WO2017217448A1 - Fullerene derivative, and n-type semiconductor material - Google Patents

Fullerene derivative, and n-type semiconductor material Download PDF

Info

Publication number
WO2017217448A1
WO2017217448A1 PCT/JP2017/021933 JP2017021933W WO2017217448A1 WO 2017217448 A1 WO2017217448 A1 WO 2017217448A1 JP 2017021933 W JP2017021933 W JP 2017021933W WO 2017217448 A1 WO2017217448 A1 WO 2017217448A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
atom
fullerene derivative
fullerene
substituents
Prior art date
Application number
PCT/JP2017/021933
Other languages
French (fr)
Japanese (ja)
Inventor
永井 隆文
足達 健二
安蘇 芳雄
家 裕隆
誠 辛川
Original Assignee
ダイキン工業株式会社
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社, 国立大学法人大阪大学 filed Critical ダイキン工業株式会社
Priority to JP2018523960A priority Critical patent/JP6931891B2/en
Publication of WO2017217448A1 publication Critical patent/WO2017217448A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/58[b]- or [c]-condensed
    • C07D209/70[b]- or [c]-condensed containing carbocyclic rings other than six-membered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions

Definitions

  • the present invention relates to a fullerene derivative, an n-type semiconductor material, and the like.
  • An organic thin film solar cell is formed by using an organic compound as a photoelectric conversion material by a coating method from a solution.
  • poly-3-hexylthiophene (P3HT) is known as an organic p-type semiconductor material having excellent performance.
  • P3HT poly-3-hexylthiophene
  • a compound with a structure that can absorb a wide range of wavelengths of sunlight or a structure in which the energy level is adjusted has been developed aiming at higher functionality (donor acceptor type ⁇ -conjugated polymer), which greatly improves performance.
  • Examples of such compounds include poly-p-phenylene vinylene, poly [[4,8-bis [(2-ethylhexyl) oxy] benzo [1,2-b: 4,5-b ′] dithiophene-2. , 6-diyl] [3-fluoro-2-[(2-ethylhexyl) carbonyl] thieno [3,4-b] thiophenediyl]] (PTB7).
  • PCBM is a fullerene derivative having a three-membered ring portion, and most of the fullerene derivatives that have been reported so far are fullerene derivatives having a three-membered ring portion like PCBM.
  • fullerene derivatives having a 5-membered ring portion are also known as fullerene derivatives other than fullerene derivatives having a 3-membered ring portion, but there are few reports.
  • Non-Patent Document 1 discloses a fullerene derivative having a pyrrolidine ring and having substituents only at the 1-position and 2-position thereof.
  • Patent Document 3 discloses a fullerene derivative having a pyrrolidine ring and having a substituted or unsubstituted phenyl group at the 1-position among the fullerene derivatives having substituents only at the 1-position and 2-position thereof. Has a high conversion efficiency when used as an n-type semiconductor of a solar cell.
  • Patent Document 4 discloses a fullerene derivative having a pyrrolidine ring and having substituents only at the 1-position and the 2-position thereof.
  • Patent Document 5 discloses a fullerene derivative having two or more pyrrolidine rings.
  • Non-Patent Document 2 discloses that a fullerene derivative having a pyrrolidine ring and having a phenyl group at the 1-position is effective as an n-type semiconductor for organic thin-film solar cells.
  • Non-Patent Document 1 achieves higher conversion efficiency than the device using PCBM. This is a special device in which the anode (ITO electrode) current collecting material is removed. It is a comparison in configuration. Thus, a practical organic thin-film solar cell using a fullerene derivative has not yet been developed, and a new fullerene derivative that can be used for n-type semiconductor materials of an organic thin-film solar cell is still available. Development is required.
  • the main object of the present invention is to provide a material having excellent performance as an n-type semiconductor, particularly an n-type semiconductor for a photoelectric conversion element such as an organic thin film solar cell.
  • one of the objects of the present invention is to provide a new fullerene derivative capable of realizing high conversion efficiency.
  • one of the objects of the present invention is to provide a new fullerene derivative that allows easy device fabrication and enables high voltage output. Accordingly, an object of the present invention is to provide a fullerene derivative having high conversion efficiency and enabling high voltage output.
  • the present invention includes the following aspects.
  • Item 1 is a hydrogen atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group optionally having one or more substituents, an alkoxy group optionally having one or more substituents, or cyano Represents a group
  • X 1b represents a chlorine atom, a bromine atom, an iodine atom, an alkyl group optionally having one or more substituents, an alkoxy group optionally having one or more substituents, or a cyano group.
  • R 2 represents an aryl group which may have one or more substituents, or a heteroaryl group which may have one or more substituents;
  • R 3 represents a hydrogen atom or an organic group, and
  • ring A represents a fullerene ring.
  • Item 2. The fullerene derivative according to Item 1, wherein X 1a is a hydrogen atom, a chlorine atom, a bromine atom, an iodine atom, a methyl group, a methoxy group, or a cyano group.
  • Item 3. Item 3.
  • Item 12. Item 12.
  • Item 13. Item 13.
  • a fullerene derivative having high conversion efficiency and enabling high voltage output is provided.
  • room temperature means a temperature within the range of 10 to 40 ° C.
  • the “organic group” means a group containing one or more carbon atoms as its constituent atoms.
  • examples of the “organic group” include a hydrocarbon group.
  • hydrocarbon group means a group containing one or more carbon atoms and one or more hydrogen atoms as its constituent atoms.
  • a hydrocarbon group may be referred to as a hydrocarbyl group.
  • hydrocarbon group includes an aliphatic hydrocarbon group (eg, benzyl group) optionally substituted with one or more aromatic hydrocarbon groups, and one An aromatic hydrocarbon group (aryl group) which may be substituted with the above aliphatic hydrocarbon group is exemplified.
  • aliphatic hydrocarbon group may be linear, branched, cyclic, or a combination thereof.
  • the “aliphatic hydrocarbon group” may be saturated or unsaturated.
  • examples of the “aliphatic hydrocarbon group” include an alkyl group, an alkenyl group, an alkynyl group, and a cycloalkyl group.
  • examples of the “alkyl group” include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, and hexyl. And a linear or branched alkyl group having 1 to 10 carbon atoms.
  • alkenyl group examples include vinyl, 1-propenyl, isopropenyl, 2-methyl-1-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, -Ethyl-1-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 4-methyl-3-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, and 5- Examples thereof include straight-chain or branched alkenyl groups having 2 to 10 carbon atoms such as hexenyl.
  • alkynyl group examples include ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-pentynyl, 2-pentynyl, Linear or branched alkynyl groups having 2 to 6 carbon atoms, such as 3-pentynyl, 4-pentynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, and 5-hexynyl Is exemplified.
  • examples of the “cycloalkyl group” include cycloalkyl groups having 3 to 8 carbon atoms such as cyclopentyl group, cyclohexyl group, and cycloheptyl.
  • alkoxy group is, for example, a group represented by RO— (wherein R is an alkyl group).
  • ester group means an organic group having an ester bond (that is, —C ( ⁇ O) —O— or —OC ( ⁇ O) —).
  • ester bond that is, —C ( ⁇ O) —O— or —OC ( ⁇ O) —.
  • RCO 2 — wherein R is an alkyl group
  • R a —CO 2 —R b — wherein R a is an alkyl group.
  • R b is an alkylene group.
  • ether group means a group having an ether bond (—O—).
  • ether groups include polyether groups.
  • polyether groups are of the formula: R a — (O—R b ) n — (wherein R a is an alkyl group, R b is the same or different at each occurrence, is an alkylene group, and n is an integer of 1 or more).
  • An alkylene group is a divalent group formed by removing one hydrogen atom from the alkyl group.
  • ether groups also include hydrocarbyl ether groups.
  • the hydrocarbyl ether group means a hydrocarbon group having one or more ether bonds.
  • the “hydrocarbyl group having one or more ether bonds” can be a hydrocarbyl group in which one or more ether bonds are inserted. Examples include the benzyloxy group.
  • hydrocarbon groups having one or more ether bonds include alkyl groups having one or more ether bonds.
  • the “alkyl group having one or more ether bonds” can be an alkyl group in which one or more ether bonds are inserted. In the present specification, such a group may be referred to as an alkyl ether group.
  • the “acyl group” includes an alkanoyl group.
  • the “alkanoyl group” is, for example, a group represented by RCO— (wherein R is an alkyl group).
  • the “aryl group” may be monocyclic, bicyclic, tricyclic, or tetracyclic. In the present specification, unless otherwise specified, the “aryl group” may be an aryl group having 6 to 18 carbon atoms. In the present specification, unless otherwise specified, examples of the “aryl group” include phenyl, 1-naphthyl, 2-naphthyl, 2-biphenyl, 3-biphenyl, 4-biphenyl, and 2-anthryl.
  • the “heteroaryl group” is, for example, a monocyclic, bicyclic, or tricyclic or tetracyclic 5- to 18-membered heteroaryl group. Can do.
  • the “heteroaryl group” refers to, for example, 1 to 4 heteroatoms selected from an oxygen atom, a sulfur atom, and a nitrogen atom in addition to a carbon atom as a ring-constituting atom. It is a heteroaryl group to be contained.
  • the “heteroaryl group” may have 3 to 17 carbon atoms, for example.
  • the “heteroaryl group” includes a “monocyclic heteroaryl group” and an “aromatic fused heterocyclic group”.
  • examples of the “monocyclic heteroaryl group” include pyrrolyl (eg, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl), furyl (eg, 2-furyl, 3 -Furyl), thienyl (eg, 2-thienyl, 3-thienyl), pyrazolyl (eg, 1-pyrazolyl, 3-pyrazolyl, 4-pyrazolyl), imidazolyl (eg, 1-imidazolyl, 2-imidazolyl, 4-imidazolyl) , Isoxazolyl (eg, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl), oxazolyl (eg, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl), isothiazolyl (eg, 3-isothiazolyl, 4-isothiazolyl, 5-isothiazolyl) ), Thiazolyl (eg, 3-isothiazo
  • examples of the “aromatic fused heterocyclic group” include isoindolyl (eg, 1-isoindolyl, 2-isoindolyl, 3-isoindolyl, 4-isoindolyl, 5-isoindolyl, 6- Isoindolyl, 7-isoindolyl), indolyl (eg, 1-indolyl, 2-indolyl, 3-indolyl, 4-indolyl, 5-indolyl, 6-indolyl, 7-indolyl), benzo [b] furanyl (eg, 2-indolyl) Benzo [b] furanyl, 3-benzo [b] furanyl, 4-benzo [b] furanyl, 5-benzo [b] furanyl, 6-benzo [b] furanyl, 7-benzo [b] furanyl), benzo [c ] Furanyl (eg, 1-benzoindolyl, 2-is
  • examples of the “alkyl group” include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, and hexyl. And a linear or branched alkyl group having 1 to 10 carbon atoms.
  • Fullerene derivative of the present invention is a fullerene derivative represented by the following formula (1).
  • X 1a is a hydrogen atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group optionally having one or more substituents, an alkoxy group optionally having one or more substituents, or cyano
  • X 1b represents a chlorine atom, a bromine atom, an iodine atom, an alkyl group optionally having one or more substituents, an alkoxy group optionally having one or more substituents, or a cyano group.
  • R 2 represents an aryl group which may have one or more substituents, or a heteroaryl group which may have one or more substituents;
  • R 3 represents a hydrogen atom or an organic group, and ring A represents a fullerene ring.
  • X 1a is preferably a hydrogen atom, a chlorine atom, a bromine atom, an iodine atom, a methyl group, a methoxy group, or a cyano group.
  • X 1a is more preferably a chlorine atom, a bromine atom, an iodine atom, a methyl group, a methoxy group, or a cyano group.
  • X 1a is more preferably a chlorine atom, a methyl group, a methoxy group, or a cyano group.
  • X 1b is preferably a chlorine atom, a bromine atom, an iodine atom, a methyl group, a methoxy group, or a cyano group.
  • X 1b is more preferably a chlorine atom, a bromine atom, a methyl group, a methoxy group, or a cyano group.
  • X 1b is more preferably a chlorine atom, a methyl group, a methoxy group, or a cyano group.
  • X 1a and X 1b are preferably the same or different and are a chlorine atom, a bromine atom, an iodine atom, a methyl group, a methoxy group, or a cyano group.
  • X 1a and X 1b are more preferably the same or different and are a chlorine atom, a methyl group, a methoxy group, or a cyano group.
  • Preferred X 1a and preferred X 1b may each be an electron-withdrawing group or an electron-donating group.
  • the fullerene derivative of the present invention can have excellent properties as an n-type semiconductor material, particularly when X 1a and X 1b are such groups. Specifically, for example, when used for an n-type semiconductor for a photoelectric conversion element such as an organic thin film solar cell, a high voltage can be applied.
  • Examples of the substituent in the “aryl group optionally having one or more substituents” represented by R 2 are as follows: (a) a fluorine atom, (b) an alkyl group optionally substituted by one or more fluorine atoms, (c) an alkoxy group optionally substituted by one or more fluorine atoms, (d) an ester group, and (e) Including a cyano group.
  • the number of the substituents is, for example, 0 (unsubstituted), 1, 2, 3, 4, or 5.
  • Examples of the substituent in the “heteroaryl group optionally having one or more substituents” represented by R 2 are as follows: (a) a fluorine atom, (b) an alkyl group optionally substituted by one or more fluorine atoms, (c) an alkoxy group optionally substituted by one or more fluorine atoms, (d) an ester group, and (e) Including a cyano group.
  • the number of the substituents is, for example, 0 (unsubstituted), 1, 2, 3, 4, or 5.
  • R 2 is preferably (a) a fluorine atom, (b) an alkyl group optionally substituted by one or more fluorine atoms, (c) an alkoxy group optionally substituted by one or more fluorine atoms, (d) an ester group, and (e) optionally substituted with one or more substituents selected from the group consisting of cyano groups, An aryl group (preferably a phenyl group).
  • R 2 is a phenyl group having one or more substituents
  • the position of the substituent can be, for example, an ortho position, a meta position, or a para position.
  • R 2 is preferably a phenyl group which may have one or two substituents at the ortho position.
  • R 3 is preferably Hydrogen atom, An alkyl group optionally substituted with one or more substituents, An alkenyl group optionally substituted by one or more substituents, An alkynyl group optionally substituted by one or more substituents, An aryl group optionally substituted with one or more substituents, It is an ether group which may be substituted with one or more substituents, or an ester group which may be substituted with one or more substituents.
  • R 3 "Alkyl group optionally substituted with one or more substituents", "Alkenyl group optionally substituted with one or more substituents”, “Alkynyl group optionally substituted with one or more substituents”, “Aryl group optionally substituted with one or more substituents”, “An ether group which may be substituted with one or more substituents” and “an ester group which may be substituted with one or more substituents”
  • substituent in each “substituent” in are a fluorine atom, an alkyl group optionally substituted with one or more fluorine atoms, an alkoxy group optionally substituted with one or more fluorine atoms, and an ester group And a cyano group.
  • the number of the substituents may be 1 or more and not more than the maximum number that can be substituted, and is preferably 1 to 4, 1 to 3, 1 to 2, or 1, for example.
  • R 3 is more preferably Hydrogen atom, An alkyl group having 2 to 18 carbon atoms (preferably 3 to 12, more preferably 4 to 10, more preferably 5 to 10, and still more preferably 5 to 8), One or more substituents selected from a fluorine atom, an alkyl group optionally substituted with one or more fluorine atoms, an alkoxy group optionally substituted with one or more fluorine atoms, an ester group, and a cyano group An aryl group optionally substituted with (preferably a phenyl group), An ether group (preferably an alkyl ether group) having 1 to 12 carbon atoms (preferably 1 to 10, more preferably 1 to 8, more preferably 1 to 6), or 2 to 12 carbon atoms (preferably 2 to 10 carbon atoms). More preferably, it is an ester group of 2 to 8, more preferably 2 to 6).
  • R 3 is more preferably An alkyl group having 2 to 18 carbon atoms (preferably 3 to 12, more preferably 4 to 10 and even more preferably 5 to 8), An ether group having 1 to 12 carbon atoms (preferably 1 to 10, more preferably 1 to 8, more preferably 1 to 6), or 2 to 12 carbon atoms (preferably 2 to 10, more preferably 2 to 8 carbon atoms), More preferred is an ester group 2-6).
  • R 3 is more preferably an alkyl group having 1 to 8 carbon atoms or an ether group having 5 to 6 carbon atoms.
  • R 3 is particularly preferably a methyl group, a hexyl group, a 2-ethylhexyl group, CH 3 — (CH 2 ) 2 —O—CH 2 —, or CH 3 —O— (CH 2 ) 2 —O— (CH 2 ) 2 —O—CH 2 —.
  • R 3 is a hydrogen atom or an alkyl group.
  • R 3 is preferably (1) a hydrogen atom, or (2) Linear or branched chain having 2 to 18 carbon atoms (preferably 3 to 12, more preferably 4 to 10, still more preferably 5 to 10 and even more preferably 5 to 8) It is an alkyl group.
  • Ring A is preferably a, C 60 fullerene ring, or C 70 fullerene ring, more preferably C 60 fullerene ring.
  • Ring A is preferably a, C 60 fullerene ring.
  • Fullerene derivative of the formula (1) is, the fullerene derivative Ring A is C 60 fullerene ring (hereinafter, also referred to as C 60 fullerene derivatives.), And ring A fullerene derivative is C 70 fullerene ring (hereinafter, C 70 fullerene It may also be a mixture of a derivative).
  • the ratio of the content of the C 60 fullerene derivative and the C 70 fullerene derivative in the mixture is, for example, 99.999: 0.001 to 0.001: 99.999, 99.99: 0.01 to molar ratio. 0.01: 99.99, 99.9: 0.1 to 0.1: 99.9, 99: 1 to 1:99, 95: 5 to 5:95, 90:10 to 10:90, or 80 : 20 to 20:80.
  • the ratio of the content of the C 60 fullerene derivative and the C 70 fullerene derivative is preferably 80:20 to 50:50, more preferably 80:20 to 60:40.
  • the content of the C 60 fullerene derivative in the mixture is, for example, 0.001 to 99.999 mass%, 0.01 to 99.99 mass%, 0.1 to 99.9 mass%, 1 to 99 mass%. It can be 5 to 95% by weight, 10 to 90% by weight, or 20 to 80% by weight.
  • the content of the C 60 fullerene derivative can be preferably 50 to 80% by mass, and more preferably 60 to 80% by mass.
  • the content of the C 70 fullerene derivative in the mixture is, for example, 0.001 to 99.999% by mass, 0.01 to 99.99% by mass, 0.1 to 99.9% by mass, 1 to 99% by mass. It can be 5 to 95% by weight, 10 to 90% by weight, or 20 to 80% by weight.
  • the content of the C 70 fullerene derivative can be preferably 20 to 50% by mass, and more preferably 20 to 40% by mass.
  • the mixture can consist of C 60 fullerene derivatives, and C 70 fullerene derivatives.
  • the mixture can be a mixture of C 60 fullerene derivatives, and C 70 fullerene derivatives.
  • C 60 fullerene (ring) is represented by the following structural formula as often performed in the technical field: It may be expressed as
  • X 1a is a hydrogen atom, a chlorine atom, a bromine atom, an iodine atom, a methyl group, a methoxy group, or a cyano group
  • X 1b is a chlorine atom, a bromine atom, an iodine atom, a methyl group, a methoxy group, or a cyano group
  • R 2 is an aryl group that may have one or more substituents, or a heteroaryl group that may have one or more substituents
  • R 3 is a hydrogen atom or an alkyl group
  • ring A is a C 60 or C 70 fullerene ring (preferably a C 60 fullerene ring).
  • X 1a is a chlorine atom, a methyl group, a methoxy group, or a cyano group
  • X 1b is a chlorine atom, a methyl group, a methoxy group, or a cyano group
  • R 2 is a phenyl group
  • R 3 is a hydrogen atom or an alkyl group having 5 to 10 carbon atoms
  • ring A is a C 60 or C 70 fullerene ring (preferably a C 60 fullerene ring).
  • X 1a is a linear or branched alkyl group having 2 to 8 carbon atoms
  • X 1b is a linear or branched alkyl group having 2 to 8 carbon atoms
  • R 2 is an aryl group that may have one or more substituents, or a heteroaryl group that may have one or more substituents
  • R 3 is a hydrogen atom or an alkyl group having 5 to 10 carbon atoms
  • ring A is a C 60 or C 70 fullerene ring (preferably a C 60 fullerene ring).
  • the fullerene derivative of the present invention exhibits sufficient solubility in various organic solvents, it is easy to form a thin film by a coating method. Furthermore, the fullerene derivative of the present invention can easily form a bulk heterojunction structure when an organic power generation layer is prepared using an organic p-type semiconductor material as an n-type semiconductor material.
  • the fullerene derivative of the present invention has a high conversion efficiency and enables a high voltage output.
  • the fullerene derivative of the present invention preferably has a LUMO level value of ⁇ 3.65 eV or more.
  • the LUMO level can be measured by the method described in Karakawa et al., Journal of Materials Chemistry A, 2014, Vol. 2, page 20889.
  • the fullerene derivative of the present invention can be produced by a known production method of a fullerene derivative or a method analogous thereto. Specifically, the fullerene derivative of the present invention can be synthesized, for example, according to the method of the following scheme.
  • the symbols in the scheme have the same meanings as described above, and as will be apparent to those skilled in the art, the symbols in formula (a) and formula (b) correspond to the symbols in formula (1).
  • step A a glycine derivative (compound (b)) is reacted with an aldehyde compound (compound (a)) and a fullerene (compound (c)) to produce a fullerene derivative represented by formula (1) (compound (1)).
  • the amount ratio of the aldehyde compound (compound (a)), the glycine derivative (compound (b)) and the fullerene (compound (c)) is arbitrary, but is generally fullerene (compound (c)) 1 from the viewpoint of increasing the yield.
  • the aldehyde compound (compound (a)) and glycine derivative (compound (b)) are each used in an amount of 0.1 to 10 mol, preferably 0.5 to 2 mol, relative to mol.
  • the reaction is performed without a solvent or in a solvent.
  • the solvent include carbon disulfide, chloroform, dichloroethane, toluene, xylene, chlorobenzene, dichlorobenzene and the like. Of these, chloroform, toluene, xylene, chlorobenzene and the like are preferable. These solvents may be mixed and used at an appropriate ratio.
  • the reaction temperature is usually in the range of room temperature to about 150 ° C, preferably in the range of about 80 to about 120 ° C.
  • the room temperature can be preferably in the range of 15 to 30 ° C.
  • the reaction time is usually in the range of about 1 hour to about 4 days, preferably in the range of about 10 to about 48 hours.
  • the obtained compound (1) can be purified by a conventional purification method as necessary.
  • the obtained compound (1) is purified by silica gel column chromatography (the developing solvent is preferably hexane-chloroform, hexane-toluene, or hexane-carbon disulfide, for example), and then further HPLC ( (Preparative GPC) (As the developing solvent, for example, chloroform or toluene is preferable).
  • the aldehyde compound (compound (a)), glycine derivative (compound (b)), and fullerene (compound (c)) used in Step A are known compounds, respectively, and are known methods or similar methods. They are synthesized by methods or are commercially available.
  • the aldehyde compound (compound (a)) can be synthesized, for example, by the following method (a1), (a2) or (a3).
  • R 2 has the same meaning as R 2 in the formula (1) and corresponds to R 2 of the target fullerene derivative.
  • a method using chromic acid, manganese oxide or the like as an oxidizing agent for example, (i) a method using chromic acid, manganese oxide or the like as an oxidizing agent, (ii) For example, swern oxidation using dimethyl sulfoxide as an oxidizing agent, or (iii) oxidation using hydrogen peroxide, oxygen, air or the like in the presence of a catalyst can be applied.
  • a known method such as (i) a metal as a reducing agent A method using a hydride, (ii) a method of reducing hydrogen in the presence of a catalyst, or (iii) a method using hydrazine as a reducing agent can be applied.
  • Method (a3) Carbonylation of a halide represented by R 2 —X (X represents halogen)
  • X represents halogen
  • n-BuLi is used to form an anion from the halide.
  • a method of introducing a carbonyl group can be applied thereto.
  • amide compounds such as N, N-dimethylformamide (DMF); or N-formyl derivatives of piperidine, morpholine, piperazine or pyrrolidine are used.
  • the glycine derivative (compound (b)) can be synthesized, for example, by the following method (b1), (b2) or (b3).
  • R 1 represents a partial structure in formula (1): Represents.
  • Method (b1) Reaction of aniline derivative and halogenated acetic acid
  • the reaction can be carried out using water, methanol, ethanol, or a mixture thereof as a solvent, and if necessary, in the presence of a base.
  • Method (b2) Reaction of aniline derivative and halogenated acetic acid ester, and hydrolysis of glycine derivative ester obtained by the reaction
  • the reaction between the aniline derivative and the halogenated acetate can be performed in the presence of a base such as acetate, carbonate, phosphate, or tertiary amine using, for example, methanol or ethanol as a solvent.
  • the hydrolysis of the glycine derivative ester can be usually performed at room temperature in the presence of a water-soluble alkali.
  • Method (b3) Reaction of aromatic halide with glycine This reaction can be performed, for example, using monovalent copper as a catalyst and in the presence of a bulky amine, amino acid, amino alcohol or the like.
  • a bulky amine amino acid, amino alcohol or the like.
  • the reaction solvent water, methanol, ethanol, or a mixture thereof is preferably used.
  • the reaction temperature is about room temperature to 100 ° C.
  • the fullerene derivative of the present invention can be synthesized by a simple method using a glycine derivative and an aldehyde compound as raw materials in this way, it can be produced at low cost.
  • fullerene derivative of the present invention can be suitably used as an n-type semiconductor material, particularly an n-type semiconductor material for a photoelectric conversion element such as an organic thin film solar cell.
  • the fullerene derivative of the present invention can also be used as an electron transport material for transistors, perovskite solar cells, and the like.
  • the fullerene derivative of the present invention is used as an n-type semiconductor material, it is usually used in combination with an organic p-type semiconductor material (organic p-type semiconductor compound).
  • organic p-type semiconductor material examples include poly-3-hexylthiophene (P3HT), poly-p-phenylene vinylene, poly-alkoxy-p-phenylene vinylene, poly-9,9-dialkylfluorene, poly-p- Examples include phenylene vinylene. Since these are many examples of studies as solar cells and are easily available, devices with stable performance can be easily obtained.
  • a donor-acceptor type ⁇ -conjugated polymer that enables absorption of long-wavelength light by narrowing the band gap (low band gap) is effective.
  • These donor-acceptor type ⁇ -conjugated polymers have a structure in which donor units and acceptor units are arranged alternately.
  • the donor unit used here include benzodithiophene, dithienosilol, and N-alkylcarbazole
  • examples of the acceptor unit include benzothiadiazole, thienothiophene, and thiophenepyrroldione.
  • PTB compounds having a fluorine atom at the 3-position of thieno [3,4-b] thiophene as the acceptor unit
  • PBDTTTT-CF and PTB7 are particularly preferred examples. Is done.
  • n represents the number of repetitions.
  • n represents the number of repetitions.
  • n represents the number of repetitions.
  • n represents the number of repetitions.
  • n represents the number of repetitions.
  • An organic power generation layer prepared using the fullerene derivative of the present invention as an n-type semiconductor material in combination with an organic p-type semiconductor material can exhibit high conversion efficiency. Since the fullerene derivative of the present invention exhibits good solubility in various organic solvents, when it is used as an n-type semiconductor material, an organic power generation layer can be prepared by a coating method, and a large area organic The power generation layer can be easily prepared.
  • the fullerene derivative of the present invention is a compound having good compatibility with an organic p-type semiconductor material and having appropriate self-aggregation properties. Therefore, an organic power generation layer having a bulk junction structure is easily formed using the fullerene derivative as an n-type semiconductor material (organic n-type semiconductor material). By using this organic power generation layer, an organic thin film solar cell or a photosensor having high conversion efficiency can be obtained.
  • an organic thin film solar cell having excellent performance can be produced at low cost.
  • Another application of the organic power generation layer containing (or consisting of) the n-type semiconductor material of the present invention is an image sensor for a digital camera.
  • an image sensor made of an organic material with high photosensitivity is expected to enable high sensitivity and high definition.
  • a material for constructing the light receiving part of such a sensor is required to absorb light with high sensitivity and to generate an electric signal with high efficiency therefrom.
  • the organic power generation layer containing (or consisting of) the n-type semiconductor material of the present invention can efficiently convert visible light into electrical energy. High function can be expressed.
  • n-type semiconductor material of the present invention comprises the fullerene derivative of the present invention.
  • the organic power generation layer of the present invention contains the fullerene derivative of the present invention as an n-type semiconductor material (n-type semiconductor compound).
  • the organic power generation layer of the present invention can be a light conversion layer (photoelectric conversion layer).
  • the organic power generation layer of the present invention usually contains the organic p-type semiconductor material (organic p-type semiconductor compound) in combination with the fullerene derivative of the present invention, that is, the n-type semiconductor material of the present invention.
  • the organic power generation layer of the present invention is usually composed of the n-type semiconductor material of the present invention and the organic p-type semiconductor.
  • the n-type semiconductor material of the present invention and the organic p-type semiconductor material form a bulk heterojunction structure.
  • the organic power generation layer of the present invention is prepared, for example, by dissolving the n-type semiconductor material of the present invention and the organic p-type semiconductor material in an organic solvent, and from the obtained solution, a spin coating method, a casting method, a dipping method, an inkjet method, It can prepare by forming a thin film on a board
  • the fullerene derivative of the present invention has good compatibility with an organic p-type semiconductor material (preferably P3HT or PTB7) and has appropriate self-aggregation.
  • An organic power generation layer containing the fullerene derivative of the present invention as an n-type semiconductor material and an organic p-type semiconductor material and having a bulk heterojunction structure can be easily obtained.
  • the organic thin film solar cell of the present invention includes the organic power generation layer of the present invention described above. For this reason, the organic thin film solar cell of this invention has high conversion efficiency.
  • the structure of the organic thin film solar cell is not particularly limited, and can be the same structure as a known organic thin film solar cell, and the organic thin film solar cell of the present invention is manufactured according to a known method for manufacturing an organic thin film solar cell. it can.
  • the organic thin film solar cell containing the fullerene derivative for example, a transparent electrode (cathode), a cathode side charge transport layer, an organic power generation layer, an anode side charge transport layer, and a counter electrode (anode) are sequentially laminated on a substrate.
  • a transparent electrode cathode
  • a cathode side charge transport layer an organic power generation layer
  • an anode side charge transport layer an organic power generation layer
  • anode anode
  • a counter electrode anode
  • the organic power generation layer is preferably a semiconductor thin film layer (that is, a photoelectric conversion layer) containing an organic p-type semiconductor material and the fullerene derivative of the present invention as an n-type semiconductor material and having a bulk heterojunction structure.
  • a known material can be appropriately used as a material for each layer other than the organic power generation layer.
  • examples of the material for the electrode include aluminum, gold, silver, copper, and indium oxide (ITO).
  • the material for the charge transport layer for example, PFN (poly [9,9-bis (3 ′-(N, N-dimethylamino) propyl-2,7-fluorene) -alt-2,7- (9,9 -Dioctylfluorene)]), MoO 3 (molybdenum oxide) and the like.
  • the photoelectric conversion layer obtained in the present invention effectively functions as a light receiving portion for an image sensor in a high-functional product of a digital camera.
  • the optical sensor is constructed from a silicon substrate, an electrode, a light receiving part including a photoelectric conversion layer, a color filter, and a microlens.
  • the light receiving portion may have a thickness of about several hundreds of nanometers, and may be configured to be a fraction of the thickness of a conventional silicon photodiode.
  • solar cells were prepared by the method described later and their functions were evaluated.
  • PTB7 is used as the organic p-type semiconductor material
  • PFN poly [9,9-bis (3 ′-(N, N-dimethylamino) propyl-2,7-fluorene) -alt-2, 7- (9,9-dioctylfluorene)]
  • MoO 3 molecular oxide
  • ITO indium tin oxide
  • test solar cell A test solar cell was produced according to the following procedure. 1) Pretreatment of substrate The ITO patterned glass plate was put in a plasma cleaning machine, and the substrate surface was cleaned for 10 minutes by plasma generated while oxygen gas was introduced. 2) Preparation of PFN thin film (cathode-side charge transport layer) Using an ABLE / ASS-301 type spin coat method film forming apparatus, a PFN methanol solution (2% w / v) was used for the pre-treated ITO. A PFN thin film was formed on a glass plate. The film thickness of the formed PFN thin film was about 10 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Photovoltaic Devices (AREA)
  • Indole Compounds (AREA)

Abstract

The present invention addresses the problem of providing a material having excellent properties as an n-type semiconductor, particularly an n-type semiconductor for a photoconverter of an organic thin-film solar battery, and the like. Provided is a fullerene derivative represented by general formula (1) [where X1a is a hydrogen atom, chlorine atom, bromine atom, iodine atom, alkyl group optionally having one or more substituent groups, alkoxy group optionally having one or more substituent groups, or cyano group; X1b is a chlorine atom, bromine atom, iodine atom, alkyl group optionally having one or more substituent groups, alkoxy group optionally having one or more substituent groups, or cyano group; R2 is an aryl group optionally having one or more substituent groups or heteroaryl group optionally having one or more substituent groups; R3 is a hydrogen atom or organic group; and ring A is a fullerene ring].

Description

フラーレン誘導体、及びn型半導体材料Fullerene derivative and n-type semiconductor material
 本発明は、フラーレン誘導体、及びn型半導体材料等に関する。 The present invention relates to a fullerene derivative, an n-type semiconductor material, and the like.
 有機薄膜太陽電池は、光電変換材料として有機化合物を用い、溶液からの塗布法によって形成されるものであり、1)デバイス作製時のコストが低い、2)大面積化が容易である、3)シリコン等の無機材料と比較してフレキシブルであり使用できる場所が広がる、及び4)資源枯渇の心配が少ない、等の各種の利点を有するものである。このため、近年、有機薄膜太陽電池の開発が進められており、特に、バルクヘテロジャンクション構造を採用することによって変換効率を大きく向上させることが可能となり、広く注目を集めるに至っている。 An organic thin film solar cell is formed by using an organic compound as a photoelectric conversion material by a coating method from a solution. 1) Low cost for manufacturing a device 2) Easy to enlarge 3) Compared with inorganic materials such as silicon, it has various advantages such as being flexible and widening the place where it can be used, and 4) being less worried about resource depletion. For this reason, in recent years, organic thin film solar cells have been developed, and in particular, conversion efficiency can be greatly improved by employing a bulk heterojunction structure, which has attracted widespread attention.
 有機薄膜太陽電池に用いる光電変換素地用材料の内で、p型半導体については、特に、ポリ-3-ヘキシルチオフェン(P3HT)が優れた性能を有する有機p型半導体材料として知られている。最近では、より高機能を目指して、太陽光の広域の波長を吸収できる構造、又はエネルギー準位を調節した構造を有する化合物が開発され(ドナーアクセプター型π共役高分子)、性能向上に大きく貢献している。このような化合物の例としては、ポリ-p-フェニレンビニレン、ポリ[[4,8-ビス[(2-エチルヘキシル)オキシ]ベンゾ[1,2-b:4,5-b’]ジチオフェン-2,6-ジイル][3-フルオロ-2-[(2-エチルヘキシル)カルボニル]チエノ[3,4-b]チオフェンジイル]](PTB7)が例示される。 Among the materials for photoelectric conversion substrates used in organic thin-film solar cells, for p-type semiconductors, poly-3-hexylthiophene (P3HT) is known as an organic p-type semiconductor material having excellent performance. Recently, a compound with a structure that can absorb a wide range of wavelengths of sunlight or a structure in which the energy level is adjusted has been developed aiming at higher functionality (donor acceptor type π-conjugated polymer), which greatly improves performance. Contributing. Examples of such compounds include poly-p-phenylene vinylene, poly [[4,8-bis [(2-ethylhexyl) oxy] benzo [1,2-b: 4,5-b ′] dithiophene-2. , 6-diyl] [3-fluoro-2-[(2-ethylhexyl) carbonyl] thieno [3,4-b] thiophenediyl]] (PTB7).
 一方、n型半導体についても、フラーレン誘導体が盛んに検討されており、優れた光電変換性能を有する材料として、[6,6]-フェニルC61-酪酸メチルエステル(PCBM)が報告されている(後記特許文献1,2等参照)。しかしながら、PCBM以外のフラーレン誘導体に関しては、安定して良好な変換効率を達成できることが実証された例は殆どない。 On the other hand, fullerene derivatives have been actively studied for n-type semiconductors, and [6,6] -phenyl C61-butyric acid methyl ester (PCBM) has been reported as a material having excellent photoelectric conversion performance (described later). (See Patent Documents 1 and 2). However, with respect to fullerene derivatives other than PCBM, there are few examples that have been demonstrated to stably achieve good conversion efficiency.
 PCBMは、3員環部分を有するフラーレン誘導体であり、従来報告されているフラーレン誘導体のほとんども、PCBMと同様に3員環部分を有するフラーレン誘導体である。 PCBM is a fullerene derivative having a three-membered ring portion, and most of the fullerene derivatives that have been reported so far are fullerene derivatives having a three-membered ring portion like PCBM.
 一方、3員環部分を有するフラーレン誘導体以外のフラーレン誘導体として、5員環部分を有するフラーレン誘導体も知られているが、その報告例は少ない。非特許文献1では、ピロリジン環を有し、その1位、及び2位にのみ置換基を有するフラーレン誘導体が開示されている。特許文献3には、ピロリジン環を有し、その1位、及び2位にのみ置換基を有するフラーレン誘導体のなかでも、特に、その1位に、置換、又は無置換のフェニル基を有するフラーレン誘導体が太陽電池のn型半導体として用いた場合に高い変換効率を有することが記載されている。特許文献4にはピロリジン環を有し、その1位、及び2位にのみ置換基を有するフラーレン誘導体が開示されている。特許文献5には、2個以上のピロリジン環を有するフラーレン誘導体が開示されている。非特許文献2には、ピロリジン環を有し、その1位にフェニル基を有するフラーレン誘導体が有機薄膜太陽電池用のn型半導体として有効であることが開示されている。 On the other hand, fullerene derivatives having a 5-membered ring portion are also known as fullerene derivatives other than fullerene derivatives having a 3-membered ring portion, but there are few reports. Non-Patent Document 1 discloses a fullerene derivative having a pyrrolidine ring and having substituents only at the 1-position and 2-position thereof. Patent Document 3 discloses a fullerene derivative having a pyrrolidine ring and having a substituted or unsubstituted phenyl group at the 1-position among the fullerene derivatives having substituents only at the 1-position and 2-position thereof. Has a high conversion efficiency when used as an n-type semiconductor of a solar cell. Patent Document 4 discloses a fullerene derivative having a pyrrolidine ring and having substituents only at the 1-position and the 2-position thereof. Patent Document 5 discloses a fullerene derivative having two or more pyrrolidine rings. Non-Patent Document 2 discloses that a fullerene derivative having a pyrrolidine ring and having a phenyl group at the 1-position is effective as an n-type semiconductor for organic thin-film solar cells.
特開2009-84264号公報JP 2009-84264 A 特開2010―92964号公報JP 2010-92964 A 特開2012-089538号公報JP 2012-089538 A 国際公開第2014/185536号International Publication No. 2014/185536 特開2011-181719号公報JP 2011-181719 A
 非特許文献1に記載のフラーレン誘導体を用いたデバイスでは、PCBMを用いたデバイスよりも高い変換効率が達成されているが、これは、陽極(ITO電極)の集電材料を取り除いた特殊なデバイス構成での比較である。
 このように、フラーレン誘導体を用いた実用的な有機薄膜太陽電池はいまだ開発されておらず、現在もなお、有機薄膜太陽電池のn型半導体材料等の用途に使用可能な、新たなフラーレン誘導体の開発が求められている。
The device using the fullerene derivative described in Non-Patent Document 1 achieves higher conversion efficiency than the device using PCBM. This is a special device in which the anode (ITO electrode) current collecting material is removed. It is a comparison in configuration.
Thus, a practical organic thin-film solar cell using a fullerene derivative has not yet been developed, and a new fullerene derivative that can be used for n-type semiconductor materials of an organic thin-film solar cell is still available. Development is required.
 本発明の主な目的は、n型半導体、特に有機薄膜太陽電池等の光電変換素子用のn型半導体として優れた性能を有する材料を提供することである。 The main object of the present invention is to provide a material having excellent performance as an n-type semiconductor, particularly an n-type semiconductor for a photoelectric conversion element such as an organic thin film solar cell.
 有機薄膜太陽電池等の光電変換素子用のn型半導体として優れた性能として、代表的には、高い変換効率が例示される。
 従って、本発明の目的の一つは、高い変換効率を実現できる、新たなフラーレン誘導体の提供である。
As a performance excellent as an n-type semiconductor for a photoelectric conversion element such as an organic thin film solar cell, typically, high conversion efficiency is exemplified.
Accordingly, one of the objects of the present invention is to provide a new fullerene derivative capable of realizing high conversion efficiency.
 通常、電気機器を作動させるためには、一定以上の駆動電圧が必要である。このため、太陽電池の一つのセルの出力電圧が低い場合、多数のセルが必要になる。ここで、高い電圧を発生させることを可能にするn型半導体が提供されれば、必要なセルの数を少なくすることが可能になり、従って、太陽電池の省スペース化が可能になる。
 即ち、デバイス作製において塗布法による薄膜の形成が容易であり、且つ高い発電効率を発現できる材料が求められている。
 従って、本発明の目的の一つは、デバイス作製が容易で高い電圧の出力を可能にする、新たなフラーレン誘導体の提供である。
 従って、本発明は、高い変換効率を有し、且つ高い電圧の出力を可能にする、フラーレン誘導体を提供することを目的とする。
Usually, in order to operate an electric device, a driving voltage higher than a certain level is required. For this reason, when the output voltage of one cell of a solar cell is low, many cells are needed. Here, if an n-type semiconductor capable of generating a high voltage is provided, the number of necessary cells can be reduced, and thus the space of the solar cell can be saved.
That is, there is a demand for a material that can easily form a thin film by a coating method in device fabrication and that can exhibit high power generation efficiency.
Accordingly, one of the objects of the present invention is to provide a new fullerene derivative that allows easy device fabrication and enables high voltage output.
Accordingly, an object of the present invention is to provide a fullerene derivative having high conversion efficiency and enabling high voltage output.
 本発明者らは、前記の課題は、後記式(1)で表されるフラーレン誘導体により解決できることを見出した。 The present inventors have found that the above problem can be solved by a fullerene derivative represented by the following formula (1).
 本発明は、次の態様を含む。 The present invention includes the following aspects.
項1.
式(1):
Figure JPOXMLDOC01-appb-C000002
[式中、
X1aは、水素原子、塩素原子、臭素原子、ヨウ素原子、1個以上の置換基を有していてもよいアルキル基、1個以上の置換基を有していてもよいアルコキシ基、又はシアノ基を表し、
X1bは、塩素原子、臭素原子、ヨウ素原子、1個以上の置換基を有していてもよいアルキル基、1個以上の置換基を有していてもよいアルコキシ基、又はシアノ基を表し、
は、1個以上の置換基を有していてもよいアリール基、又は1個以上の置換基を有していてもよいヘテロアリール基を表し、
は、水素原子、又は有機基を表し、及び
環Aは、フラーレン環
を表す。]
で表されるフラーレン誘導体。
項2.
X1aは、水素原子、塩素原子、臭素原子、ヨウ素原子、メチル基、メトキシ基、又はシアノ基である項1に記載のフラーレン誘導体。
項3.
X1aは、塩素原子、臭素原子、ヨウ素原子、メチル基、メトキシ基、又はシアノ基である項2に記載のフラーレン誘導体。
項4.
X1bは、塩素原子、臭素原子、ヨウ素原子、メチル基、メトキシ基、又はシアノ基である項1~3のいずれか1項に記載のフラーレン誘導体。
項5.
は、1個以上の置換基を有していてもよいアリール基である項1~4のいずれか1項に記載のフラーレン誘導体。
項6.
は、オルト位に1個、又は2個の置換基を有していてもよいフェニル基である項5に記載のフラーレン誘導体。
項7.
は、水素原子、又はアルキル基である項1~6のいずれか1項に記載のフラーレン誘導体。
項8.
環Aは、C60フラーレン環である項1~7のいずれか1項に記載のフラーレン誘導体。
項9.
項1~8のいずれか1項に記載のフラーレン誘導体を含有するn型半導体材料。
項10.
有機薄膜太陽電池用である項9に記載のn型半導体材料。
項11.
項10に記載のn型半導体材料を含有する有機発電層。
項12.
項11に記載の有機発電層を備える光電変換素子。
項13.
有機薄膜太陽電池である、項12に記載の光電変換素子。
Item 1.
Formula (1):
Figure JPOXMLDOC01-appb-C000002
[Where:
X 1a is a hydrogen atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group optionally having one or more substituents, an alkoxy group optionally having one or more substituents, or cyano Represents a group,
X 1b represents a chlorine atom, a bromine atom, an iodine atom, an alkyl group optionally having one or more substituents, an alkoxy group optionally having one or more substituents, or a cyano group. ,
R 2 represents an aryl group which may have one or more substituents, or a heteroaryl group which may have one or more substituents;
R 3 represents a hydrogen atom or an organic group, and ring A represents a fullerene ring. ]
A fullerene derivative represented by:
Item 2.
Item 2. The fullerene derivative according to Item 1, wherein X 1a is a hydrogen atom, a chlorine atom, a bromine atom, an iodine atom, a methyl group, a methoxy group, or a cyano group.
Item 3.
Item 3. The fullerene derivative according to Item 2, wherein X 1a is a chlorine atom, a bromine atom, an iodine atom, a methyl group, a methoxy group, or a cyano group.
Item 4.
Item 4. The fullerene derivative according to any one of Items 1 to 3, wherein X 1b is a chlorine atom, a bromine atom, an iodine atom, a methyl group, a methoxy group, or a cyano group.
Item 5.
Item 5. The fullerene derivative according to any one of Items 1 to 4, wherein R 2 is an aryl group which may have one or more substituents.
Item 6.
Item 6. The fullerene derivative according to Item 5, wherein R 2 is a phenyl group optionally having one or two substituents at the ortho position.
Item 7.
Item 7. The fullerene derivative according to any one of Items 1 to 6, wherein R 3 is a hydrogen atom or an alkyl group.
Item 8.
Item 8. The fullerene derivative according to any one of Items 1 to 7, wherein Ring A is a C 60 fullerene ring.
Item 9.
Item 9. An n-type semiconductor material containing the fullerene derivative according to any one of Items 1 to 8.
Item 10.
Item 10. The n-type semiconductor material according to Item 9, which is for organic thin film solar cells.
Item 11.
Item 11. An organic power generation layer containing the n-type semiconductor material according to Item 10.
Item 12.
Item 12. A photoelectric conversion element comprising the organic power generation layer according to Item 11.
Item 13.
Item 13. The photoelectric conversion element according to Item 12, which is an organic thin film solar cell.
 本発明によれば、高い変換効率を有し、且つ高い電圧の出力を可能にする、フラーレン誘導体が提供される。 According to the present invention, a fullerene derivative having high conversion efficiency and enabling high voltage output is provided.
 用語
 本明細書中の記号及び略号は、特に限定のない限り、本明細書の文脈に沿い、本発明が属する技術分野において通常用いられる意味に理解できる。
 本明細書中、語句「含有する」は、語句「から本質的になる」、及び語句「からなる」を包含することを意図して用いられる。
 特に限定されない限り、本明細書中に記載されている工程、処理、又は操作は、室温で実施され得る。
 本明細書中、室温は、10~40℃の範囲内の温度を意味する。
Terms Symbols and abbreviations in this specification can be understood within the context of this specification unless otherwise specified, and can be understood as meanings commonly used in the technical field to which the present invention belongs.
In this specification, the phrase “containing” is intended to encompass the phrase “consisting essentially of” and the phrase “consisting of”.
Unless specifically limited, the steps, processes, or operations described herein can be performed at room temperature.
In the present specification, room temperature means a temperature within the range of 10 to 40 ° C.
 本明細書中、特に限定のない限り、「有機基」は、その構成原子として1個以上の炭素原子を含有する基を意味する。 In the present specification, unless otherwise specified, the “organic group” means a group containing one or more carbon atoms as its constituent atoms.
 本明細書中、特に限定のない限り、「有機基」としては、炭化水素基が例示される。 In the present specification, unless otherwise specified, examples of the “organic group” include a hydrocarbon group.
 本明細書中、特に限定のない限り、「炭化水素基」は、その構成原子として、1個以上の炭素原子、及び1個以上の水素原子を含有する基を意味する。本明細書中、炭化水素基をヒドロカルビル基と称する場合がある。 In this specification, unless otherwise specified, the “hydrocarbon group” means a group containing one or more carbon atoms and one or more hydrogen atoms as its constituent atoms. In the present specification, a hydrocarbon group may be referred to as a hydrocarbyl group.
 本明細書中、特に限定のない限り、「炭化水素基」としては、1個以上の芳香族炭化水素基で置換されていてもよい脂肪族炭化水素基(例、ベンジル基)、及び1個以上の脂肪族炭化水素基で置換されていてもよい芳香族炭化水素基(アリール基)が例示される。 In the present specification, unless otherwise specified, the “hydrocarbon group” includes an aliphatic hydrocarbon group (eg, benzyl group) optionally substituted with one or more aromatic hydrocarbon groups, and one An aromatic hydrocarbon group (aryl group) which may be substituted with the above aliphatic hydrocarbon group is exemplified.
 本明細書中、特に限定のない限り、「脂肪族炭化水素基」は、直鎖状、分枝鎖状、環状、又はそれらの組み合わせであることができる。 In the present specification, unless otherwise specified, the “aliphatic hydrocarbon group” may be linear, branched, cyclic, or a combination thereof.
 本明細書中、特に限定のない限り、「脂肪族炭化水素基」は、飽和、又は不飽和であることができる。 In the present specification, unless otherwise specified, the “aliphatic hydrocarbon group” may be saturated or unsaturated.
 本明細書中、特に限定のない限り、「脂肪族炭化水素基」としては、例えば、アルキル基、アルケニル基、アルキニル基、及びシクロアルキル基が例示される。 In the present specification, unless otherwise specified, examples of the “aliphatic hydrocarbon group” include an alkyl group, an alkenyl group, an alkynyl group, and a cycloalkyl group.
 本明細書中、特に限定のない限り、「アルキル基」としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、及びヘキシル等の、直鎖状、又は分枝鎖状の、炭素数1~10のアルキル基が例示される。 In the present specification, unless otherwise specified, examples of the “alkyl group” include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, and hexyl. And a linear or branched alkyl group having 1 to 10 carbon atoms.
 本明細書中、特に限定のない限り、「アルケニル基」としては、例えば、ビニル、1-プロペニル、イソプロペニル、2-メチル-1-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、2-エチル-1-ブテニル、1-ペンテニル、2-ペンテニル、3-ペンテニル、4-ペンテニル、4-メチル-3-ペンテニル、1-ヘキセニル、2-ヘキセニル、3-ヘキセニル、4-ヘキセニル、及び5-ヘキセニル等の、直鎖状、又は分枝鎖状の、炭素数2~10のアルケニル基が例示される。 In the present specification, unless otherwise specified, examples of the “alkenyl group” include vinyl, 1-propenyl, isopropenyl, 2-methyl-1-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, -Ethyl-1-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 4-methyl-3-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, and 5- Examples thereof include straight-chain or branched alkenyl groups having 2 to 10 carbon atoms such as hexenyl.
 本明細書中、特に限定のない限り、「アルキニル基」としては、例えば、エチニル、1-プロピニル、2-プロピニル、1-ブチニル、2-ブチニル、3-ブチニル、1-ペンチニル、2-ペンチニル、3-ペンチニル、4-ペンチニル、1-ヘキシニル、2-ヘキシニル、3-ヘキシニル、4-ヘキシニル、及び5-ヘキシニル等の、直鎖状、又は分枝鎖状の、炭素数2~6のアルキニル基が例示される。 In the present specification, unless otherwise specified, examples of the “alkynyl group” include ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-pentynyl, 2-pentynyl, Linear or branched alkynyl groups having 2 to 6 carbon atoms, such as 3-pentynyl, 4-pentynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, and 5-hexynyl Is exemplified.
 本明細書中、特に限定のない限り、「シクロアルキル基」としては、例えば、シクロペンチル基、シクロヘキシル基、及びシクロヘプチル等の炭素数3~8のシクロアルキル基が例示される。 In the present specification, unless otherwise specified, examples of the “cycloalkyl group” include cycloalkyl groups having 3 to 8 carbon atoms such as cyclopentyl group, cyclohexyl group, and cycloheptyl.
 本明細書中、特に限定のない限り、「アルコキシ基」は、例えば、RO-(当該式中、Rはアルキル基である。)で表される基である。 In the present specification, unless otherwise specified, the “alkoxy group” is, for example, a group represented by RO— (wherein R is an alkyl group).
 本明細書中、特に限定のない限り、「エステル基」は、エステル結合(すなわち、-C(=O)-O-、または-O-C(=O)-)を有する有機基を意味する。その例は、式:RCO-(当該式中、Rはアルキル基である。)で表される基、および式:R-CO-R-(当該式中、Rはアルキル基であり、及びRはアルキレン基である。)で表される基を包含する。 In the present specification, unless otherwise specified, the “ester group” means an organic group having an ester bond (that is, —C (═O) —O— or —OC (═O) —). Examples thereof are a group represented by the formula: RCO 2 — (wherein R is an alkyl group), and a formula: R a —CO 2 —R b — (wherein R a is an alkyl group. And R b is an alkylene group.).
 本明細書中、特に限定のない限り、「エーテル基」は、エーテル結合(-O-)を有する基を意味する。 In the present specification, unless otherwise specified, the “ether group” means a group having an ether bond (—O—).
 「エーテル基」の例は、ポリエーテル基を包含する。ポリエーテル基の例は、式:R-(O-R-(当該式中、Rはアルキル基であり、Rは各出現において同一又は異なって、アルキレン基であり、及びnは1以上の整数である。)で表される基を包含する。アルキレン基は前記アルキル基から水素原子を1個除去して形成される2価の基である。 Examples of “ether groups” include polyether groups. Examples of polyether groups are of the formula: R a — (O—R b ) n — (wherein R a is an alkyl group, R b is the same or different at each occurrence, is an alkylene group, and n is an integer of 1 or more). An alkylene group is a divalent group formed by removing one hydrogen atom from the alkyl group.
 「エーテル基」の例は、また、ハイドロカルビルエーテル基を包含する。ハイドロカルビルエーテル基は、1個以上のエーテル結合を有する炭化水素基を意味する。「1個以上のエーテル結合を有するハイドロカルビル基」は、1個以上のエーテル結合が挿入されているハイドロカルビル基であることができる。その例は、ベンジルオキシ基を包含する。 Examples of “ether groups” also include hydrocarbyl ether groups. The hydrocarbyl ether group means a hydrocarbon group having one or more ether bonds. The “hydrocarbyl group having one or more ether bonds” can be a hydrocarbyl group in which one or more ether bonds are inserted. Examples include the benzyloxy group.
 「1個以上のエーテル結合を有する炭化水素基」の例は、1個以上のエーテル結合を有するアルキル基を包含する。「1個以上のエーテル結合を有するアルキル基」は、1個以上のエーテル結合が挿入されているアルキル基であることができる。本明細書中、このような基をアルキルエーテル基と称する場合がある。 Examples of “hydrocarbon groups having one or more ether bonds” include alkyl groups having one or more ether bonds. The “alkyl group having one or more ether bonds” can be an alkyl group in which one or more ether bonds are inserted. In the present specification, such a group may be referred to as an alkyl ether group.
 本明細書中、特に限定のない限り、「アシル基」は、アルカノイル基を包含する。本明細書中、特に限定のない限り、「アルカノイル基」は、例えば、RCO-(当該式中、Rはアルキル基である。)で表される基である。 In the present specification, unless otherwise specified, the “acyl group” includes an alkanoyl group. In the present specification, unless otherwise specified, the “alkanoyl group” is, for example, a group represented by RCO— (wherein R is an alkyl group).
 本明細書中、特に断りのない限り、「アリール基」は、単環性、2環性、3環性、又は4環性であることができる。
 本明細書中、特に断りのない限り、「アリール基」は、炭素数6~18のアリール基であることができる。
 本明細書中、特に断りのない限り、「アリール基」としては、例えば、フェニル、1-ナフチル、2-ナフチル、2-ビフェニル、3-ビフェニル、4-ビフェニル、及び2-アンスリルが挙げられる。
In the present specification, unless otherwise specified, the “aryl group” may be monocyclic, bicyclic, tricyclic, or tetracyclic.
In the present specification, unless otherwise specified, the “aryl group” may be an aryl group having 6 to 18 carbon atoms.
In the present specification, unless otherwise specified, examples of the “aryl group” include phenyl, 1-naphthyl, 2-naphthyl, 2-biphenyl, 3-biphenyl, 4-biphenyl, and 2-anthryl.
 本明細書中、特に断りのない限り、「ヘテロアリール基」は、例えば、単環性、2環性、又は3環性、又は4環性の、5~18員のヘテロアリール基であることができる。
 本明細書中、特に断りのない限り、「ヘテロアリール基」は、例えば、環構成原子として、炭素原子に加えて酸素原子、硫黄原子、及び窒素原子から選ばれる1~4個のヘテロ原子を含有するヘテロアリール基である。当該「ヘテロアリール基」の炭素数は、例えば、3~17であることができる。
 本明細書中、特に断りのない限り、「ヘテロアリール基」は、「単環性ヘテロアリール基」、及び「芳香族縮合複素環基」を包含する。
In the present specification, unless otherwise specified, the “heteroaryl group” is, for example, a monocyclic, bicyclic, or tricyclic or tetracyclic 5- to 18-membered heteroaryl group. Can do.
In the present specification, unless otherwise specified, the “heteroaryl group” refers to, for example, 1 to 4 heteroatoms selected from an oxygen atom, a sulfur atom, and a nitrogen atom in addition to a carbon atom as a ring-constituting atom. It is a heteroaryl group to be contained. The “heteroaryl group” may have 3 to 17 carbon atoms, for example.
In the present specification, unless otherwise specified, the “heteroaryl group” includes a “monocyclic heteroaryl group” and an “aromatic fused heterocyclic group”.
 本明細書中、特に断りのない限り、「単環性ヘテロアリール基」としては、例えば、ピロリル(例、1-ピロリル、2-ピロリル、3-ピロリル)、フリル(例、2-フリル、3-フリル)、チエニル(例、2-チエニル、3-チエニル)、ピラゾリル(例、1-ピラゾリル、3-ピラゾリル、4-ピラゾリル)、イミダゾリル(例、1-イミダゾリル、2-イミダゾリル、4-イミダゾリル)、イソオキサゾリル(例、3-イソオキサゾリル、4-イソオキサゾリル、5-イソオキサゾリル)、オキサゾリル(例、2-オキサゾリル、4-オキサゾリル、5-オキサゾリル)、イソチアゾリル(例、3-イソチアゾリル、4-イソチアゾリル、5-イソチアゾリル)、チアゾリル(例、2-チアゾリル、4-チアゾリル、5-チアゾリル)、トリアゾリル(例、1,2,3-トリアゾール-4-イル、1,2,4-トリアゾール-3-イル)、オキサジアゾリル(例、1,2,4-オキサジアゾール-3-イル、1,2,4-オキサジアゾール-5-イル)、チアジアゾリル(例、1,2,4-チアジアゾール-3-イル、1,2,4-チアジアゾール-5-イル)、テトラゾリル、ピリジル(例、2-ピリジル、3-ピリジル、4-ピリジル)、ピリダジニル(例、3-ピリダジニル、4-ピリダジニル)、ピリミジニル(例、2-ピリミジニル、4-ピリミジニル、5-ピリミジニル)、ピラジニル等が挙げられる。 Unless otherwise specified, in this specification, examples of the “monocyclic heteroaryl group” include pyrrolyl (eg, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl), furyl (eg, 2-furyl, 3 -Furyl), thienyl (eg, 2-thienyl, 3-thienyl), pyrazolyl (eg, 1-pyrazolyl, 3-pyrazolyl, 4-pyrazolyl), imidazolyl (eg, 1-imidazolyl, 2-imidazolyl, 4-imidazolyl) , Isoxazolyl (eg, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl), oxazolyl (eg, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl), isothiazolyl (eg, 3-isothiazolyl, 4-isothiazolyl, 5-isothiazolyl) ), Thiazolyl (eg, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl) , Triazolyl (eg, 1,2,3-triazol-4-yl, 1,2,4-triazol-3-yl), oxadiazolyl (eg, 1,2,4-oxadiazol-3-yl, 1, 2,4-oxadiazol-5-yl), thiadiazolyl (eg, 1,2,4-thiadiazol-3-yl, 1,2,4-thiadiazol-5-yl), tetrazolyl, pyridyl (eg, 2- Pyridyl, 3-pyridyl, 4-pyridyl), pyridazinyl (eg, 3-pyridazinyl, 4-pyridazinyl), pyrimidinyl (eg, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl), pyrazinyl and the like.
 本明細書中、特に断りのない限り、「芳香族縮合複素環基」としては、例えば、イソインドリル(例、1-イソインドリル、2-イソインドリル、3-イソインドリル、4-イソインドリル、5-イソインドリル、6-イソインドリル、7-イソインドリル)、インドリル(例、1-インドリル、2-インドリル、3-インドリル、4-インドリル、5-インドリル、6-インドリル、7-インドリル)、ベンゾ[b]フラニル(例、2-ベンゾ[b]フラニル、3-ベンゾ[b]フラニル、4-ベンゾ[b]フラニル、5-ベンゾ[b]フラニル、6-ベンゾ[b]フラニル、7-ベンゾ[b]フラニル)、ベンゾ[c]フラニル(例、1-ベンゾ[c]フラニル、4-ベンゾ[c]フラニル、5-ベンゾ[c]フラニル)、ベンゾ[b]チエニル、(例、2-ベンゾ[b]チエニル、3-ベンゾ[b]チエニル、4-ベンゾ[b]チエニル、5-ベンゾ[b]チエニル、6-ベンゾ[b]チエニル、7-ベンゾ[b]チエニル)、ベンゾ[c]チエニル(例、1-ベンゾ[c]チエニル、4-ベンゾ[c]チエニル、5-ベンゾ[c]チエニル)、インダゾリル(例、1-インダゾリル、2-インダゾリル、3-インダゾリル、4-インダゾリル、5-インダゾリル、6-インダゾリル、7-インダゾリル)、ベンゾイミダゾリル(例、1-ベンゾイミダゾリル、2-ベンゾイミダゾリル、4-ベンゾイミダゾリル、5-ベンゾイミダゾリル)、1,2-ベンゾイソオキサゾリル(例、1,2-ベンゾイソオキサゾール-3-イル、1,2-ベンゾイソオキサゾール-4-イル、1,2-ベンゾイソオキサゾール-5-イル、1,2-ベンゾイソオキサゾール-6-イル、1,2-ベンゾイソオキサゾール-7-イル)、ベンゾオキサゾリル(例、2-ベンゾオキサゾリル、4-ベンゾオキサゾリル、5-ベンゾオキサゾリル、6-ベンゾオキサゾリル、7-ベンゾオキサゾリル)、1,2-ベンゾイソチアゾリル(例、1,2-ベンゾイソチアゾール-3-イル、1,2-ベンゾイソチアゾール-4-イル、1,2-ベンゾイソチアゾール-5-イル、1,2-ベンゾイソチアゾール-6-イル、1,2-ベンゾイソチアゾール-7-イル)、ベンゾチアゾリル(例、2-ベンゾチアゾリル、4-ベンゾチアゾリル、5-ベンゾチアゾリル、6-ベンゾチアゾリル、7-ベンゾチアゾリル)、イソキノリル(例、1-イソキノリル、3-イソキノリル、4-イソキノリル、5-イソキノリル)、キノリル(例、2-キノリル、3-キノリル、4-キノリル、5-キノリル、8-キノリル)、シンノリニル(例、3-シンノリニル、4-シンノリニル、5-シンノリニル、6-シンノリニル、7-シンノリニル、8-シンノリニル)、フタラジニル(例、1-フタラジニル、4-フタラジニル、5-フタラジニル、6-フタラジニル、7-フタラジニル、8-フタラジニル)、キナゾリニル(例、2-キナゾリニル、4-キナゾリニル、5-キナゾリニル、6-キナゾリニル、7-キナゾリニル、8-キナゾリニル)、キノキサリニル(例、2-キノキサリニル、3-キノキサリニル、5-キノキサリニル、6-キノキサリニル、7-キノキサリニル、8-キノキサリニル)、ピラゾロ[1,5-a]ピリジル(例、ピラゾロ[1,5-a]ピリジン-2-イル、ピラゾロ[1,5-a]ピリジン-3-イル、ピラゾロ[1,5-a]ピリジン-4-イル、ピラゾロ[1,5-a]ピリジン-5-イル、ピラゾロ[1,5-a]ピリジン-6-イル、ピラゾロ[1,5-a]ピリジン-7-イル)、イミダゾ[1,2-a]ピリジル(例、イミダゾ[1,2-a]ピリジン-2-イル、イミダゾ[1,2-a]ピリジン-3-イル、イミダゾ[1,2-a]ピリジン-5-イル、イミダゾ[1,2-a]ピリジン-6-イル、イミダゾ[1,2-a]ピリジン-7-イル、イミダゾ[1,2-a]ピリジン-8-イル)等が挙げられる。 Unless otherwise specified, in this specification, examples of the “aromatic fused heterocyclic group” include isoindolyl (eg, 1-isoindolyl, 2-isoindolyl, 3-isoindolyl, 4-isoindolyl, 5-isoindolyl, 6- Isoindolyl, 7-isoindolyl), indolyl (eg, 1-indolyl, 2-indolyl, 3-indolyl, 4-indolyl, 5-indolyl, 6-indolyl, 7-indolyl), benzo [b] furanyl (eg, 2-indolyl) Benzo [b] furanyl, 3-benzo [b] furanyl, 4-benzo [b] furanyl, 5-benzo [b] furanyl, 6-benzo [b] furanyl, 7-benzo [b] furanyl), benzo [c ] Furanyl (eg, 1-benzo [c] furanyl, 4-benzo [c] furanyl, 5-benzo [c] furanyl), benzo [b Thienyl (eg, 2-benzo [b] thienyl, 3-benzo [b] thienyl, 4-benzo [b] thienyl, 5-benzo [b] thienyl, 6-benzo [b] thienyl, 7-benzo [b ] Thienyl), benzo [c] thienyl (eg, 1-benzo [c] thienyl, 4-benzo [c] thienyl, 5-benzo [c] thienyl), indazolyl (eg, 1-indazolyl, 2-indazolyl, 3 -Indazolyl, 4-indazolyl, 5-indazolyl, 6-indazolyl, 7-indazolyl), benzimidazolyl (eg, 1-benzimidazolyl, 2-benzimidazolyl, 4-benzoimidazolyl, 5-benzimidazolyl), 1,2-benzisoxazolyl (Eg, 1,2-benzisoxazol-3-yl, 1,2-benzisoxazol-4-yl 1,2-benzisoxazol-5-yl, 1,2-benzisoxazol-6-yl, 1,2-benzisoxazol-7-yl), benzoxazolyl (eg, 2-benzoxazolyl , 4-benzoxazolyl, 5-benzoxazolyl, 6-benzoxazolyl, 7-benzoxazolyl), 1,2-benzisothiazolyl (eg, 1,2-benzoisothiazole- 3-yl, 1,2-benzisothiazol-4-yl, 1,2-benzisothiazol-5-yl, 1,2-benzisothiazol-6-yl, 1,2-benzisothiazol-7- Yl), benzothiazolyl (eg, 2-benzothiazolyl, 4-benzothiazolyl, 5-benzothiazolyl, 6-benzothiazolyl, 7-benzothiazolyl), isoquinolyl (eg, 1 -Isoquinolyl, 3-isoquinolyl, 4-isoquinolyl, 5-isoquinolyl), quinolyl (eg, 2-quinolyl, 3-quinolyl, 4-quinolyl, 5-quinolyl, 8-quinolyl), cinnolinyl (eg, 3-cinnolinyl, 4 -Cinnolinyl, 5-cinnolinyl, 6-cinnolinyl, 7-cinnolinyl, 8-cinnolinyl), phthalazinyl (eg, 1-phthalazinyl, 4-phthalazinyl, 5-phthalazinyl, 6-phthalazinyl, 7-phthalazinyl, 8-phthalazinyl), quinazolinyl (Eg, 2-quinazolinyl, 4-quinazolinyl, 5-quinazolinyl, 6-quinazolinyl, 7-quinazolinyl, 8-quinazolinyl), quinoxalinyl (eg, 2-quinoxalinyl, 3-quinoxalinyl, 5-quinoxalinyl, 6-quinoxalinyl, 7- Quinoxalinyl, 8- Noxalinyl), pyrazolo [1,5-a] pyridyl (eg, pyrazolo [1,5-a] pyridin-2-yl, pyrazolo [1,5-a] pyridin-3-yl, pyrazolo [1,5-a] ] Pyridin-4-yl, pyrazolo [1,5-a] pyridin-5-yl, pyrazolo [1,5-a] pyridin-6-yl, pyrazolo [1,5-a] pyridin-7-yl) Imidazo [1,2-a] pyridyl (eg, imidazo [1,2-a] pyridin-2-yl, imidazo [1,2-a] pyridin-3-yl, imidazo [1,2-a] pyridine- 5-yl, imidazo [1,2-a] pyridin-6-yl, imidazo [1,2-a] pyridin-7-yl, imidazo [1,2-a] pyridin-8-yl) and the like. .
 本明細書中、特に限定のない限り、「アルキル基」としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、及びヘキシル等の、直鎖状、又は分枝鎖状の、炭素数1~10のアルキル基が例示される。 In the present specification, unless otherwise specified, examples of the “alkyl group” include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, and hexyl. And a linear or branched alkyl group having 1 to 10 carbon atoms.
 以下、本発明のフラーレン誘導体、及びそれを含有するn型半導体材料等について具体的に説明する。 Hereinafter, the fullerene derivative of the present invention and the n-type semiconductor material containing the fullerene derivative will be specifically described.
 フラーレン誘導体
 本発明のフラーレン誘導体は、後記式(1)で表されるフラーレン誘導体である。
Fullerene derivative The fullerene derivative of the present invention is a fullerene derivative represented by the following formula (1).
 式(1):
Figure JPOXMLDOC01-appb-C000003
[式中、
X1aは、水素原子、塩素原子、臭素原子、ヨウ素原子、1個以上の置換基を有していてもよいアルキル基、1個以上の置換基を有していてもよいアルコキシ基、又はシアノ基を表し、
X1bは、塩素原子、臭素原子、ヨウ素原子、1個以上の置換基を有していてもよいアルキル基、1個以上の置換基を有していてもよいアルコキシ基、又はシアノ基を表し、
は、1個以上の置換基を有していてもよいアリール基、又は1個以上の置換基を有していてもよいヘテロアリール基を表し、
は、水素原子、又は有機基を表し、及び
環Aは、フラーレン環を表す。]
Formula (1):
Figure JPOXMLDOC01-appb-C000003
[Where:
X 1a is a hydrogen atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group optionally having one or more substituents, an alkoxy group optionally having one or more substituents, or cyano Represents a group,
X 1b represents a chlorine atom, a bromine atom, an iodine atom, an alkyl group optionally having one or more substituents, an alkoxy group optionally having one or more substituents, or a cyano group. ,
R 2 represents an aryl group which may have one or more substituents, or a heteroaryl group which may have one or more substituents;
R 3 represents a hydrogen atom or an organic group, and ring A represents a fullerene ring. ]
 X1aは、好ましくは、水素原子、塩素原子、臭素原子、ヨウ素原子、メチル基、メトキシ基、又はシアノ基である。 X 1a is preferably a hydrogen atom, a chlorine atom, a bromine atom, an iodine atom, a methyl group, a methoxy group, or a cyano group.
 X1aは、より好ましくは、塩素原子、臭素原子、ヨウ素原子、メチル基、メトキシ基、又はシアノ基である。 X 1a is more preferably a chlorine atom, a bromine atom, an iodine atom, a methyl group, a methoxy group, or a cyano group.
 X1aは、更に好ましくは、塩素原子、メチル基、メトキシ基、又はシアノ基である。 X 1a is more preferably a chlorine atom, a methyl group, a methoxy group, or a cyano group.
 X1bは、好ましくは、塩素原子、臭素原子、ヨウ素原子、メチル基、メトキシ基、又はシアノ基である。 X 1b is preferably a chlorine atom, a bromine atom, an iodine atom, a methyl group, a methoxy group, or a cyano group.
 X1bは、より好ましくは、塩素原子、臭素原子、メチル基、メトキシ基、又はシアノ基である。 X 1b is more preferably a chlorine atom, a bromine atom, a methyl group, a methoxy group, or a cyano group.
 X1bは、更に好ましくは、塩素原子、メチル基、メトキシ基、又はシアノ基である。 X 1b is more preferably a chlorine atom, a methyl group, a methoxy group, or a cyano group.
 X1a、及びX1bは、好ましくは、同一又は異なって、塩素原子、臭素原子、ヨウ素原子、メチル基、メトキシ基、又はシアノ基である。 X 1a and X 1b are preferably the same or different and are a chlorine atom, a bromine atom, an iodine atom, a methyl group, a methoxy group, or a cyano group.
 X1a、及びX1bは、より好ましくは、同一又は異なって、塩素原子、メチル基、メトキシ基、又はシアノ基である。 X 1a and X 1b are more preferably the same or different and are a chlorine atom, a methyl group, a methoxy group, or a cyano group.
 好ましいX1a、及び好ましいX1bは、それぞれ、電子吸引性基であってもよく、又は電子供与性基であってもよい。 Preferred X 1a and preferred X 1b may each be an electron-withdrawing group or an electron-donating group.
 本発明のフラーレン誘導体は、特に、X1a、及びX1bが、このような基であることにより、n型半導体材料として優れた性質を有することができる。
 具体的には、例えば、有機薄膜太陽電池等の光電変換素子用のn型半導体に使用した場合に、高い電圧を与えることができる。
The fullerene derivative of the present invention can have excellent properties as an n-type semiconductor material, particularly when X 1a and X 1b are such groups.
Specifically, for example, when used for an n-type semiconductor for a photoelectric conversion element such as an organic thin film solar cell, a high voltage can be applied.
 Rで表される「1個以上の置換基を有していてもよいアリール基」における置換基の例は、
(a)フッ素原子、
(b)1個以上のフッ素原子で置換されていてもよいアルキル基、
(c)1個以上のフッ素原子で置換されていてもよいアルコキシ基、
(d)エステル基、及び
(e)シアノ基
を包含する。
Examples of the substituent in the “aryl group optionally having one or more substituents” represented by R 2 are as follows:
(a) a fluorine atom,
(b) an alkyl group optionally substituted by one or more fluorine atoms,
(c) an alkoxy group optionally substituted by one or more fluorine atoms,
(d) an ester group, and
(e) Including a cyano group.
 当該置換基の数は、例えば、0個(無置換)、1個、2個、3個、4個、又は5個である。 The number of the substituents is, for example, 0 (unsubstituted), 1, 2, 3, 4, or 5.
 Rで表される「1個以上の置換基を有していてもよいヘテロアリール基」における置換基の例は、
(a)フッ素原子、
(b)1個以上のフッ素原子で置換されていてもよいアルキル基、
(c)1個以上のフッ素原子で置換されていてもよいアルコキシ基、
(d)エステル基、及び
(e)シアノ基
を包含する。
Examples of the substituent in the “heteroaryl group optionally having one or more substituents” represented by R 2 are as follows:
(a) a fluorine atom,
(b) an alkyl group optionally substituted by one or more fluorine atoms,
(c) an alkoxy group optionally substituted by one or more fluorine atoms,
(d) an ester group, and
(e) Including a cyano group.
 当該置換基の数は、例えば、0個(無置換)、1個、2個、3個、4個、又は5個である。 The number of the substituents is, for example, 0 (unsubstituted), 1, 2, 3, 4, or 5.
 Rは、好ましくは、
(a)フッ素原子、
(b)1個以上のフッ素原子で置換されていてもよいアルキル基、
(c)1個以上のフッ素原子で置換されていてもよいアルコキシ基、
(d)エステル基、及び
(e)シアノ基
からなる群より選ばれる1個以上の置換基で置換されていてもよい、
アリール基(好ましくは、フェニル基)である。
R 2 is preferably
(a) a fluorine atom,
(b) an alkyl group optionally substituted by one or more fluorine atoms,
(c) an alkoxy group optionally substituted by one or more fluorine atoms,
(d) an ester group, and
(e) optionally substituted with one or more substituents selected from the group consisting of cyano groups,
An aryl group (preferably a phenyl group).
 Rが、1個以上の置換基を有するフェニル基である場合、当該置換基の位置は、例えば、オルト位、メタ位、又はパラ位であることができる。 When R 2 is a phenyl group having one or more substituents, the position of the substituent can be, for example, an ortho position, a meta position, or a para position.
 Rは、好ましくは、オルト位に1個、又は2個の置換基を有していてもよいフェニル基である。 R 2 is preferably a phenyl group which may have one or two substituents at the ortho position.
 Rは、好ましくは、
水素原子、
1個以上の置換基で置換されていてもよいアルキル基、
1個以上の置換基で置換されていてもよいアルケニル基、
1個以上の置換基で置換されていてもよいアルキニル基、
1個以上の置換基で置換されていてもよいアリール基、
1個以上の置換基で置換されていてもよいエーテル基、又は
1個以上の置換基で置換されていてもよいエステル基
である。
R 3 is preferably
Hydrogen atom,
An alkyl group optionally substituted with one or more substituents,
An alkenyl group optionally substituted by one or more substituents,
An alkynyl group optionally substituted by one or more substituents,
An aryl group optionally substituted with one or more substituents,
It is an ether group which may be substituted with one or more substituents, or an ester group which may be substituted with one or more substituents.
 Rとしての、
「1個以上の置換基で置換されていてもよいアルキル基」、
「1個以上の置換基で置換されていてもよいアルケニル基」、
「1個以上の置換基で置換されていてもよいアルキニル基」、
「1個以上の置換基で置換されていてもよいアリール基」、
「1個以上の置換基で置換されていてもよいエーテル基」、及び
「1個以上の置換基で置換されていてもよいエステル基」
における各「置換基」における置換基の例は、フッ素原子、1個以上のフッ素原子で置換されていてもよいアルキル基、1個以上のフッ素原子で置換されていてもよいアルコキシ基、エステル基、及びシアノ基、を包含する。当該置換基の数は、1個以上、且つ置換可能な最大数以下であることができ、好ましくは、例えば、1~4個、1~3個、1~2個、又は1個である。
As R 3 ,
"Alkyl group optionally substituted with one or more substituents",
"Alkenyl group optionally substituted with one or more substituents",
"Alkynyl group optionally substituted with one or more substituents",
"Aryl group optionally substituted with one or more substituents",
“An ether group which may be substituted with one or more substituents” and “an ester group which may be substituted with one or more substituents”
Examples of the substituent in each “substituent” in are a fluorine atom, an alkyl group optionally substituted with one or more fluorine atoms, an alkoxy group optionally substituted with one or more fluorine atoms, and an ester group And a cyano group. The number of the substituents may be 1 or more and not more than the maximum number that can be substituted, and is preferably 1 to 4, 1 to 3, 1 to 2, or 1, for example.
 Rは、より好ましくは、
水素原子、
炭素数2~18(好ましくは3~12、より好ましくは4~10、更に好ましくは5~10、より更に好ましくは5~8)のアルキル基、
フッ素原子、1個以上のフッ素原子で置換されていてもよいアルキル基、1個以上のフッ素原子で置換されていてもよいアルコキシ基、エステル基、及びシアノ基から選ばれる1つ以上の置換基で置換されていてもよいアリール基(好ましくは、フェニル基)、
炭素数1~12(好ましくは1~10、より好ましくは1~8、更に好ましくは1~6)のエーテル基(好ましくは、アルキルエーテル基)、又は
炭素数2~12(好ましくは2~10、より好ましくは2~8、更に好ましくは2~6)のエステル基
である。
R 3 is more preferably
Hydrogen atom,
An alkyl group having 2 to 18 carbon atoms (preferably 3 to 12, more preferably 4 to 10, more preferably 5 to 10, and still more preferably 5 to 8),
One or more substituents selected from a fluorine atom, an alkyl group optionally substituted with one or more fluorine atoms, an alkoxy group optionally substituted with one or more fluorine atoms, an ester group, and a cyano group An aryl group optionally substituted with (preferably a phenyl group),
An ether group (preferably an alkyl ether group) having 1 to 12 carbon atoms (preferably 1 to 10, more preferably 1 to 8, more preferably 1 to 6), or 2 to 12 carbon atoms (preferably 2 to 10 carbon atoms). More preferably, it is an ester group of 2 to 8, more preferably 2 to 6).
 Rは、更に好ましくは、
炭素数2~18(好ましくは3~12、より好ましくは4~10、更に好ましくは5~8)のアルキル基、
炭素数1~12(好ましくは1~10、より好ましくは1~8、更に好ましくは1~6)のエーテル基、又は
炭素数2~12(好ましくは2~10、より好ましくは2~8、更に好ましくは2~6)のエステル基
である。
R 3 is more preferably
An alkyl group having 2 to 18 carbon atoms (preferably 3 to 12, more preferably 4 to 10 and even more preferably 5 to 8),
An ether group having 1 to 12 carbon atoms (preferably 1 to 10, more preferably 1 to 8, more preferably 1 to 6), or 2 to 12 carbon atoms (preferably 2 to 10, more preferably 2 to 8 carbon atoms), More preferred is an ester group 2-6).
 Rは、より更に好ましくは、炭素数1~8のアルキル基、又は炭素数5~6のエーテル基である。 R 3 is more preferably an alkyl group having 1 to 8 carbon atoms or an ether group having 5 to 6 carbon atoms.
 Rは、特に好ましくは、メチル基、ヘキシル基、2-エチルヘキシル基、CH-(CH-O-CH-、又はCH-O-(CH-O-(CH-O-CH-である。 R 3 is particularly preferably a methyl group, a hexyl group, a 2-ethylhexyl group, CH 3 — (CH 2 ) 2 —O—CH 2 —, or CH 3 —O— (CH 2 ) 2 —O— (CH 2 ) 2 —O—CH 2 —.
 本発明の好適な一態様では、Rは、水素原子、又はアルキル基である。
 当該対応において、Rは、好ましくは、
(1)水素原子、又は
(2)直鎖状、若しくは分枝鎖状の、炭素数2~18(好ましくは3~12、より好ましくは4~10、更に好ましくは5~10、及びより更に好ましくは5~8)のアルキル基
である。
In a preferred embodiment of the present invention, R 3 is a hydrogen atom or an alkyl group.
In this correspondence, R 3 is preferably
(1) a hydrogen atom, or
(2) Linear or branched chain having 2 to 18 carbon atoms (preferably 3 to 12, more preferably 4 to 10, still more preferably 5 to 10 and even more preferably 5 to 8) It is an alkyl group.
 環Aは、好ましくは、C60フラーレン環、又はC70フラーレン環、より好ましくはC60フラーレン環である。 Ring A is preferably a, C 60 fullerene ring, or C 70 fullerene ring, more preferably C 60 fullerene ring.
 環Aは、好ましくは、C60フラーレン環である。 Ring A is preferably a, C 60 fullerene ring.
 式(1)のフラーレン誘導体は、環AがC60フラーレン環であるフラーレン誘導体(以下、C60フラーレン誘導体ともいう。)、及び環AがC70フラーレン環であるフラーレン誘導体(以下、C70フラーレン誘導体ともいう。)の混合物であってもよい。 Fullerene derivative of the formula (1) is, the fullerene derivative Ring A is C 60 fullerene ring (hereinafter, also referred to as C 60 fullerene derivatives.), And ring A fullerene derivative is C 70 fullerene ring (hereinafter, C 70 fullerene It may also be a mixture of a derivative).
 当該混合物における、C60フラーレン誘導体及びC70フラーレン誘導体の含有量の比は、例えば、モル比で、99.999:0.001~0.001:99.999、99.99:0.01~0.01:99.99、99.9:0.1~0.1:99.9、99:1~1:99、95:5~5:95、90:10~10:90、又は80:20~20:80であることができる。
 当該C60フラーレン誘導体及びC70フラーレン誘導体の含有量の比は、好ましくは、80:20~50:50、より好ましくは、80:20~60:40であることができる。
 当該混合物における、C60フラーレン誘導体の含有量は、例えば、0.001~99.999質量%、0.01~99.99質量%、0.1~99.9質量%、1~99質量%、5~95質量%、10~90質量%、又は20~80質量%であることができる。
 当該C60フラーレン誘導体の含有量は、好ましくは、50~80質量%、及び
より好ましくは、60~80質量%であることができる。
 当該混合物における、C70フラーレン誘導体の含有量は、例えば、0.001~99.999質量%、0.01~99.99質量%、0.1~99.9質量%、1~99質量%、5~95質量%、10~90質量%、又は20~80質量%であることができる。
 当該C70フラーレン誘導体の含有量は、好ましくは、20~50質量%、及び
より好ましくは、20~40質量%であることができる。
 当該混合物は、C60フラーレン誘導体、及びC70フラーレン誘導体から実質的になることができる。
 当該混合物は、C60フラーレン誘導体、及びC70フラーレン誘導体からなることができる。
 当該混合物は、C60フラーレン誘導体、及びC70フラーレン誘導体の混合物であることができる。
The ratio of the content of the C 60 fullerene derivative and the C 70 fullerene derivative in the mixture is, for example, 99.999: 0.001 to 0.001: 99.999, 99.99: 0.01 to molar ratio. 0.01: 99.99, 99.9: 0.1 to 0.1: 99.9, 99: 1 to 1:99, 95: 5 to 5:95, 90:10 to 10:90, or 80 : 20 to 20:80.
The ratio of the content of the C 60 fullerene derivative and the C 70 fullerene derivative is preferably 80:20 to 50:50, more preferably 80:20 to 60:40.
The content of the C 60 fullerene derivative in the mixture is, for example, 0.001 to 99.999 mass%, 0.01 to 99.99 mass%, 0.1 to 99.9 mass%, 1 to 99 mass%. It can be 5 to 95% by weight, 10 to 90% by weight, or 20 to 80% by weight.
The content of the C 60 fullerene derivative can be preferably 50 to 80% by mass, and more preferably 60 to 80% by mass.
The content of the C 70 fullerene derivative in the mixture is, for example, 0.001 to 99.999% by mass, 0.01 to 99.99% by mass, 0.1 to 99.9% by mass, 1 to 99% by mass. It can be 5 to 95% by weight, 10 to 90% by weight, or 20 to 80% by weight.
The content of the C 70 fullerene derivative can be preferably 20 to 50% by mass, and more preferably 20 to 40% by mass.
The mixture, C 60 fullerene derivatives, and may be substantially consisting of C 70 fullerene derivatives.
The mixture can consist of C 60 fullerene derivatives, and C 70 fullerene derivatives.
The mixture can be a mixture of C 60 fullerene derivatives, and C 70 fullerene derivatives.
 なお、本明細書中、C60フラーレン(環)を、当該技術分野において、しばしば行われるように、次のような構造式:
Figure JPOXMLDOC01-appb-C000004
で表す場合がある。
In the present specification, C 60 fullerene (ring) is represented by the following structural formula as often performed in the technical field:
Figure JPOXMLDOC01-appb-C000004
It may be expressed as
 従って、環AがC60フラーレン環である場合、式(1)のフラーレン誘導体は、次の一般式:
Figure JPOXMLDOC01-appb-C000005
で表すことができる。
Therefore, when Ring A is a C 60 fullerene ring, the fullerene derivative of the formula (1) have the general formula:
Figure JPOXMLDOC01-appb-C000005
Can be expressed as
 本発明の好適な一態様において、
X1aは、水素原子、塩素原子、臭素原子、ヨウ素原子、メチル基、メトキシ基、又はシアノ基であり、
X1bは、塩素原子、臭素原子、ヨウ素原子、メチル基、メトキシ基、又はシアノ基であり、
は、1個以上の置換基を有していてもよいアリール基、又は1個以上の置換基を有していてもよいヘテロアリール基であり、
は、水素原子、又はアルキル基であり、及び
環Aは、C60、又はC70フラーレン環(好ましくはC60フラーレン環)である。
In a preferred embodiment of the present invention,
X 1a is a hydrogen atom, a chlorine atom, a bromine atom, an iodine atom, a methyl group, a methoxy group, or a cyano group,
X 1b is a chlorine atom, a bromine atom, an iodine atom, a methyl group, a methoxy group, or a cyano group,
R 2 is an aryl group that may have one or more substituents, or a heteroaryl group that may have one or more substituents;
R 3 is a hydrogen atom or an alkyl group, and ring A is a C 60 or C 70 fullerene ring (preferably a C 60 fullerene ring).
 本発明の別の好適な一態様においては、
X1aは、塩素原子、メチル基、メトキシ基、又はシアノ基であり、
X1bは、塩素原子、メチル基、メトキシ基、又はシアノ基であり、
は、フェニル基であり、
は、水素原子、又は炭素数5~10のアルキル基であり、及び
環Aは、C60、又はC70フラーレン環(好ましくはC60フラーレン環)である。
In another preferred embodiment of the present invention,
X 1a is a chlorine atom, a methyl group, a methoxy group, or a cyano group,
X 1b is a chlorine atom, a methyl group, a methoxy group, or a cyano group,
R 2 is a phenyl group;
R 3 is a hydrogen atom or an alkyl group having 5 to 10 carbon atoms, and ring A is a C 60 or C 70 fullerene ring (preferably a C 60 fullerene ring).
 本発明の更に別の好適な一態様においては、
X1aは、直鎖状、又は分枝鎖状の、炭素数2~8のアルキル基であり、
X1bは、直鎖状、又は分枝鎖状の、炭素数2~8のアルキル基であり、
は、1個以上の置換基を有していてもよいアリール基、又は1個以上の置換基を有していてもよいヘテロアリール基であり、
は、水素原子、又は炭素数5~10のアルキル基であり、及び
環Aは、C60、又はC70フラーレン環(好ましくはC60フラーレン環)である。
In yet another preferred embodiment of the present invention,
X 1a is a linear or branched alkyl group having 2 to 8 carbon atoms,
X 1b is a linear or branched alkyl group having 2 to 8 carbon atoms,
R 2 is an aryl group that may have one or more substituents, or a heteroaryl group that may have one or more substituents;
R 3 is a hydrogen atom or an alkyl group having 5 to 10 carbon atoms, and ring A is a C 60 or C 70 fullerene ring (preferably a C 60 fullerene ring).
 本発明のフラーレン誘導体は、各種の有機溶媒に対して十分な溶解性を示すので、塗布法による薄膜の形成が容易である。
 更に、本発明のフラーレン誘導体は、n型半導体材料として、有機p型半導体材料と共に用いて有機発電層を調製した際に、バルクヘテロジャンクション構造を容易に形成できる。
 本発明のフラーレン誘導体は、高い変換効率を有し、且つ高い電圧の出力を可能にする。
Since the fullerene derivative of the present invention exhibits sufficient solubility in various organic solvents, it is easy to form a thin film by a coating method.
Furthermore, the fullerene derivative of the present invention can easily form a bulk heterojunction structure when an organic power generation layer is prepared using an organic p-type semiconductor material as an n-type semiconductor material.
The fullerene derivative of the present invention has a high conversion efficiency and enables a high voltage output.
 本発明のフラーレン誘導体は、好ましくは、LUMO準位の値が-3.65eV以上である。
 LUMO準位は、KarakawaらJournal of Materials Chemistry A, 2014年, 2巻, 20889頁に記載の方法により、測定できる。
The fullerene derivative of the present invention preferably has a LUMO level value of −3.65 eV or more.
The LUMO level can be measured by the method described in Karakawa et al., Journal of Materials Chemistry A, 2014, Vol. 2, page 20889.
 フラーレン誘導体の製造方法
 本発明のフラーレン誘導体は、公知のフラーレン誘導体の製造方法、又はこれに準じた方法によって製造することができる。
 本発明のフラーレン誘導体は、具体的には、例えば、下記のスキームの方法に従って、合成できる。スキーム中の記号は前記と同意義を表し、及び、当業者に明らかなように、式(a)、及び式(b)における各記号は、式(1)における各記号に対応する。
Production method of fullerene derivative The fullerene derivative of the present invention can be produced by a known production method of a fullerene derivative or a method analogous thereto.
Specifically, the fullerene derivative of the present invention can be synthesized, for example, according to the method of the following scheme. The symbols in the scheme have the same meanings as described above, and as will be apparent to those skilled in the art, the symbols in formula (a) and formula (b) correspond to the symbols in formula (1).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 <工程A>
 工程Aでは、グリシン誘導体(化合物(b))をアルデヒド化合物(化合物(a))及びフラーレン(化合物(c))と反応させて、式(1)で表されるフラーレン誘導体(化合物(1))を得る。
<Process A>
In step A, a glycine derivative (compound (b)) is reacted with an aldehyde compound (compound (a)) and a fullerene (compound (c)) to produce a fullerene derivative represented by formula (1) (compound (1)). Get.
 アルデヒド化合物(化合物(a))、グリシン誘導体(化合物(b))及びフラーレン(化合物(c))の量比は任意だが、収率を高くする観点から、通常、フラーレン(化合物(c))1モルに対して、アルデヒド化合物(化合物(a))及びグリシン誘導体(化合物(b))をそれぞれ0.1~10モル、好ましくは0.5~2モルの量で用いる。 The amount ratio of the aldehyde compound (compound (a)), the glycine derivative (compound (b)) and the fullerene (compound (c)) is arbitrary, but is generally fullerene (compound (c)) 1 from the viewpoint of increasing the yield. The aldehyde compound (compound (a)) and glycine derivative (compound (b)) are each used in an amount of 0.1 to 10 mol, preferably 0.5 to 2 mol, relative to mol.
 当該反応は、無溶媒又は溶媒中で行われる。
 当該溶媒としては、例えば、二硫化炭素、クロロホルム、ジクロロエタン、トルエン、キシレン、クロロベンゼン、ジクロロベンゼン等が例示される。なかでも、クロロホルム、トルエン、キシレン、及びクロロベンゼン等が好ましい。これらの溶媒は、適当な割合で混合して用いてもよい。
The reaction is performed without a solvent or in a solvent.
Examples of the solvent include carbon disulfide, chloroform, dichloroethane, toluene, xylene, chlorobenzene, dichlorobenzene and the like. Of these, chloroform, toluene, xylene, chlorobenzene and the like are preferable. These solvents may be mixed and used at an appropriate ratio.
 反応温度は、通常、室温~およそ150℃の範囲内であり、好ましくはおよそ80~およそ120℃の範囲内である。ここで、室温は、好ましくは15~30℃の範囲内であることができる。 The reaction temperature is usually in the range of room temperature to about 150 ° C, preferably in the range of about 80 to about 120 ° C. Here, the room temperature can be preferably in the range of 15 to 30 ° C.
 反応時間は、通常およそ1時間~およそ4日間の範囲内であり、好ましくはおよそ10~およそ48時間の範囲内である。 The reaction time is usually in the range of about 1 hour to about 4 days, preferably in the range of about 10 to about 48 hours.
 得られた化合物(1)を、必要に応じて慣用の精製方法で精製できる。
 例えば、得られた化合物(1)を、シリカゲルカラムクロマトグラフィー(展開溶媒としては、例えば、ヘキサン-クロロホルム、ヘキサン-トルエン、又はヘキサン-二硫化炭素が好ましい。)で精製し、その後、更にHPLC(分取GPC)(展開溶媒としては、例えば、クロロホルム、又はトルエンが好ましい。)で精製できる。
The obtained compound (1) can be purified by a conventional purification method as necessary.
For example, the obtained compound (1) is purified by silica gel column chromatography (the developing solvent is preferably hexane-chloroform, hexane-toluene, or hexane-carbon disulfide, for example), and then further HPLC ( (Preparative GPC) (As the developing solvent, for example, chloroform or toluene is preferable).
 当該工程Aで用いられる、アルデヒド化合物(化合物(a))、グリシン誘導体(化合物(b))及びフラーレン(化合物(c))は、それぞれ公知の化合物であり、公知の方法、又はこれに準じた方法によって合成するか、商業的に入手可能である。 The aldehyde compound (compound (a)), glycine derivative (compound (b)), and fullerene (compound (c)) used in Step A are known compounds, respectively, and are known methods or similar methods. They are synthesized by methods or are commercially available.
 アルデヒド化合物(化合物(a))は、具体的には、例えば、後記の方法(a1)、(a2)又は(a3)で合成することができる。
 これらの方法を示す反応式において、Rは前記式(1)におけるRと同義であり、目的とするフラーレン誘導体のRに対応する。
Specifically, the aldehyde compound (compound (a)) can be synthesized, for example, by the following method (a1), (a2) or (a3).
In the reaction formulas showing these methods, R 2 has the same meaning as R 2 in the formula (1) and corresponds to R 2 of the target fullerene derivative.
 方法(a1):R -CH OHで表されるアルコールの酸化
 この方法における酸化には、公知の方法、例えば、(i)酸化剤としてクロム酸、酸化マンガン等を用いる方法、(ii)ジメチルスルホキシドを酸化剤として用いるスワーン(swern)酸化、又は(iii)触媒共存下に過酸化水素、酸素、空気等を用いて酸化する方法などを適用できる。
Method (a1): Oxidation of alcohol represented by R 2 —CH 2 OH For the oxidation in this method, for example, (i) a method using chromic acid, manganese oxide or the like as an oxidizing agent, (ii) For example, swern oxidation using dimethyl sulfoxide as an oxidizing agent, or (iii) oxidation using hydrogen peroxide, oxygen, air or the like in the presence of a catalyst can be applied.
 方法(a2):R -COOHで表されるカルボン酸、その酸ハライド、そのエステル、又はその酸アミドなどの還元
 この方法における還元には、公知の方法、例えば、(i)還元剤として金属水素化物を用いる方法、(ii)触媒存在下に水素還元する方法、又は(iii)ヒドラジンを還元剤とする方法などを適用できる。
Method (a2): Reduction of Carboxylic Acid Represented by R 2 —COOH, Its Acid Halide, Its Ester, Its Acid Amide, etc. For the reduction in this method, a known method such as (i) a metal as a reducing agent A method using a hydride, (ii) a method of reducing hydrogen in the presence of a catalyst, or (iii) a method using hydrazine as a reducing agent can be applied.
 方法(a3):R -X(Xは、ハロゲンを表す。)で表されるハロゲン化物のカルボニル化
 この方法におけるカルボニル化には、例えば、n-BuLiを用いて前記ハロゲン化物からアニオンを形成させ、これにカルボニル基を導入化する方法を適用できる。ここでのカルボニル基導入試薬としては、N,N-ジメチルホルムアミド(DMF);又はピペリジン、モルホリン、ピペラジン若しくはピロリジンのN-ホルミル誘導体等のアミド化合物が用いられる。
Method (a3): Carbonylation of a halide represented by R 2 —X (X represents halogen) In this method, for example, n-BuLi is used to form an anion from the halide. And a method of introducing a carbonyl group can be applied thereto. As the carbonyl group-introducing reagent here, amide compounds such as N, N-dimethylformamide (DMF); or N-formyl derivatives of piperidine, morpholine, piperazine or pyrrolidine are used.
 グリシン誘導体(化合物(b))は、具体的には、例えば、後記の方法(b1)、(b2)又は(b3)によって合成することができる。
 以下の合成スキームにおいて、Rは、式(1)中の部分構造:
Figure JPOXMLDOC01-appb-C000007
を表す。
Specifically, the glycine derivative (compound (b)) can be synthesized, for example, by the following method (b1), (b2) or (b3).
In the following synthetic scheme, R 1 represents a partial structure in formula (1):
Figure JPOXMLDOC01-appb-C000007
Represents.
 方法(b1):アニリン誘導体とハロゲン化酢酸との反応
Figure JPOXMLDOC01-appb-C000008
 当該反応は、水、メタノール、エタノール、又はそれらの混合物などを溶媒として用い、及び必要に応じて塩基の存在下で実施できる。
Method (b1): Reaction of aniline derivative and halogenated acetic acid
Figure JPOXMLDOC01-appb-C000008
The reaction can be carried out using water, methanol, ethanol, or a mixture thereof as a solvent, and if necessary, in the presence of a base.
 方法(b2):アニリン誘導体とハロゲン化酢酸エステルとの反応、及び当該反応で得られたグリシン誘導体エステルの加水分解
Figure JPOXMLDOC01-appb-C000009
 この方法において、アニリン誘導体とハロゲン化酢酸エステルの反応は、例えば、メタノール、エタノールなどを溶媒として用い、酢酸塩、炭酸塩、リン酸塩、3級アミンなどの塩基の存在下に行うことができる。グリシン誘導体エステルの加水分解は、通常、水溶性アルカリの存在下に、室温で行うことができる。
Method (b2): Reaction of aniline derivative and halogenated acetic acid ester, and hydrolysis of glycine derivative ester obtained by the reaction
Figure JPOXMLDOC01-appb-C000009
In this method, the reaction between the aniline derivative and the halogenated acetate can be performed in the presence of a base such as acetate, carbonate, phosphate, or tertiary amine using, for example, methanol or ethanol as a solvent. . The hydrolysis of the glycine derivative ester can be usually performed at room temperature in the presence of a water-soluble alkali.
 方法(b3):芳香族ハロゲン化物とグリシンとの反応
Figure JPOXMLDOC01-appb-C000010
 この反応は、例えば、触媒として一価銅を用い、及びバルキーなアミン、アミノ酸、又はアミノアルコールなどの存在下で行うことができる。反応溶媒としては、水、メタノール、エタノール、又はこれらの混合物が好ましく用いられる。反応温度は、室温~100℃程度である。
Method (b3): Reaction of aromatic halide with glycine
Figure JPOXMLDOC01-appb-C000010
This reaction can be performed, for example, using monovalent copper as a catalyst and in the presence of a bulky amine, amino acid, amino alcohol or the like. As the reaction solvent, water, methanol, ethanol, or a mixture thereof is preferably used. The reaction temperature is about room temperature to 100 ° C.
 本発明のフラーレン誘導体は、このように、グリシン誘導体とアルデヒド化合物を原料として簡単な方法で合成できるので、低コストで製造可能である。 Since the fullerene derivative of the present invention can be synthesized by a simple method using a glycine derivative and an aldehyde compound as raw materials in this way, it can be produced at low cost.
 フラーレン誘導体の用途
 本発明のフラーレン誘導体は、n型半導体材料、特に有機薄膜太陽電池等の光電変換素子用のn型半導体材料として好適に使用できる。
 本発明のフラーレン誘導体は、また、電子輸送材料として、トランジスタ、及びペロブスカイト太陽電池などにも用いることができる。
Use of fullerene derivative The fullerene derivative of the present invention can be suitably used as an n-type semiconductor material, particularly an n-type semiconductor material for a photoelectric conversion element such as an organic thin film solar cell.
The fullerene derivative of the present invention can also be used as an electron transport material for transistors, perovskite solar cells, and the like.
 本発明のフラーレン誘導体をn型半導体材料として使用する場合、通常、有機p型半導体材料(有機p型半導体化合物)と組み合わせて用いられる。
 当該有機p型半導体材料としては、例えば、ポリ-3-ヘキシルチオフェン(P3HT)、ポリ-p-フェニレンビニレン、ポリ-アルコキシ-p-フェニレンビニレン、ポリ-9,9-ジアルキルフルオレン、ポリ-p-フェニレンビニレンなどが例示される。
 これらは太陽電池としての検討例が多く、かつ入手が容易であるので、容易に安定した性能のデバイスを得ることができる。
 また、より高い変換効率を得るためには、バンドギャップを狭くすることで(ローバンドギャップ)長波長光の吸収を可能にした、ドナーアクセプター型π共役高分子が有効である。
 これらドナーアクセプター型π共役高分子は、ドナーユニットとアクセプターユニットとを有し、これらが交互に配置された構造を有する。
 ここで用いられるドナーユニットとしては、ベンゾジチオフェン、ジチエノシロール、N-アルキルカルバゾールが、またアクセプターユニットとしては、ベンゾチアジアゾール、チエノチオフェン、チオフェンピロールジオンなどが例示される。
 具体的には、これらのユニットを組み合わせた、ポリ(チエノ[3,4-b]チオフェン-co-ベンゾ[1,2-b:4,5-b’]チオフェン)(PTBxシリーズ)、ポリ(ジチエノ[1,2-b:4,5-b’][3,2-b:2’,3’-d]シロール-alt-(2,1,3-ベンゾチアジアゾール)類などの高分子化合物が例示される。
 これらのうちでも、好ましいものとしては、
(1)ポリ({4,8-ビス[(2-エチルヘキシル)オキシ]ベンゾ[1,2-b:4,5-b’]ジチオフェン-2,6-ジイル}{3-フルオロ-2-[(2-エチルヘキシル)カルボニル]チエノ[3,4-b]チオフェンジイル})(PTB7、構造式を以下に示す)、
(2)ポリ[(4,8-ジ(2-エチルヘキシルオキシ)ベンゾ[1,2-b:4,5-b’]ジチオフェン)-2,6-ジイル-alt-((5-オクチルチエノ[3,4-c]ピロール-4,6-ジオン)-1,3-ジイル)(PBDTTPD、構造式を以下に示す)、
(3)ポリ[(4,4’-ビス(2-エチルヘキシル)ジチエノ[3,2-b:2’,3’-d]シロール)-2,6-ジイル-alt-(2,1,3-ベンゾチアジアゾール)-4,7-ジイル](PSBTBT、構造式を以下に示す)、
(4)ポリ[N-9’’-ヘプタデカニル-2,7-カルバゾール-アルト-5,5-(4’,7’-ジ-2-チエニル-2’,1’,3’-ベンゾチアジアゾール)](PCDTBT、構造式を以下に示す)、及び
(5)ポリ[1-(6-{4,8-ビス[(2-エチルヘキシル)オキシ]-6-メチルベンゾ[1,2-b:4,5-b’]ジチオフェン-2-イル}{3-フルオロ-4-メチルチエノ[3,4-b]チオフェン-2-イル}-1-オクタノン)(PBDTTT-CF、構造式を以下に示す)
などが例示される。
 なかでも、より好ましい例としては、アクセプターユニットとしてチエノ[3,4-b]チオフェンの3位にフッ素原子を有するPTB系化合物が挙げられ、特に好ましい例としては、PBDTTT-CF及びPTB7が例示される。
When the fullerene derivative of the present invention is used as an n-type semiconductor material, it is usually used in combination with an organic p-type semiconductor material (organic p-type semiconductor compound).
Examples of the organic p-type semiconductor material include poly-3-hexylthiophene (P3HT), poly-p-phenylene vinylene, poly-alkoxy-p-phenylene vinylene, poly-9,9-dialkylfluorene, poly-p- Examples include phenylene vinylene.
Since these are many examples of studies as solar cells and are easily available, devices with stable performance can be easily obtained.
In order to obtain higher conversion efficiency, a donor-acceptor type π-conjugated polymer that enables absorption of long-wavelength light by narrowing the band gap (low band gap) is effective.
These donor-acceptor type π-conjugated polymers have a structure in which donor units and acceptor units are arranged alternately.
Examples of the donor unit used here include benzodithiophene, dithienosilol, and N-alkylcarbazole, and examples of the acceptor unit include benzothiadiazole, thienothiophene, and thiophenepyrroldione.
Specifically, these units are combined to produce poly (thieno [3,4-b] thiophene-co-benzo [1,2-b: 4,5-b ′] thiophene) (PTBx series), poly ( Polymer compounds such as dithieno [1,2-b: 4,5-b ′] [3,2-b: 2 ′, 3′-d] silole-alt- (2,1,3-benzothiadiazole) s Is exemplified.
Of these, preferred are:
(1) Poly ({4,8-bis [(2-ethylhexyl) oxy] benzo [1,2-b: 4,5-b ′] dithiophene-2,6-diyl} {3-fluoro-2- [ (2-ethylhexyl) carbonyl] thieno [3,4-b] thiophenediyl}) (PTB7, structural formula shown below),
(2) Poly [(4,8-di (2-ethylhexyloxy) benzo [1,2-b: 4,5-b ′] dithiophene) -2,6-diyl-alt-((5-octylthieno [3 , 4-c] pyrrole-4,6-dione) -1,3-diyl) (PBDTTPD, structural formula is shown below),
(3) Poly [(4,4′-bis (2-ethylhexyl) dithieno [3,2-b: 2 ′, 3′-d] silole) -2,6-diyl-alt- (2,1,3 -Benzothiadiazole) -4,7-diyl] (PSBTBT, structural formula is shown below),
(4) Poly [N-9 ″ -heptadecanyl-2,7-carbazole-alt-5,5- (4 ′, 7′-di-2-thienyl-2 ′, 1 ′, 3′-benzothiadiazole) (PCDTBT, the structural formula is shown below), and (5) poly [1- (6- {4,8-bis [(2-ethylhexyl) oxy] -6-methylbenzo [1,2-b: 4, 5-b ′] dithiophen-2-yl} {3-fluoro-4-methylthieno [3,4-b] thiophen-2-yl} -1-octanone) (PBDTTTT-CF, structural formula is shown below)
Etc. are exemplified.
Among these, more preferred examples include PTB compounds having a fluorine atom at the 3-position of thieno [3,4-b] thiophene as the acceptor unit, and particularly preferred examples include PBDTTTT-CF and PTB7. Is done.
Figure JPOXMLDOC01-appb-C000011
(式中、nは繰り返し数を表す。)
Figure JPOXMLDOC01-appb-C000012
(式中、nは繰り返し数を表す。)
Figure JPOXMLDOC01-appb-C000013
(式中、nは繰り返し数を表す。)
Figure JPOXMLDOC01-appb-C000014
(式中、nは繰り返し数を表す。)
Figure JPOXMLDOC01-appb-C000015
(式中、nは繰り返し数を表す。)
Figure JPOXMLDOC01-appb-C000011
(In the formula, n represents the number of repetitions.)
Figure JPOXMLDOC01-appb-C000012
(In the formula, n represents the number of repetitions.)
Figure JPOXMLDOC01-appb-C000013
(In the formula, n represents the number of repetitions.)
Figure JPOXMLDOC01-appb-C000014
(In the formula, n represents the number of repetitions.)
Figure JPOXMLDOC01-appb-C000015
(In the formula, n represents the number of repetitions.)
 本発明のフラーレン誘導体を、有機p型半導体材料との組み合わせにおいて、n型半導体材料として用いて調製された有機発電層は、高い変換効率を発現できる。
 本発明のフラーレン誘導体は、各種の有機溶媒に対して良好な溶解性を示すので、これをn型半導体材料として使用した場合、塗布法による有機発電層の調製が可能であり、大面積の有機発電層の調製も容易である。
An organic power generation layer prepared using the fullerene derivative of the present invention as an n-type semiconductor material in combination with an organic p-type semiconductor material can exhibit high conversion efficiency.
Since the fullerene derivative of the present invention exhibits good solubility in various organic solvents, when it is used as an n-type semiconductor material, an organic power generation layer can be prepared by a coating method, and a large area organic The power generation layer can be easily prepared.
 また、本発明のフラーレン誘導体は、有機p型半導体材料との相溶性が良好であって、且つ適度な自己凝集性を有する化合物である。このため、当該フラーレン誘導体をn型半導体材料(有機n型半導体材料)としてバルクジャンクション構造の有機発電層を容易に形成する。この有機発電層を用いることによって、高い変換効率を有する有機薄膜太陽電池、或いは光センサーを得ることができる。 The fullerene derivative of the present invention is a compound having good compatibility with an organic p-type semiconductor material and having appropriate self-aggregation properties. Therefore, an organic power generation layer having a bulk junction structure is easily formed using the fullerene derivative as an n-type semiconductor material (organic n-type semiconductor material). By using this organic power generation layer, an organic thin film solar cell or a photosensor having high conversion efficiency can be obtained.
 よって、本発明のフラーレン誘導体をn型半導体材料として用いることによって、低コストで優れた性能を有する有機薄膜太陽電池を作製することが可能となる。
 また、本発明のn型半導体材料を含有する(又は、からなる)有機発電層の別の応用として、デジタルカメラ用イメージセンサーがある。デジタルカメラの高機能化(高精細化)の要求に対して、既存のシリコン半導体からなるイメージセンサーには、感度低下の課題が指摘されている。これに対して、光感度の高い有機材料からなるイメージセンサーにより、高感度と高精細化が可能になると期待されている。このようなセンサーの受光部を構築する材料には、光を感度良く吸収し、ここから電気信号を高効率で発生させることが求められる。このような要求に対して、本発明のn型半導体材料を含有する(又は、からなる)有機発電層は、可視光を効率良く電気エネルギーに変換できるので、上記イメージセンサー受光部材料としても、高い機能を発現できる。
Therefore, by using the fullerene derivative of the present invention as an n-type semiconductor material, an organic thin film solar cell having excellent performance can be produced at low cost.
Another application of the organic power generation layer containing (or consisting of) the n-type semiconductor material of the present invention is an image sensor for a digital camera. In response to the demand for higher functionality (higher definition) of digital cameras, problems with reduced sensitivity have been pointed out for image sensors made of existing silicon semiconductors. In contrast, an image sensor made of an organic material with high photosensitivity is expected to enable high sensitivity and high definition. A material for constructing the light receiving part of such a sensor is required to absorb light with high sensitivity and to generate an electric signal with high efficiency therefrom. In response to such a requirement, the organic power generation layer containing (or consisting of) the n-type semiconductor material of the present invention can efficiently convert visible light into electrical energy. High function can be expressed.
 n型半導体材料
 本発明のn型半導体材料は、本発明のフラーレン誘導体からなる。
n-type Semiconductor Material The n-type semiconductor material of the present invention comprises the fullerene derivative of the present invention.
 有機発電層
 本発明の有機発電層は、n型半導体材料(n型半導体化合物)として、本発明のフラーレン誘導体を含有する。
 本発明の有機発電層は、光変換層(光電変換層)であることができる。
 また、本発明の有機発電層は、通常、本発明のフラーレン誘導体、すなわち本発明のn型半導体材料との組み合わせにおいて、前記有機p型半導体材料(有機p型半導体化合物)を含有する。
 また、本発明の有機発電層は、通常、本発明のn型半導体材料及び前記有機p型半導体からなる。
 本発明の有機発電層においては、好ましくは、本発明のn型半導体材料と前記有機p型半導体材料とがバルクヘテロジャンクション構造を形成している。
Organic power generation layer The organic power generation layer of the present invention contains the fullerene derivative of the present invention as an n-type semiconductor material (n-type semiconductor compound).
The organic power generation layer of the present invention can be a light conversion layer (photoelectric conversion layer).
The organic power generation layer of the present invention usually contains the organic p-type semiconductor material (organic p-type semiconductor compound) in combination with the fullerene derivative of the present invention, that is, the n-type semiconductor material of the present invention.
The organic power generation layer of the present invention is usually composed of the n-type semiconductor material of the present invention and the organic p-type semiconductor.
In the organic power generation layer of the present invention, preferably, the n-type semiconductor material of the present invention and the organic p-type semiconductor material form a bulk heterojunction structure.
 本発明の有機発電層は、例えば、本発明のn型半導体材料及び前記有機p型半導体材料を有機溶媒に溶解させ、得られた溶液から、スピンコート法、キャスト法、ディッピング法、インクジェット法、ドクターブレード法、及びスクリーン印刷法等の公知の薄膜形成方法を採用して、基板上に薄膜を形成することにより、調製できる。 The organic power generation layer of the present invention is prepared, for example, by dissolving the n-type semiconductor material of the present invention and the organic p-type semiconductor material in an organic solvent, and from the obtained solution, a spin coating method, a casting method, a dipping method, an inkjet method, It can prepare by forming a thin film on a board | substrate by employ | adopting well-known thin film formation methods, such as a doctor blade method and a screen printing method.
 当該有機発電層の薄膜形成において、本発明のフラーレン誘導体は、有機p型半導体材料(好ましくは、P3HT、又はPTB7)との相溶性が良好であって、且つ適度な自己凝集性を有するので、n型半導体材料としての本発明のフラーレン誘導体及び有機p型半導体材料を含有し、かつバルクヘテロジャンクション構造を有する有機発電層を容易に得ることができる。 In the thin film formation of the organic power generation layer, the fullerene derivative of the present invention has good compatibility with an organic p-type semiconductor material (preferably P3HT or PTB7) and has appropriate self-aggregation. An organic power generation layer containing the fullerene derivative of the present invention as an n-type semiconductor material and an organic p-type semiconductor material and having a bulk heterojunction structure can be easily obtained.
 有機薄膜太陽電池
 本発明の有機薄膜太陽電池は、前記で説明した本発明の有機発電層を備える。
 このため、本発明の有機薄膜太陽電池は、高い変換効率を有する。
 当該有機薄膜太陽電池の構造は特に限定されず、公知の有機薄膜太陽電池と同様の構造であることができ、及び本発明の有機薄膜太陽電池は、公知の有機薄膜太陽電池の製造方法に従って製造できる。
Organic Thin Film Solar Cell The organic thin film solar cell of the present invention includes the organic power generation layer of the present invention described above.
For this reason, the organic thin film solar cell of this invention has high conversion efficiency.
The structure of the organic thin film solar cell is not particularly limited, and can be the same structure as a known organic thin film solar cell, and the organic thin film solar cell of the present invention is manufactured according to a known method for manufacturing an organic thin film solar cell. it can.
 当該フラーレン誘導体を含む有機薄膜太陽電池の一例としては、例えば、基板上に、透明電極(陰極)、陰極側電荷輸送層、有機発電層、陽極側電荷輸送層及び対極(陽極)が順次積層された構造の太陽電池を例示できる。当該有機発電層は、好ましくは、有機p型半導体材料、及びn型半導体材料としての本発明のフラーレン誘導体を含有し、バルクヘテロジャンクション構造を有する半導体薄膜層(すなわち、光電変換層)である。
 このような構造の太陽電池において、有機発電層以外の各層の材料としては、公知の材料を適宜使用できる。具体的には、電極の材料としては、例えば、アルミニウム、金、銀、銅、及び酸化インジウム(ITO)等が例示される。電荷輸送層の材料としては、例えば、PFN(ポリ[9,9-ビス(3’-(N,N-ジメチルアミノ)プロピル-2,7-フルオレン)-alt-2,7-(9,9-ジオクチルフルオレン)])及びMoO(酸化モリブデン)等が例示される。
As an example of the organic thin film solar cell containing the fullerene derivative, for example, a transparent electrode (cathode), a cathode side charge transport layer, an organic power generation layer, an anode side charge transport layer, and a counter electrode (anode) are sequentially laminated on a substrate. Examples of the solar cell having the above structure can be given. The organic power generation layer is preferably a semiconductor thin film layer (that is, a photoelectric conversion layer) containing an organic p-type semiconductor material and the fullerene derivative of the present invention as an n-type semiconductor material and having a bulk heterojunction structure.
In the solar cell having such a structure, a known material can be appropriately used as a material for each layer other than the organic power generation layer. Specifically, examples of the material for the electrode include aluminum, gold, silver, copper, and indium oxide (ITO). As the material for the charge transport layer, for example, PFN (poly [9,9-bis (3 ′-(N, N-dimethylamino) propyl-2,7-fluorene) -alt-2,7- (9,9 -Dioctylfluorene)]), MoO 3 (molybdenum oxide) and the like.
 光センサー
 上記のように、本発明で得られる光電変換層は、デジタルカメラの高機能製品における、イメージセンサー用受光部として有効に機能する。従来のシリコンフォトダイオードを用いた光センサーに比較して、明るいところで白トビが起こらず、また暗いところでもはっきりした映像を得ることができる。このため、従来のカメラより高品位の映像を得ることができる。光センサーは、シリコン基板、電極、光電変換層からなる光受光部、カラーフィルター、及びマイクロレンズから構築される。当該受光部の厚さは数100nm程度であることができ、従来のシリコンフォトダイオードの数分の1の厚さで構成され得る。
Photosensor As described above, the photoelectric conversion layer obtained in the present invention effectively functions as a light receiving portion for an image sensor in a high-functional product of a digital camera. Compared to conventional photosensors using silicon photodiodes, white stripes do not occur in bright places, and clear images can be obtained even in dark places. For this reason, it is possible to obtain a higher quality image than a conventional camera. The optical sensor is constructed from a silicon substrate, an electrode, a light receiving part including a photoelectric conversion layer, a color filter, and a microlens. The light receiving portion may have a thickness of about several hundreds of nanometers, and may be configured to be a fraction of the thickness of a conventional silicon photodiode.
 以下、実施例により本発明を更に詳細に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 実施例中の記号及び略号は、以下の意味で用いられる。この他にも、本明細書中、本発明が属する技術分野において、通常用いられる記号及び略号が用いられ得る。 The symbols and abbreviations in the examples are used as follows. In addition, in the present specification, symbols and abbreviations that are normally used in the technical field to which the present invention belongs can be used.
 合成例1
Figure JPOXMLDOC01-appb-C000016
Synthesis example 1
Figure JPOXMLDOC01-appb-C000016
 N-(2,6-ジメチルフェニル)-グリシン(90mg, 0.5mmol), ベンツアルデヒド(1mL), 及びフラーレン(360mg, 0.5mmol)のクロロベンゼン溶液(150mL)を48時間加熱還流した。
 反応生成液を減圧下に濃縮し、反応物をカラムクロマトグラフィー(SiO2, ヘキサン-トルエン=20:1~10:1)
 さらにHPLC(Buckyprep: トルエン)で精製し、目的物を120 mg(25.4 %)得た。
(純度:99%以上)
A chlorobenzene solution (150 mL) of N- (2,6-dimethylphenyl) -glycine (90 mg, 0.5 mmol), benzaldehyde (1 mL), and fullerene (360 mg, 0.5 mmol) was heated to reflux for 48 hours.
The reaction product solution is concentrated under reduced pressure, and the reaction product is subjected to column chromatography (SiO2, hexane-toluene = 20: 1 to 10: 1).
Further purification by HPLC (Buckyprep: toluene) gave 120 mg (25.4%) of the desired product.
(Purity: 99% or more)
1H-NMR (CDCl3)δ: 2.57 (3H, s), 2.91 (3H, s), 5.00 (1H, d, J=9.9 Hz), 5.12 (1H, d, J=9.9 Hz), 6.41 (1H, s), 6.82 (1H, d, J=7.3 Hz), 6.97 (1H, t, J=7.3 Hz), 7.01 - 7.25 (4H, m), 7.50 (2H, bs).
MS (FAB) m/z 944 (M). HRMS calcd for C76H17N 943.13610; found 943.1340.
1 H-NMR (CDCl 3 ) δ: 2.57 (3H, s), 2.91 (3H, s), 5.00 (1H, d, J = 9.9 Hz), 5.12 (1H, d, J = 9.9 Hz), 6.41 ( 1H, s), 6.82 (1H, d, J = 7.3 Hz), 6.97 (1H, t, J = 7.3 Hz), 7.01-7.25 (4H, m), 7.50 (2H, bs).
MS (FAB) m / z 944 (M + ). HRMS calcd for C 76 H 17 N 943.13610; found 943.1340.
 合成例2
Figure JPOXMLDOC01-appb-C000017
Synthesis example 2
Figure JPOXMLDOC01-appb-C000017
 N-(2,6-ジクロロフェニル)-2-フェニルグリシン(160mg, 0.5mmol), ヘプタナール(1mL), 及びフラーレン(360mg, 0.5mmol)のジクロロベンゼン溶液(300mL)を2週間加熱還流した。
 反応生成液を減圧下に濃縮し、反応物をカラムクロマトグラフィー(SiO2, ヘキサン-トルエン=100:1~20:1)で精製し、目的物を42.0 mg(7.9 %)得た。
A dichlorobenzene solution (300 mL) of N- (2,6-dichlorophenyl) -2-phenylglycine (160 mg, 0.5 mmol), heptanal (1 mL), and fullerene (360 mg, 0.5 mmol) was heated to reflux for 2 weeks.
The reaction product solution was concentrated under reduced pressure, and the reaction product was purified by column chromatography (SiO2, hexane-toluene = 100: 1 to 20: 1) to obtain 42.0 mg (7.9%) of the desired product.
1H-NMR (CDCl3)δ: 0.81 (3H, t, J=7.3 Hz), 0.80 - 1.60 (8H, m), 2.24 - 2.40 (1H, m), 2.60 - 2.80 (1H, m), 5.36 (1H, d-d, J=7.3, 4.6 Hz), 6.75 (1H, s), 7.00 - 7.32 (5H, m), 7.50 (1H, d, J=8.0 Hz), 7.63 (1H, bd, J=7.3 Hz), 7.79 (1H, bd, J=6.9 Hz).
MS (FAB) m/z 1067 (M). HRMS calcd for C80H23Cl2N 1067.1208; found 1067.1202.
1 H-NMR (CDCl 3 ) δ: 0.81 (3H, t, J = 7.3 Hz), 0.80-1.60 (8H, m), 2.24-2.40 (1H, m), 2.60-2.80 (1H, m), 5.36 (1H, dd, J = 7.3, 4.6 Hz), 6.75 (1H, s), 7.00-7.32 (5H, m), 7.50 (1H, d, J = 8.0 Hz), 7.63 (1H, bd, J = 7.3 Hz), 7.79 (1H, bd, J = 6.9 Hz).
MS (FAB) m / z 1067 (M + ). HRMS calcd for C 80 H 23 Cl 2 N 1067.1208; found 1067.1202.
 合成例3
Figure JPOXMLDOC01-appb-C000018
Synthesis example 3
Figure JPOXMLDOC01-appb-C000018
 N-(2,6-メトキシフェニル)-2-フェニルグリシン(150mg, 0.52mmol), ヘプタナール(2mL), 及びフラーレン(720mg, 0.5mmol)のジクロロベンゼン溶液(200mL)を4日間加熱還流した。
 反応生成液を減圧下に濃縮し、反応物をカラムクロマトグラフィー(SiO2, ヘキサン-トルエン=20:1~5:1)で精製し、目的物を182 mg(33 %:アミノ酸換算)得た。
A dichlorobenzene solution (200 mL) of N- (2,6-methoxyphenyl) -2-phenylglycine (150 mg, 0.52 mmol), heptanal (2 mL), and fullerene (720 mg, 0.5 mmol) was heated to reflux for 4 days.
The reaction product was concentrated under reduced pressure, and the reaction product was purified by column chromatography (SiO2, hexane-toluene = 20: 1 to 5: 1) to obtain 182 mg (33%: amino acid equivalent) of the desired product.
1H-NMR (CDCl3)δ: 0.80 (3H, t, J=7.3 Hz), 1.02 - 1.64 (8H, m), 2.16 - 2.28 (1H, m), 2.52 - 2.64 (1H, m), 3.98 (3H, s), 4.04 (3H, s), 5.36 (1H, d-d, J=6.9, 4.6 Hz), 6.50 (1H, d, J=8.2 Hz), 6.55 (1H, s), 6.63 (1H, d, J=8.2 Hz),  7.05 - 7.30 (4H, m), 7.50 (1H, bs), 8.05 (1H, bs).
MS (FAB) m/z 1060 (M). HRMS calcd for C82H30NO2 (M+1) 1060.2277; found 1060.2281.
1 H-NMR (CDCl 3 ) δ: 0.80 (3H, t, J = 7.3 Hz), 1.02-1.64 (8H, m), 2.16-2.28 (1H, m), 2.52-2.64 (1H, m), 3.98 (3H, s), 4.04 (3H, s), 5.36 (1H, dd, J = 6.9, 4.6 Hz), 6.50 (1H, d, J = 8.2 Hz), 6.55 (1H, s), 6.63 (1H, d, J = 8.2 Hz), 7.05-7.30 (4H, m), 7.50 (1H, bs), 8.05 (1H, bs).
MS (FAB) m / z 1060 (M + ). HRMS calcd for C 82 H 30 NO 2 (M + 1) 1060.2277; found 1060.2281.
 合成例4
Figure JPOXMLDOC01-appb-C000019
Synthesis example 4
Figure JPOXMLDOC01-appb-C000019
 N-(2-シアノフェニル)-2-フェニルグリシン(150mg, 0.60mmol), ヘプタナール(1mL), 及びフラーレン(588mg, 0.82mmol)のクロロベンゼン溶液(300mL)を8日間加熱還流した。
 反応生成液を減圧下に濃縮し、反応物をカラムクロマトグラフィー(SiO2, ヘキサン-トルエン=20:1~2:1)で精製し、目的物を210 mg(33.6 %:アミノ酸換算)得た。
A chlorobenzene solution (300 mL) of N- (2-cyanophenyl) -2-phenylglycine (150 mg, 0.60 mmol), heptanal (1 mL), and fullerene (588 mg, 0.82 mmol) was heated to reflux for 8 days.
The reaction product solution was concentrated under reduced pressure, and the reaction product was purified by column chromatography (SiO2, hexane-toluene = 20: 1 to 2: 1) to obtain 210 mg (33.6%: converted to amino acid) of the desired product.
1H-NMR (CDCl3)δ: 0.81 (3H, t, J=7.3 Hz), 1.10 - 1.70 (8H, m), 2.16 - 2.28 (1H, m), 2.80 - 2.92 (1H, m), 5.90 - 6.05 (1H, m), 6.41 (1H, s), 7.10 - 7.40 (5H, m), 7.44 (1H, t, J=7.8 Hz), 7.60 (1H, bs), 7.68 (1H, bs), 7.79 (1H, d, J=7.3 Hz).
MS (FAB) m/z 1025 (M). HRMS calcd for C81H25N2 (M+1) 1025.2018; found 1025.2014.
1 H-NMR (CDCl 3 ) δ: 0.81 (3H, t, J = 7.3 Hz), 1.10-1.70 (8H, m), 2.16-2.28 (1H, m), 2.80-2.92 (1H, m), 5.90 -6.05 (1H, m), 6.41 (1H, s), 7.10-7.40 (5H, m), 7.44 (1H, t, J = 7.8 Hz), 7.60 (1H, bs), 7.68 (1H, bs), 7.79 (1H, d, J = 7.3 Hz).
MS (FAB) m / z 1025 (M + ). HRMS calcd for C 81 H 25 N 2 (M + 1) 1025.2018; found 1025.2014.
 前記合成例で得た各フラーレン誘導体、並びに後記の対照化合物1、2、及び3をn型半導体材料として用いて、後記の方法で太陽電池を作製し、機能を評価した。
 有機p型半導体材料としてはPTB7を、電荷輸送層材料としてはPFN(ポリ[9,9-ビス(3’-(N,N-ジメチルアミノ)プロピル-2,7-フルオレン)-alt-2,7-(9,9-ジオクチルフルオレン)])及びMoO(酸化モリブデン)を、電極としてはITO(酸化インジウムスズ)(陰極)及びアルミニウム(陽極)をそれぞれ用いた。
Using each fullerene derivative obtained in the above synthesis example and reference compounds 1, 2 and 3 described later as n-type semiconductor materials, solar cells were prepared by the method described later and their functions were evaluated.
PTB7 is used as the organic p-type semiconductor material, and PFN (poly [9,9-bis (3 ′-(N, N-dimethylamino) propyl-2,7-fluorene) -alt-2, 7- (9,9-dioctylfluorene)]) and MoO 3 (molybdenum oxide), and ITO (indium tin oxide) (cathode) and aluminum (anode) were used as electrodes, respectively.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 (1)試験用太陽電池の作製
 以下の手順により試験用太陽電池を作製した。
 1)基板の前処理
 ITOパターニングガラス板をプラズマ洗浄機中に入れて、酸素ガスを流入しながら発生したプラズマにより基板表面を10分間洗浄処理した。
 2)PFN薄膜(陰極側電荷輸送層)の作製
 ABLE/ASS-301型のスピンコート法製膜装置を用い、PFNメタノール溶液(2%w/v)を用いて、前記で前処理を施したITOガラス板上にPFN薄膜を形成した。形成されたPFN薄膜の膜厚は約10nmであった。
 3)有機半導体膜(有機発電層)の作製
 前記基板をグローブボックス中でMIKASA/MS-100型のスピンコート法製膜装置を用い、事前にクロロベンゼンに溶かしたPTB7とフラーレン誘導体、およびジヨードオクタン(クロロベンゼンに対して3%v/v)を含有する溶液をPFN薄膜の上にスピンコート(1000rpm、2分間)し、厚さ約90~110nmの有機半導体薄膜(有機発電層)を形成させて、積層体を得た。
 4)陽極側電荷輸送層及び金属電極の真空蒸着
 小型高真空蒸着装置を用い、前記で作製した積層体を高真空蒸着装置中のマスクの上に置き、陽極側電荷輸送層としてのMoO層(10nm)、及び金属電極としてのアルミニウム層(80nm)を順次蒸着した。
(1) Production of test solar cell A test solar cell was produced according to the following procedure.
1) Pretreatment of substrate The ITO patterned glass plate was put in a plasma cleaning machine, and the substrate surface was cleaned for 10 minutes by plasma generated while oxygen gas was introduced.
2) Preparation of PFN thin film (cathode-side charge transport layer) Using an ABLE / ASS-301 type spin coat method film forming apparatus, a PFN methanol solution (2% w / v) was used for the pre-treated ITO. A PFN thin film was formed on a glass plate. The film thickness of the formed PFN thin film was about 10 nm.
3) Preparation of organic semiconductor film (organic power generation layer) Using a MIKASA / MS-100 type spin coat film forming apparatus in the glove box, the substrate was previously dissolved in chlorobenzene with PTB7, fullerene derivative, and diiodooctane ( A solution containing 3% v / v with respect to chlorobenzene was spin coated (1000 rpm, 2 minutes) on the PFN thin film to form an organic semiconductor thin film (organic power generation layer) having a thickness of about 90 to 110 nm, A laminate was obtained.
4) Vacuum deposition of anode side charge transport layer and metal electrode Using a small high vacuum deposition apparatus, the laminate prepared above was placed on the mask in the high vacuum deposition apparatus, and MoO 3 layer as the anode side charge transport layer (10 nm) and an aluminum layer (80 nm) as a metal electrode were sequentially deposited.
(2)擬似太陽光照射による電流測定
 擬似太陽光照射による電流測定には、ソースメーター、電流電圧計測ソフト及び疑似太陽光照射装置を用いた。
 前記(1)で作製した各試験用太陽電池に対して100mWの疑似太陽光を照射して、発生した電流と電圧を測定して、以下の式によりエネルギー変換効率を算出した。
 開放電圧の測定結果を表1に示す。尚、変換効率は、下記式により求めた値である。
 変換効率η(%)=FF(Voc×Jsc/Pin)×100
 FF:曲線因子、Voc:開放電圧、Jsc:短絡電流、Pin:入射光強度(密度)
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000021
(2) Current measurement by simulated sunlight irradiation For current measurement by simulated sunlight irradiation, a source meter, current voltage measurement software, and simulated sunlight irradiation apparatus were used.
Each test solar cell prepared in (1) above was irradiated with 100 mW pseudo-sunlight, the generated current and voltage were measured, and the energy conversion efficiency was calculated according to the following equation.
The measurement results of the open circuit voltage are shown in Table 1. The conversion efficiency is a value obtained by the following formula.
Conversion efficiency η (%) = FF (V oc × J sc / P in ) × 100
FF: fill factor, V oc : open circuit voltage, J sc : short circuit current, P in : incident light intensity (density)
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000021

Claims (13)

  1. 式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式中、
    X1aは、水素原子、塩素原子、臭素原子、ヨウ素原子、1個以上の置換基を有していてもよいアルキル基、1個以上の置換基を有していてもよいアルコキシ基、又はシアノ基を表し、
    X1bは、塩素原子、臭素原子、ヨウ素原子、1個以上の置換基を有していてもよいアルキル基、1個以上の置換基を有していてもよいアルコキシ基、又はシアノ基を表し、
    は、1個以上の置換基を有していてもよいアリール基、又は1個以上の置換基を有していてもよいヘテロアリール基を表し、
    は、水素原子、又は有機基を表し、及び
    環Aは、フラーレン環
    を表す。]
    で表されるフラーレン誘導体。
    Formula (1):
    Figure JPOXMLDOC01-appb-C000001
    [Where:
    X 1a is a hydrogen atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group optionally having one or more substituents, an alkoxy group optionally having one or more substituents, or cyano Represents a group,
    X 1b represents a chlorine atom, a bromine atom, an iodine atom, an alkyl group optionally having one or more substituents, an alkoxy group optionally having one or more substituents, or a cyano group. ,
    R 2 represents an aryl group which may have one or more substituents, or a heteroaryl group which may have one or more substituents;
    R 3 represents a hydrogen atom or an organic group, and ring A represents a fullerene ring. ]
    A fullerene derivative represented by:
  2. X1aは、水素原子、塩素原子、臭素原子、ヨウ素原子、メチル基、メトキシ基、又はシアノ基である請求項1に記載のフラーレン誘導体。 The fullerene derivative according to claim 1, wherein X 1a is a hydrogen atom, a chlorine atom, a bromine atom, an iodine atom, a methyl group, a methoxy group, or a cyano group.
  3. X1aは、塩素原子、臭素原子、ヨウ素原子、メチル基、メトキシ基、又はシアノ基である請求項2に記載のフラーレン誘導体。 The fullerene derivative according to claim 2, wherein X 1a is a chlorine atom, a bromine atom, an iodine atom, a methyl group, a methoxy group, or a cyano group.
  4. X1bは、塩素原子、臭素原子、ヨウ素原子、メチル基、メトキシ基、又はシアノ基である請求項1~3のいずれか1項に記載のフラーレン誘導体。 The fullerene derivative according to any one of claims 1 to 3, wherein X 1b is a chlorine atom, a bromine atom, an iodine atom, a methyl group, a methoxy group, or a cyano group.
  5. は、1個以上の置換基を有していてもよいアリール基である請求項1~4のいずれか1項に記載のフラーレン誘導体。 The fullerene derivative according to any one of claims 1 to 4, wherein R 2 is an aryl group which may have one or more substituents.
  6. は、オルト位に1個、又は2個の置換基を有していてもよいフェニル基である請求項5に記載のフラーレン誘導体。 6. The fullerene derivative according to claim 5, wherein R 2 is a phenyl group which may have one or two substituents at the ortho position.
  7. は、水素原子、又はアルキル基である請求項1~6のいずれか1項に記載のフラーレン誘導体。 The fullerene derivative according to any one of claims 1 to 6, wherein R 3 is a hydrogen atom or an alkyl group.
  8. 環Aは、C60フラーレン環である請求項1~7のいずれか1項に記載のフラーレン誘導体。 The fullerene derivative according to any one of claims 1 to 7, wherein the ring A is a C 60 fullerene ring.
  9. 請求項1~8のいずれか1項に記載のフラーレン誘導体を含有するn型半導体材料。 An n-type semiconductor material containing the fullerene derivative according to any one of claims 1 to 8.
  10. 有機薄膜太陽電池用である請求項9に記載のn型半導体材料。 The n-type semiconductor material according to claim 9, which is used for an organic thin film solar cell.
  11. 請求項10に記載のn型半導体材料を含有する有機発電層。 An organic power generation layer containing the n-type semiconductor material according to claim 10.
  12. 請求項11に記載の有機発電層を備える光電変換素子。 A photoelectric conversion element provided with the organic electric power generation layer of Claim 11.
  13. 有機薄膜太陽電池である、請求項12に記載の光電変換素子。 The photoelectric conversion element according to claim 12, which is an organic thin film solar cell.
PCT/JP2017/021933 2016-06-14 2017-06-14 Fullerene derivative, and n-type semiconductor material WO2017217448A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018523960A JP6931891B2 (en) 2016-06-14 2017-06-14 Fullerene derivatives and n-type semiconductor materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016118336 2016-06-14
JP2016-118336 2016-06-14

Publications (1)

Publication Number Publication Date
WO2017217448A1 true WO2017217448A1 (en) 2017-12-21

Family

ID=60663081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021933 WO2017217448A1 (en) 2016-06-14 2017-06-14 Fullerene derivative, and n-type semiconductor material

Country Status (2)

Country Link
JP (1) JP6931891B2 (en)
WO (1) WO2017217448A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115322139A (en) * 2022-09-01 2022-11-11 广西师范大学 Preparation method and application of styryl fullerene derivative

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012089538A (en) * 2010-10-15 2012-05-10 Daikin Ind Ltd N-type semiconductor material for organic thin film solar cell
WO2014185535A1 (en) * 2013-05-16 2014-11-20 ダイキン工業株式会社 Fullerene derivative and n-type semiconductor material
WO2014185536A1 (en) * 2013-05-16 2014-11-20 ダイキン工業株式会社 Fullerene derivative and n-type semiconductor material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012089538A (en) * 2010-10-15 2012-05-10 Daikin Ind Ltd N-type semiconductor material for organic thin film solar cell
WO2014185535A1 (en) * 2013-05-16 2014-11-20 ダイキン工業株式会社 Fullerene derivative and n-type semiconductor material
WO2014185536A1 (en) * 2013-05-16 2014-11-20 ダイキン工業株式会社 Fullerene derivative and n-type semiconductor material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CIAMMAICHELLA A. ET AL.: "A π-Stacked Porphyrin–Fullerene Electron Donor–Acceptor Conjugate That Features a Surprising Frozen Geometry", CHEMISTRY-A EUROPEAN JOURNAL, vol. 18, no. 44, 2012, pages 14008 - 14016, XP055449415 *
MAKOTO KARAKAWA: "Yuki Hakumaku Taiyo Denchi no Seino Kojo to Yoto Kakudai ni Kiyo suru Zairyo Kaihatsu", NATIONAL CONVENTION RECORD I.E.E. JAPAN, vol. 2017, 5 March 2017 (2017-03-05) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115322139A (en) * 2022-09-01 2022-11-11 广西师范大学 Preparation method and application of styryl fullerene derivative

Also Published As

Publication number Publication date
JPWO2017217448A1 (en) 2019-04-04
JP6931891B2 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
JP6141423B2 (en) Fullerene derivative and n-type semiconductor material
JP7195546B2 (en) fullerene derivative and n-type semiconductor material
Hadmojo et al. Geometrically controlled organic small molecule acceptors for efficient fullerene-free organic photovoltaic devices
Privado et al. A non-fullerene all small molecule solar cell constructed with a diketopyrrolopyrrole-based acceptor having a power conversion efficiency higher than 9% and an energy loss of 0.54 eV
Li et al. Thermally stable high performance non-fullerene polymer solar cells with low energy loss by using ladder-type small molecule acceptors
CN110010765B (en) Electronic device using small organic molecule semiconductor compound
JP2020109093A (en) Fullerene derivative and n-type semiconductor material
US20120111411A1 (en) Fullerene derivative
Ke et al. Substituents on the end group subtle tuning the energy levels and absorptions of small-molecule nonfullerene acceptors
Mikroyannidis et al. Low band-gap phenylenevinylene and fluorenevinylene small molecules containing triphenylamine segments: Synthesis and application in bulk heterojunction solar cells
JP6931891B2 (en) Fullerene derivatives and n-type semiconductor materials
US20150136233A1 (en) Organic photovoltaic devices comprising fullerenes and derivatives
JP6095229B2 (en) Bibenzo [b] furan compound, photoelectric conversion material and photoelectric conversion element
JP2015108072A (en) Composition including n-type semiconductor compound and p-type semiconductor compound
JP7125702B2 (en) fullerene derivative
KR101303083B1 (en) Novel fullerene derivatives and photovoltaic device using the same
JP5927965B2 (en) Manufacturing method of organic photoelectric conversion element
WO2019045059A1 (en) Fullerene derivative composition
JP7037137B2 (en) Fullerene derivatives and n-type semiconductor materials
Aguiar New boron-dipyrromethene (BODIPY) molecules as suitable electron-donors for organic photovoltaic cells
JP2016178130A (en) FULLERENE DERIVATIVE AND n-TYPE SEMICONDUCTOR MATERIAL
JP2014028768A (en) Fullerene derivative, organic semiconductor film and organic thin film solar cell using the same, and fullerene derivative production method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018523960

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17813343

Country of ref document: EP

Kind code of ref document: A1