WO2017217103A1 - Image display device, image display method, and head mount display device - Google Patents

Image display device, image display method, and head mount display device Download PDF

Info

Publication number
WO2017217103A1
WO2017217103A1 PCT/JP2017/015489 JP2017015489W WO2017217103A1 WO 2017217103 A1 WO2017217103 A1 WO 2017217103A1 JP 2017015489 W JP2017015489 W JP 2017015489W WO 2017217103 A1 WO2017217103 A1 WO 2017217103A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
image display
image
light
optical system
Prior art date
Application number
PCT/JP2017/015489
Other languages
French (fr)
Japanese (ja)
Inventor
匡利 中村
一郎 辻村
達也 中辻
貴俊 松山
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2017217103A1 publication Critical patent/WO2017217103A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus

Definitions

  • the present disclosure relates to an image display device, an image display method, and a head mounted display device.
  • the eyeglass-type image display device is required to have a wide field of view of the observation image and to reduce the size and weight of the image display device in order to obtain ease of use and a comfortable wearing feeling.
  • This type of image display device has many methods for observing a virtual image formed by an optical system, and it is the optical system that determines the performance such as the viewing angle, and at the same time, the size and weight are limited. Can also be said to be an optical system.
  • Patent Documents 1 and 2 disclose a technique for creating and observing a virtual image with a lens array.
  • Patent Document 1 discloses a display device that converts an emitted light beam from each pixel into a parallel light beam by a microlens and a condensing lens and guides it to the eyes.
  • Patent Document 2 has an image display area corresponding to a microlens, and by displaying a divided image of the observation image in each area, each lens forms a virtual image of the divided image, and the plurality of virtual images A display device is disclosed that forms a single virtual image by superimposing.
  • JP-A-5-328261 Japanese Patent Laying-Open No. 2015-215464
  • Patent Document 1 a microlens array corresponding to one pixel of a display panel is provided.
  • a luminous flux emitted from the lens is thin, and vignetting is often caused by eye movement. Therefore, since an eye box cannot be secured widely, it is disadvantageous as a glasses-type image display device.
  • Patent Document 2 since the lens array is provided in a size including a plurality of image display areas of the display panel, the luminous flux emitted from each lens is thick, but in order to widen the viewing angle, the display panel is enlarged. Inevitable.
  • the see-through type image display device cannot be realized by the method of placing the lens array in front of the eyes as in Patent Document 1 and Patent Document 2.
  • a display panel including a plurality of pixels, and a collimating optical system that converts a light beam emitted from the plurality of pixels into a parallel light flux
  • the plurality of collimating optical systems includes a lens
  • an image display device having a plurality of optical elements including a light beam direction control element, wherein the optical elements are arranged in a direction along a display surface of the display panel.
  • a plurality of displays of the display panel configured by a plurality of pixels by a collimating optical system in which a plurality of optical elements including a lens and a light beam direction control element are arranged along the display surface of the display panel.
  • An image display method comprising: determining a field angle region of a virtual image formed by each region; and obtaining a single virtual image by superimposing a plurality of the virtual images.
  • a display panel including a plurality of pixels, a collimating optical system that converts light beams emitted from the plurality of pixels into parallel light beams, and light emitted from the collimating optical system are guided.
  • the head-mounted display device is provided in which the optical elements are arranged in a direction along a display surface of the display panel.
  • the image display device it is possible to enlarge the viewing angle and achieve miniaturization.
  • the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
  • FIG. 1 It is a figure explaining the image processing which considered the observer's diopter. It is a figure explaining the image processing which considered the observer's diopter. It is a figure which shows the change of the brightness nonuniformity by a pupil diameter. It is a figure which shows the change of the brightness nonuniformity by a pupil diameter. It is a figure explaining the image processing of brightness nonuniformity correction. It is a figure explaining the image processing of brightness nonuniformity correction. It is a figure explaining the structure of the image display apparatus which concerns on the form of the specific structural example 1. FIG. It is a figure explaining the lens structure of the collimating optical system which concerns on the form of the specific structural example 2. FIG.
  • FIG. It is a figure which shows the MTF characteristic of the collimating optical system which concerns on the form of the specific structural example 2.
  • FIG. It is a figure which shows the MTF characteristic of the collimating optical system which concerns on the form of the specific structural example 2.
  • FIG. It is a figure which shows the MTF characteristic of the collimating optical system which concerns on the form of the specific structural example 2.
  • FIG. It is a figure explaining the collimating optical system provided with the light shielding mask which concerns on the form of the specific structural example 3.
  • FIG. It is a figure which shows the effect of the light shielding mask which concerns on the form of the specific structural example 3.
  • FIG. It is a figure which shows the effect of the light shielding mask which concerns on the form of the specific structural example 3.
  • FIG. It is a figure which shows the effect of the light shielding mask which concerns on the form of the specific structural example 3.
  • FIG. It is a figure which shows the effect of the light shielding mask which concerns on the form of the specific structural example 3.
  • FIG. 1 It is a figure which shows the effect of the light shielding mask which concerns on the form of the specific structural example 3.
  • FIG. It is a figure which shows the effect of the virtual image distance depth expansion which concerns on the form of the specific structural example 4.
  • FIG. It is a figure which shows the effect of the virtual image distance depth expansion which concerns on the form of the specific structural example 4.
  • FIG. It is a figure which shows an example of a coupling structure with the light-guide plate which concerns on the form of the specific structural example 5.
  • FIG. It is a figure which shows an example of a coupling structure with the light-guide plate which concerns on the form of the specific structural example 5.
  • FIG. It is a figure which shows an example of a coupling structure with the light-guide plate which concerns on the form of the specific structural example 6.
  • FIG. 1 shows the effect of the light shielding mask which concerns on the form of the specific structural example 3.
  • FIG. It is a figure which shows the effect of the virtual image distance depth expansion which concerns on the form of the specific structural example
  • FIG. It is a figure which shows an example of a coupling structure with the light-guide plate which concerns on the form of Example 6.
  • FIG. It is a figure which shows an example of the image display which concerns on the form of the specific structural example 7.
  • FIG. It is a schematic diagram which shows the example which applied the image processing apparatus which concerns on this embodiment to a head mounted display (HMD).
  • HMD head mounted display
  • HUD head-up display
  • FIG. 1 is a schematic diagram (optical path diagram) for explaining a basic configuration of an image display apparatus according to the present embodiment.
  • the image display device includes a display panel 1 and a collimating optical system (array optical system 2).
  • the collimating optical system is an array optical system 2 in which optical elements 2a, 2b, 2c,... Composed of one or more lenses 3 and a light beam direction control element 4 are two-dimensionally arranged.
  • FIG. 1 five optical elements 2a, 2b, 2c,... Constituting the array optical system 2 are shown, but the number of optical elements constituting the array optical system 2 is naturally not limited to five. .
  • the light beam emitted from the pixel located immediately below the center of the optical elements 2 a, 2 b, 2 c,... Is converted into a parallel light beam directed toward the center of the pupil 5 by the array optical system 2.
  • An image is formed on the retina surface 6 by the action.
  • the light beam direction control element 4 is composed of a prism or the like and has a function of efficiently guiding light beams to the pupil 5. At this time, the viewer visually recognizes that each pixel emits light on the virtual image plane 7 that is conjugate with the retinal plane 6.
  • the display panel 1 is divided into a plurality of display panels 1a, 1b, 1c at a boundary portion where the optical elements 2a, 2b, 2c,.
  • the optical units 8a, 8b, and 8c may be formed.
  • the width of the display panel 1 becomes longer in proportion to the viewing angle (the angle incident on the pupil 5), but the necessary size of the display panel becomes smaller by dividing, and in particular, a wide viewing field is obtained. It is also advantageous from the viewpoint of manufacturing process and yield.
  • the field of view can be expanded by tilting the units corresponding to the divided display panels 1a, 1b, and 1c.
  • 3A to 3C are schematic views showing the opening shape of the light shielding mask corresponding to the effective area shape of the optical elements 2a, 2b, 2c,...
  • the light shielding mask desirably has an opening shape equal to the effective area shape of the optical elements 2a, 2b, 2c,... Constituting the array optical system 2.
  • 3A shows a light shielding mask 10 having a circular opening shape
  • FIG. 3B shows a light shielding mask 12 having a hexagonal opening shape
  • FIG. 3C shows a light shielding mask 14 having a rectangular opening shape.
  • FIG. 3A shows a case where the optical elements 2a, 2b, 2c,... Are circular, and a plurality of circular regions indicated by broken lines around the aperture shape are optical elements 2a, 2b, 2c,.
  • the effective area 9 is shown.
  • FIG. 3B shows a case where the optical elements 2a, 2b, 2c,... Are hexagonal, and a plurality of hexagonal regions indicated by broken lines around the opening shape are optical elements 2a, 2b, 2c,.
  • the effective area 11 is shown.
  • FIG. 3C shows a case where the optical elements 2a, 2b, 2c,... Are square, and a plurality of rectangular areas indicated by broken lines around the aperture shape are optical elements 2a, 2b, 2c,.
  • the effective area 13 is shown.
  • the opening shapes of the light shielding masks 10, 12, and 14 substantially coincide with the effective areas 9, 11, and 13 of the optical elements 2a, 2b, 2c,.
  • the aperture shape of the light shielding masks 10, 12, and 14 is substantially matched with the shapes of the effective areas 9.11 and 13 of the optical elements 2a, 2b, 2c,.
  • the ratio becomes higher, and a visible image as bright as possible can be acquired to increase the aperture ratio. Therefore, it is desirable to select the light shielding line width as narrow as possible.
  • the width d min is desirably 0.4 mm or more.
  • FIGS. 4A and 4B are optical path diagrams illustrating the basic concept and configuration of an image display device including a light guide plate 15 according to the present embodiment.
  • a light guide plate 15 having a function of enlarging an exit pupil in a vertical cross-sectional direction of the mirror surface is shown.
  • FIG. 4A is a cross-sectional view showing a case where the action of enlarging the exit pupil of the light guide plate 15 is not used as a comparison.
  • the arrangement of the optical elements is geometrically determined according to the required viewing angle.
  • the optical unit 18 can be made smaller than the optical unit 18 of the originally required size.
  • the effect of the configuration example according to the present embodiment shown in FIG. 4B will be considered by focusing attention on the optical elements 2 a and 2 c adjacent to the optical element 2 b located at the center of the array optical system 2.
  • the parallel light fluxes having the light beam diameters a and c are emitted from this position at a relatively large angle, the light guide plates 15 are not visible from the pupil 5 at the light beam diameters a and c without the light guide plates 15.
  • the entrance pupil 5 can be made incident.
  • a light beam having a large viewing angle can be extracted from the optical element 2b located near the center of the array optical system 2, and as a result, the optical unit can be miniaturized.
  • FIG. 4B The effect of the configuration example according to the present embodiment shown in FIG. 4B will be considered by focusing attention on the optical elements 2 a and 2 c adjacent to the optical element 2 b located at the center of the array optical system 2.
  • the respective light beam diameters immediately after emission from the array optical system 2 are indicated by light beam diameters 16a, 16b, and 16c
  • the respective light beam diameters immediately after emission from the light guide plate 15 are indicated by light beam diameters 17a, 17b, and 17c. .
  • the array optical system 18 shown in FIG. 4B shows a size necessary for securing a viewing angle equivalent to that when the light guide plate 15 is used when the light guide plate 15 is not used.
  • the use of the light guide plate 15 reduces the number of arrays and achieves a significant downsizing of the array optical system 2. it can.
  • the see-through image transmitted through the light guide plate 15 can be visually recognized by the pupil 5. Therefore, the user can visually recognize, for example, an AR (Augmented Reality) image displayed on the display panel 1 and an object in the real world that has passed through the light guide plate 15.
  • FIGS. 5A and 5B are diagrams illustrating the relationship between exit pupil diameter and virtual image depth according to the present embodiment.
  • FIG. 5A shows how the resolution of the observation image changes according to the distance that the eye focuses, that is, the virtual image distance, when the exit pupil diameter D1 is relatively large.
  • the focal length changes as fa, fb, and fc.
  • the parallel light flux that has entered the pupil 5 is once condensed at the positions of the focal lengths fa, fb, and fc, and then spreads on the retina surface 6 with the diameters of the circles of confusion 21a, 21b, and 21c.
  • the focal length fa corresponds to the circle of confusion 21a
  • the focal length fb corresponds to the circle of confusion 21b
  • the focal length fc corresponds to the circle of confusion 21c.
  • FIG. 5B shows a case where the exit pupil diameter D2 is reduced. Since the parallel light flux itself incident on the pupil 5 is thin, the circles of confusion 22a, 22b, and 22c associated with changes in the focal lengths fa, fb, and fc. There is little change in the resolution, and a sense of resolution can be obtained up to the virtual image distance at hand. Therefore, the virtual image depth can be expanded by reducing the exit pupil diameter.
  • the exit pupil diameter is desirably 0.5 mm or more.
  • the effective area of the optical elements 2a, 2b, 2c,... May be reduced or the opening size of the light shielding mask may be reduced.
  • FIGS. 6A and 6B are diagrams illustrating an example of the light direction control element 4 according to the present embodiment.
  • FIG. 6A is a schematic diagram showing an example in which a plurality of prisms 104 corresponding to the respective lenses 3 are used as the light beam direction control elements 4 as exemplified in the above description.
  • FIG. 6B is a schematic diagram showing an example in which a field lens 23 having a convex lens function covering a plurality of lenses 3 is used as a light direction control element 4.
  • FIGS. 7A to 7C are perspective views showing configuration examples in the case where the prism 104 corresponding to each of the lenses 3 is used as the light direction control element 4 as in FIG. 6A.
  • 7A and 7B show a case where the optical elements 2a, 2b, 2c,... Are hexagonal, and show an example in which a plurality of hexagonal prisms 104 are arranged corresponding to the plurality of lenses 3, respectively.
  • 7C shows a case where the optical elements 2a, 2b, 2c,... Are square, and shows an example in which a plurality of square prisms 104 are arranged corresponding to the plurality of lenses 3, respectively.
  • FIG. 8 shows an example in which the field lens 23 is a light direction control element 4 as in FIG. 6B, and an example in which an array optical system 24 formed by orthogonally forming cylindrical lens arrays 24 a and 24 b is used as the lens 3. Is shown. As shown in FIG. 8, by making the cylindrical lens arrays 24a and 24b orthogonal, an effect equivalent to the case where a plurality of small lenses are provided can be obtained.
  • FIGS. 9A to 9C are diagrams showing an example of a two-dimensional array pattern of optical elements according to the present embodiment.
  • 9A and 9B show an example in which the optical elements 25a, 25b, 25c,... And the optical elements 26a, 26b, 26c,. The directions differ from each other by 90 °.
  • FIG. 9C shows an example in which the optical elements 27a, 27b, 27c,. 9A to 9C are merely examples, and the present invention is not limited to these as long as the optical elements efficiently cover the display panel 1.
  • the effective area shape of the optical element is shown as a circle. However, as shown in FIGS. 3B and 3C, the effective area may be a hexagon or a rectangle.
  • FIG. 10 is a perspective view showing the light guide plate 15 according to the present embodiment.
  • the light guide plate 15 may have a configuration different from that shown in FIG.
  • the light guide plate 15 has a plurality of reflecting surfaces 15a.
  • FIG. 11 is an optical path diagram showing an image display device to which another example of the light guide plate according to the present embodiment is applied.
  • a hologram reflection type light guide plate 28 is used, and the light beam diameters a, b, c emitted from the collimating optical system are changed by the action of enlarging the exit pupil of the light guide plate 28.
  • Each is spread to C.
  • FIG. 4B a light bundle having a large viewing angle can be extracted from the optical elements 2a, 2b, 2c located in the vicinity of the center of the array optical system 1, so that the optical unit can be downsized.
  • FIG. 12 is an optical path diagram for explaining the basic concept of the image display method by the image display device of the present embodiment.
  • the image display apparatus includes a display panel 1 and a collimating optical system, and the collimating optical system includes optical elements 2 a and 2 b including one or more lenses 3 and a light beam direction control element 4. , 2c,... Are arrayed two-dimensionally.
  • the display panel 1 has display ranges 31a, 31b, 31c,... Divided corresponding to the optical elements 2a, 2b, 2c,..., And light rays emitted from the pixels included in the ranges are as follows.
  • a light beam having viewing angle ranges 32a, 32b, 32c,... Is formed through a collimating optical system.
  • the light fluxes having the viewing angle ranges 32a, 32b, 32c,... are imaged on the retinal surface 6 in the ranges 33a, 33b, 33c,.
  • the observer visually recognizes the virtual image divided and displayed in the ranges 34a, 34b, 34c,...
  • the virtual image plane 7 that is conjugate with the retinal plane 6, and connects the plurality of virtual images to one in the range 34. Get a virtual image.
  • the divided images corresponding to the virtual image ranges 34a, 34b, 34c,... Of the virtual image plane 7 are determined so that a plurality of virtual images are seamlessly connected to one virtual image, and the display ranges 31a, 31b of the display panel 1 are determined. , 31c,..., The divided images are displayed. Thereby, the user can visually recognize an image in which a plurality of virtual images are seamlessly connected to one virtual image.
  • FIG. 13 is an optical path diagram for explaining the basic concept of the image display method including the light guide plate 15 according to the present embodiment.
  • a cross-sectional view using the action of enlarging the exit pupil of the light guide plate 15 is shown.
  • the light beams transmitted through the light guide plate 15 are imaged on the retina surface 6 in the ranges 37a, 37b, 37c,.
  • the divided images corresponding to the display ranges 35a, 35b, and 35c of the display panel 1 are connected so that the virtual image ranges 38a, 38b, and 38c of the virtual image plane 7 obtained through the light guide plate 15 are seamlessly connected to one virtual image 38.
  • the virtual image range obtained on the virtual image plane 7 is naturally different even if the display range of the display panel 1 is made equal depending on whether or not the action of expanding the exit pupil of the light guide plate 15 is used.
  • the divided image to be displayed needs to be determined in consideration of the action of enlarging the exit pupil.
  • the divided images to be displayed on the display panel are calibrated according to the diopter of the observer and the diopter through the diopter correction lens of the observer.
  • . 14A to 14C are schematic diagrams for explaining a calibration method according to diopter.
  • FIG. 14A is a schematic diagram showing how the imaging position of the retinal surface 6 changes according to the diopter of the observer and the diopter through the diopter correction lens.
  • the focal length is fa, and at this time, two light beams emitted from the adjacent optical elements 2a and 2b at the same angle are 1 on the retinal surface 6. It is imaged at a point.
  • the two light beams are once condensed at the position of the focal length fb and then reach different positions on the retinal surface 6. Accordingly, as shown in FIG. 14B, the display images 39a and 39b corresponding to the optical elements 2a and 2b form visual images 40a and 40b that are shifted from the visual image 41 at the focal distance fa, and the images appear to overlap. The resolution will deteriorate. As a countermeasure against this, as shown in FIG. 14C, by performing calibration that shifts the display images 42a and 42b according to the focal length fa of the observer, a visual image 43a that is equal to the ideal visual image 41 at the focal length fa.
  • the display image 42a is shifted upward with respect to the display image 39a, and the display image 42b is shifted downward with respect to the display image 39b.
  • the display images 42a and 42b form visual images 43a and 43b that coincide with the visual image 41 at the focal length fa, respectively, and can suppress degradation of the resolution.
  • the change in the imaging position of the retinal surface 6 occurs not only by the diopter of the observer and the diopter through the diopter correction lens, but also by changing the distance that the eye focuses, that is, the virtual image distance. For this reason, according to a preferred embodiment of the present embodiment, it is desirable to calculate the virtual image distance by detecting the line of sight of the observer and to perform calibration for shifting the display image. Note that the distance at which the eyes are focused can be acquired by detecting the convergence angle of the user's eyes, and the display image is shifted based on this.
  • FIGS. 15A and 15B are optical path diagrams illustrating changes in luminance unevenness according to pupil diameter.
  • FIG. 15A shows a case where the pupil diameter A1 is relatively large.
  • the light beams emitted from the optical elements 2a, 2b, and 2c are vignetted at the pupil 5 and then the imaging range. Images are formed on the retina surface 6 at 44a, 44b, and 44c, respectively.
  • the luminance distribution 45 is formed by superimposing the luminance distributions 45a, 45b, and 45c of the imaging ranges 44a, 44b, and 44c. In the case of FIG. 15A, since the luminance distributions 45a, 45b, and 45c overlap, a visual image 46 with uneven luminance is obtained.
  • FIG. 15B shows a case where the pupil diameter A2 is small, and the luminance unevenness of the visual image 49 occurs as in FIG. 15A.
  • the luminance unevenness is determined by the overlapping of the luminance distributions formed on the retinal surface 6 by the optical elements 2a, 2b, and 2c, and the luminance distribution depends on the pupil diameter. I understand.
  • FIG. 16A and 16B are diagrams for explaining an image processing technique for correcting luminance unevenness.
  • FIG. 16A shows a case where correction is not performed, and a visual image 51 obtained when the optical elements 2a, 2b, 2c,... Are arranged in a honeycomb grid and the display range of the display panel 1 emits light for all pixels.
  • FIG. 16B shows a case where correction is performed, and the luminance unevenness caused by the pupil diameter is predicted, and the luminance of the divided image displayed on the display panel 1 is controlled by the image processing technique, so that there is no luminance unevenness.
  • An image 53 is obtained.
  • optical elements arranged in a honeycomb lattice shape are shown as an example, but the arrangement pattern is not limited to this.
  • the arrangement pattern may be, for example, a square lattice, and it is sufficient that the luminance unevenness predicted at that time can be corrected by an image processing technique.
  • the pupil diameter of the observer changes depending on the brightness of the usage environment
  • the pupil diameter of the observer is predicted by sensing the brightness of the usage environment, and the luminance unevenness is detected. May be corrected by an image processing technique.
  • FIG. 17 is a diagram illustrating a specific configuration example 1 of the image display device.
  • the image display device includes the display panel 1 and a collimating optical system, and the display panel 1 is divided into a plurality of display panels 1a, 1b, 1c, and 1d.
  • Optical units 8a, 8b, 8c, and 8d are configured.
  • the collimating optical system is an array optical system 2 in which optical elements 2a, 2b, and 2c including one or more lenses 3 and a light direction control element 4 are two-dimensionally arranged.
  • One or more optical elements are arranged on the display panels 1a, 1b, 1c, and 1d.
  • each optical unit is disposed to be inclined toward the eyes of the observer (toward the center of the display panel 1).
  • Specific configuration example 1 is advantageous in obtaining an image display device having a wide field of view, particularly in obtaining an image display device having a viewing angle exceeding 40 °.
  • the viewing angle is widened with only one optical unit, light rays are strongly refracted with a small lens configuration, and aberrations such as chromatic aberration of magnification and distortion become strong, and the image quality of the visible image cannot be ensured.
  • a wide field of view can be realized relatively easily by tilting the optical unit according to the viewing angle range in which the optical units 8a, 8b, 8c, and 8d are in charge as in the specific configuration example 1.
  • optical discontinuity occurs between the optical units 8a, 8b, 8c, and 8d, but the visual images obtained by the respective optical units 8a, 8b, 8c, and 8d are seamlessly connected.
  • the arrangement and design of the optical elements 2a, 2b, and 2c may be appropriately designed.
  • FIG. 18 is a diagram showing a configuration of the collimating optical system of specific configuration example 2.
  • This collimating optical system is an array formed by two-dimensionally arranging optical elements 55a, 55b, 55c,... Composed of a lens 54 having a negative power, a lens 3 having a positive power, and a light beam direction control element 4.
  • This is an optical system 55.
  • the specific configuration example 2 is advantageous in obtaining an image display device having high imaging performance by combining the lens 3 and the lens 54, although the thickness of the collimating optical system is increased.
  • FIG. 19A to 19B are diagrams showing MTF curves obtained in the specific configuration example 2.
  • FIG. The image display apparatus is configured as shown in FIG. 1, and the effective size of each optical element is 2.0 mm in diameter.
  • FIG. 19A to FIG. 19B are MTF curves obtained according to the position of the optical element, and the positions are arranged by the angle (field half-angle) at which the light beam emitted from the pixel immediately below the center of the optical element enters the pupil 5.
  • FIG. 19A shows a half field angle of 0.0 °
  • FIG. 19B shows a half field angle of 11.3 °
  • FIG. 19C shows a half field angle of 20.5 °.
  • Each figure shows two MTF curves in which the light emitting pixel has an image height of 0% and an image height of 72% in the display range corresponding to each optical element of the display panel 1. From these results, in the image display device of the specific configuration example 2, the MTF characteristics are not significantly deteriorated even under a relatively wide viewing angle of 40 °, and sufficient resolution is obtained. I understand.
  • FIG. 20 is a diagram showing a configuration of a collimating optical system in the form of a specific configuration example 3.
  • the image display device of the specific configuration example 3 has a structure in which a light shielding mask 56 is inserted between the lens 3 and the light direction control element 4 in the collimating optical system.
  • the insertion of the light shielding mask 56 can suppress the crosstalk of the signal light generated between the adjacent optical elements, and a good visual image without stray light can be obtained.
  • the light shielding mask 56 may have the configuration shown in FIGS. 3A to 3C.
  • a light beam emitted from a pixel of the display panel 1 is converted into a parallel light beam by an optical element corresponding to the pixel, and enters the pupil 5 as signal light 57.
  • light emitted from a certain pixel of the display panel 1 may be stray light because it travels to an optical element adjacent to the optical element corresponding to the pixel or a discontinuous portion of the boundary between them.
  • the light shielding mask 56 by inserting the light shielding mask 56, light rays incident on the pupil 5 as stray light are cut, and light beams 58 a and 58 b other than the signal light that have passed through the light shielding mask 56 do not enter the pupil 5.
  • a visual image can be obtained.
  • FIG. 21A to 21C are diagrams showing an example of a visually recognized image obtained in the form of the specific configuration example 3.
  • FIG. Each is a visual image of a cross hatch pattern obtained by a collimating optical system in which optical elements are two-dimensionally arranged. The effective area of the optical element is a regular hexagon and the size of its circumscribed circle is 2.3 mm. It has become.
  • 21A shows a case where a light shielding mask 56 having an opening diameter of 0.8 mm is inserted at the position of FIG. 20 in the collimating optical system
  • FIG. 21B shows a case where a light shielding mask 56 having an opening diameter of 1.4 mm is inserted at the same position. It is a result. Further, FIG.
  • FIG. 21C shows the result when the light shielding mask 56 is not provided for comparison. From these results, it can be seen that in FIG. 21C, image quality is deteriorated due to the stray light component, but a good visual image can be obtained by reducing the stray light component with the light shielding mask 56 as shown in FIG. 21A.
  • a specific configuration example 4 is an image display device in which the exit pupil diameter of the collimating optical system is designed to be small and the virtual image depth is extended.
  • the exit pupil diameter is defined by the size of the effective area of the optical element constituting the collimating optical system or the aperture size of the light shielding mask.
  • the virtual image distance at which the maximum resolution is obtained is infinity, and the eye is in focus far enough. Therefore, when the eye is focused on the hand, a sufficient resolution is not obtained, and the visually recognized image cannot be recognized correctly.
  • the virtual image depth is enlarged, and the visual image can be recognized even when the eye is focused relatively close to the hand. This is because in an eyeglass-type image display device, an AR (Augmented) is applied to an object at any position from a distance to a hand. (Reality) means that information can be viewed in a superimposed manner, which is a great advantage.
  • 22A and 22B are diagrams showing the relationship between the virtual image distance obtained in the form of the specific configuration example 4 and the MTF.
  • 22A and 22B show the results obtained with different viewing angles incident on the eyes.
  • FIG. 22A shows a viewing half angle of 0 ° in the horizontal direction and 0 ° in the vertical direction
  • FIG. 22B shows a viewing half angle of 20 ° in the horizontal direction and the vertical direction. It is 15 °.
  • the MTF characteristics when the exit pupil diameter is reduced to 1.0 mm and 1.5 mm are compared with the MTF characteristics when the exit pupil diameter is 4.0 mm, which is equivalent to the pupil diameter.
  • the exit pupil diameter is smaller to 1.0 mm and 1.5 mm, the peak MTF is lower than when the exit pupil diameter is 4.0 mm, but the MTF can be maintained from a distance to near 1 m. I understand. More preferably, the MTF can be maintained from a long distance to a short distance by reducing the collimated light beam to 0.5 mm or more and 1.5 mm or less.
  • FIG. 22A and 22B are optical path diagrams showing the structure of an image display device in the form of a specific configuration example 5.
  • FIG. The image display apparatus of the specific configuration example 5 includes a light guide plate 15 having an action of enlarging the exit pupil, and coupling optics between the display panel 1, the optical unit 8 including a collimating optical system, and the light guide plate 15. It has a structure with parts inserted.
  • the parallel light flux of the signal light emitted from the collimating optical system can be efficiently coupled to the light guide plate 15 by the optical component inserted between the optical unit 8 and the light guide plate 15. .
  • FIG. 23A is an optical path diagram in the case where the coupling optical component is a dove prism 59, which is an advantageous structure for suppressing the thickness of the image display device in the direction of the eye axis.
  • FIG. 23B is an optical path diagram in the case where the coupling optical component is a triangular prism 60, which is an advantageous structure for suppressing the height of the image display device.
  • two configuration examples are shown as an example, but the optical components for coupling are not limited to these, and a design that can efficiently couple signal light according to the design required for the image display device It only has to be.
  • FIG. 24A and 24B are optical path diagrams showing the structure of the image display device of the specific configuration example 6.
  • the image display apparatus of the specific configuration example 6 includes a light guide plate having an action of enlarging the exit pupil, and includes optical units 8a, 8b, and 8c including the display panel 1 and a collimating optical system.
  • the optical units 8a, 8b, 8c and the light guide plate are inserted with optical components for coupling, respectively.
  • the form of the specific configuration example 6 is advantageous for obtaining an image display device having a wide field of view, and particularly for obtaining an image display device having a viewing angle exceeding 40 °. Even when a light guide plate is provided in the same way as in the specific configuration example 1, the optical units 8a, 8b, and 8c are inclined according to the viewing angle range that they are responsible for, so that a wide field of view can be realized relatively easily. it can.
  • FIGS. 24A and 24B in order to obtain a large viewing angle in a direction not using the action of enlarging the exit pupil of the light guide plate, the optical units 8a and 8c in charge of the wide viewing area are both inclined and arranged.
  • FIG. 24A shows a case in which a light guide plate 61 having a rectangular outer shape is used, and optical components 62a, 62b, and 62c whose thicknesses are controlled according to the inclination of the optical units 8a and 8c, respectively, The coupling between the two is efficient.
  • FIG. 24B shows a case in which a light guide plate 63 whose outer shape is designed according to the inclination of the optical units 8a and 8c is used.
  • Optical components 64a and 64b having a uniform thickness are provided between the respective optical units and the light guide plate 63. 64c for efficient coupling.
  • two design examples are shown as an example. However, the number of optical units to be used, the outer shape of the light guide plate, and the optical components for coupling are not limited to these, and a necessary viewing angle is set. Any image display device that is optimally designed to obtain the image may be used.
  • FIG. 25 is a diagram illustrating an image display method according to a specific configuration example 7.
  • the image display method of specific configuration example 7 includes a light guide plate as shown in FIG. 4, the display range of the display panel in the direction using the action of enlarging the exit pupil of the light guide plate and the direction not using it, and The shift amount of the viewing angle range set between the adjacent optical elements 2a, 2b, and 2c is different.
  • the specific configuration example 7 is configured such that, among the pixels of the display panel arranged immediately below the effective areas 65a, 65b, and 65c of the optical elements, the peripheral pixels where the signal light does not enter the pupil are not emitted, and the range of the display area is increased.
  • This is a limited image display method.
  • the range of the pixels where the signal light enters the pupil is widened by the action of enlarging the exit pupil of the light guide plate, it is desirable to change the display range according to the direction on the display panel. In this way, by selecting the light emitting pixels to the minimum necessary, it is possible to reduce the risk that the light emitted from the unnecessary pixels becomes stray light and obtain a good visual image.
  • the direction in which the action of enlarging the exit pupil of the light guide plate is used as the vertical direction in the figure, and it can be seen that the display ranges 65a, 65b, and 65c of the display panel are wider in the vertical direction than in the horizontal direction.
  • the viewing angle range handled by the optical elements 2a, 2b, 2c,... Of the array optical system 2 is controlled by the light beam direction control element 4 constituting the array optical system 2.
  • the shift amount of the viewing angle range set between the adjacent optical elements 2a, 2b, 2c,... Depends on the size of the viewing angle range obtained by one optical element.
  • the viewing angle range obtained with one optical element is increased in the vertical direction in FIG. 25 by the light guide plate, and thus the shift amount of the viewing angle range set between adjacent optical elements. Is also larger in the vertical direction. This is equivalent to the collimating optical system having anamorphic power.
  • the number of optical elements necessary to obtain the visual image 66 having the same aspect ratio is 3 in the vertical direction, while 4-5 in the horizontal direction is required, and the exit pupil of the light guide plate. It shows that the collimating optical system can be reduced in size in the enlargement direction.
  • FIG. 26 is a schematic diagram illustrating an example in which the image processing apparatus according to the present embodiment is applied to a head mounted display (HMD) 200.
  • a diopter correction lens (glasses lens) 210 is a lens for the left eye of the head mounted display
  • a diopter correction lens 220 is a lens for the right eye of the head mounted display.
  • the illustration of the frame that supports the diopter correction lenses 210 and 220 is omitted.
  • the image processing apparatus is mounted in front of each of the diopter correction lenses 210 and 220.
  • the display panel 1 and the array optical system 2 are disposed in the upper part in front of the diopter correction lenses 210 and 220.
  • the light guide plate 15 is disposed in front of each of the diopter correction lenses 210 and 220.
  • the array optical system 2 and the light guide plate 15 are connected by a dove prism 230.
  • the image displayed on the display panel 1 passes through the array optical system 2, the dove prism 230, and the light guide plate 15 to be further viewed. It enters the pupil 5 through the degree correction lenses 210 and 220.
  • the degree correction lenses 210 and 220 For example, when displaying an image such as AR, the user visually recognizes an image incident on the pupil 5 through the diopter correction lenses 210 and 220 from the light guide plate 15 and enters through the diopter correction lenses 210 and 220. Visually see the actual object to be. Therefore, an image such as an AR and an actual object can be superimposed and made visible to the user.
  • the diopter correction lenses 210 and 220 may not have a diopter correction function.
  • FIG. 27 is a schematic diagram illustrating an example in which the image processing apparatus according to the present embodiment is applied to a head-up display (HUD) apparatus 300 of the vehicle 400.
  • the head-up display device 300 is disposed inside the instrument panel 310 and includes information for assisting driving from the inside of the instrument panel 310 toward the front windshield 320. Projected image.
  • the driver recognizes that the image is displayed on the other side of the front windshield 320.
  • the driver can obtain various kinds of information without moving the line of sight greatly by viewing the image superimposed on the situation in front.
  • the collimating optical system has a structure in which a plurality of optical elements are two-dimensionally arranged, and a light guide plate having an action of enlarging the exit pupil is combined therewith, thereby achieving a wide field of view and a small size.
  • a lightweight eyeglass-type image display device can be provided.
  • a display panel composed of a plurality of pixels; A collimating optical system that converts light emitted from the plurality of pixels into a parallel light flux, and The collimating optical system has a plurality of optical elements including a lens and a light beam direction control element, The image display device, wherein the plurality of optical elements are arranged in a direction along a display surface of the display panel.
  • the display panel is divided into sizes including at least one optical element, An optical unit is configured from the divided display panel and one or more optical elements corresponding to the divided display panel, The image display device according to (1), wherein the optical unit is disposed in a direction along a display surface of the display panel.
  • the light direction control element is an optical element in which prisms corresponding to the lenses included in the optical element are arranged in an array.
  • the light beam direction control element is a field lens having a convex lens effect provided in common to each of the lenses included in the optical element.
  • Display device (8) The image display device according to any one of (1) to (7), wherein the lens is configured by combining two or more positive or negative lenses in an optical axis direction. (9) The image display device according to any one of (1) to (8), wherein the lens includes a cylindrical lens array arranged orthogonally.
  • the image display device according to any one of (1) to (9), wherein the plurality of optical elements are arranged in a honeycomb arrangement or a tetragonal lattice arrangement. (11) The image display device according to (2), wherein the optical unit is disposed to be inclined toward a center of the display panel. (12) The image display device according to (4), wherein the light guide plate is a multi-mirror type or a hologram reflection type configured to have a plurality of reflection surfaces.
  • a field angle region of a virtual image formed by each display region of the display panel configured by the plurality of pixels is determined by the collimating optical system,
  • the image display device according to any one of (1) to (12), wherein one virtual image is obtained by superimposing a plurality of virtual images in a user's eye.
  • It further includes a light guide plate that guides light emitted from the collimating optical system and expands an exit pupil, and in addition to the collimating optical system, an angle of view of a virtual image formed by the display region by the light guide plate, respectively. The area is determined, The image display device according to (13), wherein one virtual image is obtained by superimposing a plurality of the virtual images in a user's eye.
  • the image display device 15) The image display device according to (13), wherein the display image displayed on the display panel is calibrated according to the diopter of the observer or the diopter of the observer via the diopter correction lens. (16) The image display device according to (13), wherein the display image displayed on the display panel is calibrated based on the line-of-sight position of the observer. (17) Regarding luminance unevenness that occurs in the overlapping portion of virtual images, The image display device according to (1), wherein image processing for correcting the luminance unevenness is performed by detecting a pupil diameter of an observer. (18) The image display device according to (17), wherein the luminance unevenness is corrected based on a pupil diameter of the observer predicted from the brightness of the use environment.
  • Each of the plurality of display areas of the display panel formed of a plurality of pixels is formed by a collimating optical system in which a plurality of optical elements including a lens and a light beam direction control element are arranged along the display surface of the display panel.
  • An image display method comprising: (20) a display panel composed of a plurality of pixels; A collimating optical system for converting light beams emitted from the plurality of pixels into parallel light fluxes; A light guide plate that guides light emitted from the collimating optical system and expands an exit pupil; An image display device is disposed in front of the spectacle lens, The collimating optical system has a plurality of optical elements including a lens and a light beam direction control element, The head mounted display device, wherein the plurality of optical elements are arranged in a direction along a display surface of the display panel.

Abstract

[Problem] To expand the viewing angle and decrease the size of an image display device. [Solution] An image display device according to the present disclosure comprises: a display panel constituted by a plurality of pixels; and a collimation optical system that converts light beams emitted from the plurality of pixels into a parallel luminous flux. The collimation optical system includes a plurality of optical elements, each comprising a lens and a light beam direction control element. The plurality of optical elements are arrayed in a direction following the display surface of the display panel. Due to this configuration, the viewing angle of the image display device can be expanded and the size of the image display device can be decreased.

Description

画像表示装置、画像表示方法及びヘッドマウントディスプレイ装置Image display device, image display method, and head-mounted display device
 本開示は、画像表示装置、画像表示方法及びヘッドマウントディスプレイ装置に関する。 The present disclosure relates to an image display device, an image display method, and a head mounted display device.
眼鏡型の画像表示装置は、使い易さと快適な装着感を得るため、観察画像の広視野化と画像表示装置の小型化、軽量化が求められる。この種類の画像表示装置は、光学系で形成された虚像を観察する方式が多く、視野角等の性能を決定するのは光学系であると同時に、小型化、軽量化を律速しているのも光学系であるといえる。 The eyeglass-type image display device is required to have a wide field of view of the observation image and to reduce the size and weight of the image display device in order to obtain ease of use and a comfortable wearing feeling. This type of image display device has many methods for observing a virtual image formed by an optical system, and it is the optical system that determines the performance such as the viewing angle, and at the same time, the size and weight are limited. Can also be said to be an optical system.
 例えば、特許文献1、2には、レンズアレイで虚像を作り、観察する技術が開示されている。特許文献1には、各画素からの出射光束をマイクロレンズと集光レンズにより平行光束に変換し、眼まで導く表示装置が開示されている。 For example, Patent Documents 1 and 2 disclose a technique for creating and observing a virtual image with a lens array. Patent Document 1 discloses a display device that converts an emitted light beam from each pixel into a parallel light beam by a microlens and a condensing lens and guides it to the eyes.
また、特許文献2には、マイクロレンズに対応する画像表示エリアを有し、その各エリアに観察画像の分割画像を表示させることで、各レンズが分割画像の虚像を形成し、それら複数の虚像を重ねて1つの虚像を形成する表示装置が開示されている。 Further, Patent Document 2 has an image display area corresponding to a microlens, and by displaying a divided image of the observation image in each area, each lens forms a virtual image of the divided image, and the plurality of virtual images A display device is disclosed that forms a single virtual image by superimposing.
特開平5-328261号公報JP-A-5-328261 特開2015-215464号公報Japanese Patent Laying-Open No. 2015-215464
 特許文献1では、表示パネルの1画素に対応するマイクロレンズアレイが設けてあるが、レンズから出射する光束が細く、眼球運動によるケラレが多い。従って、アイボックスを広く確保できないため、眼鏡型の画像表示装置として不利である。 In Patent Document 1, a microlens array corresponding to one pixel of a display panel is provided. However, a luminous flux emitted from the lens is thin, and vignetting is often caused by eye movement. Therefore, since an eye box cannot be secured widely, it is disadvantageous as a glasses-type image display device.
 特許文献2では、表示パネルの複数の画像表示エリアを含むサイズでレンズアレイを設けてあるため、各レンズから出射される光束は太いものの、視野角を広げるためには、表示パネルの大型化は避けられない。 In Patent Document 2, since the lens array is provided in a size including a plurality of image display areas of the display panel, the luminous flux emitted from each lens is thick, but in order to widen the viewing angle, the display panel is enlarged. Inevitable.
 加えて、特許文献1、特許文献2のように、レンズアレイを眼前に置く方式では、シースルー型の画像表示装置を実現することはできない。 In addition, the see-through type image display device cannot be realized by the method of placing the lens array in front of the eyes as in Patent Document 1 and Patent Document 2.
 そこで、画像表示装置において、視野角を拡大するとともに、小型化を達成することが求められていた。 Therefore, in the image display device, it has been required to increase the viewing angle and achieve miniaturization.
 本開示によれば、複数の画素から構成される表示パネルと、複数の前記画素から出射される光線を平行光束に変換するコリメート光学系と、を備え、複数の前記コリメート光学系は、レンズと光線方向制御素子を含む複数の光学要素を有し、前記光学要素は、前記表示パネルの表示面に沿った方向に配列される、画像表示装置が提供される。 According to the present disclosure, it is provided with a display panel including a plurality of pixels, and a collimating optical system that converts a light beam emitted from the plurality of pixels into a parallel light flux, and the plurality of collimating optical systems includes a lens and There is provided an image display device having a plurality of optical elements including a light beam direction control element, wherein the optical elements are arranged in a direction along a display surface of the display panel.
 本開示によれば、レンズと光線方向制御素子を含む複数の光学要素を表示パネルの表示面に沿って配列してなるコリメート光学系により、複数の画素から構成される前記表示パネルの複数の表示領域がそれぞれ形成する虚像の画角領域を決定することと、複数の前記虚像を重ね合わせて1つの虚像を得ることと、を備える、画像表示方法が提供される。 According to the present disclosure, a plurality of displays of the display panel configured by a plurality of pixels by a collimating optical system in which a plurality of optical elements including a lens and a light beam direction control element are arranged along the display surface of the display panel. An image display method comprising: determining a field angle region of a virtual image formed by each region; and obtaining a single virtual image by superimposing a plurality of the virtual images.
 また、本開示によれば、複数の画素から構成される表示パネルと、複数の前記画素から出射される光線を平行光束に変換するコリメート光学系と、前記コリメート光学系から出射された光を導光して射出瞳を拡大する導光板と、を備える、画像表示装置が眼鏡レンズの前面に配置され、前記コリメート光学系は、レンズと光線方向制御素子を含む複数の光学要素を有し、複数の前記光学要素は、前記表示パネルの表示面に沿った方向に配列される、ヘッドマウントディスプレイ装置が提供される。 In addition, according to the present disclosure, a display panel including a plurality of pixels, a collimating optical system that converts light beams emitted from the plurality of pixels into parallel light beams, and light emitted from the collimating optical system are guided. An image display device disposed on the front surface of the spectacle lens, and the collimating optical system includes a plurality of optical elements including a lens and a light beam direction control element. The head-mounted display device is provided in which the optical elements are arranged in a direction along a display surface of the display panel.
 以上説明したように本開示によれば、画像表示装置において、視野角を拡大するとともに、小型化を達成することが可能となる。
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
As described above, according to the present disclosure, in the image display device, it is possible to enlarge the viewing angle and achieve miniaturization.
Note that the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
複数の光学要素からなる本実施の形態の画像表示装置を説明する図である。It is a figure explaining the image display apparatus of this Embodiment which consists of a some optical element. 複数の表示パネルをもつ本実施の形態を説明する図である。It is a figure explaining this Embodiment which has a some display panel. 遮光マスクの一例を示す図である。It is a figure which shows an example of a light shielding mask. 遮光マスクの一例を示す図である。It is a figure which shows an example of a light shielding mask. 遮光マスクの一例を示す図である。It is a figure which shows an example of a light shielding mask. 導光板が有する射出瞳拡大の作用を用いない場合を示す断面図である。It is sectional drawing which shows the case where the effect | action of the exit pupil expansion which a light-guide plate has is not used. 本実施形態に係る導光板15が有する射出瞳拡大の作用を用いた場合の断面図である。It is sectional drawing at the time of using the effect | action of the exit pupil expansion which the light-guide plate 15 which concerns on this embodiment has. 射出瞳径と虚像距離深度の関係を説明する図である。It is a figure explaining the relationship between an exit pupil diameter and a virtual image distance depth. 射出瞳径と虚像距離深度の関係を説明する図である。It is a figure explaining the relationship between an exit pupil diameter and a virtual image distance depth. 光線方向制御素子の一例を示す図である。It is a figure which shows an example of a light direction control element. 光線方向制御素子の一例を示す図である。It is a figure which shows an example of a light direction control element. レンズそれぞれに対応するプリズムを光線方向制御素子とした場合の構成例を示す斜視図である。It is a perspective view which shows the structural example at the time of using the prism corresponding to each lens as a light beam direction control element. レンズそれぞれに対応するプリズムを光線方向制御素子とした場合の構成例を示す斜視図である。It is a perspective view which shows the structural example at the time of using the prism corresponding to each lens as a light beam direction control element. レンズそれぞれに対応するプリズムを光線方向制御素子とした場合の構成例を示す斜視図である。It is a perspective view which shows the structural example at the time of using the prism corresponding to each lens as a light beam direction control element. シリンドリカルレンズ2枚を直交させてなるアレイ光学系の構成を説明する図である。It is a figure explaining the structure of the array optical system formed by making two cylindrical lenses orthogonally cross. 光学要素の2次元的な配列パターンの一例を示す図である。It is a figure which shows an example of the two-dimensional arrangement pattern of an optical element. 光学要素の2次元的な配列パターンの一例を示す図である。It is a figure which shows an example of the two-dimensional arrangement pattern of an optical element. 光学要素の2次元的な配列パターンの一例を示す図である。It is a figure which shows an example of the two-dimensional arrangement pattern of an optical element. 導光板の構成を示す模式図である。It is a schematic diagram which shows the structure of a light-guide plate. 導光板がホログラム反射型である本実施の形態、および、導光板のもつ射出瞳拡大作用の効果を説明する図である。It is a figure explaining the effect of the exit pupil expansion effect which this embodiment and the light guide plate have a light guide plate of a hologram reflection type. 本実施の形態に係る画像表示方法について基本概念を説明する図である。It is a figure explaining the basic concept about the image display method which concerns on this Embodiment. 導光板を備えた本実施の形態に係る画像表示方法について基本概念を説明する図である。It is a figure explaining the basic concept about the image display method which concerns on this Embodiment provided with the light-guide plate. 観察者の視度を考慮した画像処理について説明する図である。It is a figure explaining the image processing which considered the observer's diopter. 観察者の視度を考慮した画像処理について説明する図である。It is a figure explaining the image processing which considered the observer's diopter. 観察者の視度を考慮した画像処理について説明する図である。It is a figure explaining the image processing which considered the observer's diopter. 瞳孔径による輝度ムラの変化を示す図である。It is a figure which shows the change of the brightness nonuniformity by a pupil diameter. 瞳孔径による輝度ムラの変化を示す図である。It is a figure which shows the change of the brightness nonuniformity by a pupil diameter. 輝度ムラ補正の画像処理を説明する図である。It is a figure explaining the image processing of brightness nonuniformity correction. 輝度ムラ補正の画像処理を説明する図である。It is a figure explaining the image processing of brightness nonuniformity correction. 具体的構成例1の形態に係る画像表示装置の構成を説明する図である。It is a figure explaining the structure of the image display apparatus which concerns on the form of the specific structural example 1. FIG. 具体的構成例2の形態に係るコリメート光学系のレンズ構成を説明する図である。It is a figure explaining the lens structure of the collimating optical system which concerns on the form of the specific structural example 2. FIG. 具体的構成例2の形態に係るコリメート光学系のMTF特性を示す図である。It is a figure which shows the MTF characteristic of the collimating optical system which concerns on the form of the specific structural example 2. FIG. 具体的構成例2の形態に係るコリメート光学系のMTF特性を示す図である。It is a figure which shows the MTF characteristic of the collimating optical system which concerns on the form of the specific structural example 2. FIG. 具体的構成例2の形態に係るコリメート光学系のMTF特性を示す図である。It is a figure which shows the MTF characteristic of the collimating optical system which concerns on the form of the specific structural example 2. FIG. 具体的構成例3の形態に係る遮光マスクを備えたコリメート光学系を説明する図である。It is a figure explaining the collimating optical system provided with the light shielding mask which concerns on the form of the specific structural example 3. FIG. 具体的構成例3の形態に係る遮光マスクの効果を示す図である。It is a figure which shows the effect of the light shielding mask which concerns on the form of the specific structural example 3. FIG. 具体的構成例3の形態に係る遮光マスクの効果を示す図である。It is a figure which shows the effect of the light shielding mask which concerns on the form of the specific structural example 3. FIG. 具体的構成例3の形態に係る遮光マスクの効果を示す図である。It is a figure which shows the effect of the light shielding mask which concerns on the form of the specific structural example 3. FIG. 具体的構成例4の形態に係る虚像距離深度拡大の効果を示す図である。It is a figure which shows the effect of the virtual image distance depth expansion which concerns on the form of the specific structural example 4. FIG. 具体的構成例4の形態に係る虚像距離深度拡大の効果を示す図である。It is a figure which shows the effect of the virtual image distance depth expansion which concerns on the form of the specific structural example 4. FIG. 具体的構成例5の形態に係る導光板とのカップリング構造の一例を示す図である。It is a figure which shows an example of a coupling structure with the light-guide plate which concerns on the form of the specific structural example 5. FIG. 具体的構成例5の形態に係る導光板とのカップリング構造の一例を示す図である。It is a figure which shows an example of a coupling structure with the light-guide plate which concerns on the form of the specific structural example 5. FIG. 具体的構成例6の形態に係る導光板とのカップリング構造の一例を示す図である。It is a figure which shows an example of a coupling structure with the light-guide plate which concerns on the form of the specific structural example 6. FIG. 実施例6の形態に係る導光板とのカップリング構造の一例を示す図である。It is a figure which shows an example of a coupling structure with the light-guide plate which concerns on the form of Example 6. FIG. 具体的構成例7の形態に係る画像表示の一例を示す図である。It is a figure which shows an example of the image display which concerns on the form of the specific structural example 7. FIG. 本実施形態に係る画像処理装置をヘッドマウントディスプレイ(HMD)に適用した例を示す模式図である。It is a schematic diagram which shows the example which applied the image processing apparatus which concerns on this embodiment to a head mounted display (HMD). 本実施形態に係る画像処理装置を車両のヘッドアップディスプレイ(HUD)装置に適用した例を示す模式図である。It is a schematic diagram which shows the example which applied the image processing apparatus which concerns on this embodiment to the head-up display (HUD) apparatus of a vehicle.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 なお、説明は以下の順序で行うものとする。
 1.画像表示装置の基本となる構成例
 2.導光板を備えた画像表示装置の構成例
 3.射出瞳径と虚像深度の関係
 4.光線方向制御素子、及びレンズの構成例
 5.光学要素の2次元的な配列パターンの例
 6.導光板の構成例
 7.画像表示装置における虚像の繋ぎ合わせ
 8.画像表示装置の具体的構成例
 9.ヘッドマウントディスプレイ、ヘッドアップディスプレイへの適用
The description will be made in the following order.
1. 1. Basic configuration example of image display device 2. Configuration example of image display device provided with light guide plate 3. Relationship between exit pupil diameter and virtual image depth 4. Configuration example of light direction control element and lens 5. Example of two-dimensional arrangement pattern of optical elements 6. Configuration example of light guide plate 7. Virtual image stitching in an image display device 8. Specific configuration example of image display device Application to head mounted display and head up display
 1.画像表示装置の基本となる構成例
 図1は、本実施形態に係る画像表示装置の基本的な構成を説明するための模式図(光路図)である。画像表示装置は、表示パネル1とコリメート光学系(アレイ光学系2)から構成される。コリメート光学系は、1つ以上のレンズ3と光線方向制御素子4からなる光学要素2a,2b,2c,・・・を2次元的に配列したアレイ光学系2である。図1では、アレイ光学系2を構成する5つの光学要素2a,2b,2c,・・・を示しているが、アレイ光学系2を構成する光学要素は当然5つに限定されるものではない。
1. FIG. 1 is a schematic diagram (optical path diagram) for explaining a basic configuration of an image display apparatus according to the present embodiment. The image display device includes a display panel 1 and a collimating optical system (array optical system 2). The collimating optical system is an array optical system 2 in which optical elements 2a, 2b, 2c,... Composed of one or more lenses 3 and a light beam direction control element 4 are two-dimensionally arranged. In FIG. 1, five optical elements 2a, 2b, 2c,... Constituting the array optical system 2 are shown, but the number of optical elements constituting the array optical system 2 is naturally not limited to five. .
 表示パネル1において、光学要素2a,2b,2c,・・・の中央直下に位置する画素から出射した光線は、アレイ光学系2により瞳5の中心に向かう平行光束に変換され、瞳5のレンズ作用により網膜面6に結像される。光線方向制御素子4は、プリズム等から構成され、光線を効率良く瞳5に導く機能を有する。このとき、観察者にはあたかも網膜面6と共役関係にある虚像面7で各画素が発光しているように視認される。 In the display panel 1, the light beam emitted from the pixel located immediately below the center of the optical elements 2 a, 2 b, 2 c,... Is converted into a parallel light beam directed toward the center of the pupil 5 by the array optical system 2. An image is formed on the retina surface 6 by the action. The light beam direction control element 4 is composed of a prism or the like and has a function of efficiently guiding light beams to the pupil 5. At this time, the viewer visually recognizes that each pixel emits light on the virtual image plane 7 that is conjugate with the retinal plane 6.
 図1において、好ましい形態によれば、図2に示すように、光学要素2a,2b,2c,・・・のある境界部分で、表示パネル1を複数の表示パネル1a、1b、1cに分割し、光学ユニット8a,8b,8cを形成してもよい。図1の形態では、視野角(瞳5に入射する角度)に比例して表示パネル1の幅は長くなるが、分割することで必要な表示パネルのサイズは小さくなり、特に広視野を得る場合、製造プロセスや歩留まりの観点でも有利である。後で図16で説明するように、分割した表示パネル1a、1b、1cに対応するユニットを傾けることで、視野を拡大することができる。 In FIG. 1, according to a preferred embodiment, as shown in FIG. 2, the display panel 1 is divided into a plurality of display panels 1a, 1b, 1c at a boundary portion where the optical elements 2a, 2b, 2c,. The optical units 8a, 8b, and 8c may be formed. In the form of FIG. 1, the width of the display panel 1 becomes longer in proportion to the viewing angle (the angle incident on the pupil 5), but the necessary size of the display panel becomes smaller by dividing, and in particular, a wide viewing field is obtained. It is also advantageous from the viewpoint of manufacturing process and yield. As will be described later with reference to FIG. 16, the field of view can be expanded by tilting the units corresponding to the divided display panels 1a, 1b, and 1c.
 また、好ましい形態によれば、アレイ光学系2において、隣接した光学要素2a,2b,2c,・・・の間で生じる信号光のクロストークを抑えるため、表示パネル1から瞳5までの光路内に遮光マスクを挿入することが望ましい。図3A~図3Cは、光学要素2a,2b,2c,・・・の有効エリア形状に応じた遮光マスクの開口形状を示す模式図である。遮光マスクは、アレイ光学系2を構成する光学要素2a,2b,2c,・・・の有効エリア形状と等しい開口形状を有することが望ましい。図3Aは開口形状が円形である遮光マスク10、図3Bは開口形状が六角形である遮光マスク12、図3Cは開口形状が四角形である遮光マスク14、をそれぞれ示している。 Further, according to a preferred embodiment, in the array optical system 2, in the optical path from the display panel 1 to the pupil 5 in order to suppress crosstalk of signal light generated between adjacent optical elements 2 a, 2 b, 2 c,. It is desirable to insert a light shielding mask in 3A to 3C are schematic views showing the opening shape of the light shielding mask corresponding to the effective area shape of the optical elements 2a, 2b, 2c,... The light shielding mask desirably has an opening shape equal to the effective area shape of the optical elements 2a, 2b, 2c,... Constituting the array optical system 2. 3A shows a light shielding mask 10 having a circular opening shape, FIG. 3B shows a light shielding mask 12 having a hexagonal opening shape, and FIG. 3C shows a light shielding mask 14 having a rectangular opening shape.
 図3Aは、光学要素2a,2b,2c,・・・が円形の場合を示しており、開口形状の周囲に破線で示す複数の円形の領域は、光学要素2a,2b,2c,・・・の有効エリア9を示している。図3Bは、光学要素2a,2b,2c,・・・が六角形の場合を示しており、開口形状の周囲に破線で示す複数の六角形の領域は、光学要素2a,2b,2c,・・・の有効エリア11を示している。図3Cは、光学要素2a,2b,2c,・・・が四角形の場合を示しており、開口形状の周囲に破線で示す複数の四角形の領域は、光学要素2a,2b,2c,・・・の有効エリア13を示している。このように、遮光マスク10,12,14の開口形状は、光学要素2a,2b,2c,・・・の有効エリア9,11,13とほぼ一致している。 FIG. 3A shows a case where the optical elements 2a, 2b, 2c,... Are circular, and a plurality of circular regions indicated by broken lines around the aperture shape are optical elements 2a, 2b, 2c,. The effective area 9 is shown. FIG. 3B shows a case where the optical elements 2a, 2b, 2c,... Are hexagonal, and a plurality of hexagonal regions indicated by broken lines around the opening shape are optical elements 2a, 2b, 2c,. The effective area 11 is shown. FIG. 3C shows a case where the optical elements 2a, 2b, 2c,... Are square, and a plurality of rectangular areas indicated by broken lines around the aperture shape are optical elements 2a, 2b, 2c,. The effective area 13 is shown. As described above, the opening shapes of the light shielding masks 10, 12, and 14 substantially coincide with the effective areas 9, 11, and 13 of the optical elements 2a, 2b, 2c,.
 図3A~図3Cに示すように、遮光マスク10,12,14の開口形状を光学要素2a,2b,2c,・・・の有効エリア9.11,13の形状とほぼ一致させることで、開口率がより高くなり、なるべく明るい視認画像を取得して開口率を高めることができる。従って、遮光線幅を極力細く選ぶことが望ましいが、製造時のアライメントズレを考慮すると、光学要素2a,2b,2c,・・・の境界を確実に遮光するためには、最細部の遮光線幅dminは0.4mm以上であることが望ましい。 As shown in FIGS. 3A to 3C, the aperture shape of the light shielding masks 10, 12, and 14 is substantially matched with the shapes of the effective areas 9.11 and 13 of the optical elements 2a, 2b, 2c,. The ratio becomes higher, and a visible image as bright as possible can be acquired to increase the aperture ratio. Therefore, it is desirable to select the light shielding line width as narrow as possible. However, in consideration of the alignment misalignment at the time of manufacture, in order to reliably shield the boundary between the optical elements 2a, 2b, 2c,. The width d min is desirably 0.4 mm or more.
 2.導光板を備えた画像表示装置の構成例
 図4Aおよび図4Bは、本実施形態による導光板15を備えた画像表示装置の基本的な考え方と構成を説明する光路図である。ここでは、一例として、マルチミラー型でミラー面の垂直断面方向に射出瞳拡大の作用を有する導光板15を示す。図4Aは、比較として、導光板15が有する射出瞳拡大の作用を用いない場合を示す断面図である。図4Aに示す例では、必要な視野角に応じて光学要素の配置は幾何的に決まる。図4Bは、本実施形態に係る導光板15が有する射出瞳拡大の作用を用いた場合の断面図であり、図4Bに示すアレイ光学系2は図4Aに示すアレイ光学系2よりも更に小型化できるため、本来必要なサイズの光学ユニット18よりも小型化できる。
2. 4A and 4B are optical path diagrams illustrating the basic concept and configuration of an image display device including a light guide plate 15 according to the present embodiment. Here, as an example, a light guide plate 15 having a function of enlarging an exit pupil in a vertical cross-sectional direction of the mirror surface is shown. FIG. 4A is a cross-sectional view showing a case where the action of enlarging the exit pupil of the light guide plate 15 is not used as a comparison. In the example shown in FIG. 4A, the arrangement of the optical elements is geometrically determined according to the required viewing angle. 4B is a cross-sectional view in the case of using the action of enlarging the exit pupil of the light guide plate 15 according to the present embodiment, and the array optical system 2 shown in FIG. 4B is smaller than the array optical system 2 shown in FIG. 4A. Therefore, the optical unit 18 can be made smaller than the optical unit 18 of the originally required size.
 図4Bに示す本実施形態に係る構成例が有する効果を、アレイ光学系2の中央に位置する光学要素2bに隣接する光学要素2a,2cに着目して考える。この位置から光束径a,cの平行光束が比較的大きな角度で出射された場合、導光板15が無ければ光束径a,cでは瞳5から外れて視認されなくなるのに対し、導光板15が有する射出瞳拡大の作用で光束径A,Cに広がることで、瞳5に入射させることが可能となる。これにより、アレイ光学系2の中央近傍に位置する光学要素2bから視野角の大きな光線束を取り出すことができるため、結果として光学ユニットを小型化できる。なお、図4Aにおいて、アレイ光学系2の出射直後の各光束径を光束径16a,16b,16cで示し、導光板15の出射直後の各光束径を光束径17a,17b,17cで示している。 The effect of the configuration example according to the present embodiment shown in FIG. 4B will be considered by focusing attention on the optical elements 2 a and 2 c adjacent to the optical element 2 b located at the center of the array optical system 2. When the parallel light fluxes having the light beam diameters a and c are emitted from this position at a relatively large angle, the light guide plates 15 are not visible from the pupil 5 at the light beam diameters a and c without the light guide plates 15. By expanding the exit pupil to the light beam diameters A and C, the entrance pupil 5 can be made incident. As a result, a light beam having a large viewing angle can be extracted from the optical element 2b located near the center of the array optical system 2, and as a result, the optical unit can be miniaturized. In FIG. 4A, the respective light beam diameters immediately after emission from the array optical system 2 are indicated by light beam diameters 16a, 16b, and 16c, and the respective light beam diameters immediately after emission from the light guide plate 15 are indicated by light beam diameters 17a, 17b, and 17c. .
 図4Bに示すアレイ光学系18は、導光板15を用いない場合に導光板15を用いた場合と同等の視野角を確保するために必要なサイズを示している。図4Bに示すアレイ光学系18とアレイ光学系2を比較すると明らかなように、導光板15を用いることで、アレイの数が減少し、アレイ光学系2の大幅な小型化を達成することができる。また、導光板15を用いることで瞳5の正面にアレイ光学系2が位置しなくなるため、導光板15を透過したシースルー画像を瞳5が視認することができる。従って、ユーザは、例えば表示パネル1により表示したAR(Augmented Reality)画像と導光板15を透過した実世界の物体を重畳して視認することができる。 The array optical system 18 shown in FIG. 4B shows a size necessary for securing a viewing angle equivalent to that when the light guide plate 15 is used when the light guide plate 15 is not used. As is apparent from a comparison between the array optical system 18 and the array optical system 2 shown in FIG. 4B, the use of the light guide plate 15 reduces the number of arrays and achieves a significant downsizing of the array optical system 2. it can. Further, since the array optical system 2 is not positioned in front of the pupil 5 by using the light guide plate 15, the see-through image transmitted through the light guide plate 15 can be visually recognized by the pupil 5. Therefore, the user can visually recognize, for example, an AR (Augmented Reality) image displayed on the display panel 1 and an object in the real world that has passed through the light guide plate 15.
 3.射出瞳径と虚像深度の関係
 図5Aおよび図5Bは、本実施形態による射出瞳径と虚像深度の関係を説明する図である。図5Aは、射出瞳径D1が比較的大きい場合に、眼がピントを合わせる距離、すなわち虚像距離に応じて観察画像の解像感がどのように変化するかを示している。ここで、虚像距離を手元から遠方に変えるにつれ、焦点距離はfa,fb,fcのように変化する。瞳5に入射した平行光束は、焦点距離fa,fb,fcの位置に一度集光された後、網膜面6で錯乱円21a,21b,21cの径をもって広がる。焦点距離faは錯乱円21aに対応し、焦点距離fbは錯乱円21bに対応し、焦点距離fcは錯乱円21cに対応している。このため、十分な解像感が得られるのは、虚像距離を遠方に合わせた場合となる。
3. Relationship between Exit Pupil Diameter and Virtual Image Depth FIGS. 5A and 5B are diagrams illustrating the relationship between exit pupil diameter and virtual image depth according to the present embodiment. FIG. 5A shows how the resolution of the observation image changes according to the distance that the eye focuses, that is, the virtual image distance, when the exit pupil diameter D1 is relatively large. Here, as the virtual image distance is changed from the hand to the far side, the focal length changes as fa, fb, and fc. The parallel light flux that has entered the pupil 5 is once condensed at the positions of the focal lengths fa, fb, and fc, and then spreads on the retina surface 6 with the diameters of the circles of confusion 21a, 21b, and 21c. The focal length fa corresponds to the circle of confusion 21a, the focal length fb corresponds to the circle of confusion 21b, and the focal length fc corresponds to the circle of confusion 21c. For this reason, sufficient resolution can be obtained when the virtual image distance is adjusted to a long distance.
 一方、図5Bは、射出瞳径D2を絞った場合を示しており、瞳5に入射する平行光束自体が細いため、焦点距離fa,fb,fcの変化に伴う錯乱円径22a,22b,22cの変化は少なく、より手元の虚像距離まで解像感が得られる。従って、射出瞳径を小さくすることで、虚像深度を拡大することができる。 On the other hand, FIG. 5B shows a case where the exit pupil diameter D2 is reduced. Since the parallel light flux itself incident on the pupil 5 is thin, the circles of confusion 22a, 22b, and 22c associated with changes in the focal lengths fa, fb, and fc. There is little change in the resolution, and a sense of resolution can be obtained up to the virtual image distance at hand. Therefore, the virtual image depth can be expanded by reducing the exit pupil diameter.
 但し、射出瞳径を小さくしていくと射出された光束が回折により広がり、平行光束を維持できなくなるため、射出瞳径は0.5mm以上であることが望ましい。射出瞳径を絞るには、光学要素2a,2b,2c,・・・の有効エリアを小さくするか、遮光マスクの開口サイズを小さくすればよい。 However, if the exit pupil diameter is reduced, the emitted light beam spreads by diffraction and the parallel light beam cannot be maintained. Therefore, the exit pupil diameter is desirably 0.5 mm or more. In order to reduce the exit pupil diameter, the effective area of the optical elements 2a, 2b, 2c,... May be reduced or the opening size of the light shielding mask may be reduced.
 4.光線方向制御素子、及びレンズの構成例
 図6Aおよび図6Bは、本実施の形態による光線方向制御素子4の一例を示す図である。図6Aは、上述の説明で例示してきたように、レンズ3それぞれに対応する複数のプリズム104を光線方向制御素子4とした例を示す模式図である。図6Bは、複数のレンズ3を覆う凸レンズ機能を有するフィールドレンズ23を光線方向制御素子4とした例を示す模式図である。
4). Example of Configuration of Light Direction Control Element and Lens FIGS. 6A and 6B are diagrams illustrating an example of the light direction control element 4 according to the present embodiment. FIG. 6A is a schematic diagram showing an example in which a plurality of prisms 104 corresponding to the respective lenses 3 are used as the light beam direction control elements 4 as exemplified in the above description. FIG. 6B is a schematic diagram showing an example in which a field lens 23 having a convex lens function covering a plurality of lenses 3 is used as a light direction control element 4.
 図7A~図7Cは、図6Aと同様にレンズ3それぞれに対応するプリズム104を光線方向制御素子4とした場合の構成例を示す斜視図である。図7A及び図7Bは、光学要素2a,2b,2c,・・・が六角形の場合を示しており、六角形の複数のプリズム104を複数のレンズ3それぞれに対応して配置した例を示している。また、図7Cは、光学要素2a,2b,2c,・・・が四角形の場合を示しており、四角形の複数のプリズム104を複数のレンズ3それぞれに対応して配置した例を示している。 FIGS. 7A to 7C are perspective views showing configuration examples in the case where the prism 104 corresponding to each of the lenses 3 is used as the light direction control element 4 as in FIG. 6A. 7A and 7B show a case where the optical elements 2a, 2b, 2c,... Are hexagonal, and show an example in which a plurality of hexagonal prisms 104 are arranged corresponding to the plurality of lenses 3, respectively. ing. 7C shows a case where the optical elements 2a, 2b, 2c,... Are square, and shows an example in which a plurality of square prisms 104 are arranged corresponding to the plurality of lenses 3, respectively.
 レンズ3としては、光軸に対して回転対称なレンズを適用することができる。一方、レンズ3は、光軸に対して回転対称なレンズ以外であっても良い。図8は、図6Bと同様にフィールドレンズ23を光線方向制御素子4とした例を示しており、レンズ3として、シリンドリカルレンズアレイ24a,24bを直交させて形成したアレイ光学系24を用いた例を示している。図8に示すように、シリンドリカルレンズアレイ24a,24bを直交させることで、小型のレンズを複数設けた場合と同等の効果を得ることができる。 As the lens 3, a lens that is rotationally symmetric with respect to the optical axis can be applied. On the other hand, the lens 3 may be other than a lens that is rotationally symmetric with respect to the optical axis. FIG. 8 shows an example in which the field lens 23 is a light direction control element 4 as in FIG. 6B, and an example in which an array optical system 24 formed by orthogonally forming cylindrical lens arrays 24 a and 24 b is used as the lens 3. Is shown. As shown in FIG. 8, by making the cylindrical lens arrays 24a and 24b orthogonal, an effect equivalent to the case where a plurality of small lenses are provided can be obtained.
 5.光学要素の2次元的な配列パターンの例
 図9A~図9Cは、本実施形態に係る光学要素の2次元的な配列パターンの一例を示す図である。図9Aおよび図9Bは、光学要素25a,25b,25c,・・・、光学要素26a,26b,26c,・・・をハニカム配列した例を示しているが、図9Aと図9Bとでは、配列方向が互いに90°だけ異なっている。図9Cは、光学要素27a,27b,27c,・・・を正方格子配列した例を示している。図9A~図9Cはあくまで一例であり、光学要素が表示パネル1を効率よく覆う配列パターンであれば、これらに限定されない。また、簡便のため、図9A~図9Cでは、光学要素の有効エリア形状を円形として図示したが、図3B、図3Cに示したように、有効エリアを六角形や四角形としてもよい。
5). Example of Two-dimensional Array Pattern of Optical Elements FIGS. 9A to 9C are diagrams showing an example of a two-dimensional array pattern of optical elements according to the present embodiment. 9A and 9B show an example in which the optical elements 25a, 25b, 25c,... And the optical elements 26a, 26b, 26c,. The directions differ from each other by 90 °. FIG. 9C shows an example in which the optical elements 27a, 27b, 27c,. 9A to 9C are merely examples, and the present invention is not limited to these as long as the optical elements efficiently cover the display panel 1. For convenience, in FIGS. 9A to 9C, the effective area shape of the optical element is shown as a circle. However, as shown in FIGS. 3B and 3C, the effective area may be a hexagon or a rectangle.
 6.導光板の構成例
 図10は、本実施形態による導光板15を示す斜視図である。一方、導光板15は図10と異なる構成とすることもできる。図10に示すように、導光板15は、複数の反射面15aを有して構成されている。また、図11は、本実施形態による導光板の別の例を適用した画像表示装置を示す光路図である。図11では、ホログラム反射型の導光板28を使用しており、コリメート光学系から射出された光束径a,b,cは、導光板28が有する射出瞳拡大の作用により光束径A,B,Cにそれぞれ広げられる。これにより、図4Bと同様に、アレイ光学系1の中央近傍に位置する光学要素2a,2b,2cから視野角の大きな光線束を取り出すことができるため、光学ユニットを小型化できる。
6). Configuration Example of Light Guide Plate FIG. 10 is a perspective view showing the light guide plate 15 according to the present embodiment. On the other hand, the light guide plate 15 may have a configuration different from that shown in FIG. As shown in FIG. 10, the light guide plate 15 has a plurality of reflecting surfaces 15a. FIG. 11 is an optical path diagram showing an image display device to which another example of the light guide plate according to the present embodiment is applied. In FIG. 11, a hologram reflection type light guide plate 28 is used, and the light beam diameters a, b, c emitted from the collimating optical system are changed by the action of enlarging the exit pupil of the light guide plate 28. Each is spread to C. As a result, as in FIG. 4B, a light bundle having a large viewing angle can be extracted from the optical elements 2a, 2b, 2c located in the vicinity of the center of the array optical system 1, so that the optical unit can be downsized.
 7.画像表示装置における虚像の繋ぎ合わせ
 図12は、本実施形態の画像表示装置による画像表示方法の基本的な考え方を説明するための光路図である。図1で説明したように、画像表示装置は、表示パネル1とコリメート光学系から構成され、かつ、コリメート光学系は、1つ以上のレンズ3と光線方向制御素子4からなる光学要素2a,2b,2c,・・・を2次元的に配列したアレイ光学系2である。表示パネル1は、光学要素2a,2b,2c,・・・に対応して分割された表示範囲31a,31b,31c,・・・を有し、その範囲に含まれる画素から出射した光線は、コリメート光学系を介して視野角範囲32a,32b,32c,・・・を有する光束を形成する。また、視野角範囲32a、32b、32c,・・・を有する光束は、範囲33a、33b、33c,・・・でそれぞれ網膜面6に結像される。このとき観察者は、網膜面6と共役関係にある虚像面7に範囲34a、34b、34c,・・・で分割表示された虚像を視認し、複数の虚像を繋ぎ合わせて範囲34で1つの虚像を得る。
7). FIG. 12 is an optical path diagram for explaining the basic concept of the image display method by the image display device of the present embodiment. As described with reference to FIG. 1, the image display apparatus includes a display panel 1 and a collimating optical system, and the collimating optical system includes optical elements 2 a and 2 b including one or more lenses 3 and a light beam direction control element 4. , 2c,... Are arrayed two-dimensionally. The display panel 1 has display ranges 31a, 31b, 31c,... Divided corresponding to the optical elements 2a, 2b, 2c,..., And light rays emitted from the pixels included in the ranges are as follows. A light beam having viewing angle ranges 32a, 32b, 32c,... Is formed through a collimating optical system. Further, the light fluxes having the viewing angle ranges 32a, 32b, 32c,... Are imaged on the retinal surface 6 in the ranges 33a, 33b, 33c,. At this time, the observer visually recognizes the virtual image divided and displayed in the ranges 34a, 34b, 34c,... On the virtual image plane 7 that is conjugate with the retinal plane 6, and connects the plurality of virtual images to one in the range 34. Get a virtual image.
 さらに、複数の虚像が1つの虚像にシームレスに繋ぎ合わされるよう、虚像面7の虚像範囲34a,34b,34c,・・・に対応する分割画像を決定し、表示パネル1の表示範囲31a、31b、31c,・・・に、この分割画像をそれぞれ表示する。これにより、ユーザは、複数の虚像が1つの虚像にシームレスに繋ぎ合わされた像を視認することができる。 Further, the divided images corresponding to the virtual image ranges 34a, 34b, 34c,... Of the virtual image plane 7 are determined so that a plurality of virtual images are seamlessly connected to one virtual image, and the display ranges 31a, 31b of the display panel 1 are determined. , 31c,..., The divided images are displayed. Thereby, the user can visually recognize an image in which a plurality of virtual images are seamlessly connected to one virtual image.
 図13は、本実施の形態による導光板15を備えた画像表示方法の基本的な考え方を説明するための光路図である。ここでは、導光板15が持つ射出瞳拡大の作用を用いる断面方向の図を示す。導光板15を透過した光束は、範囲37a、37b、37c,・・・でそれぞれ網膜面6に結像される。導光板15を介して得られる虚像面7の虚像範囲38a、38b、38cが、1つの虚像38にシームレスに繋ぎ合わされるよう、表示パネル1の表示範囲35a、35b、35cに対応する分割画像をそれぞれ決定すればよい。 FIG. 13 is an optical path diagram for explaining the basic concept of the image display method including the light guide plate 15 according to the present embodiment. Here, a cross-sectional view using the action of enlarging the exit pupil of the light guide plate 15 is shown. The light beams transmitted through the light guide plate 15 are imaged on the retina surface 6 in the ranges 37a, 37b, 37c,. The divided images corresponding to the display ranges 35a, 35b, and 35c of the display panel 1 are connected so that the virtual image ranges 38a, 38b, and 38c of the virtual image plane 7 obtained through the light guide plate 15 are seamlessly connected to one virtual image 38. Each should be decided.
 なお、導光板15の射出瞳拡大の作用を用いる場合と用いない場合とで、表示パネル1の表示範囲を等しくしても、虚像面7で得られる虚像範囲は当然異なるため、表示パネル1に表示させる分割画像は射出瞳拡大の作用を考慮して決定する必要がある。 Note that the virtual image range obtained on the virtual image plane 7 is naturally different even if the display range of the display panel 1 is made equal depending on whether or not the action of expanding the exit pupil of the light guide plate 15 is used. The divided image to be displayed needs to be determined in consideration of the action of enlarging the exit pupil.
 また、本実施形態の好ましい形態によれば、観察者の視度、および観察者の視度補正レンズを介した視度に応じて、表示パネルに表示させる分割画像にキャリブレーションをかけるようにする。図14A~図14Cは、視度に応じたキャリブレーション方法を説明するための模式図である。図14Aは、観察者の視度および視度補正レンズを介した視度に応じて、網膜面6の結像位置が変化する様子を示す模式図である。観察者が十分遠方の虚像面までピントを合わせることができる場合、焦点距離はfaとなり、このとき、隣接する光学要素2a、2bから同じ角度で出射された2つの光束は、網膜面6で1点に結像される。 Further, according to a preferred embodiment of the present embodiment, the divided images to be displayed on the display panel are calibrated according to the diopter of the observer and the diopter through the diopter correction lens of the observer. . 14A to 14C are schematic diagrams for explaining a calibration method according to diopter. FIG. 14A is a schematic diagram showing how the imaging position of the retinal surface 6 changes according to the diopter of the observer and the diopter through the diopter correction lens. When the observer can focus to a sufficiently far virtual image plane, the focal length is fa, and at this time, two light beams emitted from the adjacent optical elements 2a and 2b at the same angle are 1 on the retinal surface 6. It is imaged at a point.
 一方、観察者が視度調整できる範囲がfbまでの場合、2つの光束は焦点距離fbの位置で一度集光された後、網膜面6の異なる位置に到達する。従って、図14Bに示すように、光学要素2a,2bに対応する表示画像39a,39bは、焦点距離faの視認画像41からずれた視認画像40a、40bをそれぞれ形成し、像が重なって見えることから解像感を劣化させる。その対策として、図14Cのように、観察者の焦点距離faに応じて、表示画像42a、42bをシフトさせるキャリブレーションをかけることで、焦点距離faにおける理想的な視認画像41と等しい視認画像43a、43bを得ることができる。図14Cに示すように、表示画像42aは表示画像39aに対して上方向にシフトし、表示画像42bは表示画像39bに対して下方向にシフトしている。これにより、表示画像42a、42bは、焦点距離faの視認画像41と一致する視認画像43a、43bをそれぞれ形成し、解像感の劣化を抑止できる。 On the other hand, when the range in which the observer can adjust the diopter is up to fb, the two light beams are once condensed at the position of the focal length fb and then reach different positions on the retinal surface 6. Accordingly, as shown in FIG. 14B, the display images 39a and 39b corresponding to the optical elements 2a and 2b form visual images 40a and 40b that are shifted from the visual image 41 at the focal distance fa, and the images appear to overlap. The resolution will deteriorate. As a countermeasure against this, as shown in FIG. 14C, by performing calibration that shifts the display images 42a and 42b according to the focal length fa of the observer, a visual image 43a that is equal to the ideal visual image 41 at the focal length fa. 43b can be obtained. As shown in FIG. 14C, the display image 42a is shifted upward with respect to the display image 39a, and the display image 42b is shifted downward with respect to the display image 39b. Thereby, the display images 42a and 42b form visual images 43a and 43b that coincide with the visual image 41 at the focal length fa, respectively, and can suppress degradation of the resolution.
 網膜面6の結像位置の変化は、観察者の視度および視度補正レンズを介した視度だけでなく、眼がピントを合わせる距離、すなわち虚像距離を変化させても生じる。そのため、本実施形態の好ましい形態によれば、観察者の視線を検出することにより虚像距離を算出し、表示画像をシフトさせるキャリブレーションをかけることが望ましい。なお、眼がピントを合わせる距離は、ユーザの眼の輻輳角を検出することで取得可能であり、これに基づいて表示画像をシフトさせる。 The change in the imaging position of the retinal surface 6 occurs not only by the diopter of the observer and the diopter through the diopter correction lens, but also by changing the distance that the eye focuses, that is, the virtual image distance. For this reason, according to a preferred embodiment of the present embodiment, it is desirable to calculate the virtual image distance by detecting the line of sight of the observer and to perform calibration for shifting the display image. Note that the distance at which the eyes are focused can be acquired by detecting the convergence angle of the user's eyes, and the display image is shifted based on this.
 また、本実施形態の好ましい形態によれば、観察者の瞳孔径に応じて変化する輝度ムラを画像処理技術で補正することが望ましい。図15Aおよび図15Bは、瞳孔径に応じた輝度ムラの変化を説明する光路図である。図15Aは、瞳孔径A1が比較的大きい場合であり、表示パネル1の表示範囲が十分に大きいとき、光学要素2a、2b、2cから射出された光束は、瞳5でケラレたのち結像範囲44a、44b、44cで網膜面6にそれぞれ結像される。そして、結像範囲44a、44b、44cがもつ輝度分布45a,45b,45cを重ね合わせることで輝度分布45が形成される。図15Aの場合、輝度分布45a,45b,45cの重なりが生じるため、輝度ムラのある視認画像46が得られる。 In addition, according to a preferred embodiment of the present embodiment, it is desirable to correct the luminance unevenness that changes according to the pupil diameter of the observer with an image processing technique. FIGS. 15A and 15B are optical path diagrams illustrating changes in luminance unevenness according to pupil diameter. FIG. 15A shows a case where the pupil diameter A1 is relatively large. When the display range of the display panel 1 is sufficiently large, the light beams emitted from the optical elements 2a, 2b, and 2c are vignetted at the pupil 5 and then the imaging range. Images are formed on the retina surface 6 at 44a, 44b, and 44c, respectively. The luminance distribution 45 is formed by superimposing the luminance distributions 45a, 45b, and 45c of the imaging ranges 44a, 44b, and 44c. In the case of FIG. 15A, since the luminance distributions 45a, 45b, and 45c overlap, a visual image 46 with uneven luminance is obtained.
 図15Bは、瞳孔径A2が小さい場合であり、図15Aと同様に視認画像49の輝度ムラが生じる。ここで、図15Aと図15Bを比較すると、輝度ムラは光学要素2a,2b,2cが網膜面6にそれぞれ形成する輝度分布の重なり方で決まり、さらに、輝度分布は瞳孔径に依存することが分かる。 FIG. 15B shows a case where the pupil diameter A2 is small, and the luminance unevenness of the visual image 49 occurs as in FIG. 15A. Here, when FIG. 15A is compared with FIG. 15B, the luminance unevenness is determined by the overlapping of the luminance distributions formed on the retinal surface 6 by the optical elements 2a, 2b, and 2c, and the luminance distribution depends on the pupil diameter. I understand.
 図16Aおよび図16Bは、輝度ムラを補正するための画像処理技術を説明する図である。図16Aは、補正なしの場合であり、光学要素2a,2b,2c,・・・をハニカム格子状に配列し、表示パネル1の表示範囲を全画素発光させた場合に得られる視認画像51を示している。一方、図16Bは、補正ありの場合であり、瞳孔径に応じて生じる輝度ムラを予測し、表示パネル1に表示する分割画像の輝度を画像処理技術で制御することにより、輝度ムラのない視認画像53が得られる。ここでは、一例としてハニカム格子状に配列した光学要素を示したが、配列パターンはこれに限定されるものではない。配列パターンは、例えば正方格子状でもよく、そのとき予測される輝度ムラを画像処理技術で補正できていればよい。 16A and 16B are diagrams for explaining an image processing technique for correcting luminance unevenness. FIG. 16A shows a case where correction is not performed, and a visual image 51 obtained when the optical elements 2a, 2b, 2c,... Are arranged in a honeycomb grid and the display range of the display panel 1 emits light for all pixels. Show. On the other hand, FIG. 16B shows a case where correction is performed, and the luminance unevenness caused by the pupil diameter is predicted, and the luminance of the divided image displayed on the display panel 1 is controlled by the image processing technique, so that there is no luminance unevenness. An image 53 is obtained. Here, optical elements arranged in a honeycomb lattice shape are shown as an example, but the arrangement pattern is not limited to this. The arrangement pattern may be, for example, a square lattice, and it is sufficient that the luminance unevenness predicted at that time can be corrected by an image processing technique.
 また、本実施形態の好ましい形態によれば、観察者の瞳孔径をカメラ等で検出し、そのとき予測される輝度ムラを画像処理技術で補正することが望ましい。 Also, according to a preferred embodiment of the present embodiment, it is desirable to detect the pupil diameter of the observer with a camera or the like, and correct the brightness unevenness predicted at that time using an image processing technique.
 なお、観察者の瞳孔径は使用環境の明るさで変化するため、本実施形態の好ましい形態によれば、使用環境の明るさをセンシングすることにより観察者の瞳孔径を予測し、前記輝度ムラを画像処理技術で補正してもよい。 Since the pupil diameter of the observer changes depending on the brightness of the usage environment, according to a preferred embodiment of the present embodiment, the pupil diameter of the observer is predicted by sensing the brightness of the usage environment, and the luminance unevenness is detected. May be corrected by an image processing technique.
 8.画像表示装置の具体的構成例
 以下では、本実施形態に係る画像表示装置の幾つかの具体的構成例について説明する。図17は、画像表示装置の具体的構成例1を示す図である。具体的構成例1において、画像表示装置は、表示パネル1とコリメート光学系で構成されており、かつ、表示パネル1が複数の表示パネル1a、1b、1c、1dに分割され、表示パネル単位で光学ユニット8a、8b、8c、8dを構成している。さらにコリメート光学系は、図示されていないが1つ以上のレンズ3と光線方向制御素子4からなる光学要素2a、2b、2cを2次元的に配列してなるアレイ光学系2であり、それぞれの表示パネル1a、1b、1c、1dに1つ以上の光学要素が配置されるような構成となっている。さらに、それぞれの光学ユニットは、観察者の目に向かって(表示パネル1の中央に向かって)傾けられて配置されている。
8). Specific Configuration Examples of Image Display Device Hereinafter, some specific configuration examples of the image display device according to the present embodiment will be described. FIG. 17 is a diagram illustrating a specific configuration example 1 of the image display device. In the specific configuration example 1, the image display device includes the display panel 1 and a collimating optical system, and the display panel 1 is divided into a plurality of display panels 1a, 1b, 1c, and 1d. Optical units 8a, 8b, 8c, and 8d are configured. Further, although not shown, the collimating optical system is an array optical system 2 in which optical elements 2a, 2b, and 2c including one or more lenses 3 and a light direction control element 4 are two-dimensionally arranged. One or more optical elements are arranged on the display panels 1a, 1b, 1c, and 1d. Further, each optical unit is disposed to be inclined toward the eyes of the observer (toward the center of the display panel 1).
 具体的構成例1は、広視野な画像表示装置を得る上で、特に視野角40°を超える画像表示装置を得る上で有利である。1つの光学ユニットだけで視野角を広げる場合、少ないレンズ構成で光線を強く屈折させることとなり、倍率色収差や歪曲収差等の収差が強くなり、視認画像の画質を担保できない。これに対し、具体的構成例1のように光学ユニット8a、8b、8c、8dが担当する視野角範囲に応じて光学ユニットを傾けることで、比較的容易に広視野を実現できる。 Specific configuration example 1 is advantageous in obtaining an image display device having a wide field of view, particularly in obtaining an image display device having a viewing angle exceeding 40 °. When the viewing angle is widened with only one optical unit, light rays are strongly refracted with a small lens configuration, and aberrations such as chromatic aberration of magnification and distortion become strong, and the image quality of the visible image cannot be ensured. On the other hand, a wide field of view can be realized relatively easily by tilting the optical unit according to the viewing angle range in which the optical units 8a, 8b, 8c, and 8d are in charge as in the specific configuration example 1.
 また、具体的構成例1では、光学ユニット8a、8b、8c、8d間で光学的な不連続が発生するが、それぞれの光学ユニット8a、8b、8c、8dで得られる視認画像がシームレスに繋がるよう、光学要素2a、2b、2cの配置や設計を適切に設計すればよい。 Further, in specific configuration example 1, optical discontinuity occurs between the optical units 8a, 8b, 8c, and 8d, but the visual images obtained by the respective optical units 8a, 8b, 8c, and 8d are seamlessly connected. Thus, the arrangement and design of the optical elements 2a, 2b, and 2c may be appropriately designed.
 図18は、具体的構成例2のコリメート光学系の構成を示す図である。このコリメート光学系は、負のパワーをもつレンズ54、正のパワーをもつレンズ3、光線方向制御素子4からなる光学要素55a,55b,55c,・・・を2次元的に配列してなるアレイ光学系55である。具体的構成例2は、コリメート光学系の厚みは増えるが、レンズ3とレンズ54を組み合わせたことによる高い結像性能をもつ画像表示装置を得る上で有利である。 FIG. 18 is a diagram showing a configuration of the collimating optical system of specific configuration example 2. This collimating optical system is an array formed by two-dimensionally arranging optical elements 55a, 55b, 55c,... Composed of a lens 54 having a negative power, a lens 3 having a positive power, and a light beam direction control element 4. This is an optical system 55. The specific configuration example 2 is advantageous in obtaining an image display device having high imaging performance by combining the lens 3 and the lens 54, although the thickness of the collimating optical system is increased.
 図19A~図19Bは、具体的構成例2で得られるMTF曲線を示す図である。画像表示装置は図1のような構成とし、それぞれの光学要素の有効サイズを直径2.0mmとした。図19A~図19Bは、光学要素の位置に応じて得られるMTF曲線であり、その位置を光学要素中心の直下にある画素から出射した光線が瞳5に入射する角度(視野半角)で整理した時、図19Aは視野半角0.0°、図19Bは視野半角11.3°、図19Cは視野半角20.5°となっている。また、それぞれの図には、表示パネル1の各光学要素に対応する表示範囲において、発光画素が像高0%と像高72%の2つのMTF曲線を示している。これらの結果から、具体的構成例2の画像表示装置において、視野角が40°と比較的広い条件においても、MTF特性に著しい劣化は見られず、十分な解像感が得られていることが分かる。 19A to 19B are diagrams showing MTF curves obtained in the specific configuration example 2. FIG. The image display apparatus is configured as shown in FIG. 1, and the effective size of each optical element is 2.0 mm in diameter. FIG. 19A to FIG. 19B are MTF curves obtained according to the position of the optical element, and the positions are arranged by the angle (field half-angle) at which the light beam emitted from the pixel immediately below the center of the optical element enters the pupil 5. At this time, FIG. 19A shows a half field angle of 0.0 °, FIG. 19B shows a half field angle of 11.3 °, and FIG. 19C shows a half field angle of 20.5 °. Each figure shows two MTF curves in which the light emitting pixel has an image height of 0% and an image height of 72% in the display range corresponding to each optical element of the display panel 1. From these results, in the image display device of the specific configuration example 2, the MTF characteristics are not significantly deteriorated even under a relatively wide viewing angle of 40 °, and sufficient resolution is obtained. I understand.
 図20は、具体的構成例3の形態のコリメート光学系の構成を示す図である。具体的構成例3の画像表示装置は、コリメート光学系においてレンズ3と光線方向制御素子4の間に遮光マスク56を挿入した構造となっている。 FIG. 20 is a diagram showing a configuration of a collimating optical system in the form of a specific configuration example 3. The image display device of the specific configuration example 3 has a structure in which a light shielding mask 56 is inserted between the lens 3 and the light direction control element 4 in the collimating optical system.
 具体的構成例3によれば、遮光マスク56を挿入したことにより、隣接した光学要素の間で生じる信号光のクロストークを抑えることができ、迷光のない良好な視認画像を得ることができる。なお、遮光マスク56は、図3A~図3Cで示した構成とすることができる。 According to the specific configuration example 3, the insertion of the light shielding mask 56 can suppress the crosstalk of the signal light generated between the adjacent optical elements, and a good visual image without stray light can be obtained. The light shielding mask 56 may have the configuration shown in FIGS. 3A to 3C.
 図20のように、表示パネル1のある画素から出射された光線は、その画素に対応する光学要素により平行光束に変換され、信号光57として瞳5に入射する。しかしながら、このとき表示パネル1のある画素から出射された光線は、その画素に対応する光学要素に隣接した光学要素や、それらの境界の不連続部分にも向かうため迷光となり得る。ここで、遮光マスク56を挿入することで、迷光として瞳5に入射する光線をカットし、かつ、遮光マスク56を通り抜けた信号光以外の光束58a,58bも瞳5に入射しないため、良好な視認画像を得ることができる。 As shown in FIG. 20, a light beam emitted from a pixel of the display panel 1 is converted into a parallel light beam by an optical element corresponding to the pixel, and enters the pupil 5 as signal light 57. However, at this time, light emitted from a certain pixel of the display panel 1 may be stray light because it travels to an optical element adjacent to the optical element corresponding to the pixel or a discontinuous portion of the boundary between them. Here, by inserting the light shielding mask 56, light rays incident on the pupil 5 as stray light are cut, and light beams 58 a and 58 b other than the signal light that have passed through the light shielding mask 56 do not enter the pupil 5. A visual image can be obtained.
 図21A~図21Cは、具体的構成例3の形態で得られる視認画像の一例を示す図である。いずれも光学要素が2次元的に配列されたコリメート光学系により得られるクロスハッチパターンの視認画像であり、その光学要素の有効エリアは正六角形、かつ、その外接円の大きさが2.3mmとなっている。図21Aは、そのコリメート光学系において、図20の位置に開口径0.8mmの遮光マスク56を挿入した場合、図21Bは、同位置に開口径1.4mmの遮光マスク56を挿入した場合の結果である。また、図21Cは、比較のため、遮光マスク56がない場合の結果を示す。これらの結果から、図21Cでは迷光成分による画質の劣化が見られるが、図21Aのように遮光マスク56で迷光成分を低減することで良好な視認画像が得られることが分かる。 21A to 21C are diagrams showing an example of a visually recognized image obtained in the form of the specific configuration example 3. FIG. Each is a visual image of a cross hatch pattern obtained by a collimating optical system in which optical elements are two-dimensionally arranged. The effective area of the optical element is a regular hexagon and the size of its circumscribed circle is 2.3 mm. It has become. 21A shows a case where a light shielding mask 56 having an opening diameter of 0.8 mm is inserted at the position of FIG. 20 in the collimating optical system, and FIG. 21B shows a case where a light shielding mask 56 having an opening diameter of 1.4 mm is inserted at the same position. It is a result. Further, FIG. 21C shows the result when the light shielding mask 56 is not provided for comparison. From these results, it can be seen that in FIG. 21C, image quality is deteriorated due to the stray light component, but a good visual image can be obtained by reducing the stray light component with the light shielding mask 56 as shown in FIG. 21A.
 具体的構成例4の形態は、コリメート光学系のもつ射出瞳径を小さく設計し、虚像深度を拡張した画像表示装置である。射出瞳径はコリメート光学系を構成する光学要素の有効エリアの大きさ、もしくは、遮光マスクの開口サイズで規定される。 A specific configuration example 4 is an image display device in which the exit pupil diameter of the collimating optical system is designed to be small and the virtual image depth is extended. The exit pupil diameter is defined by the size of the effective area of the optical element constituting the collimating optical system or the aperture size of the light shielding mask.
 瞳孔径以上の平行光束が出射される一般的なコリメート光学系の場合、最大の解像感が得られる虚像距離は無限遠であり、眼が十分遠方にピントを合わせた場合である。そのため、眼が手元にピントを合わせた場合、十分な解像感が得られず、視認画像を正しく認識することができない。これに対し、具体的構成例4の形態は、虚像深度が拡大されており、眼が比較的手元までピントを合わせた場合でも視認画像を認識できる。これは、眼鏡型の画像表示装置において、遠方から手元まで、あらゆる位置にある対象物にAR(Augmented
Reality)情報を重ねて見られることを意味しており、大きなアドバンテージとなる。
In the case of a general collimating optical system that emits a parallel light beam having a diameter larger than the pupil diameter, the virtual image distance at which the maximum resolution is obtained is infinity, and the eye is in focus far enough. Therefore, when the eye is focused on the hand, a sufficient resolution is not obtained, and the visually recognized image cannot be recognized correctly. On the other hand, in the form of the specific configuration example 4, the virtual image depth is enlarged, and the visual image can be recognized even when the eye is focused relatively close to the hand. This is because in an eyeglass-type image display device, an AR (Augmented) is applied to an object at any position from a distance to a hand.
(Reality) means that information can be viewed in a superimposed manner, which is a great advantage.
 図22Aおよび図22Bは、具体的構成例4の形態で得られる虚像距離とMTFの関係を示す図である。図22Aおよび図22Bは、目に入射する視野角違いで得られる結果であり、図22Aは視野半角が水平方向0°、垂直方向0°、図22Bは視野半角が水平方向20°、垂直方向15°となっている。いずれの図も射出瞳径を1.0mm、1.5mmまで小さくした場合のMTF特性と、比較として射出瞳径が瞳孔径と同等の4.0mmである場合のMTF特性を併記している。これらの結果から、射出瞳径を1.0mm、1.5mmまで小さく設計することで、射出瞳径が4.0mmの場合よりもピークのMTFは落ちるが、遠方から1m付近までMTFを維持できることが分かる。より好適には、コリメート光の光束を0.5mm以上、1.5mm以下に絞ることで、遠方から近距離までMTFを維持できる。 22A and 22B are diagrams showing the relationship between the virtual image distance obtained in the form of the specific configuration example 4 and the MTF. 22A and 22B show the results obtained with different viewing angles incident on the eyes. FIG. 22A shows a viewing half angle of 0 ° in the horizontal direction and 0 ° in the vertical direction, and FIG. 22B shows a viewing half angle of 20 ° in the horizontal direction and the vertical direction. It is 15 °. In both figures, the MTF characteristics when the exit pupil diameter is reduced to 1.0 mm and 1.5 mm are compared with the MTF characteristics when the exit pupil diameter is 4.0 mm, which is equivalent to the pupil diameter. From these results, by designing the exit pupil diameter to be smaller to 1.0 mm and 1.5 mm, the peak MTF is lower than when the exit pupil diameter is 4.0 mm, but the MTF can be maintained from a distance to near 1 m. I understand. More preferably, the MTF can be maintained from a long distance to a short distance by reducing the collimated light beam to 0.5 mm or more and 1.5 mm or less.
 図22Aおよび図22Bは、具体的構成例5の形態の画像表示装置の構造を示す光路図である。具体的構成例5の画像表示装置は、射出瞳拡大の作用をもつ導光板15を備えており、表示パネル1とコリメート光学系からなる光学ユニット8と導光板15の間にカップリング用の光学部品を挿入した構造となっている。 22A and 22B are optical path diagrams showing the structure of an image display device in the form of a specific configuration example 5. FIG. The image display apparatus of the specific configuration example 5 includes a light guide plate 15 having an action of enlarging the exit pupil, and coupling optics between the display panel 1, the optical unit 8 including a collimating optical system, and the light guide plate 15. It has a structure with parts inserted.
 具体的構成例5の形態では、光学ユニット8と導光板15の間に挿入した光学部品により、コリメート光学系から出射された信号光の平行光束を効率よく導光板15にカップリングさせることができる。 In the form of the specific configuration example 5, the parallel light flux of the signal light emitted from the collimating optical system can be efficiently coupled to the light guide plate 15 by the optical component inserted between the optical unit 8 and the light guide plate 15. .
 図23Aは、カップリング用の光学部品をダブプリズム59とした場合の光路図であり、眼軸方向に画像表示装置の厚みを抑えるのに有利な構造である。図23Bは、カップリング用の光学部品を三角プリズム60とした場合の光路図であり、画像表示装置の高さを抑えるのに有利な構造である。ここでは、一例として2つの構成例を示したが、カップリング用の光学部品はこれらに限定されるものではなく、画像表示装置に求められるデザインに応じて、信号光を効率良くカップリングできる設計となっていればよい。 FIG. 23A is an optical path diagram in the case where the coupling optical component is a dove prism 59, which is an advantageous structure for suppressing the thickness of the image display device in the direction of the eye axis. FIG. 23B is an optical path diagram in the case where the coupling optical component is a triangular prism 60, which is an advantageous structure for suppressing the height of the image display device. Here, two configuration examples are shown as an example, but the optical components for coupling are not limited to these, and a design that can efficiently couple signal light according to the design required for the image display device It only has to be.
 図24Aおよび図24Bは、具体的構成例6の画像表示装置の構造を示す光路図である。具体的構成例6の画像表示装置は、射出瞳拡大の作用をもつ導光板を備えており、かつ、表示パネル1とコリメート光学系からなる光学ユニット8a、8b、8cを有しており、さらに、それらの光学ユニット8a、8b、8cと導光板の間にそれぞれカップリング用の光学部品を挿入した構造となっている。 24A and 24B are optical path diagrams showing the structure of the image display device of the specific configuration example 6. FIG. The image display apparatus of the specific configuration example 6 includes a light guide plate having an action of enlarging the exit pupil, and includes optical units 8a, 8b, and 8c including the display panel 1 and a collimating optical system. The optical units 8a, 8b, 8c and the light guide plate are inserted with optical components for coupling, respectively.
 具体的構成例6の形態は、広視野な画像表示装置を得る上で、特に視野角40°を超える画像表示装置を得る上で有利である。具体的構成例1と同様に導光板を備えた場合においても、光学ユニット8a、8b、8cをそれぞれが担当する視野角範囲に応じて傾けて配置することで、比較的容易に広視野を実現できる。 The form of the specific configuration example 6 is advantageous for obtaining an image display device having a wide field of view, and particularly for obtaining an image display device having a viewing angle exceeding 40 °. Even when a light guide plate is provided in the same way as in the specific configuration example 1, the optical units 8a, 8b, and 8c are inclined according to the viewing angle range that they are responsible for, so that a wide field of view can be realized relatively easily. it can.
 図24Aおよび図24Bでは、導光板がもつ射出瞳拡大の作用を用いない方向に大きな視野角を得るため、いずれも広視野領域を担当する光学ユニット8a、8cを傾けて配置している。図24Aは、外形が長方形の導光板61を用いた場合であり、光学ユニット8a、8cの傾きに応じて厚みを制御した光学部品62a、62b、62cにより、それぞれの光学ユニットと導光板60との間を効率よくカップリングしている。図24Bは、光学ユニット8a、8cの傾きに応じて外形を設計した導光板63を用いた場合であり、それぞれの光学ユニットと導光板63との間を、厚みが均一な光学部品64a、64b、64cにより効率よくカップリングしている。ここでは、一例として2つの設計例を示したが、使用する光学ユニットの数や導光板の外形形状、および、カップリング用の光学部品はこれらに限定されるものではなく、必要な視野角を得るためにそれらが最適に設計されてなる画像表示装置であればよい。 In FIGS. 24A and 24B, in order to obtain a large viewing angle in a direction not using the action of enlarging the exit pupil of the light guide plate, the optical units 8a and 8c in charge of the wide viewing area are both inclined and arranged. FIG. 24A shows a case in which a light guide plate 61 having a rectangular outer shape is used, and optical components 62a, 62b, and 62c whose thicknesses are controlled according to the inclination of the optical units 8a and 8c, respectively, The coupling between the two is efficient. FIG. 24B shows a case in which a light guide plate 63 whose outer shape is designed according to the inclination of the optical units 8a and 8c is used. Optical components 64a and 64b having a uniform thickness are provided between the respective optical units and the light guide plate 63. 64c for efficient coupling. Here, two design examples are shown as an example. However, the number of optical units to be used, the outer shape of the light guide plate, and the optical components for coupling are not limited to these, and a necessary viewing angle is set. Any image display device that is optimally designed to obtain the image may be used.
 図25は、具体的構成例7の形態の画像表示方法を示す図である。具体的構成例7の画像表示方法は、図4のように導光板を備えた構成とし、導光板のもつ射出瞳拡大の作用を用いる方向とそうでない方向とで、表示パネルの表示範囲、および、隣接する光学要素2a、2b、2cの間に設定する視野角範囲のシフト量が異なることを特徴とする。 FIG. 25 is a diagram illustrating an image display method according to a specific configuration example 7. The image display method of specific configuration example 7 includes a light guide plate as shown in FIG. 4, the display range of the display panel in the direction using the action of enlarging the exit pupil of the light guide plate and the direction not using it, and The shift amount of the viewing angle range set between the adjacent optical elements 2a, 2b, and 2c is different.
 具体的構成例7の形態は、光学要素の有効エリア65a、65b、65cの直下に並ぶ表示パネルの画素のうち、信号光が瞳に入射しない周辺の画素は発光させず、表示エリアの範囲を限定する画像表示方法である。このとき、信号光が瞳に入射する画素の範囲は、導光板がもつ射出瞳拡大の作用で広がるため、表示パネルでは方向に応じて表示範囲を変えることが望ましい。このように、発光画素を必要最小限に選ぶことで、不要な画素から出射された光線が迷光となるリスクを減らし、良好な視認画像を得ることができる。 The specific configuration example 7 is configured such that, among the pixels of the display panel arranged immediately below the effective areas 65a, 65b, and 65c of the optical elements, the peripheral pixels where the signal light does not enter the pupil are not emitted, and the range of the display area is increased. This is a limited image display method. At this time, since the range of the pixels where the signal light enters the pupil is widened by the action of enlarging the exit pupil of the light guide plate, it is desirable to change the display range according to the direction on the display panel. In this way, by selecting the light emitting pixels to the minimum necessary, it is possible to reduce the risk that the light emitted from the unnecessary pixels becomes stray light and obtain a good visual image.
 図25では、導光板がもつ射出瞳拡大の作用を用いる方向を図の上下方向としており、表示パネルの表示範囲65a,65b、65cは左右方向より上下方向が広くなっていることが分かる。 25, the direction in which the action of enlarging the exit pupil of the light guide plate is used as the vertical direction in the figure, and it can be seen that the display ranges 65a, 65b, and 65c of the display panel are wider in the vertical direction than in the horizontal direction.
 また、本実施形態によれば、アレイ光学系2の光学要素2a,2b,2c,・・・が担当する視野角範囲は、アレイ光学系2を構成する光線方向制御素子4により制御される。この時、隣接する光学要素2a,2b,2c,・・・間に設定する視野角範囲のシフト量は、1つの光学要素で得られる視野角範囲の大きさに左右される。具体的構成例7の形態では、1つの光学要素で得られる視野角範囲は、導光板により図25の上下方向に大きくなっているため、隣接する光学要素間に設定する視野角範囲のシフト量も上下方向に大きくなっている。これは、コリメート光学系がアナモルフィックなパワーを有することと等価である。したがって、縦横比が等しい視認画像66を得るのに必要な光学要素の数は、左右方向に4個~5個が必要なのに対し、上下方向には3個となっており、導光板の射出瞳拡大方向にコリメート光学系を小型化できることを示している。 Further, according to the present embodiment, the viewing angle range handled by the optical elements 2a, 2b, 2c,... Of the array optical system 2 is controlled by the light beam direction control element 4 constituting the array optical system 2. At this time, the shift amount of the viewing angle range set between the adjacent optical elements 2a, 2b, 2c,... Depends on the size of the viewing angle range obtained by one optical element. In the form of the specific configuration example 7, the viewing angle range obtained with one optical element is increased in the vertical direction in FIG. 25 by the light guide plate, and thus the shift amount of the viewing angle range set between adjacent optical elements. Is also larger in the vertical direction. This is equivalent to the collimating optical system having anamorphic power. Therefore, the number of optical elements necessary to obtain the visual image 66 having the same aspect ratio is 3 in the vertical direction, while 4-5 in the horizontal direction is required, and the exit pupil of the light guide plate. It shows that the collimating optical system can be reduced in size in the enlargement direction.
 図26は、本実施形態に係る画像処理装置をヘッドマウントディスプレイ(HMD)200に適用した例を示す模式図である。図26において、視度補正レンズ(眼鏡レンズ)210はヘッドマウントディスプレイの左目用のレンズであり、視度補正レンズ220はヘッドマウントディスプレイの右目用のレンズである。なお、図26において、視度補正レンズ210,220を支持するフレームの図示は省略している。 FIG. 26 is a schematic diagram illustrating an example in which the image processing apparatus according to the present embodiment is applied to a head mounted display (HMD) 200. In FIG. 26, a diopter correction lens (glasses lens) 210 is a lens for the left eye of the head mounted display, and a diopter correction lens 220 is a lens for the right eye of the head mounted display. In FIG. 26, the illustration of the frame that supports the diopter correction lenses 210 and 220 is omitted.
 本実施形態に係る画像処理装置は、視度補正レンズ210,220のそれぞれの前方に装着される。表示パネル1及びアレイ光学系2は、視度補正レンズ210,220の前方の上部に配置される。また、導光板15は、視度補正レンズ210,220のそれぞれの前方に配置される。アレイ光学系2と導光板15は、ダブプリズム230によって接続される。 The image processing apparatus according to this embodiment is mounted in front of each of the diopter correction lenses 210 and 220. The display panel 1 and the array optical system 2 are disposed in the upper part in front of the diopter correction lenses 210 and 220. The light guide plate 15 is disposed in front of each of the diopter correction lenses 210 and 220. The array optical system 2 and the light guide plate 15 are connected by a dove prism 230.
 9.ヘッドマウントディスプレイ、ヘッドアップディスプレイへの適用
 図26に示したヘッドマウントディスプレイ200によれば、表示パネル1に表示された画像は、アレイ光学系2、ダブプリズム230、導光板15を通り、更に視度補正レンズ210,220を通って瞳5に入射する。例えば、ARなどの画像を表示する場合、ユーザは、導光板15から視度補正レンズ210,220を通って瞳5に入射した画像を視認するとともに、視度補正レンズ210,220を通って入射する実際の物体を視認する。従って、ARなどの画像と実際の物体を重畳してユーザに視認させることが可能となる。なお、視度補正レンズ210,220は視度補正の機能を有さないものであっても良い。
9. Application to Head Mounted Display and Head Up Display According to the head mounted display 200 shown in FIG. 26, the image displayed on the display panel 1 passes through the array optical system 2, the dove prism 230, and the light guide plate 15 to be further viewed. It enters the pupil 5 through the degree correction lenses 210 and 220. For example, when displaying an image such as AR, the user visually recognizes an image incident on the pupil 5 through the diopter correction lenses 210 and 220 from the light guide plate 15 and enters through the diopter correction lenses 210 and 220. Visually see the actual object to be. Therefore, an image such as an AR and an actual object can be superimposed and made visible to the user. The diopter correction lenses 210 and 220 may not have a diopter correction function.
 図27は、本実施形態に係る画像処理装置を車両400のヘッドアップディスプレイ(HUD)装置300に適用した例を示す模式図である。図27に示すように、ヘッドアップディスプレイ装置300は、インストルメントパネル310の内側に配置されており、インストルメントパネル310の内側からフロントウインドシールド320に向けて、運転を支援するための情報が含まれた画像を投影する。運転者には、その画像がフロントウインドシールド320の向こう側に表示されているように認識される。運転者は、前方の状況に重ねてその画像を目視することで、視線を大きく動かすことなく各種の情報を得ることができる。 FIG. 27 is a schematic diagram illustrating an example in which the image processing apparatus according to the present embodiment is applied to a head-up display (HUD) apparatus 300 of the vehicle 400. As shown in FIG. 27, the head-up display device 300 is disposed inside the instrument panel 310 and includes information for assisting driving from the inside of the instrument panel 310 toward the front windshield 320. Projected image. The driver recognizes that the image is displayed on the other side of the front windshield 320. The driver can obtain various kinds of information without moving the line of sight greatly by viewing the image superimposed on the situation in front.
 以上説明したように本実施形態によれば、コリメート光学系を複数の光学要素を2次元的に配列した構造とし、そこに射出瞳拡大の作用をもつ導光板を組み合わせることで、広視野かつ小型、軽量な眼鏡型の画像表示装置を提供できる。 As described above, according to the present embodiment, the collimating optical system has a structure in which a plurality of optical elements are two-dimensionally arranged, and a light guide plate having an action of enlarging the exit pupil is combined therewith, thereby achieving a wide field of view and a small size. A lightweight eyeglass-type image display device can be provided.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 In addition, the effects described in this specification are merely illustrative or illustrative, and are not limited. That is, the technology according to the present disclosure can exhibit other effects that are apparent to those skilled in the art from the description of the present specification in addition to or instead of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1) 複数の画素から構成される表示パネルと、
 複数の前記画素から出射される光線を平行光束に変換するコリメート光学系と、を備え、
 前記コリメート光学系は、レンズと光線方向制御素子を含む複数の光学要素を有し、
 複数の前記光学要素は、前記表示パネルの表示面に沿った方向に配列される、画像表示装置。
(2) 前記表示パネルは、少なくとも1つの前記光学要素を含む大きさに分割され、
 分割された前記表示パネルと、当該分割された前記表示パネルに対応する1又は複数の前記光学要素から光学ユニットが構成され、
 前記光学ユニットは、前記表示パネルの表示面に沿った方向に配置される、前記(1)に記載の画像表示装置。
(3) 前記コリメート光学系において、
 複数の前記光学要素に対応した複数の開口を有する遮光マスクが光路内に挿入された、前記(1)又は(2)に記載の画像表示装置。
(4) 前記コリメート光学系から出射された光を導光して射出瞳を拡大する導光板を更に備える、前記(1)~(3)のいずれかに記載の画像表示装置。
(5) 前記コリメート光学系において、
 前記光学要素の直径又は光路内に挿入された遮光マスクの開口の大きさにより、コリメート光の光束を0.5mm以上、1.5mm以下に絞る、前記(1)~(4)のいずれかに記載の画像表示装置。
(6) 前記光線方向制御素子は、前記光学要素が含むそれぞれの前記レンズに対応したプリズムをアレイ状に並べた光学素子である、前記(1)~(5)のいずれかに記載の画像表示装置。
(7) 前記光線方向制御素子は、前記光学要素が含むそれぞれの前記レンズに共通して設けられた凸レンズ効果をもつフィールドレンズである、前記(1)~(5)のいずれかに記載の画像表示装置。
(8) 前記レンズは、光軸方向に2枚以上の正または負のレンズを組み合わせて構成される、前記(1)~(7)のいずれかに記載の画像表示装置。
(9) 前記レンズは、シリンドリカルレンズアレイを直交配置して構成される、前記(1)~(8)のいずれかに記載の画像表示装置。
(10) 複数の前記光学要素は、ハニカム配列又は正方格子配列される、前記(1)~(9)のいずれかに記載の画像表示装置。
(11) 前記光学ユニットは、前記表示パネルの中央に向けて傾斜して配置される、前記(2)に記載の画像表示装置。
(12) 前記導光板は、複数の反射面を有して構成されるマルチミラー型、又はホログラム反射型である、前記(4)に記載の画像表示装置。
(13) 前記コリメート光学系により前記複数の画素から構成される前記表示パネルの表示領域がそれぞれ形成する虚像の画角領域が決定され、
 ユーザの眼内で複数の前記虚像を重ね合わせて1つの虚像が得られる、前記(1)~(12)のいずれかに記載の画像表示装置。
(14) 前記コリメート光学系から出射された光を導光して射出瞳を拡大する導光板を更に備え、 前記コリメート光学系に加えて前記導光板により前記表示領域がそれぞれ形成する虚像の画角領域が決定され、
 ユーザの眼内で複数の前記虚像を重ね合わせて1つの虚像が得られる、前記(13)に記載の画像表示装置。
(15) 観察者の視度又は視度補正レンズを介した観察者の視度に応じて、前記表示パネルが表示する表示画像にキャリブレーションをかける、前記(13)に記載の画像表示装置。
(16) 観察者の視線位置に基づいて前記表示パネルが表示する表示画像にキャリブレーションをかける、前記(13)に記載の画像表示装置。
(17) 虚像の重なり部分で生じる輝度ムラについて、
 観察者の瞳孔径を検出することにより、前記輝度ムラを補正する画像処理を行う、前記(1)に記載の画像表示装置。
(18) 使用環境の明るさから予測した観察者の瞳孔径に基づいて前記輝度ムラを補正する、請求項17に記載の画像表示装置。
(19) レンズと光線方向制御素子を含む複数の光学要素を表示パネルの表示面に沿って配列してなるコリメート光学系により、複数の画素から構成される前記表示パネルの複数の表示領域がそれぞれ形成する虚像の画角領域を決定することと、
 複数の前記虚像を重ね合わせて1つの虚像を得ることと、
 を備える、画像表示方法。
(20) 複数の画素から構成される表示パネルと、
 複数の前記画素から出射される光線を平行光束に変換するコリメート光学系と、
 前記コリメート光学系から出射された光を導光して射出瞳を拡大する導光板と、
 を備える、画像表示装置が眼鏡レンズの前面に配置され、
 前記コリメート光学系は、レンズと光線方向制御素子を含む複数の光学要素を有し、
 複数の前記光学要素は、前記表示パネルの表示面に沿った方向に配列される、ヘッドマウントディスプレイ装置。
The following configurations also belong to the technical scope of the present disclosure.
(1) a display panel composed of a plurality of pixels;
A collimating optical system that converts light emitted from the plurality of pixels into a parallel light flux, and
The collimating optical system has a plurality of optical elements including a lens and a light beam direction control element,
The image display device, wherein the plurality of optical elements are arranged in a direction along a display surface of the display panel.
(2) The display panel is divided into sizes including at least one optical element,
An optical unit is configured from the divided display panel and one or more optical elements corresponding to the divided display panel,
The image display device according to (1), wherein the optical unit is disposed in a direction along a display surface of the display panel.
(3) In the collimating optical system,
The image display device according to (1) or (2), wherein a light shielding mask having a plurality of openings corresponding to the plurality of optical elements is inserted in an optical path.
(4) The image display device according to any one of (1) to (3), further including a light guide plate that guides light emitted from the collimating optical system and expands an exit pupil.
(5) In the collimating optical system,
The light beam of collimated light is reduced to 0.5 mm or more and 1.5 mm or less depending on the diameter of the optical element or the size of the opening of the light shielding mask inserted in the optical path. The image display device described.
(6) The image display according to any one of (1) to (5), wherein the light direction control element is an optical element in which prisms corresponding to the lenses included in the optical element are arranged in an array. apparatus.
(7) The image according to any one of (1) to (5), wherein the light beam direction control element is a field lens having a convex lens effect provided in common to each of the lenses included in the optical element. Display device.
(8) The image display device according to any one of (1) to (7), wherein the lens is configured by combining two or more positive or negative lenses in an optical axis direction.
(9) The image display device according to any one of (1) to (8), wherein the lens includes a cylindrical lens array arranged orthogonally.
(10) The image display device according to any one of (1) to (9), wherein the plurality of optical elements are arranged in a honeycomb arrangement or a tetragonal lattice arrangement.
(11) The image display device according to (2), wherein the optical unit is disposed to be inclined toward a center of the display panel.
(12) The image display device according to (4), wherein the light guide plate is a multi-mirror type or a hologram reflection type configured to have a plurality of reflection surfaces.
(13) A field angle region of a virtual image formed by each display region of the display panel configured by the plurality of pixels is determined by the collimating optical system,
The image display device according to any one of (1) to (12), wherein one virtual image is obtained by superimposing a plurality of virtual images in a user's eye.
(14) It further includes a light guide plate that guides light emitted from the collimating optical system and expands an exit pupil, and in addition to the collimating optical system, an angle of view of a virtual image formed by the display region by the light guide plate, respectively. The area is determined,
The image display device according to (13), wherein one virtual image is obtained by superimposing a plurality of the virtual images in a user's eye.
(15) The image display device according to (13), wherein the display image displayed on the display panel is calibrated according to the diopter of the observer or the diopter of the observer via the diopter correction lens.
(16) The image display device according to (13), wherein the display image displayed on the display panel is calibrated based on the line-of-sight position of the observer.
(17) Regarding luminance unevenness that occurs in the overlapping portion of virtual images,
The image display device according to (1), wherein image processing for correcting the luminance unevenness is performed by detecting a pupil diameter of an observer.
(18) The image display device according to (17), wherein the luminance unevenness is corrected based on a pupil diameter of the observer predicted from the brightness of the use environment.
(19) Each of the plurality of display areas of the display panel formed of a plurality of pixels is formed by a collimating optical system in which a plurality of optical elements including a lens and a light beam direction control element are arranged along the display surface of the display panel. Determining the field angle region of the virtual image to be formed;
Superimposing a plurality of the virtual images to obtain one virtual image;
An image display method comprising:
(20) a display panel composed of a plurality of pixels;
A collimating optical system for converting light beams emitted from the plurality of pixels into parallel light fluxes;
A light guide plate that guides light emitted from the collimating optical system and expands an exit pupil;
An image display device is disposed in front of the spectacle lens,
The collimating optical system has a plurality of optical elements including a lens and a light beam direction control element,
The head mounted display device, wherein the plurality of optical elements are arranged in a direction along a display surface of the display panel.
 1  表示パネル
 2a,2b,2c,・・・  光学要素
 8a、8b、8c、8d  各光学ユニット
 10,12,14  遮光マスク
 15  導光板
 24  シリンドリカルレンズアレイ
 200 ヘッドマウントディスプレイ
 210,220  視度補正レンズ
DESCRIPTION OF SYMBOLS 1 Display panel 2a, 2b, 2c, ... Optical element 8a, 8b, 8c, 8d Each optical unit 10, 12, 14 Shading mask 15 Light guide plate 24 Cylindrical lens array 200 Head mounted display 210, 220 Diopter correction lens

Claims (20)

  1.  複数の画素から構成される表示パネルと、
     複数の前記画素から出射される光線を平行光束に変換するコリメート光学系と、を備え、
     前記コリメート光学系は、レンズと光線方向制御素子を含む複数の光学要素を有し、
     複数の前記光学要素は、前記表示パネルの表示面に沿った方向に配列される、画像表示装置。
    A display panel composed of a plurality of pixels;
    A collimating optical system that converts light emitted from the plurality of pixels into a parallel light flux, and
    The collimating optical system has a plurality of optical elements including a lens and a light beam direction control element,
    The image display device, wherein the plurality of optical elements are arranged in a direction along a display surface of the display panel.
  2.  前記表示パネルは、少なくとも1つの前記光学要素を含む大きさに分割され、
     分割された前記表示パネルと、当該分割された前記表示パネルに対応する1又は複数の前記光学要素から光学ユニットが構成され、
     前記光学ユニットは、前記表示パネルの表示面に沿った方向に配置される、請求項1に記載の画像表示装置。
    The display panel is divided into sizes including at least one of the optical elements,
    An optical unit is configured from the divided display panel and one or more optical elements corresponding to the divided display panel,
    The image display device according to claim 1, wherein the optical unit is arranged in a direction along a display surface of the display panel.
  3.  前記コリメート光学系において、
     複数の前記光学要素に対応した複数の開口を有する遮光マスクが光路内に挿入された、請求項1に記載の画像表示装置。
    In the collimating optical system,
    The image display apparatus according to claim 1, wherein a light-shielding mask having a plurality of openings corresponding to the plurality of optical elements is inserted into the optical path.
  4.  前記コリメート光学系から出射された光を導光して射出瞳を拡大する導光板を更に備える、請求項1に記載の画像表示装置。 The image display apparatus according to claim 1, further comprising a light guide plate that guides light emitted from the collimating optical system to expand an exit pupil.
  5.  前記コリメート光学系において、
     前記光学要素の直径又は光路内に挿入される遮光マスクの開口の大きさにより、コリメート光の光束を0.5mm以上、1.5mm以下に絞る、請求項1に記載の画像表示装置。
    In the collimating optical system,
    The image display apparatus according to claim 1, wherein the luminous flux of the collimated light is reduced to 0.5 mm or more and 1.5 mm or less depending on the diameter of the optical element or the size of the opening of the light shielding mask inserted in the optical path.
  6.  前記光線方向制御素子は、前記光学要素が含むそれぞれの前記レンズに対応したプリズムをアレイ状に並べた光学素子である、請求項1に記載の画像表示装置。 The image display device according to claim 1, wherein the light direction control element is an optical element in which prisms corresponding to the lenses included in the optical element are arranged in an array.
  7.  前記光線方向制御素子は、前記光学要素が含むそれぞれの前記レンズに共通して設けられた凸レンズ効果をもつフィールドレンズである、請求項1に記載の画像表示装置。 The image display device according to claim 1, wherein the light direction control element is a field lens having a convex lens effect provided in common to each of the lenses included in the optical element.
  8.  前記レンズは、光軸方向に2枚以上の正または負のレンズを組み合わせて構成される、請求項1に記載の画像表示装置。 The image display device according to claim 1, wherein the lens is configured by combining two or more positive or negative lenses in the optical axis direction.
  9.  前記レンズは、シリンドリカルレンズアレイを直交配置して構成される、請求項1に記載の画像表示装置。 The image display device according to claim 1, wherein the lens is configured by orthogonally arranging cylindrical lens arrays.
  10.  複数の前記光学要素は、ハニカム配列又は正方格子配列される、請求項1に記載の画像表示装置。 2. The image display device according to claim 1, wherein the plurality of optical elements are arranged in a honeycomb arrangement or a square lattice arrangement.
  11.  前記光学ユニットは、前記表示パネルの中央に向けて傾斜して配置される、請求項2に記載の画像表示装置。 The image display device according to claim 2, wherein the optical unit is disposed to be inclined toward a center of the display panel.
  12.  前記導光板は、複数の反射面を有して構成されるマルチミラー型、又はホログラム反射型である、請求項4に記載の画像表示装置。 The image display device according to claim 4, wherein the light guide plate is a multi-mirror type or a hologram reflection type configured to have a plurality of reflection surfaces.
  13.  前記コリメート光学系により前記複数の画素から構成される前記表示パネルの表示領域がそれぞれ形成する虚像の画角領域が決定され、
     ユーザの眼内で複数の前記虚像を重ね合わせて1つの虚像が得られる、請求項1に記載の画像表示装置。
    A field angle region of a virtual image formed by each display region of the display panel configured by the plurality of pixels is determined by the collimating optical system,
    The image display apparatus according to claim 1, wherein one virtual image is obtained by superimposing a plurality of virtual images in a user's eye.
  14.  前記コリメート光学系から出射された光を導光して射出瞳を拡大する導光板を更に備え、 前記コリメート光学系に加えて前記導光板により前記表示領域がそれぞれ形成する虚像の画角領域が決定され、
     ユーザの眼内で複数の前記虚像を重ね合わせて1つの虚像が得られる、請求項13に記載の画像表示装置。
    A light guide plate that guides light emitted from the collimating optical system and expands an exit pupil is further provided. In addition to the collimating optical system, a field angle region of a virtual image formed by the display region is determined by the light guide plate. And
    The image display device according to claim 13, wherein one virtual image is obtained by superimposing a plurality of virtual images in a user's eye.
  15.  観察者の視度又は視度補正レンズを介した観察者の視度に応じて、前記表示パネルが表示する表示画像にキャリブレーションをかける、請求項13に記載の画像表示装置。 The image display device according to claim 13, wherein the display image displayed on the display panel is calibrated according to the diopter of the observer or the diopter of the observer via the diopter correction lens.
  16.  観察者の視線位置に基づいて前記表示パネルが表示する表示画像にキャリブレーションをかける、請求項13に記載の画像表示装置。 The image display device according to claim 13, wherein the display image displayed on the display panel is calibrated based on the line-of-sight position of the observer.
  17.  虚像の重なり部分で生じる輝度ムラについて、
     観察者の瞳孔径を検出することにより、前記輝度ムラを補正する画像処理を行う、請求項1に記載の画像表示装置。
    About luminance unevenness that occurs in the overlapping part of virtual images,
    The image display apparatus according to claim 1, wherein image processing for correcting the luminance unevenness is performed by detecting a pupil diameter of an observer.
  18.  使用環境の明るさから予測した観察者の瞳孔径に基づいて前記輝度ムラを補正する、請求項17に記載の画像表示装置。 The image display device according to claim 17, wherein the luminance unevenness is corrected based on a pupil diameter of an observer predicted from brightness of a use environment.
  19.  レンズと光線方向制御素子を含む複数の光学要素を表示パネルの表示面に沿って配列してなるコリメート光学系により、複数の画素から構成される前記表示パネルの複数の表示領域がそれぞれ形成する虚像の画角領域を決定することと、
     複数の前記虚像を重ね合わせて1つの虚像を得ることと、
     を備える、画像表示方法。
    A virtual image formed by a plurality of display areas of the display panel each composed of a plurality of pixels by a collimating optical system in which a plurality of optical elements including a lens and a light beam direction control element are arranged along the display surface of the display panel Determining the field of view area of
    Superimposing a plurality of the virtual images to obtain one virtual image;
    An image display method comprising:
  20.  複数の画素から構成される表示パネルと、
     複数の前記画素から出射される光線を平行光束に変換するコリメート光学系と、
     前記コリメート光学系から出射された光を導光して射出瞳を拡大する導光板と、
     を備える、画像表示装置が眼鏡レンズの前面に配置され、
     前記コリメート光学系は、レンズと光線方向制御素子を含む複数の光学要素を有し、
     複数の前記光学要素は、前記表示パネルの表示面に沿った方向に配列される、ヘッドマウントディスプレイ装置。
    A display panel composed of a plurality of pixels;
    A collimating optical system for converting light beams emitted from the plurality of pixels into parallel light fluxes;
    A light guide plate that guides light emitted from the collimating optical system and expands an exit pupil;
    An image display device is disposed in front of the spectacle lens,
    The collimating optical system has a plurality of optical elements including a lens and a light beam direction control element,
    The head mounted display device, wherein the plurality of optical elements are arranged in a direction along a display surface of the display panel.
PCT/JP2017/015489 2016-06-15 2017-04-17 Image display device, image display method, and head mount display device WO2017217103A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-118764 2016-06-15
JP2016118764A JP2017223825A (en) 2016-06-15 2016-06-15 Image display device, image display method and head-mount display device

Publications (1)

Publication Number Publication Date
WO2017217103A1 true WO2017217103A1 (en) 2017-12-21

Family

ID=60664451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015489 WO2017217103A1 (en) 2016-06-15 2017-04-17 Image display device, image display method, and head mount display device

Country Status (2)

Country Link
JP (1) JP2017223825A (en)
WO (1) WO2017217103A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108761818A (en) * 2018-08-16 2018-11-06 深圳市眸合科技有限公司 A kind of auto-stereo display system
CN112955807A (en) * 2018-11-06 2021-06-11 株式会社籁天那 Optical device for augmented reality
WO2021154405A1 (en) * 2020-01-31 2021-08-05 Microsoft Technology Licensing, Llc Head mounted display device with double faceted optics
CN114967215A (en) * 2022-05-31 2022-08-30 京东方科技集团股份有限公司 Display device and virtual reality device
US11435503B2 (en) 2020-01-31 2022-09-06 Microsoft Technology Licensing, Llc Head mounted display device with double faceted optics

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3942353A1 (en) 2019-03-20 2022-01-26 Ricoh Company, Ltd. Virtual image display device
KR20220010358A (en) * 2020-07-17 2022-01-25 삼성전자주식회사 Apparatus of displaying augmented reality

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041281A (en) * 2012-08-23 2014-03-06 Canon Inc Image display device
JP2015534135A (en) * 2012-10-26 2015-11-26 クゥアルコム・インコーポレイテッドQualcomm Incorporated See-through near-eye display
US20160033769A1 (en) * 2014-07-29 2016-02-04 Samsung Display Co., Ltd. Head-mounted display apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041281A (en) * 2012-08-23 2014-03-06 Canon Inc Image display device
JP2015534135A (en) * 2012-10-26 2015-11-26 クゥアルコム・インコーポレイテッドQualcomm Incorporated See-through near-eye display
US20160033769A1 (en) * 2014-07-29 2016-02-04 Samsung Display Co., Ltd. Head-mounted display apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108761818A (en) * 2018-08-16 2018-11-06 深圳市眸合科技有限公司 A kind of auto-stereo display system
CN108761818B (en) * 2018-08-16 2024-01-23 深圳臻像科技有限公司 Free three-dimensional display system
CN112955807A (en) * 2018-11-06 2021-06-11 株式会社籁天那 Optical device for augmented reality
CN112955807B (en) * 2018-11-06 2023-04-11 株式会社籁天那 Optical device for augmented reality
WO2021154405A1 (en) * 2020-01-31 2021-08-05 Microsoft Technology Licensing, Llc Head mounted display device with double faceted optics
US11435503B2 (en) 2020-01-31 2022-09-06 Microsoft Technology Licensing, Llc Head mounted display device with double faceted optics
CN114967215A (en) * 2022-05-31 2022-08-30 京东方科技集团股份有限公司 Display device and virtual reality device
CN114967215B (en) * 2022-05-31 2023-11-10 京东方科技集团股份有限公司 Display device and virtual reality device

Also Published As

Publication number Publication date
JP2017223825A (en) 2017-12-21

Similar Documents

Publication Publication Date Title
WO2017217103A1 (en) Image display device, image display method, and head mount display device
CN109597201B (en) Fresnel component for light redirection in eye tracking systems
JP6641987B2 (en) Virtual image display
JP6641974B2 (en) Virtual image display
CN105593745B (en) Head mounted display optical system and head mounted display
WO2018042844A1 (en) Information display device
JP6221732B2 (en) Virtual image display device
US8477417B2 (en) Imaging optical system, microscope apparatus including the imaging optical system, and stereoscopic microscope apparatus
CN110753876B (en) Image projection apparatus
US20130021226A1 (en) Wearable display devices
CN102004317A (en) Spectacles-type image display device
JP2011128500A (en) Lens optical system, image display device and head-up display
WO2011077688A1 (en) Lens optical system, image display device and head-up display
WO2019008684A1 (en) Projection optical system and head-up display device
KR20170070064A (en) Imaging optical unit and smart glasses
US20170315347A1 (en) Exit Pupil Expander for Laser-Scanner and Waveguide Based Augmented-Reality Displays
US20130342905A1 (en) Head-up display and optical projection system for a head-up display
KR20220040441A (en) Head mounted display device
JP2010152005A (en) Head-up display
JP6202806B2 (en) Virtual image display device
WO2010029717A1 (en) Lens optical system, image display device and heads-up display
EP3620844B1 (en) Eyepiece optical system, medical viewer, and medical viewer system
JP6656213B2 (en) Image display device
US11281005B2 (en) Compact head-mounted display system with orthogonal panels
JP6955388B2 (en) Image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17813009

Country of ref document: EP

Kind code of ref document: A1