JP6993617B2 - Insulation member and its manufacturing method - Google Patents
Insulation member and its manufacturing method Download PDFInfo
- Publication number
- JP6993617B2 JP6993617B2 JP2018513103A JP2018513103A JP6993617B2 JP 6993617 B2 JP6993617 B2 JP 6993617B2 JP 2018513103 A JP2018513103 A JP 2018513103A JP 2018513103 A JP2018513103 A JP 2018513103A JP 6993617 B2 JP6993617 B2 JP 6993617B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- insulating member
- glass
- compressive stress
- ion exchange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 238000009413 insulation Methods 0.000 title description 3
- 239000011521 glass Substances 0.000 claims description 83
- 238000005342 ion exchange Methods 0.000 claims description 47
- 239000003513 alkali Substances 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 17
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 13
- 229910052708 sodium Inorganic materials 0.000 claims description 10
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 9
- 238000010586 diagram Methods 0.000 description 15
- 238000004031 devitrification Methods 0.000 description 12
- 230000001965 increasing effect Effects 0.000 description 12
- 229910018068 Li 2 O Inorganic materials 0.000 description 10
- 238000000465 moulding Methods 0.000 description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 229910006404 SnO 2 Inorganic materials 0.000 description 4
- 229910010413 TiO 2 Inorganic materials 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000006060 molten glass Substances 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 238000007088 Archimedes method Methods 0.000 description 2
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052575 non-oxide ceramic Inorganic materials 0.000 description 2
- 239000011225 non-oxide ceramic Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000009774 resonance method Methods 0.000 description 2
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000002419 bulk glass Substances 0.000 description 1
- QXJJQWWVWRCVQT-UHFFFAOYSA-K calcium;sodium;phosphate Chemical compound [Na+].[Ca+2].[O-]P([O-])([O-])=O QXJJQWWVWRCVQT-UHFFFAOYSA-K 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 239000008395 clarifying agent Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000006066 glass batch Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000004579 marble Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C21/00—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B17/00—Insulators or insulating bodies characterised by their form
- H01B17/56—Insulating bodies
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
- Surface Treatment Of Glass (AREA)
- Inorganic Insulating Materials (AREA)
- Insulating Bodies (AREA)
Description
本発明は、駆動装置に用いられる絶縁部材及びその製造方法に関し、具体的には軽量、高強度、低コストであり、且つ加工性に優れる絶縁部材及びその製造方法に関する。 The present invention relates to an insulating member used in a drive device and a method for manufacturing the same, and specifically to an insulating member which is lightweight, has high strength, is low in cost, and has excellent workability, and a method for manufacturing the same.
高電圧印加下で高速回転する装置等には、絶縁部材が使用されている。例えば、特許文献1には、放射線技術用の高電圧発生器に使用される絶縁部材として、樹脂とセラミックを組み合わせたハイブリット絶縁部材を用いることが開示されている。特許文献2には、金属シャフトに代わって、セラミックシャフト等の絶縁部材を採用することが開示されている。 Insulating members are used in devices that rotate at high speed under the application of high voltage. For example, Patent Document 1 discloses that a hybrid insulating member in which a resin and a ceramic are combined is used as an insulating member used in a high voltage generator for radiation technology. Patent Document 2 discloses that an insulating member such as a ceramic shaft is used instead of the metal shaft.
電気自動車の普及に伴い、誘導電流、誘導磁場の発生空間内で駆動する絶縁部材に対して、軽量、高強度等の要求が高まるものと予想される。 With the widespread use of electric vehicles, it is expected that the demand for lightweight and high strength will increase for insulating members driven in the space where induced currents and induced magnetic fields are generated.
現在、高強度の絶縁部材として、窒化珪素等の非酸化物系セラミックが使用されている(特許文献3参照)。しかし、非酸化物系セラミックは、高価であり、重く、加工性が低いという問題がある。 Currently, non-oxide ceramics such as silicon nitride are used as high-strength insulating members (see Patent Document 3). However, non-oxide ceramics have problems that they are expensive, heavy, and have low processability.
また、絶縁部材として、加工性が高い酸化物系ガラスを使用することも想定される。しかし、酸化物系ガラスは、脆性材料であり、強度が低いという問題がある。 It is also assumed that oxide-based glass with high workability is used as the insulating member. However, oxide-based glass is a brittle material and has a problem of low strength.
本発明は、上記事情に鑑みなされたものであり、その技術的課題は、軽量、高強度及び低コストであると共に、加工性に優れる絶縁部材及びその製造方法を創案することである。 The present invention has been made in view of the above circumstances, and its technical problem is to create an insulating member which is lightweight, has high strength and low cost, and has excellent workability, and a method for manufacturing the same.
本発明者等は、低密度のアルカリ含有ガラスに対して、略真円形状の断面外形を付与すると共に、イオン交換により表面圧縮応力層を形成することにより、上記技術的課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明の絶縁部材は、アルカリ含有ガラスからなる絶縁部材であって、略真円になる断面外形を有し、密度が2.60g/cm3以下であり、イオン交換による表面圧縮応力層を有し、且つ駆動装置に組み込まれることを特徴とする。ここで、「アルカリ含有ガラス」とは、ガラス組成中のアルカリ金属酸化物(Li2O、Na2O及びK2O)の含有量が合量で3質量%以上のガラスを指す。「略真円になる断面外形」とは、少なくとも一方向からの断面外形が略真円であればよい。「略真円」とは、直径の寸法公差が1%以内(好ましくは0.5%以内、0.1%以内、0.05%以内、0.01%以内、0.005%以内、特に0.001%以内)であることを指す。「直径の寸法公差」は、例えば、画像検査装置を用いた画像解析等により測定可能である。「密度」は、アルキメデス法等により測定可能である。The present inventors can solve the above technical problems by imparting a substantially perfect circular cross-sectional outer shape to low-density alkali-containing glass and forming a surface compressive stress layer by ion exchange. Is proposed as the present invention. That is, the insulating member of the present invention is an insulating member made of alkali-containing glass, has a cross-sectional outer shape that is substantially a perfect circle, has a density of 2.60 g / cm 3 or less, and is a surface compressive stress layer by ion exchange. It is characterized by having the above and being incorporated in a drive device. Here, the "alkali-containing glass" refers to a glass in which the content of alkali metal oxides (Li 2 O, Na 2 O and K 2 O) in the glass composition is 3% by mass or more in total. The "cross-sectional outer shape that becomes a substantially perfect circle" may mean that the cross-sectional outer shape from at least one direction is a substantially perfect circle. "Approximately perfect circle" means that the dimensional tolerance of the diameter is within 1% (preferably within 0.5%, within 0.1%, within 0.05%, within 0.01%, within 0.005%, in particular. It means that it is within 0.001%). The "dimensional tolerance of diameter" can be measured by, for example, image analysis using an image inspection device. "Density" can be measured by the Archimedes method or the like.
本発明の絶縁部材は、密度が2.60g/cm3以下のアルカリ含有ガラスで構成される。これにより、軽量化を図りつつ、加工性を高めることが可能になる。一方、アルカリ含有ガラスは、脆性が高いため、強度が低い。そこで、本発明の絶縁部材は、イオン交換による表面圧縮応力を形成することにより、強度を高めている。The insulating member of the present invention is made of alkali-containing glass having a density of 2.60 g / cm 3 or less. This makes it possible to improve workability while reducing the weight. On the other hand, alkali-containing glass has high brittleness and therefore low strength. Therefore, the insulating member of the present invention has increased strength by forming a surface compressive stress due to ion exchange.
また、本発明の絶縁部材は、略真円になる断面外形を有する。これにより、駆動装置に組み込まれる転動体として好適に使用可能になる。また電気自動車等のシャフト等にも好適に使用可能になる。なお、略真円になる断面外形は、絶縁部材の全ての領域に存在する必要はなく、例えば、駆動させる部位にのみ存在していてもよい。 Further, the insulating member of the present invention has a cross-sectional outer shape that is substantially a perfect circle. This makes it possible to suitably use it as a rolling element incorporated in a drive device. Further, it can be suitably used for a shaft or the like of an electric vehicle or the like. It should be noted that the cross-sectional outer shape that becomes a substantially perfect circle does not have to exist in all the regions of the insulating member, and may exist only in, for example, the portion to be driven.
第二に、本発明の絶縁部材は、150℃における体積電気抵抗率が105.0Ω・cm以上であることが好ましい。ここで、「150℃における体積電気抵抗値」は、ASTM C657-78に基づいて測定した値であり、絶縁部材と同一のガラス組成、同一の熱履歴を有するガラス板(例えば板厚0.7mm)を同一条件でイオン交換処理し、得られたガラス板を測定試料とすることが好ましい。なお、ガラス組成(圧縮応力層の極小領域のガラス組成を含む)は、SEM-EDX(例えば日立ハイテクノロジーズ製S4300-SE、堀場製作所製EX-250)を用いたZAF法によるスタンダードレス定量分析で測定することができる。また、絶縁部材とガラス板のガラス組成を一致させた上で両者の密度が同一になるように、ガラス板の熱処理条件を調整すれば、ガラス板に絶縁部材と同様の熱履歴を付与することができる。Secondly, the insulating member of the present invention preferably has a volume resistivity of 10 5.0 Ω · cm or more at 150 ° C. Here, the "volume electrical resistance value at 150 ° C." is a value measured based on ASTM C657-78, and is a glass plate having the same glass composition and the same thermal history as the insulating member (for example, a plate thickness of 0.7 mm). ) Is ion-exchanged under the same conditions, and the obtained glass plate is preferably used as a measurement sample. The glass composition (including the glass composition in the minimum region of the compressive stress layer) was determined by standardless quantitative analysis by the ZAF method using SEM-EDX (for example, S4300-SE manufactured by Hitachi High-Technologies Corporation, EX-250 manufactured by HORIBA, Ltd.). Can be measured. Further, if the heat treatment conditions of the glass plate are adjusted so that the densities of the insulating member and the glass plate are matched and the densities of the two are the same, the glass plate can be given the same thermal history as the insulating member. Can be done.
第三に、本発明の絶縁部材は、150℃における体積電気抵抗率が、イオン交換前の体積電気抵抗率の10倍以上であることが好ましい。 Thirdly, in the insulating member of the present invention, the volume resistivity at 150 ° C. is preferably 10 times or more the volume resistivity before ion exchange.
第四に、本発明の絶縁部材は、略真円の断面外形上の表面圧縮応力層の圧縮応力値が300MPa以上、且つ応力深さが25μm以上であることが好ましい。ここで、「圧縮応力値」と「応力深さ」は、表面応力計(例えば、折原製作所製FSM-6000)を用いて試料を観察した際に、観察される干渉縞の本数とその間隔から算出することができる。絶縁部材が1cm角以上の平坦部を有する場合、その平坦部の表面圧縮応力層の圧縮応力値と応力深さを測定すれば、略真円の断面外形上の表面圧縮応力層の圧縮応力値と応力深さを正確に見積もることができる。絶縁部材に1cm角以上の平坦部がない場合、絶縁部材と同一のガラス組成、同一の熱履歴を有するガラス板を同一条件でイオン交換処理し、得られたガラス板の表面圧縮応力層の圧縮応力値と応力深さを測定すれば、略真円の断面外形上の表面圧縮応力層の圧縮応力値と応力深さを正確に見積もることができる。 Fourth, in the insulating member of the present invention, it is preferable that the compressive stress value of the surface compressive stress layer on the outer shape of a substantially perfect circle is 300 MPa or more and the stress depth is 25 μm or more. Here, the "compressive stress value" and the "stress depth" are determined from the number of interference fringes observed and their intervals when the sample is observed using a surface stress meter (for example, FSM-6000 manufactured by Orihara Seisakusho). Can be calculated. When the insulating member has a flat portion of 1 cm square or more, the compressive stress value of the surface compressive stress layer on the outer shape of a substantially perfect circle can be measured by measuring the compressive stress value and stress depth of the surface compressive stress layer of the flat portion. And the stress depth can be estimated accurately. When the insulating member does not have a flat portion of 1 cm square or more, a glass plate having the same glass composition and the same thermal history as the insulating member is subjected to ion exchange treatment under the same conditions, and the surface compressive stress layer of the obtained glass plate is compressed. By measuring the stress value and stress depth, it is possible to accurately estimate the compressive stress value and stress depth of the surface compressive stress layer on the outer shape of the cross section of a substantially perfect circle.
第五に、本発明の絶縁部材は、アルカリ含有ガラスが、ガラス組成として、質量%で、SiO2 40~75%、Al2O3 10~30%、Na2O 5~25%を含有することが好ましい。Fifth, in the insulating member of the present invention, the alkali-containing glass contains SiO 2 40 to 75%, Al 2 O 3 10 to 30%, and Na 2 O 5 to 25% by mass in terms of glass composition. Is preferable.
第六に、本発明の絶縁部材の製造方法は、アルカリ含有ガラスからなる絶縁部材の製造方法であって、略真円になる断面外形を有し、密度が2.60g/cm3以下となるアルカリ含有ガラスを作製した後に、該アルカリ含有ガラスをイオン交換処理して、表面圧縮応力層を形成することを特徴とする。Sixth, the method for manufacturing an insulating member of the present invention is a method for manufacturing an insulating member made of alkali-containing glass, which has a cross-sectional outer shape that is substantially a perfect circle and has a density of 2.60 g / cm 3 or less. After producing the alkali-containing glass, the alkali-containing glass is ion-exchanged to form a surface compressive stress layer.
本発明の絶縁部材は、略真円になる断面外形を有する。このようにすれば、高速の回転、高摩擦、高荷重等の過酷な条件でも、安定的な駆動が期待できる。更に、このような断面形状は、溶融ガラスから形成し易く、またガラスを回転させながら研磨し得るため、ガラス表面の傷が少なくなり、高強度になり易い。 The insulating member of the present invention has a cross-sectional outer shape that is substantially a perfect circle. By doing so, stable driving can be expected even under harsh conditions such as high-speed rotation, high friction, and high load. Further, such a cross-sectional shape can be easily formed from molten glass and can be polished while rotating the glass, so that scratches on the glass surface are reduced and the strength tends to be high.
本発明の絶縁部材は、断面外形が略真円になる円環状(又は円筒状)の絶縁部材であることが好ましい。この場合、円環の外径は、好ましくは100mm以下、80mm以下、50mm以下、特に30mm以下であり、また好ましくは1mm以上、2mm以上、4mm以上、特に5mm以上である。このようにすれば、駆動装置に組み込まれるシャフト等に好適に適用可能になる。なお、円環の内径は、特に限定されず、駆動装置の設計に応じて調整可能である。図1は本発明の絶縁部材の一例を示す概念図であり、図1(a)は、断面外形が略真円になる円環状の絶縁部材の斜視概念図であり、図1(b)は、図1(a)に示す絶縁部材を横方向に断面した時の断面概念図である。 The insulating member of the present invention is preferably an annular (or cylindrical) insulating member having a substantially perfect circular cross-sectional shape. In this case, the outer diameter of the annulus is preferably 100 mm or less, 80 mm or less, 50 mm or less, particularly 30 mm or less, and preferably 1 mm or more, 2 mm or more, 4 mm or more, and particularly 5 mm or more. In this way, it can be suitably applied to a shaft or the like incorporated in a drive device. The inner diameter of the annulus is not particularly limited and can be adjusted according to the design of the drive device. FIG. 1 is a conceptual diagram showing an example of the insulating member of the present invention, FIG. 1 (a) is a perspective conceptual diagram of an annular insulating member having a substantially perfect circular cross-sectional shape, and FIG. 1 (b) is a perspective diagram. It is a cross-sectional conceptual diagram when the insulating member shown in FIG. 1A is cross-sectionally cross-sectionally.
本発明の絶縁部材は、断面外形が略真円になる円柱状の絶縁部材であることが好ましい。この場合、円柱の直径は、好ましくは100mm以下、80mm以下、50mm以下、特に30mm以下であり、また好ましくは1mm以上、2mm以上、4mm以上、特に5mm以上である。このようにすれば、駆動装置に組み込まれるローラー、シャフト等に好適に適用可能になる。図2は本発明の絶縁部材の一例を示す概念図であり、図2(a)は、断面外形が略真円になる円柱状の絶縁部材の斜視概念図であり、図2(b)は、図2(a)に示す絶縁部材を横方向に断面した時の断面概念図である。 The insulating member of the present invention is preferably a columnar insulating member having a substantially perfect circular cross-sectional shape. In this case, the diameter of the cylinder is preferably 100 mm or less, 80 mm or less, 50 mm or less, particularly 30 mm or less, and preferably 1 mm or more, 2 mm or more, 4 mm or more, and particularly 5 mm or more. In this way, it can be suitably applied to rollers, shafts and the like incorporated in a drive device. FIG. 2 is a conceptual diagram showing an example of the insulating member of the present invention, FIG. 2A is a perspective conceptual diagram of a columnar insulating member having a substantially perfect circular cross-sectional shape, and FIG. 2B is a perspective diagram. It is a cross-sectional conceptual diagram when the insulating member shown in FIG. 2 (a) is cross-sectionally cross-sectionally.
本発明の絶縁部材は、断面外形が略真円になる球状の絶縁部材、つまり略真円状の絶縁部材であることが好ましい。この場合、球の直径は、好ましくは100mm以下、80mm以下、50mm以下、特に30mm以下であり、また好ましくは1mm以上、2mm以上、4mm以上、特に5mm以上である。このようにすれば、駆動装置、特に転動装置に組み込まれるスペーサー、球体等に好適に適用可能になる。図3は本発明の絶縁部材の一例を示す概念図であり、図3(a)は、断面外形が略真円になる球状の絶縁部材の斜視概念図であり、図3(b)は、図3(a)に示す絶縁部材を横方向に断面した時の断面概念図である。 The insulating member of the present invention is preferably a spherical insulating member having a substantially perfect circular cross-sectional shape, that is, a substantially perfect circular insulating member. In this case, the diameter of the sphere is preferably 100 mm or less, 80 mm or less, 50 mm or less, particularly 30 mm or less, and preferably 1 mm or more, 2 mm or more, 4 mm or more, particularly 5 mm or more. By doing so, it becomes possible to suitably apply to a driving device, particularly a spacer, a sphere or the like incorporated in a rolling device. FIG. 3 is a conceptual diagram showing an example of the insulating member of the present invention, FIG. 3A is a perspective conceptual diagram of a spherical insulating member having a substantially perfect circular cross-sectional shape, and FIG. 3B is a perspective diagram. It is sectional drawing conceptual diagram when the insulating member shown in FIG. 3A is cross-sectionally cross-sectionally.
本発明の絶縁部材は、表面が研磨面であること、特に略真円の断面外形上の表面が研磨面であることが好ましい。このようにすれば、バリ等の成形欠陥が除去されるため、強度を高めつつ、寸法精度を高めることができる。また研磨面の表面粗さRaは、好ましくは1nm以下、0.5nm以下、0.4nm以下、0.3nm以下、特に0.2nm以下である。研磨面の表面粗さRaが大き過ぎると、高速の回転、高摩擦、高荷重等の過酷な条件で、絶縁部材が破損し易くなる。ここで、「表面粗さRa」は、絶縁部材を治具等で固定した状態で、JIS B0601:2001年に準拠した方法で測定することができる。 It is preferable that the surface of the insulating member of the present invention is a polished surface, and in particular, the surface on the outer shape of a substantially perfect circular cross section is a polished surface. By doing so, since molding defects such as burrs are removed, it is possible to improve the dimensional accuracy while increasing the strength. The surface roughness Ra of the polished surface is preferably 1 nm or less, 0.5 nm or less, 0.4 nm or less, 0.3 nm or less, and particularly 0.2 nm or less. If the surface roughness Ra of the polished surface is too large, the insulating member is liable to be damaged under severe conditions such as high-speed rotation, high friction, and high load. Here, the "surface roughness Ra" can be measured by a method based on JIS B0601: 2001 with the insulating member fixed by a jig or the like.
本発明の絶縁部材において、密度は2.60g/cm3以下であり、好ましくは2.55g/cm3以下、2.5g/cm3以下、2.49g/cm3以下、特に2.48g/cm3以下である。密度が低い程、絶縁部材を軽量化することができる。なお、密度を低下させるには、ガラス組成中のSiO2、P2O5、B2O3の含有量を増加させたり、アルカリ金属酸化物、アルカリ土類金属酸化物、ZnO、ZrO2、TiO2の含有量を低減すればよい。In the insulating member of the present invention, the density is 2.60 g / cm 3 or less, preferably 2.55 g / cm 3 or less, 2.5 g / cm 3 or less, 2.49 g / cm 3 or less, and particularly 2.48 g / cm. It is cm 3 or less. The lower the density, the lighter the insulating member can be. In order to reduce the density, the content of SiO 2 , P 2 O 5 , B 2 O 3 in the glass composition may be increased, or an alkali metal oxide, an alkaline earth metal oxide, ZnO, ZrO 2 , etc. The content of TiO 2 may be reduced.
150℃における体積電気抵抗率は、好ましくは105.0Ω・cm以上、105.5Ω・cm以上、106.0Ω・cm以上、106.5Ω・cm以上、107.0Ω・cm以上、107.5Ω・cm以上、108.0Ω・cm以上、108.5Ω・cm以上、108.7Ω・cm以上、109.0Ω・cm以上、特に109.5Ω・cm以上である。体積電気抵抗率が低過ぎると、絶縁性が低下し易くなる。The volumetric electrical resistance at 150 ° C. is preferably 10 5.0 Ω · cm or more, 10 5.5 Ω · cm or more, 10 6.0 Ω · cm or more, 10 6.5 Ω · cm or more, and 10 7. 0 Ω · cm or more, 10 7.5 Ω · cm or more, 10 8.0 Ω · cm or more, 10 8.5 Ω · cm or more, 10 8.7 Ω · cm or more, 10 9.0 Ω · cm or more Especially, it is 109.5 Ω · cm or more. If the volume resistivity is too low, the insulation tends to decrease.
150℃における体積電気抵抗率は、イオン交換前の体積電気抵抗率の10倍以上、50倍以上、100倍以上、200倍以上、250倍以上、特に300倍以上が好ましい。150℃における体積電気抵抗率がイオン交換前の体積電気抵抗率の10倍未満になると、強度と絶縁性を高いレベルで両立することが困難になる。 The volume resistivity at 150 ° C. is preferably 10 times or more, 50 times or more, 100 times or more, 200 times or more, 250 times or more, particularly 300 times or more, the volume resistivity before ion exchange. When the volume resistivity at 150 ° C. is less than 10 times the volume resistivity before ion exchange, it becomes difficult to achieve both strength and insulation at a high level.
30~380℃の温度範囲における熱膨張係数は、好ましくは70×10-7~110×10-7/℃、75×10-7~110×10-7/℃、80×10-7~110×10-7/℃、特に85×10-7~110×10-7/℃である。上記のように熱膨張係数を規制すれば、高速回転時に発生する熱により周辺の金属部材が膨張したとしても、適正に駆動させることができる。ここで、「熱膨張係数」とは、30~380℃の温度範囲において、ディラトメーターで測定した平均値である。The coefficient of thermal expansion in the temperature range of 30 to 380 ° C is preferably 70 × 10-7 to 110 × 10-7 / ° C, 75 × 10-7 to 110 × 10-7 / ° C, 80 × 10-7 to 110. × 10 -7 / ° C, especially 85 × 10 -7 to 110 × 10 -7 / ° C. If the coefficient of thermal expansion is regulated as described above, even if the surrounding metal members expand due to the heat generated during high-speed rotation, they can be properly driven. Here, the "coefficient of thermal expansion" is an average value measured by a dilatometer in a temperature range of 30 to 380 ° C.
歪点は、好ましくは520℃以上、550℃以上、560℃以上、特に570℃以上である。歪点が高い程、耐熱性が向上する。また歪点が高いと、イオン交換処理時に応力緩和が生じ難くなるため、高い圧縮応力値を確保し易くなる。 The strain point is preferably 520 ° C. or higher, 550 ° C. or higher, 560 ° C. or higher, and particularly 570 ° C. or higher. The higher the strain point, the better the heat resistance. Further, when the strain point is high, stress relaxation is less likely to occur during the ion exchange process, so that it becomes easy to secure a high compressive stress value.
高温粘度102.5dPa・sに相当する温度は、好ましくは1650℃以下、1600℃以下、1580℃以下、1550℃以下、1540℃以下、特に1530℃以下である。高温粘度102.5dPa・sに相当する温度が低い程、低温でガラスを溶融することができる。よって、高温粘度102.5dPa・sに相当する温度が低い程、溶融窯等のガラス製造設備への負担が小さくなると共に、絶縁部材の泡品位を高めることができる。The temperature corresponding to the high temperature viscosity of 10 2.5 dPa · s is preferably 1650 ° C. or lower, 1600 ° C. or lower, 1580 ° C. or lower, 1550 ° C. or lower, 1540 ° C. or lower, and particularly 1530 ° C. or lower. The lower the temperature corresponding to the high temperature viscosity of 10 2.5 dPa · s, the lower the temperature at which the glass can be melted. Therefore, the lower the temperature corresponding to the high temperature viscosity of 10 2.5 dPa · s, the smaller the burden on the glass manufacturing equipment such as the melting kiln, and the higher the foam quality of the insulating member.
液相温度は、好ましくは1200℃以下、1150℃以下、1130℃以下、1110℃以下、1090℃以下、特に1070℃以下である。液相温度が高過ぎると、所望の形状に成形し難くなる。 The liquid phase temperature is preferably 1200 ° C. or lower, 1150 ° C. or lower, 1130 ° C. or lower, 1110 ° C. or lower, 1090 ° C. or lower, and particularly 1070 ° C. or lower. If the liquidus temperature is too high, it becomes difficult to form the desired shape.
ヤング率は65GPa以上であって、好ましくは69GPa以上、好ましくは71GPa以上、好ましくは75GPa以上、特に好ましくは77GPa以上である。ヤング率が低過ぎると、絶縁部材が変形し易くなるため、高速の回転、高摩擦、高荷重等の過酷な条件で駆動が不安定になり易い。ここで、「ヤング率」は、例えば、周知の共振法等で測定可能である。 The Young's modulus is 65 GPa or more, preferably 69 GPa or more, preferably 71 GPa or more, preferably 75 GPa or more, and particularly preferably 77 GPa or more. If the Young's modulus is too low, the insulating member is easily deformed, so that the drive tends to be unstable under severe conditions such as high-speed rotation, high friction, and high load. Here, the "Young's modulus" can be measured by, for example, a well-known resonance method or the like.
本発明の絶縁部材は、イオン交換による表面圧縮応力層を有する。これにより、絶縁部材の強度を高めることができる。イオン交換により表面圧縮応力層を形成する方法として、イオン交換液中にアルカリ含有ガラスを浸漬して、ガラス表面にイオン半径の大きいアルカリイオンを導入する方法が好ましい。このようにすれば、表面圧縮応力層を短時間に形成することができる。更に、イオン交換により表面圧縮応力層を形成する方法として、KNO3溶融塩中のKイオンとアルカリ含有ガラス中のNa成分とをイオン交換して、表面圧縮応力層を形成する方法が特に好ましい。このようにすれば、表面圧縮応力層中にKイオンとNaイオンが混在した状態になり、混合アルカリ効果により、ガラス表面の体積電気抵抗率を大幅に高めることができる。The insulating member of the present invention has a surface compressive stress layer due to ion exchange. Thereby, the strength of the insulating member can be increased. As a method of forming a surface compressive stress layer by ion exchange, a method of immersing alkali-containing glass in an ion exchange solution and introducing alkaline ions having a large ionic radius into the glass surface is preferable. By doing so, the surface compressive stress layer can be formed in a short time. Further, as a method for forming the surface compressive stress layer by ion exchange, a method for forming the surface compressive stress layer by ion exchange between K ions in the KNO 3 molten salt and the Na component in the alkali-containing glass is particularly preferable. By doing so, K ions and Na ions are mixed in the surface compressive stress layer, and the volume resistivity of the glass surface can be significantly increased by the mixed alkali effect.
本発明の絶縁部材において、表面圧縮応力層の圧縮応力値は、好ましくは300MPa以上、600MPa以上、800MPa以上、900MPa以上、1000MPa以上、特に1100MPa以上である。圧縮応力値が大きい程、絶縁部材の機械的強度が高くなる。しかし、圧縮応力値が大き過ぎると、絶縁部材に内在する引っ張り応力が極端に高くなる虞がある。よって、圧縮応力層の圧縮応力値は、好ましくは2500MPa以下である。なお、イオン交換時間を短くしたり、イオン交換温度を下げると、圧縮応力値を大きくすることができる。 In the insulating member of the present invention, the compressive stress value of the surface compressive stress layer is preferably 300 MPa or more, 600 MPa or more, 800 MPa or more, 900 MPa or more, 1000 MPa or more, and particularly 1100 MPa or more. The larger the compressive stress value, the higher the mechanical strength of the insulating member. However, if the compressive stress value is too large, the tensile stress inherent in the insulating member may become extremely high. Therefore, the compressive stress value of the compressive stress layer is preferably 2500 MPa or less. The compressive stress value can be increased by shortening the ion exchange time or lowering the ion exchange temperature.
応力深さは、好ましくは25μm以上、30μm以上、40μm以上、50μm以上、60μm以上、特に70μm以上である。応力深さが大きい程、高回転時の摩耗や異物により絶縁部材の表面に深い傷が付いても、絶縁部材が割れ難くなる。一方、応力深さが大き過ぎると、絶縁部材に内在する引っ張り応力が極端に高くなる虞がある。よって、応力深さは、好ましくは500μm以下、300μm以下、200μm以下、特に150μm以下である。なお、イオン交換時間を長くしたり、イオン交換温度を高めると、応力深さを大きくすることができる。 The stress depth is preferably 25 μm or more, 30 μm or more, 40 μm or more, 50 μm or more, 60 μm or more, and particularly 70 μm or more. The larger the stress depth, the more difficult it is for the insulating member to crack even if the surface of the insulating member is deeply scratched due to wear at high rotation or foreign matter. On the other hand, if the stress depth is too large, the tensile stress inherent in the insulating member may become extremely high. Therefore, the stress depth is preferably 500 μm or less, 300 μm or less, 200 μm or less, and particularly 150 μm or less. The stress depth can be increased by lengthening the ion exchange time or raising the ion exchange temperature.
内部の引っ張り応力値は、好ましくは200MPa以下、150MPa以下、100MPa以下、特に50MPa以下である。内部の引っ張り応力値が小さい程、絶縁部材の内部欠陥によって絶縁部材が破損し難くなるが、内部の引っ張り応力値が極端に小さくなると、圧縮応力値や応力深さが低下して、絶縁部材の機械的強度が低下してしまう。よって、内部の引っ張り応力値は、好ましくは1MPa以上、10MPa以上、特に15MPa以上である。なお、「内部の引っ張り応力値」は、下記の数式1により算出した値を指す。なお、数式1でいう絶縁部材の厚みtとは、絶縁部材の対向する表面同士の距離の内、最も短い距離を指す。例えば、断面外形が略真円となる棒状(円柱状)の場合は、略真円の直径を指す。断面外形が略真円となる円盤状の場合、円盤の厚みを指す。 The internal tensile stress value is preferably 200 MPa or less, 150 MPa or less, 100 MPa or less, and particularly 50 MPa or less. The smaller the internal tensile stress value, the more difficult it is for the insulating member to be damaged due to internal defects in the insulating member. However, when the internal tensile stress value becomes extremely small, the compressive stress value and stress depth decrease, and the insulating member The mechanical strength is reduced. Therefore, the internal tensile stress value is preferably 1 MPa or more, 10 MPa or more, and particularly 15 MPa or more. The "internal tensile stress value" refers to a value calculated by the following formula 1. The thickness t of the insulating member in Equation 1 refers to the shortest distance among the distances between the opposing surfaces of the insulating member. For example, in the case of a rod shape (cylindrical column) whose cross-sectional shape is a substantially perfect circle, it refers to the diameter of a substantially perfect circle. In the case of a disk shape whose cross-sectional shape is approximately a perfect circle, it refers to the thickness of the disk.
〔数式1〕
CT = CS×DOL/(t×1000-2×DOL)
CT:内部の引っ張り応力値(MPa)
t:絶縁部材の厚み(mm)
CS:圧縮応力値(MPa)
DOL:圧縮応力層の深さ(μm)[Formula 1]
CT = CS x DOL / (t x 1000-2 x DOL)
CT: Internal tensile stress value (MPa)
t: Thickness of insulating member (mm)
CS: Compressive stress value (MPa)
DOL: Depth of compressive stress layer (μm)
本発明の絶縁部材において、アルカリ含有ガラスが、ガラス組成として、質量%で、SiO2 40~75%、Al2O3 10~30%、Na2O 5~25%を含有することが好ましい。上記のように各成分の含有範囲を限定した理由を以下に説明する。なお、各成分の含有範囲の説明において、以下の%表示は、特に断りがない限り、質量%を指す。In the insulating member of the present invention, the alkali-containing glass preferably contains SiO 2 40 to 75%, Al 2 O 3 10 to 30%, and Na 2 O 5 to 25% by mass as a glass composition. The reason for limiting the content range of each component as described above will be described below. In the description of the content range of each component, the following% indication indicates mass% unless otherwise specified.
SiO2は、ガラスのネットワークを形成する成分であり、その含有量は、好ましくは40~75%、45~70%、45~65%、45~63%、特に48~61%である。SiO2の含有量が多過ぎると、溶融性、成形性、熱膨張係数が低下し易くなる。一方、SiO2の含有量が少な過ぎると、ガラス化し難くなり、また熱膨張係数が不当に高くなるため、周辺部材の熱膨張係数に整合し難くなったり、耐熱衝撃性が低下し易くなる。SiO 2 is a component that forms a network of glass, and its content is preferably 40 to 75%, 45 to 70%, 45 to 65%, 45 to 63%, and particularly 48 to 61%. If the content of SiO 2 is too large, the meltability, moldability, and coefficient of thermal expansion tend to decrease. On the other hand, if the content of SiO 2 is too small, it becomes difficult to vitrify, and the coefficient of thermal expansion becomes unreasonably high, so that it becomes difficult to match the coefficient of thermal expansion of peripheral members, and the thermal shock resistance tends to decrease.
Al2O3は、イオン交換性能、歪点、ヤング率を高める成分である。しかし、Al2O3の含有量が多過ぎると、ガラスに失透結晶が析出し易くなって、所望の形状に成形し難くなる。また溶融性、熱膨張係数が低下し易くなる。よって、Al2O3の好適な上限範囲は30%以下、28%以下、24%以下、23%以下、22%以下、21.5%以下、特に21%以下であり、好適な下限範囲は10%以上、12%以上、13%以上、15%以上、17%以上、特に18%以上である。Al 2 O 3 is a component that enhances ion exchange performance, strain point, and Young's modulus. However, if the content of Al 2 O 3 is too large, devitrified crystals are likely to precipitate on the glass, making it difficult to form a desired shape. In addition, the meltability and the coefficient of thermal expansion tend to decrease. Therefore, the suitable upper limit range of Al 2 O 3 is 30% or less, 28% or less, 24% or less, 23% or less, 22% or less, 21.5% or less, particularly 21% or less, and the suitable lower limit range is. 10% or more, 12% or more, 13% or more, 15% or more, 17% or more, especially 18% or more.
Na2Oは、イオン交換成分であると共に、溶融性や成形性を高める成分である。また耐失透性を改善する成分でもある。しかし、Na2Oの含有量が多過ぎると、体積電気抵抗率が低くなったり、熱膨張係数が不当に高くなるため、周辺部材の熱膨張係数に整合し難くなったり、耐熱衝撃性が低下し易くなる。またガラス組成のバランスが崩れて、耐失透性が低下する虞がある。よって、Na2Oの含有量は、好ましくは5~25%、10~25%、11~22%、12~20%、13~19%、特に14~18%である。Na 2 O is an ion exchange component and a component that enhances meltability and moldability. It is also a component that improves devitrification resistance. However, if the Na 2 O content is too high, the volume resistivity will be low and the coefficient of thermal expansion will be unreasonably high, making it difficult to match the coefficient of thermal expansion of peripheral members and reducing thermal shock resistance. It becomes easier to do. In addition, the balance of the glass composition may be lost, and the devitrification resistance may decrease. Therefore, the content of Na 2 O is preferably 5 to 25%, 10 to 25%, 11 to 22%, 12 to 20%, 13 to 19%, and particularly 14 to 18%.
上記成分以外にも、例えば、以下の成分を導入してもよい。 In addition to the above components, for example, the following components may be introduced.
P2O5は、イオン交換性能を高める成分であり、特に応力深さを増大させる成分である。上記の通り、イオン交換性能を高めるためには、Al2O3の増量が有効であるが、Al2O3の含有量が多過ぎると、耐失透性が低下し易くなる。よって、Al2O3の導入量には限界がある。しかし、P2O5を導入すると、Al2O3を増量しても、ガラスが失透し難くなるため、Al2O3の導入許容量を高めることができる。結果として、イオン交換性能を飛躍的に高めることができる。一方、P2O5の含有量が多く過ぎると、ガラスが分相したり、耐水性や耐失透性が低下し易くなる。以上の点を踏まえると、P2O5の好適な上限範囲は17%以下、10%以下、9%以下、8%以下、7%以下、特に6%以下であり、好適な下限範囲は0.1%以上、0.5%以上、1%以上、2%以上、3%以上、特に4%以上である。P 2 O 5 is a component that enhances the ion exchange performance, and is particularly a component that increases the stress depth. As described above, in order to improve the ion exchange performance, it is effective to increase the amount of Al 2 O 3 , but if the content of Al 2 O 3 is too large, the devitrification resistance tends to decrease. Therefore, there is a limit to the amount of Al 2 O 3 introduced. However, when P 2 O 5 is introduced, even if the amount of Al 2 O 3 is increased, the glass is less likely to be devitrified, so that the allowable amount of Al 2 O 3 introduced can be increased. As a result, the ion exchange performance can be dramatically improved. On the other hand, if the content of P 2 O 5 is too large, the glass tends to be phase-separated, and the water resistance and devitrification resistance tend to decrease. Based on the above points, the suitable upper limit range of P 2 O 5 is 17% or less, 10% or less, 9% or less, 8% or less, 7% or less, particularly 6% or less, and the suitable lower limit range is 0. .1% or more, 0.5% or more, 1% or more, 2% or more, 3% or more, especially 4% or more.
B2O3は、液相温度、高温粘度、密度を低下させる成分であると共に、イオン交換性能、特に圧縮応力値を高める成分であるが、その含有量が多過ぎると、イオン交換によって表面にヤケが発生したり、耐水性、液相粘度、応力深さが低下する虞がある。よって、B2O3の含有量は、好ましくは0~6%、0~4%、0~3%、0~2%、特に0~1%未満である。B 2 O 3 is a component that lowers the liquid phase temperature, high temperature viscosity, and density, and is a component that enhances ion exchange performance, especially the compressive stress value. Burning may occur, and water resistance, liquid phase viscosity, and stress depth may decrease. Therefore, the content of B 2 O 3 is preferably 0 to 6%, 0 to 4%, 0 to 3%, 0 to 2%, and particularly less than 0-1%.
Li2Oは、イオン交換成分であると共に、高温粘度を低下させて溶融性や成形性を高める成分である。更にヤング率を高める成分である。しかし、Li2Oの含有量が多過ぎると、体積電気抵抗率が低下し易くなる。また液相粘度が低下して、ガラスが失透し易くなる。更に低温粘性が低下し過ぎて、イオン交換処理の際に応力緩和が生じ易くなり、かえって圧縮応力値が低下する虞がある。よって、Li2Oの含有量は、好ましくは0~10%、0~8%、0~5%、0~3%未満、0~2%、0~1%未満、0~0.1%未満、特に0~0.01%未満である。Li 2 O is an ion exchange component and a component that lowers high-temperature viscosity and enhances meltability and moldability. It is a component that further enhances Young's modulus. However, if the content of Li 2 O is too large, the volume resistivity tends to decrease. In addition, the liquidus viscosity is lowered, and the glass is easily devitrified. Further, the low-temperature viscosity is lowered too much, stress relaxation is likely to occur during the ion exchange treatment, and there is a possibility that the compressive stress value is rather lowered. Therefore, the Li 2 O content is preferably 0 to 10%, 0 to 8%, 0 to 5%, less than 0 to 3%, 0 to 2%, less than 0-1%, 0 to 0.1%. Less than, especially less than 0-0.01%.
K2Oは、イオン交換を促進する成分であり、特にアルカリ金属酸化物の中では応力深さを増大させる効果が高い成分である。また高温粘度を低下させて、溶融性や成形性を高めたり、耐失透性を改善する成分である。しかし、K2Oの含有量が多過ぎると、体積電気抵抗率が低下し易くなる。また熱膨張係数が不当に高くなるため、周辺部材の熱膨張係数に整合し難くなったり、耐熱衝撃性が低下し易くなる。更に歪点が低下し過ぎたり、ガラス組成のバランスが崩れて、逆に耐失透性が低下する虞がある。K2Oの好適な上限範囲は10%以下、9%以下、8%以下、7%以下、特に6%以下であり、好適な下限範囲は0%以上、0.5%以上、1%以上、2%以上、3%以上、特に4%以上である。K 2 O is a component that promotes ion exchange, and is a component that has a high effect of increasing the stress depth, especially among alkali metal oxides. In addition, it is a component that lowers the high-temperature viscosity, enhances meltability and moldability, and improves devitrification resistance. However, if the content of K 2 O is too large, the volume resistivity tends to decrease. In addition, since the coefficient of thermal expansion becomes unreasonably high, it becomes difficult to match the coefficient of thermal expansion of peripheral members, and the thermal impact resistance tends to decrease. Further, the strain point may be lowered too much, or the balance of the glass composition may be lost, and conversely, the devitrification resistance may be lowered. Suitable upper limit ranges of K2O are 10% or less, 9% or less, 8% or less, 7% or less, particularly 6% or less, and suitable lower limit ranges are 0% or more, 0.5% or more, 1% or more. 2% or more, 3% or more, especially 4% or more.
Li2O、Na2O及びK2Oの合量の好適な上限範囲は30%以下、25%以下、特に22%以下であり、好適な下限範囲は8%以上、10%以上、13%以上、特に15%以上である。Li2O、Na2O及びK2Oの合量が多過ぎると、体積電気抵抗率や耐失透性が低下し易くなる。また熱膨張係数が不当に高くなるため、、周辺部材の熱膨張係数に整合し難くなったり、耐熱衝撃性が低下し易くなる。一方、Li2O、Na2O及びK2Oの合量が少な過ぎると、イオン交換性能と溶融性が低下し易くなる。The suitable upper limit range of the total amount of Li 2 O, Na 2 O and K 2 O is 30% or less, 25% or less, particularly 22% or less, and the suitable lower limit range is 8% or more, 10% or more, 13%. Above, especially 15% or more. If the total amount of Li 2 O, Na 2 O and K 2 O is too large, the volume resistivity and devitrification resistance tend to decrease. In addition, since the coefficient of thermal expansion becomes unreasonably high, it becomes difficult to match the coefficient of thermal expansion of peripheral members, and the thermal impact resistance tends to decrease. On the other hand, if the total amount of Li 2 O, Na 2 O and K 2 O is too small, the ion exchange performance and the meltability tend to deteriorate.
モル比K2O/Na2Oは、好ましくは0~1、0~0.8、0.05~0.7、0.1~0.5、0.15~0.4、0.15~0.3、特に0.15~0.25である。このようにすれば、混合アルカリ効果により体積電気抵抗率を高めることができる。なお、「K2O/Na2O」は、K2Oの含有量をNa2Oの含有量で割った値である。The molar ratio K 2 O / Na 2 O is preferably 0 to 1, 0 to 0.8, 0.05 to 0.7, 0.1 to 0.5, 0.15 to 0.4, 0.15. ~ 0.3, especially 0.15 to 0.25. By doing so, the volume resistivity can be increased by the mixed alkali effect. In addition, "K 2 O / Na 2 O" is a value obtained by dividing the content of K 2 O by the content of Na 2 O.
MgOとCaOは、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める成分であり、アルカリ土類金属酸化物の中では、イオン交換性能を高める効果が大きい成分である。しかし、MgOとCaOの含有量が多くなると、密度や熱膨張係数が高くなったり、ガラスが失透し易くなる。よって、MgOの含有量は、好ましくは10%以下、8%以下、6%以下、5%以下、特に4%以下である。CaOの含有量は、好ましくは8%以下、6%以下、4%以下、2%以下、特に1%未満である。 MgO and CaO are components that reduce high-temperature viscosity, improve meltability and moldability, and increase strain points and Young's modulus, and among alkaline earth metal oxides, they have a large effect of improving ion exchange performance. It is an ingredient. However, when the contents of MgO and CaO are high, the density and the coefficient of thermal expansion become high, and the glass tends to be devitrified. Therefore, the content of MgO is preferably 10% or less, 8% or less, 6% or less, 5% or less, and particularly 4% or less. The CaO content is preferably 8% or less, 6% or less, 4% or less, 2% or less, and particularly less than 1%.
SrOとBaOは、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める成分である。しかし、SrOとBaOの含有量が多くなると、密度や熱膨張係数が高くなったり、イオン交換性能が低下し易くなる。よって、SrOの含有量は、好ましくは3%以下、2%以下、1%以下、0.5%以下、特に0.1%未満である。BaOの含有量は、好ましくは3%以下、2%以下、1%以下、0.5%以下、特に0.1%未満である。 SrO and BaO are components that lower the high-temperature viscosity, improve the meltability and moldability, and increase the strain point and Young's modulus. However, when the contents of SrO and BaO are large, the density and the coefficient of thermal expansion tend to be high, and the ion exchange performance tends to be deteriorated. Therefore, the content of SrO is preferably 3% or less, 2% or less, 1% or less, 0.5% or less, and particularly less than 0.1%. The content of BaO is preferably 3% or less, 2% or less, 1% or less, 0.5% or less, and particularly less than 0.1%.
MgO、CaO、SrO及びBaOの合量は、好ましくは0~15%、0~9%、0~6%、特に0~5%である。MgO、CaO、SrO及びBaOの合量が多過ぎると、密度や熱膨張係数が不当に高くなったり、耐失透性やイオン交換性能が低下し易くなる。 The total amount of MgO, CaO, SrO and BaO is preferably 0 to 15%, 0 to 9%, 0 to 6%, and particularly 0 to 5%. If the total amount of MgO, CaO, SrO and BaO is too large, the density and the coefficient of thermal expansion become unreasonably high, and the devitrification resistance and the ion exchange performance tend to deteriorate.
質量比(MgO+CaO+SrO+BaO)/(Li2O+Na2O+K2O)は、耐失透性を高める観点から、好ましくは0.5以下、0.4以下、特に0.3以下である。なお、「(MgO+CaO+SrO+BaO)/(Li2O+Na2O+K2O)」は、MgO、CaO、SrO及びBaOの合量をLi2O、Na2O及びK2Oの合量で割った値である。The mass ratio (MgO + CaO + SrO + BaO) / (Li 2 O + Na 2 O + K 2 O) is preferably 0.5 or less, 0.4 or less, and particularly 0.3 or less from the viewpoint of enhancing devitrification resistance. In addition, "(MgO + CaO + SrO + BaO) / (Li 2 O + Na 2 O + K 2 O)" is a value obtained by dividing the total amount of MgO, CaO, SrO and BaO by the total amount of Li 2 O, Na 2 O and K 2 O. ..
ZnOは、イオン交換性能を高める成分である。また低温粘性を低下させずに、高温粘性を低下させる成分である。しかし、P2O5の存在下でZnOを増量すると、ガラスが分相したり、失透し易くなる。よって、ZnOの含有量は、好ましくは8%以下、4%以下、1%以下、0.1%以下、特に0.01%以下である。ZnO is a component that enhances ion exchange performance. It is also a component that lowers the high temperature viscosity without lowering the low temperature viscosity. However, when the amount of ZnO is increased in the presence of P 2 O 5 , the glass tends to be phase-separated or devitrified. Therefore, the ZnO content is preferably 8% or less, 4% or less, 1% or less, 0.1% or less, and particularly 0.01% or less.
ZrO2は、イオン交換性能、ヤング率、歪点を高める成分であり、高温粘性を低下させる成分である。しかし、ZrO2の含有量が多くなると、耐失透性が低下し易くなる。よって、ZrO2の含有量は、好ましくは0~10%、0~5%、0~3%、0~1%未満、0~0.4%、特に0~0.1%未満である。ZrO 2 is a component that enhances ion exchange performance, Young's modulus, and strain point, and is a component that lowers high-temperature viscosity. However, as the content of ZrO 2 increases, the devitrification resistance tends to decrease. Therefore, the content of ZrO 2 is preferably 0 to 10%, 0 to 5%, 0 to 3%, less than 0-1%, 0 to 0.4%, and particularly less than 0 to 0.1%.
TiO2は、イオン交換性能を高める成分であり、高温粘性を低下させる成分である。しかし、TiO2の含有量が多くなると、ガラスが失透し易くなる。よって、TiO2の含有量は、好ましくは0~4%、0~1%未満、0~0.1%未満、特に0~0.01%未満である。TiO 2 is a component that enhances ion exchange performance and is a component that lowers high-temperature viscosity. However, when the content of TiO 2 is high, the glass tends to be devitrified. Therefore, the content of TiO 2 is preferably 0 to 4%, 0 to less than 1%, 0 to less than 0.1%, and particularly 0 to less than 0.01%.
SnO2は、イオン交換性能、特に圧縮応力値を高める成分である。しかし、SnO2の含有量が多くなると、SnO2に起因する失透が発生し易くなる。よって、SnO2の含有量は、好ましくは0~3%、0.01~2%、0.05~1%、特に0.1~0.5%である。SnO 2 is a component that enhances ion exchange performance, particularly compressive stress value. However, when the content of SnO 2 is large, devitrification due to SnO 2 is likely to occur. Therefore, the content of SnO 2 is preferably 0 to 3%, 0.01 to 2%, 0.05 to 1%, and particularly 0.1 to 0.5%.
清澄剤として、As2O3、Sb2O3、CeO2、F、Cl、SO3の群から選択された一種又は二種以上を含有させてもよい。但し、環境に対する配慮から、As2O3とSb2O3を添加しないことが好ましく、As2O3とSb2O3の含有量は、それぞれ0.1%未満、特に0.01%未満が好ましい。Fの含有量は、低温粘性の低下による応力緩和を抑制するため、0.1%未満、特に0.01%未満が好ましい。As the clarifying agent, one or more selected from the group of As 2 O 3 , Sb 2 O 3 , CeO 2 , F, Cl and SO 3 may be contained. However, in consideration of the environment, it is preferable not to add As 2 O 3 and Sb 2 O 3 , and the content of As 2 O 3 and Sb 2 O 3 is less than 0.1%, particularly less than 0.01%, respectively. Is preferable. The content of F is preferably less than 0.1%, particularly preferably less than 0.01%, in order to suppress stress relaxation due to a decrease in low temperature viscosity.
Nb2O5、La2O3等の希土類酸化物は、ヤング率を高める成分である。しかし、希土類酸化物の合量が多くなると、原料コストが高騰し、耐失透性が低下し易くなる。よって、希土類酸化物の合量は、好ましくは3%以下、2%以下、1%未満、0.5%以下、特に0.1%以下である。Rare earth oxides such as Nb 2 O 5 and La 2 O 3 are components that increase Young's modulus. However, when the total amount of rare earth oxides is large, the raw material cost rises and the devitrification resistance tends to decrease. Therefore, the total amount of rare earth oxides is preferably 3% or less, 2% or less, less than 1%, 0.5% or less, and particularly 0.1% or less.
PbOとBi2O3の含有量は、環境に対する配慮から、それぞれ0.1%未満が好ましい。The contents of PbO and Bi 2 O 3 are preferably less than 0.1%, respectively, in consideration of the environment.
本発明の絶縁部材において、表面から深さ2.5μmのK2Oの含有量は、表面圧縮応力層よりも深い内部領域のK2Oの含有量よりも多いことが好ましい。表面から深さ2.5μmのK2Oの含有量は、内部領域のK2Oの含有量よりも1mol%以上、3mol%以上、5mol%以上、7mol%以上、8mol%以上、9mol%以上、特に10mol%以上多いことが好ましい。表面から深さ2.5μmのK2Oの含有量と内部領域のK2Oの含有量は、SEM-EDX(例えば日立ハイテクノロジーズ製S4300-SE、堀場製作所製EX-250)を用いたZAF法によるスタンダードレス定量分析で測定することができる。In the insulating member of the present invention, the content of K 2 O at a depth of 2.5 μm from the surface is preferably higher than the content of K 2 O in the internal region deeper than the surface compressive stress layer. The content of K 2 O at a depth of 2.5 μm from the surface is 1 mol% or more, 3 mol% or more, 5 mol% or more, 7 mol% or more, 8 mol% or more, 9 mol% or more than the content of K 2 O in the internal region. In particular, it is preferably 10 mol% or more. The content of K 2 O at a depth of 2.5 μm from the surface and the content of K 2 O in the internal region are ZAF using SEM-EDX (for example, S4300-SE manufactured by Hitachi High-Technologies Corporation, EX-250 manufactured by HORIBA, Ltd.). It can be measured by standardless quantitative analysis by the method.
本発明の絶縁部材は、例えば、以下のようにして作製することができる。まず特定組成のアルカリ含有ガラスになるように調合したガラスバッチを連続溶融炉に投入し、1500~1600℃で加熱溶融して、溶融ガラスを得た後、清澄容器、攪拌容器を経由して、成形容器に供給した上で各種形状に成形し、徐冷する。次に、得られたアルカリ含有ガラスの表面を研磨処理する。続いて、アルカリ含有ガラスをイオン交換溶液に浸漬して、アルカリ含有ガラスの表面にイオン交換による表面圧縮応力層を形成する。 The insulating member of the present invention can be manufactured, for example, as follows. First, a glass batch prepared so as to have an alkali-containing glass having a specific composition is put into a continuous melting furnace and melted by heating at 1500 to 1600 ° C. to obtain molten glass, and then via a clarification container and a stirring container. After supplying to a molding container, it is molded into various shapes and slowly cooled. Next, the surface of the obtained alkali-containing glass is polished. Subsequently, the alkali-containing glass is immersed in an ion exchange solution to form a surface compressive stress layer by ion exchange on the surface of the alkali-containing glass.
成形方法として、種々の成形方法を採択することができる。円環状(又は円筒状)に成形する場合はダンナー法が好ましい。円柱状に成形する場合は、ドローイング法が好ましい。球状に成形する場合は、マーブル成形法又は液滴成形法が好ましい。このようにすれば、絶縁部材の寸法精度が向上して、ガラス表面に対する研磨量を低減し易くなる。なお、バルク状のガラスを研削、研磨することにより、所定形状に加工することもできる。 As a molding method, various molding methods can be adopted. The Dunner method is preferable when molding into an annular shape (or a cylindrical shape). When molding into a columnar shape, the drawing method is preferable. When molding into a spherical shape, a marble molding method or a droplet molding method is preferable. By doing so, the dimensional accuracy of the insulating member is improved, and it becomes easy to reduce the amount of polishing on the glass surface. It is also possible to process the bulk glass into a predetermined shape by grinding and polishing it.
イオン交換処理は、例えば360~480℃の硝酸カリウム溶融塩中にアルカリ含有ガラスを1~100時間浸漬することにより行うことができる。生産効率の観点から、複数の絶縁部材を同時にイオン交換処理することが好ましく、絶縁部材同士が接触しないように、複数の絶縁部材を金属製治具に等間隔に配列し、この金属製治具を積層した状態でイオン交換処理することが更に好ましい。 The ion exchange treatment can be carried out, for example, by immersing the alkali-containing glass in a molten salt of potassium nitrate at 360 to 480 ° C. for 1 to 100 hours. From the viewpoint of production efficiency, it is preferable to perform ion exchange treatment of a plurality of insulating members at the same time, and the plurality of insulating members are arranged on a metal jig at equal intervals so that the insulating members do not come into contact with each other. It is more preferable to carry out an ion exchange treatment in a state in which the above-mentioned materials are laminated.
実施例に基づいて、本発明を説明する。但し、本発明は、以下の実施例に何ら限定されない。以下の実施例は、単なる例示である。 The present invention will be described with reference to examples. However, the present invention is not limited to the following examples. The following examples are merely examples.
表1は、本発明の実施例(No.1~8)のガラス組成と特性を示している。 Table 1 shows the glass composition and characteristics of Examples (Nos. 1 to 8) of the present invention.
次のようにして、表1の各試料を作製した。まず、表中のガラス組成となるように、ガラス原料を調合し、白金容器を用いて1580℃で8時間溶融した。その後、溶融ガラスをカーボン板の上に流し出し板状に成形した後、所定形状に機械加工して、5cm角、板厚0.7mmのガラス板を得た。またガラス板を機械加工して、直径φ0.6mm(寸法公差0.01%以内)、長さ5cmのガラス棒及び直径φ0.6mm(寸法公差0.01%以内)のガラス球を得た。 Each sample in Table 1 was prepared as follows. First, glass raw materials were prepared so as to have the glass composition in the table, and melted at 1580 ° C. for 8 hours using a platinum container. Then, the molten glass was poured onto a carbon plate and formed into a plate shape, and then machined into a predetermined shape to obtain a glass plate having a size of 5 cm square and a plate thickness of 0.7 mm. Further, the glass plate was machined to obtain a glass rod having a diameter of φ0.6 mm (within a dimensional tolerance of 0.01%), a glass rod having a length of 5 cm, and a glass ball having a diameter of φ0.6 mm (within a dimensional tolerance of 0.01%).
各ガラス板の試料を用いて、下記特性を評価した。 The following characteristics were evaluated using a sample of each glass plate.
密度は、周知のアルキメデス法によって測定した値である。 Density is a value measured by the well-known Archimedes method.
熱膨張係数αは、30~380℃の温度範囲において、ディラトメーターで測定した平均値である。 The coefficient of thermal expansion α is an average value measured by a dilatometer in the temperature range of 30 to 380 ° C.
ヤング率Eは、周知の共振法によって測定した値である。 Young's modulus E is a value measured by a well-known resonance method.
歪点Ps、徐冷点Taは、ASTM C336の方法によって測定した値である。 The strain point Ps and the slow cooling point Ta are values measured by the method of ASTM C336.
軟化点Tsは、ASTM C338の方法によって測定した値である。 The softening point Ts is a value measured by the method of ASTM C338.
高温粘度104.0dPa・s、103.0dPa・s、102.5dPa・sに相当する温度は、白金球引き上げ法によって測定した値である。The temperature corresponding to the high temperature viscosity of 10 4.0 dPa · s, 10 3.0 dPa · s, and 10 2.5 dPa · s is a value measured by the platinum ball pulling method.
液相温度TLは、標準篩30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持して、結晶の析出する温度を測定した値である。 The liquidus temperature TL passes through a standard sieve of 30 mesh (seam opening of 500 μm), and the glass powder remaining in 50 mesh (screen opening of 300 μm) is placed in a platinum boat and held in a temperature gradient furnace for 24 hours to crystallize. It is a value measured by the temperature at which the crystals are deposited.
150℃における体積電気抵抗率ρbeforeは、ASTM C657-78に準拠して測定した値である。The volume resistivity ρ before at 150 ° C. is a value measured according to ASTM C657-78.
続いて、各ガラス板の両表面に光学研磨を施した後、イオン交換処理を行った。イオン交換処理は430℃のKNO3溶融塩中に各ガラス板を4時間浸漬することで行った。同様にして、各ガラス棒及びガラス球についても上記イオン交換処理を行った。イオン交換処理後、各ガラス板の表面を洗浄し、表面応力計(折原製作所製FSM-6000)を用いて観察される干渉縞の本数とその間隔から圧縮応力層の圧縮応力値CSと応力深さDOLを算出した。算出に当たり、各ガラス板の屈折率を1.50、光学弾性定数を30[(nm/cm)/MPa]とした。なお、ガラス表層のガラス組成はイオン交換処理の前後で微視的に変動するものの、ガラス全体で見た場合、その影響は軽微である。Subsequently, both surfaces of each glass plate were optically polished and then ion-exchanged. The ion exchange treatment was carried out by immersing each glass plate in KNO 3 molten salt at 430 ° C. for 4 hours. Similarly, the above ion exchange treatment was performed on each glass rod and glass ball. After the ion exchange treatment, the surface of each glass plate is cleaned, and the compressive stress value CS and stress depth of the compressive stress layer are determined from the number of interference fringes observed using a surface stress meter (FSM-6000 manufactured by Orihara Seisakusho) and their intervals. The DOL was calculated. In the calculation, the refractive index of each glass plate was 1.50, and the optical elastic constant was 30 [(nm / cm) / MPa]. Although the glass composition of the glass surface fluctuates microscopically before and after the ion exchange treatment, the effect is minor when viewed as a whole glass.
続いて、イオン交換処理後の各ガラス板について、ASTM C657-78に準拠して、150℃における体積電気抵抗率ρafterを測定した。Subsequently, the volume resistivity ρ after at 150 ° C. was measured for each glass plate after the ion exchange treatment in accordance with ASTM C657-78.
表1から分かるように、試料No.1~8に係るガラス板は、密度が低く、圧縮応力層の圧縮応力値CSと応力深さDOLが大きかった。また試料No.1、2に係るガラス板は、イオン交換処理後の体積抵抗率ρafterが高かった。よって、試料No.1~8に係るガラス棒とガラス球についても、密度が低く、圧縮応力層の圧縮応力値CSと応力深さDOLが大きく、イオン交換処理後の体積抵抗率ρafterが高いものと考えられる。As can be seen from Table 1, the sample No. The glass plates of Nos. 1 to 8 had a low density, and the compressive stress value CS and the stress depth DOL of the compressive stress layer were large. In addition, sample No. The glass plates according to 1 and 2 had a high volume resistivity ρ after after the ion exchange treatment. Therefore, the sample No. It is considered that the glass rods and glass spheres according to 1 to 8 also have a low density, a large compressive stress value CS and a large stress depth DOL of the compressive stress layer, and a high volume resistance ρ after after the ion exchange treatment.
本発明の絶縁部材は、軽量、高強度及び低コストであると共に、加工性に優れる。よって、本発明の絶縁部材は、駆動装置に組み込まれる用途、例えば、電気自動車等に使用される転動体、シャフト、モーター部材、ローラー部材等の絶縁部材にも好適である。 The insulating member of the present invention is lightweight, has high strength, is low in cost, and is excellent in workability. Therefore, the insulating member of the present invention is also suitable for applications incorporated in a drive device, for example, an insulating member such as a rolling element, a shaft, a motor member, a roller member, etc. used in an electric vehicle or the like.
Claims (5)
断面外形が略真円になる球形状を有し、密度が2.60g/cm3以下であり、イオン交換による表面圧縮応力層を有し、且つ駆動装置に組み込まれることを特徴とする絶縁部材。 As a glass composition, it is an insulating member made of alkali-containing glass containing SiO 2 40 to 75%, Al 2 O 3 10 to 30%, and Na 2 O 5 to 25% by mass.
An insulating member having a spherical shape having a substantially perfect circular cross-sectional shape, a density of 2.60 g / cm 3 or less, a surface compressive stress layer by ion exchange, and being incorporated into a drive device. ..
断面外形が略真円になる球形状を有し、密度が2.60g/cm3以下となるアルカリ含有ガラスを作製した後に、該アルカリ含有ガラスをイオン交換処理して、表面圧縮応力層を形成し、駆動装置に組み込まれることを特徴とする絶縁部材の製造方法。 As a glass composition, it is a method for manufacturing an insulating member made of alkali-containing glass, which contains SiO 2 40 to 75%, Al 2 O 3 10 to 30%, and Na 2 O 5 to 25% in mass%.
After producing an alkali-containing glass having a spherical shape with a substantially perfect cross-sectional shape and a density of 2.60 g / cm 3 or less, the alkali-containing glass is ion-exchanged to form a surface compressive stress layer. A method of manufacturing an insulating member, which is characterized by being incorporated in a drive device.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016085029 | 2016-04-21 | ||
JP2016085029 | 2016-04-21 | ||
PCT/JP2017/014189 WO2017183454A1 (en) | 2016-04-21 | 2017-04-05 | Insulating member and method for manufacturing same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2017183454A1 JPWO2017183454A1 (en) | 2019-02-28 |
JP6993617B2 true JP6993617B2 (en) | 2022-01-13 |
Family
ID=60115847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018513103A Active JP6993617B2 (en) | 2016-04-21 | 2017-04-05 | Insulation member and its manufacturing method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6993617B2 (en) |
WO (1) | WO2017183454A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7106057B2 (en) * | 2018-01-31 | 2022-07-26 | 日本電気硝子株式会社 | Spherical glass, glass rolling elements, and method for producing glass rolling elements |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011510903A (en) | 2008-02-08 | 2011-04-07 | コーニング インコーポレイテッド | Damage resistant chemically reinforced protective cover glass |
JP2011529438A (en) | 2008-07-29 | 2011-12-08 | コーニング インコーポレイテッド | Two-stage ion exchange for chemical strengthening of glass |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60122734A (en) * | 1983-12-08 | 1985-07-01 | Toshiba Glass Co Ltd | Tempered glass bead |
JPH01157436A (en) * | 1987-12-15 | 1989-06-20 | Canon Inc | Production of refractive index distribution type optical element |
JPH10284217A (en) * | 1997-04-01 | 1998-10-23 | Ricoh Co Ltd | Surface heating roller |
JP4243781B2 (en) * | 1998-04-03 | 2009-03-25 | 昌 松井 | Rolling bearing device for high-speed rotating equipment |
-
2017
- 2017-04-05 WO PCT/JP2017/014189 patent/WO2017183454A1/en active Application Filing
- 2017-04-05 JP JP2018513103A patent/JP6993617B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011510903A (en) | 2008-02-08 | 2011-04-07 | コーニング インコーポレイテッド | Damage resistant chemically reinforced protective cover glass |
JP2011529438A (en) | 2008-07-29 | 2011-12-08 | コーニング インコーポレイテッド | Two-stage ion exchange for chemical strengthening of glass |
Non-Patent Citations (1)
Title |
---|
Narottam P. Bansal, R. H. Doremus,Handbook of Glass Properties,1986年,32頁-37頁 |
Also Published As
Publication number | Publication date |
---|---|
WO2017183454A1 (en) | 2017-10-26 |
JPWO2017183454A1 (en) | 2019-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10173923B2 (en) | Tempered glass, tempered glass plate, and glass for tempering | |
TWI744530B (en) | Hybrid soda-lime silicate and aluminosilicate glass articles | |
TWI577648B (en) | Method for producing reinforced glass | |
KR102560252B1 (en) | tempered glass | |
CN101508524B (en) | Glass suitable for chemically tempering and chemical tempered glass | |
JP6850074B2 (en) | Fixed glass and manufacturing method | |
EP3071526A1 (en) | Ion exchangeable high damage resistance glasses | |
JPWO2019009069A1 (en) | Glass ball | |
TW202130593A (en) | High fracture toughness glasses with high central tension | |
TWI791431B (en) | chemically strengthened glass | |
JP6675592B2 (en) | Tempered glass | |
KR20170118923A (en) | Ion exchangeable soft glass for three-dimensional shape | |
JP6959584B2 (en) | Glass rolling element | |
JP6993617B2 (en) | Insulation member and its manufacturing method | |
JP7335557B2 (en) | tempered glass and tempered glass | |
JP2018100209A (en) | Spherical glass and method for producing glass rolling element | |
JP2019151532A (en) | Method for producing tempered glass sphere | |
JP2019031428A (en) | Strengthened glass sheet and strengthened glass sphere | |
WO2018110224A1 (en) | Spherical glass and method for producing glass rolling element | |
JP7106057B2 (en) | Spherical glass, glass rolling elements, and method for producing glass rolling elements | |
JP7019941B2 (en) | Manufacturing method of tempered glass and manufacturing method of tempered glass | |
JP2019001699A (en) | Spherical glass | |
JP2018203562A (en) | Method for producing glass rolling element | |
JP2019007504A (en) | Rolling device | |
JP7365004B2 (en) | Tempered glass plate and tempered glass plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200303 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210309 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210330 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210517 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210628 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210719 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210929 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20210929 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20211008 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20211013 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211110 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211123 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6993617 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |