WO2017217321A1 - Glass rolling body - Google Patents

Glass rolling body Download PDF

Info

Publication number
WO2017217321A1
WO2017217321A1 PCT/JP2017/021378 JP2017021378W WO2017217321A1 WO 2017217321 A1 WO2017217321 A1 WO 2017217321A1 JP 2017021378 W JP2017021378 W JP 2017021378W WO 2017217321 A1 WO2017217321 A1 WO 2017217321A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
rolling element
less
glass rolling
ion exchange
Prior art date
Application number
PCT/JP2017/021378
Other languages
French (fr)
Japanese (ja)
Inventor
田中 敦
浩佑 川本
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2018523859A priority Critical patent/JP6959584B2/en
Publication of WO2017217321A1 publication Critical patent/WO2017217321A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles

Definitions

  • the glass rolling element of the present invention relates to, for example, a spherical glass rolling element positioned between an inner ring and an outer ring of a bearing, and particularly relates to a glass rolling element made of chemically strengthened glass that is lightweight, high in strength, and excellent in manufacturing cost.
  • Stainless steel is widely used for rolling elements incorporated in bearing devices. Stainless steel rolling elements are advantageous in that they are easy to process and can be mass-produced at low cost. On the other hand, since the rolling element made of stainless steel has conductivity, it has a demerit that it cannot be used for applications requiring insulation (for example, a rolling element incorporated in a bearing device of a fan motor).
  • Non-oxide ceramics such as silicon nitride are assumed as rolling elements that can be used for applications requiring insulation, but non-oxide ceramics are expensive and difficult to process into a spherical shape (patents) Reference 1).
  • the present invention has been made in view of the above circumstances, and its technical problem is to create a rolling element that can be manufactured at low cost and has high workability and insulation.
  • the present inventor has found that the above technical problem can be solved by adopting a glass rolling element and subjecting the glass rolling element to ion exchange treatment, and proposes the present invention.
  • the glass rolling element of the present invention is characterized by having a dimensional tolerance within 0.5% and having a compressive stress layer by ion exchange on the surface.
  • the “diameter dimensional tolerance” is a dimensional tolerance with respect to the average diameter, and can be measured by, for example, a known micrometer.
  • Glass is an insulating material, and has good moldability and workability. Therefore, the glass rolling element can be processed easily and inexpensively so that the dimensional tolerance of the diameter is within 0.5%.
  • glass since glass is a brittle material, when it is used for a rolling element incorporated in a bearing device or the like, it may be damaged under severe conditions such as high-speed rotation, high friction, and high load. Then, the glass rolling element of this invention has the compressive-stress layer by ion exchange on the surface. That is, the glass rolling element of the present invention is characterized by being chemically strengthened glass. Thereby, since mechanical strength improves, even if it uses on severe conditions, sufficient lifetime can be ensured.
  • the glass rolling element of the present invention preferably has a polished surface. If it does in this way, it will become easy to reduce the dimensional tolerance of the diameter of a glass rolling element.
  • the glass rolling element of the present invention preferably has a chemically etched surface. In this way, polishing scratches and the like on the surface when processing into a spherical shape can be reduced or eliminated. As a result, even when used under severe conditions, the glass rolling element is difficult to break.
  • the glass rolling element of the present invention preferably has a surface roughness Ra of 3 nm or less. If it does in this way, even when it uses it on severe conditions, it will become difficult to break a glass rolling element.
  • the “surface roughness Ra” can be measured by a method based on JIS B0601: 2001 with the glass rolling element fixed with a jig or the like.
  • the glass rolling element of the present invention preferably has a compressive stress value CS of the compressive stress layer of 300 MPa or more and a stress depth DOL of 30 ⁇ m or more.
  • CS and DOL are measured as follows.
  • a glass plate having the same composition and the same heat history as the glass rolling element is prepared.
  • the glass plate is subjected to ion exchange treatment under the same conditions as the glass rolling element to obtain a glass plate having the same surface composition profile as the glass rolling element.
  • the surface composition profile can be measured by using a standardless quantitative analysis of the ZAF method by SEM-EDX (for example, S4300-SE manufactured by Hitachi High-Technologies, EX-250 manufactured by Horiba, Ltd.).
  • a heat history can be arrange
  • the cross section of the glass plate was observed with a surface stress meter (for example, FSM-6000 manufactured by Orihara Seisakusho Co., Ltd.), and the compressive stress value CSp of the surface stress layer of the glass plate was determined from the number of observed interference fringes and their spacing.
  • the stress depth DOLp is calculated.
  • the obtained CSp is evaluated as CS of the glass rolling element, and DOLp is evaluated as DOL of the glass rolling element.
  • the glass rolling element of the present invention preferably contains, as a glass composition, 45 to 75% of SiO 2 , 10 to 30% of Al 2 O 3 and 5 to 25% of Na 2 O in terms of mass%. If it does in this way, since ion exchange performance improves, the mechanical strength of a glass rolling element can be raised.
  • the glass rolling element of the present invention preferably has a liquidus viscosity of 10 4.0 dPa ⁇ s or more.
  • liquidus viscosity refers to the viscosity of the glass at the liquidus temperature.
  • Liquid phase temperature means that after passing through a standard sieve 30 mesh (a sieve opening of 500 ⁇ m), glass powder remaining in a 50 mesh (a sieve opening of 300 ⁇ m) is placed in a platinum boat and kept in a temperature gradient furnace for 24 hours. Refers to the temperature at which crystals precipitate. If it does in this way, it will become easy to form a glass rolling element with high dimensional accuracy.
  • the glass rolling element of this invention has the compressive-stress layer by ion exchange on the surface.
  • a method for forming a compressive stress layer by ion exchange a method in which a glass rolling element is immersed in an ion exchange solution and alkali ions having a large ion radius are introduced into the surface of the glass rolling element is preferable.
  • alkali ions having a large ion radius are introduced into the surface of the glass rolling element.
  • KNO 3 molten salt It is preferable to ion-exchange K ions and the Na component in the glass rolling element to form a compressive stress layer on the surface of the glass rolling element. Thereby, the mechanical strength of a glass rolling element can be raised in a short time.
  • the dimensional tolerance of the diameter is within 0.5%, preferably within 0.1%, within 0.05%, within 0.02%, within 0.01%, particularly preferably within 0.1%. It is within 005%.
  • the dimensional tolerance of the diameter is preferably within 10 ⁇ m, within 5 ⁇ m, within 3 ⁇ m, within 2 ⁇ m, within 1 ⁇ m, within 0.5 ⁇ m, and particularly within 0.1 ⁇ m. If the dimensional tolerance of the diameter is too large, the driving operation or the like becomes unstable, making it difficult to use as a rolling element.
  • the surface is preferably a polished surface.
  • the polishing step is preferably performed before the ion exchange treatment and after the ion exchange treatment. This makes it possible to produce a glass rolling element with high mechanical strength and dimensional accuracy.
  • the polishing treatment is preferably performed while rotating the glass rolling element. This facilitates reducing the dimensional tolerance of the diameter.
  • the surface is preferably a chemically etched surface.
  • the chemical etching treatment is preferably performed while rotating or swinging the glass rolling element. In this way, an undue increase in the dimensional tolerance of the diameter can be prevented.
  • the chemical etching process is preferably performed before the ion exchange process. Further, it is preferable to use a hydrofluoric acid-containing aqueous solution as the chemical etching solution.
  • the surface roughness Ra of the surface is preferably 3 nm or less, 1 nm or less, 0.5 nm or less, 0.4 nm or less, 0.3 nm or less, particularly 0.2 nm or less. If the surface roughness Ra is too large, the glass rolling element is easily damaged under severe conditions such as high-speed rotation, high friction, and high load.
  • the glass rolling element of the present invention preferably contains, as a glass composition, 45 to 75% of SiO 2 , 10 to 30% of Al 2 O 3 and 5 to 25% of Na 2 O in terms of mass%.
  • the reason for limiting the content range of each component as described above will be described below.
  • the following% display points out the mass%.
  • SiO 2 is a component that forms a glass network, and its content is preferably 45 to 75%, 45 to 70%, 45 to 65%, 45 to 63%, particularly 48 to 61%.
  • content of SiO 2 is too large, meltability, moldability, thermal expansion coefficient is liable to lower.
  • the content of SiO 2 is too small, it becomes difficult to vitrify and the thermal expansion coefficient becomes unreasonably high, so that the thermal shock resistance tends to decrease.
  • Al 2 O 3 is a component that increases ion exchange performance, strain point, and Young's modulus. However, when the content of Al 2 O 3 is too large, devitrification crystal glass becomes easy to precipitate, hardly molded into a desired shape. Further, the meltability and the coefficient of thermal expansion are likely to decrease. Therefore, the preferred upper limit range of Al 2 O 3 is 30% or less, 28% or less, 24% or less, 23% or less, 22% or less, 21.5% or less, particularly 21% or less. 10% or more, 12% or more, 13% or more, 15% or more, 17% or more, particularly 18% or more.
  • Na 2 O is an ion exchange component and a component that improves meltability and moldability. It is also a component that improves devitrification resistance.
  • the content of Na 2 O is preferably 5 to 25%, 10 to 25%, 11 to 22%, 12 to 20%, 13 to 19%, particularly 14 to 18%.
  • P 2 O 5 is a component that enhances the ion exchange performance, and particularly a component that increases the stress depth DOL.
  • increasing the amount of Al 2 O 3 is effective for improving the ion exchange performance.
  • the content of Al 2 O 3 is too large, the devitrification resistance tends to decrease. Therefore, there is a limit to the increase in Al 2 O 3 .
  • P 2 O 5 is introduced, even if the amount of Al 2 O 3 is increased, it becomes difficult for the glass to devitrify, so that the allowable amount of introduction of Al 2 O 3 can be increased. As a result, ion exchange performance can be dramatically improved.
  • the preferable upper limit range of P 2 O 5 is 10% or less, 9% or less, 8% or less, 7% or less, particularly 6% or less, and the preferable lower limit range is 0.1% or more. 0.5% or more, 1% or more, 2% or more, 3% or more, particularly 4% or more.
  • B 2 O 3 is a component that lowers the liquidus temperature, high-temperature viscosity, and density, and is a component that increases the ion exchange performance, particularly the compressive stress value CS. There is a risk that burns will occur or water resistance, liquid phase viscosity, and stress depth DOL will decrease. Therefore, the content of B 2 O 3 is preferably 0 to 6%, 0 to 4%, 0 to 3%, 0 to 2%, particularly 0 to less than 1%.
  • Li 2 O is an ion exchange component and a component that lowers the high-temperature viscosity to improve the meltability and moldability. Furthermore, it is a component that increases the Young's modulus. However, when the content of Li 2 O is too large, and decreases the liquidus viscosity, it tends glass devitrified. Further, the low-temperature viscosity is excessively lowered, and stress relaxation is likely to occur during the ion exchange treatment, and the compressive stress value CS may be lowered. Therefore, the content of Li 2 O is preferably 0 to 10%, 0 to 8%, 0 to 5%, 0 to less than 3%, 0 to 2%, 0 to less than 1%, 0 to 0.1%. Less than, in particular, 0 to less than 0.01%.
  • K 2 O is a component that promotes ion exchange, and is a component that has a high effect of increasing the stress depth DOL, particularly among alkali metal oxides. Further, it is a component that lowers the high-temperature viscosity to increase meltability and moldability, and improve devitrification resistance.
  • the content of K 2 O is too large, the thermal expansion coefficient becomes unreasonably high, the thermal shock resistance is lowered, and it is difficult to match the thermal expansion coefficient with the surrounding materials. Furthermore, there is a possibility that the strain point is excessively lowered, the balance of the glass composition is lost, and the devitrification resistance is reduced.
  • the preferable upper limit range of K 2 O is 10% or less, 9% or less, 8% or less, 7% or less, particularly 6% or less, and the preferable lower limit range is 0% or more, 0.5% or more, 1% or more. 2% or more, 3% or more, particularly 4% or more.
  • the preferred upper limit range of Li 2 O + Na 2 O + K 2 O is 30% or less, 25% or less, particularly 22% or less, and the preferred lower limit range is 8% or more, 10% or more, 13% or more, particularly 15% or more. is there. If the content of Li 2 O + Na 2 O + K 2 O is too large, the devitrification resistance is lowered, the thermal expansion coefficient is unduly high, the thermal shock resistance is lowered, and the thermal expansion coefficient matches with the surrounding materials. It becomes difficult to do. On the other hand, when the content of Li 2 O + Na 2 O + K 2 O is too small, the ion exchange performance and meltability is liable to decrease. “Li 2 O + Na 2 O + K 2 O” is the total amount of Li 2 O, Na 2 O and K 2 O.
  • the molar ratio K 2 O / Na 2 O is preferably 0 to 1, 0 to 0.8, 0.05 to 0.7, 0.1 to 0.5, 0.15 to 0.4, 0.15. To 0.3, in particular 0.15 to 0.25. In this way, the compressive stress value CS and the stress depth DOL are likely to increase in a short time.
  • K 2 O / Na 2 O is a value obtained by dividing the content of K 2 O by the content of Na 2 O.
  • the content of MgO + CaO + SrO + BaO is preferably 0 to 15%, 0 to 9%, 0 to 6%, particularly 0 to 5%.
  • MgO + CaO + SrO + BaO is the total amount of MgO, CaO, SrO and BaO.
  • MgO and CaO are components that lower high-temperature viscosity to increase meltability and moldability, and increase strain point and Young's modulus.
  • MgO and CaO are highly effective in increasing ion exchange performance. It is an ingredient.
  • the content of MgO is preferably 10% or less, 8% or less, 6% or less, 5% or less, particularly 4% or less.
  • the content of CaO is preferably 8% or less, 6% or less, 4% or less, 2% or less, particularly less than 1%.
  • SrO and BaO are components that lower the high-temperature viscosity, increase the meltability and moldability, and increase the strain point and Young's modulus.
  • the content of SrO is preferably 3% or less, 2% or less, 1% or less, 0.5% or less, and particularly less than 0.1%.
  • the content of BaO is preferably 3% or less, 2% or less, 1% or less, 0.5% or less, particularly less than 0.1%.
  • the mass ratio (MgO + CaO + SrO + BaO) / (Li 2 O + Na 2 O + K 2 O) is preferably 0.5 or less, 0.4 or less, particularly 0.3 or less, in order to increase the devitrification resistance.
  • “(MgO + CaO + SrO + BaO) / (Li 2 O + Na 2 O + K 2 O)” is a value obtained by dividing the total amount of MgO, CaO, SrO and BaO by the total amount of Li 2 O, Na 2 O and K 2 O. .
  • ZnO is a component that enhances ion exchange performance. Moreover, it is a component which reduces high temperature viscosity, without reducing low temperature viscosity. However, when ZnO is increased in the presence of P 2 O 5 , the glass is likely to undergo phase separation or devitrification. Therefore, the ZnO content is preferably 8% or less, 4% or less, 1% or less, 0.1% or less, and particularly 0.01% or less.
  • ZrO 2 is a component that increases ion exchange performance, Young's modulus, and strain point, and is a component that decreases high temperature viscosity. However, when the content of ZrO 2 increases, the devitrification resistance tends to be lowered. Therefore, the content of ZrO 2 is preferably 0 to 10%, 0 to 5%, 0 to 3%, 0 to less than 1%, 0 to 0.4%, particularly 0 to less than 0.1%.
  • TiO 2 is a component that enhances ion exchange performance and is a component that reduces high temperature viscosity.
  • the content of TiO 2 is preferably 0 to 4%, 0 to less than 1%, 0 to less than 0.1%, particularly 0 to less than 0.01%.
  • SnO 2 is a component that increases the ion exchange performance, particularly the compressive stress value CS.
  • the SnO 2 content is preferably 0 to 3%, 0.01 to 2%, 0.05 to 1%, and particularly 0.1 to 0.5%.
  • the CeO 2 content is preferably less than 0.1%, particularly preferably less than 0.01%, in order to increase the transmittance.
  • the content of F is preferably less than 0.1%, particularly preferably less than 0.01%, in order to suppress stress relaxation due to a decrease in low-temperature viscosity.
  • Transition metal oxides such as CoO and NiO are components that color glass. Therefore, the content of the transition metal oxide is preferably 0.5% or less, 0.1% or less, particularly 0.05% or less.
  • Rare earth oxides such as Nb 2 O 5 and La 2 O 3 are components that increase the Young's modulus. However, when the content of the rare earth oxide increases, the raw material cost increases, and the devitrification resistance tends to decrease. Therefore, the rare earth oxide content is preferably 3% or less, 2% or less, less than 1%, 0.5% or less, particularly 0.1% or less.
  • the contents of PbO and Bi 2 O 3 are each preferably less than 0.1% in consideration of the environment.
  • the glass rolling element of the present invention has a compressive stress layer by ion exchange on the surface.
  • the compressive stress value CS of the compressive stress layer is preferably 300 MPa or more, 600 MPa or more, 800 MPa or more, 900 MPa or more, 1000 MPa or more, particularly 1100 MPa or more.
  • the larger the compressive stress value CS the higher the mechanical strength of the glass rolling element.
  • the compressive stress value CS of the compressive stress layer is preferably 2500 MPa or less. Note that the compression stress value CS can be increased by shortening the ion exchange time or lowering the ion exchange temperature.
  • the stress depth DOL is preferably 30 ⁇ m or more, 40 ⁇ m or more, 50 ⁇ m or more, 60 ⁇ m or more, particularly 70 ⁇ m or more.
  • the greater the stress depth DOL the more difficult the glass rolling element breaks even if the surface of the glass rolling element is deeply damaged due to wear or foreign matter during high-speed rotation.
  • the stress depth DOL is preferably 500 ⁇ m or less, 300 ⁇ m or less, 200 ⁇ m or less, particularly 150 ⁇ m or less. Note that the stress depth DOL can be increased by increasing the ion exchange time or increasing the ion exchange temperature.
  • the internal tensile stress value CT is preferably 200 MPa or less, 150 MPa or less, 100 MPa or less, particularly 50 MPa or less.
  • the “internal tensile stress value CT” refers to a value calculated by the following mathematical formula 1. The smaller the internal tensile stress value CT, the harder the glass rolling element is damaged by internal defects. However, when the internal tensile stress value CT becomes extremely small, the compressive stress value CS and the stress depth DOL decrease, and the glass The mechanical strength of the rolling element is reduced. Therefore, the internal tensile stress value CT is preferably 1 MPa or more, 2 MPa or more, 3 MPa or more, 5 MPa or more, 10 MPa or more, particularly 15 MPa or more.
  • CT CS ⁇ DOL / (t ⁇ 2 ⁇ DOL) t: Diameter (plate thickness) CT: Internal tensile stress value CS: Compressive stress value DOL: Stress depth
  • the thermal expansion coefficient in the temperature range of 30 to 380 ° C. is preferably 70 ⁇ 10 ⁇ 7 to 110 ⁇ 10 ⁇ 7 / ° C., 75 ⁇ 10 ⁇ 7 to 110 ⁇ 10 ⁇ 7 / ° C., 80 ⁇ 10 ⁇ 7 to 110 ⁇ 10 ⁇ 7 / ° C., particularly 85 ⁇ 10 ⁇ 7 to 110 ⁇ 10 ⁇ 7 / ° C.
  • the coefficient of thermal expansion is regulated as described above, even if the surrounding metal member expands due to heat generated during high-speed rotation, it can be driven properly.
  • the “thermal expansion coefficient” is an average value measured with a dilatometer in a temperature range of 30 to 380 ° C.
  • the strain point is preferably 520 ° C. or higher, 550 ° C. or higher, 560 ° C. or higher, particularly 570 ° C. or higher.
  • the higher the strain point the better the heat resistance.
  • stress relaxation is less likely to occur during the ion exchange process, and thus it is easy to ensure a high compressive stress value CS.
  • the temperature corresponding to the high temperature viscosity of 10 2.5 dPa ⁇ s is preferably 1650 ° C. or lower, 1600 ° C. or lower, 1580 ° C. or lower, 1550 ° C. or lower, 1540 ° C. or lower, especially 1530 ° C. or lower.
  • the lower the temperature corresponding to the high temperature viscosity of 10 2.5 dPa ⁇ s the more the glass can be melted at a lower temperature. Therefore, as the temperature corresponding to the high temperature viscosity of 10 2.5 dPa ⁇ s is lower, the burden on the glass production equipment such as the melting kiln is reduced, and the bubble quality of the glass rolling element can be improved.
  • Liquid phase temperature is preferably 1200 ° C. or lower, 1150 ° C. or lower, 1130 ° C. or lower, 1110 ° C. or lower, 1090 ° C. or lower, particularly 1070 ° C. or lower. If the liquidus temperature is too high, it becomes difficult to form a spherical shape.
  • Liquidus viscosity preferably of 10 4.0 dPa ⁇ s or more, 10 4.3 dPa ⁇ s or more, 10 4.5 dPa ⁇ s or more, 10 5.0 dPa ⁇ s or more, particularly 10 5.4 dPa ⁇ s or more. If the liquid phase viscosity is too low, it becomes difficult to form a spherical shape. If the liquid phase temperature is 1200 ° C. or lower and the liquid phase viscosity is 10 4.0 dPa ⁇ s or higher, it can be formed into a spherical shape by a marble molding method or the like.
  • the diameter is preferably 100 mm or less, 80 mm or less, 50 mm or less, particularly 30 mm or less, and preferably 1 mm or more, 2 mm or more, 4 mm or more, particularly 5 mm or more. If it does in this way, it will become suitable for a rolling element built in a bearing device etc.
  • the glass rolling element of the present invention can be produced, for example, as follows. First, a glass batch prepared to have a desired glass composition is put into a continuous melting furnace, heated and melted at 1500 to 1600 ° C. to obtain a molten glass, and then a molding apparatus through a clarification container and a stirring container. The product is then formed into a spherical shape and slowly cooled. Next, polishing is performed while rotating the surface of the obtained glass rolling element to reduce the dimensional tolerance of the diameter. Subsequently, the glass rolling element is immersed in an ion exchange solution to form a compressive stress layer on the surface.
  • the molding method it is preferable to adopt a marble forming method and a droplet forming method. It is also preferable to adopt a pressing method. If it does in this way, it will become easy to form a glass rolling element with high dimensional accuracy. As a result, the dimensional tolerance of the diameter of the glass rolling element can be reduced even with a small amount of surface polishing.
  • a step of chemically etching the surface of the glass rolling element may be provided.
  • the chemical etching is preferably performed while rotating or swinging the glass rolling element. In this way, since the etching depth of the surface layer of the glass rolling element is made uniform, the dimensional tolerance of the diameter can be reduced.
  • the ion exchange treatment can be performed, for example, by immersing the glass rolling element in a molten potassium nitrate at 360 to 550 ° C. for 1 to 100 hours. From the viewpoint of production efficiency, it is preferable that a plurality of glass rolling elements are subjected to ion exchange treatment at the same time. In that case, a metal jig having a mesh width smaller than the diameter of the glass rolling elements, etc. so that the glass rolling elements do not contact each other More preferably, the plurality of glass rolling elements are arranged at equal intervals, and the ion exchange treatment is performed in a state where the jig is laminated.
  • the ion exchange treatment is preferably performed while rotating or swinging the glass rolling element. In this way, since the glass composition of the surface layer of the glass rolling element is made uniform, the dimensional tolerance of the diameter can be reduced.
  • the ion exchange process may be performed a plurality of times.
  • the distribution curve of the K ion concentration in the depth direction can be bent, and the tensile stress accumulated inside is increased while increasing the compressive stress value CS and the stress depth DOL of the compressive stress layer. The total amount of stress can be reduced.
  • a heat treatment step may be provided between the ion exchange treatments.
  • the K ion concentration distribution curve in the depth direction can be bent by the same potassium nitrate molten salt. Furthermore, the time for the first ion exchange treatment can be shortened.
  • a polishing step for polishing the surface of the glass rolling element may be provided in order to reduce the dimensional tolerance of the diameter.
  • Table 1 shows the glass composition and characteristics of Examples (Nos. 1 to 5) of the present invention.
  • each sample shown in Table 1 was produced as follows. First, the glass raw material was prepared so that it might become the glass composition in a table
  • the density is a value measured by the well-known Archimedes method.
  • strain point Ps and the annealing point Ta are values measured by the method of ASTM C336.
  • the softening point Ts is a value measured by the method of ASTM C338.
  • the thermal expansion coefficient is an average value measured with a dilatometer in a temperature range of 30 to 380 ° C.
  • the liquid phase temperature TL passes through a standard sieve 30 mesh (a sieve opening of 500 ⁇ m), and the glass powder remaining in a 50 mesh (a sieve opening of 300 ⁇ m) is put in a platinum boat and kept in a temperature gradient furnace for 24 hours to obtain a crystal. It is the value which measured the temperature which deposits.
  • Liquid phase viscosity log ⁇ TL indicates the viscosity of each glass at the liquidus temperature.
  • ion exchange treatment was performed.
  • the ion exchange treatment was performed by immersing each glass plate in a molten potassium nitrate at 440 ° C. for 6 hours. Similarly, the ion exchange treatment was performed while rotating each glass rolling element. After the ion exchange treatment, the surface of each glass plate is washed, and the compressive stress value and stress of the compressive stress layer are determined from the number of interference fringes observed using a surface stress meter (FSM-6000 manufactured by Orihara Seisakusho Co., Ltd.). Depth was calculated. In the calculation, the refractive index of each glass plate was 1.52, and the optical elastic constant was 28 [(nm / cm) / MPa].
  • the compression stress value of the glass plate is the compression stress value CS of the glass rolling element
  • the stress depth of the glass plate is the stress of the glass rolling element.
  • the stress depth was DOL.
  • the glass composition of the surface layer of a glass rolling element changes microscopically before and after an ion exchange process, when it sees as the whole glass rolling element, the fluctuation
  • the diameter and its dimensional tolerance are values measured using a micrometer for each glass rolling element.
  • sample no. Nos. 1 to 5 are considered to be suitable as rolling elements incorporated in a bearing device or the like because the dimensional tolerance of the diameter is good and the compressive stress value CS and the stress depth DOL of the compressive stress layer are large.

Abstract

This glass rolling body is characterized by having a diameter dimensional tolerance of within 0.5%, and by having on the surface a compression stress layer formed through ion-exchange.

Description

ガラス転動体Glass rolling element
 本発明のガラス転動体は、例えば、ベアリングの内輪と外輪の間に位置する球形状のガラス転動体に関し、特に軽量、高強度で製造コストに優れる化学強化ガラスからなるガラス転動体に関する。 The glass rolling element of the present invention relates to, for example, a spherical glass rolling element positioned between an inner ring and an outer ring of a bearing, and particularly relates to a glass rolling element made of chemically strengthened glass that is lightweight, high in strength, and excellent in manufacturing cost.
 軸受装置等に組み込まれる転動体には、ステンレスが広く使用されている。ステンレス製の転動体は、加工し易く、安価に大量生産が可能であるというメリットを有する。その一方で、ステンレス製の転動体は、導電性を有するため、絶縁性が要求される用途(例えば、ファンモーターの軸受装置に組み込まれる転動体)には使用できないというデメリットを有する。 Stainless steel is widely used for rolling elements incorporated in bearing devices. Stainless steel rolling elements are advantageous in that they are easy to process and can be mass-produced at low cost. On the other hand, since the rolling element made of stainless steel has conductivity, it has a demerit that it cannot be used for applications requiring insulation (for example, a rolling element incorporated in a bearing device of a fan motor).
特開2009-190959号公報JP 2009-190959 A
 絶縁性が要求される用途に使用し得る転動体として、窒化珪素等の非酸化物系セラミックが想定されるが、非酸化物系セラミックは、高価であり、また球形状に加工し難い(特許文献1参照)。 Non-oxide ceramics such as silicon nitride are assumed as rolling elements that can be used for applications requiring insulation, but non-oxide ceramics are expensive and difficult to process into a spherical shape (patents) Reference 1).
 そこで、本発明は、上記事情に鑑みなされたものであり、その技術的課題は、安価に作製可能であり、且つ加工性と絶縁性が高い転動体を創案することである。 Therefore, the present invention has been made in view of the above circumstances, and its technical problem is to create a rolling element that can be manufactured at low cost and has high workability and insulation.
 本発明者は、種々の検討を行った結果、ガラス転動体を採択すると共に、このガラス転動体をイオン交換処理することにより、上記技術的課題を解決し得ることを見出し、本発明として提案するものである。即ち、本発明のガラス転動体は、直径の寸法公差が0.5%以内であり、表面にイオン交換による圧縮応力層を有することを特徴とする。ここで、「直径の寸法公差」は、平均直径に対する寸法公差であり、例えば、周知のマイクロメータにより測定可能である。 As a result of various studies, the present inventor has found that the above technical problem can be solved by adopting a glass rolling element and subjecting the glass rolling element to ion exchange treatment, and proposes the present invention. Is. That is, the glass rolling element of the present invention is characterized by having a dimensional tolerance within 0.5% and having a compressive stress layer by ion exchange on the surface. Here, the “diameter dimensional tolerance” is a dimensional tolerance with respect to the average diameter, and can be measured by, for example, a known micrometer.
 ガラスは、絶縁材料であり、更に成形性、加工性が良好である。よって、ガラス転動体は、直径の寸法公差が0.5%以内になるように容易、且つ安価に加工可能である。しかし、ガラスは、脆性材料であるため、軸受装置等に組み込まれる転動体に使用する場合に、高速回転、高摩擦、高荷重等の過酷な条件で破損する虞がある。そこで、本発明のガラス転動体は、表面にイオン交換による圧縮応力層を有している。つまり本発明のガラス転動体は、化学強化ガラスであることを特徴にしている。これにより、機械的強度が向上するため、過酷な条件で使用しても、十分な寿命を確保することができる。 Glass is an insulating material, and has good moldability and workability. Therefore, the glass rolling element can be processed easily and inexpensively so that the dimensional tolerance of the diameter is within 0.5%. However, since glass is a brittle material, when it is used for a rolling element incorporated in a bearing device or the like, it may be damaged under severe conditions such as high-speed rotation, high friction, and high load. Then, the glass rolling element of this invention has the compressive-stress layer by ion exchange on the surface. That is, the glass rolling element of the present invention is characterized by being chemically strengthened glass. Thereby, since mechanical strength improves, even if it uses on severe conditions, sufficient lifetime can be ensured.
 また、本発明のガラス転動体は、表面が研磨面であることが好ましい。このようにすれば、ガラス転動体の直径の寸法公差を低減し易くなる。 In addition, the glass rolling element of the present invention preferably has a polished surface. If it does in this way, it will become easy to reduce the dimensional tolerance of the diameter of a glass rolling element.
 また、本発明のガラス転動体は、表面が化学エッチング面であることが好ましい。このようにすれば、球形状に加工する際に表面に付いた研磨傷等を小さくしたり、消失させたりすることができる。結果として、過酷な条件で使用した時でも、ガラス転動体が破損し難くなる。 The glass rolling element of the present invention preferably has a chemically etched surface. In this way, polishing scratches and the like on the surface when processing into a spherical shape can be reduced or eliminated. As a result, even when used under severe conditions, the glass rolling element is difficult to break.
 また、本発明のガラス転動体は、表面の表面粗さRaが3nm以下であることが好ましい。このようにすれば、過酷な条件で使用した時でも、ガラス転動体が破損し難くなる。ここで、「表面粗さRa」は、ガラス転動体を治具等で固定した状態で、JIS B0601:2001年に準拠した方法で測定することができる。 The glass rolling element of the present invention preferably has a surface roughness Ra of 3 nm or less. If it does in this way, even when it uses it on severe conditions, it will become difficult to break a glass rolling element. Here, the “surface roughness Ra” can be measured by a method based on JIS B0601: 2001 with the glass rolling element fixed with a jig or the like.
 また、本発明のガラス転動体は、圧縮応力層の圧縮応力値CSが300MPa以上、且つ応力深さDOLが30μm以上であることが好ましい。 The glass rolling element of the present invention preferably has a compressive stress value CS of the compressive stress layer of 300 MPa or more and a stress depth DOL of 30 μm or more.
 「CS」と「DOL」は以下のように測定する。ガラス転動体と同じ組成、同じ熱履歴を有するガラス板を用意する。次に、ガラス転動体と同じ条件で、ガラス板をイオン交換処理して、ガラス転動体と同じ表面組成プロファイルを有するガラス板を得る。表面組成プロファイルは、SEM-EDX(例えば日立ハイテクノロジーズ製S4300-SE、堀場製作所製EX-250)によるZAF法のスタンダードレス定量分析を用いることで測定することができる。なお、同じ組成であるガラス同士について、周知のアルキメデス法や重液法で測定した密度を同一とすることで熱履歴を揃えることができる。続いて、表面応力計(例えば、株式会社折原製作所製FSM-6000)によりガラス板の断面を観察し、観察される干渉縞の本数とその間隔から、ガラス板の表面応力層の圧縮応力値CSp、応力深さDOLpを算出する。最後に、得られたCSpをガラス転動体のCS、DOLpをガラス転動体のDOLとして評価する。 “CS” and “DOL” are measured as follows. A glass plate having the same composition and the same heat history as the glass rolling element is prepared. Next, the glass plate is subjected to ion exchange treatment under the same conditions as the glass rolling element to obtain a glass plate having the same surface composition profile as the glass rolling element. The surface composition profile can be measured by using a standardless quantitative analysis of the ZAF method by SEM-EDX (for example, S4300-SE manufactured by Hitachi High-Technologies, EX-250 manufactured by Horiba, Ltd.). In addition, about the glass which is the same composition, a heat history can be arrange | equalized by making the density measured by the well-known Archimedes method or the heavy liquid method the same. Subsequently, the cross section of the glass plate was observed with a surface stress meter (for example, FSM-6000 manufactured by Orihara Seisakusho Co., Ltd.), and the compressive stress value CSp of the surface stress layer of the glass plate was determined from the number of observed interference fringes and their spacing. The stress depth DOLp is calculated. Finally, the obtained CSp is evaluated as CS of the glass rolling element, and DOLp is evaluated as DOL of the glass rolling element.
 また、本発明のガラス転動体は、ガラス組成として、質量%で、SiO 45~75%、Al 10~30%、NaO 5~25%を含有することが好ましい。このようにすれば、イオン交換性能が向上するため、ガラス転動体の機械的強度を高めることができる。 The glass rolling element of the present invention preferably contains, as a glass composition, 45 to 75% of SiO 2 , 10 to 30% of Al 2 O 3 and 5 to 25% of Na 2 O in terms of mass%. If it does in this way, since ion exchange performance improves, the mechanical strength of a glass rolling element can be raised.
 また、本発明のガラス転動体は、液相粘度が104.0dPa・s以上であることが好ましい。ここで、「液相粘度」とは、液相温度におけるガラスの粘度を指す。「液相温度」とは、標準篩30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持した後、結晶が析出する温度を指す。このようにすれば、寸法精度が高いガラス転動体を成形し易くなる。 Further, the glass rolling element of the present invention preferably has a liquidus viscosity of 10 4.0 dPa · s or more. Here, “liquidus viscosity” refers to the viscosity of the glass at the liquidus temperature. “Liquid phase temperature” means that after passing through a standard sieve 30 mesh (a sieve opening of 500 μm), glass powder remaining in a 50 mesh (a sieve opening of 300 μm) is placed in a platinum boat and kept in a temperature gradient furnace for 24 hours. Refers to the temperature at which crystals precipitate. If it does in this way, it will become easy to form a glass rolling element with high dimensional accuracy.
 本発明のガラス転動体は、表面にイオン交換による圧縮応力層を有する。イオン交換により圧縮応力層を形成する方法として、ガラス転動体をイオン交換液に浸漬して、ガラス転動体の表面にイオン半径の大きいアルカリイオンを導入する方法が好ましく、特にKNO溶融塩中のKイオンとガラス転動体中のNa成分とをイオン交換して、ガラス転動体の表面に圧縮応力層を形成することが好ましい。これにより、ガラス転動体の機械的強度を短時間で高めることができる。 The glass rolling element of this invention has the compressive-stress layer by ion exchange on the surface. As a method for forming a compressive stress layer by ion exchange, a method in which a glass rolling element is immersed in an ion exchange solution and alkali ions having a large ion radius are introduced into the surface of the glass rolling element is preferable. In particular, in KNO 3 molten salt It is preferable to ion-exchange K ions and the Na component in the glass rolling element to form a compressive stress layer on the surface of the glass rolling element. Thereby, the mechanical strength of a glass rolling element can be raised in a short time.
 本発明のガラス転動体において、直径の寸法公差は0.5%以内であり、好ましくは0.1%以内、0.05%以内、0.02%以内、0.01%以内、特に0.005%以内である。また、直径の寸法公差は、好ましくは10μm以内、5μm以内、3μm以内、2μm以内、1μm以内、0.5μm以内、特に0.1μm以内である。直径の寸法公差が大き過ぎると、駆動動作等が不安定になり、転動体として使用困難になる。 In the glass rolling element of the present invention, the dimensional tolerance of the diameter is within 0.5%, preferably within 0.1%, within 0.05%, within 0.02%, within 0.01%, particularly preferably within 0.1%. It is within 005%. The dimensional tolerance of the diameter is preferably within 10 μm, within 5 μm, within 3 μm, within 2 μm, within 1 μm, within 0.5 μm, and particularly within 0.1 μm. If the dimensional tolerance of the diameter is too large, the driving operation or the like becomes unstable, making it difficult to use as a rolling element.
 本発明のガラス転動体において、表面が研磨面であることが好ましい。このようにすれば、直径の寸法公差を低減することができる。研磨工程は、イオン交換処理前及びイオン交換処理後に行うことが好ましい。これにより、機械的強度と寸法精度が高いガラス転動体を作製することが可能になる。なお、研磨処理は、ガラス転動体を回動させながら行うことが好ましい。このようにすれば、直径の寸法公差を低減し易くなる。 In the glass rolling element of the present invention, the surface is preferably a polished surface. In this way, the dimensional tolerance of the diameter can be reduced. The polishing step is preferably performed before the ion exchange treatment and after the ion exchange treatment. This makes it possible to produce a glass rolling element with high mechanical strength and dimensional accuracy. The polishing treatment is preferably performed while rotating the glass rolling element. This facilitates reducing the dimensional tolerance of the diameter.
 また、本発明のガラス転動体において、表面が化学エッチング面であることも好ましい。このようにすれば、表面傷が小さくなったり、消失したりするため、高速回転、高摩擦、高荷重等の過酷な条件で、ガラス転動体が破損し難くなる。化学エッチング処理は、ガラス転動体を回動又は揺動させながら行うことが好ましい。このようにすれば、直径の寸法公差の不当な上昇を防止することができる。なお、化学エッチング処理は、イオン交換処理前に行うことが好ましい。また化学エッチング液として、フッ酸含有水溶液を用いることが好ましい。 In the glass rolling element of the present invention, the surface is preferably a chemically etched surface. In this way, since the surface scratches are reduced or disappear, the glass rolling element is difficult to break under severe conditions such as high speed rotation, high friction, and high load. The chemical etching treatment is preferably performed while rotating or swinging the glass rolling element. In this way, an undue increase in the dimensional tolerance of the diameter can be prevented. The chemical etching process is preferably performed before the ion exchange process. Further, it is preferable to use a hydrofluoric acid-containing aqueous solution as the chemical etching solution.
 本発明のガラス転動体において、表面の表面粗さRaは、好ましくは3nm以下、1nm以下、0.5nm以下、0.4nm以下、0.3nm以下、特に0.2nm以下である。表面の表面粗さRaが大き過ぎると、高速回転、高摩擦、高荷重等の過酷な条件で、ガラス転動体が破損し易くなる。 In the glass rolling element of the present invention, the surface roughness Ra of the surface is preferably 3 nm or less, 1 nm or less, 0.5 nm or less, 0.4 nm or less, 0.3 nm or less, particularly 0.2 nm or less. If the surface roughness Ra is too large, the glass rolling element is easily damaged under severe conditions such as high-speed rotation, high friction, and high load.
 本発明のガラス転動体は、ガラス組成として、質量%で、SiO 45~75%、Al 10~30%、NaO 5~25%を含有することが好ましい。上記のように各成分の含有範囲を限定した理由を以下に説明する。なお、各成分の含有範囲の説明において、以下の%表示は、質量%を指す。 The glass rolling element of the present invention preferably contains, as a glass composition, 45 to 75% of SiO 2 , 10 to 30% of Al 2 O 3 and 5 to 25% of Na 2 O in terms of mass%. The reason for limiting the content range of each component as described above will be described below. In addition, in description of the containing range of each component, the following% display points out the mass%.
 SiOは、ガラスのネットワークを形成する成分であり、その含有量は、好ましくは45~75%、45~70%、45~65%、45~63%、特に48~61%である。SiOの含有量が多過ぎると、溶融性、成形性、熱膨張係数が低下し易くなる。一方、SiOの含有量が少な過ぎると、ガラス化し難くなり、また熱膨張係数が不当に高くなるため、耐熱衝撃性が低下し易くなる。 SiO 2 is a component that forms a glass network, and its content is preferably 45 to 75%, 45 to 70%, 45 to 65%, 45 to 63%, particularly 48 to 61%. When the content of SiO 2 is too large, meltability, moldability, thermal expansion coefficient is liable to lower. On the other hand, if the content of SiO 2 is too small, it becomes difficult to vitrify and the thermal expansion coefficient becomes unreasonably high, so that the thermal shock resistance tends to decrease.
 Alは、イオン交換性能、歪点、ヤング率を高める成分である。しかし、Alの含有量が多過ぎると、ガラスに失透結晶が析出し易くなって、所望の形状に成形し難くなる。また溶融性、熱膨張係数が低下し易くなる。よって、Alの好適な上限範囲は30%以下、28%以下、24%以下、23%以下、22%以下、21.5%以下、特に21%以下であり、好適な下限範囲は10%以上、12%以上、13%以上、15%以上、17%以上、特に18%以上である。 Al 2 O 3 is a component that increases ion exchange performance, strain point, and Young's modulus. However, when the content of Al 2 O 3 is too large, devitrification crystal glass becomes easy to precipitate, hardly molded into a desired shape. Further, the meltability and the coefficient of thermal expansion are likely to decrease. Therefore, the preferred upper limit range of Al 2 O 3 is 30% or less, 28% or less, 24% or less, 23% or less, 22% or less, 21.5% or less, particularly 21% or less. 10% or more, 12% or more, 13% or more, 15% or more, 17% or more, particularly 18% or more.
 NaOは、イオン交換成分であると共に、溶融性や成形性を高める成分である。また耐失透性を改善する成分でもある。しかし、NaOの含有量が多過ぎると、熱膨張係数が不当に高くなるため、耐熱衝撃性が低下し易くなる。またガラス組成のバランスが崩れて、耐失透性が低下する虞がある。よって、NaOの含有量は、好ましくは5~25%、10~25%、11~22%、12~20%、13~19%、特に14~18%である。 Na 2 O is an ion exchange component and a component that improves meltability and moldability. It is also a component that improves devitrification resistance. However, when the content of Na 2 O is too large, the thermal expansion coefficient becomes unreasonably high, so that the thermal shock resistance tends to decrease. Further, the balance of the glass composition may be lost, and the devitrification resistance may be reduced. Therefore, the content of Na 2 O is preferably 5 to 25%, 10 to 25%, 11 to 22%, 12 to 20%, 13 to 19%, particularly 14 to 18%.
 上記成分以外にも、例えば、以下の成分を導入してもよい。 In addition to the above components, for example, the following components may be introduced.
 Pは、イオン交換性能を高める成分であり、特に応力深さDOLを増大させる成分である。上記の通り、イオン交換性能を高めるためには、Alの増量が有効であるが、Alの含有量が多過ぎると、耐失透性が低下し易くなる。よって、Alの増量には限界がある。しかし、Pを導入すると、Alを増量しても、ガラスが失透し難くなるため、Alの導入許容量を高めることができる。結果として、イオン交換性能を飛躍的に高めることができる。一方、Pの含有量が多く過ぎると、ガラスが分相したり、耐水性や耐失透性が低下し易くなる。以上の点を踏まえると、Pの好適な上限範囲は10%以下、9%以下、8%以下、7%以下、特に6%以下であり、好適な下限範囲は0.1%以上、0.5%以上、1%以上、2%以上、3%以上、特に4%以上である。 P 2 O 5 is a component that enhances the ion exchange performance, and particularly a component that increases the stress depth DOL. As described above, increasing the amount of Al 2 O 3 is effective for improving the ion exchange performance. However, if the content of Al 2 O 3 is too large, the devitrification resistance tends to decrease. Therefore, there is a limit to the increase in Al 2 O 3 . However, when P 2 O 5 is introduced, even if the amount of Al 2 O 3 is increased, it becomes difficult for the glass to devitrify, so that the allowable amount of introduction of Al 2 O 3 can be increased. As a result, ion exchange performance can be dramatically improved. On the other hand, if too much amount of P 2 O 5, glass or phase separation, the water resistance and the devitrification resistance tends to decrease. Based on the above points, the preferable upper limit range of P 2 O 5 is 10% or less, 9% or less, 8% or less, 7% or less, particularly 6% or less, and the preferable lower limit range is 0.1% or more. 0.5% or more, 1% or more, 2% or more, 3% or more, particularly 4% or more.
 Bは、液相温度、高温粘度、密度を低下させる成分であると共に、イオン交換性能、特に圧縮応力値CSを高める成分であるが、その含有量が多過ぎると、イオン交換によって表面にヤケが発生したり、耐水性、液相粘度、応力深さDOLが低下する虞がある。よって、Bの含有量は、好ましくは0~6%、0~4%、0~3%、0~2%、特に0~1%未満である。 B 2 O 3 is a component that lowers the liquidus temperature, high-temperature viscosity, and density, and is a component that increases the ion exchange performance, particularly the compressive stress value CS. There is a risk that burns will occur or water resistance, liquid phase viscosity, and stress depth DOL will decrease. Therefore, the content of B 2 O 3 is preferably 0 to 6%, 0 to 4%, 0 to 3%, 0 to 2%, particularly 0 to less than 1%.
 LiOは、イオン交換成分であると共に、高温粘度を低下させて溶融性や成形性を高める成分である。更にヤング率を高める成分である。しかし、LiOの含有量が多過ぎると、液相粘度が低下して、ガラスが失透し易くなる。また低温粘性が低下し過ぎて、イオン交換処理の際に応力緩和が生じ易くなり、かえって圧縮応力値CSが低下する虞がある。よって、LiOの含有量は、好ましくは0~10%、0~8%、0~5%、0~3%未満、0~2%、0~1%未満、0~0.1%未満、特に0~0.01%未満である。 Li 2 O is an ion exchange component and a component that lowers the high-temperature viscosity to improve the meltability and moldability. Furthermore, it is a component that increases the Young's modulus. However, when the content of Li 2 O is too large, and decreases the liquidus viscosity, it tends glass devitrified. Further, the low-temperature viscosity is excessively lowered, and stress relaxation is likely to occur during the ion exchange treatment, and the compressive stress value CS may be lowered. Therefore, the content of Li 2 O is preferably 0 to 10%, 0 to 8%, 0 to 5%, 0 to less than 3%, 0 to 2%, 0 to less than 1%, 0 to 0.1%. Less than, in particular, 0 to less than 0.01%.
 KOは、イオン交換を促進する成分であり、特にアルカリ金属酸化物の中では応力深さDOLを増大させる効果が高い成分である。また高温粘度を低下させて、溶融性や成形性を高めたり、耐失透性を改善する成分である。しかし、KOの含有量が多過ぎると、熱膨張係数が不当に高くなり、耐熱衝撃性が低下したり、周辺材料と熱膨張係数が整合し難くなる。更に歪点が低下し過ぎたり、ガラス組成のバランスが崩れて、逆に耐失透性が低下する虞がある。KOの好適な上限範囲は10%以下、9%以下、8%以下、7%以下、特に6%以下であり、好適な下限範囲は0%以上、0.5%以上、1%以上、2%以上、3%以上、特に4%以上である。 K 2 O is a component that promotes ion exchange, and is a component that has a high effect of increasing the stress depth DOL, particularly among alkali metal oxides. Further, it is a component that lowers the high-temperature viscosity to increase meltability and moldability, and improve devitrification resistance. However, if the content of K 2 O is too large, the thermal expansion coefficient becomes unreasonably high, the thermal shock resistance is lowered, and it is difficult to match the thermal expansion coefficient with the surrounding materials. Furthermore, there is a possibility that the strain point is excessively lowered, the balance of the glass composition is lost, and the devitrification resistance is reduced. The preferable upper limit range of K 2 O is 10% or less, 9% or less, 8% or less, 7% or less, particularly 6% or less, and the preferable lower limit range is 0% or more, 0.5% or more, 1% or more. 2% or more, 3% or more, particularly 4% or more.
 LiO+NaO+KOの好適な上限範囲は30%以下、25%以下、特に22%以下であり、好適な下限範囲は8%以上、10%以上、13%以上、特に15%以上である。LiO+NaO+KOの含有量が多過ぎると、耐失透性が低下したり、熱膨張係数が不当に高くなって、耐熱衝撃性が低下したり、周辺材料と熱膨張係数が整合し難くなる。一方、LiO+NaO+KOの含有量が少な過ぎると、イオン交換性能や溶融性が低下し易くなる。なお、「LiO+NaO+KO」は、LiO、NaO及びKOの合量である。 The preferred upper limit range of Li 2 O + Na 2 O + K 2 O is 30% or less, 25% or less, particularly 22% or less, and the preferred lower limit range is 8% or more, 10% or more, 13% or more, particularly 15% or more. is there. If the content of Li 2 O + Na 2 O + K 2 O is too large, the devitrification resistance is lowered, the thermal expansion coefficient is unduly high, the thermal shock resistance is lowered, and the thermal expansion coefficient matches with the surrounding materials. It becomes difficult to do. On the other hand, when the content of Li 2 O + Na 2 O + K 2 O is too small, the ion exchange performance and meltability is liable to decrease. “Li 2 O + Na 2 O + K 2 O” is the total amount of Li 2 O, Na 2 O and K 2 O.
 モル比KO/NaOは、好ましくは0~1、0~0.8、0.05~0.7、0.1~0.5、0.15~0.4、0.15~0.3、特に0.15~0.25である。このようにすれば、短時間で圧縮応力値CSと応力深さDOLが大きくなり易い。なお、「KO/NaO」は、KOの含有量をNaOの含有量で割った値である。 The molar ratio K 2 O / Na 2 O is preferably 0 to 1, 0 to 0.8, 0.05 to 0.7, 0.1 to 0.5, 0.15 to 0.4, 0.15. To 0.3, in particular 0.15 to 0.25. In this way, the compressive stress value CS and the stress depth DOL are likely to increase in a short time. “K 2 O / Na 2 O” is a value obtained by dividing the content of K 2 O by the content of Na 2 O.
 MgO+CaO+SrO+BaOの含有量は、好ましくは0~15%、0~9%、0~6%、特に0~5%である。MgO+CaO+SrO+BaOの含有量が多過ぎると、密度や熱膨張係数が不当に高くなったり、耐失透性やイオン交換性能が低下し易くなる。なお、「MgO+CaO+SrO+BaO」は、MgO、CaO、SrO及びBaOの合量である。 The content of MgO + CaO + SrO + BaO is preferably 0 to 15%, 0 to 9%, 0 to 6%, particularly 0 to 5%. When there is too much content of MgO + CaO + SrO + BaO, a density and a thermal expansion coefficient will become unreasonably high, or devitrification resistance and ion exchange performance will fall easily. “MgO + CaO + SrO + BaO” is the total amount of MgO, CaO, SrO and BaO.
 MgOとCaOは、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める成分であり、アルカリ土類金属酸化物の中では、イオン交換性能を高める効果が大きい成分である。しかし、MgOとCaOの含有量が多くなると、密度や熱膨張係数が高くなったり、ガラスが失透し易くなる。よって、MgOの含有量は、好ましくは10%以下、8%以下、6%以下、5%以下、特に4%以下である。CaOの含有量は、好ましくは8%以下、6%以下、4%以下、2%以下、特に1%未満である。 MgO and CaO are components that lower high-temperature viscosity to increase meltability and moldability, and increase strain point and Young's modulus. Among alkaline earth metal oxides, MgO and CaO are highly effective in increasing ion exchange performance. It is an ingredient. However, when the contents of MgO and CaO increase, the density and thermal expansion coefficient increase and the glass tends to devitrify. Therefore, the content of MgO is preferably 10% or less, 8% or less, 6% or less, 5% or less, particularly 4% or less. The content of CaO is preferably 8% or less, 6% or less, 4% or less, 2% or less, particularly less than 1%.
 SrOとBaOは、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める成分である。しかし、SrOとBaOの含有量が多くなると、密度や熱膨張係数が高くなったり、イオン交換性能が低下し易くなる。よって、SrOの含有量は、好ましくは3%以下、2%以下、1%以下、0.5%以下、特に0.1%未満である。BaOの含有量は、好ましくは3%以下、2%以下、1%以下、0.5%以下、特に0.1%未満である。 SrO and BaO are components that lower the high-temperature viscosity, increase the meltability and moldability, and increase the strain point and Young's modulus. However, when the contents of SrO and BaO increase, the density and thermal expansion coefficient increase, and the ion exchange performance tends to decrease. Therefore, the content of SrO is preferably 3% or less, 2% or less, 1% or less, 0.5% or less, and particularly less than 0.1%. The content of BaO is preferably 3% or less, 2% or less, 1% or less, 0.5% or less, particularly less than 0.1%.
 質量比(MgO+CaO+SrO+BaO)/(LiO+NaO+KO)は、耐失透性を高めるために、好ましくは0.5以下、0.4以下、特に0.3以下である。なお、「(MgO+CaO+SrO+BaO)/(LiO+NaO+KO)」は、MgO、CaO、SrO及びBaOの合量をLiO、NaO及びKOの合量で割った値である。 The mass ratio (MgO + CaO + SrO + BaO) / (Li 2 O + Na 2 O + K 2 O) is preferably 0.5 or less, 0.4 or less, particularly 0.3 or less, in order to increase the devitrification resistance. “(MgO + CaO + SrO + BaO) / (Li 2 O + Na 2 O + K 2 O)” is a value obtained by dividing the total amount of MgO, CaO, SrO and BaO by the total amount of Li 2 O, Na 2 O and K 2 O. .
 ZnOは、イオン交換性能を高める成分である。また低温粘性を低下させずに、高温粘性を低下させる成分である。しかし、Pの存在下でZnOを増量すると、ガラスが分相したり、失透し易くなる。よって、ZnOの含有量は、好ましくは8%以下、4%以下、1%以下、0.1%以下、特に0.01%以下である。 ZnO is a component that enhances ion exchange performance. Moreover, it is a component which reduces high temperature viscosity, without reducing low temperature viscosity. However, when ZnO is increased in the presence of P 2 O 5 , the glass is likely to undergo phase separation or devitrification. Therefore, the ZnO content is preferably 8% or less, 4% or less, 1% or less, 0.1% or less, and particularly 0.01% or less.
 ZrOは、イオン交換性能、ヤング率、歪点を高める成分であり、高温粘性を低下させる成分である。しかし、ZrOの含有量が多くなると、耐失透性が低下し易くなる。よって、ZrOの含有量は、好ましくは0~10%、0~5%、0~3%、0~1%未満、0~0.4%、特に0~0.1%未満である。 ZrO 2 is a component that increases ion exchange performance, Young's modulus, and strain point, and is a component that decreases high temperature viscosity. However, when the content of ZrO 2 increases, the devitrification resistance tends to be lowered. Therefore, the content of ZrO 2 is preferably 0 to 10%, 0 to 5%, 0 to 3%, 0 to less than 1%, 0 to 0.4%, particularly 0 to less than 0.1%.
 TiOは、イオン交換性能を高める成分であり、高温粘性を低下させる成分である。しかし、TiOの含有量が多くなると、ガラスが着色したり、失透し易くなる。特に溶融雰囲気や原料不純物により、透過率が変動し易くなる。よって、TiOの含有量は、好ましくは0~4%、0~1%未満、0~0.1%未満、特に0~0.01%未満である。 TiO 2 is a component that enhances ion exchange performance and is a component that reduces high temperature viscosity. However, when the content of TiO 2 increases, the glass is likely to be colored or devitrified. In particular, the transmittance tends to fluctuate due to the melting atmosphere and the raw material impurities. Therefore, the content of TiO 2 is preferably 0 to 4%, 0 to less than 1%, 0 to less than 0.1%, particularly 0 to less than 0.01%.
 SnOは、イオン交換性能、特に圧縮応力値CSを高める成分である。しかし、SnOの含有量が多くなると、SnOに起因する失透が発生したり、ガラスが着色し易くなる。よって、SnOの含有量は、好ましくは0~3%、0.01~2%、0.05~1%、特に0.1~0.5%である。 SnO 2 is a component that increases the ion exchange performance, particularly the compressive stress value CS. However, when the content of SnO 2 increases, devitrification due to SnO 2 occurs or glass tends to be colored. Therefore, the SnO 2 content is preferably 0 to 3%, 0.01 to 2%, 0.05 to 1%, and particularly 0.1 to 0.5%.
 清澄剤として、As、Sb、CeO、F、SO、Clの群から選択された一種又は二種以上を含有させてもよい。但し、環境に対する配慮から、AsとSbを添加しないことが好ましく、AsとSbの含有量は、それぞれ0.1%未満、特に0.01%未満が好ましい。CeOの含有量は、透過率を高めるために、0.1%未満、特に0.01%未満が好ましい。Fの含有量は、低温粘性の低下による応力緩和を抑制するために、0.1%未満、特に0.01%未満が好ましい。 As a fining agent, As 2 O 3, Sb 2 O 3, CeO 2, F, may contain SO 3, Cl one or two or more selected from the group of. However, from environmental considerations, it is preferred that no added As 2 O 3 and Sb 2 O 3, the content of As 2 O 3 and Sb 2 O 3 content of each less than 0.1%, particularly less than 0.01% Is preferred. The CeO 2 content is preferably less than 0.1%, particularly preferably less than 0.01%, in order to increase the transmittance. The content of F is preferably less than 0.1%, particularly preferably less than 0.01%, in order to suppress stress relaxation due to a decrease in low-temperature viscosity.
 CoO、NiO等の遷移金属酸化物は、ガラスを着色させる成分である。よって遷移金属酸化物の含有量は、好ましくは0.5%以下、0.1%以下、特に0.05%以下である。 Transition metal oxides such as CoO and NiO are components that color glass. Therefore, the content of the transition metal oxide is preferably 0.5% or less, 0.1% or less, particularly 0.05% or less.
 Nb、La等の希土類酸化物は、ヤング率を高める成分である。しかし、希土類酸化物の含有量が多くなると、原料コストが高騰し、耐失透性が低下し易くなる。よって、希土類酸化物の含有量は、好ましくは3%以下、2%以下、1%未満、0.5%以下、特に0.1%以下である。 Rare earth oxides such as Nb 2 O 5 and La 2 O 3 are components that increase the Young's modulus. However, when the content of the rare earth oxide increases, the raw material cost increases, and the devitrification resistance tends to decrease. Therefore, the rare earth oxide content is preferably 3% or less, 2% or less, less than 1%, 0.5% or less, particularly 0.1% or less.
 PbOとBiの含有量は、環境に対する配慮から、それぞれ0.1%未満が好ましい。 The contents of PbO and Bi 2 O 3 are each preferably less than 0.1% in consideration of the environment.
 本発明のガラス転動体は、表面にイオン交換による圧縮応力層を有する。圧縮応力層の圧縮応力値CSは、好ましくは300MPa以上、600MPa以上、800MPa以上、900MPa以上、1000MPa以上、特に1100MPa以上である。圧縮応力値CSが大きい程、ガラス転動体の機械的強度が高くなる。しかし、圧縮応力値CSが大き過ぎると、ガラス転動体に内在する引っ張り応力が極端に高くなる虞がある。よって、圧縮応力層の圧縮応力値CSは、好ましくは2500MPa以下である。なお、イオン交換時間を短くしたり、イオン交換温度を下げると、圧縮応力値CSを大きくすることができる。 The glass rolling element of the present invention has a compressive stress layer by ion exchange on the surface. The compressive stress value CS of the compressive stress layer is preferably 300 MPa or more, 600 MPa or more, 800 MPa or more, 900 MPa or more, 1000 MPa or more, particularly 1100 MPa or more. The larger the compressive stress value CS, the higher the mechanical strength of the glass rolling element. However, if the compressive stress value CS is too large, the tensile stress inherent in the glass rolling element may become extremely high. Therefore, the compressive stress value CS of the compressive stress layer is preferably 2500 MPa or less. Note that the compression stress value CS can be increased by shortening the ion exchange time or lowering the ion exchange temperature.
 応力深さDOLは、好ましくは30μm以上、40μm以上、50μm以上、60μm以上、特に70μm以上である。応力深さDOLが大きい程、高速回転時の摩耗や異物により、ガラス転動体の表面に深い傷が付いても、ガラス転動体が割れ難くなる。一方、応力深さDOLが大き過ぎると、ガラス転動体に内在する引っ張り応力が極端に高くなる虞がある。よって、応力深さDOLは、好ましくは500μm以下、300μm以下、200μm以下、特に150μm以下である。なお、イオン交換時間を長くしたり、イオン交換温度を高めると、応力深さDOLを大きくすることができる。 The stress depth DOL is preferably 30 μm or more, 40 μm or more, 50 μm or more, 60 μm or more, particularly 70 μm or more. The greater the stress depth DOL, the more difficult the glass rolling element breaks even if the surface of the glass rolling element is deeply damaged due to wear or foreign matter during high-speed rotation. On the other hand, if the stress depth DOL is too large, the tensile stress inherent in the glass rolling element may become extremely high. Therefore, the stress depth DOL is preferably 500 μm or less, 300 μm or less, 200 μm or less, particularly 150 μm or less. Note that the stress depth DOL can be increased by increasing the ion exchange time or increasing the ion exchange temperature.
 本発明のガラス転動体において、内部の引っ張り応力値CTは、好ましくは200MPa以下、150MPa以下、100MPa以下、特に50MPa以下である。なお、「内部の引っ張り応力値CT」は、下記の数式1により算出した値を指す。内部の引っ張り応力値CTが小さい程、内部欠陥によってガラス転動体が破損し難くなるが、内部の引っ張り応力値CTが極端に小さくなると、圧縮応力値CSや応力深さDOLが低下して、ガラス転動体の機械的強度が低下してしまう。よって、内部の引っ張り応力値CTは、好ましくは1MPa以上、2MPa以上、3MPa以上、5MPa以上、10MPa以上、特に15MPa以上である。 In the glass rolling element of the present invention, the internal tensile stress value CT is preferably 200 MPa or less, 150 MPa or less, 100 MPa or less, particularly 50 MPa or less. The “internal tensile stress value CT” refers to a value calculated by the following mathematical formula 1. The smaller the internal tensile stress value CT, the harder the glass rolling element is damaged by internal defects. However, when the internal tensile stress value CT becomes extremely small, the compressive stress value CS and the stress depth DOL decrease, and the glass The mechanical strength of the rolling element is reduced. Therefore, the internal tensile stress value CT is preferably 1 MPa or more, 2 MPa or more, 3 MPa or more, 5 MPa or more, 10 MPa or more, particularly 15 MPa or more.
 〔数1〕
CT = CS×DOL/(t-2×DOL)
t:直径(板厚)
CT:内部の引っ張り応力値
CS:圧縮応力値
DOL:応力深さ
[Equation 1]
CT = CS × DOL / (t−2 × DOL)
t: Diameter (plate thickness)
CT: Internal tensile stress value CS: Compressive stress value DOL: Stress depth
 30~380℃の温度範囲における熱膨張係数は、好ましくは70×10-7~110×10-7/℃、75×10-7~110×10-7/℃、80×10-7~110×10-7/℃、特に85×10-7~110×10-7/℃である。上記のように熱膨張係数を規制すれば、高速回転時に発生する熱により周辺の金属部材が膨張したとしても、適正に駆動させることができる。ここで、「熱膨張係数」とは、30~380℃の温度範囲において、ディラトメーターで測定した平均値である。 The thermal expansion coefficient in the temperature range of 30 to 380 ° C. is preferably 70 × 10 −7 to 110 × 10 −7 / ° C., 75 × 10 −7 to 110 × 10 −7 / ° C., 80 × 10 −7 to 110 × 10 −7 / ° C., particularly 85 × 10 −7 to 110 × 10 −7 / ° C. If the coefficient of thermal expansion is regulated as described above, even if the surrounding metal member expands due to heat generated during high-speed rotation, it can be driven properly. Here, the “thermal expansion coefficient” is an average value measured with a dilatometer in a temperature range of 30 to 380 ° C.
 歪点は、好ましくは520℃以上、550℃以上、560℃以上、特に570℃以上である。歪点が高い程、耐熱性が向上する。また歪点が高いと、イオン交換処理時に応力緩和が生じ難くなるため、高い圧縮応力値CSを確保し易くなる。 The strain point is preferably 520 ° C. or higher, 550 ° C. or higher, 560 ° C. or higher, particularly 570 ° C. or higher. The higher the strain point, the better the heat resistance. In addition, when the strain point is high, stress relaxation is less likely to occur during the ion exchange process, and thus it is easy to ensure a high compressive stress value CS.
 高温粘度102.5dPa・sに相当する温度は、好ましくは1650℃以下、1600℃以下、1580℃以下、1550℃以下、1540℃以下、特に1530℃以下である。高温粘度102.5dPa・sに相当する温度が低い程、低温でガラスを溶融することができる。よって、高温粘度102.5dPa・sに相当する温度が低い程、溶融窯等のガラス製造設備への負担が小さくなると共に、ガラス転動体の泡品位を高めることができる。 The temperature corresponding to the high temperature viscosity of 10 2.5 dPa · s is preferably 1650 ° C. or lower, 1600 ° C. or lower, 1580 ° C. or lower, 1550 ° C. or lower, 1540 ° C. or lower, especially 1530 ° C. or lower. The lower the temperature corresponding to the high temperature viscosity of 10 2.5 dPa · s, the more the glass can be melted at a lower temperature. Therefore, as the temperature corresponding to the high temperature viscosity of 10 2.5 dPa · s is lower, the burden on the glass production equipment such as the melting kiln is reduced, and the bubble quality of the glass rolling element can be improved.
 液相温度は、好ましくは1200℃以下、1150℃以下、1130℃以下、1110℃以下、1090℃以下、特に1070℃以下である。液相温度が高過ぎると、球形状に成形し難くなる。 Liquid phase temperature is preferably 1200 ° C. or lower, 1150 ° C. or lower, 1130 ° C. or lower, 1110 ° C. or lower, 1090 ° C. or lower, particularly 1070 ° C. or lower. If the liquidus temperature is too high, it becomes difficult to form a spherical shape.
 液相粘度は、好ましくは104.0dPa・s以上、104.3dPa・s以上、104.5dPa・s以上、105.0dPa・s以上、特に105.4dPa・s以上である。液相粘度が低過ぎると、球形状に成形し難くなる。なお、液相温度が1200℃以下であり、且つ液相粘度が104.0dPa・s以上であれば、マーブル成形法等で球形状に成形可能である。 Liquidus viscosity, preferably of 10 4.0 dPa · s or more, 10 4.3 dPa · s or more, 10 4.5 dPa · s or more, 10 5.0 dPa · s or more, particularly 10 5.4 dPa · s or more. If the liquid phase viscosity is too low, it becomes difficult to form a spherical shape. If the liquid phase temperature is 1200 ° C. or lower and the liquid phase viscosity is 10 4.0 dPa · s or higher, it can be formed into a spherical shape by a marble molding method or the like.
 本発明のガラス転動体において、直径は、好ましくは100mm以下、80mm以下、50mm以下、特に30mm以下であり、また好ましくは1mm以上、2mm以上、4mm以上、特に5mm以上である。このようにすれば、軸受装置等に組み込まれる転動体に好適になる。 In the glass rolling element of the present invention, the diameter is preferably 100 mm or less, 80 mm or less, 50 mm or less, particularly 30 mm or less, and preferably 1 mm or more, 2 mm or more, 4 mm or more, particularly 5 mm or more. If it does in this way, it will become suitable for a rolling element built in a bearing device etc.
 本発明のガラス転動体は、例えば、以下のようにして作製することができる。まず所望のガラス組成になるように調合したガラスバッチを連続溶融炉に投入し、1500~1600℃で加熱溶融して、溶融ガラスを得た後、清澄容器、攪拌容器を経由して、成形装置に供給した上で球形状に成形し、徐冷する。次に、得られたガラス転動体の表面を回転させながら研磨処理して、直径の寸法公差を低下させる。続いて、ガラス転動体をイオン交換溶液に浸漬して、表面に圧縮応力層を形成する。 The glass rolling element of the present invention can be produced, for example, as follows. First, a glass batch prepared to have a desired glass composition is put into a continuous melting furnace, heated and melted at 1500 to 1600 ° C. to obtain a molten glass, and then a molding apparatus through a clarification container and a stirring container. The product is then formed into a spherical shape and slowly cooled. Next, polishing is performed while rotating the surface of the obtained glass rolling element to reduce the dimensional tolerance of the diameter. Subsequently, the glass rolling element is immersed in an ion exchange solution to form a compressive stress layer on the surface.
 成形方法として、種々の成形方法を採択することができる。その中でも、マーブル成形法と液滴成形法を採択することが好ましい。またプレス法を採択することも好ましい。このようにすれば、寸法精度が高いガラス転動体を成形し易くなる。結果として、表面の研磨が少量でも、ガラス転動体の直径の寸法公差を低減することができる。 Various molding methods can be adopted as the molding method. Among them, it is preferable to adopt a marble forming method and a droplet forming method. It is also preferable to adopt a pressing method. If it does in this way, it will become easy to form a glass rolling element with high dimensional accuracy. As a result, the dimensional tolerance of the diameter of the glass rolling element can be reduced even with a small amount of surface polishing.
 イオン交換処理前に、機械的強度を高めるために、ガラス転動体の表面を化学エッチングする工程を設けてもよい。化学エッチングは、ガラス転動体を回動又は揺動させながら行うことが好ましい。このようにすれば、ガラス転動体の表層のエッチング深さが均一化されるため、直径の寸法公差を低減することができる。 In order to increase the mechanical strength before the ion exchange treatment, a step of chemically etching the surface of the glass rolling element may be provided. The chemical etching is preferably performed while rotating or swinging the glass rolling element. In this way, since the etching depth of the surface layer of the glass rolling element is made uniform, the dimensional tolerance of the diameter can be reduced.
 イオン交換処理は、例えば360~550℃の硝酸カリウム溶融塩中にガラス転動体を1~100時間浸漬することによって行うことができる。生産効率の観点から、複数のガラス転動体を同時にイオン交換処理することが好ましく、その場合、ガラス転動体同士が接触しないように、ガラス転動体の直径よりもメッシュ幅が小さい金属製治具等に複数のガラス転動体を等間隔に配列し、この治具を積層した状態でイオン交換処理することがより好ましい。 The ion exchange treatment can be performed, for example, by immersing the glass rolling element in a molten potassium nitrate at 360 to 550 ° C. for 1 to 100 hours. From the viewpoint of production efficiency, it is preferable that a plurality of glass rolling elements are subjected to ion exchange treatment at the same time. In that case, a metal jig having a mesh width smaller than the diameter of the glass rolling elements, etc. so that the glass rolling elements do not contact each other More preferably, the plurality of glass rolling elements are arranged at equal intervals, and the ion exchange treatment is performed in a state where the jig is laminated.
 イオン交換処理は、ガラス転動体を回動又は揺動させながら行うことが好ましい。このようにすれば、ガラス転動体の表層のガラス組成が均一化されるため、直径の寸法公差を低減することができる。 The ion exchange treatment is preferably performed while rotating or swinging the glass rolling element. In this way, since the glass composition of the surface layer of the glass rolling element is made uniform, the dimensional tolerance of the diameter can be reduced.
 イオン交換処理は、複数回行ってもよい。イオン交換処理を複数回行うと、深さ方向のKイオン濃度の分布曲線を屈曲させることができ、圧縮応力層の圧縮応力値CSと応力深さDOLを増大させつつ、内部に蓄積される引っ張り応力の総量を低減することができる。 The ion exchange process may be performed a plurality of times. When the ion exchange treatment is performed a plurality of times, the distribution curve of the K ion concentration in the depth direction can be bent, and the tensile stress accumulated inside is increased while increasing the compressive stress value CS and the stress depth DOL of the compressive stress layer. The total amount of stress can be reduced.
 イオン交換処理を2回行う場合、イオン交換処理の間に熱処理工程を設けてもよい。このようにすれば、同一の硝酸カリウム溶融塩により、深さ方向のKイオン濃度の分布曲線を屈曲させることができる。更に一回目のイオン交換処理の時間を短縮することができる。 When the ion exchange treatment is performed twice, a heat treatment step may be provided between the ion exchange treatments. In this way, the K ion concentration distribution curve in the depth direction can be bent by the same potassium nitrate molten salt. Furthermore, the time for the first ion exchange treatment can be shortened.
 イオン交換処理後に、直径の寸法公差を低減するために、ガラス転動体の表面を研磨する研磨工程を設けてもよい。 After the ion exchange treatment, a polishing step for polishing the surface of the glass rolling element may be provided in order to reduce the dimensional tolerance of the diameter.
 実施例に基づいて、本発明を説明する。但し、本発明は、以下の実施例に何ら限定されない。以下の実施例は、単なる例示である。 The present invention will be described based on examples. However, the present invention is not limited to the following examples. The following examples are merely illustrative.
 表1は、本発明の実施例(No.1~5)のガラス組成と特性を示している。 Table 1 shows the glass composition and characteristics of Examples (Nos. 1 to 5) of the present invention.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次のようにして、表1に記載の各試料を作製した。まず、表中のガラス組成となるように、ガラス原料を調合し、白金容器を用いて1580℃で8時間溶融した。その後、溶融ガラスをカーボン板の上に流し出して板状に成形して、ガラス板を得た。また、別途、溶融ガラスをマーブル成形法で球形状に成形した後、回動させながら表面を研磨加工して、表中に示す寸法のガラス転動体を得た。ガラス板とガラス転動体は、同じ熱処理条件でアニールされており、熱履歴が同一になっている。各ガラス板及びガラス転動体について、種々の特性を評価した。 Each sample shown in Table 1 was produced as follows. First, the glass raw material was prepared so that it might become the glass composition in a table | surface, and it melted at 1580 degreeC for 8 hours using the platinum container. Thereafter, the molten glass was poured out on the carbon plate and formed into a plate shape to obtain a glass plate. Separately, molten glass was formed into a spherical shape by a marble molding method, and then the surface was polished while rotating to obtain glass rolling elements having the dimensions shown in the table. The glass plate and the glass rolling element are annealed under the same heat treatment conditions, and the thermal history is the same. Various characteristics were evaluated about each glass plate and glass rolling element.
 密度は、周知のアルキメデス法によって測定した値である。 The density is a value measured by the well-known Archimedes method.
 歪点Ps、徐冷点Taは、ASTM C336の方法によって測定した値である。 The strain point Ps and the annealing point Ta are values measured by the method of ASTM C336.
 軟化点Tsは、ASTM C338の方法によって測定した値である。 The softening point Ts is a value measured by the method of ASTM C338.
 ガラスの粘度104.0dPa・s、103.0dPa・s、102.5dPa・sに相当する温度は、白金球引き上げ法によって測定した値である。 Temperature corresponding to a viscosity 10 4.0 dPa · s, 10 3.0 dPa · s, 10 2.5 dPa · s of the glass, a value measured by a platinum ball pulling method.
 熱膨張係数は、30~380℃の温度範囲において、ディラトメーターで測定した平均値である。 The thermal expansion coefficient is an average value measured with a dilatometer in a temperature range of 30 to 380 ° C.
 液相温度TLは、標準篩30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持して、結晶の析出する温度を測定した値である。 The liquid phase temperature TL passes through a standard sieve 30 mesh (a sieve opening of 500 μm), and the glass powder remaining in a 50 mesh (a sieve opening of 300 μm) is put in a platinum boat and kept in a temperature gradient furnace for 24 hours to obtain a crystal. It is the value which measured the temperature which deposits.
 液相粘度logηTLは、液相温度における各ガラスの粘度を示している。 Liquid phase viscosity log ηTL indicates the viscosity of each glass at the liquidus temperature.
 続いて、各ガラス板の両表面に光学研磨を施した後、イオン交換処理を行った。イオン交換処理は440℃の硝酸カリウム溶融塩中に各ガラス板を6時間浸漬することで行った。同様にして、各ガラス転動体についても、回動させながら上記イオン交換処理を行った。イオン交換処理後、各ガラス板の表面を洗浄し、表面応力計(株式会社折原製作所製FSM-6000)を用いて観察される干渉縞の本数とその間隔から圧縮応力層の圧縮応力値と応力深さを算出した。算出に当たり、各ガラス板の屈折率を1.52、光学弾性定数を28[(nm/cm)/MPa]とした。ガラス板とガラス転動体のガラス組成、熱履歴及びイオン交換条件が同一であるため、ガラス板の圧縮応力値をガラス転動体の圧縮応力値CSとし、ガラス板の応力深さをガラス転動体の応力深さDOLとした。 Subsequently, after both surfaces of each glass plate were optically polished, ion exchange treatment was performed. The ion exchange treatment was performed by immersing each glass plate in a molten potassium nitrate at 440 ° C. for 6 hours. Similarly, the ion exchange treatment was performed while rotating each glass rolling element. After the ion exchange treatment, the surface of each glass plate is washed, and the compressive stress value and stress of the compressive stress layer are determined from the number of interference fringes observed using a surface stress meter (FSM-6000 manufactured by Orihara Seisakusho Co., Ltd.). Depth was calculated. In the calculation, the refractive index of each glass plate was 1.52, and the optical elastic constant was 28 [(nm / cm) / MPa]. Since the glass composition, thermal history, and ion exchange conditions of the glass plate and the glass rolling element are the same, the compression stress value of the glass plate is the compression stress value CS of the glass rolling element, and the stress depth of the glass plate is the stress of the glass rolling element. The stress depth was DOL.
 なお、ガラス転動体の表層のガラス組成は、イオン交換処理の前後で微視的に変動するものの、ガラス転動体全体として見た場合、ガラス組成の変動は極めて小さい。 In addition, although the glass composition of the surface layer of a glass rolling element changes microscopically before and after an ion exchange process, when it sees as the whole glass rolling element, the fluctuation | variation of a glass composition is very small.
 直径とその寸法公差は、各ガラス転動体についてマイクロメータを用いて測定した値である。 The diameter and its dimensional tolerance are values measured using a micrometer for each glass rolling element.
 表1から分かるように、試料No.1~5は、直径の寸法公差が良好であり、圧縮応力層の圧縮応力値CSと応力深さDOLが大きいため、軸受装置等に組み込まれる転動体として好適であるものと考えられる。 As can be seen from Table 1, sample no. Nos. 1 to 5 are considered to be suitable as rolling elements incorporated in a bearing device or the like because the dimensional tolerance of the diameter is good and the compressive stress value CS and the stress depth DOL of the compressive stress layer are large.

Claims (7)

  1.  直径の寸法公差が0.5%以内であり、表面にイオン交換による圧縮応力層を有することを特徴とするガラス転動体。 A glass rolling element characterized by having a dimensional tolerance of a diameter within 0.5% and having a compressive stress layer by ion exchange on the surface.
  2.  表面が研磨面であることを特徴とする請求項1に記載のガラス転動体。 The glass rolling element according to claim 1, wherein the surface is a polished surface.
  3.  表面が化学エッチング面であることを特徴とする請求項1に記載のガラス転動体。 The glass rolling element according to claim 1, wherein the surface is a chemically etched surface.
  4.  表面の表面粗さRaが3nm以下であることを特徴とする請求項1~3の何れかに記載のガラス転動体。 The glass rolling element according to any one of claims 1 to 3, wherein the surface roughness Ra of the surface is 3 nm or less.
  5.  圧縮応力層の圧縮応力値CSが300MPa以上、且つ応力深さDOLが30μm以上であることを特徴とする請求項1~4の何れかに記載のガラス転動体。 5. The glass rolling element according to claim 1, wherein the compression stress value CS of the compression stress layer is 300 MPa or more and the stress depth DOL is 30 μm or more.
  6.  ガラス組成として、質量%で、SiO 45~75%、Al 10~30%、NaO 5~25%を含有することを特徴とする請求項1~5の何れかに記載のガラス転動体。 The glass composition according to any one of claims 1 to 5, wherein the glass composition contains SiO 2 45 to 75%, Al 2 O 3 10 to 30%, and Na 2 O 5 to 25% by mass. Glass rolling element.
  7.  液相粘度が104.0dPa・s以上であることを特徴とする請求項1~6の何れかに記載のガラス転動体。 7. The glass rolling element according to claim 1, wherein the liquid phase viscosity is 10 4.0 dPa · s or more.
PCT/JP2017/021378 2016-06-14 2017-06-08 Glass rolling body WO2017217321A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018523859A JP6959584B2 (en) 2016-06-14 2017-06-08 Glass rolling element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016117673 2016-06-14
JP2016-117673 2016-06-14

Publications (1)

Publication Number Publication Date
WO2017217321A1 true WO2017217321A1 (en) 2017-12-21

Family

ID=60663245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021378 WO2017217321A1 (en) 2016-06-14 2017-06-08 Glass rolling body

Country Status (2)

Country Link
JP (1) JP6959584B2 (en)
WO (1) WO2017217321A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235663A1 (en) * 2017-06-19 2018-12-27 日本電気硝子株式会社 Rolling device and spherical glass
JP2019131428A (en) * 2018-01-31 2019-08-08 日本電気硝子株式会社 Spherical glass, glass rolling element and method for producing glass rolling element

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11287249A (en) * 1998-04-03 1999-10-19 Morita Mfg Co Ltd Rolling bearing device for high-speed rotating apparatus
JP2001027251A (en) * 1999-07-14 2001-01-30 Minebea Co Ltd Bearing and manufacture thereof
JP2004226246A (en) * 2003-01-23 2004-08-12 Nsk Ltd Dimension measuring instrument and method for rolling element
JP2005226829A (en) * 2004-01-14 2005-08-25 Nsk Ltd Rolling device
JP2007303481A (en) * 2006-05-08 2007-11-22 Jtekt Corp Telescopic shaft and manufacturing method of telescopic shaft
JP2008195602A (en) * 2007-01-16 2008-08-28 Nippon Electric Glass Co Ltd Method for manufacturing tempered glass substrate and tempered glass substrate
JP2013072491A (en) * 2011-09-28 2013-04-22 Panasonic Corp Rolling bearing and electric motor provided with the same
JP2017015147A (en) * 2015-06-30 2017-01-19 日本精工株式会社 Rolling device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11287249A (en) * 1998-04-03 1999-10-19 Morita Mfg Co Ltd Rolling bearing device for high-speed rotating apparatus
JP2001027251A (en) * 1999-07-14 2001-01-30 Minebea Co Ltd Bearing and manufacture thereof
JP2004226246A (en) * 2003-01-23 2004-08-12 Nsk Ltd Dimension measuring instrument and method for rolling element
JP2005226829A (en) * 2004-01-14 2005-08-25 Nsk Ltd Rolling device
JP2007303481A (en) * 2006-05-08 2007-11-22 Jtekt Corp Telescopic shaft and manufacturing method of telescopic shaft
JP2008195602A (en) * 2007-01-16 2008-08-28 Nippon Electric Glass Co Ltd Method for manufacturing tempered glass substrate and tempered glass substrate
JP2013072491A (en) * 2011-09-28 2013-04-22 Panasonic Corp Rolling bearing and electric motor provided with the same
JP2017015147A (en) * 2015-06-30 2017-01-19 日本精工株式会社 Rolling device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235663A1 (en) * 2017-06-19 2018-12-27 日本電気硝子株式会社 Rolling device and spherical glass
JP2019131428A (en) * 2018-01-31 2019-08-08 日本電気硝子株式会社 Spherical glass, glass rolling element and method for producing glass rolling element
JP7106057B2 (en) 2018-01-31 2022-07-26 日本電気硝子株式会社 Spherical glass, glass rolling elements, and method for producing glass rolling elements

Also Published As

Publication number Publication date
JPWO2017217321A1 (en) 2019-06-13
JP6959584B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
JP6732823B2 (en) Two-step method of strengthening glass
US10173923B2 (en) Tempered glass, tempered glass plate, and glass for tempering
KR101641981B1 (en) Method for producing tempered glass
JP5267753B1 (en) Chemically tempered glass and method for producing the same
JP5957097B2 (en) Glass composition, glass composition for chemical strengthening, tempered glass article, and cover glass for display
TWI744530B (en) Hybrid soda-lime silicate and aluminosilicate glass articles
JP6300177B2 (en) Method for producing tempered glass
JP5790303B2 (en) Method for producing tempered glass sheet
WO2013187465A1 (en) Reinforced glass, reinforced glass plate, and glass to be reinforced
JP6959584B2 (en) Glass rolling element
JP2018100209A (en) Spherical glass and method for producing glass rolling element
JP2019151532A (en) Method for producing tempered glass sphere
WO2018110224A1 (en) Spherical glass and method for producing glass rolling element
JP6993617B2 (en) Insulation member and its manufacturing method
JP7335557B2 (en) tempered glass and tempered glass
JP7106057B2 (en) Spherical glass, glass rolling elements, and method for producing glass rolling elements
JP2019001699A (en) Spherical glass
JP2018203562A (en) Method for producing glass rolling element
JP2019007504A (en) Rolling device
JP2019001667A (en) Production method of glass rolling element
JP7335541B2 (en) tempered glass and tempered glass
WO2018235663A1 (en) Rolling device and spherical glass
JP2019001666A (en) Production method of glass rolling element, and glass rolling element
JP2019151506A (en) Spherical glass
JPWO2019031189A1 (en) Tempered glass plate and tempered glass sphere

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018523859

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17813218

Country of ref document: EP

Kind code of ref document: A1