 본 실시예에서는 그래핀 성장단계 전, 금속촉매 성장기판에 광조사 공정 및 열처리 공정 중 적어도 어느 하나의 전처리 공정이 수행되는 금속촉매 성장기판 전처리 단계가 더 수행될 수 있다.2 to 7 are views provided for the description of the graphene composite electrode manufacturing method according to an embodiment of the present invention. The graphene composite electrode manufacturing method according to the present embodiment includes a graphene growth step of growing graphene on a metal catalyst growth substrate; Performing an atomic layer deposition process on the graphene layer to form an atomic layer; And a transparent conductive layer forming step of forming a transparent conductive layer on the atomic layer. In the present embodiment, before the graphene growth step, the metal catalyst growth substrate pretreatment step in which at least one pretreatment of the light irradiation process and the heat treatment process is performed on the metal catalyst growth substrate may be further performed.
본 발명에서 제조하고자 하는 그래핀은 복수개의 탄소원자들이 서로 공유결합으로 연결되어 폴리시클릭 방향족 분자를 형성하여 층 또는 시트 형태를 형성한 것이다. 그래핀층 내부에서 공유결합으로 연결된 탄소원자들은 기본 반복단위로서 6원환을 형성하나, 그래핀층은 5 원환 또는 7 원환을 더 포함하는 것도 가능하다. 특히, 그래핀의 도메인 경계에서 그래핀의 성장방향이 다른 경우, 각각의 도메인이 충돌하여 5 원환이나 7 원환을 형성하기도 하고 이러한 비규칙적 결정배열은 그래핀의 품질저하의 원인이 된다. 그래핀의 도메인은 어느 한 지점에서부터 그래핀이 성장함에 따라 결정이 증가되고 이로 인한 수평팽창이 일어나는 영역을 지칭한다. 즉, 어느 한 지점에서부터 형성된 그래핀의 영역과 이와 다른 지점에서 형성된 그래핀의 영역이 만나는 지점에서 형성되는 경계 내의 그래핀을 도메인이라고 한다. 그래핀 도메인의 경계면에서는 서로 다른 도메인의 성장방향의 차이로 인하여 도메인 간의 접촉 시, 전술한 바와 같이 비규칙적 결정배열이 발생하게 되고, 이러한 비규칙성은 그래핀의 결함(defect)으로 작용하게 된다. Graphene to be prepared in the present invention is a plurality of carbon atoms are covalently linked to each other to form a polycyclic aromatic molecule to form a layer or sheet form. The carbon atoms covalently linked in the graphene layer form a 6-membered ring as a basic repeating unit, but the graphene layer may further include a 5-membered ring or a 7-membered ring. In particular, when the growth direction of graphene is different at the domain boundary of graphene, each domain collides to form a 5-membered ring or a 7-membered ring, and such irregular crystal arrangements cause the degradation of graphene. The domain of graphene refers to a region in which crystal grows as a result of graphene growth from any point and thus causes horizontal expansion. That is, the graphene within the boundary formed at the point where the region of the graphene formed from one point and the region of the graphene formed at the other point meets is called a domain. At the interface of the graphene domain, irregular contact is generated when the domains contact each other due to the difference in growth direction of different domains, and such irregularity acts as a defect of graphene.
그래핀은 서로 공유 결합된 탄소원자들(통상 sp2 결합)의 단일층이다. 그래핀은 다양한 구조를 가질 수 있으며, 이와 같은 구조는 그래핀 내에 포함될 수 있는 5 원환 및/또는 7 원환의 함량에 따라 달라질 수 있다. 그래핀은 상술한 바와 같은 그래핀의 단일층으로 이루어질 수 있으나, 이들이 여러개 서로 적층되어 복수층을 형성하는 것도 가능하며, 통상 그래핀의 측면 말단부는 수소원자로 포화될 수 있다.Graphene is a single layer of covalently bonded carbon atoms (usually sp2 bonds). Graphene may have a variety of structures, such a structure may vary depending on the content of 5-membered and / or 7-membered rings that can be included in the graphene. The graphene may be composed of a single layer of graphene as described above, but it is also possible to form a plurality of layers by stacking them together with each other, and the side end portion of the graphene may be saturated with hydrogen atoms.
그래핀은 다양한 방식으로 합성될 수 있는데, 본 실시예에서는 금속촉매 성장기판상에서 직접 그래핀이 합성되는 직접성장법에 의해 합성된다. 금속촉매 성장기판(110)은 그래핀을 성장시키기 위한 베이스(seed layer)로 기능하는 것으로, 특정 재료로 한정되지 않는다. 예를 들어 금속촉매 성장기판(110)은 Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, 황동, 청동, 백동, 스테인리스 스틸 및 Ge로 이루어진 그룹으로부터 선택된 하나 이상의 금속 또는 이들의 합금을 포함할 수 있다. Graphene may be synthesized in various ways. In this embodiment, the graphene is synthesized by a direct growth method in which graphene is directly synthesized on a metal catalyst growth substrate. The metal catalyst growth substrate 110 functions as a base layer for growing graphene, and is not limited to a specific material. For example, the metal catalyst growth substrate 110 may include Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, and brass. And one or more metals or alloys thereof selected from the group consisting of bronze, copper, copper, stainless steel and Ge.
본 실시예에서는 그래핀 성장단계 전, 금속촉매 성장기판에 광조사 공정 및 열처리 공정 중 적어도 어느 하나의 전처리 공정이 수행되는 금속촉매 성장기판 전처리 단계가 더 수행될 수 있다. 그래핀의 결정구조는 금속촉매 성장기판(110)의 결정구조에 영향을 받는데, 금속촉매 성장기판(110)의 결정구조가 균일한 경우, 그래핀도 균일한 결정구조를 갖도록 성장된다. 이와 달리 금속촉매 성장기판(110)이 다결정(polycrystalline) 구조인 경우, 단결정(monocrystalline) 구조보다 그래핀의 결정이 균일하게 성장하지 않아 그래핀의 품질이 저하될 수 있다.  In the present embodiment, before the graphene growth step, the metal catalyst growth substrate pretreatment step in which at least one pretreatment of the light irradiation process and the heat treatment process is performed on the metal catalyst growth substrate may be further performed. The crystal structure of graphene is influenced by the crystal structure of the metal catalyst growth substrate 110. When the crystal structure of the metal catalyst growth substrate 110 is uniform, the graphene is grown to have a uniform crystal structure. In contrast, when the metal catalyst growth substrate 110 has a polycrystalline structure, the crystals of graphene do not grow more uniformly than the monocrystalline structure, and thus the quality of the graphene may be degraded.
그래핀의 성장 전에 금속촉매 성장기판(110)의 전처리 공정이 수행될 수 있다. 금속촉매 성장기판(110)에 수행되는 전처리 공정은 금속촉매 성장기판(110)의 결정구조를 재정렬하기 위한 것으로서, 광조사 또는 열처리 중 적어도 어느 하나의 공정을 포함할 수 있다(도 2). 이러한 전처리 공정을 수행함으로써, 그래핀층(120)의 품질이 우수해지는 것과 함께 보다 짧은 시간에 그래핀층(120)의 성장이 가능하여 공정비용의 절감이 가능하다. Before the growth of graphene, a pretreatment process of the metal catalyst growth substrate 110 may be performed. The pretreatment process performed on the metal catalyst growth substrate 110 is to rearrange the crystal structure of the metal catalyst growth substrate 110 and may include at least one of light irradiation and heat treatment (FIG. 2). By performing such a pretreatment process, the quality of the graphene layer 120 is improved and the graphene layer 120 can be grown in a shorter time, thereby reducing the process cost.
광조사는 IPL(intense pulsed light, 백색단파장) 및 레이저광 중 적어도 하나를 조사하여 수행될 수 있다. 즉, 다결정구조인 금속촉매 성장기판(110)에 광조사를 통해 촉매기판의 결정을 정렬시키는 것이다. The light irradiation may be performed by irradiating at least one of an intense pulsed light (IPL) and a laser light. That is, the crystals of the catalyst substrate are aligned by light irradiation to the metal catalyst growth substrate 110 having a polycrystalline structure.
IPL 조사를 통해 금속촉매 성장기판(110)의 결정구조를 정렬시킬 수 있다. IPL은 통상적으로 350nm ~ 1200nm의 넓은 대역의 광을 의미하며, 플래시 램프 또는 제논 램프(xenon lamp)를 이용하여 조사될 수 있다. IPL 조사는 펄스 형식으로 고속으로 광을 조사하여 순간적으로 특정 영역만을 가열시키므로 기판의 손상 없이 성장기판의 표면을 재결정시킬 수 있다는 장점을 갖는다. The IPL irradiation may align the crystal structure of the metal catalyst growth substrate 110. IPL generally means light of a wide band of 350 nm to 1200 nm, and may be irradiated using a flash lamp or a xenon lamp. IPL irradiation has the advantage that the surface of the growth substrate can be recrystallized without damaging the substrate because it irradiates light at a high speed in a pulse form and heats only a specific region instantly.
레이저광의 조사는 Nd:YAG 레이저, CO2 레이저, 아르곤 레이저, 엑시머 레이저 및 다이오드 레이저 중 선택된 어느 하나의 레이저를 이용하여 조사될 수 있다. Irradiation of the laser light may be irradiated using any one selected from among Nd: YAG laser, CO 2 laser, argon laser, excimer laser and diode laser.
금속촉매 성장기판의 열처리는 200℃이상 1000℃ 이하의 온도로 금속촉매 성장기판(110)을 가열하여 수행될 수 있다.The heat treatment of the metal catalyst growth substrate may be performed by heating the metal catalyst growth substrate 110 at a temperature of 200 ° C. or more and 1000 ° C. or less.
금속촉매 성장기판(110)은 그래핀의 성장을 용이하게 하기 위하여 탄소를 잘 흡착하는 촉매층(미도시)을 더 포함할 수 있다. 촉매층은 특정 재료로 한정되지 않으며, 금속촉매 성장기판(110)과 동일 또는 상이한 물질로 형성될 수 있다. 한편, 촉매층의 두께 역시 제한되지 않으며, 형태 역시 박막이나 후막일 수 있다. The metal catalyst growth substrate 110 may further include a catalyst layer (not shown) that adsorbs carbon well to facilitate the growth of graphene. The catalyst layer is not limited to a specific material and may be formed of the same or different material as the metal catalyst growth substrate 110. On the other hand, the thickness of the catalyst layer is also not limited, and may also be a thin film or a thick film.
금속촉매 성장기판(110)의 전처리 공정이 수행된 이후, 금속촉매 성장기판(110) 상에서 그래핀을 성장시키는 그래핀 성장단계가 수행된다. 금속촉매 성장기판(110) 상에 그래핀층(120)을 형성시키는 방법으로는 화학기상증착법(CVD, chemical vapor deposition)이 이용될 수 있다. 여기에서 화학기상증착법은 고온화학기상증착(RTCVD), 유도결합플라즈마 화학기상증착(ICP-CVD), 저압 화학기상증착(LPCVD), 상압화학기상증착(APCVD), 금속 유기화학기상증착(MOCVD) 또는 화학기상증착(PECVD) 등으로 세분될 수 있다. After the pretreatment process of the metal catalyst growth substrate 110 is performed, a graphene growth step of growing graphene on the metal catalyst growth substrate 110 is performed. As a method of forming the graphene layer 120 on the metal catalyst growth substrate 110, chemical vapor deposition (CVD) may be used. The chemical vapor deposition method is a high temperature chemical vapor deposition (RTCVD), inductively coupled plasma chemical vapor deposition (ICP-CVD), low pressure chemical vapor deposition (LPCVD), atmospheric pressure chemical vapor deposition (APCVD), metal organic chemical vapor deposition (MOCVD) Or chemical vapor deposition (PECVD) or the like.
금속촉매 성장기판(110)이 반응기에 투입되고, 탄소원(carbon source)으로 활용되는 반응가스의 공급 조건 하에서, 상압 열처리를 통하여 그래핀을 성장, 그래핀층(120)을 형성할 수 있다.The metal catalyst growth substrate 110 is introduced into the reactor, and under the conditions of supplying a reaction gas utilized as a carbon source, the graphene layer 120 may be formed through atmospheric pressure heat treatment.
그래핀 성장을 위한 열처리 온도는 300℃ 내지 2,000℃ 일 수 있다. 이와 같이 금속촉매 성장기판(110)을 고온 및 상압에서 탄소원과 반응시키면 공급된 탄소가 금속촉매 성장기판(110)에 용해 또는 흡착되고, 이후 용해, 흡착된 탄소원자들이 금속촉매 성장기판(110) 표면에서 결정화됨으로써 그래핀 결정 구조를 형성하게 된다. Heat treatment temperature for graphene growth may be 300 ℃ to 2,000 ℃. As such, when the metal catalyst growth substrate 110 is reacted with a carbon source at a high temperature and normal pressure, the supplied carbon is dissolved or adsorbed on the metal catalyst growth substrate 110, and then the dissolved carbon atoms are dissolved and adsorbed on the metal catalyst growth substrate 110. Crystallization at the surface forms a graphene crystal structure.
한편, 상술한 공정에 있어 금속촉매 성장기판(110)의 종류 및 두께(촉매층을 포함함), 반응시간, 냉각속도, 반응 가스 농도 등을 조절함으로써 그래핀층(120)의 층수를 조절할 수 있다.In the above-described process, the number of layers of the graphene layer 120 may be adjusted by adjusting the type and thickness of the metal catalyst growth substrate 110 (including the catalyst layer), the reaction time, the cooling rate, the reaction gas concentration, and the like.
탄소원으로는 일산화탄소, 이산화탄소, 메탄, 에탄, 에틸렌, 에탄올, 아세틸렌, 프로판, 부탄, 부타디엔, 펜탄, 펜텐, 사이클로펜타디엔, 헥산, 사이클로헥산, 벤젠, 또는 톨루엔 등이 있을 수 있다.Carbon sources may include carbon monoxide, carbon dioxide, methane, ethane, ethylene, ethanol, acetylene, propane, butane, butadiene, pentane, pentene, cyclopentadiene, hexane, cyclohexane, benzene, toluene and the like.
탄소원을 포함하는 반응 가스를 기체상으로 공급하면서, 온도를 제어함으로써 반응 가스의 탄소 원자가 금속촉매 성장기판(110) 표면에서 6각형의 판상 구조를 형성하면서 그래핀이 합성된다(도 3).Graphene is synthesized while supplying a reaction gas containing a carbon source to the gas phase, controlling the temperature to form a hexagonal plate-like structure on the surface of the metal catalyst growth substrate 110 by controlling the temperature (FIG. 3).
도 3을 참조하면, 그래핀층(120) 상에 6각형 구조의 그래핀결정구조(121)가 형성되어 있고, 3개의 그래핀 도메인이 충돌하여 그래핀 도메인 경계(122)가 형성되어 있다. 이러한 그래핀 도메인 경계(122)는 그래핀층(120)의 이상적인 육각구조의 결정구조를 파괴하게 되고 이는 곧 그래핀의 결함(122)으로 작용한다. 즉, 그래핀층(120)의 전도성이 열화되고 누설전류가 발생하여 그래핀층(120)을 이용한 투명전극 등의 제조시 제품신뢰성이 악화되는 문제가 발생한다. 또한, 그래핀 결함(122)은 후공정 수행시, 고온 고압조건에서 에너지 등이 응집하는 영역이 되어 그래핀층(120)을 더욱 손상시키게 된다. Referring to FIG. 3, a graphene crystal structure 121 having a hexagonal structure is formed on the graphene layer 120, and three graphene domains collide with each other to form a graphene domain boundary 122. This graphene domain boundary 122 breaks the crystal structure of the ideal hexagonal structure of the graphene layer 120, which acts as a defect 122 of graphene. That is, since the conductivity of the graphene layer 120 is deteriorated and leakage current is generated, there is a problem that product reliability deteriorates when manufacturing a transparent electrode using the graphene layer 120. In addition, the graphene defect 122 becomes a region in which energy and the like aggregate at high temperature and high pressure when performing the post process, thereby further damaging the graphene layer 120.
본 발명에 따른 그래핀 복합전극 제조방법에서는 이러한 그래핀 결함(122)을 치유하는 방법으로써, 그래핀층 상에 원자층 증착공정을 수행하여 원자층(130)을 형성한다. 도 4를 참조하면, 그래핀 결함(122)에 원자층이 증착되어 있다. 본 발명에서 그래핀층(120) 상에 원자층(130)이 형성되어 있다는 것의 의미는 원자층이 1층, 2층 등 층으로 배열되어 있는 상태 이외에도, 그래핀층(120)의 상면에 위치하는 그래핀 결함(122) 부분에 원자 라인(line)이 결함을 도포하도록 배열되어 있는 상태, 즉 한층의 일부를 형성하는 원자배열을 포함하는 개념이다. 이러한 원자배열의 형태는 원자층 증착(atomic layer deposition: ALD) 공정의 수행에 의해 구현가능하다. In the graphene composite electrode manufacturing method according to the present invention, the atomic layer 130 is formed by performing an atomic layer deposition process on the graphene layer as a method of curing the graphene defect 122. Referring to FIG. 4, an atomic layer is deposited on the graphene defect 122. In the present invention, the meaning that the atomic layer 130 is formed on the graphene layer 120 means that the graphene is positioned on the upper surface of the graphene layer 120 in addition to the state in which the atomic layers are arranged in layers such as one layer and two layers. It is a concept including an atomic line forming a portion of a state where an atomic line is arranged to apply a defect to a portion of the fin defect 122. This type of atomic arrangement can be realized by performing an atomic layer deposition (ALD) process.
ALD공정은 증착하고자 하는 원자의 전구체 가스를 주입하고 반응가스를 함께 주입하여 증착대상기판에 원자를 층으로 적층하여 박막을 형성시키는 공정이다. In the ALD process, a precursor gas of an atom to be deposited is injected and a reaction gas is injected together to form a thin film by laminating atoms in a deposition target layer in a layer.
예를 들어, 통상적으로 다 회(약 5회)의 ALD 공정을 통하여 그래핀층(120) 상에 1층의 원자층(130)이 형성된다. 그러나, 그래핀층(120) 상에 존재하는 그래핀 결함(122)으로 인하여 ALD 공정 수행에 따라 원자층(130)이 그래핀층(120) 전반에 1층으로 형성되는 것이 아니라 원자들이 그래핀 결함(122)을 따라 배열된다. 즉, 도 4에서와 같이 그래핀 결함(122)을 따라 ALD에 의한 원자층이 형성된다. For example, one atomic layer 130 is formed on the graphene layer 120 through a plurality of ALD processes. However, due to the graphene defect 122 present on the graphene layer 120, the atomic layer 130 is not formed as a single layer over the graphene layer 120 as the ALD process is performed. 122). That is, an atomic layer formed by ALD is formed along the graphene defect 122 as shown in FIG. 4.
또한, 그래핀 결함(122)은 에너지가 집결하기 쉬운 영역이므로 이후 공정에서 높은 에너지(열 혹은 플라즈마)를 인가하는 공정이 수행된다면 결함영역에서 손상이 심화될 수 있다. 하지만, 원자층(130)이 그래핀 결함(122)에 도포된 경우, 그래핀의 결함부로 에너지가 집중되는 것을 방지할 수 있다. 원자층(130)의 형성에 대하여는 이하 도 8 내지 도 10을 참조하여 더 설명하기로 한다. In addition, since the graphene defect 122 is a region where energy is easily collected, damage may be intensified in the defect region if a process of applying high energy (heat or plasma) is performed in a subsequent process. However, when the atomic layer 130 is applied to the graphene defect 122, it is possible to prevent the energy from being concentrated in the defect portion of the graphene. Formation of the atomic layer 130 will be further described below with reference to FIGS. 8 to 10.
그래핀층(120) 상에 원자층(130)이 형성되면, 원자층(130) 상에는 투명전도성층(140)이 형성된다(도 5). 투명전도성층(140)은 투명한 재질의 전도성 물질로 구현되는데, 예를 들면, ITO(indium tin oxide), IZO(indium zinc oxide), FTO(F-doped tin oxide), ATO(antimony tin oxide), AZO(ZnO:Al), GZO(ZnO:Ga), a-IGZO(In2O3:Ga2O3:ZnO), MgIn2O4, Zn2SnO4, ZnSnO3, (Ga,In)2O3, Zn2In2O5, InSn3O12, In2O3, SnO2, Cd2SnO4, CdSnO3 및 CdIn2O4 중에서 선택되는 1 이상의 금속산화물이거나, Cu, Al, Sn, Ni, W, Ti, Cr, Co, Zn, Ta, V, Au, Ag, TiN 및 Pt 중에서 선택되는 1 이상의 금속이거나, Cu 또는 Ag 등의 나노와이어를 포함할 수 있다.When the atomic layer 130 is formed on the graphene layer 120, the transparent conductive layer 140 is formed on the atomic layer 130 (FIG. 5). The transparent conductive layer 140 is formed of a transparent material, for example, indium tin oxide (ITO), indium zinc oxide (IZO), F-doped tin oxide (FTO), antimony tin oxide (ATO), AZO (ZnO: Al), GZO (ZnO: Ga), a-IGZO (In 2 O 3 : Ga 2 O 3 : ZnO), MgIn 2 O 4 , Zn 2 SnO 4 , ZnSnO 3 , (Ga, In) 2 At least one metal oxide selected from O 3 , Zn 2 In 2 O 5 , InSn 3 O 12 , In 2 O 3 , SnO 2 , Cd 2 SnO 4 , CdSnO 3, and CdIn 2 O 4 , or Cu, Al, Sn, One or more metals selected from Ni, W, Ti, Cr, Co, Zn, Ta, V, Au, Ag, TiN, and Pt, or may include nanowires such as Cu or Ag.
투명전도성층(140)은 열증착(thermal deposition), 화학기상증착 또는 스퍼터링 등의 물리적 또는 화학적 증착 공정을 이용하여 형성하거나, 코팅공정을 이용하여 형성할 수 있다. The transparent conductive layer 140 may be formed using a physical or chemical deposition process such as thermal deposition, chemical vapor deposition, or sputtering, or may be formed using a coating process.
본 발명에 따른 그래핀 복합전극(100)은 투명전극으로 사용될 수 있다. 그래핀층(120)의 유연성 및 투명성과 두께가 얇다는 장점을 이용하여 단독으로 투명전극으로 사용할 수는 있으나, 전극으로서 요구되는 수준의 전도도를 달성하기가 어려워 단독사용이 어렵다. 투명전도성층(140)은 높은 투명도와 전도도를 나타내나 유연성이 낮아 유연전극으로 구현되기 어려우며, 높은 전도도를 확보하기 위해서는 전극의 두께가 두꺼워지게 되고, 이에 따라 투명도와 유연성이 저하되어 단독 사용시 원하는 품질을 달성하기에 어려움이 있다. The graphene composite electrode 100 according to the present invention may be used as a transparent electrode. The flexibility and transparency of the graphene layer 120 can be used alone as a transparent electrode by using the advantages of thin thickness, but it is difficult to use alone as it is difficult to achieve the required level of conductivity as an electrode. Although the transparent conductive layer 140 exhibits high transparency and conductivity, it is difficult to be implemented as a flexible electrode because of its low flexibility, and the thickness of the electrode becomes thick in order to secure high conductivity, thereby decreasing transparency and flexibility, and thus desired quality when used alone. Is difficult to achieve.
본 발명에 따른 그래핀 복합전극(100)은 그래핀층(120) 상에 투명전도성층(140)을 함께 포함하여, 그래핀층(120)의 낮은 전도성을 보완하고, 투명전도성층(140)의 두께를 줄여 투명도와 유연성을 높일 수 있다. 아울러, 본 발명에 따른 그래핀 복합전극(100)은 금속촉매 성장기판(110)과 투명전도성층(140) 사이에 그래핀층(120)이 형성되어 있어, 투명전도성층(140)을 열처리하는 과정에서 금속촉매 성장기판(110)으로부터 불순물이 유입되는 것을 방지하여 투명전도성층(140)의 전도도와 투명성을 유지할 수 있다. The graphene composite electrode 100 according to the present invention includes the transparent conductive layer 140 together on the graphene layer 120 to compensate for the low conductivity of the graphene layer 120 and the thickness of the transparent conductive layer 140. To increase transparency and flexibility. In addition, in the graphene composite electrode 100 according to the present invention, a graphene layer 120 is formed between the metal catalyst growth substrate 110 and the transparent conductive layer 140 to heat-process the transparent conductive layer 140. In order to prevent impurities from flowing through the metal catalyst growth substrate 110, the conductivity and transparency of the transparent conductive layer 140 may be maintained.
투명전도성층(140)이 형성되면, 금속촉매 성장기판(110)을 제거하고(도 6), 연성기판(150)을 그래핀층(120)에 부착시킨다(도 7). 금속촉매 성장기판이 제거된 그래핀 복합전극(100)은 그래핀층(120); 그래핀층(120) 상에 형성된 원자층(130); 및 원자층(130) 상에 형성된 투명전도성층(140);을 포함한다. When the transparent conductive layer 140 is formed, the metal catalyst growth substrate 110 is removed (FIG. 6), and the flexible substrate 150 is attached to the graphene layer 120 (FIG. 7). The graphene composite electrode 100 from which the metal catalyst growth substrate is removed includes a graphene layer 120; An atomic layer 130 formed on the graphene layer 120; And a transparent conductive layer 140 formed on the atomic layer 130.
연성기판(150)은 유연성(flexibility)을 나타내는 기판으로 플라스틱 기판, 예를 들면, 폴리메틸메타크릴레이트(poly(methyl methacrylate), PMMA), 폴리에틸렌테레프탈레이트(polyethyleneterephthalate, PET), 폴리에틸렌나프탈레이트(polyethylenenaphthalate, PEN), 폴리카보네이트(polycarbonate, PC) 및 폴리이미드(polyimide, PI) 중 어느 하나의 기판일 수 있다. The flexible substrate 150 is a substrate exhibiting flexibility, and for example, a plastic substrate, for example, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polyethylene naphthalate (polyethylenenaphthalate), and the like. , PEN), polycarbonate (PC), and polyimide (PI).
금속촉매 성장기판(110)의 제거는 금속촉매 성장기판(110)를 선택적으로 제거하는 에칭용액이 담긴 챔버 및 에칭용액이 담긴 챔버를 포함하는 롤투롤(roll to roll) 장치를 이용하여 이루어질 수 있다. 에칭용액은 금속촉매 성장기판(110)의 종류에 따라 대응되어 선택될 수 있으며, 예로는 불화수소(HF), BOE(buffered oxide etch), 염화 제2철(FeCl3) 용액, 또는 질산 제2철(Fe(NO3)3) 용액 등이 있다. Removal of the metal catalyst growth substrate 110 may be performed using a roll to roll apparatus including a chamber containing an etching solution and a chamber containing the etching solution for selectively removing the metal catalyst growth substrate 110. . The etching solution may be selected according to the type of the metal catalyst growth substrate 110. Examples of the etching solution may include hydrogen fluoride (HF), buffered oxide etch (BOE), ferric chloride (FeCl 3 ) solution, or second nitrate. Iron (Fe (NO 3 ) 3 ) solution.
도 8 내지 도 10은 본 발명의 각각 다른 실시예에 따라 원자층이 형성된 그래핀을 도시한 도면들이다. 원자층(130)은 그래핀층(120)의 그래핀 결함(122)에 집중적으로 배열되는데, 이는 ALD 공정에 따른 원자의 배열이 상대적으로 에너지가 응집된 그래핀 결함(122)부분에 우선적으로 증착되기 때문으로 해석될 수 있다. 8 to 10 are graphs illustrating graphene in which an atomic layer is formed according to different embodiments of the present invention. The atomic layer 130 is intensively arranged on the graphene defect 122 of the graphene layer 120, which is preferentially deposited on the graphene defect 122 in which the arrangement of atoms according to the ALD process is relatively energy-aggregated. It can be interpreted as.
원자층(130)으로는 금속 또는 금속산화물의 원자층이 형성될 수 있는데, 예를 들면, 산화알루미늄 또는 산화아연 등의 금속산화물 원자층이 형성될 수 있다. 산화알루미늄은 원자층의 직경이 약 0.67Å이므로, 두께가 1 내지 10nm의 그래핀층(120)의 경우, 그래핀 결함(122)의 내부에 형성되거나 그래핀 결함(122) 근처로 모여 그래핀 도메인 경계(122)를 따라 라인형태로 형성될 수 있다. An atomic layer 130 of a metal or a metal oxide may be formed as the atomic layer 130. For example, a metal oxide atomic layer such as aluminum oxide or zinc oxide may be formed. Since the aluminum oxide has an atomic layer diameter of about 0.67 Å, in the case of the graphene layer 120 having a thickness of 1 to 10 nm, the graphene domain is formed inside the graphene defect 122 or gathers near the graphene defect 122. It may be formed in a line shape along the boundary 122.
이와 같이 그래핀 결함(122) 주위로 원자층(130)이 형성되면 투명전도성층(140)을 형성하는 고온·고에너지 공정, 예를 들어 플라즈마 증착공정 등이 수행될 때 그래핀 결함(122) 쪽으로 에너지가 과잉집중되는 것을 억제할 수 있다. 따라서, 투명전도성층(140) 형성시의 그래핀 결함(122) 확대 및 이로 인한 그래핀층(120)의 물성저하를 방지할 수 있다. As such, when the atomic layer 130 is formed around the graphene defect 122, the graphene defect 122 is performed when a high temperature / high energy process for forming the transparent conductive layer 140, for example, a plasma deposition process, is performed. This can prevent the energy from being concentrated. Therefore, the expansion of the graphene defects 122 and the deterioration of the physical properties of the graphene layer 120 may be prevented when the transparent conductive layer 140 is formed.
원자층(130)은 원자층 증착공정이 복수회 반복되어 형성될 수 있다. 도 9를 참조하면, 원자층 증착공정의 추가적인 수행으로 도 8에서의 원자층에 추가적인 원자라인이 형성되어 있다. 원자층의 증착횟수는 그래핀층(120)의 두께와 그래핀 결함(122)의 크기나 빈도 등을 고려하여 선택될 수 있다. The atomic layer 130 may be formed by repeating the atomic layer deposition process a plurality of times. Referring to FIG. 9, an additional atomic line is formed in the atomic layer of FIG. 8 by further performing the atomic layer deposition process. The number of depositions of the atomic layer may be selected in consideration of the thickness of the graphene layer 120 and the size or frequency of the graphene defects 122.
원자층 증착공정이 다수회 반복되어 수행되면, 도 10과 같이 원자층(130)은 하나의 층으로 구현될 수도 있다.If the atomic layer deposition process is repeated a plurality of times, the atomic layer 130 may be implemented as one layer as shown in FIG.
원자층(130)은 전술한 바와 같이 금속 또는 금속산화물을 포함할 수 있으나, 그래핀층(120) 또는 투명전도성층(140)의 전도성에 불리한 영향을 미치지 않도록 형성될 수 있다. 즉, 산화물 종류의 이종물질의 도입으로 인한 그래핀층(120)에 약간의 전도도 저하가 일어날 수는 있으나, 원자단위의 층이므로 투명전도성층(140)의 전도성에는 불리한 영향을 미치지 않으며 투명전도성층(140)을 형성하면서 생기는 결함을 최소화하므로 원자층이 그래핀 복합전극(100)에 미치는 영향은 무시할 수 있다. The atomic layer 130 may include a metal or a metal oxide as described above, but may be formed so as not to adversely affect the conductivity of the graphene layer 120 or the transparent conductive layer 140. That is, a slight drop in conductivity may occur in the graphene layer 120 due to the introduction of a heterogeneous material of an oxide type, but because it is an atomic unit layer, it does not adversely affect the conductivity of the transparent conductive layer 140. Since the defects generated while forming the 140 are minimized, the influence of the atomic layer on the graphene composite electrode 100 can be ignored.
도 11 내지 도 13은 본 발명의 다른 실시예에 따른 투명기판 기반 전자소자용 전극제조방법의 설명에 제공되는 도면들이고, 도 14는 도 13의 A-A' 단면도이다. 본 실시예에 따른 투명기판 기반 전자소자용 전극제조방법은 금속촉매 성장기판(110) 상에서 그래핀층(120)을 성장시키는 그래핀성장단계; 그래핀층(120) 상에 원자층 증착공정을 수행하여 원자층(130)을 형성하는 단계; 원자층(130) 상에 투명전도성층(140)을 형성하는 투명전도성층 형성단계; 금속촉매 성장기판(110)의 일부를 제거하여 버스전극(110')을 형성하는 단계; 및 버스전극(110')을 연성기판(150)에 부착하는 단계;를 포함한다. 11 to 13 are views provided to explain an electrode manufacturing method for a transparent substrate-based electronic device according to another embodiment of the present invention, Figure 14 is a cross-sectional view taken along line AA 'of FIG. Electrode manufacturing method for a transparent substrate-based electronic device according to the present embodiment includes a graphene growth step of growing the graphene layer 120 on the metal catalyst growth substrate 110; Forming an atomic layer 130 by performing an atomic layer deposition process on the graphene layer 120; A transparent conductive layer forming step of forming a transparent conductive layer 140 on the atomic layer 130; Removing a portion of the metal catalyst growth substrate 110 to form a bus electrode 110 ′; And attaching the bus electrode 110 ′ to the flexible substrate 150.
본 실시예에서는 투명전도성층과 그래핀층을 함께 사용하여 전극의 물성이 보완되는 그래핀 복합전극에서 그래핀 성장 금속촉매층의 일부를 버스전극으로 사용하는 투명기판 기반 전자소자용 전극의 제조방법이 개시된다. In this embodiment, a method for manufacturing an electrode for a transparent substrate-based electronic device using a part of the graphene growth metal catalyst layer as a bus electrode in a graphene composite electrode in which physical properties of the electrode are supplemented by using a transparent conductive layer and a graphene layer together is disclosed. do.
도 5에서와 같이 금속촉매 성장기판(110)-그래핀층(120)-원자층(130)-투명전도성층(140)이 형성되면, 전기변색소자의 투명기판으로 사용될 수 있다. 그래핀층(120)의 유연성 및 투명성과 두께가 얇다는 장점을 이용하여 단독으로 투명기판으로 사용할 수는 있으나, 전극으로서 요구되는 수준의 전도도를 달성하기가 어려워 단독사용이 어렵다. 투명전도성층(140)은 높은 투명도와 전도도를 나타내나, 유연성이 낮아 유연전극으로 구현되기 어려우며 높은 전도도를 확보하기 위해서는 전극의 두께가 두꺼워지고, 이에 따라 투명도와 유연성이 저하되어 단독 사용시 원하는 품질을 달성하기에 어려움이 있다. As shown in FIG. 5, when the metal catalyst growth substrate 110, the graphene layer 120, the atomic layer 130, and the transparent conductive layer 140 are formed, the metal catalyst growth substrate 110 may be used as a transparent substrate of the electrochromic device. The flexibility and transparency of the graphene layer 120 can be used alone as a transparent substrate by using the advantages of thin thickness, but it is difficult to use alone because it is difficult to achieve the required level of conductivity as an electrode. Although the transparent conductive layer 140 exhibits high transparency and conductivity, it is difficult to be implemented as a flexible electrode due to its low flexibility, and the thickness of the electrode is thick to secure high conductivity, and thus, transparency and flexibility are reduced, thereby providing desired quality when used alone. There is a difficulty to achieve.
본 발명에 따른 버스전극을 포함하는 전기변색소자의 전극은 그래핀층(120) 상에 투명전도성층(140)을 함께 포함하여, 그래핀층(120)의 낮은 전도성을 보완하고, 투명전도성층(140)의 두께를 줄여 투명도를 높이고 전극의 유연성을 확보한다. Electrode of the electrochromic device including a bus electrode according to the present invention includes a transparent conductive layer 140 on the graphene layer 120, to complement the low conductivity of the graphene layer 120, transparent conductive layer 140 ) To increase transparency and ensure electrode flexibility.
또한, 그래핀층(120)에 투명전도성층(140)을 형성한 뒤, 연성기판으로 전사하므로 고온처리를 통한 투명전도성층(140)의 결정화가 가능하여 높은 전도도를 달성할 수 있을 뿐만이 아니라, 금속촉매 성장기판(110)과 투명전도성층(140) 사이에 그래핀층(120)이 성장기판(110)으로부터 불순물 유입을 방지하여 투명전도성층(140)의 전도도와 투명도를 유지할 수 있다. In addition, since the transparent conductive layer 140 is formed on the graphene layer 120 and transferred to the flexible substrate, crystallization of the transparent conductive layer 140 through high temperature treatment is possible, thereby achieving high conductivity as well as metal. The graphene layer 120 may prevent the inflow of impurities from the growth substrate 110 between the catalyst growth substrate 110 and the transparent conductive layer 140 to maintain conductivity and transparency of the transparent conductive layer 140.
투명전도성층(140)이 형성되면, 금속촉매 성장기판(110)의 일부를 제거하여 버스전극(110')을 형성한다. 버스전극(110')은 전기변색소자에 전압 또는 전류를 인가할 수 있는 통로이다. 인가된 전압 또는 전류는 버스전극을 통하여 그래핀 복합전극(120~140)의 전면에 가해지고, 그래핀층(120)을 통해 인가된 전압 또는 전류가 투명전도성층(140) 상에 인가된다. 즉, 투명기판 기반 전자소자의 작동을 위한 전기신호는 버스전극을 통하여 그래핀층(120) 전면, 그래핀층(120)을 통해 투명전도성층(140)을 거쳐 투명전도성층(140) 상부로 전달되므로 버스전극은 도 12와 같이 그래핀층(120)의 외곽부만을 연결하며 일부영역에만 형성될 수 있다.When the transparent conductive layer 140 is formed, a portion of the metal catalyst growth substrate 110 is removed to form the bus electrode 110 ′. The bus electrode 110 ′ is a path through which voltage or current can be applied to the electrochromic device. The applied voltage or current is applied to the entire surface of the graphene composite electrodes 120 to 140 through the bus electrode, and the voltage or current applied through the graphene layer 120 is applied on the transparent conductive layer 140. That is, the electrical signal for the operation of the transparent substrate-based electronic device is transferred to the upper surface of the transparent conductive layer 140 through the transparent conductive layer 140 through the graphene layer 120 and the graphene layer 120 through the bus electrode. As shown in FIG. 12, the bus electrode connects only the outer portion of the graphene layer 120 and may be formed only in a partial region.
버스전극의 구조는 도 12와 같은 형상으로 국한되는 것이 아니라, 전극 또는 소자의 크기, 전기장의 분포 등을 고려하여 다양한 패턴으로 형성될 수 있다.The structure of the bus electrode is not limited to the shape as shown in FIG. 12, but may be formed in various patterns in consideration of the size of the electrode or the element, the distribution of the electric field, and the like.
본 발명에서는 추가적인 공정을 통하여 버스전극(110')을 별도로 형성하는 것이 아니라 그래핀층(120), 원자층(130) 및 투명전도성층(140)이 형성된 후, 연성기판으로 옮기기 전에 제거되어야 하는 금속촉매 성장기판(110)을 모두 제거하지 않고 일부분을 남겨 버스전극(110')의 형태를 형성한다. 이는 전도성을 가지는 금속촉매 성장기판(110)의 특성을 이용한 것이다. 따라서, 버스전극(110') 형성 과정을 별도로 구성하지 않고 제조공정상에서 버스전극(110')까지 한번의 프로세스로 제조가 가능하므로, 공정이 용이하고 제조비용이 절감될 수 있다. 또한, 버스전극 상에는 그래핀층(120)이 성장되어 있어 별도로 버스전극(110')을 그래핀층(120)상에 부착하는 공정이 불필요하여 접착층 등의 형성을 생략할 수 있다. In the present invention, after forming the graphene layer 120, the atomic layer 130, and the transparent conductive layer 140 instead of separately forming the bus electrode 110 ′ through an additional process, the metal to be removed before transferring to the flexible substrate. Instead of removing all of the catalyst growth substrate 110, a portion of the catalyst growth substrate 110 is left to form the bus electrode 110 ′. This is based on the characteristics of the metal catalyst growth substrate 110 having conductivity. Therefore, since the bus electrode 110 'may be manufactured in a single process in the manufacturing process without separately configuring the bus electrode 110' forming process, the process may be easy and the manufacturing cost may be reduced. In addition, since the graphene layer 120 is grown on the bus electrode, a separate process of attaching the bus electrode 110 ′ on the graphene layer 120 is unnecessary, and thus the formation of an adhesive layer may be omitted.
버스전극(110')을 형성하기 위한 금속촉매 성장기판(110)의 제거는 금속촉매 성장기판(110)을 선택적으로 제거할 수 있는 에칭용액을 이용한다. 에칭용액은 금속촉매 성장기판(110)의 종류에 따라 대응되어 선택될 수 있으며, 에칭용액의 예로는 불화수소(HF), BOE(buffered oxide etch), 염화 제2철(FeCl3) 용액, 또는 질산 제2철(Fe(NO3)3) 용액 등이 있다.Removal of the metal catalyst growth substrate 110 for forming the bus electrode 110 ′ uses an etching solution capable of selectively removing the metal catalyst growth substrate 110. The etching solution may be selected according to the type of metal catalyst growth substrate 110. Examples of the etching solution may include hydrogen fluoride (HF), buffered oxide etch (BOE), ferric chloride (FeCl 3 ) solution, or Ferric nitrate (Fe (NO 3 ) 3 ) solution.
금속촉매 성장기판(110)의 제거를 통한 버스전극(110')의 형성은 버스전극(110')을 형성하고자 하는 패턴으로 제작된 마스크(M)를 사용하거나, 에칭용액과 금속촉매 성장기판(110)의 접촉을 제한하기 위하여 원하는 패턴으로 금속촉매 성장기판(110)을 마스킹 한 뒤, 금속촉매 성장기판(110)을 에칭하는 방법으로 버스전극(110')의 패턴을 형성할 수 있다(도 11).The formation of the bus electrode 110 ′ by removing the metal catalyst growth substrate 110 may be performed using a mask M fabricated in a pattern to form the bus electrode 110 ′, or an etching solution and a metal catalyst growth substrate ( In order to limit the contact of the 110, the pattern of the bus electrode 110 ′ may be formed by masking the metal catalyst growth substrate 110 in a desired pattern and then etching the metal catalyst growth substrate 110 (FIG. 11).
버스전극(110')은 도 12와 같이 일부가 제거된 상태로 형성되고, 그에 따라 금속촉매 성장기판(110)과 접촉하는 그래핀층(120)이 외부로 노출된다. 이후, 버스전극(110') 측에 연성기판(150)을 부착하여 전기변색소자용 유연전극을 제조한다. 도 13 및 도 14를 참조하면, 금속촉매 성장기판(110)의 일부가 제거되어 버스전극(110') 내에는 빈공간(111)이 형성되었고, 이는 연성기판(150)에 의해 둘러싸인 상태로 형성된다. The bus electrode 110 ′ is formed with a portion removed as shown in FIG. 12, whereby the graphene layer 120 contacting the metal catalyst growth substrate 110 is exposed to the outside. Thereafter, the flexible substrate 150 is attached to the bus electrode 110 ′ to manufacture a flexible electrode for an electrochromic device. 13 and 14, a portion of the metal catalyst growth substrate 110 is removed to form an empty space 111 in the bus electrode 110 ′, which is formed in a state surrounded by the flexible substrate 150. do.
도 13에 따른 투명기판 기반 전자소자용 전극(100)은 연성기판(150); 연성기판(150) 상에 형성된 버스전극(110'); 버스전극(110') 상의 그래핀층(120); 그래핀층(120) 상에 형성된 원자층(130); 및 원자층(130) 상에 형성된 투명전도성층(140)을 포함한다. The transparent substrate based electronic device electrode 100 according to FIG. 13 includes a flexible substrate 150; A bus electrode 110 ′ formed on the flexible substrate 150; A graphene layer 120 on the bus electrode 110 '; An atomic layer 130 formed on the graphene layer 120; And a transparent conductive layer 140 formed on the atomic layer 130.
본 발명에서 사용될 수 있는 연성기판(150)은 유연성(flexibility)을 나타내는 기판으로 예를 들면, 폴리메틸메타크릴레이트(poly(methyl methacrylate), PMMA), 폴리에틸렌테레프탈레이트(polyethyleneterephthalate, PET), 폴리에틸렌나프탈레이트(polyethylenenaphthalate, PEN), 폴리카보네이트(polycarbonate, PC) 및 폴리이미드(polyimide, PI) 중 어느 하나를 포함할 수 있다.The flexible substrate 150 that can be used in the present invention is a substrate showing flexibility, for example, poly (methyl methacrylate), PMMA, polyethylene terephthalate (PET), polyethylene or It may include any one of phthalate (polyethylenenaphthalate, PEN), polycarbonate (PC), and polyimide (PI).
도 15 내지 도 17은 본 발명의 다른 실시예에 따른 투명기판 기반 전자소자 중 전기변색소자 제조방법의 설명에 제공되는 도면들이다. 본 실시예에 따른 전기변색소자 제조방법은 금속촉매 성장기판(210) 상에서 그래핀층(220)을 성장시키는 그래핀성장단계; 그래핀층(220) 상에 원자층(230) 증착공정을 수행하여 원자층(230)을 형성하는 단계; 원자층(230) 상에 투명전도성층을 형성하는 제1투명전도성층(241) 형성단계; 제1투명전도성층(241) 상에 이온저장층(261), 전해질층(262) 및 전기변색층(263)을 포함하는 전기변색부(260)를 형성하는 단계; 및 전기변색부(260) 중 최외곽층에 투명전도성층을 형성하는 제2투명전도성층(242) 형성단계; 금속촉매 성장기판(210)의 일부를 제거하여 버스전극(210')을 형성하는 단계; 및 버스전극(210')을 연성기판(250)에 접착하는 단계;를 포함한다. 이하, 전술한 바와 동일한 내용의 설명을 생략한다. 15 to 17 are views provided to explain a method of manufacturing an electrochromic device among transparent substrate-based electronic devices according to another embodiment of the present invention. Electrochromic device manufacturing method according to the present embodiment is a graphene growth step of growing a graphene layer 220 on the metal catalyst growth substrate 210; Forming an atomic layer 230 by performing an atomic layer 230 deposition process on the graphene layer 220; Forming a first transparent conductive layer 241 to form a transparent conductive layer on the atomic layer 230; Forming an electrochromic part 260 including an ion storage layer 261, an electrolyte layer 262, and an electrochromic layer 263 on the first transparent conductive layer 241; And a second transparent conductive layer 242 forming a transparent conductive layer on the outermost layer of the electrochromic part 260; Removing a portion of the metal catalyst growth substrate 210 to form a bus electrode 210 '; And bonding the bus electrode 210 'to the flexible substrate 250. Hereinafter, description of the same content as described above will be omitted.
제1투명전도성층(241) 상에는 전압인가를 통하여 변색이 가능한 전기변색부(260)가 형성된다. 전기변색부는(260)는 앞서 언급한 바와 같이 제1투명전도성층(241) 상에 이온저장층(261), 전해질층(262) 및 전기변색층(263)이 순차적으로 형성될 수 있으며, 이와 달리 제1투명전도성층(241) 상에 전기변색층(263), 전해질층(262) 및 이온저장층(261)의 순서로 형성될 수도 있다. On the first transparent conductive layer 241, an electrochromic part 260 capable of discoloring through voltage application is formed. As described above, the electrochromic portion 260 may be sequentially formed with an ion storage layer 261, an electrolyte layer 262, and an electrochromic layer 263 on the first transparent conductive layer 241. Alternatively, the electrochromic layer 263, the electrolyte layer 262, and the ion storage layer 261 may be formed on the first transparent conductive layer 241.
이온저장층(261)은 전기 변색 반응에 참여하는 이온의 입출입에 관여한다. 전기변색층(263)에서 이온을 내보내는 반응을 할 경우에는 전기변색층(263)으로부터 나온 이온을 이온저장층(261)에서 수용하고, 전기변색층(263)에서 이온을 받아들이는 반응을 할 경우에는 이온저장층(261)에서 해당 이온을 제공한다. 이온저장층(261)은 수소 이온, 또는 리튬 이온 등과 같은 복수의 양이온 또는 전기변색에 참여하는 다른 종류의 이온을 저장하기 위한 이온 저장 소재 또는 산화/환원 착색 소재가 이용될 수 있다. The ion storage layer 261 is involved in the entry and exit of ions participating in the electrochromic reaction. In the case of the reaction of emitting ions from the electrochromic layer 263 In the case of receiving the ions from the electrochromic layer 263 in the ion storage layer 261 and receiving the ions from the electrochromic layer 263 Provides ions in the ion storage layer 261. The ion storage layer 261 may be an ion storage material or an oxidation / reduction coloring material for storing a plurality of cations such as hydrogen ions or lithium ions or other kinds of ions participating in electrochromic.
이온저장층(261)은 전기변색층(263)과 더불어 소자의 변색효율을 증대시키기 위한 또 다른 전기변색층의 기능을 할 수 있다. 전기변색소자의 이온저장층(261)은 전기변색층(263)과 산화환원반응에서 대응되는 반응을 가지는 전기 변색 물질로 구성될 수 있다. 즉, 전기변색층(263)이 환원 변색 물질의 경우, 이온저장층(261)은 산화 변색 물질일 수 있으며, 반대의 경우도 가능하다. 전기변색소자의 이온저장층(261)이 또 다른 전기변색층으로 구성될 경우, 소자의 착색 투과도가 감소하여 변색 효율이 증대된다. 전기변색층(263)은 전기 신호에 따라 색이 변화하는 전기 변색 물질을 이용하여 형성할 수 있으며, 전기 변색 물질은 무기물이나 유기물일 수 있다. In addition to the electrochromic layer 263, the ion storage layer 261 may function as another electrochromic layer for increasing the color change efficiency of the device. The ion storage layer 261 of the electrochromic device may be made of an electrochromic material having a reaction corresponding to the electrochromic layer 263 in a redox reaction. That is, when the electrochromic layer 263 is a reducing discoloring material, the ion storage layer 261 may be an oxidizing discoloring material and vice versa. When the ion storage layer 261 of the electrochromic device is constituted by another electrochromic layer, the color transmittance of the device is reduced to increase the color change efficiency. The electrochromic layer 263 may be formed using an electrochromic material whose color changes according to an electrical signal, and the electrochromic material may be an inorganic material or an organic material.
이온저장층(261) 및 전기변색층(263)으로 사용되는 전기변색물질은 산화반응 또는 환원반응 중 어느 반응에 의하여 변색되느냐에 따라 유동적으로 선택될 수 있으며, 이온저장층(261)과 전기변색층(263)이 소자로 연결되었을 때 산화환원반응이 대응될 수 있도록 선택될 수 있다. 이온저장층(261) 및 전기변색층(263)으로 사용되는 전기변색물질이 무기물인 경우에 박막 형태로 증착되는 전이 금속 산화물이 이용될 수 있는데, NiO, Cr2O3, MnO2, Rh2O3, CoOx, Ir(OH)x, Fe2O3, WO3, ZnO, NbO5, V2O5, TiO2, MoO3 등으로부터 선택된 적어도 하나가 이용될 수 있다. 또한, 유기물인 전기변색물질은 비올로겐(viologen) 화합물, 프타로시아닌(diphtahlocyanine) 화합물, 테트라티아풀발렌(tetrathiafulvalene) 화합물 등과 polyaniline, polythiophene, PEDOT(3,4-ethylenedioxythiophene) 등을 기반으로 한 다양한 고분자 화합물이 있다. 유기 전기변색물질은 햇빛에 분해되어 수명이 단축될 수 있는 단점이 있지만, 이들을 적절히 섞으면 원하는 색을 낼 수 있기 때문에 광범위하게 이용될 수 있다.The electrochromic material used as the ion storage layer 261 and the electrochromic layer 263 may be fluidly selected depending on whether the color change is caused by oxidation or reduction, and the color change with the ion storage layer 261. When the layer 263 is connected to the device, the redox reaction may be selected to correspond. When the electrochromic material used as the ion storage layer 261 and the electrochromic layer 263 is an inorganic material, a transition metal oxide deposited in the form of a thin film may be used. NiO, Cr 2 O 3 , MnO 2 , Rh 2 At least one selected from O 3 , CoO x , Ir (OH) x , Fe 2 O 3 , WO 3 , ZnO, NbO 5 , V 2 O 5 , TiO 2 , MoO 3 , and the like may be used. In addition, the electrochromic material, which is an organic material, is based on a viologen compound, a diphtahlocyanine compound, a tetrathiafulvalene compound, or the like based on polyaniline, polythiophene, or PEDOT (3,4-ethylenedioxythiophene). There is one various high molecular compound. Organic electrochromic materials have a disadvantage in that they can be decomposed by sunlight and shorten their lifespan, but they can be widely used because they can give a desired color when properly mixed.
전기변색부(260)가 형성되면, 제1투명전도성층(241)에 대향하는 전극으로서 제2투명전도성층(242)을 형성한다(도 15). 제2투명전도성층(242)은 제1투명전도성층(241)와 동일 또는 유사한 투명하고 전도성이 있는 금속산화물 등으로 구현될 수 있다. When the electrochromic portion 260 is formed, a second transparent conductive layer 242 is formed as an electrode facing the first transparent conductive layer 241 (FIG. 15). The second transparent conductive layer 242 may be formed of a transparent, conductive metal oxide or the like that is the same as or similar to the first transparent conductive layer 241.
전해질층(262)은 이온저장층(261) 및 전기변색층(263) 사이에 형성되며, 전기 변색 반응에 관여하는 이온이 포함된 물질을 이용할 수 있다. 예를 들어, 전해질층(262)은 Ta2O5, LiClO4, LiNbO3, Li3 + xPO4 - xNx(LiPON), LiVO3/SiO2/Li4SiO4-Li3VO4 (LVSO), LiPF6, Li3PO4 등으로부터 선택된 적어도 하나를 이용하여 형성할 수 있다. 전해질은 고체전해질 또는 겔형 전해질일 수 있다. The electrolyte layer 262 is formed between the ion storage layer 261 and the electrochromic layer 263, and may include a material containing ions involved in the electrochromic reaction. For example, the electrolyte layer 262 is Ta 2 O 5, LiClO 4, LiNbO 3, Li 3 + x PO 4 - x N x (LiPON), LiVO 3 / SiO 2 / Li 4 SiO 4 -Li 3 VO 4 (LVSO), LiPF 6 , Li 3 PO 4 or the like may be formed using at least one. The electrolyte may be a solid electrolyte or a gel electrolyte.
전해질층(262)이 고체전해질인 경우, 전기변색부(260)는 제1투명전도성층(241) 상에 이온저장층(261), 전해질층(262) 및 전기변색층(263)을 순차적으로 적층하여 형성될 수 있다. When the electrolyte layer 262 is a solid electrolyte, the electrochromic portion 260 sequentially forms the ion storage layer 261, the electrolyte layer 262, and the electrochromic layer 263 on the first transparent conductive layer 241. It can be formed by laminating.
제2투명전도성층(242)에는 제1투명전도성층(241)와 달리 그래핀층(220)이 함께 형성되어 있지 않다. 따라서, 제2투명전도성층(242)은 필요에 의하여 제1투명전도성층(241)보다 큰 두께로 형성되거나 전도성이 더 높은 재질로 형성될 수 있다. Unlike the first transparent conductive layer 241, the graphene layer 220 is not formed together on the second transparent conductive layer 242. Accordingly, the second transparent conductive layer 242 may be formed to have a larger thickness than the first transparent conductive layer 241 or a material having higher conductivity as necessary.
제2투명전도성층(242)이 형성되면, 그래핀층(220), 제1투명전도성층(241), 전기변색부(260) 및 제2투명전도성층(242)의 형성이 완료되었으므로 금속촉매 성장기판(210)을 일부를 제거하여 버스전극(210')을 형성한다(도 16). 이후 버스전극(210')에 연성기판(250)을 부착시킨다(도 11). When the second transparent conductive layer 242 is formed, since the formation of the graphene layer 220, the first transparent conductive layer 241, the electrochromic part 260, and the second transparent conductive layer 242 is completed, the metal catalyst is grown. A portion of the substrate 210 is removed to form a bus electrode 210 '(FIG. 16). Then, the flexible substrate 250 is attached to the bus electrode 210 '(FIG. 11).
전해질층(262)이 겔형 전해질인 경우, 전기변색부(260)를 형성하는 단계 및 제2투명전도성층(242)을 형성하는 단계는, 제1투명전도성층(241) 상에 전기변색층(263) 및 이온저장층(261) 중 어느 하나의 층을 형성하는 단계; 제2투명전도성층(242) 상에 전기변색층(263) 및 이온저장층(261) 중 나머지 하나의 층을 형성하는 단계; 및 전기변색층(263) 및 이온저장층(261) 사이에 전해질층(262)을 도포하여 합지하는 합지단계;를 포함할 수 있다. When the electrolyte layer 262 is a gel electrolyte, the forming of the electrochromic portion 260 and the forming of the second transparent conductive layer 242 may include forming an electrochromic layer on the first transparent conductive layer 241. Forming a layer of any one of 263 and the ion storage layer 261; Forming another layer of the electrochromic layer 263 and the ion storage layer 261 on the second transparent conductive layer 242; And a laminating step of applying and laminating the electrolyte layer 262 between the electrochromic layer 263 and the ion storage layer 261.
즉, 겔형 전해질을 이용하는 경우, 전기변색층, 전해질층 및 이온저장층을 순차적으로 형성하여 전기변색부를 형성하는 것이 아니라, 제1투명전도성층 상에 이온저장층을 형성하고, 제2투명전도성층 상에는 나머지 전기변색층을 형성한 후, 사이에 전해질층을 도포한 후 양자를 합지하여 전기변색소자를 제작할 수 있다. That is, in the case of using the gel electrolyte, the electrochromic layer, the electrolyte layer, and the ion storage layer are not sequentially formed to form the electrochromic portion, but the ion storage layer is formed on the first transparent conductive layer, and the second transparent conductive layer is formed. After the remaining electrochromic layer is formed on the surface, an electrolyte layer is applied therebetween, and then both are laminated to produce an electrochromic device.
본 발명에서 겔형 전해질이란 전기 변색 반응에 참여하는 이온을 포함하는 염이 용해된 용매에 고분자가 포함된 물질로 이후의 공정에서 광이나 열로 경화될 수 있도록 개시제, 가교제 등의 첨가제를 추가적으로 포함할 수 있다. 겔형 전해질에 포함되는 염으로는 LiClO4, LiPF6, LiTFSI(CF3SO2NLiSO2CF3), LiFSI(F2LiNO4S2) 등과 같은 Li+계가 통상적으로 사용되나 전기 변색 반응에 참여하는 이온의 종류에 따라 다양하게 사용될 수 있다. 겔형 전해질에 사용되는 고분자 물질로는 PEO(polyethylene oxide), PEG(poly(ethylene glycol)), PAN(poly acrylonitrile)을 기반으로 한 고분자이거나 기타 다른 종류의 고분자일 수 있다. 용매로는 전기화학반응에 안정적이며 휘발성이 낮은 유기용매가 주로 사용되며, PC(propylene carbonate), EC(ethylene carbonate) 등이 있다.In the present invention, the gel electrolyte is a material containing a polymer in a solvent in which a salt containing ions participating in an electrochromic reaction is dissolved, and may further include additives such as an initiator and a crosslinking agent to be cured by light or heat in a subsequent process. have. The salt in the gel electrolyte are LiClO 4, LiPF 6, LiTFSI ( CF 3 SO 2 NLiSO 2 CF 3), LiFSI (F 2 LiNO 4 S 2) Li + commonly used boundaries, such as, but involved in the electrochromic reaction It can be used variously according to the kind of ion. The polymer material used in the gel electrolyte may be a polymer based on polyethylene oxide (PEO), poly (ethylene glycol) (PEG), poly acrylonitrile (PAN), or other types of polymers. As a solvent, an organic solvent that is stable in electrochemical reactions and low in volatility is mainly used. Examples of the solvent include PC (propylene carbonate) and EC (ethylene carbonate).
전해질층(262)에 사용되는 물질로는 위의 예시뿐만이 아니라 전기변색층(263) 및 이온저장층(261)에서 일어나는 산화환원반응과 연계하여 다양하게 선택될 수 있으며, 전기변색 반응이 원활하게 이루어지도록 기타 다양한 종류의 첨가제가 도입될 수 있다.The material used in the electrolyte layer 262 may be variously selected in connection with the redox reaction occurring in the electrochromic layer 263 and the ion storage layer 261 as well as the above examples, and the electrochromic reaction may be smoothly performed. Various other types of additives may be introduced to make this.
상술한 바와 같이, 본 발명의 실시예들에서는 버스전극을 포함하는 투명기판 기반 전자소자용 전극을 전도도 및 유연성이 보완된 그래핀 복합전극을 이용하여 제조할 수 있으면서, 그래핀층의 성장기판을 그대로 이용하여 버스전극을 형성하여 추가적인 버스전극 구성 단계 없이 보다 간단한 방법으로 우수한 품질의 전기변색소자를 얻을 수 있다. As described above, in the embodiments of the present invention, an electrode for a transparent substrate-based electronic device including a bus electrode may be manufactured using a graphene composite electrode having improved conductivity and flexibility, while maintaining the growth substrate of the graphene layer as it is. By forming a bus electrode using the above, it is possible to obtain a high quality electrochromic device by a simpler method without additional bus electrode configuration step.
이상, 본 발명의 실시예들에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.As described above, embodiments of the present invention have been described, but those skilled in the art may add, change, delete, or add elements within the scope not departing from the spirit of the present invention described in the claims. The present invention may be modified and changed in various ways, etc., which will also be included within the scope of the present invention.

Claims (16)

  1. 그래핀층;Graphene layer;
    상기 그래핀층 상에 형성된 원자층; 및An atomic layer formed on the graphene layer; And
    상기 원자층 상에 형성된 투명전도성층;을 포함하는 그래핀 복합전극.Graphene composite electrode comprising a; transparent conductive layer formed on the atomic layer.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 원자층은, The atomic layer,
    상기 그래핀층 상에 존재하는 결함영역에 원자들이 배열되어 형성된 것인 그래핀 복합전극.Graphene composite electrode formed by arranging atoms in a defect region existing on the graphene layer.
  3. 청구항 1에 있어서, The method according to claim 1,
    상기 원자층은 금속 또는 금속산화물의 원자의 층인 것인 그래핀 복합전극.The atomic layer is a graphene composite electrode that is a layer of atoms of a metal or metal oxide.
  4. 금속촉매 성장기판 상에서 그래핀을 성장시키는 그래핀 성장단계;A graphene growth step of growing graphene on the metal catalyst growth substrate;
    상기 그래핀층 상에 원자층 증착공정을 수행하여 원자층을 형성하는 단계; 및Forming an atomic layer by performing an atomic layer deposition process on the graphene layer; And
    상기 원자층 상에 투명전도성층을 형성하는 투명전도성층 형성단계;를 포함하는 그래핀 복합전극 제조방법.Graphene composite electrode manufacturing method comprising a; transparent conductive layer forming step of forming a transparent conductive layer on the atomic layer.
  5. 청구항 4에 있어서, The method according to claim 4,
    상기 그래핀 성장단계 전, 상기 금속촉매 성장기판에 광조사 공정 및 열처리 공정 중 적어도 어느 하나의 전처리 공정이 수행되는 금속촉매 성장기판 전처리 단계;를 더 포함하는 그래핀 복합전극 제조방법.And a metal catalyst growth substrate pretreatment step of performing at least one pretreatment process of a light irradiation process and a heat treatment process on the metal catalyst growth substrate before the graphene growth step.
  6. 청구항 4에 있어서, The method according to claim 4,
    상기 원자층은 상기 원자층 증착공정이 복수회 반복되어 형성된 것인 그래핀 복합전극 제조방법.The atomic layer is a graphene composite electrode manufacturing method is formed by repeating the atomic layer deposition process a plurality of times.
  7. 청구항 4에 있어서, The method according to claim 4,
    상기 투명전도성층 형성단계는, The transparent conductive layer forming step,
    상기 증착공정 또는 코팅공정에 의해 수행되는 것인 그래핀 복합전극 제조방법.Graphene composite electrode manufacturing method that is performed by the deposition process or the coating process.
  8. 청구항 4에 있어서, The method according to claim 4,
    상기 금속촉매 성장기판을 제거하는 단계; 및Removing the metal catalyst growth substrate; And
    상기 그래핀층 상에 연성기판을 부착시키는 단계;를 더 포함하는 그래핀 복합전극 제조방법.Attaching a flexible substrate on the graphene layer; Graphene composite electrode manufacturing method further comprising.
  9. 금속촉매 성장기판 상에서 그래핀을 성장시키는 그래핀층성장단계;A graphene layer growth step of growing graphene on the metal catalyst growth substrate;
    상기 그래핀층 상에 원자층 증착공정을 수행하여 원자층을 형성하는 단계;Forming an atomic layer by performing an atomic layer deposition process on the graphene layer;
    상기 원자층 상에 투명전도성층을 형성하는 투명전도성층 형성단계; Forming a transparent conductive layer on the atomic layer;
    상기 금속촉매 성장기판의 일부를 제거하여 버스전극을 형성하는 단계; 및 Removing a portion of the metal catalyst growth substrate to form a bus electrode; And
    상기 버스전극을 연성기판에 부착하는 단계;를 포함하는 투명기판 기반 전자소자용 전극제조방법.And attaching the bus electrode to the flexible substrate.
  10. 청구항 9에 있어서, The method according to claim 9,
    상기 원자층을 형성하는 단계는, Forming the atomic layer,
    상기 그래핀층 상에 존재하는 결함영역에 원자들을 배열하여 수행되는 것인 투명기판 기반 전자소자용 전극제조방법.Electrode manufacturing method for a transparent substrate-based electronic device that is performed by arranging atoms in the defect region existing on the graphene layer.
  11. 청구항 9에 있어서, The method according to claim 9,
    상기 금속촉매 성장기판은 Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, 황동, 청동, 백동, 스테인리스 스틸 및 Ge로 이루어진 그룹으로부터 선택된 하나 이상의 금속 또는 이들의 합금을 포함하는 것인 투명기판 기반 전자소자용 전극제조방법.The metal catalyst growth substrate is Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, brass, bronze, white copper, Electrode manufacturing method for a transparent substrate-based electronic device comprising at least one metal or an alloy thereof selected from the group consisting of stainless steel and Ge.
  12. 청구항 9에 있어서, The method according to claim 9,
    상기 버스전극을 형성하는 단계는,Forming the bus electrode,
    상기 그래핀층이 노출되도록 금속촉매 성장기판의 일부를 제거하여 수행되는 것인 투명기판 기반 전자소자용 전극제조방법.Method of manufacturing an electrode for a transparent substrate-based electronic device that is performed by removing a portion of the metal catalyst growth substrate to expose the graphene layer.
  13. 청구항 9에 있어서, The method according to claim 9,
    상기 버스전극을 형성하는 단계는, Forming the bus electrode,
    상기 금속촉매 성장기판 상에 마스크를 위치시키는 단계; 및Placing a mask on the metal catalyst growth substrate; And
    상기 금속촉매 성장기판을 에칭하는 단계;를 포함하는 것인 투명기판 기반 전자소자용 전극제조방법.Etching the metal catalyst growth substrate; Electrode manufacturing method for a transparent substrate based electronic device comprising a.
  14. 청구항 9에 있어서, The method according to claim 9,
    상기 연성기판은 폴리메틸메타크릴레이트(poly(methyl methacrylate), PMMA), 폴리에틸렌테레프탈레이트(polyethyleneterephthalate, PET), 폴리에틸렌나프탈레이트(polyethylenenaphthalate, PEN), 폴리카보네이트(polycarbonate, PC) 및 폴리이미드(polyimide, PI) 중 어느 하나를 포함하는 것인 투명기판 기반 전자소자용 전극제조방법.The flexible substrate may be made of polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polyethylenenaphthalate (PEN), polycarbonate (PC) and polyimide (polyimide). The electrode manufacturing method for a transparent substrate-based electronic device comprising any one of PI).
  15. 금속촉매 성장기판 상에서 그래핀을 성장시키는 그래핀성장단계;A graphene growth step of growing graphene on the metal catalyst growth substrate;
    상기 그래핀층 상에 원자층 증착공정을 수행하여 원자층을 형성하는 단계;Forming an atomic layer by performing an atomic layer deposition process on the graphene layer;
    상기 원자층 상에 투명전도성층을 형성하는 제1투명전도성층 형성단계; A first transparent conductive layer forming step of forming a transparent conductive layer on the atomic layer;
    상기 제1투명전도성층 상에 전기변색층, 전해질층 및 이온저장층을 포함하는 전기변색부를 형성하는 단계;Forming an electrochromic part including an electrochromic layer, an electrolyte layer, and an ion storage layer on the first transparent conductive layer;
    상기 전기변색부 중 최외곽층에 투명전도성층을 형성하는 제2투명전도성층 형성단계;A second transparent conductive layer forming step of forming a transparent conductive layer on the outermost layer of the electrochromic part;
    상기 금속촉매 성장기판의 일부를 제거하여 버스전극을 형성하는 단계; 및 Removing a portion of the metal catalyst growth substrate to form a bus electrode; And
    상기 버스전극을 연성기판에 부착하는 단계;를 포함하는 전기변색소자 제조방법.Attaching the bus electrode to a flexible substrate.
  16. 연성기판;Flexible substrate;
    상기 연성기판 상에 형성된 버스전극;A bus electrode formed on the flexible substrate;
    상기 전기적 연결부 상에 형성된 그래핀층;A graphene layer formed on the electrical connection portion;
    상기 그래핀층 상에 형성된 원자층; 및An atomic layer formed on the graphene layer; And
    상기 원자층 상에 형성된 투명전도성층;을 포함하는 투명기판 기반 전자소자용 전극.Transparent substrate-based electronic device electrode comprising a; transparent conductive layer formed on the atomic layer.
PCT/KR2017/001120 2016-06-17 2017-02-02 Graphene composite electrode and method for manufacturing same WO2017217634A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020160075686A KR20170142361A (en) 2016-06-17 2016-06-17 Graphene complex electrode and manufacturing method thereof
KR1020160075700A KR102252956B1 (en) 2016-06-17 2016-06-17 Electrode for electronic device with transparent substrate comprising bus electrode originated from metal catalyst layer for graphene growth and method of manufacturing the same
KR10-2016-0075686 2016-06-17
KR10-2016-0075700 2016-06-17

Publications (1)

Publication Number Publication Date
WO2017217634A1 true WO2017217634A1 (en) 2017-12-21

Family

ID=60663627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001120 WO2017217634A1 (en) 2016-06-17 2017-02-02 Graphene composite electrode and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2017217634A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114715979A (en) * 2022-03-11 2022-07-08 电子科技大学 Metal ion purifier for drinking water and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101221581B1 (en) * 2011-10-20 2013-01-14 한국기계연구원 Fabrication method of flexible transparent electrode substrate with graphene, and the flexible transparent electrode substrate substrate thereby
US20130153860A1 (en) * 2011-12-16 2013-06-20 Samsung Electronics Co., Ltd. Method of forming hybrid nanostructure on graphene, hybrid nanostructure, and device including the hybrid nanostructure
KR20140086327A (en) * 2012-12-28 2014-07-08 전자부품연구원 Electrochromic device with graphene transparent electrode
WO2015037889A1 (en) * 2013-09-10 2015-03-19 경희대학교 산학협력단 Smart window comprising electrochromatic device and organic light-emitting device
KR20150142619A (en) * 2014-06-10 2015-12-22 한양대학교 산학협력단 Graphene structure and method of fabricating the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101221581B1 (en) * 2011-10-20 2013-01-14 한국기계연구원 Fabrication method of flexible transparent electrode substrate with graphene, and the flexible transparent electrode substrate substrate thereby
US20130153860A1 (en) * 2011-12-16 2013-06-20 Samsung Electronics Co., Ltd. Method of forming hybrid nanostructure on graphene, hybrid nanostructure, and device including the hybrid nanostructure
KR20140086327A (en) * 2012-12-28 2014-07-08 전자부품연구원 Electrochromic device with graphene transparent electrode
WO2015037889A1 (en) * 2013-09-10 2015-03-19 경희대학교 산학협력단 Smart window comprising electrochromatic device and organic light-emitting device
KR20150142619A (en) * 2014-06-10 2015-12-22 한양대학교 산학협력단 Graphene structure and method of fabricating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114715979A (en) * 2022-03-11 2022-07-08 电子科技大学 Metal ion purifier for drinking water and application thereof

Similar Documents

Publication Publication Date Title
KR101419902B1 (en) Electrochromic device with graphene transparent electrode
JP2019071277A (en) Manufacturing method for display device
WO2011025216A2 (en) Photodetector using a graphene thin film and nanoparticles, and method for producing same
BR112012002814A2 (en) large grapheme deposition and doping area, and products including the same
CN102656702A (en) Electronic device including graphene-based layer(s), and/or method of making the same
WO2011046775A1 (en) Producing transparent conductive films from graphene
WO2013094840A1 (en) Method for manufacturing large-scale three-dimensional transparent graphene electrodes by electrospraying, and large-scale three-dimensional transparent graphene electrode manufactured by using the method
CN110462830A (en) Display base plate and preparation method thereof, display panel and display device
KR20120034349A (en) Flexible field-effect transistor and manufacturing method of the same
WO2017065472A1 (en) Electrochromic element and method for manufacturing same
WO2017217634A1 (en) Graphene composite electrode and method for manufacturing same
WO2023013938A1 (en) Conductive thin film production method using expandable graphite
CN102683389B (en) A kind of flexible display substrates and preparation method thereof
KR102181723B1 (en) Flexible electrochromic device having two electrodes with high quality graphene complex and method of manufacturing the same
Murata et al. Multilayer graphene battery anodes on plastic sheets for flexible electronics
WO2017155295A1 (en) Electrochromic device
KR20170142361A (en) Graphene complex electrode and manufacturing method thereof
JP6838246B2 (en) Array board, display board manufacturing method and display panel
US20230420573A1 (en) Thin film transistor and method of manufactruting thin film transistor
KR102179920B1 (en) Flexible electrochromic device having an electrode with high quality graphene complex and method of manufacturing the same
WO2018016886A1 (en) Method for manufacturing laminate for organic-inorganic hybrid solar cell and method for manufacturing organic-inorganic hybrid solar cell
WO2017217635A1 (en) Flexible electrochromic device using high-quality graphene composite electrode and method for manufacturing same
WO2013009056A2 (en) Transparent electrode containing graphene and ito
CN113195230A (en) Method for transferring graphene out of a metal substrate
CN105140290A (en) Thin film transistor (TFT), array substrate and liquid crystal display (LCD) panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17813459

Country of ref document: EP

Kind code of ref document: A1