WO2011077688A1 - Lens optical system, image display device and head-up display - Google Patents

Lens optical system, image display device and head-up display Download PDF

Info

Publication number
WO2011077688A1
WO2011077688A1 PCT/JP2010/007359 JP2010007359W WO2011077688A1 WO 2011077688 A1 WO2011077688 A1 WO 2011077688A1 JP 2010007359 W JP2010007359 W JP 2010007359W WO 2011077688 A1 WO2011077688 A1 WO 2011077688A1
Authority
WO
WIPO (PCT)
Prior art keywords
convex lens
lens
lens group
convex
image
Prior art date
Application number
PCT/JP2010/007359
Other languages
French (fr)
Japanese (ja)
Inventor
浩之 根本
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Publication of WO2011077688A1 publication Critical patent/WO2011077688A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/011Head-up displays characterised by optical features comprising device for correcting geometrical aberrations, distortion

Definitions

  • the present invention relates to a lens optical system, and an image display device and a head-up display using the lens optical system.
  • a head-up display that displays information such as the vehicle speed in front of the front window of the vehicle.
  • the driver can check information such as the vehicle speed without much movement of the line of sight while driving the vehicle by superimposing the display image displayed by the head-up display and the scenery in front of the vehicle.
  • FIG. 1 shows an example of a conventional head-up display.
  • This head-up display is disclosed in Patent Document 1.
  • the optical unit 80 arranged on the dashboard of the car includes a display 88 that is an image display unit, a plane mirror 81, and a concave mirror 82.
  • the light from the display 88 is reflected by the plane mirror 81 and the concave mirror 82 which is a magnifying optical system, passes through the exit window 87 and is reflected toward the driver by the combiner 102 provided on the front window 101.
  • the displayed virtual image 103 is visually recognized in front.
  • the role of the plane mirror 81 is to bend the optical path when the optical path from the display 88 to the concave mirror 82 cannot be made straight due to spatial restrictions of the optical unit 80.
  • FIG. 2 is an explanatory view of the far-increasing display by the concave mirror 82.
  • the distance between the display 88 and the concave mirror 82 (center point is Q) is L 1
  • the distance of QP ′ when the virtual image of the concave mirror at the point P on the display is P ′ is L 2
  • the point Q and the combiner 102 The distance between the center point R is L 3 and the distance between the point R and the driver's eyes (point E: viewpoint) is L 4 .
  • L 3 and L 4 are determined by the car, and in the case of a passenger car, is about 1 m. Therefore, as can view the display and view outside the vehicle without focus movement of the eye, in order to display more virtual image far away, it is necessary to increase the L 2.
  • One method of increasing the L 2 is an optical path length L 1 extending from a focal length shorter (smaller radius of curvature) to display 88 of the concave mirror 82 to the concave mirror 82 in a short state than the focal length of the concave mirror, It should be as close to the focal length as possible. Thereby, a large enlargement magnification can be obtained, and the display 88 can be small.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a lens optical system capable of downsizing an image display device such as a head-up display, and an image display device and a head-up display using the lens optical system. It is to provide.
  • a first convex lens group in which a plurality of convex lenses are arranged in a planar shape and a plurality of convex lenses are arranged in a planar shape in order from the object side.
  • a second convex lens group, and a third convex lens group in which a plurality of convex lenses are arranged in a planar shape.
  • the lens diameter and lens pitch of the convex lens are larger, and the second convex lens group and the second convex lens group are larger than the distance between the first convex lens group and the second convex lens group.
  • the distance from the triconvex lens group is increased.
  • each first element convex lens constituting the first convex lens group that has received the light emitted radially from the object forms an inverted image of the object on the image plane of each first element convex lens.
  • Each second element convex lens constituting the second convex lens group receives the light flux of each inverted image and bends the light flux in the direction of the main optical axis.
  • Each third element convex lens constituting the third convex lens group receives each bent light beam and forms a virtual image of an unbroken object farther on the main optical axis than the optical path length from the viewpoint to the object.
  • the light beam incident on the first convex lens group is the second convex lens. It is possible to prevent missing when passing through the group and the third convex lens group. Then, by adjusting the lens pitch of the third element convex lens of the third convex lens group, the radius of curvature, and the distance between the second convex lens group and the third convex lens group, the virtual image can be placed at an arbitrary position on the main optical axis. Can be formed.
  • the main optical axis is the optical axis of the lens optical system.
  • the focal length of each first element convex lens may be set so that the imaging surface of each first element convex lens is positioned on the main plane of the corresponding second element convex lens.
  • the lens pitch of the first element convex lens and the second element convex lens may not be the same in the first convex lens group and the second convex lens group, respectively.
  • the lens pitch of the second element convex lens may be increased as the distance from the main optical axis increases.
  • the lens pitch of the first element convex lens may be decreased as the distance from the main optical axis increases.
  • the lens pitch is not the same in the first convex lens group and / or the second convex lens group, the two adjacent first element convex lenses and second element convex lenses corresponding to each other in a one-to-one correspondence between the respective element convex lenses.
  • the lens pitch between the second element convex lenses is always larger than the lens pitch between the first element convex lenses.
  • the inverted image of the object that has been formed on the first convex lens group side with respect to the main plane of the corresponding second element convex lens by the curvature of field of each first element convex lens so far is the second element convex lens.
  • the focal length of each first element convex lens increases as the distance from the main optical axis increases.
  • Each second element convex lens receives the light flux of each inverted image and bends it in the direction of the main optical axis.
  • the lens pitch of the first element convex lens and / or the second element convex lens is first. It is not the same in the convex lens group and / or the second convex lens group.
  • the first convex lens group may have a vertex surface that is concave with respect to the object.
  • the vertex surface is a quadric surface that is in contact with the vertex of each first element convex lens.
  • the incident cross section with respect to the first element convex lens away from the main optical axis of the light beam emitted from the object can be increased, and the light beam emitted from the object enters.
  • the number of first element convex lenses can be increased. According to this form, the virtual image of the object formed at an arbitrary position as described above can be brightened.
  • the focal length of the third convex lens group may be set so that the imaging plane of each third element convex lens is positioned on the main plane of the corresponding second element convex lens.
  • the lens pitch of the third element convex lens and / or the second element convex lens is not the same in the third convex lens group and / or the second convex lens group, respectively.
  • the inverted image of the viewpoint that has been formed on the third convex lens group side with respect to the main plane of each second element lens corresponding to the curvature of field of each third element convex lens so far is represented by each second element.
  • Each second element convex lens Located on the main plane of the convex lens.
  • the focal length of each third element convex lens increases as the distance from the main optical axis increases.
  • Each second element convex lens receives a light beam of an inverted image of an object by each first element convex lens. Therefore, the lens pitch of the third element convex lens and / or the second element convex lens is not the same in the third convex lens group and / or the second convex lens group, respectively.
  • the vertex surface may be convex with respect to the object.
  • each third element convex lens when the surface in contact with the apex of each third element convex lens is convex with respect to the object, more light rays are emitted from the third element convex lens away from the main optical axis.
  • the viewpoint refers to the eye
  • the viewpoint position refers to the position of the eye. Both are located on the opposite side of the object across the lens optical system.
  • means for limiting the radiation angle of the light beam emitted from the image display unit for displaying the image may be provided.
  • the imaging range of the inverted image on the main plane of each second element convex lens by each first element convex lens can be limited. According to this aspect, even if an inverted image is formed on the first convex lens group side of the main plane of each second element convex lens by the field curvature of each first element convex lens, the range in which the virtual image of the object can be visually recognized is distorted. And can be limited to a range without blur.
  • a first lens array plate having a plurality of first outer convex lenses regularly arranged on one surface and a plurality of first inner convex lenses regularly arranged on the other surface; and regular on one surface
  • a second lens array plate having a plurality of second outer convex lenses disposed on the other surface and a plurality of second inner convex lenses regularly disposed on the other surface, the first inner convex lens and the second inner convex lens.
  • the first lens array plate and the second lens array plate are stacked such that the plurality of first outer convex lenses constitute a first convex lens group, and a plurality of first inner convex lenses and second inner convex lenses are formed.
  • a second convex lens group May constitute a second convex lens group, and a plurality of second outer convex lenses may constitute a third convex lens group.
  • the radii of curvature of the first inner convex lens and the second inner convex lens may be equal, and the optical axes of the opposing lenses may be matched.
  • the lens optical system described above can be configured by laminating two lens array plates, the lens optical system can have a simple structure, and the cost can be reduced.
  • This apparatus includes an image display unit that displays an image, and the above-described lens optical system that receives light from the image display unit and displays a virtual image of the image.
  • a small image display device can be configured.
  • Such an image display device can be used for a game machine, for example.
  • a three-dimensional effect of the game can be produced by forming a virtual image having a depth farther than the image displayed on the image display unit.
  • Still another aspect of the present invention is a head-up display.
  • One form of the head-up display includes an image display unit that displays an image, a lens optical system that receives light from the image display unit, and reflects light from the lens optical system toward the observer, And a combiner that displays a virtual image of the image in front of the.
  • a mirror that changes the direction of light may be placed between the image display unit and the lens optical system, and between the lens optical system and the combiner.
  • the optical unit in the head-up display can be reduced in size. This makes it possible to store the optical unit of the head-up display even when there is not enough space in the dashboard.
  • a lens optical system capable of downsizing an image display device such as a head-up display, and an image display device and a head-up display using the lens optical system.
  • FIG. 7B shows a case where T12 ⁇ T23.
  • FIGS. 17A to 17C show virtual images captured by the camera when the focal length is adjusted and FIGS. 17D to 17F are not adjusted.
  • FIG. 19 is a diagram illustrating a relationship between an imaging position of a virtual image camera and an optical axis in the imaging of the virtual image illustrated in FIGS. 17 and 18. It is a figure which shows the optical system of the 2nd Example made as an experiment. It is a figure which shows the virtual image imaged with the camera which concerns on a 2nd Example.
  • lens optical system 12 first lens array plate, 14 second lens array plate, 20 first convex lens group, 21 first element convex lens, 22 second convex lens group, 23 second element convex lens, 24 third convex lens group, 25 Third element convex lens, 30 image display section, 32 front window, 33 optical path change mirror, 34 combiner, 40 objects, 42 virtual images, 44 viewpoints, 52 images, 54 virtual images, 60 cameras, 62 landmarks, 100 head-up display.
  • FIG. 4 is a diagram for explaining the lens optical system 10 according to the embodiment of the present invention.
  • the lens optical system 10 has a structure in which a first lens array plate 12 and a second lens array plate 14 in which a plurality of convex lenses are formed on both surfaces are laminated.
  • FIG. 4 shows a state in which a plurality of second outer convex lenses 14 a are arranged on the second outer surface 14 c of the second lens array plate 14.
  • the lens optical system 10 receives light from the object 40 located on the object side which is the first outer surface 12c side of the first lens array plate 12, and is on the second outer surface 14c side of the second lens array plate 14.
  • a virtual image 42 is displayed at the viewpoint 44 of the observer located on the observation side.
  • the virtual image 42 is formed farther than the optical path length from the observer's viewpoint 44 to the object 40.
  • FIG. 5 is a cross-sectional view of the lens optical system 10 according to the present embodiment.
  • the lens optical system 10 has a structure in which the first lens array plate 12 having a plurality of convex lenses arranged on both surfaces and the second lens array plate 14 are laminated. That is, a plurality of first outer convex lenses 12a are regularly arranged on the first outer surface 12c which is one surface of the first lens array plate 12, and on the first inner surface 12d which is the other surface. The plurality of first inner convex lenses 12b are regularly arranged.
  • a plurality of second outer convex lenses 14a are regularly arranged on the second outer surface 14c, which is one surface of the second lens array plate 14, and on the second inner surface 14d, which is the other surface.
  • a plurality of second inner convex lenses 14b are regularly arranged.
  • the first lens array plate 12 and the second lens array plate 14 are laminated so that the first inner convex lens 12b and the second inner convex lens 14b face each other.
  • FIG. 4 shows a state in which the second outer convex lenses 14 a are arranged in a close-packed arrangement on the second outer surface 14 c of the second lens array plate 14.
  • the plurality of first outer convex lenses 12 a arranged in a plane form a first convex lens group 20.
  • the first outer convex lens 12a is appropriately referred to as a “first element convex lens 21”.
  • the first inner convex lens 12b and the second inner convex lens 14b arranged in a plane have the same lens diameter, and the first inner convex lens 12b and the second inner convex lens 14b facing each other have the same optical axis and are convex lenses. It arrange
  • One set of the first inner convex lens 12b and the second inner convex lens 14b arranged in this manner functions as one convex lens. Therefore, in the following, a pair of the first inner convex lens 12b and the second inner convex lens 14b facing each other is appropriately treated as the “second element convex lens 23”.
  • the plurality of second element convex lenses 23 constitute a second convex lens group 22.
  • the plurality of second outer convex lenses 14 a arranged in a plane form a third convex lens group 24.
  • the second outer convex lens 14a is appropriately referred to as a “third element convex lens 25”.
  • the distance between the first convex lens group 20 and the second convex lens group 22 arranged in a plane is referred to as T12
  • the distance between the second convex lens group 22 and the third convex lens group 24 is referred to as T23.
  • the first convex lens group 20, the second convex lens group 22, and the third convex lens group 24 are configured so that the lens diameter and lens pitch of the convex lens increase in order, and the first convex lens group 20 and the second convex lens group 20 The distance between the second convex lens group 22 and the third convex lens group 24 is longer than the distance between the convex lens group 22.
  • the lens diameter d 1 of the first element convex lens 21 ⁇ the lens diameter d 2 of the second element convex lens 23 ⁇ the lens diameter d 3 of the third element convex lens 25, and the lens pitch p 1 of the first element convex lens 21 ⁇ second.
  • the lens pitch p 2 of the element convex lens 23 ⁇ the lens pitch p 3 of the third element convex lens 25, and T23> T12.
  • the lens pitch is the distance between the centers of the two closest lenses.
  • the lens diameter is a diameter of a circumscribed circle of a portion having a function as a lens.
  • the first convex lens group 20 includes the individual first element convex lenses so that the image formation surface of each first element convex lens 21 is located on the main plane of each corresponding second element convex lens 23.
  • 21 is provided with a distribution of focal lengths concentrically with respect to the main optical axis, and the second element convex lens 23 of the second convex lens group 22 passes through each first element convex lens 21 of the first convex lens group 20. It arrange
  • FIG. 5 shows a case where the first element convex lenses 21 of the first convex lens group are arranged at a constant (same) lens pitch.
  • the second element convex lens 23 and the third element convex lens 25 are arranged in each convex lens group.
  • the lenses are arranged so that the lens pitch increases as the distance from the main optical axis increases.
  • the main plane of the second element convex lens 23 is a plane on which the contact point between the first inner convex lens 12b and the second inner convex lens 14b is located.
  • the main planes of the second element convex lenses 23 are all located on the same plane.
  • the lens pitches of the second element convex lens 23 and the third element convex lens 25 are not the same in the plane of each convex lens group, the corresponding first element convex lens 21, second element convex lens 23 and third element convex lens 25 are combined.
  • the lens pitch between the two adjacent element convex lenses is always the lens pitch P 1 between the first element convex lenses ⁇ the lens pitch P 2 between the second element convex lenses ⁇ the third element convex lenses the lens pitch P 3.
  • the individual convex lenses 12a of the first convex lens group 20 are provided with apex surfaces that are concentric with respect to the main optical axis and concave with respect to the object.
  • the first lens array plate 12 and the second lens array plate 14 are formed by injection molding.
  • the material of the first lens array plate 12 and the second lens array plate 14 is preferably one that can be used for injection molding, has high light transmittance with respect to light in a necessary wavelength band, and low water absorption.
  • desirable materials include cycloolefin resins, olefin resins, norbornene resins, and polycarbonates.
  • FIG. 6A to 6C are diagrams for explaining the operation of the lens optical system 10 according to the present embodiment.
  • FIG. 6A shows that when the object 40 is observed with both eyes from a position separated by the distance D, the observer (viewpoint) 44 can visually recognize the object 40 at the position of the distance D.
  • the first convex lens group 20 and the third convex lens group 24 having different lens diameters and lens pitches are arranged at a desired interval between the object 40 and the viewpoint 44 of the observer.
  • the light from the object 40 is considered as being divided into light beams emitted from the first element convex lenses 21 of the first convex lens group 20.
  • the distance between the first convex lens group 20 and the third convex lens group 24 is such that the light beam radiated from the object 40 is emitted from the third convex lens group 24 without changing the angle, and the first convex lens group 20 is individually separated from the object 40.
  • the first element convex lens 21 is determined so as to match the light beam angle.
  • each first element convex lens 21 of the first convex lens group 20 that has received the light emitted radially from the object 40 is inverted on the imaging surface of each first element convex lens 21.
  • An image also called an element image
  • Each third element convex lens 25 of the third convex lens group 24 receives each light flux of each element image and emits it toward the observer.
  • the observer observes such a radiation beam with both eyes, the object 40 can be visually recognized by being inverted from the observer's viewpoint 44 to the position of the distance D.
  • the lens diameter and the lens pitch are larger between the first convex lens group 20 and the third convex lens group 24 than the first convex lens group 20, and the lens diameter and the lens pitch are larger than those of the third convex lens group 24.
  • the lens pitch is small, the distance between the second convex lens group 22 and the third convex lens group 24 is longer than the distance between the first convex lens group 20 and the second convex lens group 22, and the first convex lens group 20 and the third convex lens group.
  • a second convex lens group 22 having a refractive power greater than 24 is added.
  • each second element convex lens 23 of the second convex lens group 22 is arranged so that its main plane is located on the image plane of each first element convex lens 21.
  • Each second element convex lens 23 of the second convex lens group 22 bends each light flux contributing to the image formation of each element image in the optical axis direction of each second element convex lens 23.
  • the light beam is bent by each second element convex lens 23 of the second convex lens group 22, so that the observer can observe an observation image that is a virtual image on the extension line of the main optical axis in the opposite direction from the viewpoint of the bent light beam. 42 can be seen.
  • the observation image 42 can be formed at an arbitrary position D '.
  • the magnification of the observation image 42 and the virtual image position D ′ can be changed by changing the distance E between the object 40 and the first convex lens group 20.
  • a high-quality inverted image is formed by the first convex lens group 20, the lens pitch of the second element convex lens 23 and the third element convex lens 25, the radius of curvature, the distance between the second convex lens group 22 and the third convex lens group 24, And by adjusting the position and reading the inverted image, the virtual image 42 can be formed at an arbitrary position, and both the parallax and the diopter can be achieved.
  • the viewpoints of the observer and the observer, and the viewpoints are the same as 44, and the viewpoints refer to eyes.
  • the light flux passing through the first element convex lens 21 and the third element convex lens 25 is interrupted.
  • FIG. 7 is a diagram for explaining the light flux of the third element convex lens 25 in the third convex lens group 24 according to the present embodiment.
  • FIG. 7B shows the spread of the light beam of the lens optical system when T23> T12.
  • FIG. As shown in FIG. 4, it is understood that the light beam emitted from the third convex lens group toward the observer becomes continuous by setting T23> T12.
  • the luminous flux becomes discrete, the virtual image 54 becomes difficult to see with the collection of point-like objects, whereas by making the luminous flux continuous, a smooth, easy-to-view virtual image can be obtained.
  • FIG. 8 is a view for explaining the radiation angle limiting means according to the present embodiment.
  • each of the second convex lens groups 22 by the first element convex lenses 21 of the first convex lens group 20 is provided.
  • the range in which the inverted image is formed on the plane 13 connecting the main planes of the two-element convex lens 23 can be limited.
  • there is a curvature of field of each first element convex lens 21 of the first convex lens group 20, and the first convex lens is more than the plane 13 connecting the main planes of the second element convex lenses 23 of the second convex lens group 22.
  • the radiation angle limiting means regulates the spread of light rays emitted from the object (image display unit). In other words, the range in which the virtual image can be seen is limited.
  • the image display unit 30 that displays the object 40 using the point light source 36 other than the visual field limiting plate F, for example,
  • the lens 65 corresponds to the radiation angle limiting means.
  • FIG. 9 is a diagram for explaining the imaging plane, main plane, focal length distribution, and apex plane of the lens optical system 10 according to the present embodiment.
  • the surface 71 connecting the imaging surfaces of the first element convex lenses 21, which is based on the positional relationship between the object 40 and the first element convex lenses 21, is the image plane of each first element convex lens 21.
  • the plane connecting the main planes of the second element convex lenses 23 because it is positioned closer to the first convex lens group 20 than the plane 13 connecting the main planes of the second element convex lenses 23 as it moves away from the main optical axis 72 due to curvature.
  • the inverted image is blurred.
  • each first element convex lens 21 is formed concave on the object side with respect to the main optical axis 72. That is, by increasing the lens height of the first element convex lens 21 so as to be concentric with the main optical axis 72 and concave on the object 40 side, the light beam that can be incident on the convex lens away from the main optical axis 72.
  • the virtual image of the object 40 formed at an arbitrary position can be viewed brightly without depending on the position of the viewpoint.
  • the virtual image 42 of the object 40 can be formed at an arbitrary position without increasing the distance E between the object 40 and the first convex lens group 20. Therefore, an image display device such as a head-up display can be downsized.
  • FIG. 10 is a diagram for explaining the first head-up display 100 using the lens optical system 10 according to the present embodiment.
  • the head-up display 100 includes an image display unit 30, the above-described lens optical system 10, and a combiner 34.
  • the lens optical system 10 and the image display unit 30 constitute an optical unit of the head-up display 100, and are housed, for example, in a dashboard of a vehicle.
  • the image display unit 30 is configured by a liquid crystal display, for example, and displays information such as the vehicle speed and the remaining amount of fuel as an image 52 based on a signal from an image processing unit (not shown).
  • the lens optical system 10 is arranged so that the first outer surface 12 c of the first lens array plate 12 faces the surface of the image display unit 30.
  • the light emitted from the image display unit 30 enters the first convex lens group 20, then passes through the second convex lens group 22 and is emitted from the third convex lens group 24.
  • the lens optical system 10 is arranged so that light emitted from the third convex lens group 24 enters the front window 32 at a predetermined incident angle, for example, an incident angle of 45 degrees.
  • the combiner 34 is a reflective film formed on the surface of the front window 32, and reflects the light emitted from the lens optical system 10 toward the driver (viewpoint) 44.
  • the driver can visually recognize the virtual image 54 of the image 52 on the extension line of the optical path from the viewpoint to the combiner 34.
  • the distance from the image display unit 30 to the first convex lens group 20 of the lens optical system 10 is D1
  • the distance from the third convex lens group 24 of the lens optical system 10 to the combiner 34 is D2
  • the viewpoint of the driver from the combiner 34 is shown.
  • the distance to 44 is D3
  • the distance from the combiner 34 to the virtual image 54 is D4.
  • the optical path length from the driver's viewpoint 44 to the image 52 is D1 + D2 + D3.
  • the optical path length from the driver's viewpoint 44 to the virtual image 54 is D3 + D4.
  • the optical path length D3 + D4 from the driver's viewpoint 44 to the virtual image 54 and the optical path length D1 + D2 + D3 from the driver's viewpoint 44 to the image 52 are the same as described in FIG. Can be longer.
  • the virtual image 54 is formed as far as possible in front of the vehicle so that the driver's viewpoint 44 can be seen by superimposing the landscape and the virtual image 54 in front of the vehicle.
  • a distance D4 from the combiner 34 to the virtual image 54 of about 1 m.
  • the distance D1 + D2 can be made smaller than the distance D4 by configuring the head-up display 100 using the lens optical system 10 according to the present embodiment. Therefore, it is not necessary to secure a very long optical path length in the optical unit, and the optical unit can be downsized.
  • FIG. 11 is a diagram for explaining a second head-up display 200 using the lens optical system 10 according to the present embodiment.
  • the head-up display 200 includes an image display unit 30, the above-described lens optical system 10, an optical path changing mirror 33, and a combiner 34.
  • the lens optical system 10, the image display unit 30, and the optical path changing mirror 33 constitute an optical unit of the head-up display 200, and are housed, for example, in a dashboard of a vehicle.
  • the lens optical system 10 is arranged so that the first outer surface 12 c of the first lens array plate 12 faces the surface of the image display unit 30.
  • the light emitted from the image display unit 30 enters the first convex lens group 20, then passes through the second convex lens group 22 and is emitted from the third convex lens group 24.
  • the lens optical system 10 is disposed so that light emitted from the third convex lens group 24 is reflected by the optical path changing mirror 33 and is incident on the front window 32 at a predetermined incident angle, for example, an incident angle of 45 degrees.
  • the combiner 34 is a reflective film formed on the surface of the front window 32, and reflects the light emitted from the lens optical system 10 toward the driver.
  • the driver can visually recognize the virtual image 54 of the image 52 on the extension line of the optical path from the viewpoint 44 to the combiner 34.
  • the distance from the image display unit 30 to the first convex lens group 20 of the lens optical system 10 is D1
  • the distance from the third convex lens group 24 of the lens optical system 10 to the optical path changing mirror 33 is D5, and from the optical path changing mirror 33.
  • the distance to the combiner 34 is D6, the distance from the combiner 34 to the driver's viewpoint 44 is D3, and the distance from the combiner 34 to the virtual image 54 is D4.
  • the optical path length from the driver's viewpoint 44 to the image 52 is D1 + D5 + D6 + D3.
  • the optical path length from the driver's viewpoint 44 to the virtual image 54 is D3 + D4.
  • the optical path length D3 + D4 from the driver's viewpoint 44 to the virtual image 54 and the optical path length D1 + D5 + D6 + D3 from the driver's viewpoint 44 to the image 52 are the same as described in FIG. Can be longer.
  • the virtual image 54 is formed as far as possible in front of the vehicle so that the driver's viewpoint 44 can be seen by superimposing the landscape and the virtual image 54 in front of the vehicle.
  • a distance D4 from the combiner 34 to the virtual image 54 of about 1 m.
  • the optical unit of the conventional head-up display as shown in FIG. 3 in order to secure 1 m from the combiner to the virtual image, it is necessary to secure 1 m of the optical path length from the image to the concave mirror. In this case, it is difficult to reduce the size of the optical unit.
  • the distance D1 + D5 + D6 can be made smaller than the distance D4 by configuring the head-up display 200 using the lens optical system 10 according to the present embodiment.
  • the head-up display 200 it is considered that only the optical path changing mirror 33 is added between the lens optical system 10 of the head-up display 100 and the combiner 34. By adding this mirror, the height of the head-up display 200 is increased. Can be lower.
  • the virtual image 54 of the image 52 displayed on the image display unit 30 can be displayed far away with a very simple configuration.
  • a lenticular screen is conventionally arranged at the image forming position of the video projection system, and images including binocular parallax are spatially separated and presented to the left and right eyes, respectively.
  • the left and right images including the binocular parallax are synthesized in the observer's head to obtain a sense of depth, so that it is not easy to recognize an image with a sense of depth. It will accompany.
  • the head-up displays 100 and 200 it is not necessary to synthesize the left and right images including binocular parallax in the observer's head, and the virtual image 54 having a sense of depth can be easily obtained. Therefore, the observer will not feel tired.
  • FIG. 12 is a diagram showing an optical system of a first example in which the head-up display 100 is prototyped.
  • FIG. 13 is a diagram showing specifications of the lens optical system 10 used in the first embodiment.
  • the camera 60 is placed at the position of the viewpoint 44 in FIG. 10, and the mark 62 is placed at the position where the virtual image 52 is formed.
  • the distance D1 from the image display unit 30 to the first convex lens group 20 is 130 mm
  • the distance D2 from the third convex lens group 24 to the combiner 34 is 100 mm
  • the combiner 34 was set to 1000 mm
  • the distance D4 from the combiner 34 to the mark 62 was set to 1000 mm.
  • the first element convex lens 21 was set such that the radius of curvature was 0.584 to 0.681 mm (changed depending on the focal length) and the lens pitch was 0.662 mm.
  • the focal length distribution of each first element convex lens 21 is set as shown in FIG.
  • the focal length of each first element convex lens 21 increases concentrically as the distance from the main optical axis 72 (not shown) increases.
  • the curvature radius of the first inner convex lens 12b and the second inner convex lens 14b constituting the second convex lens group 22 was 0.497 mm, and the lens pitch was increased from 0.665 mm to 0.666 mm as the distance from the main optical axis was increased.
  • the third element convex lens 25 had a radius of curvature of 1.042 mm, and the lens pitch was increased from 0.667 mm to 0.668 mm with increasing distance from the main optical axis.
  • the thickness of the first lens array plate 12 was set to 1.405 mm, and the thickness of the second lens array plate 14 was set to 2.999 mm.
  • the refractive index of all the lenses is 1.56.
  • FIG. 15 is a diagram illustrating a virtual image 54 captured by the camera 60. As shown in FIG. 15, it can be seen that a virtual image 54 can be formed at the position where the mark 62 is installed. The size of the virtual image was enlarged to about three times that of the original image 52.
  • FIG. 16 shows the specifications of the lens optical system when the focal length of the first element convex lens 21 is the same in the first convex lens group 20 as a comparative example to the first embodiment.
  • the first inner convex lens 12b and the second inner convex lens 14b constituting the second convex lens group 22 are
  • the thickness of the first lens array plate 12 was set to 1.405 mm, and the thickness of the second lens array plate 14 was set to 2.999 mm.
  • the refractive index of the lens is 1.56 for all convex lenses.
  • the focal length of each first element convex lens 21 is the same in the first convex lens group, and the lens pitch of the second element convex lens 23 and the third element convex lens 25 is the same in each convex lens group. .
  • FIG. 17 shows the results of observing how the virtual image looks different when the focal length distribution is attached to the first element convex lens 21 (first embodiment) and when it is not attached (comparative example).
  • FIGS. 17A to 17C show the results in the case where the first element convex lens 21 is provided with a focal length distribution (Example), and FIGS. 17D to 17F show the focus.
  • the results are shown when no distance distribution is provided (comparative example).
  • (A) and (d) are the positions of (1)
  • (b) and (e) are the positions of (2)
  • (c) and (f) are the results of imaging at the positions of (3). Indicates.
  • FIG. 18 summarizes the observation results of FIG.
  • the virtual image 54 can be clearly seen even if it is 60 mm away from the optical axis 74 (indicated by a circle), whereas when the focal length of the first element convex lens 21 is all constant, the optical axis 74 is obtained. It can be seen that the virtual image 54 is already out of focus (indicated by ⁇ ) when the distance is 30 mm away, and that it is difficult to visually recognize (indicated by ⁇ ) when the distance is 60 mm away.
  • Each first element convex lens 21 is provided with a focal length distribution so that the imaging plane of each first element convex lens 21 constituting the first convex lens group 20 is located on the main plane of each corresponding second element convex lens 23. Accordingly, by adjusting the lens pitch of the second element convex lens 23 and the third element convex lens 25, the virtual image 54 can be viewed even at a position away from the optical axis 74. Therefore, the viewing area of the head-up display 100 can be expanded.
  • FIG. 20 is a diagram showing an optical system of a second example in which the head-up display 200 is prototyped.
  • the camera 60 is placed at the position of the viewpoint 44 in FIG. 11, and the mark 62 is placed at the position where the virtual image 54 is formed.
  • the distance D1 from the image display unit 30 to the first convex lens group 20 is 130 mm
  • the distance D5 from the third convex lens group 24 to the optical path changing mirror 33 is 50 mm
  • the distance D6 from the change mirror 33 to the combiner 34 was set to 100 mm
  • the distance D3 from the combiner 34 to the camera 60 was set to 1000 mm
  • the distance D4 from the combiner 34 to the mark 62 was set to 1000 mm.
  • FIG. 21 is a diagram illustrating a virtual image 54 captured by the camera 60. As shown in FIG. 21, it can be seen that the virtual image 54 is formed at the position where the mark 62 is provided even when the optical path changing mirror 33 is provided.
  • the size of the virtual image is slightly reduced, and the magnification is It was about 2.8 times.
  • the distance D6 was shortened to 130 mm by adding 100 mm, and thus the height of the head-up display 200 could be made lower than that of the head-up display 100.
  • the present invention can be used for a head-up display that displays information such as the vehicle speed in front of the front window of the vehicle.

Abstract

A lens optical system is provided with, in order from the object side, a first convex lens group (20) comprising multiple planarly disposed first convex lens elements (21), a second convex lens group (22) comprising multiple planarly disposed second convex lens elements (23), and a third convex lens group (24) comprising multiple planarly disposed third convex lens elements (25). The lens diameter and lens pitch of the convex lenses increase in the order of first convex lens group (20), second convex lens group (22), and third convex lens group (24). Further, the distance between the second convex lens group and the third convex lens group is greater than the distance between the first convex lens group and the second convex lens group.

Description

レンズ光学系、画像表示装置およびヘッドアップディスプレイLens optical system, image display device, and head-up display
 本発明は、レンズ光学系、並びに該レンズ光学系を用いた画像表示装置およびヘッドアップディスプレイに関する。 The present invention relates to a lens optical system, and an image display device and a head-up display using the lens optical system.
 従来より、車両のフロントウィンドウの前方に車速などの情報を表示するヘッドアップディスプレイが知られている。運転者は、ヘッドアップディスプレイにより表示された表示画像と車両前方の風景とを重ね合わせて見ることにより、車両運転中に視線の移動をあまり行わずに車速などの情報を確認することができる。 Conventionally, a head-up display that displays information such as the vehicle speed in front of the front window of the vehicle is known. The driver can check information such as the vehicle speed without much movement of the line of sight while driving the vehicle by superimposing the display image displayed by the head-up display and the scenery in front of the vehicle.
 図1は、従来のヘッドアップディスプレイの一例を示す。このヘッドアップディスプレイは、特許文献1に開示されたものである。図1に示すように、車のダッシュボードに配置される光学ユニット80は、画像表示部である表示器88、平面鏡81、凹面鏡82で構成されている。表示器88の光は、平面鏡81と拡大光学系である凹面鏡82で反射され、出射窓87を通って、フロントウィンド101に設けられたコンバイナ102で運転者に向けて反射される。運転者にとっては、前方に表示の虚像103が視認される。 FIG. 1 shows an example of a conventional head-up display. This head-up display is disclosed in Patent Document 1. As shown in FIG. 1, the optical unit 80 arranged on the dashboard of the car includes a display 88 that is an image display unit, a plane mirror 81, and a concave mirror 82. The light from the display 88 is reflected by the plane mirror 81 and the concave mirror 82 which is a magnifying optical system, passes through the exit window 87 and is reflected toward the driver by the combiner 102 provided on the front window 101. For the driver, the displayed virtual image 103 is visually recognized in front.
 平面鏡81の役割は、光学ユニット80の空間的制約で、表示器88から凹面鏡82に至る光路を一直線にできない場合の、光路の折り曲げである。 The role of the plane mirror 81 is to bend the optical path when the optical path from the display 88 to the concave mirror 82 cannot be made straight due to spatial restrictions of the optical unit 80.
 図2は、凹面鏡82による遠方拡大表示の説明図を示す。表示器88と凹面鏡82(中心点をQとする)の距離をL、表示器上の点Pの凹面鏡による虚像をP’としたときのQP’の距離をL、点Qとコンバイナ102の中心の点Rの距離をL、点Rと運転者の目の位置(点E:視点)の距離をLとする。 FIG. 2 is an explanatory view of the far-increasing display by the concave mirror 82. The distance between the display 88 and the concave mirror 82 (center point is Q) is L 1 , the distance of QP ′ when the virtual image of the concave mirror at the point P on the display is P ′ is L 2 , the point Q and the combiner 102 The distance between the center point R is L 3 and the distance between the point R and the driver's eyes (point E: viewpoint) is L 4 .
 運転者の目の位置(点E)と前方に形成される虚像P”の距離は、L+L+Lである。このうち、LとLは自動車により決まり、乗用車の場合は、1m程度である。このため、目の焦点移動を行わずに表示と車外風景を視認できるように、より遠方に虚像を表示するためには、Lを大きくする必要がある。 The distance between the driver's eye position (point E) and the virtual image P ″ formed forward is L 2 + L 3 + L 4. Of these, L 3 and L 4 are determined by the car, and in the case of a passenger car, is about 1 m. Therefore, as can view the display and view outside the vehicle without focus movement of the eye, in order to display more virtual image far away, it is necessary to increase the L 2.
 Lを大きくする方法の一つは、凹面鏡82の焦点距離を短く(曲率半径を小さく)して表示器88から凹面鏡82に至る光路長Lを、凹面鏡の焦点距離よりも短い状態で、できるだけ焦点距離に近づけることである。これにより、大きな拡大倍率が得られ、表示器88が小さくて済む。 One method of increasing the L 2 is an optical path length L 1 extending from a focal length shorter (smaller radius of curvature) to display 88 of the concave mirror 82 to the concave mirror 82 in a short state than the focal length of the concave mirror, It should be as close to the focal length as possible. Thereby, a large enlargement magnification can be obtained, and the display 88 can be small.
 別の方法としては、焦点距離の長い(曲率半径の大きい)凹面鏡82を用い、Lを長くとる方法がある。この方法では、低拡大率であっても、表示距離を大きくすることができる。たとえば図3に示す光学ユニットの如く、平面鏡91、92、凹面鏡93を設けて、限られた空間に光路を重複させる構成としている。これにより光学ユニットの小型化を図っている。 Alternatively, (large curvature radius) long focal length using a concave mirror 82, there is a long take ways L 1. With this method, the display distance can be increased even with a low magnification. For example, like the optical unit shown in FIG. 3, plane mirrors 91 and 92 and a concave mirror 93 are provided so that the optical paths overlap in a limited space. As a result, the optical unit is miniaturized.
特開平06-55957号公報Japanese Patent Laid-Open No. 06-55957
 しかしながら、図1の従来のヘッドアップディスプレイの光学ユニットでは、より遠方に虚像を表示するために、光学系の光路長Lを長くしないで、光学系の拡大倍率を大きくすると、光学ユニットを大きくすることなく、表示像をより遠方に表示できるが、表示像の歪み、収差が大きく、視点を移動したときに像の流れが生じるという問題があった。 However, in the conventional head-up display optical unit of Figure 1, in order to display more virtual image distance, without lengthening the optical path length L 1 of the optical system, increasing the magnification of the optical system, increasing the optical unit However, there is a problem that the display image can be displayed farther, but the distortion and aberration of the display image are large and the image flows when the viewpoint is moved.
 一方、図3の光学ユニットの如く、光学系の拡大倍率を大きくしないで、光学系の光路長Lを大きくとると、表示像の歪み、収差、視点を変えたときの像の流れの問題を生じないで、表示像をより遠方に表示できるが、光路を鉛直方向の面内で折り曲げているため、光学ユニットの厚みが大きく小型化は不十分で、自動車のダッシュボード内に収納できないという問題点があった。 On the other hand, as an optical unit of Figure 3, without increasing the magnification of the optical system, when a large optical path length L 1 of the optical system, the image flow problems when changing distortion of the display image, aberration, viewpoint However, the optical path is bent in the vertical plane, so the optical unit is too thick to be miniaturized and cannot be stored in the dashboard of an automobile. There was a problem.
 本発明はこうした状況に鑑みてなされたものであり、その目的は、ヘッドアップディスプレイなどの画像表示装置を小型化できるレンズ光学系、並びに該レンズ光学系を用いた画像表示装置およびヘッドアップディスプレイを提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a lens optical system capable of downsizing an image display device such as a head-up display, and an image display device and a head-up display using the lens optical system. It is to provide.
 上記課題を解決するために、本発明のある態様のレンズ光学系は、物体側より順に、複数の凸レンズが平面状に配置された第1凸レンズ群と、複数の凸レンズが平面状に配置された第2凸レンズ群と、複数の凸レンズが平面状に配置された第3凸レンズ群と、を備える。第1凸レンズ群、第2凸レンズ群、第3凸レンズ群の順に、凸レンズのレンズ径およびレンズピッチが大きく、さらに第1凸レンズ群と第2凸レンズ群との間の距離よりも第2凸レンズ群と第3凸レンズ群との間の距離が長くなるように構成されている。 In order to solve the above problems, in a lens optical system according to an aspect of the present invention, a first convex lens group in which a plurality of convex lenses are arranged in a planar shape and a plurality of convex lenses are arranged in a planar shape in order from the object side. A second convex lens group, and a third convex lens group in which a plurality of convex lenses are arranged in a planar shape. In order of the first convex lens group, the second convex lens group, and the third convex lens group, the lens diameter and lens pitch of the convex lens are larger, and the second convex lens group and the second convex lens group are larger than the distance between the first convex lens group and the second convex lens group. The distance from the triconvex lens group is increased.
 この態様によると、物体から放射状に放出された光を受けた第1凸レンズ群を構成する各第1要素凸レンズは、各第1要素凸レンズの結像面に物体の倒立像をそれぞれ形成する。第2凸レンズ群を構成する各第2要素凸レンズは、この各倒立像の光束を受けて、光束を主光軸方向に曲げる。第3凸レンズ群を構成する各第3要素凸レンズは、この曲げられた各光束を受け、視点から物体までの光路長よりも主光軸上の遠方に切れ目の無い物体の虚像を形成する。また、第1凸レンズ群と第2凸レンズ群との間の距離よりも第2凸レンズ群と第3凸レンズ群との間の距離を長くすることで、第1凸レンズ群に入射した光束が第2凸レンズ群、第3凸レンズ群を通過する際に欠けることを防ぐことができる。そして、第3凸レンズ群の第3要素凸レンズのレンズピッチ、曲率半径、および第2凸レンズ群と第3凸レンズ群との間の距離を調整することで、虚像を主光軸上の任意の位置に形成することができる。この態様によれば、上述した従来技術のように光学系の光路長を大きくとらなくとも、任意の位置に物体の虚像を形成することができるので、ヘッドアップディスプレイなどの画像表示装置を小型化できる。ここで主光軸とは、レンズ光学系の光軸である。また、物体と表示器、および画像表示部は同意である。 According to this aspect, each first element convex lens constituting the first convex lens group that has received the light emitted radially from the object forms an inverted image of the object on the image plane of each first element convex lens. Each second element convex lens constituting the second convex lens group receives the light flux of each inverted image and bends the light flux in the direction of the main optical axis. Each third element convex lens constituting the third convex lens group receives each bent light beam and forms a virtual image of an unbroken object farther on the main optical axis than the optical path length from the viewpoint to the object. In addition, by making the distance between the second convex lens group and the third convex lens group longer than the distance between the first convex lens group and the second convex lens group, the light beam incident on the first convex lens group is the second convex lens. It is possible to prevent missing when passing through the group and the third convex lens group. Then, by adjusting the lens pitch of the third element convex lens of the third convex lens group, the radius of curvature, and the distance between the second convex lens group and the third convex lens group, the virtual image can be placed at an arbitrary position on the main optical axis. Can be formed. According to this aspect, it is possible to form a virtual image of an object at an arbitrary position without increasing the optical path length of the optical system as in the prior art described above, so that the size of an image display device such as a head-up display is reduced. it can. Here, the main optical axis is the optical axis of the lens optical system. Moreover, an object, a display, and an image display part are consent.
 第1凸レンズ群は、その各第1要素凸レンズの結像面が対応する第2要素凸レンズの主平面に位置するように各第1要素凸レンズの焦点距離を設定しても良い。第1要素凸レンズおよび第2要素凸レンズのレンズピッチはそれぞれ第1凸レンズ群および第2凸レンズ群内で同一にならなくても良い。第1凸レンズ群内でレンズピッチが全て同一である場合は、第2要素凸レンズのレンズピッチは、主光軸から離れるに従って大きくしてもよい。また、第2凸レンズ群内でレンズピッチをすべて同一にする場合は、第1要素凸レンズのレンズピッチを主光軸から離れるに従って小さくしてもよい。ここで第1凸レンズ群および/または第2凸レンズ群内においてレンズピッチが同一でない場合は、1対1対応する近接する2組の第1要素凸レンズと第2要素凸レンズにおいて、それぞれの要素凸レンズ間のレンズピッチは、必ず、第1要素凸レンズ間のレンズピッチよりも第2要素凸レンズ間のレンズピッチの方が大きくなっている。 In the first convex lens group, the focal length of each first element convex lens may be set so that the imaging surface of each first element convex lens is positioned on the main plane of the corresponding second element convex lens. The lens pitch of the first element convex lens and the second element convex lens may not be the same in the first convex lens group and the second convex lens group, respectively. When all the lens pitches are the same in the first convex lens group, the lens pitch of the second element convex lens may be increased as the distance from the main optical axis increases. Further, when the lens pitch is all the same in the second convex lens group, the lens pitch of the first element convex lens may be decreased as the distance from the main optical axis increases. Here, when the lens pitch is not the same in the first convex lens group and / or the second convex lens group, the two adjacent first element convex lenses and second element convex lenses corresponding to each other in a one-to-one correspondence between the respective element convex lenses. As for the lens pitch, the lens pitch between the second element convex lenses is always larger than the lens pitch between the first element convex lenses.
 この態様によると、これまで各第1要素凸レンズの像面湾曲によって対応する第2要素凸レンズの主平面よりも第1凸レンズ群側に結像していた物体の倒立像が、第2要素凸レンズの主平面に位置する。各第1要素凸レンズの焦点距離は、主光軸から遠ざかるに従い長くなる。各第2要素凸レンズは、この各倒立像の光束を受けて、主光軸方向に曲げる。第2凸レンズ群は各第2要素凸レンズを平面上に配置した方がレンズ光学系の作製が容易となるが、この場合、第1要素凸レンズおよび/または第2要素凸レンズのレンズピッチはそれぞれ第1凸レンズ群および/または第2凸レンズ群内で同一にならない。 According to this aspect, the inverted image of the object that has been formed on the first convex lens group side with respect to the main plane of the corresponding second element convex lens by the curvature of field of each first element convex lens so far is the second element convex lens. Located on the main plane. The focal length of each first element convex lens increases as the distance from the main optical axis increases. Each second element convex lens receives the light flux of each inverted image and bends it in the direction of the main optical axis. In the second convex lens group, it is easier to manufacture the lens optical system when the second element convex lenses are arranged on a plane. In this case, the lens pitch of the first element convex lens and / or the second element convex lens is first. It is not the same in the convex lens group and / or the second convex lens group.
 この形態によれば、各第2要素凸レンズで曲げることができる各第1要素凸レンズによる物体の倒立像の光束の領域が増えるため、上述のように任意の位置に形成した物体の虚像を広い範囲から視認できるようになる。 According to this embodiment, since the area of the luminous flux of the inverted image of the object by each first element convex lens that can be bent by each second element convex lens increases, the virtual image of the object formed at an arbitrary position as described above can be widened. It will be visible from.
 第1凸レンズ群は、頂点面を物体に対して凹面状に形成しても良い。ここで頂点面とは、個々の第1要素凸レンズの頂点に接する2次曲面のことである。 The first convex lens group may have a vertex surface that is concave with respect to the object. Here, the vertex surface is a quadric surface that is in contact with the vertex of each first element convex lens.
 この形態によると、頂点面が平坦の場合に比べて、物体から放射される光線の主光軸から離れた第1要素凸レンズに対する入射断面を増すことができ、物体から放射される光線が入射する第1要素凸レンズの個数を多くできる。この形態によれば、上述のように任意の位置に形成した物体の虚像を明るくすることができる。 According to this form, compared with the case where the vertex surface is flat, the incident cross section with respect to the first element convex lens away from the main optical axis of the light beam emitted from the object can be increased, and the light beam emitted from the object enters. The number of first element convex lenses can be increased. According to this form, the virtual image of the object formed at an arbitrary position as described above can be brightened.
 第3凸レンズ群は、各第3要素凸レンズの結像面が対応する第2要素凸レンズの主平面に位置するように焦点距離を設定しても良い。この場合、第3要素凸レンズおよび/または第2要素凸レンズのレンズピッチはそれぞれ第3凸レンズ群および/または第2凸レンズ群内で同一にならない。 The focal length of the third convex lens group may be set so that the imaging plane of each third element convex lens is positioned on the main plane of the corresponding second element convex lens. In this case, the lens pitch of the third element convex lens and / or the second element convex lens is not the same in the third convex lens group and / or the second convex lens group, respectively.
 この形態によると、これまで各第3要素凸レンズの像面湾曲によって対応する各第2要素レンズの主平面よりも第3凸レンズ群側に結像していた視点の倒立像が、各第2要素凸レンズの主平面に位置する。各第3要素凸レンズの焦点距離は、主光軸から遠ざかるに従い長くなる。各第2要素凸レンズは、各第1要素凸レンズによる物体の倒立像の光束を受ける。そのため、第3要素凸レンズおよび/または第2要素凸レンズのレンズピッチはそれぞれ第3凸レンズ群および/または第2凸レンズ群内で同一にならない。 According to this embodiment, the inverted image of the viewpoint that has been formed on the third convex lens group side with respect to the main plane of each second element lens corresponding to the curvature of field of each third element convex lens so far is represented by each second element. Located on the main plane of the convex lens. The focal length of each third element convex lens increases as the distance from the main optical axis increases. Each second element convex lens receives a light beam of an inverted image of an object by each first element convex lens. Therefore, the lens pitch of the third element convex lens and / or the second element convex lens is not the same in the third convex lens group and / or the second convex lens group, respectively.
 第3凸レンズ群は、頂点面が物体に対して凸面状であっても良い。 In the third convex lens group, the vertex surface may be convex with respect to the object.
 この形態、つまり各第3要素凸レンズの頂点に接する面が物体に対して凸面状であると、主光軸から離れた第3要素凸レンズから出射される光線が多くなる。 In this form, that is, when the surface in contact with the apex of each third element convex lens is convex with respect to the object, more light rays are emitted from the third element convex lens away from the main optical axis.
 この形態によれば、上述のように任意の位置に形成した物体の虚像の明るさを損なうことなく視認できるようになる。ここで視点は眼を言い、視点位置は眼の位置を言う。何れもレンズ光学系を挟んで物体の反対側に位置する。 According to this embodiment, it becomes possible to visually recognize the virtual image of the object formed at an arbitrary position as described above without impairing the brightness. Here, the viewpoint refers to the eye, and the viewpoint position refers to the position of the eye. Both are located on the opposite side of the object across the lens optical system.
 さらに、画像を表示する画像表示部から放出する光線の放射角度を制限する手段を設けても良い。 Furthermore, means for limiting the radiation angle of the light beam emitted from the image display unit for displaying the image may be provided.
 この形態によると、各第1要素凸レンズによる各第2要素凸レンズの主平面への倒立像の結像範囲を制限することができる。この形態によれば、各第1要素凸レンズの像面湾曲によって各第2要素凸レンズの主平面よりも第1凸レンズ群側に倒立像を結像しても、物体の虚像が視認できる範囲を歪みやボケの無い範囲に制限することができる。 According to this embodiment, the imaging range of the inverted image on the main plane of each second element convex lens by each first element convex lens can be limited. According to this aspect, even if an inverted image is formed on the first convex lens group side of the main plane of each second element convex lens by the field curvature of each first element convex lens, the range in which the virtual image of the object can be visually recognized is distorted. And can be limited to a range without blur.
 一方の面に規則的に配置された複数の第1外側凸レンズと、他方の面に規則的に配置された複数の第1内側凸レンズとを有する第1レンズアレイプレートと、一方の面に規則的に配置された複数の第2外側凸レンズと、他方の面に規則的に配置された複数の第2内側凸レンズとを有する第2レンズアレイプレートと、を備え、第1内側凸レンズと第2内側凸レンズが対向するように、第1レンズアレイプレートと第2レンズアレイプレートとが積層されており、複数の第1外側凸レンズが第1凸レンズ群を構成し、第1内側凸レンズと第2内側凸レンズの複数の組が第2凸レンズ群を構成し、複数の第2外側凸レンズが第3凸レンズ群を構成してもよい。第1内側凸レンズと第2内側凸レンズの曲率半径を等しく、また対向するレンズの光軸を一致させてもよい。 A first lens array plate having a plurality of first outer convex lenses regularly arranged on one surface and a plurality of first inner convex lenses regularly arranged on the other surface; and regular on one surface A second lens array plate having a plurality of second outer convex lenses disposed on the other surface and a plurality of second inner convex lenses regularly disposed on the other surface, the first inner convex lens and the second inner convex lens. The first lens array plate and the second lens array plate are stacked such that the plurality of first outer convex lenses constitute a first convex lens group, and a plurality of first inner convex lenses and second inner convex lenses are formed. May constitute a second convex lens group, and a plurality of second outer convex lenses may constitute a third convex lens group. The radii of curvature of the first inner convex lens and the second inner convex lens may be equal, and the optical axes of the opposing lenses may be matched.
 この場合、2枚のレンズアレイプレートを積層することで上述のレンズ光学系を構成できるので、レンズ光学系を簡易な構造とすることができ、コストを低減することができる。  In this case, since the lens optical system described above can be configured by laminating two lens array plates, the lens optical system can have a simple structure, and the cost can be reduced. *
 本発明の別の態様は、画像表示装置である。この装置は、画像を表示する画像表示部と、画像表示部からの光を受け、画像の虚像を表示する上述のレンズ光学系とを備える。 Another aspect of the present invention is an image display device. This apparatus includes an image display unit that displays an image, and the above-described lens optical system that receives light from the image display unit and displays a virtual image of the image.
 この態様によると、小型の画像表示装置を構成できる。このような画像表示装置は、たとえばゲーム機に利用することができる。すなわち、画像表示部で表示した画像よりも遠方に、奥行きのある虚像を形成することにより、ゲームの立体感を演出することができる。  According to this aspect, a small image display device can be configured. Such an image display device can be used for a game machine, for example. In other words, a three-dimensional effect of the game can be produced by forming a virtual image having a depth farther than the image displayed on the image display unit. *
 本発明のさらに別の態様は、ヘッドアップディスプレイである。このヘッドアップディスプレイの一つの形態は、画像を表示する画像表示部と、画像表示部からの光を受けるレンズ光学系と、レンズ光学系からの光を観察者に向けて反射して、観察者の前方に画像の虚像を表示するコンバイナとを備える。画像表示部とレンズ光学系、レンズ光学系とコンバイナとの間に光の方向を変えるミラーを置いても良い。 Still another aspect of the present invention is a head-up display. One form of the head-up display includes an image display unit that displays an image, a lens optical system that receives light from the image display unit, and reflects light from the lens optical system toward the observer, And a combiner that displays a virtual image of the image in front of the. A mirror that changes the direction of light may be placed between the image display unit and the lens optical system, and between the lens optical system and the combiner.
 これら態様によると、ヘッドアップディスプレイにおける光学ユニットを小型化することができる。これにより、ダッシュボード内にあまりスペースが確保できない場合であっても、ヘッドアップディスプレイの光学ユニットを収納することが可能となる。 According to these aspects, the optical unit in the head-up display can be reduced in size. This makes it possible to store the optical unit of the head-up display even when there is not enough space in the dashboard.
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、などの間で変換したものもまた、本発明の態様として有効である。 It should be noted that an arbitrary combination of the above-described components and a conversion of the expression of the present invention between a method, an apparatus, a system, and the like are also effective as an aspect of the present invention.
 本発明によれば、ヘッドアップディスプレイなどの画像表示装置を小型化できるレンズ光学系、並びに該レンズ光学系を用いた画像表示装置およびヘッドアップディスプレイを提供できる。 According to the present invention, it is possible to provide a lens optical system capable of downsizing an image display device such as a head-up display, and an image display device and a head-up display using the lens optical system.
従来のヘッドアップディスプレイの一例を示す図である。It is a figure which shows an example of the conventional head-up display. 凹面鏡による遠方拡大表示の説明図を示す図である。It is a figure which shows explanatory drawing of the distant expansion display by a concave mirror. 従来の別の光学ユニットの一例を示す図である。It is a figure which shows an example of another conventional optical unit. 本発明の実施の形態に係るレンズ光学系を説明するための図である。It is a figure for demonstrating the lens optical system which concerns on embodiment of this invention. 本実施の形態に係るレンズ光学系の断面図である。It is sectional drawing of the lens optical system which concerns on this Embodiment. 図6(a)~(c)は、本実施の形態に係るレンズ光学系の動作を説明するための図である。FIGS. 6A to 6C are diagrams for explaining the operation of the lens optical system according to the present embodiment. 本実施の形態に係る第3要素凸レンズと光束を説明するための図である。図7(a)はT12=T23の場合、図7(b)はT12<T23の場合を示す。It is a figure for demonstrating the 3rd element convex lens which concerns on this Embodiment, and a light beam. FIG. 7A shows a case where T12 = T23, and FIG. 7B shows a case where T12 <T23. 本実施の形態に係る放射角度制限手段を説明するための図である。It is a figure for demonstrating the radiation angle limiting means which concerns on this Embodiment. 本実施の形態に係る第1凸レンズ群の焦点距離調整、レンズ頂点面調整の効果を説明するための図である。It is a figure for demonstrating the effect of the focal distance adjustment of the 1st convex lens group which concerns on this Embodiment, and a lens vertex surface adjustment. 本実施の形態に係るレンズ光学系を用いたヘッドアップディスプレイを説明するための図である。It is a figure for demonstrating the head-up display using the lens optical system which concerns on this Embodiment. 本実施の形態に係るレンズ光学系を用いたヘッドアップディスプレイを説明するための図である。It is a figure for demonstrating the head-up display using the lens optical system which concerns on this Embodiment. 試作した第1の実施例の光学系を示す図である。It is a figure which shows the optical system of the 1st Example made as an experiment. 第1の実施例に係るレンズ光学系の諸元を示す図である。It is a figure which shows the item of the lens optical system concerning a 1st Example. 第1の実施例に係る第1要素凸レンズの焦点距離の分布を示す図である。It is a figure which shows distribution of the focal distance of the 1st element convex lens which concerns on a 1st Example. 第1の実施例に係るカメラにより撮像された虚像を示す図である。It is a figure which shows the virtual image imaged with the camera which concerns on a 1st Example. 第1の実施例の比較例として、第1凸レンズ群の第1要素凸レンズの焦点距離をすべて同一とした場合のレンズ光学系の諸元を示す図である。As a comparative example of the first embodiment, it is a diagram showing the specifications of the lens optical system when the focal lengths of the first element convex lenses of the first convex lens group are all the same. 第1の実施例において、第1要素凸レンズの焦点距離調整の有無により視認される虚像の変化を示した図である。図17(a)~(c)に焦点距離調整をした場合、図17(d)~(f)に焦点距離調整をしなかった場合にカメラにより撮像された虚像を示す。In the 1st Example, it is the figure which showed the change of the virtual image visually recognized by the presence or absence of the focal distance adjustment of a 1st element convex lens. FIGS. 17A to 17C show virtual images captured by the camera when the focal length is adjusted and FIGS. 17D to 17F are not adjusted. 第1の実施例において、第1要素凸レンズの焦点距離調整の有無により視認される虚像の変化の結果を表した図である。In a 1st Example, it is the figure showing the result of the change of the virtual image visually recognized by the presence or absence of the focal distance adjustment of a 1st element convex lens. 図17および図18に示した虚像の撮像における、虚像のカメラによる撮像位置と光軸の関係を説明した図である。FIG. 19 is a diagram illustrating a relationship between an imaging position of a virtual image camera and an optical axis in the imaging of the virtual image illustrated in FIGS. 17 and 18. 試作した第2の実施例の光学系を示す図である。It is a figure which shows the optical system of the 2nd Example made as an experiment. 第2の実施例に係るカメラにより撮像された虚像を示す図である。It is a figure which shows the virtual image imaged with the camera which concerns on a 2nd Example.
 10 レンズ光学系、 12 第1レンズアレイプレート、 14 第2レンズアレイプレート、 20 第1凸レンズ群、 21 第1要素凸レンズ、 22 第2凸レンズ群、 23 第2要素凸レンズ、 24 第3凸レンズ群、 25 第3要素凸レンズ、 30 画像表示部、 32 フロントウィンドウ、 33 光路変更ミラー、 34 コンバイナ、 40 物体、 42 虚像、 44 視点、 52 画像、 54 虚像、 60 カメラ、 62 目印、 100 ヘッドアップディスプレイ。 10 lens optical system, 12 first lens array plate, 14 second lens array plate, 20 first convex lens group, 21 first element convex lens, 22 second convex lens group, 23 second element convex lens, 24 third convex lens group, 25 Third element convex lens, 30 image display section, 32 front window, 33 optical path change mirror, 34 combiner, 40 objects, 42 virtual images, 44 viewpoints, 52 images, 54 virtual images, 60 cameras, 62 landmarks, 100 head-up display.
 図4は、本発明の実施の形態に係るレンズ光学系10を説明するための図である。図4に示すように、レンズ光学系10は、複数の凸レンズが両面に形成された第1レンズアレイプレート12と第2レンズアレイプレート14とが積層された構造となっている。図4では、第2レンズアレイプレート14の第2外側面14c上に、複数の第2外側凸レンズ14aが配置されている様子が示されている。 FIG. 4 is a diagram for explaining the lens optical system 10 according to the embodiment of the present invention. As shown in FIG. 4, the lens optical system 10 has a structure in which a first lens array plate 12 and a second lens array plate 14 in which a plurality of convex lenses are formed on both surfaces are laminated. FIG. 4 shows a state in which a plurality of second outer convex lenses 14 a are arranged on the second outer surface 14 c of the second lens array plate 14.
 レンズ光学系10は、第1レンズアレイプレート12の第1外側面12c側である物体側に位置する物体40からの光を受けて、第2レンズアレイプレート14の第2外側面14c側である観察側に位置する観察者の視点44に、虚像42を表示するものである。虚像42は、観察者の視点44から物体40までの光路長よりも遠方に形成される。本実施の形態に係るレンズ光学系10を用いることにより、たとえばヘッドアップディスプレイなどの、観察者に虚像を表示する画像表示装置を構成することができる。 The lens optical system 10 receives light from the object 40 located on the object side which is the first outer surface 12c side of the first lens array plate 12, and is on the second outer surface 14c side of the second lens array plate 14. A virtual image 42 is displayed at the viewpoint 44 of the observer located on the observation side. The virtual image 42 is formed farther than the optical path length from the observer's viewpoint 44 to the object 40. By using the lens optical system 10 according to the present embodiment, an image display device that displays a virtual image to an observer, such as a head-up display, can be configured.
 図5は、本実施の形態に係るレンズ光学系10の断面図である。上述したように、レンズ光学系10は、両面に複数の凸レンズが配置された第1レンズアレイプレート12と、第2レンズアレイプレート14とが積層された構造となっている。すなわち、第1レンズアレイプレート12の一方の面である第1外側面12c上には、複数の第1外側凸レンズ12aが規則的に配置されており、他方の面である第1内側面12d上には、複数の第1内側凸レンズ12bが規則的に配置されている。また、第2レンズアレイプレート14の一方の面である第2外側面14c上には、複数の第2外側凸レンズ14aが規則的に配置されており、他方の面である第2内側面14d上には、複数の第2内側凸レンズ14bが規則的に配置されている。第1レンズアレイプレート12と第2レンズアレイプレート14は、第1内側凸レンズ12bと第2内側凸レンズ14bとが対向するように積層されている。 FIG. 5 is a cross-sectional view of the lens optical system 10 according to the present embodiment. As described above, the lens optical system 10 has a structure in which the first lens array plate 12 having a plurality of convex lenses arranged on both surfaces and the second lens array plate 14 are laminated. That is, a plurality of first outer convex lenses 12a are regularly arranged on the first outer surface 12c which is one surface of the first lens array plate 12, and on the first inner surface 12d which is the other surface. The plurality of first inner convex lenses 12b are regularly arranged. A plurality of second outer convex lenses 14a are regularly arranged on the second outer surface 14c, which is one surface of the second lens array plate 14, and on the second inner surface 14d, which is the other surface. A plurality of second inner convex lenses 14b are regularly arranged. The first lens array plate 12 and the second lens array plate 14 are laminated so that the first inner convex lens 12b and the second inner convex lens 14b face each other.
 第1外側面12c、第1内側面12d、第2外側面14cおよび第2内側面14d上において、第1外側凸レンズ12a、第1内側凸レンズ12b、第2外側凸レンズ14aおよび第2内側凸レンズ14bは、それぞれ最密充填配列で配置されている。図4には、第2レンズアレイプレート14の第2外側面14c上に、第2外側凸レンズ14aが最密充填配列で配置されている様子が示されている。 On the first outer surface 12c, the first inner surface 12d, the second outer surface 14c, and the second inner surface 14d, the first outer convex lens 12a, the first inner convex lens 12b, the second outer convex lens 14a, and the second inner convex lens 14b are , Each arranged in a close packed arrangement. FIG. 4 shows a state in which the second outer convex lenses 14 a are arranged in a close-packed arrangement on the second outer surface 14 c of the second lens array plate 14.
 本実施の形態において、平面状に配置された複数の第1外側凸レンズ12aは、第1凸レンズ群20を構成している。以下においては適宜、第1外側凸レンズ12aを「第1要素凸レンズ21」と称する。 In the present embodiment, the plurality of first outer convex lenses 12 a arranged in a plane form a first convex lens group 20. Hereinafter, the first outer convex lens 12a is appropriately referred to as a “first element convex lens 21”.
 平面状に配置された第1内側凸レンズ12bと第2内側凸レンズ14bは、同一のレンズ径であり、対向する第1内側凸レンズ12bと第2内側凸レンズ14bは、光軸が一致し、且つ凸レンズの表面同士が当接するように配置されている。このように配置された第1内側凸レンズ12bと第2内側凸レンズ14bの1つの組は、1つの凸レンズとして機能する。従って、以下においては適宜、対向する第1内側凸レンズ12bと第2内側凸レンズ14bの組を「第2要素凸レンズ23」として扱う。そして、複数の第2要素凸レンズ23は、第2凸レンズ群22を構成している。 The first inner convex lens 12b and the second inner convex lens 14b arranged in a plane have the same lens diameter, and the first inner convex lens 12b and the second inner convex lens 14b facing each other have the same optical axis and are convex lenses. It arrange | positions so that surfaces may contact | abut. One set of the first inner convex lens 12b and the second inner convex lens 14b arranged in this manner functions as one convex lens. Therefore, in the following, a pair of the first inner convex lens 12b and the second inner convex lens 14b facing each other is appropriately treated as the “second element convex lens 23”. The plurality of second element convex lenses 23 constitute a second convex lens group 22.
 また、平面状に配置された複数の第2外側凸レンズ14aは、第3凸レンズ群24を構成している。以下においては適宜、第2外側凸レンズ14aを「第3要素凸レンズ25」と称する。 Further, the plurality of second outer convex lenses 14 a arranged in a plane form a third convex lens group 24. Hereinafter, the second outer convex lens 14a is appropriately referred to as a “third element convex lens 25”.
 また、平面状に配置された第1凸レンズ群20と第2凸レンズ群22の間の距離をT12、第2凸レンズ群22と第3凸レンズ群24の間の距離をT23と称する。 Further, the distance between the first convex lens group 20 and the second convex lens group 22 arranged in a plane is referred to as T12, and the distance between the second convex lens group 22 and the third convex lens group 24 is referred to as T23.
 本実施の形態においては、第1凸レンズ群20、第2凸レンズ群22、第3凸レンズ群24の順に、凸レンズのレンズ径およびレンズピッチが大きくなるように構成され、第1凸レンズ群20と第2凸レンズ群22の距離よりも第2凸レンズ群22と第3凸レンズ群24の距離が長くなるように構成されている。 In the present embodiment, the first convex lens group 20, the second convex lens group 22, and the third convex lens group 24 are configured so that the lens diameter and lens pitch of the convex lens increase in order, and the first convex lens group 20 and the second convex lens group 20 The distance between the second convex lens group 22 and the third convex lens group 24 is longer than the distance between the convex lens group 22.
 すなわち、第1要素凸レンズ21のレンズ径d<第2要素凸レンズ23のレンズ径d<第3要素凸レンズ25のレンズ径d、且つ、第1要素凸レンズ21のレンズピッチp<第2要素凸レンズ23のレンズピッチp<第3要素凸レンズ25のレンズピッチp、且つ、T23>T12となるように構成されている。なお、本実施の形態において、レンズピッチとは、最も近接する2つのレンズの中心間の距離である。また、レンズ径とは、レンズとしての機能を有する部分の外接円の直径である。 That is, the lens diameter d 1 of the first element convex lens 21 <the lens diameter d 2 of the second element convex lens 23 <the lens diameter d 3 of the third element convex lens 25, and the lens pitch p 1 of the first element convex lens 21 <second. The lens pitch p 2 of the element convex lens 23 <the lens pitch p 3 of the third element convex lens 25, and T23> T12. In the present embodiment, the lens pitch is the distance between the centers of the two closest lenses. The lens diameter is a diameter of a circumscribed circle of a portion having a function as a lens.
 また、本実施の形態において、第1凸レンズ群20は、その各第1要素凸レンズ21の結像面が対応する各第2要素凸レンズ23の主平面に位置するように、個々の第1要素凸レンズ21に主光軸に対して同心円状に焦点距離の分布が設けられており、第2凸レンズ群22の第2要素凸レンズ23は、第1凸レンズ群20の個々の第1要素凸レンズ21を通った光束を主光軸の方向に曲げるように配置されている。 Further, in the present embodiment, the first convex lens group 20 includes the individual first element convex lenses so that the image formation surface of each first element convex lens 21 is located on the main plane of each corresponding second element convex lens 23. 21 is provided with a distribution of focal lengths concentrically with respect to the main optical axis, and the second element convex lens 23 of the second convex lens group 22 passes through each first element convex lens 21 of the first convex lens group 20. It arrange | positions so that a light beam may be bent in the direction of a main optical axis.
 図5は第1凸レンズ群の各第1要素凸レンズ21を一定(同一)のレンズピッチで配列した場合を示しており、この場合、第2要素凸レンズ23、第3要素凸レンズ25は各凸レンズ群の平面内において、主光軸から離れるに従ってレンズピッチが大きくなるように各レンズが配列されている。図5において第2要素凸レンズ23の主平面とは、第1内側凸レンズ12bと第2内側凸レンズ14bとの接点が位置している平面である。また、図5においては、各第2要素凸レンズ23の主平面は全て同一の平面上に位置している。 FIG. 5 shows a case where the first element convex lenses 21 of the first convex lens group are arranged at a constant (same) lens pitch. In this case, the second element convex lens 23 and the third element convex lens 25 are arranged in each convex lens group. In the plane, the lenses are arranged so that the lens pitch increases as the distance from the main optical axis increases. In FIG. 5, the main plane of the second element convex lens 23 is a plane on which the contact point between the first inner convex lens 12b and the second inner convex lens 14b is located. In FIG. 5, the main planes of the second element convex lenses 23 are all located on the same plane.
 第2要素凸レンズ23および第3要素凸レンズ25のレンズピッチがその各凸レンズ群の平面内で同一でない時は、対応する各第1要素凸レンズ21、第2要素凸レンズ23および第3要素凸レンズ25の組を考えた場合に、近接する2組の各要素凸レンズ間のレンズピッチは、必ず、第1要素凸レンズ間のレンズピッチP<第2要素凸レンズ間のレンズピッチP<第3要素凸レンズ間のレンズピッチPとなる。 When the lens pitches of the second element convex lens 23 and the third element convex lens 25 are not the same in the plane of each convex lens group, the corresponding first element convex lens 21, second element convex lens 23 and third element convex lens 25 are combined. , The lens pitch between the two adjacent element convex lenses is always the lens pitch P 1 between the first element convex lenses <the lens pitch P 2 between the second element convex lenses <the third element convex lenses the lens pitch P 3.
 また、本実施の形態においては、第1凸レンズ群20の個々の凸レンズ12aは、主光軸に対して同心円状、物体に対して凹面状の頂点面が設けられている。 In the present embodiment, the individual convex lenses 12a of the first convex lens group 20 are provided with apex surfaces that are concentric with respect to the main optical axis and concave with respect to the object.
 第1レンズアレイプレート12および第2レンズアレイプレート14は、射出成形により形成される。第1レンズアレイプレート12および第2レンズアレイプレート14の材質は、射出成形に使用可能で、必要な波長帯域の光に対して光透過性が高く、吸水性の低いものが望ましい。望ましい材質としては、シクロオレフィン系樹脂や、オレフィン系樹脂、ノルボルネン系樹脂、ポリカーボネートなどを例示することができる。 The first lens array plate 12 and the second lens array plate 14 are formed by injection molding. The material of the first lens array plate 12 and the second lens array plate 14 is preferably one that can be used for injection molding, has high light transmittance with respect to light in a necessary wavelength band, and low water absorption. Examples of desirable materials include cycloolefin resins, olefin resins, norbornene resins, and polycarbonates.
 図6(a)~(c)は、本実施の形態に係るレンズ光学系10の動作を説明するための図である。図6(a)は、物体40を距離Dだけ離れた位置から両眼で観察すると、観察者(視点)44は、物体40を距離Dの位置に視認できることを示している。 6A to 6C are diagrams for explaining the operation of the lens optical system 10 according to the present embodiment. FIG. 6A shows that when the object 40 is observed with both eyes from a position separated by the distance D, the observer (viewpoint) 44 can visually recognize the object 40 at the position of the distance D.
 ここで、図6(b)に示すように、物体40と観察者の視点44との間にレンズ径およびレンズピッチの異なる第1凸レンズ群20と第3凸レンズ群24を所望の間隔で配置し、物体40からの光を、第1凸レンズ群20の各第1要素凸レンズ21から放射される光束に分けて考える。ここで、第1凸レンズ群20と第3凸レンズ群24との間隔は、物体40から放射される光束が、角度変化なく第3凸レンズ群24から出射し、物体40から第1凸レンズ群20の個々の第1要素凸レンズ21に張った光線角度に整合するように決める。 Here, as shown in FIG. 6B, the first convex lens group 20 and the third convex lens group 24 having different lens diameters and lens pitches are arranged at a desired interval between the object 40 and the viewpoint 44 of the observer. The light from the object 40 is considered as being divided into light beams emitted from the first element convex lenses 21 of the first convex lens group 20. Here, the distance between the first convex lens group 20 and the third convex lens group 24 is such that the light beam radiated from the object 40 is emitted from the third convex lens group 24 without changing the angle, and the first convex lens group 20 is individually separated from the object 40. The first element convex lens 21 is determined so as to match the light beam angle.
 図6(b)のような構成の場合、物体40から放射状に放出された光を受けた第1凸レンズ群20の各第1要素凸レンズ21は、各第1要素凸レンズ21の結像面に倒立像(要素画像とも呼ぶ)を形成する。第3凸レンズ群24の各第3要素凸レンズ25は、この各要素画像の各光束を受けて、観察者に向けて放出する。観察者がこのような放射光線を両眼で観察すると、物体40は、観察者の視点44から距離Dの位置に反転して視認できる。  In the case of the configuration as shown in FIG. 6B, each first element convex lens 21 of the first convex lens group 20 that has received the light emitted radially from the object 40 is inverted on the imaging surface of each first element convex lens 21. An image (also called an element image) is formed. Each third element convex lens 25 of the third convex lens group 24 receives each light flux of each element image and emits it toward the observer. When the observer observes such a radiation beam with both eyes, the object 40 can be visually recognized by being inverted from the observer's viewpoint 44 to the position of the distance D. *
 次いで、図6(c)に示すように、第1凸レンズ群20と第3凸レンズ群24の間に、第1凸レンズ群20よりレンズ径およびレンズピッチが大きく、第3凸レンズ群24よりレンズ径およびレンズピッチが小さく、第1凸レンズ群20と第2凸レンズ群22の距離よりも第2凸レンズ群22と第3凸レンズ群24の距離が長くなるように、しかも第1凸レンズ群20、第3凸レンズ群24よりも屈折力の大きな第2凸レンズ群22を追加する。第2凸レンズ群22の各第2要素凸レンズ23は、上述したように、その主平面が各第1要素凸レンズ21の結像面に位置するように配置される。 Next, as shown in FIG. 6C, the lens diameter and the lens pitch are larger between the first convex lens group 20 and the third convex lens group 24 than the first convex lens group 20, and the lens diameter and the lens pitch are larger than those of the third convex lens group 24. The lens pitch is small, the distance between the second convex lens group 22 and the third convex lens group 24 is longer than the distance between the first convex lens group 20 and the second convex lens group 22, and the first convex lens group 20 and the third convex lens group. A second convex lens group 22 having a refractive power greater than 24 is added. As described above, each second element convex lens 23 of the second convex lens group 22 is arranged so that its main plane is located on the image plane of each first element convex lens 21.
 第2凸レンズ群22の各第2要素凸レンズ23は、各要素画像の結像に寄与した各光束を、各第2要素凸レンズ23の光軸方向に曲げる。このように第2凸レンズ群22の各第2要素凸レンズ23により光束が曲げられることにより、観察者は、曲げられた光束の視点から反対方向の主光軸の延長線上に、虚像である観察像42を観ることができる。第3要素凸レンズ25のレンズピッチと曲率半径、および第2凸レンズ群22と第3凸レンズ群24の距離を調整することで、観察像42を任意の位置D’に結像させることができる。もちろん、物体40と第1凸レンズ群20の距離Eを変更することにより、観察像42の倍率と虚像位置D‘を変化させることができる。 Each second element convex lens 23 of the second convex lens group 22 bends each light flux contributing to the image formation of each element image in the optical axis direction of each second element convex lens 23. In this way, the light beam is bent by each second element convex lens 23 of the second convex lens group 22, so that the observer can observe an observation image that is a virtual image on the extension line of the main optical axis in the opposite direction from the viewpoint of the bent light beam. 42 can be seen. By adjusting the lens pitch and curvature radius of the third element convex lens 25 and the distance between the second convex lens group 22 and the third convex lens group 24, the observation image 42 can be formed at an arbitrary position D '. Of course, the magnification of the observation image 42 and the virtual image position D ′ can be changed by changing the distance E between the object 40 and the first convex lens group 20.
 つまり、第1凸レンズ群20により、高品位な倒立像を形成し、第2要素凸レンズ23と第3要素凸レンズ25のレンズピッチ、曲率半径、第2凸レンズ群22と第3凸レンズ群24の距離、および位置を調整して、倒立像を読み出すことで、任意の位置に虚像42を結像することが可能となり、視差と視度の両立を図ることができる。ここで観察者と観察者の視点、および視点は44で同意であり、視点は眼を言う。 That is, a high-quality inverted image is formed by the first convex lens group 20, the lens pitch of the second element convex lens 23 and the third element convex lens 25, the radius of curvature, the distance between the second convex lens group 22 and the third convex lens group 24, And by adjusting the position and reading the inverted image, the virtual image 42 can be formed at an arbitrary position, and both the parallax and the diopter can be achieved. Here, the viewpoints of the observer and the observer, and the viewpoints are the same as 44, and the viewpoints refer to eyes.
 第1凸レンズ群20と第2凸レンズ群22の距離T12、および第2凸レンズ群22と第3凸レンズ群24の距離T23について言えば、第1要素凸レンズ21と第3要素凸レンズ25を通る光束の断面積に比例してT23>T12にする。 Speaking of the distance T12 between the first convex lens group 20 and the second convex lens group 22 and the distance T23 between the second convex lens group 22 and the third convex lens group 24, the light flux passing through the first element convex lens 21 and the third element convex lens 25 is interrupted. In proportion to the area, T23> T12.
 図7は本実施の形態に係る第3凸レンズ群24における第3要素凸レンズ25の光束を説明するための図である。図7(a)はT23=T12のときのレンズ光学系の光束の広がり、図7(b)はT23>T12のときのレンズ光学系の光束の広がりをそれぞれ示したものである。図7(a)に示すように、T23=T12のときは第3凸レンズ群から観察者に向けて出射される光束は離散的で間が開いたものになるのに対し、図7(b)に示すようにT23>T12にすることで第3凸レンズ群から観察者に向けて出射される光束は連続的になることが判る。光束が離散的になった場合は、虚像54が点状物を寄せ集めた見にくいものになるのに対し、光束を連続的にすることで、滑らかな見やすい虚像とすることができる。 FIG. 7 is a diagram for explaining the light flux of the third element convex lens 25 in the third convex lens group 24 according to the present embodiment. FIG. 7A shows the spread of the light beam of the lens optical system when T23 = T12, and FIG. 7B shows the spread of the light beam of the lens optical system when T23> T12. As shown in FIG. 7A, when T23 = T12, the light beams emitted from the third convex lens group toward the observer are discrete and open, whereas FIG. As shown in FIG. 4, it is understood that the light beam emitted from the third convex lens group toward the observer becomes continuous by setting T23> T12. When the luminous flux becomes discrete, the virtual image 54 becomes difficult to see with the collection of point-like objects, whereas by making the luminous flux continuous, a smooth, easy-to-view virtual image can be obtained.
 図8は本実施の形態に係る放射角度制限手段を説明するための図である。図8(a)のように、物体40から放出される光線の放射角度を制限する手段Fを設けることで、第1凸レンズ群20の各第1要素凸レンズ21による第2凸レンズ群22の各第2要素凸レンズ23の主平面を繋いだ平面13へ倒立像が結像する範囲を制限することができる。この形態によれば、第1凸レンズ群20の各第1要素凸レンズ21の像面湾曲があり、第2凸レンズ群22の各第2要素凸レンズ23の主平面を繋いだ平面13よりも第1凸レンズ群側に倒立像が結像したとしても(各第1要素凸レンズ21の結像面を繋いだ面が面71)、任意の位置に形成した物体の虚像を歪みやボケなく視認することができる。放射角度制限手段とは、物体(画像表示部)から放出する光線の広がりを規制するものである。つまり、虚像が見える範囲を制限するものであり、視野制限板F以外では、例えば、点光源36を用いて物体40を表示する画像表示部30の場合に、点光源36から出射される光の光路上にレンズ65を設置した場合のレンズ65が放射角度制限手段に相当する FIG. 8 is a view for explaining the radiation angle limiting means according to the present embodiment. As shown in FIG. 8A, by providing means F for limiting the radiation angle of the light beam emitted from the object 40, each of the second convex lens groups 22 by the first element convex lenses 21 of the first convex lens group 20 is provided. The range in which the inverted image is formed on the plane 13 connecting the main planes of the two-element convex lens 23 can be limited. According to this embodiment, there is a curvature of field of each first element convex lens 21 of the first convex lens group 20, and the first convex lens is more than the plane 13 connecting the main planes of the second element convex lenses 23 of the second convex lens group 22. Even if an inverted image is formed on the group side (the surface connecting the imaging surfaces of the first element convex lenses 21 is the surface 71), the virtual image of the object formed at an arbitrary position can be visually recognized without distortion or blurring. . The radiation angle limiting means regulates the spread of light rays emitted from the object (image display unit). In other words, the range in which the virtual image can be seen is limited. In the case of the image display unit 30 that displays the object 40 using the point light source 36 other than the visual field limiting plate F, for example, When the lens 65 is installed on the optical path, the lens 65 corresponds to the radiation angle limiting means.
 図9は本実施の形態に係るレンズ光学系10の結像面、主平面、焦点距離分布、および頂点面を説明するための図である。 FIG. 9 is a diagram for explaining the imaging plane, main plane, focal length distribution, and apex plane of the lens optical system 10 according to the present embodiment.
 図9(a)のように、物体40と各第1要素凸レンズ21との位置関係から成る各第1要素凸レンズ21の結像面を繋いだ面71は、各第1要素凸レンズ21の像面湾曲のために主光軸72から離れるに従い各第2要素凸レンズ23の主平面を繋いだ平面13よりも第1凸レンズ群20側に位置するため、第2要素凸レンズ23の主平面を繋いだ平面13の位置では倒立像がボケる。 As shown in FIG. 9A, the surface 71 connecting the imaging surfaces of the first element convex lenses 21, which is based on the positional relationship between the object 40 and the first element convex lenses 21, is the image plane of each first element convex lens 21. The plane connecting the main planes of the second element convex lenses 23 because it is positioned closer to the first convex lens group 20 than the plane 13 connecting the main planes of the second element convex lenses 23 as it moves away from the main optical axis 72 due to curvature. At position 13, the inverted image is blurred.
 上述したように、個々の第1要素凸レンズ21の焦点距離が第2要素凸レンズ23の主平面を繋いだ面13に位置するように調整すると、各第1要素凸レンズ21の結像面と第2要素凸レンズ23の主平面が広範囲に一致することで、良好な虚像が広範囲な視点から観察することができるようになる(図9(b))。 As described above, when the focal lengths of the individual first element convex lenses 21 are adjusted so as to be positioned on the surface 13 connecting the principal planes of the second element convex lenses 23, the imaging surfaces of the first element convex lenses 21 and the second Since the principal planes of the element convex lenses 23 coincide with each other over a wide range, a good virtual image can be observed from a wide range of viewpoints (FIG. 9B).
 また、図9(b)のように個々の第1要素凸レンズ21の頂点に接する面を主光軸72に対して、物体側に凹面状に形成する。つまり、第1要素凸レンズ21のレンズ高さを主光軸72に対して同心円状で、物体40側に凹面状になるように高くすることで、主光軸72から離れた凸レンズに入射できる光線が多くなり、視点の位置に依ることなく、任意の位置に形成した物体40の虚像を明るく視認できるようになる。 Also, as shown in FIG. 9B, the surface in contact with the apex of each first element convex lens 21 is formed concave on the object side with respect to the main optical axis 72. That is, by increasing the lens height of the first element convex lens 21 so as to be concentric with the main optical axis 72 and concave on the object 40 side, the light beam that can be incident on the convex lens away from the main optical axis 72. The virtual image of the object 40 formed at an arbitrary position can be viewed brightly without depending on the position of the viewpoint.
 上記では放射角度制限手段Fと第1要素凸レンズの焦点距離の調整について別々に記載したが、これらは別々に用いられてもよく、また併用して用いられてもよい。 In the above description, the adjustment of the focal length of the radiation angle limiting means F and the first element convex lens is described separately, but these may be used separately or in combination.
 このように、本実施の形態に係るレンズ光学系10によれば、物体40と第1凸レンズ群20との距離Eを大きくとらなくても、任意の位置に物体40の虚像42を形成することができるので、ヘッドアップディスプレイなどの画像表示装置を小型化できる。 As described above, according to the lens optical system 10 according to the present embodiment, the virtual image 42 of the object 40 can be formed at an arbitrary position without increasing the distance E between the object 40 and the first convex lens group 20. Therefore, an image display device such as a head-up display can be downsized.
 図10は、本実施の形態に係るレンズ光学系10を用いた第1のヘッドアップディスプレイ100を説明するための図である。このヘッドアップディスプレイ100は、画像表示部30と、上述したレンズ光学系10と、コンバイナ34とを備える。レンズ光学系10と画像表示部30は、ヘッドアップディスプレイ100の光学ユニットを構成し、たとえば車両のダッシュボード内に収納される。 FIG. 10 is a diagram for explaining the first head-up display 100 using the lens optical system 10 according to the present embodiment. The head-up display 100 includes an image display unit 30, the above-described lens optical system 10, and a combiner 34. The lens optical system 10 and the image display unit 30 constitute an optical unit of the head-up display 100, and are housed, for example, in a dashboard of a vehicle.
 画像表示部30は、たとえば液晶ディスプレイで構成され、図示しない画像処理部からの信号に基づいて、車速、燃料残量などの情報を画像52として表示する。 The image display unit 30 is configured by a liquid crystal display, for example, and displays information such as the vehicle speed and the remaining amount of fuel as an image 52 based on a signal from an image processing unit (not shown).
 レンズ光学系10は、第1レンズアレイプレート12の第1外側面12cが画像表示部30の表面と対向するように配置される。画像表示部30から出射された光は、第1凸レンズ群20に入射した後、第2凸レンズ群22を通って第3凸レンズ群24より出射される。レンズ光学系10は、第3凸レンズ群24から出射した光がフロントウィンドウ32に対して所定の入射角、たとえば45度の入射角で入射するように配置される。 The lens optical system 10 is arranged so that the first outer surface 12 c of the first lens array plate 12 faces the surface of the image display unit 30. The light emitted from the image display unit 30 enters the first convex lens group 20, then passes through the second convex lens group 22 and is emitted from the third convex lens group 24. The lens optical system 10 is arranged so that light emitted from the third convex lens group 24 enters the front window 32 at a predetermined incident angle, for example, an incident angle of 45 degrees.
 コンバイナ34は、フロントウィンドウ32の表面に形成された反射膜であり、レンズ光学系10から出射された光を運転者(視点)44に向けて反射する。運転者は、視点からコンバイナ34までの光路の延長線上に、画像52の虚像54を視認することができる。  The combiner 34 is a reflective film formed on the surface of the front window 32, and reflects the light emitted from the lens optical system 10 toward the driver (viewpoint) 44. The driver can visually recognize the virtual image 54 of the image 52 on the extension line of the optical path from the viewpoint to the combiner 34. *
 ここで、画像表示部30からレンズ光学系10の第1凸レンズ群20までの距離をD1、レンズ光学系10の第3凸レンズ群24からコンバイナ34までの距離をD2、コンバイナ34から運転者の視点44までの距離をD3、コンバイナ34から虚像54までの距離をD4とする。このとき、運転者の視点44から画像52までの光路長は、D1+D2+D3である。また、運転者の視点44から虚像54までの光路長は、D3+D4である。本実施の形態に係るレンズ光学系10は、図3において説明したのと同様に、運転者の視点44から虚像54までの光路長D3+D4を、運転者の視点44から画像52までの光路長D1+D2+D3よりも長くすることができる。 Here, the distance from the image display unit 30 to the first convex lens group 20 of the lens optical system 10 is D1, the distance from the third convex lens group 24 of the lens optical system 10 to the combiner 34 is D2, and the viewpoint of the driver from the combiner 34 is shown. The distance to 44 is D3, and the distance from the combiner 34 to the virtual image 54 is D4. At this time, the optical path length from the driver's viewpoint 44 to the image 52 is D1 + D2 + D3. The optical path length from the driver's viewpoint 44 to the virtual image 54 is D3 + D4. In the lens optical system 10 according to the present embodiment, the optical path length D3 + D4 from the driver's viewpoint 44 to the virtual image 54 and the optical path length D1 + D2 + D3 from the driver's viewpoint 44 to the image 52 are the same as described in FIG. Can be longer.
 運転者の視点44が車両前方の風景と虚像54とを重ね合わせて視認することができるように、虚像54は、車両前方の出来るだけ遠方に形成されることが好ましい。たとえば、コンバイナ34から虚像54までの距離D4は、1m程度を確保することが望ましい。図3に示すような従来のヘッドアップディスプレイの光学ユニットでは、コンバイナから虚像までの距離を1m確保するためには、画像から凹面鏡までの光路長を1m確保する必要があった。この場合、光学ユニットを小型化することは難しい。しかしながら、本実施の形態に係るレンズ光学系10を用いてヘッドアップディスプレイ100を構成することにより、距離D1+D2を距離D4よりも小さくすることができる。従って、光学ユニット内においてそれほど大きな光路長を確保する必要がないため、光学ユニットを小型化することができる。 It is preferable that the virtual image 54 is formed as far as possible in front of the vehicle so that the driver's viewpoint 44 can be seen by superimposing the landscape and the virtual image 54 in front of the vehicle. For example, it is desirable to secure a distance D4 from the combiner 34 to the virtual image 54 of about 1 m. In the optical unit of the conventional head-up display as shown in FIG. 3, in order to secure 1 m from the combiner to the virtual image, it is necessary to secure 1 m of the optical path length from the image to the concave mirror. In this case, it is difficult to reduce the size of the optical unit. However, the distance D1 + D2 can be made smaller than the distance D4 by configuring the head-up display 100 using the lens optical system 10 according to the present embodiment. Therefore, it is not necessary to secure a very long optical path length in the optical unit, and the optical unit can be downsized.
 図11は、本実施の形態に係るレンズ光学系10を用いた第2のヘッドアップディスプレイ200を説明するための図である。このヘッドアップディスプレイ200は、画像表示部30と、上述したレンズ光学系10と、光路変更ミラー33と、コンバイナ34とを備える。レンズ光学系10、画像表示部30および光路変更ミラー33は、ヘッドアップディスプレイ200の光学ユニットを構成し、たとえば車両のダッシュボード内に収納される。 FIG. 11 is a diagram for explaining a second head-up display 200 using the lens optical system 10 according to the present embodiment. The head-up display 200 includes an image display unit 30, the above-described lens optical system 10, an optical path changing mirror 33, and a combiner 34. The lens optical system 10, the image display unit 30, and the optical path changing mirror 33 constitute an optical unit of the head-up display 200, and are housed, for example, in a dashboard of a vehicle.
 レンズ光学系10は、第1レンズアレイプレート12の第1外側面12cが画像表示部30の表面と対向するように配置される。画像表示部30から出射された光は、第1凸レンズ群20に入射した後、第2凸レンズ群22を通って第3凸レンズ群24より出射される。レンズ光学系10は、第3凸レンズ群24から出射した光が光路変更ミラー33に反射させてフロントウィンドウ32に対して所定の入射角、たとえば45度の入射角で入射するように配置される。 The lens optical system 10 is arranged so that the first outer surface 12 c of the first lens array plate 12 faces the surface of the image display unit 30. The light emitted from the image display unit 30 enters the first convex lens group 20, then passes through the second convex lens group 22 and is emitted from the third convex lens group 24. The lens optical system 10 is disposed so that light emitted from the third convex lens group 24 is reflected by the optical path changing mirror 33 and is incident on the front window 32 at a predetermined incident angle, for example, an incident angle of 45 degrees.
 コンバイナ34は、フロントウィンドウ32の表面に形成された反射膜であり、レンズ光学系10から出射された光を運転者に向けて反射する。運転者は、視点44からコンバイナ34までの光路の延長線上に、画像52の虚像54を視認することができる。 The combiner 34 is a reflective film formed on the surface of the front window 32, and reflects the light emitted from the lens optical system 10 toward the driver. The driver can visually recognize the virtual image 54 of the image 52 on the extension line of the optical path from the viewpoint 44 to the combiner 34.
 ここで、画像表示部30からレンズ光学系10の第1凸レンズ群20までの距離をD1、レンズ光学系10の第3凸レンズ群24から光路変更ミラー33までの距離をD5、光路変更ミラー33からコンバイナ34までの距離をD6、コンバイナ34から運転者の視点44までの距離をD3、コンバイナ34から虚像54までの距離をD4とする。このとき、運転者の視点44から画像52までの光路長は、D1+D5+D6+D3である。また、運転者の視点44から虚像54までの光路長は、D3+D4である。本実施の形態に係るレンズ光学系10は、図3において説明したのと同様に、運転者の視点44から虚像54までの光路長D3+D4を、運転者の視点44から画像52までの光路長D1+D5+D6+D3よりも長くすることができる。 Here, the distance from the image display unit 30 to the first convex lens group 20 of the lens optical system 10 is D1, the distance from the third convex lens group 24 of the lens optical system 10 to the optical path changing mirror 33 is D5, and from the optical path changing mirror 33. The distance to the combiner 34 is D6, the distance from the combiner 34 to the driver's viewpoint 44 is D3, and the distance from the combiner 34 to the virtual image 54 is D4. At this time, the optical path length from the driver's viewpoint 44 to the image 52 is D1 + D5 + D6 + D3. The optical path length from the driver's viewpoint 44 to the virtual image 54 is D3 + D4. In the lens optical system 10 according to the present embodiment, the optical path length D3 + D4 from the driver's viewpoint 44 to the virtual image 54 and the optical path length D1 + D5 + D6 + D3 from the driver's viewpoint 44 to the image 52 are the same as described in FIG. Can be longer.
 運転者の視点44が車両前方の風景と虚像54とを重ね合わせて視認することができるように、虚像54は、車両前方の出来るだけ遠方に形成されることが好ましい。たとえば、コンバイナ34から虚像54までの距離D4は、1m程度を確保することが望ましい。図3に示すような従来のヘッドアップディスプレイの光学ユニットでは、コンバイナから虚像までの距離を1m確保するためには、画像から凹面鏡までの光路長を1m確保する必要があった。この場合、光学ユニットを小型化することは難しい。しかしながら、本実施の形態に係るレンズ光学系10を用いてヘッドアップディスプレイ200を構成することにより、距離D1+D5+D6を距離D4よりも小さくすることができる。 It is preferable that the virtual image 54 is formed as far as possible in front of the vehicle so that the driver's viewpoint 44 can be seen by superimposing the landscape and the virtual image 54 in front of the vehicle. For example, it is desirable to secure a distance D4 from the combiner 34 to the virtual image 54 of about 1 m. In the optical unit of the conventional head-up display as shown in FIG. 3, in order to secure 1 m from the combiner to the virtual image, it is necessary to secure 1 m of the optical path length from the image to the concave mirror. In this case, it is difficult to reduce the size of the optical unit. However, the distance D1 + D5 + D6 can be made smaller than the distance D4 by configuring the head-up display 200 using the lens optical system 10 according to the present embodiment.
 ヘッドアップディスプレイ200によれば、ヘッドアップディスプレイ100のレンズ光学系10とコンバイナ34の間に光路変更ミラー33を追加したのみと考えられるが、このミラーを追加することで、ヘッドアップディスプレイの高さをより低くできる。 According to the head-up display 200, it is considered that only the optical path changing mirror 33 is added between the lens optical system 10 of the head-up display 100 and the combiner 34. By adding this mirror, the height of the head-up display 200 is increased. Can be lower.
 また、本実施の形態に係るヘッドアップディスプレイ100、200によれば、非常に簡易な構成により、画像表示部30に表示された画像52の虚像54を遠方に表示できる。奥行き感のある画像を形成する装置としては、従来より、映像投影系の結像位置にレンチキュラスクリーンを配置し、両眼視差を含んだ画像をそれぞれ左右の眼に空間的に分離して提示する装置がある。しかしながら、このような装置では、両眼視差を含んだ左右の画像を観察者の頭の中で合成して奥行き感を得るものであるので、奥行き感のある画像を認識するのに疲労感を伴ってしまう。しかしながら、本実施の形態に係るヘッドアップディスプレイ100および200では、両眼視差を含んだ左右の画像を観察者の頭の中で合成するような作業は必要なく、容易に奥行き感のある虚像54を視認できるため、観察者が疲労感を感じることはない。 Further, according to the head-up displays 100 and 200 according to the present embodiment, the virtual image 54 of the image 52 displayed on the image display unit 30 can be displayed far away with a very simple configuration. As a device for forming an image with a sense of depth, a lenticular screen is conventionally arranged at the image forming position of the video projection system, and images including binocular parallax are spatially separated and presented to the left and right eyes, respectively. There is a device. However, in such an apparatus, the left and right images including the binocular parallax are synthesized in the observer's head to obtain a sense of depth, so that it is not easy to recognize an image with a sense of depth. It will accompany. However, in the head-up displays 100 and 200 according to the present embodiment, it is not necessary to synthesize the left and right images including binocular parallax in the observer's head, and the virtual image 54 having a sense of depth can be easily obtained. Therefore, the observer will not feel tired.
 次に、本実施の形態に係るヘッドアップディスプレイ100を実際に試作した第1の実施例について説明する。図12は、ヘッドアップディスプレイ100を試作した第1の実施例の光学系を示す図である。図13は第1の実施例において用いたレンズ光学系10の諸元を示す図である。第1の実施例においては、図10の視点44の位置にカメラ60を置き、また、虚像52が形成される位置に目印62を置いた。 Next, a first example in which the head-up display 100 according to the present embodiment is actually prototyped will be described. FIG. 12 is a diagram showing an optical system of a first example in which the head-up display 100 is prototyped. FIG. 13 is a diagram showing specifications of the lens optical system 10 used in the first embodiment. In the first embodiment, the camera 60 is placed at the position of the viewpoint 44 in FIG. 10, and the mark 62 is placed at the position where the virtual image 52 is formed.
 図12に示すように、第1の実施例においては、画像表示部30から第1凸レンズ群20までの距離D1=130mm、第3凸レンズ群24からコンバイナ34までの距離D2=100mm、コンバイナ34からカメラ60までの距離D3=1000mm、コンバイナ34から目印62までの距離D4=1000mmと設定した。 As shown in FIG. 12, in the first embodiment, the distance D1 from the image display unit 30 to the first convex lens group 20 is 130 mm, the distance D2 from the third convex lens group 24 to the combiner 34 is 100 mm, and from the combiner 34. The distance D3 to the camera 60 was set to 1000 mm, and the distance D4 from the combiner 34 to the mark 62 was set to 1000 mm.
 また、図13に示すように、第1要素凸レンズ21を曲率半径=0.584~0.681mm(焦点距離によって変更)、レンズピッチ=0.662mmと設定した。ここで各第1要素凸レンズ21の焦点距離分布は図14のように設定した。各第1要素凸レンズ21の焦点距離は主光軸72(図示せず)から離れるに従って同心円状に長くなっている。第2凸レンズ群22を構成する第1内側凸レンズ12bおよび第2内側凸レンズ14bの曲率半径を0.497mmとし、レンズピッチを主光軸から離れるに従って0.665mmから0.666mmまで増加させた。また、第3要素凸レンズ25は、曲率半径を1.042mmとし、レンズピッチを主光軸から離れるに従って0.667mmから0.668mmまで増加させた。第1レンズアレイプレート12の厚みを1.405mm、第2レンズアレイプレート14の厚みを2.999mmと設定した。なお、全てのレンズの屈折率は、1.56である。 Further, as shown in FIG. 13, the first element convex lens 21 was set such that the radius of curvature was 0.584 to 0.681 mm (changed depending on the focal length) and the lens pitch was 0.662 mm. Here, the focal length distribution of each first element convex lens 21 is set as shown in FIG. The focal length of each first element convex lens 21 increases concentrically as the distance from the main optical axis 72 (not shown) increases. The curvature radius of the first inner convex lens 12b and the second inner convex lens 14b constituting the second convex lens group 22 was 0.497 mm, and the lens pitch was increased from 0.665 mm to 0.666 mm as the distance from the main optical axis was increased. The third element convex lens 25 had a radius of curvature of 1.042 mm, and the lens pitch was increased from 0.667 mm to 0.668 mm with increasing distance from the main optical axis. The thickness of the first lens array plate 12 was set to 1.405 mm, and the thickness of the second lens array plate 14 was set to 2.999 mm. In addition, the refractive index of all the lenses is 1.56.
 このように構成された第1の実施例において、大きさが1インチ対角の文字「180Km/h」を画像表示部30に表示し、カメラ60によって形成された虚像を撮像した。図15は、カメラ60により撮像された虚像54を示す図である。図15に示すように、目印62を設置した位置に虚像54が形成できていることが分かる。虚像の大きさは、元の像52の約3倍に拡大されていた。 In the first embodiment configured as described above, a character “180 Km / h” having a diagonal size of 1 inch was displayed on the image display unit 30, and a virtual image formed by the camera 60 was captured. FIG. 15 is a diagram illustrating a virtual image 54 captured by the camera 60. As shown in FIG. 15, it can be seen that a virtual image 54 can be formed at the position where the mark 62 is installed. The size of the virtual image was enlarged to about three times that of the original image 52.
 このように第1の実施例より、画像表示部30から第1凸レンズ群20までの距離D1を130mm、第3凸レンズ群24からコンバイナまでの距離D2を100mmと短くしても、コンバイナ34から距離D4=1000mmの位置に視差と視度を持った虚像54を表示できることが判り、ヘッドアップディスプレイ100の光学ユニットをコンパクトにしかも低コストに構成できることが分かった。 Thus, even if the distance D1 from the image display unit 30 to the first convex lens group 20 is shortened to 130 mm and the distance D2 from the third convex lens group 24 to the combiner is shortened to 100 mm, the distance from the combiner 34 is reduced. It has been found that a virtual image 54 having parallax and diopter can be displayed at a position of D4 = 1000 mm, and the optical unit of the head-up display 100 can be made compact and low-cost.
 図16に第1の実施例に対する比較例として、第1要素凸レンズ21の焦点距離が第1凸レンズ群20内全て同一である場合のレンズ光学系の諸元を示す。第1凸レンズ群20を構成する第1外側凸レンズ12aは、曲率半径=0.584mm、レンズピッチ=0.662mmとし、第2凸レンズ群22を構成する第1内側凸レンズ12bおよび第2内側凸レンズ14bは、曲率半径=0.497mm、レンズピッチ=0.665mmとし、第3凸レンズ群24を構成する第2外側凸レンズ14aは、曲率半径=1.042mm、レンズピッチ=0.668mmと設定した。第1レンズアレイプレート12の厚みは1.405mm、第2レンズアレイプレート14の厚みは2.999mmと設定した。なお、レンズの屈折率は、全ての凸レンズにおいて1.56である。図16においては、各第1要素凸レンズ21の焦点距離は第1凸レンズ群内において同一であり、第2要素凸レンズ23および第3要素凸レンズ25のレンズピッチは各凸レンズ群内で同一となっている。 FIG. 16 shows the specifications of the lens optical system when the focal length of the first element convex lens 21 is the same in the first convex lens group 20 as a comparative example to the first embodiment. The first outer convex lens 12a constituting the first convex lens group 20 has a radius of curvature = 0.584 mm and the lens pitch = 0.662 mm, and the first inner convex lens 12b and the second inner convex lens 14b constituting the second convex lens group 22 are The radius of curvature = 0.497 mm and the lens pitch = 0.665 mm, and the second outer convex lens 14 a constituting the third convex lens group 24 was set to have a radius of curvature = 1.42 mm and a lens pitch = 0.668 mm. The thickness of the first lens array plate 12 was set to 1.405 mm, and the thickness of the second lens array plate 14 was set to 2.999 mm. The refractive index of the lens is 1.56 for all convex lenses. In FIG. 16, the focal length of each first element convex lens 21 is the same in the first convex lens group, and the lens pitch of the second element convex lens 23 and the third element convex lens 25 is the same in each convex lens group. .
 図17に、第1要素凸レンズ21に焦点距離分布を付けた場合(第1の実施例)と付けなかった場合(比較例)において、虚像の見え方がどのように異なるかを観察した結果を示す。図17において観察した時のカメラの設置位置60は、図19に示すとおり、(1)図12におけるカメラの位置、すなわち光軸74(レンズ光学系72の主光軸72を進む光がコンバイナ34にて反射されて進む光軸)上、(2)光軸74の(1)の位置から、光軸74に対して垂直方向(フロントウィンドウに対して横方向)に30mm離れた位置、(3)光軸74に対して垂直方向に60mm離れた位置、である。 FIG. 17 shows the results of observing how the virtual image looks different when the focal length distribution is attached to the first element convex lens 21 (first embodiment) and when it is not attached (comparative example). Show. 17, as shown in FIG. 19, (1) the position of the camera in FIG. 12, that is, the optical axis 74 (the light traveling along the main optical axis 72 of the lens optical system 72 is combined with the combiner 34). (2) a position 30 mm away from the position (1) of the optical axis 74 in a direction perpendicular to the optical axis 74 (lateral direction to the front window), (3) ) A position 60 mm away from the optical axis 74 in the vertical direction.
 図17においては、図17(a)~(c)が第1要素凸レンズ21に焦点距離分布を設けた場合(実施例)の結果を示しており、図17(d)~(f)が焦点距離分布を設けなかった場合(比較例)の結果を示している。(a)と(d)は上記(1)の位置で、(b)と(e)は上記(2)の位置で、(c)と(f)は上記(3)の位置で撮像した結果を示す。 In FIG. 17, FIGS. 17A to 17C show the results in the case where the first element convex lens 21 is provided with a focal length distribution (Example), and FIGS. 17D to 17F show the focus. The results are shown when no distance distribution is provided (comparative example). (A) and (d) are the positions of (1), (b) and (e) are the positions of (2), and (c) and (f) are the results of imaging at the positions of (3). Indicates.
 図17の観察結果をまとめたものが図18である。焦点距離分布を設けた場合は光軸74から60mmはなれても虚像54をはっきりと視認できるのに対し(○で表示)、第1要素凸レンズ21の焦点距離を全て一定にした場合では光軸74から30mmはなれた場合ですでに虚像54がボケ(△で表示)、60mmはなれた場合は視認が難しくなっていることがわかる(×で表示)。 FIG. 18 summarizes the observation results of FIG. When the focal length distribution is provided, the virtual image 54 can be clearly seen even if it is 60 mm away from the optical axis 74 (indicated by a circle), whereas when the focal length of the first element convex lens 21 is all constant, the optical axis 74 is obtained. It can be seen that the virtual image 54 is already out of focus (indicated by Δ) when the distance is 30 mm away, and that it is difficult to visually recognize (indicated by ×) when the distance is 60 mm away.
 第1凸レンズ群20を構成する各第1要素凸レンズ21の結像面が対応する各第2要素凸レンズ23の主平面に位置するように、各第1要素凸レンズ21に焦点距離分布を設け、それに伴って、第2要素凸レンズ23および第3要素凸レンズ25のレンズピッチの調整を行うことにより、光軸74から離れた位置においても虚像54を視認することが可能となる。よって、ヘッドアップディスプレイ100の視域を広げることができる。 Each first element convex lens 21 is provided with a focal length distribution so that the imaging plane of each first element convex lens 21 constituting the first convex lens group 20 is located on the main plane of each corresponding second element convex lens 23. Accordingly, by adjusting the lens pitch of the second element convex lens 23 and the third element convex lens 25, the virtual image 54 can be viewed even at a position away from the optical axis 74. Therefore, the viewing area of the head-up display 100 can be expanded.
 図20は、ヘッドアップディスプレイ200を試作した第2の実施例の光学系を示す図である。第2の実施例においては、図11の視点44の位置にカメラ60を置き、また、虚像54が形成される位置に目印62を置いている。 FIG. 20 is a diagram showing an optical system of a second example in which the head-up display 200 is prototyped. In the second embodiment, the camera 60 is placed at the position of the viewpoint 44 in FIG. 11, and the mark 62 is placed at the position where the virtual image 54 is formed.
 図20に示すように、第2の実施例においては、画像表示部30から第1凸レンズ群20までの距離D1=130mm、第3凸レンズ群24から光路変更ミラー33までの距離D5=50mm、光路変更ミラー33からコンバイナ34までの距離D6=100mm、コンバイナ34からカメラ60までの距離D3=1000mm、コンバイナ34から目印62までの距離D4=1000mmと設定した。 As shown in FIG. 20, in the second embodiment, the distance D1 from the image display unit 30 to the first convex lens group 20 is 130 mm, the distance D5 from the third convex lens group 24 to the optical path changing mirror 33 is 50 mm, and the optical path. The distance D6 from the change mirror 33 to the combiner 34 was set to 100 mm, the distance D3 from the combiner 34 to the camera 60 was set to 1000 mm, and the distance D4 from the combiner 34 to the mark 62 was set to 1000 mm.
 このように構成された第2の実施例において、大きさが1インチ対角の文字「180Km/h」を画像表示部30に表示し、カメラ60によって形成された虚像54を撮像した。図21は、カメラ60により撮像された虚像54を示す図である。図21に示すように、光路変更用ミラー33を設けた場合においても目印62を設置した位置に虚像54が形成されていることが分かる。 In the second embodiment configured as described above, a character “180 Km / h” having a diagonal size of 1 inch is displayed on the image display unit 30, and a virtual image 54 formed by the camera 60 is captured. FIG. 21 is a diagram illustrating a virtual image 54 captured by the camera 60. As shown in FIG. 21, it can be seen that the virtual image 54 is formed at the position where the mark 62 is provided even when the optical path changing mirror 33 is provided.
 第2の実施例においては、図12に示した第1の実施例に比べてレンズ光学系10からコンバイナ34までの距離が50mm増えているため、虚像の大きさは若干小さくなり、拡大倍率は約2.8倍であった。 In the second embodiment, since the distance from the lens optical system 10 to the combiner 34 is increased by 50 mm compared to the first embodiment shown in FIG. 12, the size of the virtual image is slightly reduced, and the magnification is It was about 2.8 times.
 第2の実施例に示したとおり、光路変更ミラー33を用いることで、光学ユニットの高さを決定する第1の実施例の画像表示部30から第1凸レンズ群20までの距離D1=130mmと第3凸レンズ群24からコンバイナまでの距離D2=100mmを足した230mmが、第2の実施例においてはレンズ光学系10の幅W(約60mm)の半分と光路変更用ミラー33とコンバイナ34までの距離D6=100mmを足した130mmと短くなり、もってヘッドアップディスプレイ200の高さをヘッドアップディスプレイ100に比べて低くすることができた。 As shown in the second embodiment, by using the optical path changing mirror 33, the distance D1 = 130 mm from the image display section 30 of the first embodiment that determines the height of the optical unit to the first convex lens group 20 is as follows. 230 mm obtained by adding a distance D2 = 100 mm from the third convex lens group 24 to the combiner is half of the width W (about 60 mm) of the lens optical system 10 and the optical path changing mirror 33 and the combiner 34 in the second embodiment. The distance D6 was shortened to 130 mm by adding 100 mm, and thus the height of the head-up display 200 could be made lower than that of the head-up display 100.
 以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described based on the embodiments. This embodiment is an exemplification, and it will be understood by those skilled in the art that various modifications can be made to combinations of the respective constituent elements and processing processes, and such modifications are also within the scope of the present invention. is there.
 本発明は、車両のフロントウィンドウの前方に車速などの情報を表示するヘッドアップディスプレイに利用することができる。 The present invention can be used for a head-up display that displays information such as the vehicle speed in front of the front window of the vehicle.

Claims (12)

  1.  物体側より順に、複数の凸レンズが平面状に配置された第1凸レンズ群と、複数の凸レンズが平面状に配置された第2凸レンズ群と、複数の凸レンズが平面状に配置された第3凸レンズ群と、を備え、
     前記第1凸レンズ群、前記第2凸レンズ群、前記第3凸レンズ群の順に、前記凸レンズのレンズ径およびレンズピッチが大きくなるように構成されたレンズ光学系であって、
     前記第2凸レンズ群と前記第3凸レンズ群との間の距離は、前記第1凸レンズ群と前記第2凸レンズ群との間の距離よりも長くなるように構成されていることを特徴とするレンズ光学系。
    In order from the object side, a first convex lens group in which a plurality of convex lenses are arranged in a plane, a second convex lens group in which a plurality of convex lenses are arranged in a plane, and a third convex lens in which a plurality of convex lenses are arranged in a plane. A group,
    A lens optical system configured such that a lens diameter and a lens pitch of the convex lens increase in the order of the first convex lens group, the second convex lens group, and the third convex lens group;
    A lens configured such that a distance between the second convex lens group and the third convex lens group is longer than a distance between the first convex lens group and the second convex lens group. Optical system.
  2.  前記第1凸レンズ群を構成する第1要素凸レンズと、前記第2凸レンズ群を構成する第2要素凸レンズとが1対1に対応しており、前記第1要素凸レンズの結像面が対応する前記第2要素凸レンズの主平面に位置するように、前記第1要素凸レンズの焦点距離が設定されていることを特徴とする請求項1に記載のレンズ光学系。 The first element convex lens constituting the first convex lens group and the second element convex lens constituting the second convex lens group have a one-to-one correspondence, and the imaging surface of the first element convex lens corresponds to the first convex lens. 2. The lens optical system according to claim 1, wherein a focal length of the first element convex lens is set so as to be positioned on a main plane of the second element convex lens.
  3.  前記第2要素凸レンズの前記レンズピッチが、主光軸から離れるに従って大きくなることを特徴とする請求項1または2に記載のレンズ光学系。 3. The lens optical system according to claim 1, wherein the lens pitch of the second element convex lens increases as the distance from the main optical axis increases.
  4.  前記第1要素凸レンズの前記レンズピッチが、主光軸から離れるに従って小さくなることを特徴とする請求項1または2に記載のレンズ光学系。 3. The lens optical system according to claim 1, wherein the lens pitch of the first element convex lens decreases as the distance from the main optical axis increases.
  5.  前記第3凸レンズ群を構成する第3要素凸レンズと、前記第2凸レンズ群を構成する第2要素凸レンズとが1対1に対応しており、前記第3要素凸レンズの結像面が対応する前記第2要素凸レンズの主平面に位置するように、前記第3要素凸レンズの焦点距離が設定されていることを特徴とする請求項1から4のいずれかに記載のレンズ光学系。 The third element convex lens constituting the third convex lens group and the second element convex lens constituting the second convex lens group have a one-to-one correspondence, and the imaging plane of the third element convex lens corresponds to the first convex lens. 5. The lens optical system according to claim 1, wherein a focal length of the third element convex lens is set so as to be positioned on a main plane of the second element convex lens.
  6.  一方の面に規則的に配置された複数の第1外側凸レンズと、他方の面に規則的に配置された複数の第1内側凸レンズとを有する第1レンズアレイプレートと、
     一方の面に規則的に配置された複数の第2外側凸レンズと、他方の面に規則的に配置された複数の第2内側凸レンズとを有する第2レンズアレイプレートと、を備え、
     前記第1内側凸レンズと前記第2内側凸レンズが対向するように、前記第1レンズアレイプレートと前記第2レンズアレイプレートとが積層されており、
     前記複数の第1外側凸レンズが前記第1凸レンズ群を構成し、前記第1内側凸レンズと前記第2内側凸レンズの複数の組が前記第2凸レンズ群を構成し、前記複数の第2外側凸レンズが前記第3凸レンズ群を構成することを特徴とする請求項1から5のいずれかに記載のレンズ光学系。
    A first lens array plate having a plurality of first outer convex lenses regularly arranged on one surface and a plurality of first inner convex lenses regularly arranged on the other surface;
    A second lens array plate having a plurality of second outer convex lenses regularly arranged on one surface and a plurality of second inner convex lenses regularly arranged on the other surface;
    The first lens array plate and the second lens array plate are laminated so that the first inner convex lens and the second inner convex lens face each other,
    The plurality of first outer convex lenses constitute the first convex lens group, the plurality of sets of the first inner convex lens and the second inner convex lens constitute the second convex lens group, and the plurality of second outer convex lenses. The lens optical system according to claim 1, wherein the third convex lens group is configured.
  7.  前記第1内側凸レンズと前記第2内側凸レンズは前記レンズ径が等しく、対向する前記第1内側凸レンズと前記第2内側凸レンズの光軸が一致していることを特徴とする請求項6に記載のレンズ光学系 The first inner convex lens and the second inner convex lens have the same lens diameter, and the optical axes of the first inner convex lens and the second inner convex lens facing each other coincide with each other. Lens optical system
  8.  画像を表示する画像表示部と、
     前記画像表示部からの光を受け、前記画像の虚像を表示する請求項1から7のいずれかに記載のレンズ光学系と、
     を備えることを特徴とする画像表示装置。
    An image display unit for displaying an image;
    The lens optical system according to claim 1, which receives light from the image display unit and displays a virtual image of the image.
    An image display device comprising:
  9.  画像を表示する前記画像表示部は、放出する光線の放射角度を制限する手段が設けられていることを特徴とする請求項8に記載されている画像表示装置。 9. The image display device according to claim 8, wherein the image display unit for displaying an image is provided with means for limiting an emission angle of a light beam to be emitted.
  10.  画像を表示する画像表示部と、
     前記画像表示部からの光を受ける請求項1から7のいずれかに記載のレンズ光学系と、 前記レンズ光学系からの光を観察者に向けて反射して、観察者の前方に前記画像の虚像を表示するコンバイナと、
     を備えることを特徴とするヘッドアップディスプレイ。
    An image display unit for displaying an image;
    The lens optical system according to any one of claims 1 to 7, which receives light from the image display unit, and reflects light from the lens optical system toward an observer so that the image is displayed in front of the observer. A combiner displaying a virtual image;
    A head-up display comprising:
  11.  画像を表示する画像表示部と、
     前記画像表示部からの光を受ける請求項1から7のいずれかに記載のレンズ光学系と、 前記レンズ光学系からの光をコンバイナに向けて反射するミラーと、
    前記ミラーからの光を観察者に向けて反射して、観察者の前方に前記画像の虚像を表示する前記コンバイナと、
     を備えることを特徴とするヘッドアップディスプレイ。
    An image display unit for displaying an image;
    The lens optical system according to any one of claims 1 to 7 that receives light from the image display unit, and a mirror that reflects light from the lens optical system toward a combiner,
    The combiner that reflects light from the mirror toward the viewer and displays a virtual image of the image in front of the viewer;
    A head-up display comprising:
  12.  画像を表示する前記画像表示部は、放出する光線の放射角度を制限する手段が設けられていることを特徴とする請求項10または11に記載されているヘッドアップディスプレイ。 The head-up display according to claim 10 or 11, wherein the image display unit for displaying an image is provided with means for limiting an emission angle of a light beam to be emitted.
PCT/JP2010/007359 2009-12-21 2010-12-20 Lens optical system, image display device and head-up display WO2011077688A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009288915A JP2013047698A (en) 2009-12-21 2009-12-21 Lens optical system, image display apparatus, and head-up display
JP2009-288915 2009-12-21

Publications (1)

Publication Number Publication Date
WO2011077688A1 true WO2011077688A1 (en) 2011-06-30

Family

ID=44195242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007359 WO2011077688A1 (en) 2009-12-21 2010-12-20 Lens optical system, image display device and head-up display

Country Status (2)

Country Link
JP (1) JP2013047698A (en)
WO (1) WO2011077688A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016038767A1 (en) * 2014-09-08 2016-03-17 パナソニックIpマネジメント株式会社 Head up display and moving body
WO2021145387A1 (en) * 2020-01-15 2021-07-22 Agc株式会社 Head-up display system
EP3783396A4 (en) * 2019-01-04 2021-08-04 Toplite International Co., Limited Matrix optical system, light concentrating system, and compound eye lens

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102521482B1 (en) * 2016-12-16 2023-04-14 현대자동차주식회사 Head Up Display System With Special Reflector
JP7308012B2 (en) * 2017-10-04 2023-07-13 富士フイルム株式会社 image display device
WO2019074114A1 (en) 2017-10-13 2019-04-18 Ricoh Company, Ltd. Display device, program, image processing method, display system, and moving body
JP2019153958A (en) * 2018-03-05 2019-09-12 株式会社デンソー Head-up display
CN114397756A (en) 2020-05-15 2022-04-26 华为技术有限公司 Display device and display system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200052A (en) * 1998-10-30 2000-07-18 Toshiba Corp Display device
JP2004209703A (en) * 2002-12-27 2004-07-29 Nippon Sheet Glass Co Ltd Optical writing head
JP2005338293A (en) * 2004-05-25 2005-12-08 Pioneer Electronic Corp Erected variable power lens, and stereoscopic two-dimensional image display device and rear projector provided with the same
WO2007049664A1 (en) * 2005-10-26 2007-05-03 Nippon Sheet Glass Company, Limited On-vehicle space image display device
WO2010029717A1 (en) * 2008-09-12 2010-03-18 日本板硝子株式会社 Lens optical system, image display device and heads-up display
JP2010152005A (en) * 2008-12-24 2010-07-08 Nippon Sheet Glass Co Ltd Head-up display
JP2010197493A (en) * 2009-02-23 2010-09-09 Nippon Sheet Glass Co Ltd Head-up display

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200052A (en) * 1998-10-30 2000-07-18 Toshiba Corp Display device
JP2004209703A (en) * 2002-12-27 2004-07-29 Nippon Sheet Glass Co Ltd Optical writing head
JP2005338293A (en) * 2004-05-25 2005-12-08 Pioneer Electronic Corp Erected variable power lens, and stereoscopic two-dimensional image display device and rear projector provided with the same
WO2007049664A1 (en) * 2005-10-26 2007-05-03 Nippon Sheet Glass Company, Limited On-vehicle space image display device
WO2010029717A1 (en) * 2008-09-12 2010-03-18 日本板硝子株式会社 Lens optical system, image display device and heads-up display
JP2010152005A (en) * 2008-12-24 2010-07-08 Nippon Sheet Glass Co Ltd Head-up display
JP2010197493A (en) * 2009-02-23 2010-09-09 Nippon Sheet Glass Co Ltd Head-up display

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016038767A1 (en) * 2014-09-08 2016-03-17 パナソニックIpマネジメント株式会社 Head up display and moving body
JPWO2016038767A1 (en) * 2014-09-08 2017-06-15 パナソニックIpマネジメント株式会社 Head-up display and moving body
US10160320B2 (en) 2014-09-08 2018-12-25 Panasonic Intellectual Property Management Co., Ltd. Head-up display and vehicle
EP3783396A4 (en) * 2019-01-04 2021-08-04 Toplite International Co., Limited Matrix optical system, light concentrating system, and compound eye lens
US11460611B2 (en) 2019-01-04 2022-10-04 Toplite International Co., Limited Matrix optical system, light concentrating system, and compound eye lens
WO2021145387A1 (en) * 2020-01-15 2021-07-22 Agc株式会社 Head-up display system

Also Published As

Publication number Publication date
JP2013047698A (en) 2013-03-07

Similar Documents

Publication Publication Date Title
WO2011077688A1 (en) Lens optical system, image display device and head-up display
JP2011128500A (en) Lens optical system, image display device and head-up display
JP5344069B2 (en) Head-up display device
JP6369148B2 (en) Head-up display device and lighting unit thereof
KR101195653B1 (en) Display device, display method and head-up display
WO2018042844A1 (en) Information display device
CN108351517B (en) Projection optical system and head-up display device
WO2017061040A1 (en) Projection optical system and head-up display device
JP4639721B2 (en) 3D image display device
CN107407813B (en) Image display device
JP6187329B2 (en) Virtual image display system
JPH03113412A (en) Head-up display device
JP2011085790A (en) Electro-optical device and electronic device
JP2010197493A (en) Head-up display
JP6601431B2 (en) Head-up display device
WO2010029717A1 (en) Lens optical system, image display device and heads-up display
JP2017090561A (en) Virtual image display device
JP2010152005A (en) Head-up display
JP7018922B2 (en) Head-up display device
JP6644265B2 (en) Virtual image display
JP2013025298A (en) Stereoscopic image pickup device
JP2018017750A (en) Head-up display device
JPWO2017170702A1 (en) Head-up display device
JP6593461B2 (en) Virtual image display device
JP6579180B2 (en) Virtual image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10838928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10838928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP