WO2017217438A1 - Electromagnetic wave oscillation device - Google Patents

Electromagnetic wave oscillation device Download PDF

Info

Publication number
WO2017217438A1
WO2017217438A1 PCT/JP2017/021887 JP2017021887W WO2017217438A1 WO 2017217438 A1 WO2017217438 A1 WO 2017217438A1 JP 2017021887 W JP2017021887 W JP 2017021887W WO 2017217438 A1 WO2017217438 A1 WO 2017217438A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
oscillator
electromagnetic
detector
wave oscillator
Prior art date
Application number
PCT/JP2017/021887
Other languages
French (fr)
Japanese (ja)
Inventor
池田 裕二
誠士 神原
Original Assignee
イマジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イマジニアリング株式会社 filed Critical イマジニアリング株式会社
Priority to JP2018523950A priority Critical patent/JP6944666B2/en
Publication of WO2017217438A1 publication Critical patent/WO2017217438A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present invention relates to an electromagnetic wave oscillation device that supplies electromagnetic wave energy from an electromagnetic wave irradiation antenna to an electromagnetic wave heating device or a catalyst carrier having an electromagnetic wave absorber or supplies electromagnetic wave energy to an ignition device that boosts and discharges the electromagnetic wave. .
  • Patent Document 1 discloses a microwave heating apparatus in which an electromagnetic wave irradiation antenna that radiates microwaves is provided on the upper, lower, left, and right wall surfaces of a heating chamber.
  • This microwave heating apparatus has two oscillators, and the microwave output from the first oscillator is divided into two by the first distributor, fed to the antennas on the upper surface and the lower surface, and output from the second oscillator.
  • the microwaves are divided into two by the second distributor and fed to the left and right antennas.
  • an oscillator electromagnetic wave oscillation device
  • a converter including a rectifier circuit that rectifies from a commercial AC power source or a DC power source such as a battery, and a smoothing capacitor.
  • the electromagnetic wave is disposed in front of the electromagnetic wave oscillator and the cavity for supplying the electromagnetic wave energy.
  • measures are taken such as stopping the oscillator when the reflected wave increases.
  • the present invention has been made in view of the above points, and its purpose is not to simply stop the electromagnetic wave oscillator when the reflected wave increases, but to damage the device due to the reflected wave without reducing the efficiency of the entire apparatus. It is providing the electromagnetic wave oscillating device which can suppress.
  • the electromagnetic wave oscillation device of the present invention made to solve the above problems is An electromagnetic wave oscillator that oscillates an electromagnetic wave by a voltage applied from a power supply; A detector that detects a traveling wave and a reflected wave of an electromagnetic wave oscillated from the electromagnetic wave oscillator between the electromagnetic wave oscillator and a cavity that receives supply of electromagnetic wave energy from the electromagnetic wave oscillator; A controller for controlling the electromagnetic wave oscillator and the detector, The control device oscillates by changing the frequency of the oscillating electromagnetic wave when the voltage standing wave ratio detected by the detector becomes a predetermined value or more.
  • the electromagnetic wave oscillating device of the present invention determines that the reflected wave has increased when the voltage standing wave ratio for detecting the traveling wave and the reflected wave of the electromagnetic wave oscillated from the electromagnetic wave oscillator exceeds a predetermined value, for example, 4.
  • the electromagnetic wave oscillated from the oscillator is controlled so as to reduce the voltage standing wave ratio by changing the frequency of the electromagnetic wave.
  • VSWR (1+
  • Z 0 Line characteristic impedance
  • Z Load impedance
  • V 1 Amplitude voltage of traveling wave
  • V 2 Numerical value indicating the relationship between traveling wave and reflected wave expressed by amplitude voltage of reflected wave It is.
  • control device has a voltage standing wave ratio detected by the detector equal to or greater than a predetermined value, and the phase of the oscillating electromagnetic wave is 0.1 ⁇ -0. Oscillation can be performed by varying the frequency of the electromagnetic wave that oscillates when in the range of 35 ⁇ .
  • the electromagnetic wave oscillation device of the present invention can maintain the voltage standing wave ratio appropriately by changing the frequency of the electromagnetic wave oscillated from the electromagnetic wave oscillator, and can prevent the electromagnetic wave oscillator from being damaged by the reflection of the electromagnetic wave. Can be provided.
  • Embodiment 1 is an electromagnetic wave oscillation device according to the present invention.
  • the electromagnetic wave oscillation device 1 includes a converter 2 that converts a voltage from a power source P into a DC voltage, and an electromagnetic wave oscillator 3 that pulsates an electromagnetic wave using a DC voltage applied from the converter 2.
  • a detector 8 that detects a traveling wave and a reflected wave of an electromagnetic wave oscillated from the electromagnetic wave oscillator 3 between the cavity C that receives the supply of electromagnetic wave energy from the electromagnetic wave oscillator 3 and the electromagnetic wave oscillator 3, and a detection from the detector 8
  • a control device 5 that controls the electromagnetic wave oscillator 3 while applying a signal.
  • control apparatus 5 is controlled so that it oscillates by changing the frequency of the electromagnetic wave to oscillate, when the voltage standing wave ratio which the detector 8 detects becomes more than predetermined value.
  • the electromagnetic wave oscillated from the electromagnetic wave oscillator 3 is amplified to a desired output by the amplifier 4 and supplied to the electromagnetic wave irradiation antenna 7 through the distributor 6.
  • the distributor 6 is controlled by the control device 5.
  • the supply of current to the electromagnetic wave oscillator 3 is supplied from the converter 2 through the smoothing circuit 30 and a low voltage, for example, 5V or 12V, is supplied to the amplifier 4 depending on the amplification rate of the electromagnetic wave from the electromagnetic wave oscillator 3. For example, a voltage of 32V is applied.
  • the control device 5 controls the converter 2 in accordance with the oscillation pattern of the electromagnetic wave oscillator 3 described later to change the output pattern. It doesn't matter.
  • the converter 2 uses an AC / DC converter when a household AC power source is used, and a DC / DC converter when a DC power source such as a battery is used.
  • the electromagnetic wave oscillator 3 receives an electromagnetic wave (for example, a pulse wave having a predetermined duty ratio, pulse time, or the like set from the control chip 50 or a continuous wave. 2.45 GHz microwave).
  • an electromagnetic wave for example, a pulse wave having a predetermined duty ratio, pulse time, or the like set from the control chip 50 or a continuous wave. 2.45 GHz microwave.
  • the amplifier 4 amplifies the electromagnetic wave of about several W output from the electromagnetic wave oscillator 3 to several kW, and supplies it to the ignition device and the electromagnetic wave irradiation antenna.
  • the cavity C corresponds to a heating chamber when the supply destination of electromagnetic wave energy is a heating device such as a microwave oven, and corresponds to a combustion chamber when the supply destination of electromagnetic wave energy is an internal combustion engine.
  • the detector 8 is configured to detect the impedance of the line. For example, when oscillating at 50 ⁇ (traveling wave), the impedance of the line ( When the load impedance is 100 ⁇ , the voltage reflection coefficient is 1/3 and the VSWR is 2. If the impedance of the line remains 50 ⁇ , the voltage reflection coefficient is 0 and VSWR is 1.
  • the signal from the detector 8 can be represented as a load fluctuation locus L on the Smith chart shown in FIG.
  • VSWR does not exceed a predetermined value, for example, 4 (inside the broken line circle and the voltage reflection coefficient is ⁇ 0.6), and from the electromagnetic wave oscillator 3 for a predetermined period, for a predetermined period.
  • An electromagnetic wave is oscillated as a pulse wave in which a ratio, a pulse time, etc. are set or as a continuous wave.
  • the control device 5 varies the frequency with respect to the electromagnetic wave oscillator 3.
  • the frequency set at 2.45 GHz is swept in 0.01 GHz units or 0.05 GHz units and adjusted so that the load fluctuation locus L does not exceed a predetermined value.
  • the electromagnetic wave energy is supplied to an electromagnetic wave heating device (for example, a microwave oven) or the like
  • the VSWR is predetermined by stopping the oscillation of the electromagnetic wave for a predetermined time and restarting the oscillation again for a predetermined time before the frequency change. It is also possible not to exceed the value. In this case, after one or more stops, when the VSWR exceeds a predetermined value, the frequency is controlled to vary.
  • the predetermined value of VSWR differs depending on the output of the oscillating electromagnetic wave and the shape of the cavity C, and the fluctuation of the oscillation frequency is set to 10 when the output of the electromagnetic wave is small, in addition to setting VSWR at 4 or more. Can also be operated.
  • the electromagnetic wave oscillating device 1 of this modified example is 0.1 ⁇ when the wavelength of the oscillating electromagnetic wave shown in FIGS. 4 to 5 is ⁇ even when the value of VSWR calculated by the detected value exceeds a predetermined value. Outside of the range of ⁇ 0.35 ⁇ , the frequency is not changed. Specifically, as shown in FIG. 4, the load fluctuation is within a cross-hatching range where the wavelength of the electromagnetic wave that oscillates exceeds the predetermined value (4 in the example) and is in the range of 0.1 ⁇ to 0.35 ⁇ .
  • the control device 5 changes the frequency with respect to the electromagnetic wave oscillator 3.
  • the frequency is varied only within the range of 0.1 ⁇ to 0.35 ⁇ in which damage to the device due to the reflected wave increases due to the phase of the electromagnetic wave.
  • an electromagnetic wave heating device for example, a microwave oven
  • the oscillation of the electromagnetic wave is stopped for a predetermined time and the oscillation is resumed before the frequency changes.
  • the frequency is controlled to vary.
  • the control is performed so that the normal operation is continued when the electromagnetic wave phase is such that the device is not destroyed by the reflected wave, thereby improving the efficiency of the entire apparatus. be able to.
  • an electromagnetic wave heating apparatus when a semiconductor is used for an electromagnetic wave oscillator, it is possible to optimally cook according to foods to be heated using a plurality of electromagnetic wave irradiation antennas.
  • the electromagnetic wave oscillation device of the present invention the voltage standing wave ratio (VSWR) is calculated by detecting the line impedance, and when it becomes a predetermined value or more, the new frequency is changed to change the reflected wave device. Can be effectively prevented.
  • VSWR voltage standing wave ratio
  • the second embodiment relates to an exhaust emission control device 10 using an electromagnetic wave oscillation device according to the present invention.
  • the exhaust gas purification apparatus 10 purifies exhaust gas discharged from an internal combustion engine, for example, an automobile engine.
  • the exhaust gas purification apparatus 10 supports a carrier 60 that supports a catalyst provided in an exhaust passage 51 of the internal combustion engine 22 and an exhaust gas upstream of the carrier 60.
  • An electromagnetic wave absorber 70 applied to the side end face 60 a and an electromagnetic wave irradiation antenna 7 that radiates electromagnetic waves to the space upstream of the exhaust of the carrier 60 are provided.
  • the electromagnetic wave irradiation antenna 7 constitutes an electromagnetic wave radiation device 9 by being combined with the electromagnetic wave oscillation device 1.
  • the electromagnetic wave oscillation device 1 is electrically connected to the power source P.
  • the electromagnetic wave irradiation antenna 7 can be a flat antenna disposed on the surface of the exhaust pipe forming the exhaust passage 51 as shown in FIG.
  • the space upstream of the carrier 60 in the exhaust passage 51 is a cavity C.
  • the electromagnetic wave absorber 70 can be configured by mixing a microcoil whose main component is a carbon atom or a molecule containing carbon with a heat-resistant powder material.
  • a microcoil more specifically, a carbon microcoil, as the electromagnetic wave absorber 70, the characteristic that the carbon microcoil absorbs electromagnetic waves and generates heat in a short time is used.
  • the electromagnetic wave absorber 70 By absorbing the microwave, the electromagnetic wave absorber 70 generates heat, and the carrier carrying the catalyst is heated in a short time.
  • the carbon microcoil includes a carbon nanocoil having a smaller wire diameter than the carbon microcoil.
  • the catalyst is an active metal (platinum, palladium, rhodium) which is a main component of the three-way catalyst system.
  • the three-way catalyst system purifies hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NO x ) contained in the exhaust gas of automobiles using gasoline as fuel.
  • Three-way catalysts oxidize hydrocarbons to water and carbon dioxide, carbon monoxide to carbon dioxide, and reduce nitrogen oxides to nitrogen.
  • the three-way catalyst system has a low reducing ability at room temperature, and almost no reducing ability immediately after the engine is started in a cold state. Therefore, in order to properly operate the three-way catalyst system when the engine is started, it is necessary to heat the catalyst to an appropriate temperature at which the catalyst is activated. In the present embodiment, the exhaust purification device 10 immediately heats the carrier 60 carrying the catalyst to activate the catalyst.
  • the carrier 60 carrying the catalyst is set to have an outer diameter that is substantially the same as the inner diameter of the holding portion of the carrier 60 of the casing 50 that forms the exhaust gas passage. ) In the casing 50.
  • the material of the carrier 60 is not particularly limited.
  • the carrier 60 is composed of a honeycomb ceramic structure.
  • the honeycomb structure is a member having a cylindrical outer shape made of an insulating material that can transmit microwaves.
  • the honeycomb structure includes a lattice portion having a cross-sectional lattice shape.
  • the honeycomb structure is configured such that the exhaust gas can flow in the direction indicated by the arrow in FIG. 6 through the gaps between the lattice portions.
  • the casing 50 is a substantially cylindrical metal member (so-called muffler) provided to accommodate the carrier 60.
  • the casing 50 constitutes a part of an exhaust pipe of an automobile engine, and the inside of the casing 50 constitutes an exhaust gas passage through which exhaust gas flows.
  • a method of applying the electromagnetic wave absorber 70 to the end face of the carrier 60 will be described.
  • Application in this specification means general application using a brush on the target surface of an object to be coated (carrier 60 in the present embodiment) on an object to be coated (electromagnetic wave absorber 70 in the present embodiment).
  • various methods such as application using a spray gun, and dipping and adhering the coating in a container containing the coating.
  • the microcoil used as the electromagnetic wave absorber 70 is constituted by a so-called carbon microcoil (hereinafter referred to as CMC) mainly composed of carbon atoms.
  • CMC is a fine carbon fiber having a shape wound in a coil shape at a pitch of about 0.01 to 1 ⁇ m.
  • CMC ceramic powder slurry and stirred to uniformly disperse the slurry (hereinafter referred to as “CMC”).
  • CMC slurry a ceramic powder slurry and stirred to uniformly disperse the slurry
  • CMC slurry the slurry
  • it can be formed by forming a slurry solution in which a ceramic binder and a microcoil are mixed, applying this to the surface of the end face of the carrier 60, and firing together with the honeycomb structure.
  • Carbon microcoil has the property of generating heat by absorbing electromagnetic waves.
  • electromagnetic waves microwaves
  • the microcoil is heated.
  • the end surface of the carrier 60 is heated by the heat generated by the microcoil.
  • the electromagnetic wave absorber 70 applied to the end face of the carrier 60 can be applied to the entire end face.
  • only the end face center portion 61 has an annular portion 62 outside the center (the end face radius of the carrier 60 is 3R).
  • the coating can be applied only to the outer annular portion 63 (in the range of 2R to 3R when the end surface radius of the carrier 60 is 3R). According to experiments by the present inventors, it is preferable to apply to the annular portion 63. It was also found effective when applied to the end face center portion 61.
  • the exhaust emission control device 10 of this embodiment includes an electromagnetic wave oscillator 3 that supplies an electromagnetic wave to the internal combustion engine 22 and the electromagnetic wave irradiation antenna 7 and a control unit 5 that controls the electromagnetic wave oscillator 3.
  • This control means 5 performs the same control as in the first embodiment, effectively performs electromagnetic wave oscillation, and effectively prevents the semiconductor device from being damaged by the reflected wave. Then, the control means 5 irradiates electromagnetic waves (microwaves) before the cracking operation (before idling operation) for starting the internal combustion engine 22 as the operation control of the exhaust gas purification apparatus 10, and raises the temperature of the end face of the carrier 60 to a certain temperature.
  • the internal combustion engine 22 is started at a low speed (specifically, the internal combustion engine 22 is rotated at a low speed by a drive device 21 (for example, a drive motor) that can rotate at a lower speed than a normal idling motor.
  • the number of rotations is not particularly limited, but for example, it is operated at a low speed of about 10 to 100 rpm.)
  • a small amount of gas is sent out to the exhaust passage 51.
  • the electromagnetic wave microwave
  • the electromagnetic wave irradiation antenna 7 for irradiating electromagnetic waves has a coaxial structure in which a conductor 71 constituting the antenna body and an insulator 72 (ceramic) covering the conductor 71 are provided, and the conductor 71 is an insulator. It is preferable that the irradiation portion of the conductor 71 exposed from 72 be ( ⁇ / 4) ⁇ n (n is a natural number) where ⁇ is the wavelength of the electromagnetic wave to be irradiated.
  • the conductor 71 of the electromagnetic wave irradiation antenna 7 it is preferable to arrange the conductor 71 of the electromagnetic wave irradiation antenna 7 so as to be positioned in the vicinity of the portion where the electromagnetic wave absorber 70 is applied (in the present embodiment, an example in which the conductor 71 is applied to the end surface center portion 61). Show).
  • the conductor 71 can be a straight line as shown in FIG. 8 (b) or a circular shape as shown in FIG. 8 (c). In the case of a circular shape, the ends may be connected in the vicinity of the insulator 72 to form an annular shape.
  • the carrier 60 is heated by raising the temperature of the electromagnetic wave absorber 70 by the electromagnetic wave of the electromagnetic wave emission device 9 of the exhaust gas purification device 10.
  • the heating temperature is a temperature at which the catalyst is activated, for example, , Configured to heat the catalyst to 300-400 degrees Celsius.
  • hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) contained in the exhaust gas are decomposed by the catalyst that has reached the activation temperature.
  • the cleaned exhaust gas flows through an exhaust passage (not shown) arranged on the downstream side and is released to the atmosphere.
  • the electromagnetic wave oscillation device of the present invention can be suitably used for a heating device using dielectric heating typified by a microwave oven when used as an electromagnetic wave oscillation source of an electromagnetic wave irradiation antenna.
  • a heating device using dielectric heating typified by a microwave oven
  • an electromagnetic wave oscillation source of an electromagnetic wave irradiation antenna that irradiates plasma by an ignition plug of an internal combustion engine such as an automobile engine
  • it can also be used for maintaining and expanding the plasma by the ignition plug.
  • it can be suitably used for a heating device using an electromagnetic wave absorber or a device for supplying microwaves to an exhaust purification device, a garbage disposal machine using electromagnetic waves, or the like.

Abstract

[Problem] To provide an electromagnetic wave oscillation device that does not simply stop an electromagnetic wave oscillator when reflected waves have increased, but is capable of suppressing device damage caused by reflected waves without reducing overall device efficiency. [Solution] An electromagnetic wave oscillation device comprising: a converter 2 that converts voltage from a power supply P to DC voltage; an electromagnetic wave oscillator 3 that pulse-oscillates electromagnetic waves by using the DC voltage applied from the converter 2; a detector 8 that detects traveling and reflected waves of electromagnetic waves oscillated from the electromagnetic wave oscillator 3 between the electromagnetic wave oscillator 3 and a cavity C that receives supply of electromagnetic wave energy from the electromagnetic wave oscillator 3; and a control device 5 that has detection signals from the detector 8 applied thereto and controls the electromagnetic wave oscillator 3. The control device 5 performs control so as to vary the frequency of electromagnetic waves for oscillation and oscillate same, if a voltage standing wave ratio detected by the detector 8 reaches at least a prescribed value.

Description

電磁波発振装置Electromagnetic oscillator
 本発明は、電磁波加熱装置や電磁波吸収体を備えた触媒担持担体に電磁波照射アンテナから電磁波エネルギを供給したり、電磁波を昇圧して放電する点火装置に電磁波エネルギを供給したりする電磁波発振装置に関する。 The present invention relates to an electromagnetic wave oscillation device that supplies electromagnetic wave energy from an electromagnetic wave irradiation antenna to an electromagnetic wave heating device or a catalyst carrier having an electromagnetic wave absorber or supplies electromagnetic wave energy to an ignition device that boosts and discharges the electromagnetic wave. .
 近年、マグネトロンに代わり、半導体素子によるマイクロ波発生装置を用いた電子レンジ等の加熱装置が検討されている。例えば、特許文献1では、加熱室の上下左右の壁面にマイクロ波を放射する電磁波照射アンテナを配備したマイクロ波加熱装置が開示されている。このマイクロ波加熱装置は2つの発振器を有し、第1の発振器から出力されたマイクロ波は第1の分配器で2分配されて上面と下面のアンテナに給電され、第2の発振器から出力されたマイクロ波は第2の分配器で2分配されて左面と右面のアンテナに給電される。 In recent years, instead of magnetrons, heating devices such as microwave ovens using microwave generators using semiconductor elements have been studied. For example, Patent Document 1 discloses a microwave heating apparatus in which an electromagnetic wave irradiation antenna that radiates microwaves is provided on the upper, lower, left, and right wall surfaces of a heating chamber. This microwave heating apparatus has two oscillators, and the microwave output from the first oscillator is divided into two by the first distributor, fed to the antennas on the upper surface and the lower surface, and output from the second oscillator. The microwaves are divided into two by the second distributor and fed to the left and right antennas.
 そして、半導体で構成される発振器(電磁波発振装置)には、商用の交流電源やバッテリ等の直流電源から整流する整流回路と平滑化コンデンサ等を備えたコンバータから直流電圧が印加される。 Then, a DC voltage is applied to an oscillator (electromagnetic wave oscillation device) composed of a semiconductor from a converter including a rectifier circuit that rectifies from a commercial AC power source or a DC power source such as a battery, and a smoothing capacitor.
 ところで、半導体素子を使った電磁波発振装置を用いた加熱装置等では、半導体デバイスが反射波によって破壊されることを抑制する必要があり、電磁波発振器と電磁波エネルギを供給するキャビティ前に配設する進行波と反射波の検出器により、反射波が増大したときに発振器を停止する等の措置が採られている。 By the way, in a heating apparatus using an electromagnetic wave oscillation device using a semiconductor element, it is necessary to suppress the destruction of the semiconductor device by the reflected wave, and the electromagnetic wave is disposed in front of the electromagnetic wave oscillator and the cavity for supplying the electromagnetic wave energy. By means of the wave and reflected wave detectors, measures are taken such as stopping the oscillator when the reflected wave increases.
特許第5169371号公報Japanese Patent No. 5169371
 しかし、単に反射波が増大しただけで発振器を停止させるように制御することは機器全体の効率が低下するという問題がある。 However, controlling the oscillator to stop when the reflected wave simply increases increases the efficiency of the entire device.
 本発明は、係る点に鑑みてなされたものであり、その目的は、単に反射波が増大した場合に電磁波発振器を停止するのではなく装置全体の効率を低下させることなく反射波によるデバイスの損傷を抑制することができる電磁波発振装置を提供することである。 The present invention has been made in view of the above points, and its purpose is not to simply stop the electromagnetic wave oscillator when the reflected wave increases, but to damage the device due to the reflected wave without reducing the efficiency of the entire apparatus. It is providing the electromagnetic wave oscillating device which can suppress.
 上記課題を解決するためになされた本発明の電磁波発振装置は、
 電源から印加される電圧によって電磁波を発振する電磁波発振器と、
 該電磁波発振器からの電磁波エネルギの供給を受けるキャビティと電磁波発振器との間で電磁波発振器から発振される電磁波の進行波及び反射波を検出する検出器と、
 前記電磁波発振器及び検出器を制御する制御装置とを備え、
 該制御装置は、前記検出器が検出する電圧定在波比が所定値以上となった場合、発振する電磁波の周波数を変動させて発振するようにしている。
The electromagnetic wave oscillation device of the present invention made to solve the above problems is
An electromagnetic wave oscillator that oscillates an electromagnetic wave by a voltage applied from a power supply;
A detector that detects a traveling wave and a reflected wave of an electromagnetic wave oscillated from the electromagnetic wave oscillator between the electromagnetic wave oscillator and a cavity that receives supply of electromagnetic wave energy from the electromagnetic wave oscillator;
A controller for controlling the electromagnetic wave oscillator and the detector,
The control device oscillates by changing the frequency of the oscillating electromagnetic wave when the voltage standing wave ratio detected by the detector becomes a predetermined value or more.
 本発明の電磁波発振装置は、電磁波発振器から発振される電磁波の進行波及び反射波を検出される電圧定在波比が所定値、例えば4を超える場合、反射波が大きくなったと判断して電磁波発振器から発振する電磁波を電磁波の周波数を変動させ、電圧定在波比が減少するように制御する。
 ここで、電圧定在波比(以下、VSWRという)は、
VSWR=(1+|ρ|)/(1-|ρ|)
 ρ=(Z-Z)/(Z+Z)=V/V
 ρ:電圧反射係数、Z0:線路の特性インピーダンス
 Z:負荷のインピーダンス、V:進行波の振幅電圧、V:反射波の振幅電圧
で表される進行波と反射波の関係を示す数値である。
The electromagnetic wave oscillating device of the present invention determines that the reflected wave has increased when the voltage standing wave ratio for detecting the traveling wave and the reflected wave of the electromagnetic wave oscillated from the electromagnetic wave oscillator exceeds a predetermined value, for example, 4. The electromagnetic wave oscillated from the oscillator is controlled so as to reduce the voltage standing wave ratio by changing the frequency of the electromagnetic wave.
Here, the voltage standing wave ratio (hereinafter referred to as VSWR) is
VSWR = (1+ | ρ |) / (1- | ρ |)
ρ = (Z−Z 0 ) / (Z + Z 0 ) = V 2 / V 1
ρ: Voltage reflection coefficient, Z 0: Line characteristic impedance Z: Load impedance, V 1 : Amplitude voltage of traveling wave, V 2 : Numerical value indicating the relationship between traveling wave and reflected wave expressed by amplitude voltage of reflected wave It is.
 この場合において、前記制御装置は、前記検出器が検出する電圧定在波比が所定値以上となり、かつ、発振する電磁波の波長をλとしたとき発振する電磁波の位相が0.1λ~0.35λの範囲にあるときに発振する電磁波の周波数を変動させて発振することができる。 In this case, the control device has a voltage standing wave ratio detected by the detector equal to or greater than a predetermined value, and the phase of the oscillating electromagnetic wave is 0.1λ-0. Oscillation can be performed by varying the frequency of the electromagnetic wave that oscillates when in the range of 35λ.
 本発明の電磁波発振装置は、電磁波発振器から発振する電磁波の周波数を変動させることで電圧定在波比を適正に保ち、電磁波の反射による電磁波発振器が損傷することを防止することができる電磁波発振装置を提供することができる。 The electromagnetic wave oscillation device of the present invention can maintain the voltage standing wave ratio appropriately by changing the frequency of the electromagnetic wave oscillated from the electromagnetic wave oscillator, and can prevent the electromagnetic wave oscillator from being damaged by the reflection of the electromagnetic wave. Can be provided.
本発明の電磁波発振装置の概略を示す回路図である。It is a circuit diagram which shows the outline of the electromagnetic wave oscillation apparatus of this invention. 同電磁波発振装置の電磁波発振器から発振される電磁波のVSWRが所定値にある場合の負荷変動軌跡を示すスミスチャートである。It is a Smith chart which shows a load change locus when VSWR of electromagnetic waves oscillated from an electromagnetic wave oscillator of the electromagnetic wave oscillation device has a predetermined value. 同電磁波発振装置の電磁波発振器から発振される電磁波のVSWRが所定値を超えた場合の負荷変動軌跡を示すスミスチャートである。It is a Smith chart which shows a load change locus when VSWR of electromagnetic waves oscillated from an electromagnetic wave oscillator of the electromagnetic wave oscillation device exceeds a predetermined value. 同電磁波発振装置の電磁波発振器から発振される電磁波のVSWRが所定値を超え、かつ、電磁波の周波数領域が0.1λ~0.35λの範囲にあるときの負荷変動軌跡を示すスミスチャートである。6 is a Smith chart showing a load fluctuation locus when the VSWR of an electromagnetic wave oscillated from an electromagnetic wave oscillator of the electromagnetic wave oscillation device exceeds a predetermined value and the frequency region of the electromagnetic wave is in a range of 0.1λ to 0.35λ. 同電磁波発振装置の電磁波発振器から発振される電磁波の波長を説明する概略図である。It is the schematic explaining the wavelength of the electromagnetic wave oscillated from the electromagnetic wave oscillator of the electromagnetic wave oscillation apparatus. 第2実施形態に係る本発明の電磁波発振装置を用いた排気浄化装置の概略構成図である。It is a schematic block diagram of the exhaust gas purification apparatus using the electromagnetic wave oscillation apparatus of this invention which concerns on 2nd Embodiment. 第2実施形態に用いる担体を示し、(a)は平面図、(b)は一部断面の正面図である。The support | carrier used for 2nd Embodiment is shown, (a) is a top view, (b) is a front view of a partial cross section. 電磁波照射アンテナの別の例を示し、(a)は一部切り欠きの全体概略図、(b)はアンテナ本体を構成する導体が直線上の例、(c)は同導体が円状になっている例を示す。Another example of an electromagnetic wave irradiation antenna is shown, (a) is an overall schematic diagram with a part cut away, (b) is an example in which the conductor constituting the antenna body is linear, and (c) is a circular shape of the conductor. An example is shown.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.
<実施形態1>
 本実施形態1は、本発明に係る電磁波発振装置である。この電磁波発振装置1は、図1~図2に示すように、電源Pからの電圧を直流電圧に変換するコンバータ2と、コンバータ2から印加される直流電圧によって電磁波をパルス発振する電磁波発振器3と、電磁波発振器3からの電磁波エネルギの供給を受けるキャビティCと電磁波発振器3との間で電磁波発振器3から発振される電磁波の進行波及び反射波を検出する検出器8と、検出器8からの検出信号が印加されるとともに電磁波発振器3を制御する制御装置5とを備えている。そして、制御装置5は、検出器8が検出する電圧定在波比が所定値以上となった場合、発振する電磁波の周波数を変動させて発振するように制御している。電磁波発振器3から発振される電磁波は、増幅器4によって所望の出力まで増幅され、分配器6を介して電磁波照射アンテナ7に供給される。分配器6は、制御装置5によって制御される。
<Embodiment 1>
Embodiment 1 is an electromagnetic wave oscillation device according to the present invention. As shown in FIGS. 1 and 2, the electromagnetic wave oscillation device 1 includes a converter 2 that converts a voltage from a power source P into a DC voltage, and an electromagnetic wave oscillator 3 that pulsates an electromagnetic wave using a DC voltage applied from the converter 2. A detector 8 that detects a traveling wave and a reflected wave of an electromagnetic wave oscillated from the electromagnetic wave oscillator 3 between the cavity C that receives the supply of electromagnetic wave energy from the electromagnetic wave oscillator 3 and the electromagnetic wave oscillator 3, and a detection from the detector 8 And a control device 5 that controls the electromagnetic wave oscillator 3 while applying a signal. And the control apparatus 5 is controlled so that it oscillates by changing the frequency of the electromagnetic wave to oscillate, when the voltage standing wave ratio which the detector 8 detects becomes more than predetermined value. The electromagnetic wave oscillated from the electromagnetic wave oscillator 3 is amplified to a desired output by the amplifier 4 and supplied to the electromagnetic wave irradiation antenna 7 through the distributor 6. The distributor 6 is controlled by the control device 5.
 電磁波発振器3への電流の供給は、コンバータ2から平滑回路30を介し、低電圧、例えば5Vや12Vの電流が供給され、増幅器4には電磁波発振器3からの電磁波の増幅の割合によって異なるが、例えば32Vの電圧が印加される。この増幅器4への電圧の印加は連続波で印加するようにしても構わないが、後述する電磁波発振器3の発振パターンに合わせて制御装置5がコンバータ2を制御し出力パターンを変動させるように構成しても構わない。また、コンバータ2は家庭用交流電源を用いるときはAC/DCコンバータ、バッテリ等の直流電源を用いるときはDC/DCコンバータを使用する。 The supply of current to the electromagnetic wave oscillator 3 is supplied from the converter 2 through the smoothing circuit 30 and a low voltage, for example, 5V or 12V, is supplied to the amplifier 4 depending on the amplification rate of the electromagnetic wave from the electromagnetic wave oscillator 3. For example, a voltage of 32V is applied. Although the voltage may be applied to the amplifier 4 by a continuous wave, the control device 5 controls the converter 2 in accordance with the oscillation pattern of the electromagnetic wave oscillator 3 described later to change the output pattern. It doesn't matter. The converter 2 uses an AC / DC converter when a household AC power source is used, and a DC / DC converter when a DC power source such as a battery is used.
 電磁波発振器3は、制御装置5から電磁波発振信号(例えばTTL信号)を制御チップ50が受けると、制御チップ50から所定のデューティー比、パルス時間等を設定したパルス波として又は連続波として電磁波(例えば、2.45GHzのマイクロ波)を出力する。 When the control chip 50 receives an electromagnetic wave oscillation signal (for example, a TTL signal) from the control device 5, the electromagnetic wave oscillator 3 receives an electromagnetic wave (for example, a pulse wave having a predetermined duty ratio, pulse time, or the like set from the control chip 50 or a continuous wave. 2.45 GHz microwave).
 増幅器4は、電磁波発振器3から出力された数W程度の電磁波を数kWまで増幅し、点火装置や電磁波照射アンテナに供給する。 The amplifier 4 amplifies the electromagnetic wave of about several W output from the electromagnetic wave oscillator 3 to several kW, and supplies it to the ignition device and the electromagnetic wave irradiation antenna.
 キャビティCは、電磁波エネルギの供給先が電子レンジ等の加熱装置の場合は加熱室が該当し、電磁波エネルギの供給先が内燃機関の場合には燃焼室が該当する。 The cavity C corresponds to a heating chamber when the supply destination of electromagnetic wave energy is a heating device such as a microwave oven, and corresponds to a combustion chamber when the supply destination of electromagnetic wave energy is an internal combustion engine.
 電磁波発振器3からの電磁波エネルギの供給を受けるキャビティCと電磁波発振器3との間、より具体的には増幅器4と分配器6との間で電磁波発振器3から発振される電磁波の進行波及び反射波を検出する検出器8が配設されている、検出器8は、具体的には線路のインピーダンスを検知するように構成され、例えば、50Ωで発振した(進行波)ときに、線路のインピーダンス(負荷インピーダンス)が100Ωとなった場合、電圧反射係数が1/3でVSWRは2となる。また、線路のインピーダンス50Ωのままであれば、電圧反射係数は0となりVSWRは1となる。 A traveling wave and a reflected wave of an electromagnetic wave oscillated from the electromagnetic wave oscillator 3 between the cavity C receiving the electromagnetic wave energy supplied from the electromagnetic wave oscillator 3 and the electromagnetic wave oscillator 3, more specifically between the amplifier 4 and the distributor 6. Specifically, the detector 8 is configured to detect the impedance of the line. For example, when oscillating at 50Ω (traveling wave), the impedance of the line ( When the load impedance is 100Ω, the voltage reflection coefficient is 1/3 and the VSWR is 2. If the impedance of the line remains 50Ω, the voltage reflection coefficient is 0 and VSWR is 1.
 そして、検出器8からの信号は、図2に示すスミスチャート上では、負荷変動軌跡Lとして表すことができる。図2に示す負荷変動では、VSWRが所定値、例えば、4(図中破線の円内にあり、電圧反射係数が±0.6)を超えておらず電磁波発振器3から所定期間、所定のデューティー比、パルス時間等を設定したパルス波として又は連続波として電磁波が発振される。 The signal from the detector 8 can be represented as a load fluctuation locus L on the Smith chart shown in FIG. In the load fluctuation shown in FIG. 2, VSWR does not exceed a predetermined value, for example, 4 (inside the broken line circle and the voltage reflection coefficient is ± 0.6), and from the electromagnetic wave oscillator 3 for a predetermined period, for a predetermined period. An electromagnetic wave is oscillated as a pulse wave in which a ratio, a pulse time, etc. are set or as a continuous wave.
 次に、図3に示すスミスチャート上では、ポイントAの箇所でVSWRが所定値を上回っている。この場合、制御装置5は、電磁波発振器3に対して、周波数を変動させる。例えば、2.45GHzで設定していた周波数を0.01GHz単位又は0.05GHz単位でSweepさせ、負荷変動軌跡Lが所定値を超えないように調整する。また、電磁波エネルギの供給先が電磁波加熱装置(例えば、電子レンジ)等の場合には、周波数の変動の前に、所定時間、電磁波の発振を停止して再度発振を再開することでVSWRが所定値を超えないようにすることもできる。この場合、1又は複数回の停止の後、VSWRが所定値を上回っているときは、周波数を変動させるように制御する。 Next, on the Smith chart shown in FIG. 3, the VSWR exceeds the predetermined value at the point A. In this case, the control device 5 varies the frequency with respect to the electromagnetic wave oscillator 3. For example, the frequency set at 2.45 GHz is swept in 0.01 GHz units or 0.05 GHz units and adjusted so that the load fluctuation locus L does not exceed a predetermined value. Further, when the electromagnetic wave energy is supplied to an electromagnetic wave heating device (for example, a microwave oven) or the like, the VSWR is predetermined by stopping the oscillation of the electromagnetic wave for a predetermined time and restarting the oscillation again for a predetermined time before the frequency change. It is also possible not to exceed the value. In this case, after one or more stops, when the VSWR exceeds a predetermined value, the frequency is controlled to vary.
 また、VSWRの所定値は、発振する電磁波の出力、キャビティCの形状によって異なり、発振周波数の変動は、VSWRが4以上で設定する他、例えば、電磁波の出力が小さい場合には10に設定して運用することもできる。 Further, the predetermined value of VSWR differs depending on the output of the oscillating electromagnetic wave and the shape of the cavity C, and the fluctuation of the oscillation frequency is set to 10 when the output of the electromagnetic wave is small, in addition to setting VSWR at 4 or more. Can also be operated.
<実施形態1の効果>
 このように、電磁波発振器3からの電磁波エネルギの供給を受けるキャビティCと電磁波発振器3との間で電磁波発振器3から発振される電磁波の進行波及び反射、具体的には線路のインピーダンスを検出し、検出した値により計算されるVSWRの値が所定値を超えるときは、反射波が増大していると判断でき、発振する周波数を変動させてVSWRの値下げ、反射波によるデバイス(増幅器4や電磁波発振器3)の損傷を抑制することができる。
<Effect of Embodiment 1>
In this way, the traveling wave and reflection of the electromagnetic wave oscillated from the electromagnetic wave oscillator 3 between the cavity C receiving the electromagnetic wave energy supplied from the electromagnetic wave oscillator 3 and the electromagnetic wave oscillator 3, specifically detecting the impedance of the line, When the value of VSWR calculated based on the detected value exceeds a predetermined value, it can be determined that the reflected wave is increasing, the oscillating frequency is changed to reduce the value of VSWR, and the device based on the reflected wave (amplifier 4 or electromagnetic wave oscillator). The damage of 3) can be suppressed.
<実施形態1の変形例>
 実施形態1の変形例について説明する。この変形例の電磁波発振装置1は、検出した値により計算されるVSWRの値が所定値を超えた場合でも、図4~図5に示す発振する電磁波の波長をλとしたとき、0.1λ~0.35λの範囲以外では、周波数の変動を行わないようにしている。具体的には、図4に示すように、VSWRの値が所定値(図例では4)を超え発振する電磁波の波長が0.1λ~0.35λの範囲であるクロスハッチングの範囲に負荷変動軌跡が入ったときに制御装置5は、電磁波発振器3に対して、周波数を変動させる。
<Modification of Embodiment 1>
A modification of the first embodiment will be described. The electromagnetic wave oscillating device 1 of this modified example is 0.1λ when the wavelength of the oscillating electromagnetic wave shown in FIGS. 4 to 5 is λ even when the value of VSWR calculated by the detected value exceeds a predetermined value. Outside of the range of ~ 0.35λ, the frequency is not changed. Specifically, as shown in FIG. 4, the load fluctuation is within a cross-hatching range where the wavelength of the electromagnetic wave that oscillates exceeds the predetermined value (4 in the example) and is in the range of 0.1λ to 0.35λ. When the locus enters, the control device 5 changes the frequency with respect to the electromagnetic wave oscillator 3.
 本変形例では、電磁波の位相によって反射波によるデバイスへのダメージが高くなる0.1λ~0.35λの範囲に限定して周波数の変動を行うようにしている。また、実施形態1と同様、電磁波エネルギの供給先が電磁波加熱装置(例えば、電子レンジ)等の場合には、周波数の変動の前に、所定時間、電磁波の発振を停止して再度発振を再開することでVSWRが所定値を超えないようにすることもできる。この場合、1又は複数回の停止の後、VSWRが所定値を上回っているときは、周波数を変動させるように制御する。 In this modification, the frequency is varied only within the range of 0.1λ to 0.35λ in which damage to the device due to the reflected wave increases due to the phase of the electromagnetic wave. Similarly to the first embodiment, when the electromagnetic wave energy is supplied to an electromagnetic wave heating device (for example, a microwave oven) or the like, the oscillation of the electromagnetic wave is stopped for a predetermined time and the oscillation is resumed before the frequency changes. By doing so, it is possible to prevent the VSWR from exceeding a predetermined value. In this case, after one or more stops, when the VSWR exceeds a predetermined value, the frequency is controlled to vary.
 このように、制御することで、VSWRが所定値を超えた場合でも、反射波によってデバイスが破壊されることがない電磁波位相のときには通常の運転を続けるように制御し、装置全体の効率を高めることができる。 Thus, by controlling, even when the VSWR exceeds a predetermined value, the control is performed so that the normal operation is continued when the electromagnetic wave phase is such that the device is not destroyed by the reflected wave, thereby improving the efficiency of the entire apparatus. be able to.
<電磁波加熱装置の電磁波発振装置としての効果>
 本発明の電磁波発振装置1を電磁波加熱装置に電磁波(例えば、2.45GHzのマイクロ波)を供給する電磁波発振装置として使用する場合、上述した効果に加え、以下の効果を有する。
<Effect of electromagnetic wave heating device as electromagnetic wave oscillation device>
When the electromagnetic wave oscillation device 1 of the present invention is used as an electromagnetic wave oscillation device that supplies an electromagnetic wave (for example, 2.45 GHz microwave) to an electromagnetic wave heating device, the following effects are obtained in addition to the above-described effects.
 電磁波加熱装置において、半導体を電磁波発振器に用いるときは複数の電磁波照射アンテナを使って加熱する食材に応じた最適な調理を可能とする一方、反射波によるデバイスの破壊が大きな課題となる。本発明の電磁波発振装置を用いる場合、電圧定在波比(VSWR)を、線路インピーダンスを検出することで算出し、所定値以上となったときに波新周波数を変動させることで反射波によるデバイスの破壊を有効に防止することができる。 In an electromagnetic wave heating apparatus, when a semiconductor is used for an electromagnetic wave oscillator, it is possible to optimally cook according to foods to be heated using a plurality of electromagnetic wave irradiation antennas. When the electromagnetic wave oscillation device of the present invention is used, the voltage standing wave ratio (VSWR) is calculated by detecting the line impedance, and when it becomes a predetermined value or more, the new frequency is changed to change the reflected wave device. Can be effectively prevented.
<実施形態2>
 本実施形態2は、本発明に係る電磁波発振装置を利用した排気浄化装置10に関する。
<Embodiment 2>
The second embodiment relates to an exhaust emission control device 10 using an electromagnetic wave oscillation device according to the present invention.
 この排気浄化装置10は、内燃機関、例えば自動車のエンジンから排出される排ガスを浄化するもので、内燃機関22の排気通路51に設けられた触媒を担持した担体60と、この担体60の排気上流側端面60aに塗布された電磁波吸収体70と、担体60の排気上流側の空間に電磁波照射する電磁波照射アンテナ7とを備えている。電磁波照射アンテナ7は電磁波発振装置1と組み合わせることによって電磁波放射装置9を構成する。電磁波発振装置1は電源Pと電気的に接続される。電磁波照射アンテナ7は、図6に示すように排気通路51を形成する排気管の表面に配設する平面アンテナとすることができる。この排気通路51の担体60上流の空間がキャビティCとなる。 The exhaust gas purification apparatus 10 purifies exhaust gas discharged from an internal combustion engine, for example, an automobile engine. The exhaust gas purification apparatus 10 supports a carrier 60 that supports a catalyst provided in an exhaust passage 51 of the internal combustion engine 22 and an exhaust gas upstream of the carrier 60. An electromagnetic wave absorber 70 applied to the side end face 60 a and an electromagnetic wave irradiation antenna 7 that radiates electromagnetic waves to the space upstream of the exhaust of the carrier 60 are provided. The electromagnetic wave irradiation antenna 7 constitutes an electromagnetic wave radiation device 9 by being combined with the electromagnetic wave oscillation device 1. The electromagnetic wave oscillation device 1 is electrically connected to the power source P. The electromagnetic wave irradiation antenna 7 can be a flat antenna disposed on the surface of the exhaust pipe forming the exhaust passage 51 as shown in FIG. The space upstream of the carrier 60 in the exhaust passage 51 is a cavity C.
 この場合において、電磁波吸収体70を、炭素原子又は炭素を含む分子を主成分とするマイクロコイルを耐熱性粉末素材と混合して構成することができる。電磁波吸収体70としてマイクロコイル、より具体的にはカーボンマイクロコイルを利用することで、カーボンマイクロコイルがもつ、電磁波を吸収して短時間で発熱する特性を利用し、電磁波吸収体70に電磁波(マイクロ波)を吸収させることで、電磁波吸収体70を発熱させ、短時間で触媒を担持した担体を加熱する。なお、本明細書では、カーボンマイクロコイルには、カーボンマイクロコイルよりも線径の小さいカーボンナノコイルも含む。 In this case, the electromagnetic wave absorber 70 can be configured by mixing a microcoil whose main component is a carbon atom or a molecule containing carbon with a heat-resistant powder material. By using a microcoil, more specifically, a carbon microcoil, as the electromagnetic wave absorber 70, the characteristic that the carbon microcoil absorbs electromagnetic waves and generates heat in a short time is used. By absorbing the microwave, the electromagnetic wave absorber 70 generates heat, and the carrier carrying the catalyst is heated in a short time. In the present specification, the carbon microcoil includes a carbon nanocoil having a smaller wire diameter than the carbon microcoil.
 触媒は、本実施形態においては、三元触媒システムの主成分となる活性金属(プラチナ、パラジウム、ロジウム)である。三元触媒システムは、ガソリンを燃料とする自動車の排ガス中に含まれる炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NO)を浄化する。三元触媒は、炭化水素を水と二酸化炭素に、一酸化炭素を二酸化炭素に酸化し、窒素酸化物を窒素に還元する。 In this embodiment, the catalyst is an active metal (platinum, palladium, rhodium) which is a main component of the three-way catalyst system. The three-way catalyst system purifies hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NO x ) contained in the exhaust gas of automobiles using gasoline as fuel. Three-way catalysts oxidize hydrocarbons to water and carbon dioxide, carbon monoxide to carbon dioxide, and reduce nitrogen oxides to nitrogen.
 三元触媒システムは、常温では還元能力が低く、エンジンが冷えた状態で始動した直後では還元能力がほとんどない。そのため、エンジンの始動時に三元触媒システムを適切に作動させるためには、触媒が活性化する適切な温度にまで加熱する必要がある。本実施形態においては、排気浄化装置10が、触媒を担持した担体60をすみやかに加熱して触媒を活性化させる。 The three-way catalyst system has a low reducing ability at room temperature, and almost no reducing ability immediately after the engine is started in a cold state. Therefore, in order to properly operate the three-way catalyst system when the engine is started, it is necessary to heat the catalyst to an appropriate temperature at which the catalyst is activated. In the present embodiment, the exhaust purification device 10 immediately heats the carrier 60 carrying the catalyst to activate the catalyst.
 触媒を担持する担体60は、図6~図7に示すように、外径が排ガス通路を形成するケーシング50の担体60の保持部の内径とほぼ同じに設定され、固定用の部材(図示省略)でケーシング50の内部に固定される。担体60は、その材質を特に限定するものではないが、例えば、ハニカムセラミック構造体で構成されている。 As shown in FIGS. 6 to 7, the carrier 60 carrying the catalyst is set to have an outer diameter that is substantially the same as the inner diameter of the holding portion of the carrier 60 of the casing 50 that forms the exhaust gas passage. ) In the casing 50. The material of the carrier 60 is not particularly limited. For example, the carrier 60 is composed of a honeycomb ceramic structure.
 ハニカム構造体は、マイクロ波を透過可能な絶縁性の材料からなる外形が円柱状の部材である。本実施形態では、ハニカム構造体は、断面格子状の格子部を備えている。ハニカム構造体は、格子部の間の空隙を通して、図6の図中の矢印で示す方向に排ガスが流通可能に構成されている。 The honeycomb structure is a member having a cylindrical outer shape made of an insulating material that can transmit microwaves. In the present embodiment, the honeycomb structure includes a lattice portion having a cross-sectional lattice shape. The honeycomb structure is configured such that the exhaust gas can flow in the direction indicated by the arrow in FIG. 6 through the gaps between the lattice portions.
 ケーシング50は、担体60を収納するために設けられた、概ね筒状の金属製の部材(所謂マフラー)である。ケーシング50は、自動車のエンジンの排気管の一部を構成しており、ケーシング50の内部は、排ガスが流通する排ガス通路を構成している。 The casing 50 is a substantially cylindrical metal member (so-called muffler) provided to accommodate the carrier 60. The casing 50 constitutes a part of an exhaust pipe of an automobile engine, and the inside of the casing 50 constitutes an exhaust gas passage through which exhaust gas flows.
 電磁波吸収体70の担体60端面への塗布の方法について説明する。本明細書における塗布とは、被塗物(本実施形態においては担体60)に塗物(本実施形態においては電磁波吸収体70)の対象面に対して刷毛を使用しての一般的な塗布の他、スプレーガンを使用した塗布、被塗物の入った容器に塗物を浸漬して付着させる等、種々の方法を含む。 A method of applying the electromagnetic wave absorber 70 to the end face of the carrier 60 will be described. Application in this specification means general application using a brush on the target surface of an object to be coated (carrier 60 in the present embodiment) on an object to be coated (electromagnetic wave absorber 70 in the present embodiment). In addition, there are various methods such as application using a spray gun, and dipping and adhering the coating in a container containing the coating.
 ここで、電磁波吸収体70として使用するマイクロコイルは、炭素原子を主成分とするいわゆるカーボンマイクロコイル(以下、CMCという)で構成されている。CMCは、約0.01~1μmのピッチでコイル型に巻かれた形状を持つ微細な炭素繊維である。 Here, the microcoil used as the electromagnetic wave absorber 70 is constituted by a so-called carbon microcoil (hereinafter referred to as CMC) mainly composed of carbon atoms. CMC is a fine carbon fiber having a shape wound in a coil shape at a pitch of about 0.01 to 1 μm.
 担体60の排気上流側端面へのCMCの塗布は、上述したように特に限定するものではなく、例えば、CMCをセラミックス粉末泥しょうに添加し、撹拌して均一に分散させたスラリー状(以下、CMCスラリーという)とした後、0.05mm~1.0mm、好ましくは0.1mm~0.6mm、より好ましくは、0.2mm~0.4mmの厚みで担体の通気孔を閉塞することがないように、塗布対象面上にCMCスラリーを付着するようにして成形する。 The application of CMC to the exhaust upstream side end surface of the carrier 60 is not particularly limited as described above. For example, CMC is added to a ceramic powder slurry and stirred to uniformly disperse the slurry (hereinafter referred to as “CMC”). (Referred to as CMC slurry), and the thickness of 0.05 mm to 1.0 mm, preferably 0.1 mm to 0.6 mm, more preferably 0.2 mm to 0.4 mm, does not block the air vent of the carrier. Thus, it shape | molds so that CMC slurry may adhere on the application | coating object surface.
 そして、一定時間放置又は乾燥炉に入れることで乾燥させ、担体の通気孔を閉塞することがないように、釉薬を塗布し、乾燥させ焼成することで担体端面への塗布を完了する。 Then, it is left to stand for a certain period of time or put in a drying furnace, and the glaze is applied so as not to block the ventilation holes of the carrier, and the coating on the carrier end face is completed by drying and baking.
 また、セラミック系のバインダーと、マイクロコイルとを混合したスラリー溶液から構成され、これを担体60端面の表面に塗布し、ハニカム構造体とともに焼成することによって形成することもできる。 Also, it can be formed by forming a slurry solution in which a ceramic binder and a microcoil are mixed, applying this to the surface of the end face of the carrier 60, and firing together with the honeycomb structure.
 カーボンマイクロコイルは、電磁波を吸収して発熱する特性を持つ。本実施形態では、この特性を利用して電磁波放射装置9から電磁波吸収体70としてのマイクロコイルに電磁波(マイクロ波)を吸収させて、マイクロコイルを発熱させる。そして、マイクロコイルで発生した熱により、担体60の端面が加熱される。 Carbon microcoil has the property of generating heat by absorbing electromagnetic waves. In this embodiment, electromagnetic waves (microwaves) are absorbed from the electromagnetic wave radiation device 9 into the microcoil as the electromagnetic wave absorber 70 using this characteristic, and the microcoil is heated. Then, the end surface of the carrier 60 is heated by the heat generated by the microcoil.
 担体60の端面に塗布する電磁波吸収体70は、端面全体に塗布することもできるが、図2に示すように端面中心部分61のみ、中心より外側の環状部62(担体60の端面半径を3Rとした場合、Rから2Rの範囲)のみ、さらに外側の環状部63(担体60の端面半径を3Rとした場合、2Rから3Rの範囲)のみに塗布するように構成することもできる。本発明者等の実験によれば、環状部63に塗布することが好ましい。また、端面中心部分61に塗布する場合も効果的であることが判った。 The electromagnetic wave absorber 70 applied to the end face of the carrier 60 can be applied to the entire end face. However, as shown in FIG. 2, only the end face center portion 61 has an annular portion 62 outside the center (the end face radius of the carrier 60 is 3R). In this case, the coating can be applied only to the outer annular portion 63 (in the range of 2R to 3R when the end surface radius of the carrier 60 is 3R). According to experiments by the present inventors, it is preferable to apply to the annular portion 63. It was also found effective when applied to the end face center portion 61.
 そして、本実施形態の排気浄化装置10は、内燃機関22及び電磁波照射アンテナ7に電磁波を供給する電磁波発振器3及び電磁波発振器3を制御する制御手段5を備えている。この制御手段5は、実施形態1と同様の制御を行い、電磁波発振を効果的に行うとともに、反射波により半導体デバイスの破損を効果的に防止する。そして、制御手段5は排気浄化装置10の運転制御として、内燃機関22を始動するクラッキング運転前(アイドリング運転前)に、電磁波(マイクロ波)を照射し、担体60端面を一定温度まで昇温した後に、内燃機関22を低速回転で始動し(具体的には、通常のアイドリング用モータよりも低速で回転可能な駆動装置21(例えば駆動モータ)によって、内燃機関22を低速で回転させる。この際の回転数は特に限定するものではないが、例えば10rpm~100rpm程度の低速回転で運転する。)、排気通路51に微量の気体を送り出すようにしている。また、通常のクラッキング運転から開始しても、電磁波吸収体70としてのCMCが照射される電磁波(マイクロ波)によって短時間で加熱され触媒の昇温を可能とする。 The exhaust emission control device 10 of this embodiment includes an electromagnetic wave oscillator 3 that supplies an electromagnetic wave to the internal combustion engine 22 and the electromagnetic wave irradiation antenna 7 and a control unit 5 that controls the electromagnetic wave oscillator 3. This control means 5 performs the same control as in the first embodiment, effectively performs electromagnetic wave oscillation, and effectively prevents the semiconductor device from being damaged by the reflected wave. Then, the control means 5 irradiates electromagnetic waves (microwaves) before the cracking operation (before idling operation) for starting the internal combustion engine 22 as the operation control of the exhaust gas purification apparatus 10, and raises the temperature of the end face of the carrier 60 to a certain temperature. Later, the internal combustion engine 22 is started at a low speed (specifically, the internal combustion engine 22 is rotated at a low speed by a drive device 21 (for example, a drive motor) that can rotate at a lower speed than a normal idling motor. The number of rotations is not particularly limited, but for example, it is operated at a low speed of about 10 to 100 rpm.), A small amount of gas is sent out to the exhaust passage 51. Moreover, even if it starts from a normal cracking driving | operation, it heats in a short time by the electromagnetic wave (microwave) with which CMC as the electromagnetic wave absorber 70 is irradiated, and enables temperature rising of a catalyst.
<電磁波照射アンテナ>
 電磁波を照射する電磁波照射アンテナ7は、図8に示すように、アンテナ本体を構成する導体71と、導体71を覆う絶縁体72(セラミック)とが同軸構造となっており、導体71が絶縁体72から露出する導体71の照射部が、照射する電磁波の波長をλとした場合、(λ/4)×n(nは自然数)となるようにすることが好ましい。この場合、電磁波照射アンテナ7の導体71は、電磁波吸収体70が塗布された箇所の近傍に位置するように配設することが好ましい(本実施形態においては、端面中心部分61に塗布した例を示す)。なお、導体71は図8(b)に示すように、直線上としたり、図8(c)に示すように、円状にしたりすることができる。円状にした場合、端部を絶縁体72の近傍で接続し、円環状とすることもできる。
<Electromagnetic radiation antenna>
As shown in FIG. 8, the electromagnetic wave irradiation antenna 7 for irradiating electromagnetic waves has a coaxial structure in which a conductor 71 constituting the antenna body and an insulator 72 (ceramic) covering the conductor 71 are provided, and the conductor 71 is an insulator. It is preferable that the irradiation portion of the conductor 71 exposed from 72 be (λ / 4) × n (n is a natural number) where λ is the wavelength of the electromagnetic wave to be irradiated. In this case, it is preferable to arrange the conductor 71 of the electromagnetic wave irradiation antenna 7 so as to be positioned in the vicinity of the portion where the electromagnetic wave absorber 70 is applied (in the present embodiment, an example in which the conductor 71 is applied to the end surface center portion 61). Show). The conductor 71 can be a straight line as shown in FIG. 8 (b) or a circular shape as shown in FIG. 8 (c). In the case of a circular shape, the ends may be connected in the vicinity of the insulator 72 to form an annular shape.
 本実施形態においては、排気浄化装置10の電磁波放射装置9の電磁波によって電磁波吸収体70が昇温することで担体60が加熱されるが、この加熱温度としては、触媒が活性化する温度、例えば、摂氏300~400度まで触媒を加熱するように構成されている。そして、活性温度に到達した触媒により、排ガス中に含まれる炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)が分解される。クリーンとなった排ガスは、下流側に配置した排気通路(図示省略)を流通して大気へと放出される。 In the present embodiment, the carrier 60 is heated by raising the temperature of the electromagnetic wave absorber 70 by the electromagnetic wave of the electromagnetic wave emission device 9 of the exhaust gas purification device 10. The heating temperature is a temperature at which the catalyst is activated, for example, , Configured to heat the catalyst to 300-400 degrees Celsius. Then, hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) contained in the exhaust gas are decomposed by the catalyst that has reached the activation temperature. The cleaned exhaust gas flows through an exhaust passage (not shown) arranged on the downstream side and is released to the atmosphere.
 以上説明したように、本発明の電磁波発振装置は、電磁波照射アンテナの電磁波発振源として利用するときは電子レンジに代表される誘電加熱を利用した加熱装置に好適に用いることができる。また、自動車エンジン等の内燃機関の点火プラグによるプラズマに電磁波を照射する電磁波照射アンテナの電磁波発振源として利用するときは、点火プラグによるプラズマを維持拡大する用途に用いることもできる。また、電磁波波吸収体を利用した加熱装置や排気浄化装置にマイクロ波を供給する装置に使用する場合や、電磁波を利用した生ゴミ処理機等にも好適に用いることができる。 As described above, the electromagnetic wave oscillation device of the present invention can be suitably used for a heating device using dielectric heating typified by a microwave oven when used as an electromagnetic wave oscillation source of an electromagnetic wave irradiation antenna. Further, when used as an electromagnetic wave oscillation source of an electromagnetic wave irradiation antenna that irradiates plasma by an ignition plug of an internal combustion engine such as an automobile engine, it can also be used for maintaining and expanding the plasma by the ignition plug. Further, it can be suitably used for a heating device using an electromagnetic wave absorber or a device for supplying microwaves to an exhaust purification device, a garbage disposal machine using electromagnetic waves, or the like.
 1  電磁波発振装置
 2  コンバータ
 3  電磁波発振器
 5  制御装置
 8  検出器
 P  電源
DESCRIPTION OF SYMBOLS 1 Electromagnetic oscillation apparatus 2 Converter 3 Electromagnetic wave oscillator 5 Control apparatus 8 Detector P Power supply

Claims (2)

  1.  電源から印加される電圧によって電磁波を発振する電磁波発振器と、
     該電磁波発振器からの電磁波エネルギの供給を受けるキャビティと電磁波発振器との間で電磁波発振器から発振される電磁波の進行波及び反射波を検出する検出器と、
     該検出器からの検出信号が印加されるとともに前記電磁波発振器を制御する制御装置とを備え、
     該制御装置は、前記検出器が検出する電圧定在波比が所定値以上となった場合、発振する電磁波の周波数を変動させて発振するようにした電磁波発振装置。
    An electromagnetic wave oscillator that oscillates an electromagnetic wave by a voltage applied from a power supply;
    A detector that detects a traveling wave and a reflected wave of an electromagnetic wave oscillated from the electromagnetic wave oscillator between the electromagnetic wave oscillator and a cavity that receives supply of electromagnetic wave energy from the electromagnetic wave oscillator;
    A control device for applying a detection signal from the detector and controlling the electromagnetic wave oscillator;
    The control device is an electromagnetic wave oscillation device configured to oscillate by changing a frequency of an oscillating electromagnetic wave when a voltage standing wave ratio detected by the detector becomes a predetermined value or more.
  2.  前記制御装置は、前記検出器が検出する電圧定在波比が所定値以上となり、かつ、発振する電磁波の波長をλとしたとき発振する電磁波の位相が0.1λ~0.35λの範囲にあるときに発振する電磁波の周波数を変動させて発振する請求項1に記載の電磁波発振装置。 In the control device, the voltage standing wave ratio detected by the detector is equal to or greater than a predetermined value, and the phase of the oscillating electromagnetic wave is in the range of 0.1λ to 0.35λ when the wavelength of the oscillating electromagnetic wave is λ. The electromagnetic wave oscillation device according to claim 1, wherein the electromagnetic wave oscillation device oscillates by varying the frequency of the electromagnetic wave oscillating at a certain time.
PCT/JP2017/021887 2016-06-14 2017-06-14 Electromagnetic wave oscillation device WO2017217438A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018523950A JP6944666B2 (en) 2016-06-14 2017-06-14 Electromagnetic wave oscillator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-117991 2016-06-14
JP2016117991 2016-06-14

Publications (1)

Publication Number Publication Date
WO2017217438A1 true WO2017217438A1 (en) 2017-12-21

Family

ID=60663715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021887 WO2017217438A1 (en) 2016-06-14 2017-06-14 Electromagnetic wave oscillation device

Country Status (2)

Country Link
JP (1) JP6944666B2 (en)
WO (1) WO2017217438A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007777A2 (en) * 2006-07-14 2008-01-17 Sunny Engineering Co., Ltd Microwave induction heating device
WO2011004561A1 (en) * 2009-07-10 2011-01-13 パナソニック株式会社 Microwave heating device and microwave heating control method
JP2011070867A (en) * 2009-09-25 2011-04-07 Toshiba Hokuto Electronics Corp Microwave oven and magnetron for microwave oven

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007777A2 (en) * 2006-07-14 2008-01-17 Sunny Engineering Co., Ltd Microwave induction heating device
WO2011004561A1 (en) * 2009-07-10 2011-01-13 パナソニック株式会社 Microwave heating device and microwave heating control method
JP2011070867A (en) * 2009-09-25 2011-04-07 Toshiba Hokuto Electronics Corp Microwave oven and magnetron for microwave oven

Also Published As

Publication number Publication date
JPWO2017217438A1 (en) 2019-11-21
JP6944666B2 (en) 2021-10-06

Similar Documents

Publication Publication Date Title
JP5311105B2 (en) Exhaust gas purification equipment
JP2010013945A (en) Exhaust emission control device
JP6669116B2 (en) Exhaust purification catalyst heating device
JP2000516314A (en) Single mode cavity resonator
JP2009036199A5 (en)
JP6142144B2 (en) Heating device
US20090294440A1 (en) System And Method For Drying Of Ceramic Greenware
JP2006150211A (en) Exhaust gas cleaning apparatus and its control process
EP2892307A1 (en) Plasma generation device
WO2017217437A1 (en) Electromagnetic wave oscillation device
JP2019173600A (en) Exhaust emission control device for internal combustion engine
WO2017217438A1 (en) Electromagnetic wave oscillation device
JP5328521B2 (en) Control method for spark ignition internal combustion engine
CN211448802U (en) Automobile exhaust multi-effect purification device based on microwave heat and non-heat effect catalysis
WO2011052020A1 (en) Exhaust air purification device
JP6051371B2 (en) Plasma generator
CN109424401B (en) Apparatus and method for gaseous emission treatment using induction heating with movable thermal profile
JPH06154623A (en) High frequency induction heater for spirally wound body
JPH10288027A (en) High frequency heating catalyst
JP2017141803A (en) Exhaust emission control device of internal combustion engine
JP2000104538A (en) Exhaust emission control system
JP5282727B2 (en) Exhaust purification device
JPH0471620A (en) High-frequency heating exhaust gas purifier
JPH0459027A (en) Exhaust gas cleaning device by high frequency heating
JPH07217425A (en) Exhaust emission control device for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17813333

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018523950

Country of ref document: JP

Kind code of ref document: A