WO2017217276A1 - Thermosetting epoxy resin composition and production method for same - Google Patents

Thermosetting epoxy resin composition and production method for same Download PDF

Info

Publication number
WO2017217276A1
WO2017217276A1 PCT/JP2017/020906 JP2017020906W WO2017217276A1 WO 2017217276 A1 WO2017217276 A1 WO 2017217276A1 JP 2017020906 W JP2017020906 W JP 2017020906W WO 2017217276 A1 WO2017217276 A1 WO 2017217276A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
thermosetting epoxy
group
compound
Prior art date
Application number
PCT/JP2017/020906
Other languages
French (fr)
Japanese (ja)
Inventor
和伸 神谷
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to US16/302,831 priority Critical patent/US10669458B2/en
Priority to CN201780036533.7A priority patent/CN109312059B/en
Priority to KR1020187038139A priority patent/KR102277065B1/en
Publication of WO2017217276A1 publication Critical patent/WO2017217276A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/70Chelates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/003Polymeric products of isocyanates or isothiocyanates with epoxy compounds having no active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • C08G18/0842Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents
    • C08G18/0861Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers
    • C08G18/0866Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers the dispersing or dispersed phase being an aqueous medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/288Compounds containing at least one heteroatom other than oxygen or nitrogen
    • C08G18/289Compounds containing at least one heteroatom other than oxygen or nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/703Isocyanates or isothiocyanates transformed in a latent form by physical means
    • C08G18/705Dispersions of isocyanates or isothiocyanates in a liquid medium
    • C08G18/707Dispersions of isocyanates or isothiocyanates in a liquid medium the liquid medium being a compound containing active hydrogen not comprising water
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8003Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
    • C08G18/8006Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32
    • C08G18/8009Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203
    • C08G18/8022Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203 with polyols having at least three hydroxy groups
    • C08G18/8029Masked aromatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4021Ureas; Thioureas; Guanidines; Dicyandiamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/057Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/12Adsorbed ingredients, e.g. ingredients on carriers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2475/00Presence of polyurethane

Definitions

  • the present invention relates to a thermosetting epoxy resin composition and a method for producing the same.
  • an aluminum chelate-based latent curing agent in which an aluminum chelate-based curing agent is held in a porous resin obtained by interfacial polymerization of a polyfunctional isocyanate compound has been proposed as a curing agent that exhibits low-temperature rapid curing activity for epoxy resins.
  • Patent Documents 1 and 2 In the thermosetting epoxy resin composition using these latent curing agents, when the arylsilanol is used in combination, the aluminum chelate and the arylsilanol work together to cationically cure the epoxy resin.
  • thermosetting epoxy resin composition there is a technique of blending an aluminum chelate, an alkylphenylpolysiloxane, and an alkoxyboron compound for the purpose of imparting weather resistance and preparing a coating film that can be applied relatively thickly. It has been proposed (see, for example, Patent Document 3).
  • thermosetting epoxy resin composition using a latent curing agent
  • the viscosity during storage tends to increase.
  • an object of the present invention is to provide a thermosetting epoxy resin composition that can improve low-temperature curability without adversely affecting the viscosity increase during storage, and a method for producing the same.
  • thermosetting epoxy resin composition comprising boric acid.
  • thermosetting epoxy resin composition according to ⁇ 1> further including an organosilane compound.
  • organic silane compound contains at least one of an arylsilanol compound and a silane coupling agent.
  • the boric acid is derived from a boric acid ester in preparing the thermosetting epoxy resin composition
  • the mass ratio of the organosilane compound to the borate ester is 1: 3 to 3 1 is the thermosetting epoxy resin composition according to any one of ⁇ 2> to ⁇ 3>.
  • ⁇ 5> The thermosetting epoxy resin composition according to any one of ⁇ 1> to ⁇ 4>, wherein the epoxy resin contains an alicyclic epoxy resin.
  • ⁇ 6> The thermosetting epoxy resin composition according to ⁇ 5>, wherein the alicyclic epoxy resin contains at least one of compounds represented by the following structural formulas.
  • thermosetting epoxy resin composition according to any one of ⁇ 1> to ⁇ 6>, wherein the porous particles further include a vinyl resin as a constituent component.
  • the method for producing a thermosetting epoxy resin composition according to any one of ⁇ 1> to ⁇ 8> It is a manufacturing method of the thermosetting epoxy resin composition characterized by including the mixing process which mixes the said epoxy resin, the said latent hardener, and boric acid ester.
  • thermosetting epoxy resin composition according to ⁇ 9>, wherein an organic silane compound is further mixed in the mixing step.
  • a mass ratio of the organosilane compound to the borate ester (organosilane compound: borate ester) in the mixing step is 1: 3 to 3: 1. It is a manufacturing method of a curable epoxy resin composition.
  • thermosetting epoxy resin composition capable of solving the above-mentioned problems in the past, achieving the object, and improving low-temperature curability without adversely affecting the viscosity increase during storage, And a manufacturing method thereof.
  • FIG. 1 shows DSC measurement results.
  • FIG. 2 shows DSC measurement results.
  • FIG. 3 shows DSC measurement results.
  • FIG. 4 shows DSC measurement results.
  • thermosetting epoxy resin composition contains at least an epoxy resin, a latent curing agent, and boric acid, preferably contains an organosilane compound, and further contains other components as necessary. To do.
  • thermosetting epoxy resin composition capable of improving low-temperature curability without adversely affecting the viscosity increase during storage.
  • the viscosity at the time of storage can be obtained by using boric acid instead of the organic silane compound or in combination with the organic silane compound. It has been found that low temperature curability can be improved without adversely affecting the rise, and the present invention has been completed.
  • thermosetting epoxy resin composition a technique for blending an aluminum chelate, an alkylphenylpolysiloxane, and an alkoxyboron compound in a thermosetting epoxy resin composition is proposed. There is no suggestion that the low-temperature curability can be improved without adversely affecting the viscosity increase.
  • Epoxy resin> There is no restriction
  • the glycidyl ether type epoxy resin may be, for example, liquid or solid, and preferably has an epoxy equivalent of usually about 100 to 4000 and having two or more epoxy groups in the molecule.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, ester type epoxy resin and the like can be mentioned.
  • bisphenol A type epoxy resins can be preferably used from the viewpoint of resin characteristics. These epoxy resins also include monomers and oligomers.
  • the alicyclic epoxy resin is not particularly limited and may be appropriately selected depending on the intended purpose.
  • vinylcyclopentadiene dioxide vinylcyclohexene mono- to dioxide, dicyclopentadiene oxide, epoxy- [epoxy-oxaspiro C 8-15 alkyl] -cycloC 5-12 alkane (for example, 3,4-epoxy-1- [8,9-epoxy-2,4-dioxaspiro [5.5] undecan-3-yl] -cyclohexane, etc.
  • 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate [trade name: Celoxide #, manufactured by Daicel Corporation, because it is easily available as a commercial product. 2021P; epoxy equivalent of 128 to 140] is preferably used.
  • C 8-15 , C 5-12 , and C 1-3 includes 8 to 15 carbon atoms, 5 to 12 carbon atoms, and 1 to 3 carbon atoms, respectively. It means that there is a range of compound structures.
  • the content of the epoxy resin in the thermosetting epoxy resin composition is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 30% by mass to 99% by mass, and more preferably 50% by mass to 98%. % By mass is more preferable, and 70% by mass to 97% by mass is particularly preferable.
  • the numerical range defined using “to” in this specification is a range including a lower limit value and an upper limit value. That is, “30 mass% to 99 mass%” is synonymous with “30 mass% to 99 mass%”.
  • the latent curing agent is a porous particle.
  • the porous particles are composed of at least a polyurea resin, and may further contain a vinyl resin as a constituent component.
  • the porous particles retain at least an aluminum chelate.
  • the porous particles retain the aluminum chelate in the pores, for example.
  • the aluminum chelate is incorporated and held in the fine pores present in the porous particle matrix composed of the polyurea resin.
  • the surface of the porous particle preferably has a reaction product of an alkoxysilane coupling agent.
  • the polyurea resin is a resin having a urea bond in the resin.
  • the polyurea resin constituting the porous particles can be obtained, for example, by polymerizing a polyfunctional isocyanate compound in an emulsion. Details thereof will be described later.
  • the polyurea resin may have a bond derived from an isocyanate group and a bond other than a urea bond, such as a urethane bond, in the resin.
  • the vinyl resin is a resin obtained by polymerizing a radical polymerizable vinyl compound.
  • the vinyl resin improves the mechanical properties of the porous particles. Thereby, the thermal responsiveness at the time of hardening of the epoxy resin in a thermosetting epoxy resin composition, especially a sharp thermal responsiveness in a low-temperature area
  • region is realizable.
  • the vinyl resin contains, for example, a radical polymerizable vinyl compound in an emulsion containing a polyfunctional isocyanate compound, and the radical polymerization is performed simultaneously with the polymerization of the polyfunctional isocyanate compound in the emulsion. It can be obtained by radical polymerization of a functional vinyl compound.
  • Aluminum chelate examples include a complex compound in which three ⁇ -keto enolate anions coordinated to aluminum represented by the following general formula (1).
  • the alkoxy group is not directly bonded to aluminum. This is because when it is directly bonded, it is easily hydrolyzed and is not suitable for the emulsification treatment in producing the porous particles.
  • R 1 , R 2 and R 3 each independently represents an alkyl group or an alkoxyl group.
  • the alkyl group include a methyl group and an ethyl group.
  • the alkoxyl group include a methoxy group, an ethoxy group, and an oleyloxy group.
  • Examples of the complex compound represented by the general formula (1) include aluminum tris (acetylacetonate), aluminum tris (ethylacetoacetate), aluminum monoacetylacetonate bis (ethylacetoacetate), and aluminum monoacetylacetonate. Examples thereof include bis (oleyl acetoacetate).
  • the content of the aluminum chelate in the porous particles is not particularly limited and can be appropriately selected depending on the purpose.
  • the average pore diameter of the pores of the porous particles is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 nm to 300 nm, more preferably 5 nm to 150 nm.
  • reaction product is obtained by reacting an alkoxysilane coupling agent.
  • the reaction product is present on the surface of the porous particles.
  • the reaction product is preferably obtained by an inactivation step described in detail later.
  • the latent curing agent is preferably particulate.
  • the average particle diameter of the latent curing agent is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.5 ⁇ m to 20 ⁇ m, more preferably 1 ⁇ m to 10 ⁇ m, and particularly preferably 1 ⁇ m to 5 ⁇ m. .
  • 1 mass part with respect to 100 mass parts of said epoxy resins Is preferably 70 parts by mass, and more preferably 1 part by mass to 50 parts by mass. If the content is less than 1 part by mass, the curability may be reduced, and if it exceeds 70 parts by mass, the resin properties (for example, flexibility) of the cured product may be reduced.
  • the manufacturing method of the latent curing agent includes, for example, at least a porous particle preparation step and an inactivation step, and further includes other steps as necessary.
  • the porous particle preparation process includes at least an emulsion preparation process and a polymerization process, preferably includes an additional filling process, and further includes other processes as necessary.
  • the emulsion preparation process is not particularly limited as long as it is a process for obtaining an emulsion by emulsifying a liquid obtained by mixing an aluminum chelate, a polyfunctional isocyanate compound, and preferably an organic solvent. For example, it can be performed using a homogenizer.
  • the resin constituting the porous particles contains not only a polyurea resin but also a vinyl resin
  • the liquid further contains a radical polymerizable vinyl compound and a radical polymerization initiator.
  • Examples of the aluminum chelate include the aluminum chelate in the explanation of the latent curing agent of the present invention.
  • the size of the oil droplets in the emulsion is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.5 ⁇ m to 100 ⁇ m.
  • the polyfunctional isocyanate compound is a compound having two or more isocyanate groups, preferably three isocyanate groups in one molecule. More preferable examples of such a trifunctional isocyanate compound include a TMP adduct of the following general formula (2) obtained by reacting 3 mol of a diisocyanate compound with 1 mol of trimethylolpropane, and the following general formula obtained by self-condensing 3 mol of a diisocyanate compound.
  • Examples include the isocyanurate body of the formula (3) and the burette body of the following general formula (4) in which the remaining 1 mole of diisocyanate is condensed to the diisocyanate urea obtained from 2 moles of 3 moles of the diisocyanate compound.
  • the substituent R is a portion excluding the isocyanate group of the diisocyanate compound.
  • diisocyanate compounds include toluene 2,4-diisocyanate, toluene 2,6-diisocyanate, m-xylylene diisocyanate, hexamethylene diisocyanate, hexahydro-m-xylylene diisocyanate, isophorone diisocyanate, methylene diphenyl-4. , 4'-diisocyanate and the like.
  • the mixing ratio of the aluminum chelate and the polyfunctional isocyanate compound is not particularly limited and can be appropriately selected according to the purpose. However, if the amount of the aluminum chelate is too small, the epoxy resin to be cured When the curability is lowered and the amount is too large, the potential of the resulting latent curing agent is lowered.
  • the aluminum chelate is preferably 10 to 500 parts by mass, more preferably 10 to 300 parts by mass with respect to 100 parts by mass of the polyfunctional isocyanate compound.
  • a volatile organic solvent is preferable.
  • the organic solvent is a good solvent for each of the aluminum chelate, the polyfunctional isocyanate compound, the polyfunctional radical polymerizable vinyl compound, and the radical polymerization initiator (the solubility of each is preferably 0.1 g / ml (organic solvent). It is preferable that the solvent does not substantially dissolve in water (the solubility of water is 0.5 g / ml (organic solvent) or less) and has a boiling point of 100 ° C. or less under atmospheric pressure.
  • Specific examples of such volatile organic solvents include alcohols, acetate esters, ketones and the like. Among these, ethyl acetate is preferable in terms of high polarity, low boiling point, and poor water solubility.
  • the amount of the organic solvent used is not particularly limited and can be appropriately selected depending on the purpose.
  • the radical polymerizable vinyl compound is a compound having a radical polymerizable carbon-carbon unsaturated bond in the molecule.
  • the radical polymerizable vinyl compound includes so-called monofunctional radical polymerizable compounds and polyfunctional radical polymerizable compounds.
  • the radical polymerizable vinyl compound preferably contains a polyfunctional radical polymerizable compound. This is because by using a polyfunctional radically polymerizable compound, it becomes easier to realize sharp thermal responsiveness in a low temperature region. Also from this meaning, the radical polymerizable vinyl compound preferably contains 30% by mass or more, more preferably 50% by mass or more of the polyfunctional radical polymerizable compound.
  • Examples of the monofunctional radical polymerizable compound include monofunctional vinyl compounds (for example, styrene and methylstyrene), monofunctional (meth) acrylate compounds (for example, butyl acrylate), and the like.
  • Examples of the polyfunctional radical polymerizable compound include polyfunctional vinyl compounds (eg, divinylbenzene, divinyl adipate, etc.), polyfunctional (meth) acrylate compounds (eg, 1,6-hexanediol diacrylate, Methylolpropane triacrylate and the like).
  • polyfunctional vinyl compounds, particularly divinylbenzene can be preferably used from the viewpoints of latency and heat responsiveness.
  • the polyfunctional radically polymerizable compound may be composed of a polyfunctional vinyl compound and a polyfunctional (meth) acrylate compound.
  • the amount of the radical polymerizable vinyl compound is not particularly limited and may be appropriately selected depending on the intended purpose. It is preferably 1 to 80 parts by mass with respect to 100 parts by mass of the polyfunctional isocyanate compound. 10 parts by mass to 60 parts by mass is more preferable.
  • radical polymerization initiator examples include peroxide initiators and azo initiators.
  • the blending amount of the radical polymerization initiator is not particularly limited and may be appropriately selected depending on the intended purpose. It is 0.1 to 10 parts by mass with respect to 100 parts by mass of the radical polymerizable vinyl compound. It is preferably 0.5 parts by mass to 5 parts by mass.
  • the polymerization treatment is not particularly limited as long as it is a treatment for obtaining porous particles by polymerizing the polyfunctional isocyanate compound in the emulsion, and can be appropriately selected according to the purpose.
  • the porous particles hold the aluminum chelate.
  • polyurea resin In the polymerization treatment, a part of the isocyanate group of the polyfunctional isocyanate compound is hydrolyzed to become an amino group, and the amino group and the isocyanate group of the polyfunctional isocyanate compound react to form a urea bond. A polyurea resin is obtained.
  • the polyfunctional isocyanate compound has a urethane bond
  • the resulting polyurea resin also has a urethane bond
  • the polyurea resin produced at that point can also be referred to as a polyureaurethane resin.
  • the emulsion contains the radical polymerizable vinyl compound and the radical polymerization initiator
  • the polyfunctional isocyanate compound in the polymerization treatment, is polymerized and at the same time, the presence of the radical polymerization initiator is present.
  • the radical polymerizable vinyl compound causes radical polymerization. Therefore, the obtained porous particles contain a polyurea resin and a vinyl resin as constituent resins.
  • the polymerization time in the polymerization treatment is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 hour to 30 hours, and more preferably 2 hours to 10 hours.
  • the polymerization temperature in the polymerization treatment is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 30 ° C. to 90 ° C., more preferably 50 ° C. to 80 ° C.
  • the additional filling process is not particularly limited as long as it is a process of additionally filling the porous particles obtained by the polymerization process with an aluminum chelate, and can be appropriately selected according to the purpose.
  • aluminum Examples include a method of removing the organic solvent from the solution after the porous particles are immersed in a solution obtained by dissolving a chelate in an organic solvent.
  • the amount of aluminum chelate retained by the porous particles is increased by performing the additional filling process.
  • the porous particles additionally filled with aluminum chelate can be crushed into primary particles by a known crushing apparatus after being filtered, washed and dried as necessary.
  • the aluminum chelate that is additionally filled in the additional filling process may be the same as or different from the aluminum chelate that is blended in the liquid to be the emulsion.
  • the aluminum chelate used in the additional filling process may be an aluminum chelate in which an alkoxy group is bonded to aluminum.
  • Examples of such aluminum chelates include diisopropoxy aluminum monooleyl acetoacetate, monoisopropoxy aluminum bis (oleyl acetoacetate), monoisopropoxy aluminum monooleate monoethyl acetoacetate, diisopropoxy aluminum monolauryl acetoacetate.
  • diisopropoxyaluminum monostearyl acetoacetate diisopropoxyaluminum monoisostearyl acetoacetate, monoisopropoxyaluminum mono-N-lauroyl- ⁇ -alanate monolauryl acetoacetate and the like.
  • the organic solvent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include the organic solvents exemplified in the description of the emulsion preparation process. The preferred embodiment is also the same.
  • the method for removing the organic solvent from the solution is not particularly limited and may be appropriately selected depending on the intended purpose. For example, the method of heating the solution to the boiling point of the organic solvent or lowering the solution. The method etc. are mentioned.
  • the content of the aluminum chelate in the solution obtained by dissolving the aluminum chelate in the organic solvent is not particularly limited and may be appropriately selected depending on the intended purpose, but is 10% by mass to 80% by mass. Preferably, 10% by mass to 50% by mass is more preferable.
  • the deactivation step is not particularly limited as long as it is a step of providing a reaction product of an alkoxysilane coupling agent on the surface of the porous particles, and can be appropriately selected according to the purpose.
  • the porous particles are preferably immersed in a solution containing an alkoxysilane coupling agent and an organic solvent and reacted with the alkoxysilane coupling agent.
  • the porous particles are considered to have an aluminum chelate not only on the inside but also on the surface due to its structure.
  • most of the surface aluminum chelate is inactivated by water present in the polymerization system during the interfacial polymerization. Therefore, the porous particles can acquire the potential without requiring the deactivation step (that is, even if the surface does not have a reaction product of an alkoxysilane coupling agent).
  • the thermosetting epoxy resin composition using the latent curing agent that has not undergone the inactivation step is greatly thickened over time. To do.
  • alkoxysilane coupling agent-- The alkoxysilane coupling agent is classified into two types as described below.
  • the first type reacts with the active aluminum chelate on the surface of the porous particles to produce an aluminum chelate-silanol reactant, thereby reducing the electron density of oxygen adjacent to the aluminum atom
  • It is a type of silane coupling agent whose activity is lowered by lowering the acidity of hydrogen bonded to oxygen, in other words, lowering the polarizability between oxygen and hydrogen.
  • this type of silane coupling agent include an alkoxysilane coupling agent having an electron donating group bonded to a silicon atom, preferably an alkylalkoxysilane coupling agent having an alkyl group. Specific examples include methyltrimethoxysilane, n-propyltrimethoxysilane, hexyltrimethoxysilane and the like.
  • the second type is a silane coupling agent of which the activity is lowered by covering the surface with an epoxy polymer chain generated by reacting the active aluminum chelate of the porous particles with an epoxy group in the molecule.
  • An epoxy silane coupling agent is mentioned as this type of silane coupling agent. Specifically, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (KBM-303, Shin-Etsu Chemical Co., Ltd.), 3-glycidoxypropyltrimethoxysilane (KBM-403, Shin-Etsu Chemical ( Etc.).
  • organic solvent-- there is no restriction
  • the nonpolar solvent include hydrocarbon solvents.
  • the hydrocarbon solvent include toluene, xylene, cyclohexane and the like.
  • the content of the alkoxysilane coupling agent in the solution is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5% by mass to 80% by mass.
  • the temperature of the solution in the inactivation step is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the aggregation of the porous particles and the outflow of the aluminum chelate from the porous particles 10 to 80 ° C is preferable, and 20 to 60 ° C is more preferable.
  • the immersion time in the inactivation step is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 hour to 48 hours, and more preferably 5 hours to 30 hours.
  • the solution is preferably stirred.
  • the latent curing agent obtained through the inactivation step can be filtered, washed and dried as necessary, and then pulverized into primary particles by a known pulverizer.
  • the boric acid (B (OH) 3 ) has a function of starting cationic polymerization of the epoxy resin in cooperation with the aluminum chelate held in the latent curing agent.
  • 1 mass part with respect to 100 mass parts of the said latent hardeners Is preferably 500 parts by mass, more preferably 30 parts by mass to 400 parts by mass, and more preferably 50 parts by mass to 300 parts by mass.
  • the boric acid may be added, but it is preferable to add a boric acid ester in terms of ease of handling.
  • the borate ester reacts with moisture in the system to become boric acid.
  • the thermosetting epoxy resin composition is prepared by blending the boric acid ester, the boric acid is present in the thermosetting epoxy resin composition.
  • R may be the same or different and each represents an alkyl group having 1 to 6 carbon atoms.
  • alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • the organic silane compound cooperates with the aluminum chelate held in the latent curing agent to perform cationic polymerization of the epoxy resin. Has the function of starting. Therefore, the effect of accelerating the curing of the epoxy resin can be obtained by using such an organosilane compound in combination.
  • organic silane compounds include highly sterically hindered silanol compounds and silane coupling agents having 1 to 3 lower alkoxy groups in the molecule.
  • the latent curing agent of the present invention is a cationic curing agent, the amino group or the mercapto group substantially generates the generated cationic species. Can be used when not captured.
  • the curing start temperature (for example, the heat generation start temperature in DSC measurement) can be lowered by using the boric acid and the organosilane compound in combination.
  • the inventor considers the reason as follows. In the case of active species formation using an aluminum chelate and an organosilane compound, a two-step reaction is required, and thus the curing rate may be slow. On the other hand, in the case of active species formation by an aluminum chelate and boric acid, a ligand exchange reaction occurs, and an unshared electron pair on the oxygen atom of the hydroxyl group of the complex formed thereby coordinates with an Al atom, thereby generating hydrogen. The acid strength of the atoms increases, and it acts as an active species.
  • the formation of active species is a one-step reaction, so that the activation temperature can be lowered.
  • the absolute value of the acid strength of the active species formed is lower than the Bronsted acid formed by the organosilane compound. Therefore, it is considered that by using boric acid and the organosilane compound in combination, the advantages of both can be revealed and the curing start temperature (for example, the heat generation start temperature in DSC measurement) can be lowered.
  • the highly sterically hindered silanol compound is an aryl silanol compound having an aryl group, unlike a conventional silane coupling agent having a trialkoxy group.
  • Arylsilanol compound is represented, for example, by the following general formula (A). However, in the said general formula (A), m is 2 or 3, Preferably 3, However, The sum of m and n is 4. Ar is an aryl group which may have a substituent.
  • the arylsilanol compound represented by the general formula (A) is a monool or diol.
  • Ar in the general formula (A) is an aryl group which may have a substituent.
  • the aryl group include a phenyl group, a naphthyl group (eg, 1-naphthyl group, 2-naphthyl group, etc.), anthracenyl group (eg, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, benz [ a] -9-anthracenyl group, etc.), phenaryl group (eg, 3-phenaryl group, 9-phenaryl group, etc.), pyrenyl group (eg, 1-pyrenyl group, etc.), azulenyl group, fluorenyl group, biphenyl group (eg, 2-biphenyl group, 3-biphenyl group, 4-biphenyl group, etc.), thienyl group, furyl group, pyrrolyl group, imidazolyl group,
  • aryl groups can have, for example, 1 to 3 substituents.
  • substituents include an electron withdrawing group and an electron donating group.
  • electron withdrawing group include a halogen group (eg, chloro group, bromo group), trifluoromethyl group, nitro group, sulfo group, carboxyl group, alkoxycarbonyl group (eg, methoxycarbonyl group, ethoxycarbonyl group, etc.). ), Formyl group and the like.
  • Examples of the electron donating group include an alkyl group (for example, methyl group, ethyl group, propyl group, etc.), an alkoxy group (for example, methoxy group, ethoxy group, etc.), a hydroxy group, an amino group, a monoalkylamino group (for example, , Monomethylamino group and the like), dialkylamino group (for example, dimethylamino group and the like) and the like.
  • an alkyl group for example, methyl group, ethyl group, propyl group, etc.
  • an alkoxy group for example, methoxy group, ethoxy group, etc.
  • a hydroxy group for example, an amino group, a monoalkylamino group (for example, , Monomethylamino group and the like), dialkylamino group (for example, dimethylamino group and the like) and the like.
  • phenyl group having a substituent examples include, for example, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2,6-dimethylphenyl group, 3,5-dimethylphenyl group, 2, 4-dimethylphenyl group, 2,3-dimethylphenyl group, 2,5-dimethylphenyl group, 3,4-dimethylphenyl group, 2,4,6-trimethylphenyl group, 2-ethylphenyl group, 4-ethylphenyl Group and the like.
  • the acidity of the hydroxyl group of a silanol group can be raised by using an electron withdrawing group as a substituent.
  • an electron donating group as a substituent, the acidity of the hydroxyl group of the silanol group can be lowered. Therefore, the curing activity can be controlled by the substituent.
  • the substituents may be different for each of the m Ars, but the substituents are preferably the same for the m Ars from the viewpoint of availability. Further, only some Ar may have a substituent, and other Ar may not have a substituent.
  • triphenylsilanol and diphenylsilanediol are preferable, and triphenylsilanol is particularly preferable.
  • the silane coupling agent has 1 to 3 lower alkoxy groups in the molecule, and a group having reactivity in the molecule with respect to the functional group of the thermosetting resin, such as a vinyl group or a styryl group. , May have an acryloyloxy group, a methacryloyloxy group, an epoxy group, an amino group, a mercapto group, and the like.
  • the coupling agent having an amino group or a mercapto group is used when the latent curing agent used in the present invention is a cationic curing agent, so that the amino group or mercapto group does not substantially trap the generated cationic species. can do.
  • silane coupling agent examples include vinyltris ( ⁇ -methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, ⁇ -styryltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, and ⁇ -acryloxypropyl.
  • Trimethoxysilane ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -Aminopropyltrimethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropyltriethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxy Shi And ⁇ -chloropropyltrimethoxysilane.
  • the amount of the organosilane compound used when preparing the thermosetting epoxy resin composition is not particularly limited and may be appropriately selected depending on the intended purpose, but is 1: 3 to 3: 1. A ratio of 1: 2 to 2: 1 is more preferable.
  • the exothermic peak can be sharpened by using the oxetane compound in combination with the epoxy resin.
  • the oxetane compound include 3-ethyl-3-hydroxymethyloxetane, 1,4-bis ⁇ [(3-ethyl-3-oxetanyl) methoxy] methyl ⁇ benzene, 4,4′-bis [(3- Ethyl-3-oxetanyl) methoxymethyl] biphenyl, 1,4-benzenedicarboxylic acid bis [(3-ethyl-3-oxetanyl)] methyl ester, 3-ethyl-3- (phenoxymethyl) oxetane, 3-ethyl-3 -(2-ethylhexyloxymethyl) oxetane, di [1-ethyl (3-oxetanyl)] methyl ether, 3-ethyl-3- ⁇ [
  • the content of the oxetane compound in the thermosetting epoxy resin composition is not particularly limited and may be appropriately selected depending on the intended purpose. It is 10 to 100 parts by mass with respect to 100 parts by mass of the epoxy resin. Part by mass is preferable, and 20 to 70 parts by mass is more preferable.
  • thermosetting epoxy resin composition includes at least a mixing step of mixing the epoxy resin, the latent curing agent, and a boric acid ester, and further includes other steps as necessary. Including.
  • Examples of the epoxy resin include the epoxy resin exemplified in the description of the thermosetting epoxy resin composition of the present invention.
  • Examples of the latent curing agent include the latent curing agent exemplified in the description of the thermosetting epoxy resin composition of the present invention.
  • Examples of the boric acid ester include the boric acid esters exemplified in the description of the thermosetting epoxy resin composition of the present invention.
  • the mixing method in the mixing step is not particularly limited and can be appropriately selected depending on the purpose.
  • the mixing step it is preferable to further mix an organosilane compound.
  • said organosilane compound the said organosilane compound illustrated in description of the said thermosetting epoxy resin composition of this invention is mentioned, for example.
  • the mass ratio of the organosilane compound to the borate ester is preferably 1: 3 to 3: 1, and 1: 2 to 2: 1. It is more preferable that
  • thermosetting epoxy resin composition of the present invention can improve low-temperature curability without adversely affecting the viscosity increase during storage, the pot life after blending can be extended, and the The burden of viscosity adjustment can be reduced.
  • the prepared emulsion was polymerized while stirring at 200 rpm at 80 ° C. for 6 hours. After completion of the reaction, the polymerization reaction liquid was allowed to cool to room temperature, and the produced polymer resin particles were filtered off by filtration and dried naturally to obtain a bulky curing agent.
  • This bulk curing agent was pulverized into primary particles using a pulverizer (AO jet mill, Seishin Corporation) to obtain a particulate curing agent.
  • the obtained particulate curing agent was impregnated with 40 parts by mass of a 24% by mass isopropanol solution of aluminum monoacetylacetobis (ethyl acetoacetate) (aluminum chelate D, Kawaken Fine Chemical Co., Ltd.) and 60 parts by mass of ethanol. After putting into the liquid and stirring at 30 ° C. for 6 hours, the particulate curing agent was filtered off and dried naturally to obtain a particulate curing agent (porous particles) additionally filled with aluminum chelate.
  • ⁇ Inactivation process 3 parts by mass of the porous particles obtained in the porous particle production step were dissolved in 6 parts by mass of a solution [cyclohexane 24 parts by mass, n-propyltrimethoxysilane (KBM-3033, Shin-Etsu Chemical Co., Ltd.)]. The solution was put into 30 parts by mass and stirred at 30 ° C. for 20 hours at 200 rpm to inactivate the surface of the porous particles. After the inactivation was completed, the porous particles were filtered off from the treatment liquid by filtration and naturally dried to obtain a latent curing agent.
  • thermosetting epoxy resin composition > -material- -Alicyclic epoxy resin (CEL2021P, Daicel Corporation) 100 parts by mass-Triphenylsilanol (Tokyo Chemical Industry Co., Ltd.) 2 parts by mass-Tributyl borate (Tokyo Chemical Industry Co., Ltd.) 1 part by mass-Production
  • thermosetting epoxy resin composition was prepared by the following method. After mixing triphenylsilanol with CEL2021P, the triphenylsilanol was dissolved by heating at 80 ° C. for 4 hours. Subsequently, after the resulting liquid was allowed to cool, other ingredients were blended, and the mixture was stirred at 2000 rpm for 1 minute with Awatori Netaro (AR-250: Sinky Co., Ltd.), thereby thermosetting epoxy resin composition. Got.
  • the structure of the alicyclic epoxy resin (CEL2021P) is as follows.
  • thermosetting epoxy resin composition (Example 2 to Example 9, Comparative Example 1 to Comparative Example 2) ⁇ Preparation of thermosetting epoxy resin composition>
  • the blending amounts of triphenylsilanol, KBM-403 (Shin-Etsu Chemical Co., Ltd., 3-glycidoxypropyltrimethoxysilane), and tributyl borate were changed to the blending amounts shown in Table 1 below. Except for this, a thermosetting epoxy resin composition was obtained in the same manner as in Example 1.
  • thermosetting epoxy resin composition was obtained in the same manner as in Example 2 except that tributyl borate was changed to trimethyl borate.
  • thermosetting epoxy resin composition was obtained in the same manner as in Example 2 except that triphenylsilanol was changed to 4-TFM silanol in Example 2.
  • 4-TFM silanol is tris (4-trifluoromethylphenyl) silanol and is represented by the following structural formula.
  • 4-TFM silanol can be synthesized, for example, according to the following known literature.
  • DSC measurement DSC measurement was performed on the thermosetting epoxy resin compositions obtained in Examples 1 to 11 and Comparative Examples 1 and 2. DSC measurement was performed under the following measurement conditions. The results are shown in Tables 2 to 5 and FIGS. -Measurement condition- ⁇ Measuring device: Differential thermal analyzer (DSC6200, Hitachi High-Tech Science Co., Ltd.) ⁇ Evaluation amount: 5mg ⁇ Temperature increase rate 10 °C / 1min
  • the heat generation start temperature is lowered by partial replacement with borate ester.
  • the heat generation start temperature was lowered by about 9 ° C. and in the case of Example 5 by about 13 ° C.
  • thermosetting epoxy resin composition of Example 2 Example 5, and Comparative Example 1 was measured.
  • Viscosity was measured under the following measurement conditions. The results are shown in Table 6.
  • Examples 2 and 5 showed good liquid life in an alicyclic epoxy resin excellent in cationic polymerizability even though the DSC exotherm starting temperature was lowered (about 55 ° C. and 61 ° C.).
  • the viscosity ratio after storage at room temperature 48H was about 1.7 times the initial ratio, and was not inferior to Comparative Example 1.
  • a silane coupling agent KBM-403
  • the rate of increase in viscosity after 6H was within 5% of the initial ratio.
  • an aluminum chelate-organosilane compound (arylsilanol, silane coupling agent) curing system
  • a curing system in which a part of the organosilane compound is replaced with a boric acid ester is cured compared to a curing system using only the organosilane compound. It is possible to lower the starting temperature.
  • a latent curing agent having a high potential which is surface-treated with an alkylalkoxysilane, a thermosetting epoxy resin composition exhibiting a good liquid life at room temperature as well as low temperature activation can be prepared. It becomes possible.
  • thermosetting epoxy resin composition of the present invention has excellent low-temperature curability while suppressing an increase in viscosity during storage, it can be suitably used as, for example, an epoxy-based adhesive for low-temperature and short-time connection. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)

Abstract

A thermosetting epoxy resin composition containing: epoxy resin; a latent curing agent being porous particles comprising polyuria resin and holding aluminium chelate; and boric acid.

Description

熱硬化型エポキシ樹脂組成物、及びその製造方法Thermosetting epoxy resin composition and method for producing the same
 本発明は、熱硬化型エポキシ樹脂組成物、及びその製造方法に関する。 The present invention relates to a thermosetting epoxy resin composition and a method for producing the same.
 従来、エポキシ樹脂に対する低温速硬化活性を示す硬化剤として、多官能イソシアネート化合物を界面重合させて得た多孔性樹脂にアルミニウムキレート系硬化剤を保持させたアルミニウムキレート系潜在性硬化剤が提案されている(例えば、特許文献1~2参照)。
 これらの潜在性硬化剤を用いた熱硬化型エポキシ樹脂組成物では、アリールシラノールを併用することで、アルミニウムキレートと、アリールシラノールとが共働し、エポキシ樹脂をカチオン硬化させる。
Conventionally, an aluminum chelate-based latent curing agent in which an aluminum chelate-based curing agent is held in a porous resin obtained by interfacial polymerization of a polyfunctional isocyanate compound has been proposed as a curing agent that exhibits low-temperature rapid curing activity for epoxy resins. (For example, see Patent Documents 1 and 2).
In the thermosetting epoxy resin composition using these latent curing agents, when the arylsilanol is used in combination, the aluminum chelate and the arylsilanol work together to cationically cure the epoxy resin.
 ところで、熱硬化型エポキシ樹脂組成物において、耐候性の付与、比較的厚塗り可能な塗膜の作製などを目的として、アルミニウムキレートと、アルキルフェニルポリシロキサンと、アルコキシホウ素化合物とを配合する技術が提案されている(例えば、特許文献3参照)。 By the way, in the thermosetting epoxy resin composition, there is a technique of blending an aluminum chelate, an alkylphenylpolysiloxane, and an alkoxyboron compound for the purpose of imparting weather resistance and preparing a coating film that can be applied relatively thickly. It has been proposed (see, for example, Patent Document 3).
 近年、潜在性硬化剤を用いた熱硬化型エポキシ樹脂組成物の更なる低温硬化性が求められている。ところが、通常、低温硬化性を向上させようとすると、保存時の粘度が上昇しやすいという問題がある。 In recent years, further low-temperature curability of a thermosetting epoxy resin composition using a latent curing agent has been demanded. However, there is a problem that, when trying to improve the low temperature curability, the viscosity during storage tends to increase.
特許第5458596号公報Japanese Patent No. 5458596 特許第5707662号公報Japanese Patent No. 5707661 特開昭63-189472号公報JP 63-189472 A
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、保存時の粘度上昇に悪影響を与えずに、低温硬化性を向上できる熱硬化型エポキシ樹脂組成物、及びその製造方法を提供することを目的とする。 This invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, an object of the present invention is to provide a thermosetting epoxy resin composition that can improve low-temperature curability without adversely affecting the viscosity increase during storage, and a method for producing the same.
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> エポキシ樹脂と、
 ポリウレア樹脂で構成され、アルミニウムキレートを保持する多孔質粒子である潜在性硬化剤と、
 ホウ酸と
を含有することを特徴とする熱硬化型エポキシ樹脂組成物である。
 <2> 更に、有機シラン化合物を含有する前記<1>に記載の熱硬化型エポキシ樹脂組成物である。
 <3> 前記有機シラン化合物が、アリールシラノール化合物及びシランカップリング剤の少なくともいずれかを含有する前記<2>に記載の熱硬化型エポキシ樹脂組成物である。
 <4> 前記ホウ酸が、前記熱硬化型エポキシ樹脂組成物を調製する際のホウ酸エステルに由来し、
 前記熱硬化型エポキシ樹脂組成物を調製する際の、前記有機シラン化合物の配合量と、前記ホウ酸エステルの配合量との質量比率(有機シラン化合物:ホウ酸エステル)が、1:3~3:1である前記<2>から<3>のいずれかに記載の熱硬化型エポキシ樹脂組成物である。
 <5> 前記エポキシ樹脂が、脂環式エポキシ樹脂を含有する前記<1>から<4>のいずれかに記載の熱硬化型エポキシ樹脂組成物である。
 <6> 前記脂環式エポキシ樹脂が、下記構造式で表される化合物の少なくともいずれかを含有する前記<5>に記載の熱硬化型エポキシ樹脂組成物である。
Figure JPOXMLDOC01-appb-C000002
 <7> 前記多孔質粒子が、更にビニル樹脂を構成成分として有する前記<1>から<6>のいずれかに記載の熱硬化型エポキシ樹脂組成物である。
 <8> 前記多孔質粒子の表面が、アルコキシシランカップリング剤の反応生成物を有する前記<1>から<7>のいずれかに記載の熱硬化型エポキシ樹脂組成物である。
 <9> 前記<1>から<8>のいずれかに記載の熱硬化型エポキシ樹脂組成物の製造方法であって、
 前記エポキシ樹脂と、前記潜在性硬化剤と、ホウ酸エステルとを混合する混合工程を含むことを特徴とする熱硬化型エポキシ樹脂組成物の製造方法である。
 <10> 前記混合工程において、更に有機シラン化合物を混合する前記<9>に記載の熱硬化型エポキシ樹脂組成物の製造方法である。
 <11> 前記混合工程における、前記有機シラン化合物と、前記ホウ酸エステルとの質量比率(有機シラン化合物:ホウ酸エステル)が、1:3~3:1である前記<10>に記載の熱硬化型エポキシ樹脂組成物の製造方法である。
Means for solving the problems are as follows. That is,
<1> an epoxy resin;
A latent curing agent composed of polyurea resin and porous particles holding aluminum chelate;
A thermosetting epoxy resin composition comprising boric acid.
<2> The thermosetting epoxy resin composition according to <1>, further including an organosilane compound.
<3> The thermosetting epoxy resin composition according to <2>, wherein the organic silane compound contains at least one of an arylsilanol compound and a silane coupling agent.
<4> The boric acid is derived from a boric acid ester in preparing the thermosetting epoxy resin composition,
When preparing the thermosetting epoxy resin composition, the mass ratio of the organosilane compound to the borate ester (organosilane compound: borate ester) is 1: 3 to 3 1 is the thermosetting epoxy resin composition according to any one of <2> to <3>.
<5> The thermosetting epoxy resin composition according to any one of <1> to <4>, wherein the epoxy resin contains an alicyclic epoxy resin.
<6> The thermosetting epoxy resin composition according to <5>, wherein the alicyclic epoxy resin contains at least one of compounds represented by the following structural formulas.
Figure JPOXMLDOC01-appb-C000002
<7> The thermosetting epoxy resin composition according to any one of <1> to <6>, wherein the porous particles further include a vinyl resin as a constituent component.
<8> The thermosetting epoxy resin composition according to any one of <1> to <7>, wherein a surface of the porous particle has a reaction product of an alkoxysilane coupling agent.
<9> The method for producing a thermosetting epoxy resin composition according to any one of <1> to <8>,
It is a manufacturing method of the thermosetting epoxy resin composition characterized by including the mixing process which mixes the said epoxy resin, the said latent hardener, and boric acid ester.
<10> The method for producing a thermosetting epoxy resin composition according to <9>, wherein an organic silane compound is further mixed in the mixing step.
<11> The heat according to <10>, wherein a mass ratio of the organosilane compound to the borate ester (organosilane compound: borate ester) in the mixing step is 1: 3 to 3: 1. It is a manufacturing method of a curable epoxy resin composition.
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、保存時の粘度上昇に悪影響を与えずに、低温硬化性を向上できる熱硬化型エポキシ樹脂組成物、及びその製造方法を提供することができる。 According to the present invention, the thermosetting epoxy resin composition capable of solving the above-mentioned problems in the past, achieving the object, and improving low-temperature curability without adversely affecting the viscosity increase during storage, And a manufacturing method thereof.
図1は、DSC測定結果である。FIG. 1 shows DSC measurement results. 図2は、DSC測定結果である。FIG. 2 shows DSC measurement results. 図3は、DSC測定結果である。FIG. 3 shows DSC measurement results. 図4は、DSC測定結果である。FIG. 4 shows DSC measurement results.
(熱硬化型エポキシ樹脂組成物)
 本発明の熱硬化型エポキシ樹脂組成物は、エポキシ樹脂と、潜在性硬化剤と、ホウ酸とを少なくとも含有し、好ましくは有機シラン化合物を含有し、更に必要に応じて、その他の成分を含有する。
(Thermosetting epoxy resin composition)
The thermosetting epoxy resin composition of the present invention contains at least an epoxy resin, a latent curing agent, and boric acid, preferably contains an organosilane compound, and further contains other components as necessary. To do.
 本発明者は、保存時の粘度上昇に悪影響を与えずに、低温硬化性を向上できる熱硬化型エポキシ樹脂組成物を提供するために鋭意検討を行った。その結果、エポキシ樹脂と、潜在性硬化剤とを含有する熱硬化型エポキシ樹脂組成物において、有機シラン化合物に代えて、又は有機シラン化合物と併用してホウ酸を用いることで、保存時の粘度上昇に悪影響を与えずに、低温硬化性を向上できることを見出し、本発明の完成に至った。
 なお、前述の特開昭63-189472号公報には、熱硬化型エポキシ樹脂組成物において、アルミニウムキレートと、アルキルフェニルポリシロキサンと、アルコキシホウ素化合物とを配合する技術が提案されているものの、保存時の粘度上昇に悪影響を与えずに、低温硬化性を向上できることについては、なんら示唆されてない。
The present inventor has intensively studied to provide a thermosetting epoxy resin composition capable of improving low-temperature curability without adversely affecting the viscosity increase during storage. As a result, in the thermosetting epoxy resin composition containing the epoxy resin and the latent curing agent, the viscosity at the time of storage can be obtained by using boric acid instead of the organic silane compound or in combination with the organic silane compound. It has been found that low temperature curability can be improved without adversely affecting the rise, and the present invention has been completed.
In the above-mentioned Japanese Patent Application Laid-Open No. 63-189472, a technique for blending an aluminum chelate, an alkylphenylpolysiloxane, and an alkoxyboron compound in a thermosetting epoxy resin composition is proposed. There is no suggestion that the low-temperature curability can be improved without adversely affecting the viscosity increase.
<エポキシ樹脂>
 前記エポキシ樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、グリシジルエーテル型エポキシ樹脂、脂環式エポキシ樹脂などが挙げられる。
<Epoxy resin>
There is no restriction | limiting in particular as said epoxy resin, According to the objective, it can select suitably, For example, a glycidyl ether type epoxy resin, an alicyclic epoxy resin, etc. are mentioned.
 前記グリシジルエーテル型エポキシ樹脂としては、例えば、液状でも固体状でもよく、エポキシ当量が通常100~4000程度であって、分子中に2以上のエポキシ基を有するものが好ましい。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、エステル型エポキシ樹脂等を挙げることができる。中でも、樹脂特性の点からビスフェノールA型エポキシ樹脂を好ましく使用できる。また、これらのエポキシ樹脂にはモノマーやオリゴマーも含まれる。 The glycidyl ether type epoxy resin may be, for example, liquid or solid, and preferably has an epoxy equivalent of usually about 100 to 4000 and having two or more epoxy groups in the molecule. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, ester type epoxy resin and the like can be mentioned. Among these, bisphenol A type epoxy resins can be preferably used from the viewpoint of resin characteristics. These epoxy resins also include monomers and oligomers.
 前記脂環式エポキシ樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビニルシクロペンタジエンジオキシド、ビニルシクロヘキセンモノ乃至ジオキシド、ジシクロペンタジエンオキシド、エポキシ-[エポキシ-オキサスピロC8-15アルキル]-シクロC5-12アルカン(例えば、3,4-エポキシ-1-[8,9-エポキシ-2,4-ジオキサスピロ[5.5]ウンデカン-3-イル]-シクロヘキサン等)、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボレート、エポキシC5-12シクロアルキルC1-3アルキル-エポキシC5-12シクロアルカンカルボキシレート(例えば、4,5-エポキシシクロオクチルメチル-4’,5’-エポキシシクロオクタンカルボキシレート等)、ビス(C1-3アルキルエポキシC5-12シクロアルキルC1-3アルキル)ジカルボキシレート(例えば、ビス(2-メチル-3,4-エポキシシクロヘキシルメチル)アジペート等)などが挙げられる。 The alicyclic epoxy resin is not particularly limited and may be appropriately selected depending on the intended purpose. For example, vinylcyclopentadiene dioxide, vinylcyclohexene mono- to dioxide, dicyclopentadiene oxide, epoxy- [epoxy-oxaspiro C 8-15 alkyl] -cycloC 5-12 alkane (for example, 3,4-epoxy-1- [8,9-epoxy-2,4-dioxaspiro [5.5] undecan-3-yl] -cyclohexane, etc. ), 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, epoxy C 5-12 cycloalkyl C 1-3 alkyl-epoxy C 5-12 cycloalkanecarboxylate (eg, 4,5- Epoxycyclooctylmethyl-4 ', 5'-epoxycyclooct Emissions carboxylate), bis (C 1-3 alkyl epoxy C 5-12 cycloalkyl C 1-3 alkyl) dicarboxylates (e.g., bis (2-methyl-3,4-epoxycyclohexylmethyl) adipate, etc.), etc. Is mentioned.
 なお、脂環式エポキシ樹脂としては、市販品として入手容易である点から、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート〔(株)ダイセル製、商品名:セロキサイド♯2021P;エポキシ当量 128~140〕が好ましく用いられる。 In addition, as an alicyclic epoxy resin, 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate [trade name: Celoxide #, manufactured by Daicel Corporation, because it is easily available as a commercial product. 2021P; epoxy equivalent of 128 to 140] is preferably used.
 なお、上記例示中において、C8-15、C5-12、C1-3との記載は、それぞれ、炭素数が8~15、炭素数が5~12、炭素数が1~3、であることを意味し、化合物の構造の幅があることを示している。 In the above examples, the description of C 8-15 , C 5-12 , and C 1-3 includes 8 to 15 carbon atoms, 5 to 12 carbon atoms, and 1 to 3 carbon atoms, respectively. It means that there is a range of compound structures.
 前記脂環式エポキシ樹脂の一例の構造式を、以下に示す。
Figure JPOXMLDOC01-appb-C000003
A structural formula of an example of the alicyclic epoxy resin is shown below.
Figure JPOXMLDOC01-appb-C000003
 前記熱硬化型エポキシ樹脂組成物における前記エポキシ樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、30質量%~99質量%が好ましく、50質量%~98質量%がより好ましく、70質量%~97質量%が特に好ましい。
 ここで、本明細書において「~」を用いて規定される数値範囲は、下限値及び上限値を含む範囲である。即ち、「30質量%~99質量%」は「30質量%以上99質量%以下」と同義である。
The content of the epoxy resin in the thermosetting epoxy resin composition is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 30% by mass to 99% by mass, and more preferably 50% by mass to 98%. % By mass is more preferable, and 70% by mass to 97% by mass is particularly preferable.
Here, the numerical range defined using “to” in this specification is a range including a lower limit value and an upper limit value. That is, “30 mass% to 99 mass%” is synonymous with “30 mass% to 99 mass%”.
<潜在性硬化剤>
 前記潜在性硬化剤は、多孔質粒子である。
 前記多孔質粒子は、少なくともポリウレア樹脂で構成され、更にビニル樹脂を構成成分に含んでいてもよい。
 前記多孔質粒子は、アルミニウムキレートを少なくとも保持する。
 前記多孔質粒子は、例えば、その細孔内に前記アルミニウムキレートを保持する。言い換えれば、ポリウレア樹脂で構成された多孔質粒子マトリックス中に存在する微細な孔に、アルミニウムキレートが取り込まれて保持されている。
 前記多孔質粒子の表面は、アルコキシシランカップリング剤の反応生成物を有することが好ましい。
<Latent curing agent>
The latent curing agent is a porous particle.
The porous particles are composed of at least a polyurea resin, and may further contain a vinyl resin as a constituent component.
The porous particles retain at least an aluminum chelate.
The porous particles retain the aluminum chelate in the pores, for example. In other words, the aluminum chelate is incorporated and held in the fine pores present in the porous particle matrix composed of the polyurea resin.
The surface of the porous particle preferably has a reaction product of an alkoxysilane coupling agent.
<<ポリウレア樹脂>>
 前記ポリウレア樹脂とは、その樹脂中にウレア結合を有する樹脂である。
 前記多孔質粒子を構成する前記ポリウレア樹脂は、例えば、多官能イソシアネート化合物を乳化液中で重合させることにより得られる。その詳細は後述する。前記ポリウレア樹脂は、樹脂中に、イソシアネート基に由来する結合であって、ウレア結合以外の結合、例えば、ウレタン結合などを有していてもよい。
<< Polyurea resin >>
The polyurea resin is a resin having a urea bond in the resin.
The polyurea resin constituting the porous particles can be obtained, for example, by polymerizing a polyfunctional isocyanate compound in an emulsion. Details thereof will be described later. The polyurea resin may have a bond derived from an isocyanate group and a bond other than a urea bond, such as a urethane bond, in the resin.
<<ビニル樹脂>>
 前記ビニル樹脂とは、ラジカル重合性ビニル化合物を重合して得られる樹脂である。
 前記ビニル樹脂は、前記多孔質粒子の機械的性質を改善する。これにより、熱硬化型エポキシ樹脂組成物におけるエポキシ樹脂の硬化時の熱応答性、特に低温領域でシャープな熱応答性を実現することができる。
<< Vinyl resin >>
The vinyl resin is a resin obtained by polymerizing a radical polymerizable vinyl compound.
The vinyl resin improves the mechanical properties of the porous particles. Thereby, the thermal responsiveness at the time of hardening of the epoxy resin in a thermosetting epoxy resin composition, especially a sharp thermal responsiveness in a low-temperature area | region is realizable.
 前記ビニル樹脂は、例えば、多官能イソシアネート化合物を含有する乳化液に、ラジカル重合性ビニル化合物をも含有させておき、前記乳化液中で前記多官能イソシアネート化合物を重合させる際に、同時に前記ラジカル重合性ビニル化合物をラジカル重合させることにより得ることができる。 The vinyl resin contains, for example, a radical polymerizable vinyl compound in an emulsion containing a polyfunctional isocyanate compound, and the radical polymerization is performed simultaneously with the polymerization of the polyfunctional isocyanate compound in the emulsion. It can be obtained by radical polymerization of a functional vinyl compound.
<<アルミニウムキレート>>
 前記アルミニウムキレートとしては、例えば、下記一般式(1)で表される、3つのβ-ケトエノラート陰イオンがアルミニウムに配位した錯体化合物が挙げられる。ここで、アルミニウムにはアルコキシ基は直接結合していない。直接結合していると加水分解し易く、前記多孔質粒子を作製する際の乳化処理に適さないからである。
<< Aluminum chelate >>
Examples of the aluminum chelate include a complex compound in which three β-keto enolate anions coordinated to aluminum represented by the following general formula (1). Here, the alkoxy group is not directly bonded to aluminum. This is because when it is directly bonded, it is easily hydrolyzed and is not suitable for the emulsification treatment in producing the porous particles.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 前記一般式(1)中、R、R及びRは、それぞれ独立に、アルキル基又はアルコキシル基を表す。
 前記アルキル基としては、例えば、メチル基、エチル基などが挙げられる。
 前記アルコキシル基としては、例えば、メトキシ基、エトキシ基、オレイルオキシ基などが挙げられる。
In the general formula (1), R 1 , R 2 and R 3 each independently represents an alkyl group or an alkoxyl group.
Examples of the alkyl group include a methyl group and an ethyl group.
Examples of the alkoxyl group include a methoxy group, an ethoxy group, and an oleyloxy group.
 前記一般式(1)で表される錯体化合物としては、例えば、アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)、アルミニウムモノアセチルアセトネートビス(オレイルアセトアセテート)などが挙げられる。 Examples of the complex compound represented by the general formula (1) include aluminum tris (acetylacetonate), aluminum tris (ethylacetoacetate), aluminum monoacetylacetonate bis (ethylacetoacetate), and aluminum monoacetylacetonate. Examples thereof include bis (oleyl acetoacetate).
 前記多孔質粒子における前記アルミニウムキレートの含有量としては、特に制限はなく、目的に応じて適宜選択することができる。 The content of the aluminum chelate in the porous particles is not particularly limited and can be appropriately selected depending on the purpose.
 前記多孔質粒子の細孔の平均細孔直径としては、特に制限はなく、目的に応じて適宜選択することができるが、1nm~300nmが好ましく、5nm~150nmがより好ましい。 The average pore diameter of the pores of the porous particles is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 nm to 300 nm, more preferably 5 nm to 150 nm.
<反応生成物>
 前記反応生成物は、アルコキシシランカップリング剤が反応して得られる。
 前記反応生成物は、前記多孔質粒子の表面に存在する。
<Reaction product>
The reaction product is obtained by reacting an alkoxysilane coupling agent.
The reaction product is present on the surface of the porous particles.
 前記反応生成物は、詳細を後述する不活性化工程により得られることが好ましい。 The reaction product is preferably obtained by an inactivation step described in detail later.
 前記潜在性硬化剤は、粒子状であることが好ましい。
 前記潜在性硬化剤の平均粒子径としては、特に制限はなく、目的に応じて適宜選択することができるが、0.5μm~20μmが好ましく、1μm~10μmがより好ましく、1μm~5μmが特に好ましい。
The latent curing agent is preferably particulate.
The average particle diameter of the latent curing agent is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.5 μm to 20 μm, more preferably 1 μm to 10 μm, and particularly preferably 1 μm to 5 μm. .
 前記熱硬化型エポキシ樹脂組成物における前記潜在性硬化剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記エポキシ樹脂100質量部に対して、1質量部~70質量部が好ましく、1質量部~50質量部がより好ましい。前記含有量が、1質量部未満であると、硬化性が低下することがあり、70質量部を超えると、硬化物の樹脂特性(例えば、可とう性)が低下することがある。 There is no restriction | limiting in particular as content of the said latent hardener in the said thermosetting type epoxy resin composition, Although it can select suitably according to the objective, 1 mass part with respect to 100 mass parts of said epoxy resins Is preferably 70 parts by mass, and more preferably 1 part by mass to 50 parts by mass. If the content is less than 1 part by mass, the curability may be reduced, and if it exceeds 70 parts by mass, the resin properties (for example, flexibility) of the cured product may be reduced.
<<潜在性硬化剤の製造方法>>
 前記潜在性硬化剤の製造方法は、例えば、多孔質粒子作製工程と、不活性化工程とを少なくとも含み、更に必要に応じて、その他の工程を含む。
<< Method for producing latent curing agent >>
The manufacturing method of the latent curing agent includes, for example, at least a porous particle preparation step and an inactivation step, and further includes other steps as necessary.
-多孔質粒子作製工程-
 前記多孔質粒子作製工程は、乳化液作製処理と、重合処理とを少なくとも含み、好ましくは、追加充填処理を含み、更に必要に応じて、その他の処理を含む。
-Porous particle production process-
The porous particle preparation process includes at least an emulsion preparation process and a polymerization process, preferably includes an additional filling process, and further includes other processes as necessary.
--乳化液作製処理--
 前記乳化液作製処理は、アルミニウムキレートと、多官能イソシアネート化合物と、好ましくは有機溶剤とを混合して得られる液を乳化処理して乳化液を得る処理であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、ホモジナイザーを用いて行うことができる。
 前記多孔質粒子を構成する樹脂が、ポリウレア樹脂のみではなく、更にビニル樹脂を含む場合、前記液は、更に、ラジカル重合性ビニル化合物と、ラジカル重合開始剤とを含有する。
--Emulsion preparation process--
The emulsion preparation process is not particularly limited as long as it is a process for obtaining an emulsion by emulsifying a liquid obtained by mixing an aluminum chelate, a polyfunctional isocyanate compound, and preferably an organic solvent. For example, it can be performed using a homogenizer.
When the resin constituting the porous particles contains not only a polyurea resin but also a vinyl resin, the liquid further contains a radical polymerizable vinyl compound and a radical polymerization initiator.
 前記アルミニウムキレートとしては、本発明の前記潜在性硬化剤の説明における前記アルミニウムキレートが挙げられる。 Examples of the aluminum chelate include the aluminum chelate in the explanation of the latent curing agent of the present invention.
 前記乳化液における油滴の大きさとしては、特に制限はなく、目的に応じて適宜選択することができるが、0.5μm~100μmが好ましい。 The size of the oil droplets in the emulsion is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.5 μm to 100 μm.
---多官能イソシアネート化合物---
 前記多官能イソシアネート化合物は、一分子中に2個以上のイソシアネート基、好ましくは3個のイソシアネート基を有する化合物である。このような3官能イソシアネート化合物の更に好ましい例としては、トリメチロールプロパン1モルにジイソシアネート化合物3モルを反応させた下記一般式(2)のTMPアダクト体、ジイソシアネート化合物3モルを自己縮合させた下記一般式(3)のイソシアヌレート体、ジイソシアネート化合物3モルのうちの2モルから得られるジイソシアネートウレアに残りの1モルのジイソシアネートが縮合した下記一般式(4)のビュウレット体が挙げられる。
--- Polyfunctional isocyanate compound ---
The polyfunctional isocyanate compound is a compound having two or more isocyanate groups, preferably three isocyanate groups in one molecule. More preferable examples of such a trifunctional isocyanate compound include a TMP adduct of the following general formula (2) obtained by reacting 3 mol of a diisocyanate compound with 1 mol of trimethylolpropane, and the following general formula obtained by self-condensing 3 mol of a diisocyanate compound. Examples include the isocyanurate body of the formula (3) and the burette body of the following general formula (4) in which the remaining 1 mole of diisocyanate is condensed to the diisocyanate urea obtained from 2 moles of 3 moles of the diisocyanate compound.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 前記一般式(2)~(4)中、置換基Rは、ジイソシアネート化合物のイソシアネート基を除いた部分である。このようなジイソシアネート化合物の具体例としては、トルエン2,4-ジイソシアネート、トルエン2,6-ジイソシアネート、m-キシリレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘキサヒドロ-m-キシリレンジイソシアネート、イソホロンジイソシアネート、メチレンジフェニル-4,4’-ジイソシアネートなどが挙げられる。 In the general formulas (2) to (4), the substituent R is a portion excluding the isocyanate group of the diisocyanate compound. Specific examples of such diisocyanate compounds include toluene 2,4-diisocyanate, toluene 2,6-diisocyanate, m-xylylene diisocyanate, hexamethylene diisocyanate, hexahydro-m-xylylene diisocyanate, isophorone diisocyanate, methylene diphenyl-4. , 4'-diisocyanate and the like.
 前記アルミニウムキレートと前記多官能イソシアネート化合物との配合割合としては、特に制限はなく、目的に応じて適宜選択することができるが、アルミニウムキレートの配合量が、少なすぎると、硬化させるべきエポキシ樹脂の硬化性が低下し、多すぎると、得られる潜在性硬化剤の潜在性が低下する。その点において、前記多官能イソシアネート化合物100質量部に対して、前記アルミニウムキレート10質量部~500質量部が好ましく、10質量部~300質量部がより好ましい。 The mixing ratio of the aluminum chelate and the polyfunctional isocyanate compound is not particularly limited and can be appropriately selected according to the purpose. However, if the amount of the aluminum chelate is too small, the epoxy resin to be cured When the curability is lowered and the amount is too large, the potential of the resulting latent curing agent is lowered. In this respect, the aluminum chelate is preferably 10 to 500 parts by mass, more preferably 10 to 300 parts by mass with respect to 100 parts by mass of the polyfunctional isocyanate compound.
---有機溶剤---
 前記有機溶剤としては、特に制限はなく、目的に応じて適宜選択することができるが、揮発性有機溶剤が好ましい。
 前記有機溶剤は、前記アルミニウムキレート、前記多官能イソシアネート化合物、前記多官能ラジカル重合性ビニル化合物、及び前記ラジカル重合開始剤のそれぞれの良溶媒(それぞれの溶解度が好ましくは0.1g/ml(有機溶剤)以上)であって、水に対しては実質的に溶解せず(水の溶解度が0.5g/ml(有機溶剤)以下)、大気圧下での沸点が100℃以下のものが好ましい。このような揮発性有機溶剤の具体例としては、アルコール類、酢酸エステル類、ケトン類などが挙げられる。中でも、高極性、低沸点、貧水溶性の点で酢酸エチルが好ましい。
---Organic solvent---
There is no restriction | limiting in particular as said organic solvent, Although it can select suitably according to the objective, A volatile organic solvent is preferable.
The organic solvent is a good solvent for each of the aluminum chelate, the polyfunctional isocyanate compound, the polyfunctional radical polymerizable vinyl compound, and the radical polymerization initiator (the solubility of each is preferably 0.1 g / ml (organic solvent). It is preferable that the solvent does not substantially dissolve in water (the solubility of water is 0.5 g / ml (organic solvent) or less) and has a boiling point of 100 ° C. or less under atmospheric pressure. Specific examples of such volatile organic solvents include alcohols, acetate esters, ketones and the like. Among these, ethyl acetate is preferable in terms of high polarity, low boiling point, and poor water solubility.
 前記有機溶剤の使用量としては、特に制限はなく、目的に応じて適宜選択することができる。 The amount of the organic solvent used is not particularly limited and can be appropriately selected depending on the purpose.
---ラジカル重合性ビニル化合物---
 前記ラジカル重合性ビニル化合物は、分子内にラジカル重合性の炭素-炭素不飽和結合を有する化合物である。
 前記ラジカル重合性ビニル化合物は、いわゆる単官能ラジカル重合性化合物、多官能ラジカル重合性化合物を包含する。
 前記ラジカル重合性ビニル化合物は、多官能ラジカル重合性化合物を含有することが好ましい。これは、多官能ラジカル重合性化合物を使用することにより、低温領域でシャープな熱応答性を実現することがより容易になるからである。この意味からも、前記ラジカル重合性ビニル化合物は、多官能ラジカル重合性化合物を30質量%以上含有することが好ましく、50質量%以上含有することがより好ましい。
---- Radically polymerizable vinyl compound ---
The radical polymerizable vinyl compound is a compound having a radical polymerizable carbon-carbon unsaturated bond in the molecule.
The radical polymerizable vinyl compound includes so-called monofunctional radical polymerizable compounds and polyfunctional radical polymerizable compounds.
The radical polymerizable vinyl compound preferably contains a polyfunctional radical polymerizable compound. This is because by using a polyfunctional radically polymerizable compound, it becomes easier to realize sharp thermal responsiveness in a low temperature region. Also from this meaning, the radical polymerizable vinyl compound preferably contains 30% by mass or more, more preferably 50% by mass or more of the polyfunctional radical polymerizable compound.
 前記単官能ラジカル重合性化合物としては、例えば、単官能ビニル系化合物(例えば、スチレン、メチルスチレン等)、単官能(メタ)アクリレート系化合物(例えば、ブチルアクリレートなど)など挙げられる。
 前記多官能ラジカル重合性化合物としては、例えば、多官能ビニル系化合物(例えば、ジビニルベンゼン、アジピン酸ジビニル等)、多官能(メタ)アクリレート系化合物(例えば、1,6-ヘキサンジオールジアクリレート、トリメチロールプロパントリアクリレート等)などが挙げられる。
 これらの中でも、潜在性及び熱応答性の点から、多官能ビニル系化合物、特にジビニルベンゼンを好ましく使用することができる。
Examples of the monofunctional radical polymerizable compound include monofunctional vinyl compounds (for example, styrene and methylstyrene), monofunctional (meth) acrylate compounds (for example, butyl acrylate), and the like.
Examples of the polyfunctional radical polymerizable compound include polyfunctional vinyl compounds (eg, divinylbenzene, divinyl adipate, etc.), polyfunctional (meth) acrylate compounds (eg, 1,6-hexanediol diacrylate, Methylolpropane triacrylate and the like).
Among these, polyfunctional vinyl compounds, particularly divinylbenzene, can be preferably used from the viewpoints of latency and heat responsiveness.
 なお、多官能ラジカル重合性化合物は、多官能ビニル系化合物と多官能(メタ)アクリレート系化合物とから構成されていてもよい。このように併用することにより、熱応答性を変化させたり、反応性官能基を導入できたりといった効果が得られる。 In addition, the polyfunctional radically polymerizable compound may be composed of a polyfunctional vinyl compound and a polyfunctional (meth) acrylate compound. By using together in this way, the effect that a thermal responsiveness is changed or a reactive functional group can be introduce | transduced is acquired.
 前記ラジカル重合性ビニル化合物の配合量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記多官能イソシアネート化合物100質量部に対して、1質量部~80質量部が好ましく、10質量部~60質量部がより好ましい。 The amount of the radical polymerizable vinyl compound is not particularly limited and may be appropriately selected depending on the intended purpose. It is preferably 1 to 80 parts by mass with respect to 100 parts by mass of the polyfunctional isocyanate compound. 10 parts by mass to 60 parts by mass is more preferable.
---ラジカル重合開始剤---
 前記ラジカル重合開始剤としては、例えば、過酸化物系開始剤、アゾ系開始剤などが挙げられる。
--- Radical polymerization initiator ---
Examples of the radical polymerization initiator include peroxide initiators and azo initiators.
 前記ラジカル重合開始剤の配合量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記ラジカル重合性ビニル化合物100質量部に対して、0.1質量部~10質量部が好ましく、0.5質量部~5質量部がより好ましい。 The blending amount of the radical polymerization initiator is not particularly limited and may be appropriately selected depending on the intended purpose. It is 0.1 to 10 parts by mass with respect to 100 parts by mass of the radical polymerizable vinyl compound. It is preferably 0.5 parts by mass to 5 parts by mass.
--重合処理--
 前記重合処理としては、前記乳化液中で前記多官能イソシアネート化合物を重合させて多孔質粒子を得る処理であれば、特に制限はなく、目的に応じて適宜選択することができる。
--- Polymerization process--
The polymerization treatment is not particularly limited as long as it is a treatment for obtaining porous particles by polymerizing the polyfunctional isocyanate compound in the emulsion, and can be appropriately selected according to the purpose.
 前記多孔質粒子は、前記アルミニウムキレートを保持する。 The porous particles hold the aluminum chelate.
 前記重合処理においては、前記多官能イソシアネート化合物のイソシアネート基の一部が加水分解を受けてアミノ基となり、そのアミノ基と前記多官能イソシアネート化合物のイソシアネート基とが反応してウレア結合を生成して、ポリウレア樹脂が得られる。ここで、前記多官能イソシアネート化合物が、ウレタン結合を有する場合には、得られるポリウレア樹脂は、ウレタン結合も有しており、その点において生成されるポリウレア樹脂は、ポリウレアウレタン樹脂と称することもできる。 In the polymerization treatment, a part of the isocyanate group of the polyfunctional isocyanate compound is hydrolyzed to become an amino group, and the amino group and the isocyanate group of the polyfunctional isocyanate compound react to form a urea bond. A polyurea resin is obtained. Here, when the polyfunctional isocyanate compound has a urethane bond, the resulting polyurea resin also has a urethane bond, and the polyurea resin produced at that point can also be referred to as a polyureaurethane resin. .
 また、前記乳化液が、前記ラジカル重合性ビニル化合物と、前記ラジカル重合開始剤とを含有する場合、前記重合処理においては、前記多官能イソシアネート化合物を重合させると同時に、前記ラジカル重合開始剤の存在下で前記ラジカル重合性ビニル化合物がラジカル重合を生じる。
 そのため、得られる前記多孔質粒子は、構成する樹脂として、ポリウレア樹脂とビニル樹脂とを含有する。
In the case where the emulsion contains the radical polymerizable vinyl compound and the radical polymerization initiator, in the polymerization treatment, the polyfunctional isocyanate compound is polymerized and at the same time, the presence of the radical polymerization initiator is present. Under the above, the radical polymerizable vinyl compound causes radical polymerization.
Therefore, the obtained porous particles contain a polyurea resin and a vinyl resin as constituent resins.
 前記重合処理における重合時間としては、特に制限はなく、目的に応じて適宜選択することができるが、1時間~30時間が好ましく、2時間~10時間がより好ましい。
 前記重合処理における重合温度としては、特に制限はなく、目的に応じて適宜選択することができるが、30℃~90℃が好ましく、50℃~80℃がより好ましい。
The polymerization time in the polymerization treatment is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 hour to 30 hours, and more preferably 2 hours to 10 hours.
The polymerization temperature in the polymerization treatment is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 30 ° C. to 90 ° C., more preferably 50 ° C. to 80 ° C.
--追加充填処理--
 前記追加充填処理としては、前記重合処理により得られた前記多孔質粒子にアルミニウムキレートを追加で充填する処理であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、アルミニウムキレートを有機溶剤に溶解して得られる溶液に、前記多孔質粒子を浸漬させた後に、前記溶液から前記有機溶剤を除去する方法などが挙げられる。
--- Additional filling process ---
The additional filling process is not particularly limited as long as it is a process of additionally filling the porous particles obtained by the polymerization process with an aluminum chelate, and can be appropriately selected according to the purpose. For example, aluminum Examples include a method of removing the organic solvent from the solution after the porous particles are immersed in a solution obtained by dissolving a chelate in an organic solvent.
 前記追加充填処理を行うことにより、前記多孔質粒子に保持されるアルミニウムキレートの量が増加する。なお、アルミニウムキレートが追加充填された前記多孔質粒子は、必要に応じてろ別し洗浄し乾燥した後、公知の解砕装置で一次粒子に解砕することができる。 The amount of aluminum chelate retained by the porous particles is increased by performing the additional filling process. The porous particles additionally filled with aluminum chelate can be crushed into primary particles by a known crushing apparatus after being filtered, washed and dried as necessary.
 前記追加充填処理において追加で充填されるアルミニウムキレートは、前記乳化液となる前記液に配合される前記アルミニウムキレートと同じであってもよいし、異なっていてもよい。例えば、前記追加充填処理においては水を使用しないため、前記追加充填処理に使用するアルミニウムキレートは、アルミニウムにアルコキシ基が結合したアルミニウムキレートであってもよい。そのようなアルミニウムキレートとしては、例えば、ジイソプロポキシアルミニウムモノオレイルアセトアセテート、モノイソプロポキシアルミニウムビス(オレイルアセトアセテート)、モノイソプロポキシアルミニウムモノオレエートモノエチルアセトアセテート、ジイソプロポキシアルミニウムモノラウリルアセトアセテート、ジイソプロポキシアルミニウムモノステアリルアセトアセテート、ジイソプロポキシアルミニウムモノイソステアリルアセトアセテート、モノイソプロポキシアルミニウムモノ-N-ラウロイル-β-アラネートモノラウリルアセトアセテートなどが挙げられる。 The aluminum chelate that is additionally filled in the additional filling process may be the same as or different from the aluminum chelate that is blended in the liquid to be the emulsion. For example, since water is not used in the additional filling process, the aluminum chelate used in the additional filling process may be an aluminum chelate in which an alkoxy group is bonded to aluminum. Examples of such aluminum chelates include diisopropoxy aluminum monooleyl acetoacetate, monoisopropoxy aluminum bis (oleyl acetoacetate), monoisopropoxy aluminum monooleate monoethyl acetoacetate, diisopropoxy aluminum monolauryl acetoacetate. And diisopropoxyaluminum monostearyl acetoacetate, diisopropoxyaluminum monoisostearyl acetoacetate, monoisopropoxyaluminum mono-N-lauroyl-β-alanate monolauryl acetoacetate and the like.
 前記有機溶剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記乳化液作製処理の説明において例示した前記有機溶剤などが挙げられる。好ましい態様も同じである。 The organic solvent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include the organic solvents exemplified in the description of the emulsion preparation process. The preferred embodiment is also the same.
 前記溶液から前記有機溶剤を除去する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記溶液を前記有機溶剤の沸点以上に加熱する方法、前記溶液を減圧させる方法などが挙げられる。 The method for removing the organic solvent from the solution is not particularly limited and may be appropriately selected depending on the intended purpose. For example, the method of heating the solution to the boiling point of the organic solvent or lowering the solution. The method etc. are mentioned.
 前記アルミニウムキレートを前記有機溶剤に溶解して得られる前記溶液における前記アルミニウムキレートの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、10質量%~80質量%が好ましく、10質量%~50質量%がより好ましい。 The content of the aluminum chelate in the solution obtained by dissolving the aluminum chelate in the organic solvent is not particularly limited and may be appropriately selected depending on the intended purpose, but is 10% by mass to 80% by mass. Preferably, 10% by mass to 50% by mass is more preferable.
-不活性化工程-
 前記不活性化工程としては、前記多孔質粒子の表面に、アルコキシシランカップリング剤の反応生成物を付与する工程であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、アルコキシシランカップリング剤と有機溶剤とを含有する溶液に前記多孔質粒子を浸漬し、前記アルコキシシランカップリング剤を反応させることにより行われることが好ましい。
-Inactivation process-
The deactivation step is not particularly limited as long as it is a step of providing a reaction product of an alkoxysilane coupling agent on the surface of the porous particles, and can be appropriately selected according to the purpose. The porous particles are preferably immersed in a solution containing an alkoxysilane coupling agent and an organic solvent and reacted with the alkoxysilane coupling agent.
 前記多孔質粒子は、その構造上、その内部だけでなく表面にもアルミニウムキレートが存在することになると思われる。しかし、界面重合の際に重合系内に存在する水により表面のアルミニウムキレートの多くが不活性化する。そのため、前記多孔質粒子は、前記不活性化工程を要さずに(即ち、その表面がアルコキシシランカップリング剤の反応生成物を有していなくても)、潜在性を獲得できる。
 ところが、エポキシ樹脂として高い反応性を有する脂環式エポキシ樹脂を使用する場合には、前記不活性化工程を経ていない潜在性硬化剤を用いる熱硬化型エポキシ樹脂組成物は経時的に大きく増粘する。そのことから、前記多孔質粒子の表面のアルミニウムキレートの一部は不活性化せず、活性を維持していると考えられる。
 そこで、前記多孔質粒子の表面に存在するアルミニウムキレートを、以下に説明するように、アルコキシシランカップリング剤で不活性化することが好ましい。
The porous particles are considered to have an aluminum chelate not only on the inside but also on the surface due to its structure. However, most of the surface aluminum chelate is inactivated by water present in the polymerization system during the interfacial polymerization. Therefore, the porous particles can acquire the potential without requiring the deactivation step (that is, even if the surface does not have a reaction product of an alkoxysilane coupling agent).
However, when an alicyclic epoxy resin having high reactivity is used as the epoxy resin, the thermosetting epoxy resin composition using the latent curing agent that has not undergone the inactivation step is greatly thickened over time. To do. Therefore, it is considered that a part of the aluminum chelate on the surface of the porous particle is not inactivated and maintains the activity.
Therefore, it is preferable to inactivate the aluminum chelate present on the surface of the porous particles with an alkoxysilane coupling agent as described below.
--アルコキシシランカップリング剤--
 前記アルコキシシランカップリング剤は、以下に説明するように二つのタイプに分類される。
--- Alkoxysilane coupling agent--
The alkoxysilane coupling agent is classified into two types as described below.
 第一のタイプは、前記多孔質粒子の表面の活性なアルミニウムキレートと反応してアルミニウムキレート-シラノール反応物を生成し、それによりアルミニウム原子に隣接する酸素の電子密度を小さくすること(言い換えれば、酸素に結合している水素の酸性度を低下させること、更に言い換えれば、酸素と水素との間の分極率を低下させること)で活性を低下させるタイプのシランカップリング剤である。このタイプのシランカップリング剤としては、電子供与性基がケイ素原子に結合したアルコキシシランカップリング剤、好ましくはアルキル基を有するアルキルアルコキシシランカップリング剤が挙げられる。具体的には、メチルトリメトキシシラン、n-プロピルトリメトキシシラン、ヘキシルトリメトキシシラン等が挙げられる。 The first type reacts with the active aluminum chelate on the surface of the porous particles to produce an aluminum chelate-silanol reactant, thereby reducing the electron density of oxygen adjacent to the aluminum atom (in other words, It is a type of silane coupling agent whose activity is lowered by lowering the acidity of hydrogen bonded to oxygen, in other words, lowering the polarizability between oxygen and hydrogen. Examples of this type of silane coupling agent include an alkoxysilane coupling agent having an electron donating group bonded to a silicon atom, preferably an alkylalkoxysilane coupling agent having an alkyl group. Specific examples include methyltrimethoxysilane, n-propyltrimethoxysilane, hexyltrimethoxysilane and the like.
 第二のタイプは、前記多孔質粒子の活性なアルミニウムキレートに、分子内のエポキシ基を反応させて生成したエポキシ重合鎖で表面を被覆して活性を低下させるタイプのシランカップリング剤である。このタイプのシランカップリング剤としては、エポキシシランカップリング剤が挙げられる。具体的には、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(KBM-303、信越化学工業(株))、3-グリシドキシプロピルトリメトキシシラン(KBM-403、信越化学工業(株))等が挙げられる。 The second type is a silane coupling agent of which the activity is lowered by covering the surface with an epoxy polymer chain generated by reacting the active aluminum chelate of the porous particles with an epoxy group in the molecule. An epoxy silane coupling agent is mentioned as this type of silane coupling agent. Specifically, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (KBM-303, Shin-Etsu Chemical Co., Ltd.), 3-glycidoxypropyltrimethoxysilane (KBM-403, Shin-Etsu Chemical ( Etc.).
--有機溶剤--
 前記有機溶剤としては、特に制限はなく、目的に応じて適宜選択することができるが、非極性溶剤が好ましい。前記非極性溶剤としては、例えば、炭化水素系溶剤が挙げられる。前記炭化水素系溶剤としては、例えば、トルエン、キシレン、シクロヘキサンなどが挙げられる。
--Organic solvent--
There is no restriction | limiting in particular as said organic solvent, Although it can select suitably according to the objective, A nonpolar solvent is preferable. Examples of the nonpolar solvent include hydrocarbon solvents. Examples of the hydrocarbon solvent include toluene, xylene, cyclohexane and the like.
 前記溶液における前記アルコキシシランカップリング剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、5質量%~80質量%が好ましい。 The content of the alkoxysilane coupling agent in the solution is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5% by mass to 80% by mass.
 前記不活性化工程における前記溶液の温度としては、特に制限はなく、目的に応じて適宜選択することができるが、前記多孔質粒子の凝集、並びに、前記多孔質粒子からの前記アルミニウムキレートの流出を防止する点で、10℃~80℃が好ましく、20℃~60℃がより好ましい。
 前記不活性化工程における浸漬の時間としては、特に制限はなく、目的に応じて適宜選択することができるが、1時間~48時間が好ましく、5時間~30時間がより好ましい。
The temperature of the solution in the inactivation step is not particularly limited and may be appropriately selected depending on the intended purpose. The aggregation of the porous particles and the outflow of the aluminum chelate from the porous particles 10 to 80 ° C is preferable, and 20 to 60 ° C is more preferable.
The immersion time in the inactivation step is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 hour to 48 hours, and more preferably 5 hours to 30 hours.
 前記不活性化工程においては、前記溶液を撹拌することが好ましい。 In the inactivation step, the solution is preferably stirred.
 前記不活性化工程を経て得られた前記潜在性硬化剤は、必要に応じてろ別し洗浄し乾燥した後、公知の解砕装置で一次粒子に解砕することができる。 The latent curing agent obtained through the inactivation step can be filtered, washed and dried as necessary, and then pulverized into primary particles by a known pulverizer.
<ホウ酸>
 前記ホウ酸(B(OH))は、前記潜在性硬化剤に保持されている前記アルミニウムキレートと共働して前記エポキシ樹脂のカチオン重合を開始させる機能を有する。
<Boric acid>
The boric acid (B (OH) 3 ) has a function of starting cationic polymerization of the epoxy resin in cooperation with the aluminum chelate held in the latent curing agent.
 前記熱硬化型エポキシ樹脂組成物における前記ホウ酸の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記潜在性硬化剤100質量部に対して、1質量部~500質量部が好ましく、30質量部~400質量部がより好ましく、50質量部~300質量部がより好ましい。 There is no restriction | limiting in particular as content of the said boric acid in the said thermosetting epoxy resin composition, Although it can select suitably according to the objective, 1 mass part with respect to 100 mass parts of the said latent hardeners. Is preferably 500 parts by mass, more preferably 30 parts by mass to 400 parts by mass, and more preferably 50 parts by mass to 300 parts by mass.
 前記熱硬化型エポキシ樹脂組成物を調製する際、前記ホウ酸を配合してもよいが、ホウ酸エステルを配合することが取り扱いの容易性の点で好ましい。前記ホウ酸エステルは、系中の水分と反応してホウ酸となる。結果、前記ホウ酸エステルを配合して前記熱硬化型エポキシ樹脂組成物を調製した際には、前記熱硬化型エポキシ樹脂組成物中には前記ホウ酸が存在している。 When preparing the thermosetting epoxy resin composition, the boric acid may be added, but it is preferable to add a boric acid ester in terms of ease of handling. The borate ester reacts with moisture in the system to become boric acid. As a result, when the thermosetting epoxy resin composition is prepared by blending the boric acid ester, the boric acid is present in the thermosetting epoxy resin composition.
 前記ホウ酸エステルとしては、例えば、下記一般式(X)で表される化合物が挙げられる。
 B(OR)  ・・・一般式(X)
 ただし、前記一般式(X)中、Rは、同一でも異なっていてもよく、炭素数1~6のアルキル基を表す。前記炭素数1~6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基などが挙げられる。
As said boric acid ester, the compound represented by the following general formula (X) is mentioned, for example.
B (OR) 3 ... General formula (X)
However, in the general formula (X), R may be the same or different and each represents an alkyl group having 1 to 6 carbon atoms. Examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a propyl group, and a butyl group.
 前記ホウ酸エステルを前記熱硬化型エポキシ樹脂組成物に配合する際の配合量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記潜在性硬化剤100質量部に対して、1質量部~500質量部が好ましく、30質量部~400質量部がより好ましい。 There is no restriction | limiting in particular as a compounding quantity at the time of mix | blending the said boric acid ester with the said thermosetting epoxy resin composition, Although it can select suitably according to the objective, With respect to 100 mass parts of said latent hardening agents. 1 to 500 parts by mass is preferable, and 30 to 400 parts by mass is more preferable.
<有機シラン化合物>
 前記有機シラン化合物は、特開2002-212537号公報の段落0007~0010に記載されているように、前記潜在性硬化剤に保持されている前記アルミニウムキレートと共働して前記エポキシ樹脂のカチオン重合を開始させる機能を有する。従って、このような、有機シラン化合物を併用することにより、エポキシ樹脂の硬化を促進するという効果が得られる。このような有機シラン化合物としては、高立体障害性のシラノール化合物や、分子中に1~3の低級アルコキシ基を有するシランカップリング剤等を挙げることができる。なお、シランカップリング剤の分子中に熱硬化性樹脂の官能基に対して反応性を有する基、例えば、ビニル基、スチリル基、アクリロイルオキシ基、メタクリロイルオキシ基、エポキシ基、アミノ基、メルカプト基等を有していてもよいが、アミノ基やメルカプト基を有するカップリング剤は、本発明の潜在性硬化剤がカチオン型硬化剤であるため、アミノ基やメルカプト基が発生カチオン種を実質的に捕捉しない場合に使用することができる。
<Organic Silane Compound>
As described in paragraphs 0007 to 0010 of JP-A No. 2002-212537, the organic silane compound cooperates with the aluminum chelate held in the latent curing agent to perform cationic polymerization of the epoxy resin. Has the function of starting. Therefore, the effect of accelerating the curing of the epoxy resin can be obtained by using such an organosilane compound in combination. Examples of such organic silane compounds include highly sterically hindered silanol compounds and silane coupling agents having 1 to 3 lower alkoxy groups in the molecule. In the silane coupling agent molecule, a group having reactivity to the functional group of the thermosetting resin, for example, vinyl group, styryl group, acryloyloxy group, methacryloyloxy group, epoxy group, amino group, mercapto group However, since the latent curing agent of the present invention is a cationic curing agent, the amino group or the mercapto group substantially generates the generated cationic species. Can be used when not captured.
 前記熱硬化型エポキシ樹脂組成物において、前記ホウ酸と前記有機シラン化合物とを併用することで、硬化開始温度(例えば、DSC測定における発熱開始温度)を低くすることができる。その理由を本発明者は以下のように考察している。
 アルミニウムキレートと有機シラン化合物とによる活性種形成の場合、二段階の反応が必要であるため、硬化速度が遅くなる場合がある。
 一方、アルミニウムキレートとホウ酸とによる活性種形成の場合、配位子交換反応が生じ、それによって生成した錯体の水酸基の酸素原子上の非共有電子対がAl原子に配位することにより、水素原子の酸強度がアップし、活性種として作用することとなる。この反応の場合、活性種形成は一段階の反応となるため、活性化温度の低温化が期待できる。しかし、形成される活性種の酸強度の絶対値としては、有機シラン化合物が形成するブレンステッド酸よりは低くなる。
 そのため、ホウ酸と有機シラン化合物とを併用することで、両方の利点が表出し、硬化開始温度(例えば、DSC測定における発熱開始温度)を低くすることができるものと考えられる。
In the thermosetting epoxy resin composition, the curing start temperature (for example, the heat generation start temperature in DSC measurement) can be lowered by using the boric acid and the organosilane compound in combination. The inventor considers the reason as follows.
In the case of active species formation using an aluminum chelate and an organosilane compound, a two-step reaction is required, and thus the curing rate may be slow.
On the other hand, in the case of active species formation by an aluminum chelate and boric acid, a ligand exchange reaction occurs, and an unshared electron pair on the oxygen atom of the hydroxyl group of the complex formed thereby coordinates with an Al atom, thereby generating hydrogen. The acid strength of the atoms increases, and it acts as an active species. In the case of this reaction, the formation of active species is a one-step reaction, so that the activation temperature can be lowered. However, the absolute value of the acid strength of the active species formed is lower than the Bronsted acid formed by the organosilane compound.
Therefore, it is considered that by using boric acid and the organosilane compound in combination, the advantages of both can be revealed and the curing start temperature (for example, the heat generation start temperature in DSC measurement) can be lowered.
 高立体障害性のシラノール化合物は、トリアルコキシ基を有している従来のシランカップリング剤とは異なり、アリール基を有するアリールシラノール化合物である。 The highly sterically hindered silanol compound is an aryl silanol compound having an aryl group, unlike a conventional silane coupling agent having a trialkoxy group.
<<アリールシラノール化合物>>
 前記アリールシラノール化合物は、例えば、下記一般式(A)で表される。
Figure JPOXMLDOC01-appb-C000006
 ただし、前記一般式(A)中、mは2又は3、好ましくは3であり、但しmとnとの和は4である。Arは、置換基を有していてもよいアリール基である。
 前記一般式(A)で表されるアリールシラノール化合物は、モノオール体又はジオール体である。
<< Arylsilanol compound >>
The arylsilanol compound is represented, for example, by the following general formula (A).
Figure JPOXMLDOC01-appb-C000006
However, in the said general formula (A), m is 2 or 3, Preferably 3, However, The sum of m and n is 4. Ar is an aryl group which may have a substituent.
The arylsilanol compound represented by the general formula (A) is a monool or diol.
 前記一般式(A)におけるArは、置換基を有していてもよいアリール基である。
 前記アリール基としては、例えば、フェニル基、ナフチル基(例えば、1-ナフチル基、2-ナフチル基等)、アントラセニル基(例えば、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、ベンズ[a]-9-アントラセニル基等)、フェナリル基(例えば、3-フェナリル基、9-フェナリル基等)、ピレニル基(例えば、1-ピレニル基等)、アズレニル基、フロオレニル基、ビフェニル基(例えば、2-ビフェニル基、3-ビフェニル基、4-ビフェニル基等)、チエニル基、フリル基、ピロリル基、イミダゾリル基、ピリジル基などが挙げられる。これらの中でも、入手容易性、入手コストの観点からフェニル基が好ましい。m個のArは、いずれも同一でもよく異なっていてもよいが、入手容易性の点から同一であることが好ましい。
Ar in the general formula (A) is an aryl group which may have a substituent.
Examples of the aryl group include a phenyl group, a naphthyl group (eg, 1-naphthyl group, 2-naphthyl group, etc.), anthracenyl group (eg, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, benz [ a] -9-anthracenyl group, etc.), phenaryl group (eg, 3-phenaryl group, 9-phenaryl group, etc.), pyrenyl group (eg, 1-pyrenyl group, etc.), azulenyl group, fluorenyl group, biphenyl group (eg, 2-biphenyl group, 3-biphenyl group, 4-biphenyl group, etc.), thienyl group, furyl group, pyrrolyl group, imidazolyl group, pyridyl group and the like. Among these, a phenyl group is preferable from the viewpoint of availability and cost. The m Ars may be the same or different, but are preferably the same from the viewpoint of availability.
 これらのアリール基は、例えば、1~3個の置換基を有することができる。
 前記置換基としては、例えば、電子吸引基、電子供与基などが挙げられる。
 前記電子吸引基としては、例えば、ハロゲン基(例えば、クロロ基、ブロモ基等)、トリフルオロメチル基、ニトロ基、スルホ基、カルボキシル基、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基等)、ホルミル基などが挙げられる。
 前記電子供与基としては、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基等)、ヒドロキシ基、アミノ基、モノアルキルアミノ基(例えば、モノメチルアミノ基等)、ジアルキルアミノ基(例えば、ジメチルアミノ基等)などが挙げられる。
These aryl groups can have, for example, 1 to 3 substituents.
Examples of the substituent include an electron withdrawing group and an electron donating group.
Examples of the electron withdrawing group include a halogen group (eg, chloro group, bromo group), trifluoromethyl group, nitro group, sulfo group, carboxyl group, alkoxycarbonyl group (eg, methoxycarbonyl group, ethoxycarbonyl group, etc.). ), Formyl group and the like.
Examples of the electron donating group include an alkyl group (for example, methyl group, ethyl group, propyl group, etc.), an alkoxy group (for example, methoxy group, ethoxy group, etc.), a hydroxy group, an amino group, a monoalkylamino group (for example, , Monomethylamino group and the like), dialkylamino group (for example, dimethylamino group and the like) and the like.
 置換基を有するフェニル基の具体例としては、例えば、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2,6-ジメチルフェニル基、3,5-ジメチルフェニル基、2,4-ジメチルフェニル基、2,3-ジメチルフェニル基、2,5-ジメチルフェニル基、3,4-ジメチルフェニル基、2,4,6-トリメチルフェニル基、2-エチルフェニル基、4-エチルフェニル基などが挙げられる。 Specific examples of the phenyl group having a substituent include, for example, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2,6-dimethylphenyl group, 3,5-dimethylphenyl group, 2, 4-dimethylphenyl group, 2,3-dimethylphenyl group, 2,5-dimethylphenyl group, 3,4-dimethylphenyl group, 2,4,6-trimethylphenyl group, 2-ethylphenyl group, 4-ethylphenyl Group and the like.
 なお、置換基として電子吸引基を使用することにより、シラノール基の水酸基の酸度を上げることができる。置換基として電子供与基を使用することにより、シラノール基の水酸基の酸度を下げることができる。そのため、置換基により、硬化活性のコントロールが可能となる。
 ここで、m個のAr毎に、置換基が異なっていてもよいが、m個のArについて入手容易性の点から置換基は同一であることが好ましい。また、一部のArだけに置換基があり、他のArに置換基が無くてもよい。
In addition, the acidity of the hydroxyl group of a silanol group can be raised by using an electron withdrawing group as a substituent. By using an electron donating group as a substituent, the acidity of the hydroxyl group of the silanol group can be lowered. Therefore, the curing activity can be controlled by the substituent.
Here, the substituents may be different for each of the m Ars, but the substituents are preferably the same for the m Ars from the viewpoint of availability. Further, only some Ar may have a substituent, and other Ar may not have a substituent.
 これらのなかでも、トリフェニルシラノール、ジフェニルシランジオールが好ましく、トリフェニルシラノールが特に好ましい。 Of these, triphenylsilanol and diphenylsilanediol are preferable, and triphenylsilanol is particularly preferable.
<<シランカップリング剤>>
 前記シランカップリング剤としては、分子中に1~3の低級アルコキシ基を有するものであり、分子中に熱硬化性樹脂の官能基に対して反応性を有する基、例えば、ビニル基、スチリル基、アクリロイルオキシ基、メタクリロイルオキシ基、エポキシ基、アミノ基、メルカプト基等を有していてもよい。なお、アミノ基やメルカプト基を有するカップリング剤は、本発明において使用する潜在性硬化剤がカチオン型硬化剤であるため、アミノ基やメルカプト基が発生カチオン種を実質的に捕捉しない場合に使用することができる。
<< Silane coupling agent >>
The silane coupling agent has 1 to 3 lower alkoxy groups in the molecule, and a group having reactivity in the molecule with respect to the functional group of the thermosetting resin, such as a vinyl group or a styryl group. , May have an acryloyloxy group, a methacryloyloxy group, an epoxy group, an amino group, a mercapto group, and the like. The coupling agent having an amino group or a mercapto group is used when the latent curing agent used in the present invention is a cationic curing agent, so that the amino group or mercapto group does not substantially trap the generated cationic species. can do.
 前記シランカップリング剤としては、例えば、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、γ-スチリルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-アクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシランなどが挙げられる。 Examples of the silane coupling agent include vinyltris (β-methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, γ-styryltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, and γ-acryloxypropyl. Trimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, N-β- (aminoethyl) -γ -Aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxy Shi And γ-chloropropyltrimethoxysilane.
 前記熱硬化型エポキシ樹脂組成物における前記有機シラン化合物の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記潜在性硬化剤100質量部に対して、1質量部~300質量部が好ましく、1質量部~100質量部がより好ましい。 There is no restriction | limiting in particular as content of the said organosilane compound in the said thermosetting epoxy resin composition, Although it can select suitably according to the objective, 1 mass with respect to 100 mass parts of said latent hardening agents. Part to 300 parts by weight is preferable, and 1 part to 100 parts by weight is more preferable.
 前記ホウ酸が、前記熱硬化型エポキシ樹脂組成物を調製する際のホウ酸エステルに由来する場合、前記熱硬化型エポキシ樹脂組成物を調製する際の、前記有機シラン化合物の配合量と、前記ホウ酸エステルの配合量との質量比率(有機シラン化合物:ホウ酸エステル)としては、特に制限はなく、目的に応じて適宜選択することができるが、1:3~3:1であることが好ましく、1:2~2:1であることがより好ましい。 When the boric acid is derived from a borate ester when preparing the thermosetting epoxy resin composition, the amount of the organosilane compound used when preparing the thermosetting epoxy resin composition, The mass ratio with respect to the amount of borate ester (organosilane compound: borate ester) is not particularly limited and may be appropriately selected depending on the intended purpose, but is 1: 3 to 3: 1. A ratio of 1: 2 to 2: 1 is more preferable.
<その他の成分>
 前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、オキセタン化合物、充填剤、顔料、帯電防止剤などが挙げられる。
<Other ingredients>
There is no restriction | limiting in particular as said other component, According to the objective, it can select suitably, For example, an oxetane compound, a filler, a pigment, an antistatic agent etc. are mentioned.
<<オキセタン化合物>>
 前記熱硬化型エポキシ樹脂組成物において、前記エポキシ樹脂に前記オキセタン化合物を併用することで、発熱ピークをシャープにすることができる。
 前記オキセタン化合物としては、例えば、3-エチル-3-ヒドロキシメチルオキセタン、1,4-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン、4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル、1,4-ベンゼンジカルボン酸 ビス[(3-エチル-3-オキセタニル)]メチルエステル、3-エチル-3-(フェノキシメチル)オキセタン、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン、ジ[1-エチル(3-オキセタニル)]メチルエーテル、3-エチル-3-{[3-(トリエトキシシリル)プロポキシ]メチル}オキセタン、オキセタニルシルセスキオキサン、フェノールノボラックオキセタンなどが挙げられる。
<< Oxetane compound >>
In the thermosetting epoxy resin composition, the exothermic peak can be sharpened by using the oxetane compound in combination with the epoxy resin.
Examples of the oxetane compound include 3-ethyl-3-hydroxymethyloxetane, 1,4-bis {[(3-ethyl-3-oxetanyl) methoxy] methyl} benzene, 4,4′-bis [(3- Ethyl-3-oxetanyl) methoxymethyl] biphenyl, 1,4-benzenedicarboxylic acid bis [(3-ethyl-3-oxetanyl)] methyl ester, 3-ethyl-3- (phenoxymethyl) oxetane, 3-ethyl-3 -(2-ethylhexyloxymethyl) oxetane, di [1-ethyl (3-oxetanyl)] methyl ether, 3-ethyl-3-{[3- (triethoxysilyl) propoxy] methyl} oxetane, oxetanylsilsesquioxy Sun, phenol novolac oxetane and the like.
 前記熱硬化型エポキシ樹脂組成物における前記オキセタン化合物の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記エポキシ樹脂100質量部に対して、10質量部~100質量部が好ましく、20質量部~70質量部がより好ましい。 The content of the oxetane compound in the thermosetting epoxy resin composition is not particularly limited and may be appropriately selected depending on the intended purpose. It is 10 to 100 parts by mass with respect to 100 parts by mass of the epoxy resin. Part by mass is preferable, and 20 to 70 parts by mass is more preferable.
(熱硬化型エポキシ樹脂組成物の製造方法)
 本発明の熱硬化型エポキシ樹脂組成物の製造方法は、前記エポキシ樹脂と、前記潜在性硬化剤と、ホウ酸エステルとを混合する混合工程を少なくとも含み、更に必要に応じて、その他の工程を含む。
(Method for producing thermosetting epoxy resin composition)
The method for producing the thermosetting epoxy resin composition of the present invention includes at least a mixing step of mixing the epoxy resin, the latent curing agent, and a boric acid ester, and further includes other steps as necessary. Including.
 前記エポキシ樹脂としては、例えば、本発明の前記熱硬化型エポキシ樹脂組成物の説明において例示した前記エポキシ樹脂が挙げられる。
 前記潜在性硬化剤としては、例えば、本発明の前記熱硬化型エポキシ樹脂組成物の説明において例示した前記潜在性硬化剤が挙げられる。
 前記ホウ酸エステルとしては、例えば、本発明の前記熱硬化型エポキシ樹脂組成物の説明において例示した前記ホウ酸エステルが挙げられる。
Examples of the epoxy resin include the epoxy resin exemplified in the description of the thermosetting epoxy resin composition of the present invention.
Examples of the latent curing agent include the latent curing agent exemplified in the description of the thermosetting epoxy resin composition of the present invention.
Examples of the boric acid ester include the boric acid esters exemplified in the description of the thermosetting epoxy resin composition of the present invention.
 前記混合工程における混合方法としては、特に制限はなく、目的に応じて適宜選択することができる。 The mixing method in the mixing step is not particularly limited and can be appropriately selected depending on the purpose.
 前記混合工程においては、更に有機シラン化合物を混合することが好ましい。
 前記有機シラン化合物としては、例えば、本発明の前記熱硬化型エポキシ樹脂組成物の説明において例示した前記有機シラン化合物が挙げられる。
 前記混合工程における、前記有機シラン化合物と、前記ホウ酸エステルとの質量比率(有機シラン化合物:ホウ酸エステル)は、1:3~3:1であることが好ましく、1:2~2:1であることがより好ましい。
In the mixing step, it is preferable to further mix an organosilane compound.
As said organosilane compound, the said organosilane compound illustrated in description of the said thermosetting epoxy resin composition of this invention is mentioned, for example.
In the mixing step, the mass ratio of the organosilane compound to the borate ester (organosilane compound: borate ester) is preferably 1: 3 to 3: 1, and 1: 2 to 2: 1. It is more preferable that
 本発明の熱硬化型エポキシ樹脂組成物は、保存時の粘度上昇に悪影響を与えずに、低温硬化性を向上できるため、配合後の可使時間(ポットライフ)を長くできるとともに、使用時の粘度調整の負担を軽減できる。 Since the thermosetting epoxy resin composition of the present invention can improve low-temperature curability without adversely affecting the viscosity increase during storage, the pot life after blending can be extended, and the The burden of viscosity adjustment can be reduced.
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
(製造例1)
<潜在性硬化剤の製造>
<<多孔質粒子作製工程>>
--水相の調製--
 蒸留水800質量部と、界面活性剤(ニューレックスR-T、日本油脂(株))0.05質量部と、分散剤としてポリビニルアルコール(PVA-205、(株)クラレ)4質量部とを、温度計を備えた3リットルの界面重合容器に入れ、均一に混合し水相を調製した。
(Production Example 1)
<Manufacture of latent curing agent>
<< Porous particle production process >>
-Preparation of aqueous phase-
800 parts by weight of distilled water, 0.05 part by weight of a surfactant (Newlex RT, Nippon Oil & Fats Co., Ltd.), and 4 parts by weight of polyvinyl alcohol (PVA-205, Kuraray Co., Ltd.) as a dispersant. Into a 3 liter interfacial polymerization vessel equipped with a thermometer, the mixture was uniformly mixed to prepare an aqueous phase.
-油相の調製-
 次に、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)の24質量%イソプロパノール溶液(アルミキレートD、川研ファインケミカル(株))350質量部と、メチレンジフェニル-4,4’-ジイソシアネート(3モル)のトリメチロールプロパン(1モル)付加物(多官能イソシアネート化合物、D-109、三井化学(株))49質量部と、ラジカル重合性ビニル化合物としてジビニルベンゼン(メルク(株))21質量部と、ラジカル重合開始剤(パーロイルL、日油(株))0.21質量部とを、酢酸エチル70質量部に溶解し、油相を得た。
-Preparation of oil phase-
Next, 350 parts by mass of a 24 mass% isopropanol solution of aluminum monoacetylacetonate bis (ethyl acetoacetate) (Aluminum Chelate D, Kawaken Fine Chemical Co., Ltd.) and methylene diphenyl-4,4′-diisocyanate (3 mol) 49 parts by mass of a trimethylolpropane (1 mol) adduct (polyfunctional isocyanate compound, D-109, Mitsui Chemicals, Inc.) and 21 parts by mass of divinylbenzene (Merck) as a radical polymerizable vinyl compound, A radical polymerization initiator (Perroyl L, NOF Corporation) 0.21 part by mass was dissolved in 70 parts by mass of ethyl acetate to obtain an oil phase.
-乳化-
 調製した前記油相を、先に調製した前記水相に投入し、ホモジナイザー(10000rpm/5分:T-50、IKAジャパン(株))で混合、乳化し、乳化液を得た。
-Emulsification-
The prepared oil phase was put into the previously prepared aqueous phase and mixed and emulsified with a homogenizer (10000 rpm / 5 min: T-50, IKA Japan Co., Ltd.) to obtain an emulsion.
-重合-
 調製した乳化液を、80℃で6時間、200rpmで撹拌しながら重合を行った。反応終了後、重合反応液を室温まで放冷し、生成した重合樹脂粒子をろ過によりろ別し、自然乾燥することにより、塊状の硬化剤を得た。この塊状の硬化剤を、解砕装置(A-Oジェットミル、(株)セイシン企業)を用いて一次粒子に解砕することにより、粒子状硬化剤を得た。
-polymerization-
The prepared emulsion was polymerized while stirring at 200 rpm at 80 ° C. for 6 hours. After completion of the reaction, the polymerization reaction liquid was allowed to cool to room temperature, and the produced polymer resin particles were filtered off by filtration and dried naturally to obtain a bulky curing agent. This bulk curing agent was pulverized into primary particles using a pulverizer (AO jet mill, Seishin Corporation) to obtain a particulate curing agent.
-追加充填処理-
 得られた粒子状硬化剤を、アルミニウムモノアセチルアセトビス(エチルアセトアセテート)の24質量%イソプロパノール溶液(アルミキレートD、川研ファインケミカル(株))40質量部と、エタノール60質量部とからなる含浸液に投入し、30℃で6時間撹拌した後、粒子状の硬化剤をろ別し、自然乾燥させることにより、アルミニウムキレートが追加充填された粒子状硬化剤(多孔質粒子)を得た。
-Additional filling process-
The obtained particulate curing agent was impregnated with 40 parts by mass of a 24% by mass isopropanol solution of aluminum monoacetylacetobis (ethyl acetoacetate) (aluminum chelate D, Kawaken Fine Chemical Co., Ltd.) and 60 parts by mass of ethanol. After putting into the liquid and stirring at 30 ° C. for 6 hours, the particulate curing agent was filtered off and dried naturally to obtain a particulate curing agent (porous particles) additionally filled with aluminum chelate.
<<不活性化工程>>
 前記多孔質粒子作製工程で得られた前記多孔質粒子3質量部を、溶液〔シクロヘキサン24質量部に、n-プロピルトリメトキシシラン(KBM-3033、信越化学工業(株))6質量部を溶解した溶液〕30質量部中に投入し、30℃で20時間、200rpmで撹拌し、前記多孔質粒子の表面の不活性化を行った。不活性化終了後、処理液から前記多孔質粒子をろ過によりろ別し、自然乾燥することにより、潜在性硬化剤を得た。
<< Inactivation process >>
3 parts by mass of the porous particles obtained in the porous particle production step were dissolved in 6 parts by mass of a solution [cyclohexane 24 parts by mass, n-propyltrimethoxysilane (KBM-3033, Shin-Etsu Chemical Co., Ltd.)]. The solution was put into 30 parts by mass and stirred at 30 ° C. for 20 hours at 200 rpm to inactivate the surface of the porous particles. After the inactivation was completed, the porous particles were filtered off from the treatment liquid by filtration and naturally dried to obtain a latent curing agent.
(実施例1)
<熱硬化型エポキシ樹脂組成物の調製>
-材料-
 ・脂環式エポキシ樹脂(CEL2021P、(株)ダイセル) 100質量部
 ・トリフェニルシラノール(東京化成工業(株))        2質量部
 ・ホウ酸トリブチル(東京化成工業(株))           1質量部
 ・製造例1で作製した潜在性硬化剤               1質量部
Example 1
<Preparation of thermosetting epoxy resin composition>
-material-
-Alicyclic epoxy resin (CEL2021P, Daicel Corporation) 100 parts by mass-Triphenylsilanol (Tokyo Chemical Industry Co., Ltd.) 2 parts by mass-Tributyl borate (Tokyo Chemical Industry Co., Ltd.) 1 part by mass-Production Example 1 part of latent curing agent prepared in 1
 上記材料を用いて、以下の方法で熱硬化型エポキシ樹脂組成物の調製を行った。
 CEL2021Pにトリフェニルシラノールを配合後、80℃で4時間加熱することで、トリフェニルシラノールの溶解を行った。続いて、得られた液を放冷した後、その他材料を配合し、あわとり練太郎(AR-250:(株)シンキー)で2000rpmで1分間撹拌することで、熱硬化型エポキシ樹脂組成物を得た。
Using the above materials, a thermosetting epoxy resin composition was prepared by the following method.
After mixing triphenylsilanol with CEL2021P, the triphenylsilanol was dissolved by heating at 80 ° C. for 4 hours. Subsequently, after the resulting liquid was allowed to cool, other ingredients were blended, and the mixture was stirred at 2000 rpm for 1 minute with Awatori Netaro (AR-250: Sinky Co., Ltd.), thereby thermosetting epoxy resin composition. Got.
 脂環式エポキシ樹脂(CEL2021P)の構造は以下のとおりである。
Figure JPOXMLDOC01-appb-C000007
The structure of the alicyclic epoxy resin (CEL2021P) is as follows.
Figure JPOXMLDOC01-appb-C000007
(実施例2~実施例9、比較例1~比較例2)
<熱硬化型エポキシ樹脂組成物の調製>
 実施例1において、トリフェニルシラノール、KBM-403(信越化学工業(株)、3-グリシドキシプロピルトリメトキシシラン)、及びホウ酸トリブチルの配合量を以下の表1に示す配合量に変更した以外は、実施例1と同様にして、熱硬化型エポキシ樹脂組成物を得た。
(Example 2 to Example 9, Comparative Example 1 to Comparative Example 2)
<Preparation of thermosetting epoxy resin composition>
In Example 1, the blending amounts of triphenylsilanol, KBM-403 (Shin-Etsu Chemical Co., Ltd., 3-glycidoxypropyltrimethoxysilane), and tributyl borate were changed to the blending amounts shown in Table 1 below. Except for this, a thermosetting epoxy resin composition was obtained in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
(実施例10)
<熱硬化型エポキシ樹脂組成物の調製>
 実施例2において、ホウ酸トリブチルをホウ酸トリメチルに変更した以外は、実施例2と同様にして、熱硬化型エポキシ樹脂組成物を得た。
(Example 10)
<Preparation of thermosetting epoxy resin composition>
In Example 2, a thermosetting epoxy resin composition was obtained in the same manner as in Example 2 except that tributyl borate was changed to trimethyl borate.
(実施例11)
<熱硬化型エポキシ樹脂組成物の調製>
 実施例2において、トリフェニルシラノールを4-TFMシラノールに変更した以外は、実施例2と同様にして、熱硬化型エポキシ樹脂組成物を得た。
(Example 11)
<Preparation of thermosetting epoxy resin composition>
A thermosetting epoxy resin composition was obtained in the same manner as in Example 2 except that triphenylsilanol was changed to 4-TFM silanol in Example 2.
 4-TFMシラノールは、トリス(4-トリフルオロメチルフェニル)シラノールであり、下記構造式で表される。
Figure JPOXMLDOC01-appb-C000009
4-TFM silanol is tris (4-trifluoromethylphenyl) silanol and is represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000009
 4-TFMシラノールは、例えば、以下の公知文献に従って合成できる。
 Shuzi Hayase, Yasunobu Onishi, Shuichi Suzuki, Moriyasu Wada. Photopolymerization of Cyclohexene Oxide by Use of o-Nitrobenzyl Triphenylsilyl Ether / Aluminum Compound Catalyst. Dependence of Catalyst Activity on the Structure of the Silyl Ether. Journal of polymer Science: Part A: Polymer Chemistry 25, pp.753-763, 1987
4-TFM silanol can be synthesized, for example, according to the following known literature.
Shuzi Hayase, Yasunobu Onishi, Shuichi Suzuki, Moriyasu Wada. Photopolymerization of Cyclohexene Oxide by Use of Nitrobenzyl Triphenylsilyl Ether / Aluminum Compound Catalyst. Dependence of Catalyst Activity on the Structure of the Silyl Ether. Journal of Polymer Science: Part A: Polymer Chemistry 25, pp. 753-763, 1987
(DSC測定)
 実施例1~11、及び比較例1~2で得られた熱硬化型エポキシ樹脂組成物について、DSC測定を行った。
 以下の測定条件で、DSC測定を行った。結果を表2~表5、図1~図4に示す。
-測定条件-
 ・測定装置:示差熱分析装置(DSC6200、(株)日立ハイテクサイエンス)
 ・評価量:5mg
 ・昇温速度10℃/1min
(DSC measurement)
DSC measurement was performed on the thermosetting epoxy resin compositions obtained in Examples 1 to 11 and Comparative Examples 1 and 2.
DSC measurement was performed under the following measurement conditions. The results are shown in Tables 2 to 5 and FIGS.
-Measurement condition-
・ Measuring device: Differential thermal analyzer (DSC6200, Hitachi High-Tech Science Co., Ltd.)
・ Evaluation amount: 5mg
・ Temperature increase rate 10 ℃ / 1min
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 DSCの結果から、トリフェニルシラノールをホウ酸エステルに置き換えた場合、発熱開始温度が低温化していることがわかる。また、トリフェニルシラノールよりもホウ酸トリブチル配合量を大きくした実施例2の配合に関しては、発熱開始温度の低温化と共に発熱ピーク温度の低温化も見られた。しかしながら、トリフェニルシラノールをホウ酸トリブチルに完全に置き換えた実施例3の配合の場合は、DSCチャートの高温シフトが見られた為、トリフェニルシラノールの一部をホウ酸トリブチルに置き換える配合が硬化開始を低温化する上で有効であることがわかる。 From the DSC results, it can be seen that when triphenylsilanol is replaced with borate ester, the heat generation start temperature is lowered. Further, regarding the blending of Example 2 in which the tributyl borate blending amount was larger than that of triphenylsilanol, the exothermic peak temperature was lowered as well as the exothermic start temperature was lowered. However, in the case of the formulation of Example 3 in which triphenylsilanol was completely replaced with tributyl borate, a high temperature shift of the DSC chart was observed, so that the formulation in which a part of triphenylsilanol was replaced with tributyl borate started curing. It can be seen that it is effective in lowering the temperature.
 シランカップリング剤の系においても同様に、ホウ酸エステルへ一部置き換えると、発熱開始温度が低温化していることがわかる。実施例4の場合は約9℃、実施例5の場合は約13℃も発熱開始温度が低温化した。 Similarly, in the silane coupling agent system, it can be seen that the heat generation start temperature is lowered by partial replacement with borate ester. In the case of Example 4, the heat generation start temperature was lowered by about 9 ° C. and in the case of Example 5 by about 13 ° C.
(保存時の粘度変化)
 実施例2、実施例5、及び比較例1の熱硬化型エポキシ樹脂組成物の粘度変化を測定した。
(Viscosity change during storage)
The viscosity change of the thermosetting epoxy resin composition of Example 2, Example 5, and Comparative Example 1 was measured.
<測定方法>
 以下の測定条件で、粘度測定を行った。結果を表6に示す。
-測定条件-
 ・測定装置:SV-10(振動式粘度計(株)エーアンド・デイ)
 ・エージング温度:室温(25℃)
 ・粘度測定温度:20℃
<Measurement method>
Viscosity was measured under the following measurement conditions. The results are shown in Table 6.
-Measurement condition-
・ Measurement device: SV-10 (vibrating viscometer A & D)
・ Aging temperature: Room temperature (25 ℃)
・ Viscosity measurement temperature: 20 ℃
Figure JPOXMLDOC01-appb-T000014
 表6中、「H」は時間を表す。即ち、1Hは1時間を表す。そのため、例えば、「1H粘度」とは、1時間後の粘度を意味する。
Figure JPOXMLDOC01-appb-T000014
In Table 6, “H” represents time. That is, 1H represents 1 hour. Therefore, for example, “1H viscosity” means the viscosity after 1 hour.
 実施例2と5は、DSC発熱開始温度が低温化(約55℃と61℃)しているにもかかわらず、カチオン重合性に優れる脂環式エポキシ樹脂中で良好な液ライフを示した。いずれも室温保管48H後の粘度倍率は、初期比1.7倍程度であり、比較例1と対比しても劣るものではなかった。特に硬化助剤としてシランカップリング剤(KBM-403)を用いた場合、6H後の粘度増加率は初期比5%以内であった。 Examples 2 and 5 showed good liquid life in an alicyclic epoxy resin excellent in cationic polymerizability even though the DSC exotherm starting temperature was lowered (about 55 ° C. and 61 ° C.). In any case, the viscosity ratio after storage at room temperature 48H was about 1.7 times the initial ratio, and was not inferior to Comparative Example 1. In particular, when a silane coupling agent (KBM-403) was used as a curing aid, the rate of increase in viscosity after 6H was within 5% of the initial ratio.
 以上、アルミニウムキレート-有機シラン化合物(アリールシラノール、シランカップリング剤)硬化系において、有機シラン化合物の一部をホウ酸エステルに置き換えた硬化系は有機シラン化合物のみを用いた硬化系と比べて硬化開始温度を低温化することが可能である。また、アルキルアルコキシシランで表面処理された、高潜在性を示す潜在性硬化剤を用いることで、低温活性化と共に室温下で良好な液ライフを示す熱硬化型エポキシ樹脂組成物を調製することが可能となる。 As described above, in an aluminum chelate-organosilane compound (arylsilanol, silane coupling agent) curing system, a curing system in which a part of the organosilane compound is replaced with a boric acid ester is cured compared to a curing system using only the organosilane compound. It is possible to lower the starting temperature. In addition, by using a latent curing agent having a high potential, which is surface-treated with an alkylalkoxysilane, a thermosetting epoxy resin composition exhibiting a good liquid life at room temperature as well as low temperature activation can be prepared. It becomes possible.
 本発明の熱硬化型エポキシ樹脂組成物は、保存時の粘度上昇を抑制しつつ、優れた低温硬化性を有するため、例えば、低温短時間接続用のエポキシ系接着剤として好適に用いることができる。

 
Since the thermosetting epoxy resin composition of the present invention has excellent low-temperature curability while suppressing an increase in viscosity during storage, it can be suitably used as, for example, an epoxy-based adhesive for low-temperature and short-time connection. .

Claims (11)

  1.  エポキシ樹脂と、
     ポリウレア樹脂で構成され、アルミニウムキレートを保持する多孔質粒子である潜在性硬化剤と、
     ホウ酸と
    を含有することを特徴とする熱硬化型エポキシ樹脂組成物。
    Epoxy resin,
    A latent curing agent composed of polyurea resin and porous particles holding aluminum chelate;
    A thermosetting epoxy resin composition comprising boric acid.
  2.  更に、有機シラン化合物を含有する請求項1に記載の熱硬化型エポキシ樹脂組成物。 The thermosetting epoxy resin composition according to claim 1, further comprising an organosilane compound.
  3.  前記有機シラン化合物が、アリールシラノール化合物及びシランカップリング剤の少なくともいずれかを含有する請求項2に記載の熱硬化型エポキシ樹脂組成物。 The thermosetting epoxy resin composition according to claim 2, wherein the organic silane compound contains at least one of an arylsilanol compound and a silane coupling agent.
  4.  前記ホウ酸が、前記熱硬化型エポキシ樹脂組成物を調製する際のホウ酸エステルに由来し、
     前記熱硬化型エポキシ樹脂組成物を調製する際の、前記有機シラン化合物の配合量と、前記ホウ酸エステルの配合量との質量比率(有機シラン化合物:ホウ酸エステル)が、1:3~3:1である請求項2から3のいずれかに記載の熱硬化型エポキシ樹脂組成物。
    The boric acid is derived from a boric acid ester in preparing the thermosetting epoxy resin composition,
    When preparing the thermosetting epoxy resin composition, the mass ratio of the organosilane compound to the borate ester (organosilane compound: borate ester) is 1: 3 to 3 The thermosetting epoxy resin composition according to claim 2, wherein the thermosetting epoxy resin composition is 1.
  5.  前記エポキシ樹脂が、脂環式エポキシ樹脂を含有する請求項1から4のいずれかに記載の熱硬化型エポキシ樹脂組成物。 The thermosetting epoxy resin composition according to any one of claims 1 to 4, wherein the epoxy resin contains an alicyclic epoxy resin.
  6.  前記脂環式エポキシ樹脂が、下記構造式で表される化合物の少なくともいずれかを含有する請求項5に記載の熱硬化型エポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    The thermosetting epoxy resin composition according to claim 5, wherein the alicyclic epoxy resin contains at least one of compounds represented by the following structural formulas.
    Figure JPOXMLDOC01-appb-C000001
  7.  前記多孔質粒子が、更にビニル樹脂を構成成分として有する請求項1から6のいずれかに記載の熱硬化型エポキシ樹脂組成物。 The thermosetting epoxy resin composition according to any one of claims 1 to 6, wherein the porous particles further contain a vinyl resin as a constituent component.
  8.  前記多孔質粒子の表面が、アルコキシシランカップリング剤の反応生成物を有する請求項1から7のいずれかに記載の熱硬化型エポキシ樹脂組成物。 The thermosetting epoxy resin composition according to any one of claims 1 to 7, wherein the surface of the porous particles has a reaction product of an alkoxysilane coupling agent.
  9.  請求項1から8のいずれかに記載の熱硬化型エポキシ樹脂組成物の製造方法であって、
     前記エポキシ樹脂と、前記潜在性硬化剤と、ホウ酸エステルとを混合する混合工程を含むことを特徴とする熱硬化型エポキシ樹脂組成物の製造方法。
    A method for producing a thermosetting epoxy resin composition according to any one of claims 1 to 8,
    The manufacturing method of the thermosetting epoxy resin composition characterized by including the mixing process which mixes the said epoxy resin, the said latent hardener, and boric acid ester.
  10.  前記混合工程において、更に有機シラン化合物を混合する請求項9に記載の熱硬化型エポキシ樹脂組成物の製造方法。 The method for producing a thermosetting epoxy resin composition according to claim 9, wherein an organic silane compound is further mixed in the mixing step.
  11.  前記混合工程における、前記有機シラン化合物と、前記ホウ酸エステルとの質量比率(有機シラン化合物:ホウ酸エステル)が、1:3~3:1である請求項10に記載の熱硬化型エポキシ樹脂組成物の製造方法。 The thermosetting epoxy resin according to claim 10, wherein a mass ratio of the organosilane compound to the borate ester (organosilane compound: borate ester) in the mixing step is 1: 3 to 3: 1. A method for producing the composition.
PCT/JP2017/020906 2016-06-15 2017-06-06 Thermosetting epoxy resin composition and production method for same WO2017217276A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/302,831 US10669458B2 (en) 2016-06-15 2017-06-06 Thermosetting epoxy resin composition and production method for same
CN201780036533.7A CN109312059B (en) 2016-06-15 2017-06-06 Thermosetting epoxy resin composition and method for producing same
KR1020187038139A KR102277065B1 (en) 2016-06-15 2017-06-06 Thermosetting epoxy resin composition, and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016119057A JP6948114B2 (en) 2016-06-15 2016-06-15 Thermosetting epoxy resin composition and its manufacturing method
JP2016-119057 2016-06-15

Publications (1)

Publication Number Publication Date
WO2017217276A1 true WO2017217276A1 (en) 2017-12-21

Family

ID=60663151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020906 WO2017217276A1 (en) 2016-06-15 2017-06-06 Thermosetting epoxy resin composition and production method for same

Country Status (6)

Country Link
US (1) US10669458B2 (en)
JP (1) JP6948114B2 (en)
KR (1) KR102277065B1 (en)
CN (1) CN109312059B (en)
TW (1) TWI717525B (en)
WO (1) WO2017217276A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166398A1 (en) * 2019-02-15 2020-08-20 デクセリアルズ株式会社 Latent curing agent and method for manufacturing same, composition for forming coating film, and cation-curable composition
WO2023282174A1 (en) * 2021-07-09 2023-01-12 デクセリアルズ株式会社 Curable composition, and cured product

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6670688B2 (en) * 2016-06-15 2020-03-25 デクセリアルズ株式会社 Latent curing agent, method for producing the same, and thermosetting epoxy resin composition
JP7257736B2 (en) * 2017-07-06 2023-04-14 デクセリアルズ株式会社 Cationic curable composition
JP7117166B2 (en) 2018-06-13 2022-08-12 デクセリアルズ株式会社 Cationic curable composition and method for producing cured product
US20220298297A1 (en) * 2019-08-26 2022-09-22 Dexerials Corporation Cationic curing agent, method for producing same and cationically curable composition
KR102651592B1 (en) * 2021-11-17 2024-03-27 이아이씨티코리아 주식회사 Dual-curable Electrically Conductive Adhesive Composition Comprising Silver Particles

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330405A (en) * 2004-05-21 2005-12-02 Kaneka Corp Method of improving surface smoothness of cured product and cured product with improved surface smoothness
WO2007091358A1 (en) * 2006-02-07 2007-08-16 Sony Chemical & Information Device Corporation Latent curing agent
WO2008090792A1 (en) * 2007-01-24 2008-07-31 Sony Chemical & Information Device Corporation Latent curing agent
JP2009051960A (en) * 2007-08-28 2009-03-12 Sony Chemical & Information Device Corp Microcapsule-type latent curing agent
WO2012002177A1 (en) * 2010-06-28 2012-01-05 ソニーケミカル&インフォメーションデバイス株式会社 Aluminum chelate-based latent curing agent
JP2012188596A (en) * 2011-03-11 2012-10-04 Hitachi Chemical Co Ltd Thermally latent curing agent and method for producing the same, and thermosetting epoxy resin composition
WO2013005471A1 (en) * 2011-07-07 2013-01-10 ナミックス株式会社 Resin composition
JP2014015631A (en) * 2008-02-18 2014-01-30 Dexerials Corp Aluminum chelate-based latent curing agent, production method thereof, and thermo-curing epoxy resin composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146604A (en) 1974-10-16 1976-04-21 Daifuku Machinery Works ENJINTESUTOSOCHI
JPS63189472A (en) * 1987-01-30 1988-08-05 Yokohama Rubber Co Ltd:The Coating material composition and cured article thereof
ZA913801B (en) * 1990-05-21 1993-01-27 Dow Chemical Co Latent catalysts,cure-inhibited epoxy resin compositions and laminates prepared therefrom
JP4381255B2 (en) * 2003-09-08 2009-12-09 ソニーケミカル&インフォメーションデバイス株式会社 Latent curing agent
JP5707662B2 (en) 2008-01-25 2015-04-30 デクセリアルズ株式会社 Thermosetting epoxy resin composition
JP2014214262A (en) * 2013-04-26 2014-11-17 日本化薬株式会社 Thermosetting resin composition and near-infrared cut filter
JP6489494B2 (en) * 2014-09-09 2019-03-27 デクセリアルズ株式会社 Aluminum chelate-based latent curing agent, method for producing the same, and thermosetting epoxy resin composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330405A (en) * 2004-05-21 2005-12-02 Kaneka Corp Method of improving surface smoothness of cured product and cured product with improved surface smoothness
WO2007091358A1 (en) * 2006-02-07 2007-08-16 Sony Chemical & Information Device Corporation Latent curing agent
WO2008090792A1 (en) * 2007-01-24 2008-07-31 Sony Chemical & Information Device Corporation Latent curing agent
JP2009051960A (en) * 2007-08-28 2009-03-12 Sony Chemical & Information Device Corp Microcapsule-type latent curing agent
JP2014015631A (en) * 2008-02-18 2014-01-30 Dexerials Corp Aluminum chelate-based latent curing agent, production method thereof, and thermo-curing epoxy resin composition
WO2012002177A1 (en) * 2010-06-28 2012-01-05 ソニーケミカル&インフォメーションデバイス株式会社 Aluminum chelate-based latent curing agent
JP2012188596A (en) * 2011-03-11 2012-10-04 Hitachi Chemical Co Ltd Thermally latent curing agent and method for producing the same, and thermosetting epoxy resin composition
WO2013005471A1 (en) * 2011-07-07 2013-01-10 ナミックス株式会社 Resin composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166398A1 (en) * 2019-02-15 2020-08-20 デクセリアルズ株式会社 Latent curing agent and method for manufacturing same, composition for forming coating film, and cation-curable composition
JP2020132711A (en) * 2019-02-15 2020-08-31 デクセリアルズ株式会社 Latent curing agent and method for manufacturing the same, composition for forming coating, and cationically curable composition
KR20210114486A (en) * 2019-02-15 2021-09-23 데쿠세리아루즈 가부시키가이샤 Latent curing agent and manufacturing method thereof, film-forming composition, and cationic curable composition
JP7221075B2 (en) 2019-02-15 2023-02-13 デクセリアルズ株式会社 Latent curing agent, method for producing the same, and cationic curable composition
US11795264B2 (en) 2019-02-15 2023-10-24 Dexerials Corporation Latent curing agent and method for manufacturing same, composition for forming coating film, and cation-curable composition
KR102616953B1 (en) 2019-02-15 2023-12-21 데쿠세리아루즈 가부시키가이샤 Latent hardener and method for producing the same, composition for forming a film, and cationic curable composition
WO2023282174A1 (en) * 2021-07-09 2023-01-12 デクセリアルズ株式会社 Curable composition, and cured product

Also Published As

Publication number Publication date
KR20190019969A (en) 2019-02-27
TWI717525B (en) 2021-02-01
US10669458B2 (en) 2020-06-02
JP2017222781A (en) 2017-12-21
TW201815869A (en) 2018-05-01
CN109312059A (en) 2019-02-05
JP6948114B2 (en) 2021-10-13
KR102277065B1 (en) 2021-07-13
CN109312059B (en) 2021-08-10
US20190203087A1 (en) 2019-07-04

Similar Documents

Publication Publication Date Title
WO2017217276A1 (en) Thermosetting epoxy resin composition and production method for same
TWI658059B (en) Aluminum chelate-based latent hardener, method for producing the same, and thermosetting epoxy resin composition
JP5321082B2 (en) Aluminum chelate-based latent curing agent and method for producing the same
KR102036751B1 (en) Method for producing aluminum chelate latent curing agent and thermosetting epoxy resin composition
WO2009093364A1 (en) Thermosetting epoxy resin composition
JP2014015631A (en) Aluminum chelate-based latent curing agent, production method thereof, and thermo-curing epoxy resin composition
WO2011010549A1 (en) Aluminum chelate-based latent curing agents and process for preparation thereof
JP5664366B2 (en) Thermal latent curing agent, method for producing the same, and thermosetting epoxy resin composition
JP7403695B2 (en) Latent curing agent film forming composition and latent curing agent film forming method
WO2017217275A1 (en) Latent curing agent, production method therefor, and thermosetting epoxy resin composition
TWI817949B (en) Cation-curable composition
WO2019240044A1 (en) Cationically curable composition and cured product production method
JP2020139169A (en) Method for producing aluminium chelate-based latent curing agent and thermosetting epoxy resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187038139

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17813174

Country of ref document: EP

Kind code of ref document: A1