WO2017061016A1 - Information display device - Google Patents

Information display device Download PDF

Info

Publication number
WO2017061016A1
WO2017061016A1 PCT/JP2015/078677 JP2015078677W WO2017061016A1 WO 2017061016 A1 WO2017061016 A1 WO 2017061016A1 JP 2015078677 W JP2015078677 W JP 2015078677W WO 2017061016 A1 WO2017061016 A1 WO 2017061016A1
Authority
WO
WIPO (PCT)
Prior art keywords
virtual image
display device
windshield
image
information display
Prior art date
Application number
PCT/JP2015/078677
Other languages
French (fr)
Japanese (ja)
Inventor
平田 浩二
谷津 雅彦
一臣 金子
Original Assignee
日立マクセル株式会社
株式会社日立産業制御ソリューションズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社, 株式会社日立産業制御ソリューションズ filed Critical 日立マクセル株式会社
Priority to PCT/JP2015/078677 priority Critical patent/WO2017061016A1/en
Publication of WO2017061016A1 publication Critical patent/WO2017061016A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Arrangement of adaptations of instruments

Definitions

  • the present invention relates to an information display device that projects an image on a windshield of an automobile, train, aircraft, or the like (hereinafter also referred to generally as a “vehicle”), and the image is observed as a virtual image through the windshield.
  • the present invention relates to an information display device.
  • HUD Head-up display
  • An Up-Display device is already known from the following Patent Document 1 (Japanese Patent Laid-Open No. 2009-184406).
  • the image forming means (12) on which the light projected from the information display means is projected is a screen (specifically, a screen made of at least two translucent members).
  • the video projector for projecting information light has poor feasibility, such as including a focus adjustment means (variable focus lens 35) for individually changing the focal length in accordance with the distance of the imaging means. there were.
  • the reflection surface of the windshield which is the projection target member (6) in Patent Document 2 has a different vehicle body vertical curvature radius and vehicle body horizontal curvature radius, which causes distortion in the displayed image. Was not considered at all. Further, no consideration has been given to the point at which distortion occurs depending on the viewpoint position of the driver.
  • An object of the present invention is to provide an information display device capable of forming a high-quality virtual image.
  • an information display device for displaying video information of a virtual image on a windshield of a vehicle, the image forming unit for forming the video information, and the image forming unit
  • a virtual image optical system including the windshield for displaying a virtual image in front of the vehicle by reflecting light emitted from the windshield, and a horizontal curvature radius Rh of the windshield, The curvature radius Rv in the vertical direction is different, and the virtual image optical system has a concave reflecting mirror having a reflection curved surface that cancels at least the difference between the curvature radius Rh in the vehicle body horizontal direction and the curvature radius Rv in the vertical direction of the windshield.
  • the information display apparatus which can suppress the enlargement and complexity of apparatus itself and can form a virtual image with high visibility from a driver
  • FIG. 1 is a schematic configuration diagram showing a schematic configuration of an information display device according to a first embodiment of the present invention and peripheral devices assigned to the information display device. It is a top view of the motor vehicle carrying the said information display apparatus. It is a figure for demonstrating the difference in the curvature radius of the windshield of the motor vehicle carrying the said information display apparatus. It is the schematic which shows the area
  • FIG. 9A is an overall ray diagram of the virtual image optical system according to the first embodiment, and FIG. 9A illustrates a state in which video information on the virtual image plane 7 is viewed with an observer's eye on the YZ plane, and FIG. It is the schematic showing a mode that the image
  • FIG. 1st embodiment It is a partially expanded perspective view of the lens part of the information display apparatus which concerns on 1st embodiment. It is a figure explaining the relationship between a virtual image surface and the virtual image surface seen from the driver
  • FIG. 1 is a block diagram and a schematic configuration diagram showing a peripheral device configuration of the information display device 1 according to the first embodiment of the present invention.
  • an image is projected particularly on a windshield of an automobile.
  • the information display device will be described.
  • the information display device 1 forms various virtual images V1 to V3 at a plurality of positions in front of the host vehicle in the line of sight 8 of the driver, and thus various types of information reflected by the projection target member 6 (windscreen in the present embodiment).
  • a device that displays information as a virtual image VI (virtual image).
  • the projection target member 6 may be a member on which information is projected, and is not limited to the above-described windshield. That is, in the information device 1 of the present embodiment, a virtual image is formed at each of a plurality of positions in front of the host vehicle in the driver's line of sight 8 and is visually recognized by the driver.
  • a camera such as a surveillance camera or an around viewer (not shown) is used. Including the foreground information.
  • the information display device 1 includes a video projection device 11 that projects video light for displaying information, an intermediate image imaging unit 4 that forms an image of light from the video display device 11, and the intermediate image imaging unit 4.
  • the optical component 5 that converges or diverges the image information (image light) formed in FIG. 1 and the control device 40 that controls the image projection device 11 are provided.
  • the optical component 5 is a virtual image optical system described below, and includes a concave mirror that reflects light. Further, the light reflected by the optical component 5 is reflected by the projection member 6 and travels toward the driver's line of sight 8 (EyeBox: described in detail later).
  • the intermediate image formation (or intermediate image display) unit 4 has a function of forming an image of light from the image projection device 11, for example, by a microlens array in which microlenses are arranged two-dimensionally. Composed.
  • an optical element 21 and an optical element 22 are disposed between the intermediate image forming unit 4 and the optical component 5 including the concave reflecting mirror forming the eyepiece optical system.
  • the arrangement of the element 21 and the optical element 22 is, for the first purpose, to set the virtual image forming positions at a plurality of positions in front of the host vehicle (three positions in the present embodiment), and further, intermediate image formation.
  • each is provided for correcting aberrations at a position where the image light from the intermediate image forming unit 4 is separated. According to the aberration correction by these optical elements, even if virtual images are formed at different positions, a plurality of virtual images can be displayed at different magnifications by using the same virtual image optical system.
  • the aberration of the light beam forming the virtual image V3 located far away is improved by the optical element 21, and at the same time, the aberration correction of the virtual image V2 located in the middle is performed by the optical element 22.
  • the virtual image V1 formed at the closest position is optimally designed for aberration correction in the original virtual image optical system, so no optical element is provided here, however, it is optimal for further improving the aberration correction capability. Needless to say, the provision of the designed optical element does not depart from the technical idea or scope of the present invention.
  • the generation position of the virtual image is divided into the far virtual image V3, the intermediate virtual image V2, and the near virtual image V1, and the optical elements 21 and 22 are individually provided.
  • the present invention is not limited to this.
  • the position where the virtual image is continuously generated is changed by changing the spatial optical distance.
  • a common optical element is provided in order to sufficiently reduce aberration so as to change, it does not depart from the technical idea or scope of the present invention.
  • the control device 30 includes a storage device 31 and a microcomputer (hereinafter referred to as “microcomputer”) 32.
  • the storage device 31 is a non-volatile storage device that can rewrite stored contents.
  • the microcomputer 32 includes a ROM 34 that stores processing programs and data that need to retain stored contents even when the power is turned off, a RAM 33 that temporarily stores processing programs and data, and processes stored in the ROM 34 and PAM 33. It is mainly configured by a computer having a CPU 35 that executes various processes according to a program.
  • the ROM 34 stores a processing program for the microcomputer 44 to execute information display processing for controlling the video projection device 11 so that various information such as vehicle information and foreground information is projected onto the projection target member 6.
  • the control device 30 is connected with at least a navigation system 41 and a driving support electronic control device (hereinafter referred to as “driving support ECU (Electronic Control Unit))” 42 as an acquisition source of vehicle information and foreground information. Yes.
  • driving support ECU Electric Control Unit
  • the navigation system 61 is a device that guides a route to a set destination according to the result of collating the current position detected by the position detection device with the map data stored in the map data storage unit.
  • the map data includes various information such as information on road speed limits, the number of lanes, and intersections.
  • the control device 30 obtains information such as the speed limit and number of lanes of the road corresponding to the current position where the host vehicle is traveling, the planned travel route of the host vehicle set in the navigation system 51, and the like. Obtained as foreground information (that is, information displayed in front of the host vehicle by the virtual image).
  • the driving support ECU 62 is a control device that realizes driving support control by controlling the drive system and the control system in accordance with the obstacle detected as a result of monitoring by the periphery monitoring device 63, and cruise control is used as the driving support control. , Including well-known technologies such as adaptive cruise control, pre-crash safety, lane keeping assistance.
  • the periphery monitoring device 63 is a device that monitors the situation around the host vehicle.
  • a camera that detects an object around the host vehicle based on an image obtained by shooting the periphery of the host vehicle, an exploration wave, and the like.
  • An exploration device that detects an object that exists in the vicinity of the host vehicle based on the result of transmitting and receiving the vehicle.
  • the control device 30 acquires such information from the driving support ECU 62 (for example, the distance to the preceding vehicle, the heading direction of the preceding vehicle, the position where the obstacle or sign is present, etc.) as the foreground information. Further, an ignition (IG) signal and own vehicle state information are input to the control device 30. Among these pieces of information, the own vehicle state information is information acquired as vehicle information, and represents, for example, that a predetermined abnormal state such as the remaining amount of fuel in the internal combustion engine or the temperature of the cooling water has been entered. Contains warning information. Information such as the operation result of the direction indicator, the traveling speed of the host vehicle, and the shift position is also included. The control device 30 described above is activated when an ignition signal is input. The above is the description of the entire information display apparatus system of the present invention.
  • FIG. 2 is a top view of an automobile equipped with the information display device of the present embodiment, and a windshield as the projection member 6 exists in the front part of the driver's seat of the automobile body 101.
  • the windshield has a different inclination angle with respect to the vehicle body depending on the type of automobile.
  • the inventors investigated the radius of curvature in order to realize an optimal virtual image optical system.
  • the windshield has a horizontal radius of curvature Rh parallel to the ground contact surface of the automobile and a vertical radius of curvature Rv perpendicular to the horizontal axis. It was found that Rv generally has the following relationship. Rh> Rv
  • Rh relative to Rv is often in the range of 1.5 to 2.5 times.
  • the inventors investigated a commercial product for the inclination angle of the windshield. As a result, although it differs depending on the body type, it was 20 to 30 degrees for light cars and 1 Box type, 30 to 40 degrees for sedan type, and 40 degrees or more for sports type. Therefore, in the present invention, considering the difference between the curvature radius Rh in the horizontal direction parallel to the ground contact surface of the windshield and the curvature radius Rv in the vertical direction perpendicular to the horizontal axis and the inclination angle of the windshield, A virtual image optical system was designed.
  • Tables 1 to 3 are diagrams showing lens data according to an embodiment of the virtual image optical system that realizes the information display device of the present invention.
  • the radius of curvature is represented by a positive sign when the center position of the radius of curvature is in the traveling direction, and the inter-surface distance is the light from the vertex position of each surface to the vertex position of the next surface. Expressed as a distance on the axis.
  • Eccentricity is a value in the Y-axis direction
  • tilting is rotation about the X axis in the YZ plane
  • eccentricity / falling acts in the order of eccentricity and tilting on the corresponding surface.
  • the next surface is placed at the position of the inter-surface distance on the new coordinate system on which. The decentration and return eccentricity and collapse will only affect one aspect and not the next.
  • the glass material name PMMA is a plastic acrylic (Polymethyl methacrylate).
  • the windshield which is the projection target, is defined as an anamorphic aspherical surface with different radii of curvature on the X and Y axes, the horizontal radius of curvature is 9686 mm, the vertical radius of curvature is 5531 mm, and each center of curvature is the X axis.
  • the angle was defined as -340 mm in the direction, -1959 mm in the Y-axis direction, and inclined by 43.7 degrees.
  • Table 2 is a table of free-form surface coefficients of the virtual image optical system according to the embodiment.
  • the free-form surface coefficient in Table 2 is obtained by the following equation (1).
  • Free-form surface coefficient C j is a rotationally asymmetric shape with respect to each of the optical axis (Z axis), a shape defined by the component sections of the component and the XY polynomial conical section.
  • Z axis optical axis
  • Y third order
  • the position of each optical axis of the free-form surface is determined by the amount of decentering / falling in the lens data in Table 1.
  • Table 3 is a table showing odd-order aspheric coefficients of the virtual image optical system according to the embodiment of the present application.
  • the free-form surface coefficient in Table 3 is obtained by the following equation (2).
  • the anamorphic aspheric coefficient of the virtual image optical system corresponding to the windshield 6 according to the embodiment of the present invention is obtained by the following expression (3).
  • the reflecting mirror provided in the virtual image optical system was formed into a cylinder shape.
  • the values of the monitoring range (eye box size) and the viewing angle obtained by the virtual image optical system according to the embodiment of the present invention are shown in the horizontal direction and the vertical direction as follows.
  • FIG. 12 is a diagram for explaining the relationship between the virtual image plane 7 and the virtual image plane 7 viewed from the driver 8 in order to explain the screen distortion performance
  • FIG. 13 is a virtual image optical system according to the embodiment of the present invention.
  • FIG. 14 is a spot diagram of the virtual image optical system.
  • the screen distortion performance on the curved virtual image surface 7 shown in FIG. 12 is a large amount of distortion as shown in FIG. 13B, but the virtual image surface 7 itself has a curved surface shape. It differs from the apparent distortion performance when seen by a certain driver. For this reason, the distortion performance on the projection virtual image plane 70 on the tangential plane in contact with the virtual image plane 7 was calculated based on the position of the eyes of the driver who actually drives the car. The result is shown in FIG.
  • the distortion seen from the driver's eyes is a level with no problem in practice, which is a sufficiently rectangular shape.
  • FIGS. 13A and 13B show how an object point is arranged on the virtual image plane 7 and how the rectangular frame on the intermediate image imaging unit 4 is distorted on the virtual image plane 7. Further, the size of the virtual image in FIGS. 13A and 13B is 1020 mm in the horizontal direction and 155.6 mm in the vertical direction on the cross line including the optical axis, and therefore the distance from the driver's eye 8 to the virtual image plane 7.
  • FIG. 14 is a spot diagram showing the result of calculating the spot (light ray condensing degree) at the intermediate image forming unit 4 by placing an object point on the virtual image plane 7 and realizing good optical performance. Yes.
  • the spot is formed by the total luminous flux that passes when the range (eye box) 9 in which the observer can monitor the virtual image is 110 mm horizontal ⁇ 50 mm vertical.
  • the spot obtained by filtering even by the size of the iris of the human eye (which is said to be ⁇ 7 mm at the maximum) is much larger than that in FIG. Get better.
  • FIG. 9 is an overall ray diagram of the virtual image optical system 5 according to the first embodiment of the present invention.
  • FIG. 9A shows the image information of the virtual image plane 7 on the YZ plane as viewed by the observer's eyes.
  • FIG. 9B shows a state in which the video information on the virtual image plane 7 is viewed with an observer's eyes on the XZ plane.
  • the right eye and the left eye overlap on the YZ plane (see reference numeral 8), and the right eye and the left eye appear separately on the XZ plane.
  • FIG. 10 is an enlarged view of a main part of the virtual image optical system 5 of the first embodiment
  • FIG. 11 is an enlarged perspective view of a lens part constituting the eyepiece optical system 5a constituting the virtual image optical system in FIG. FIG.
  • each of the free-form surface lens 54 and the free-form surface mirror 56 is configured in a rotationally asymmetric shape.
  • the convex lens 51 and the concave lens 52 have a large amount of eccentricity (no eccentricity on the front and rear surfaces).
  • the virtual image optical system 5 includes a convex lens 51 having a positive refractive power, a concave lens 52 having a negative refractive power, and a convex lens 53 having a positive refractive power in order from the intermediate image display unit 4 side.
  • a rotationally asymmetric free-form surface lens 54, a cylinder mirror 55, and a rotationally asymmetric free-form surface mirror 56 are arranged side by side with the windshield 6. And the difference of the curvature radius of the horizontal direction and the vertical direction of the windshield 6 mentioned above is set as the structure canceled by adding the cylinder mirror 55.
  • the rotationally asymmetric free-form surface mirror 56 of the reflecting surface has a trapezoidal distortion correcting action.
  • the image projection device 11 modulates the intensity of light in accordance with the image signal by using an image display element such as a small liquid crystal panel or DMD (Digital Mirror Device).
  • the light is enlarged and projected onto the intermediate image display unit 4 by the projection means.
  • image information similar to that described above may be obtained by scanning light source light with a micro mirror of MEMS (Micro Electro Mechanical Systems).
  • a flat display such as a single plate LCOS (Liquid Crystal On Silicon) or an OLED (Organic Light Emitting Diode) provided with a TFT color liquid crystal panel or a color filter may be used.
  • the (video display unit) becomes the intermediate image display unit 4.
  • the design freedom is inclined with respect to the optical axis of the virtual image optical system and the inclination of the windshield is taken into consideration.
  • there is a degree of freedom such as correction of trapezoidal distortion.
  • the video light from the video projection device 11 is displayed on the same surface of the intermediate image display (imaging) unit 4 and the information is displayed as a virtual image.
  • the virtual image optical system 5 is optimally designed including the automobile windshield 6 which is the final reflecting surface.
  • the best image plane of the projection means and the image plane obtained by scanning are made to substantially coincide with the planar shape of the intermediate image display unit 4, and other than the planar shape, for example, a spherical surface, an aspherical surface, and a free curved surface. Accordingly, the degree of freedom in designing the virtual image optical system 5 can be increased.
  • the virtual image optical system performs an optimal design including the difference between the curvature radius in the vehicle horizontal direction and the curvature radius in the vertical direction of the windshield 6 that has been the projection target member, and the windshield 6 and the image display unit or A concave mirror 56 with a concave surface facing the windshield exists between the intermediate image display unit 4 and the image projected on the video display unit or the intermediate image display unit 4 is enlarged and reflected on the windshield 6. .
  • a plurality of optical elements are arranged between the concave mirror 56 and the video display unit or intermediate image display unit 4.
  • the image light beam forming the enlarged image (virtual image) of the image formed corresponding to the viewpoint position of the driver passes through the optical element disposed between the image display device or the intermediate image display unit.
  • the optical element disposed between the image display device or the intermediate image display unit are arranged so as to pass through positions separated from each other, and by performing optimum aberration correction obtained by dividing the optical element corresponding to each light beam, visibility corresponding to a plurality of viewpoint positions of the driver It is possible to obtain a high virtual image.
  • the virtual image obtained by being reflected by the upper part of the windshield 6 (the upper part in the vehicle body vertical direction) needs to be formed farther away.
  • the above-described concave mirror 56 and the image display unit or intermediate The composite focal length f1 of the plurality of optical elements arranged between the image display units 4 is short.
  • the virtual image obtained by being reflected by the lower part of the windshield 6 (the lower part in the vehicle body vertical direction) is closer to the vicinity. It is necessary to form an image.
  • the above-described concave mirror 56 and the image display unit or intermediate The combined focal length f2 of the plurality of optical elements arranged between the image display units 4 is preferably set long. In other words, the relationship between the two is preferably set so that f1 ⁇ f2.
  • the video display unit and the intermediate image display unit 4 may be divided into some pieces to display necessary information. Alternatively, it may be configured to display information continuously.
  • the virtual image V3 obtained by being reflected on the upper part of the windshield 6 needs to be formed further away.
  • the concave mirror 56 and the intermediate image display unit 4 described above the combined focal length f1 of the plurality of optical elements is short, and on the contrary, the virtual image V1 obtained by being reflected by the lower part of the windshield 6 (lower part in the vehicle body vertical direction) needs to be formed closer to the image.
  • the combined focal length f2 of the plurality of optical elements is set to be relatively long.
  • the screen of the virtual image that the driver sees because the curvature radius of the windshield 6 in the horizontal direction (parallel to the ground) and the curvature radius in the vertical direction (direction perpendicular to the windshield horizontal direction) are different.
  • optical elements having different axial symmetry with respect to the optical axis are arranged in the virtual image optical system 5 described above, thereby realizing the correction of the distortion described above.
  • the distortion of the displayed characters and figures caused by the shape of the reflection surface of the windshield 6 described above is caused by changing the aspect ratio of the characters and the figures according to the position of the display image, so that the virtual image that the driver sees is changed.
  • the shape can be expressed more naturally (with a more correct aspect ratio).
  • the optical system shown in FIG. 5 includes an image forming unit 10 and an eyepiece optical system 5a constituting the virtual image optical system 5.
  • the image light emitted from the projection optical system 20 is reflected on the windshield 6 of an automobile (not shown) and is incident on the driver's eyes 8.
  • the light beam emitted from the backlight 1 to the liquid crystal display panel 2 is incident on the relay optical system 3 as an image light beam including video information displayed on the liquid crystal display panel 2.
  • the image information on the liquid crystal display panel 2 is enlarged by the imaging action in the relay optical system 3 and then enlarged and projected onto the intermediate image imaging unit 4.
  • the points P1, P2, and P3 on the liquid crystal display panel 2 correspond to the points Q1, Q2, and Q3 of the intermediate image forming unit 4, respectively.
  • the relay optical system 3 a liquid crystal display panel having a small display size can be used. Since the backlight 1, the liquid crystal display panel 2, the relay optical system 3, and the intermediate image forming unit 4 form image information (video information) on the intermediate image forming unit 4, they are collectively referred to as an image forming unit. Say ten.
  • the image information on the intermediate image forming unit 4 is projected onto the windshield 6 by the virtual image optical system 5, and the light beam reflected by the windshield 6 reaches the position of the eye 8 of the observer.
  • a relationship is established as if viewing image information of the virtual image plane 7 in front of the host vehicle.
  • Points Q1, Q2, and Q3 on the intermediate image forming unit 4 correspond to points V1, V2, and V3 on the virtual image plane 7, respectively.
  • the range in which the points V1, V2, and V3 on the virtual image plane 7 can be seen even if the observer moves the position of the eye 8 is a so-called eye box 9.
  • the virtual image optical system 5 is an optical system that displays an object (aerial image) and an image (virtual image) in front of an observer's eyes, like an eyepiece lens of a camera finder or an eyepiece lens of a microscope. is there.
  • the intermediate image forming unit 4 is configured by a microlens array in which microlenses are two-dimensionally arranged. As a result, a diffusing action occurs, the spread angle of the light beam emitted from the intermediate image forming unit 4 is increased, and the size of the eyebock 9 is set to a predetermined size.
  • the diffusing action of the intermediate image forming unit 4 can also be realized by incorporating diffusing particles.
  • the aberration correction optical system corresponds to the virtual image generation position between the intermediate image forming unit 4 side of FIG. 5 and the eyepiece optical system 5a constituting the virtual image optical system 5.
  • a correction optical element 22 is disposed at a position where the light beam corresponding to the virtual image V2 established at the intermediate position passes, thereby establishing the virtual image generation position of the virtual image optical system 5 at the intermediate position and increasing the medium magnification.
  • the eyepiece optical system that constitutes the virtual image optical system 5 so that the correcting optical element does not have to be disposed at the position where the light beam corresponding to the virtual image V1 formed closest to the observer passes. 5a is optimally designed.
  • the eyepiece optical system 5a is optimally designed for the virtual image V1 that is formed closest to the reference.
  • the correction is made for V2 that is established at an intermediate distance and V3 that is established at a far distance.
  • Optical elements 21 and 22 are disposed. As described above, the arrangement of the correction optical elements 21 and 22 shortens the optical distance between the intermediate image forming unit 4 and the eyepiece optical system 5a, so that the magnification of the virtual image is increased. Not only is it advantageous, it is optimal for correcting distortion and aberration of the virtual image established at each image position.
  • the light beam corresponding to the virtual image V3 formed in the distance, the light beam corresponding to the virtual image V2 formed in the middle, and the light beam corresponding to the virtual image V1 formed in the vicinity are separated, and the virtual image optics
  • the virtual image optics By disposing an optical system for correction corresponding to each virtual image at a position incident on the system 5, distortion and aberration correction of the virtual image is performed. Even if the virtual image formation position is continuous from a distance to the vicinity, the optical distance between the virtual image optical system 5 and the intermediate image forming unit 4 is changed corresponding to each virtual image formation position, and the correction optical element is arranged.
  • a flat display for example, a liquid crystal display panel
  • the light beam emitted from the backlight 1 enters the eyepiece optical system 5a constituting the virtual image optical system 5 as a video light beam including video information displayed on the liquid crystal display panel 4a.
  • an aberration correcting optical device is provided between the liquid crystal display panel 4a and the eyepiece optical system 5a constituting the virtual image optical system 5, corresponding to the virtual image generation position.
  • a correction optical element 24 is disposed at a position where a light beam corresponding to V3 located at the farthest position passes, thereby increasing the magnification by moving the virtual image generation position of the virtual image optical system 5 far away.
  • distortion and aberration generated in a virtual image are reduced.
  • an optical element 23 for correction is disposed at a position where the light beam corresponding to the virtual image V2 established at the intermediate position passes, and thereby, the virtual image generation position of the virtual image optical system 5 is established at the intermediate position to increase the medium magnification. At the same time, distortion and aberration generated in a virtual image are reduced. Finally, no correction optical element is disposed at a position where a light beam corresponding to the virtual image V1 formed closest to the observer passes. That is, the eyepiece optical system 5a constituting the virtual image optical system 5 is optimally designed so that the correcting optical element does not have to be disposed at the position where the light beam corresponding to the virtual image V1 passes.
  • the virtual image optical system 5 is optimally designed with respect to the virtual image V1 that is formed closest to the observer so as to be the design reference of the virtual image optical system 5, and the virtual image optical system 5 is formed at V2 that is established at an intermediate distance and far away.
  • arranging the correction optical elements respectively shortens the optical distance between the intermediate image forming unit 4 and the virtual image optical system 5 as in the second embodiment. This is advantageous not only for increasing the magnification of a virtual image but also for correcting distortion and aberration of the virtual image established at each image position.
  • the image plane corresponding to the intermediate image forming unit 4 described above is configured as a flat panel display.
  • a single plate provided with a TFT color liquid crystal panel and a color filter is provided. It is composed of a flat display such as LCOS (Liquid Crystal On Silicon) and OLED (Organic Light Emitting Diode).
  • LCOS Liquid Crystal On Silicon
  • OLED Organic Light Emitting Diode
  • the display screen size may be, for example, about 1 inch to 5 inches, and preferably about 3 inches in consideration of effective use of image light.
  • a plurality of flat displays for example, liquid crystal display panels
  • the light beams emitted from the backlights 1b and 1c enter the virtual image optical system 5 as video light beams including video information displayed on the liquid crystal display panels 4b and 4c.
  • the operations of the virtual image optical system 5 and the correction optical elements corresponding to the virtual images V3, V2, and V1 are the same as those shown in FIG. 6, and description thereof is omitted here.
  • the composition resolution can be increased by using a plurality of liquid crystal display panels as video sources.
  • the amount of information of the entire virtual image can be increased, it is possible to establish a virtual image over almost the entire area of the windshield 6 as shown in FIG.
  • a virtual image is formed in the image display area 1 (a) or both of the image display areas 1 (c), 1 (a), and 1 (c) without forming a virtual image on the entire surface of the windshield 6.
  • Information from the system can be displayed and virtual reality can be realized.
  • information on pedestrians that may cause problems in driving safety when attempting to make a right turn is recognized by the perimeter monitoring device, and then alert information is displayed on the captured video information to assist safe driving. It becomes.
  • the driver's safety may be displayed, for example, by intermittently displaying a warning image in the image display area 2 of FIG. It can be used to enhance awareness.
  • the virtual image formation position and the magnification obtained can be controlled by arranging them at desired positions within the object plane range of the virtual image optical system.
  • the use efficiency of image light can be improved and a bright virtual image can be obtained.
  • the degree of freedom of design can be improved by tilting the liquid crystal display panel so as to be advantageous in correcting aberrations and distortions of virtual images that are formed depending on the position of the liquid crystal display panel.
  • the degree of freedom of design in the virtual image optical system is increased, and further, the resolution performance and the degree of freedom of aberration correction and distortion correction can be improved.
  • the formation position of the virtual image when viewed from the viewpoint can be established at a desired position.
  • the present invention is not limited to this, and these are not included in the virtual image optical system 5.
  • the correction optical element described above may be inserted in the space between the optical axis and moved in the optical axis direction. It is also effective to improve the degree of freedom of distortion correction and aberration correction by tilting each liquid crystal display panel with respect to the optical axis of the virtual image optical system.
  • a high-resolution information display device can be realized at low cost by arranging a plurality of small video display elements to form a video display device. Furthermore, the generation position and magnification of the virtual image when viewed from the driver can be appropriately controlled by appropriately selecting the arrangement location of the plurality of video display elements with respect to the virtual image optical system described above. . It is also possible to obtain a desired resolution by combining a plurality of small flat displays. Furthermore, in the information display apparatus using a plurality of small flat displays, the above-described virtual image generation position and magnification can be controlled by changing the location where the small flat display is disposed with respect to the virtual image optical system.
  • FIG. 8 is a cross-sectional view showing an outline of the entire configuration including the liquid crystal display panel 4a and the backlight 1 as a video light source as still another embodiment of the present invention.
  • the light emitted from the white LED 46 which is a solid light source, has its divergence angle suppressed by the action of the light funnel 44, and the intensity distribution is made uniform.
  • the light is substantially parallel light on the optical element 43, and is further aligned with a single polarization in the PBS 45 for polarization conversion.
  • the light is reflected by the reflecting surface 41 and is incident on the liquid crystal display panel 4a.
  • an optical element 17 for controlling the incident angle of the light beam to the liquid crystal display panel 4a is provided so that the image light beam obtained by the liquid crystal display panel 4a has excellent contrast performance.
  • the light source light is converted into polarized light.
  • a specific polarization such as a single-plate LCOS (Liquid Crystal On Silicon) provided with a TFT color liquid crystal panel or a color filter, or an OLED (Organic Light Emitting Diode)
  • the light source light can be effectively used. Further, by controlling the divergence angle of the light source light and using only the angle component having high contrast performance from the output light from the above-mentioned image display device, it is possible to improve the contrast performance of the image.
  • polarizing plates (not shown) are respectively provided on the light incident surface and the light exit surface of the liquid crystal display element 4a, thereby obtaining an image light beam with excellent contrast performance.
  • a ⁇ / 4 plate 46 is provided on the exit surface of the liquid crystal display panel 4a, thereby making the emitted light circularly polarized. As a result, a good virtual image can be monitored even if the driver wears polarized sunglasses.
  • liquid crystal can be used even when external light (sunlight) is incident.
  • An information display device can be realized in which the display panel and the polarizing plate can be reduced from damage due to the temperature rise, and the reliability is not impaired.
  • the reflection surface of the windshield 6 has a different viewpoint position of the driver, such as when the driver is replaced, and therefore there are cases where a plurality of viewpoint positions must be taken into consideration.
  • a viewpoint position of the driver such as when the driver is replaced
  • the center position of the vehicle body vertical direction radius of curvature and the vehicle body horizontal direction radius of curvature of the windshield and the position of the driver's eyes are different, the distortion of the image obtained by the virtual image is different.
  • the distortion generated in the virtual image is calculated in advance by measuring the position of the driver's pupil measured by the camera, and the display image on the video display device may be distorted so as to correct the distortion.
  • a highly visible virtual image can be formed at a plurality of viewpoint positions (different distances) of the driver. Furthermore, according to the information display device of the present invention, it can be realized with a simple configuration as compared with the techniques disclosed in Patent Document 1 and Patent Document 2 described above, and the apparatus structure can be increased in size and complexity as much as possible. Can be suppressed. Further, in the information display device of the present invention, it is not necessary to adjust the focal length of the projection means at a high speed according to the individual image forming means, especially compared to the technique described in Patent Document 2 described above, and it is inexpensive and simple.
  • a virtual image can be formed at a position suitable for the driver's line of sight such as a short distance (corresponding to the lower part of the windshield) or a long distance (corresponding to the upper part of the windshield) according to the viewpoint of the driver.
  • a short distance corresponding to the lower part of the windshield
  • a long distance corresponding to the upper part of the windshield
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiments are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.
  • Reflecting surface 42 ... ⁇ / 2 plate, 43 ... Optical Element: 44 ... Light funnel, 45 ... PBS, 46 ... Solid light source, 47 ... Ultraviolet and infrared reflecting sheet, 48 ... ⁇ / 4 plate, 51 ... Convex lens (first optical element), 52 ... Concave lens (second optical) Element), 53 ... convex lens, 54 ... free Curved lens, 55 ... Cylinder mirror (reflection mirror), 56 ... Free-form curved mirror (reflection mirror), 61 ... Navigation system, 62 ... Driving assistance ECU, 63 ... Perimeter monitoring device, V1, V2, V3 ... Virtual image.

Abstract

Provided is a compact information display device such that distortion including distortion on the reflection surface of a windshield can be eliminated and a highly visible virtual image can be formed for a driver to view. This information display device, which displays virtual video information on the vehicle windshield, includes: an image formation unit for forming the video information; and a virtual image optical system, including the windshield, for displaying the virtual image at the front of the vehicle by reflecting the light emitted from the image formation unit onto the windshield. The horizontal radius of curvature Rh and the vertical radius of curvature Rv of the windshield are different. The virtual image optical system includes a concave mirror that has a curved reflecting surface for cancelling out at least the difference between the horizontal radius of curvature Rh and vertical radius of curvature Rv of the windshield relative to the vehicle body.

Description

情報表示装置Information display device
 本発明は、自動車や電車や航空機等(以下では、一般的に「乗り物」とも言う)のフロントガラスに画像を投影する情報表示装置に関し、その画像をフロントガラス越しに虚像として観察するようにした情報表示装置に関する。 The present invention relates to an information display device that projects an image on a windshield of an automobile, train, aircraft, or the like (hereinafter also referred to generally as a “vehicle”), and the image is observed as a virtual image through the windshield. The present invention relates to an information display device.
 自動車のフロントガラスに映像光を投写して虚像を形成しルート情報や渋滞情報などの交通情報や燃料残量や冷却水温度等の自動車情報を表示する、所謂、ヘッドアップディスプレイ(HUD:Head-Up-Display)装置は、以下の特許文献1(特開2009-184406号公報)により既に知られている。 A so-called head-up display (HUD: Head-) that projects image light onto the windshield of an automobile to form a virtual image and displays traffic information such as route information and traffic jam information and automobile information such as fuel remaining amount and cooling water temperature. An Up-Display device is already known from the following Patent Document 1 (Japanese Patent Laid-Open No. 2009-184406).
 この種の情報表示装置においては、運転者が情報を認識しやすくすることを目的として、運転者の視認位置に応じて複数の位置に虚像を形成すること、即ち虚像の形成する距離を運転者の視認位置に合わせることが求められている。このため、例えば、以下の特許文献2(特開2015-34919号公報)にも開示されるように、運転者から遠方(遠距離)および近傍(近距離)のそれぞれに像を形成するものがある。 In this type of information display device, for the purpose of facilitating recognition of information by the driver, virtual images are formed at a plurality of positions according to the driver's visual recognition position, that is, the distance at which the virtual image is formed is determined by the driver. It is required to be matched with the viewing position. For this reason, for example, as disclosed in the following Patent Document 2 (Japanese Patent Laid-Open No. 2015-34919), there is an apparatus that forms an image at a distance (long distance) and a vicinity (short distance) from the driver. is there.
特開2009-184406号公報JP 2009-184406 A 特開2015-34919号公報JP 2015-34919 A
 自動車などの移動体では、運転中における運転者の視点移動が大きいと、所謂、脇見運転の状態となり、交通事故発生の要因となることから、情報表示装置による情報表示位置(即ち、フロントガラス上の位置)は限られており、その設置スペースも、その他の装置や配管等の配置によって限られている。このため、情報表示装置自体の小型化が求められていた。しかしながら、上記特許文献1に記載の情報表示装置においては、運転者から異なる視点位置(距離)にそれぞれの虚像を形成するため、2つの映像投写装置を用いる必要があるため、装置全体の構成が大型化してしまうという問題が生じる。 In a moving body such as an automobile, if the driver's viewpoint movement during driving is large, it becomes a so-called side-view driving state and causes a traffic accident. Therefore, the information display position by the information display device (that is, on the windshield) ) Is limited, and the installation space is also limited by the arrangement of other devices and piping. For this reason, downsizing of the information display device itself has been demanded. However, in the information display device described in Patent Document 1, it is necessary to use two video projection devices in order to form virtual images at different viewpoint positions (distances) from the driver. The problem that it will enlarge will arise.
 一方、上記特許文献2に記載の情報表示装置においても、情報表示手段から投射された光が投影される結像手段(12)として少なくとも2つの半透明の部材からなるスクリーン(具体的には、第一スクリーン14と第二スクリーン16)を備えており、これらスクリーンの一方が当該結像手段から被投影部材(6:具体的には、フロントガラス)までの光の経路上に配置され、かつ、これらスクリーンの他方が、上記一方のスクリーンとは異なる距離に配置される構造となっている。そのため、装置が複雑となる。加えて、情報光を投射する映像投射器においても、結像手段の距離に合わせて焦点距離を個々の可変するための焦点調整手段(可変焦点レンズ35)を備えるなど、実現性に乏しいものであった。 On the other hand, also in the information display device described in Patent Document 2, the image forming means (12) on which the light projected from the information display means is projected is a screen (specifically, a screen made of at least two translucent members). A first screen 14 and a second screen 16), one of these screens being disposed on the light path from the imaging means to the projection member (6: specifically, the windshield), and The other of these screens is arranged at a different distance from the one screen. This complicates the device. In addition, the video projector for projecting information light has poor feasibility, such as including a focus adjustment means (variable focus lens 35) for individually changing the focal length in accordance with the distance of the imaging means. there were.
 また、上記特許文献2における被投影部材(6)であるフロントガラスの反射面は、車体垂直方向曲率半径および車体水平方向曲率半径が異なっており、そのため表示した画像に歪が生じるが、この点については全く考慮されていなかった。また、運転者の視点位置により歪が発生する点についても全く考慮されていなかった。 Further, the reflection surface of the windshield which is the projection target member (6) in Patent Document 2 has a different vehicle body vertical curvature radius and vehicle body horizontal curvature radius, which causes distortion in the displayed image. Was not considered at all. Further, no consideration has been given to the point at which distortion occurs depending on the viewpoint position of the driver.
 そこで、本発明では、上述した従来技術における課題を考慮して、装置自体の大型化や複雑化を抑制し、フロントガラスの反射面での歪を含めた歪を解消し、運転者からの視認性の高い虚像を形成することが可能な情報表示装置を提供することを目的とする。 Therefore, in the present invention, in consideration of the problems in the prior art described above, the apparatus itself is prevented from being enlarged and complicated, distortion including distortion on the reflection surface of the windshield is eliminated, and visual recognition from the driver. An object of the present invention is to provide an information display device capable of forming a high-quality virtual image.
 本発明によれば、上述した目的を達成するため、例えば、乗り物のフロントガラスに虚像の映像情報を表示する情報表示装置であって、前記映像情報を形成する画像形成ユニットと、前記画像形成ユニットから出射された光を前記フロントガラスで反射することで虚像を前記乗り物の前方に表示させるための前記フロントガラスを含む虚像光学系とを備えており、前記フロントガラスの水平方向の曲率半径Rhと垂直方向の曲率半径Rvは異なっており、かつ、前記虚像光学系は、少なくとも前記フロントガラスの車体水平方向の曲率半径Rhと垂直方向の曲率半径Rvの差異を相殺する反射曲面を持つ凹面反射ミラーを含んでいる。 According to the present invention, in order to achieve the above-described object, for example, an information display device for displaying video information of a virtual image on a windshield of a vehicle, the image forming unit for forming the video information, and the image forming unit A virtual image optical system including the windshield for displaying a virtual image in front of the vehicle by reflecting light emitted from the windshield, and a horizontal curvature radius Rh of the windshield, The curvature radius Rv in the vertical direction is different, and the virtual image optical system has a concave reflecting mirror having a reflection curved surface that cancels at least the difference between the curvature radius Rh in the vehicle body horizontal direction and the curvature radius Rv in the vertical direction of the windshield. Is included.
 本発明によれば、装置自体の大型化や複雑化を抑制し、フロントガラスの反射面の歪を含めた運転者からの視認性の高い虚像を形成することが可能な情報表示装置が提供されるという優れた効果を発揮する。 ADVANTAGE OF THE INVENTION According to this invention, the information display apparatus which can suppress the enlargement and complexity of apparatus itself and can form a virtual image with high visibility from a driver | operator including the distortion of the reflective surface of a windshield is provided. Exhibits an excellent effect.
本発明の第一の実施形態に係る情報表示装置および情報表示装置に配属された周辺機器の概略構成を示す概略構成図である。1 is a schematic configuration diagram showing a schematic configuration of an information display device according to a first embodiment of the present invention and peripheral devices assigned to the information display device. 上記情報表示装置を搭載した自動車の上面図である。It is a top view of the motor vehicle carrying the said information display apparatus. 上記情報表示装置を搭載した自動車のフロントガラスの曲率半径の違いを説明するための図である。It is a figure for demonstrating the difference in the curvature radius of the windshield of the motor vehicle carrying the said information display apparatus. 上記情報表示装置を搭載した自動車の運転者が運転中に注視する領域を示す概略図である。It is the schematic which shows the area | region which the driver | operator of the motor vehicle carrying the said information display device observes during a driving | operation. 本発明の第二の実施形態に係る情報表示装置の光学系を示す構成図である。It is a block diagram which shows the optical system of the information display apparatus which concerns on 2nd embodiment of this invention. 本発明の第三の実施形態に係る情報表示装置の光学系を示す構成図である。It is a block diagram which shows the optical system of the information display apparatus which concerns on 3rd embodiment of this invention. 本発明の第三の実施形態に係る情報表示装置の光学系を示す構成図である。It is a block diagram which shows the optical system of the information display apparatus which concerns on 3rd embodiment of this invention. 本発明のその他の実施形態に係る情報表示装置の光学系を示す構成図である。It is a block diagram which shows the optical system of the information display apparatus which concerns on other embodiment of this invention. 第一の実施形態における虚像光学系の全体光線図であり、図9(a)はYZ平面において虚像面7の映像情報を観察者の眼で見ている様子を表し、図9(b)はXZ平面において虚像面7の映像情報を観察者の眼で見ている様子を表す概略図である。FIG. 9A is an overall ray diagram of the virtual image optical system according to the first embodiment, and FIG. 9A illustrates a state in which video information on the virtual image plane 7 is viewed with an observer's eye on the YZ plane, and FIG. It is the schematic showing a mode that the image | video information of the virtual image surface 7 is seen with an observer's eyes in XZ plane. 第一の実施形態に係る情報表示装置の光学系の要部斜視拡大図である。It is a principal part perspective enlarged view of the optical system of the information display apparatus which concerns on 1st embodiment. 第一の実施形態に係る情報表示装置のレンズ部の一部拡大斜視図である。It is a partially expanded perspective view of the lens part of the information display apparatus which concerns on 1st embodiment. 第一の実施形態の情報表示装置の画面歪性能を説明するため、虚像面と運転者から見た虚像面との関係を説明する図である。It is a figure explaining the relationship between a virtual image surface and the virtual image surface seen from the driver | operator, in order to demonstrate the screen distortion performance of the information display apparatus of 1st embodiment. 第一の実施形態の情報表示装置の虚像光学系の歪性能を表す図である。It is a figure showing the distortion performance of the virtual image optical system of the information display apparatus of 1st embodiment. 第一の実施形態の情報表示装置の虚像光学系のスポット図である。It is a spot figure of the virtual image optical system of the information display apparatus of 1st embodiment.
 以下、図面等を用いて、本発明の一実施形態および各種実施形態について説明する。なお、以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。 Hereinafter, an embodiment and various embodiments of the present invention will be described with reference to the drawings. In addition, the following description shows the specific example of the content of this invention, This invention is not limited to these description, The person skilled in the art within the range of the technical idea disclosed by this specification. Various changes and modifications are possible. In all the drawings for explaining the present invention, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.
 <第一の実施形態>
 図1は、本願発明の第一の実施形態に係る情報表示装置1の周辺機器構成を示すブロックと概略構成図であり、ここでは、その一例として、特に、自動車のフロントガラスに画像を投影する情報表示装置について説明する。
<First embodiment>
FIG. 1 is a block diagram and a schematic configuration diagram showing a peripheral device configuration of the information display device 1 according to the first embodiment of the present invention. Here, as an example thereof, an image is projected particularly on a windshield of an automobile. The information display device will be described.
 この情報表示装置1は、運転者の視線8において自車両の前方における複数の位置それぞれに虚像V1~V3を形成するため、被投影部材6(本実施形態ではフロントガラス)にて反射された各種情報を虚像VI(Virtual Image)として表示する装置(所謂HUD(Headup Display)である。なお、被投影部材6は、情報が投影される部材であれば良く、前述したフロントガラスだけではなく、その他、コンバイナであっても良い。即ち、本実施形態の情報装置1では、運転者の視線8において自車両の前方における複数の位置それぞれに虚像を形成して運転者に視認させるものであり、虚像として表示する情報としては、例えば、車両情報や監視カメラやアラウンドビュアーなどのカメラ(図示せず)で撮影した前景情報も含む。 The information display device 1 forms various virtual images V1 to V3 at a plurality of positions in front of the host vehicle in the line of sight 8 of the driver, and thus various types of information reflected by the projection target member 6 (windscreen in the present embodiment). A device (so-called HUD (Headup Display)) that displays information as a virtual image VI (virtual image). The projection target member 6 may be a member on which information is projected, and is not limited to the above-described windshield. That is, in the information device 1 of the present embodiment, a virtual image is formed at each of a plurality of positions in front of the host vehicle in the driver's line of sight 8 and is visually recognized by the driver. As information to be displayed as, for example, vehicle information, a camera such as a surveillance camera or an around viewer (not shown) is used. Including the foreground information.
 また、情報表示装置1は、情報を表示する映像光を投射する映像投写装置11と、当該映像表示装置11からの光を結像させる中間像結像部4と、当該中間像結像部4において結像した映像情報(映像光)を収束または発散させる光学部品5と、そして、上記映像投写装置11を制御する制御装置40とを備えている。なお、上記の光学部品5は、以下に述べる虚像光学系であり、光を反射させる凹面形状のミラーを含んでいる。また、この光学部品5において反射した光は、被投影部材6にて反射されて運転者の視線8(EyeBox:後に詳述する)へと向かう。 Further, the information display device 1 includes a video projection device 11 that projects video light for displaying information, an intermediate image imaging unit 4 that forms an image of light from the video display device 11, and the intermediate image imaging unit 4. The optical component 5 that converges or diverges the image information (image light) formed in FIG. 1 and the control device 40 that controls the image projection device 11 are provided. The optical component 5 is a virtual image optical system described below, and includes a concave mirror that reflects light. Further, the light reflected by the optical component 5 is reflected by the projection member 6 and travels toward the driver's line of sight 8 (EyeBox: described in detail later).
 上記の中間像結像(または、中間像表示)部4は、映像投写装置11からの光を結像する機能を有しており、例えば、マイクロレンズを2次元状に配置したマイクロレンズアレイにより構成される。本実施形態においては、中間像結像部4と、接眼光学系を形成する上記凹面反射ミラーからなる光学部品5との間には、光学素子21および光学素子22が配置しており、これら光学素子21および光学素子22の配置は、第一の目的として、虚像の形成位置を自車両の前方の複数個所(本実施形態においては3箇所)とするためであり、更には、中間像結像部4と接眼光学系を形成する光学部品5との間において、当該中間像結像部4からの映像光が分離する位置において、それぞれ、収差補正を行なうために設けられている。なお、これらの光学素子による収差補正によれば、虚像が異なる位置に形成されても、同一の虚像光学系を用いることにより、複数の虚像を異なる倍率で表示することが可能となる。 The intermediate image formation (or intermediate image display) unit 4 has a function of forming an image of light from the image projection device 11, for example, by a microlens array in which microlenses are arranged two-dimensionally. Composed. In the present embodiment, an optical element 21 and an optical element 22 are disposed between the intermediate image forming unit 4 and the optical component 5 including the concave reflecting mirror forming the eyepiece optical system. The arrangement of the element 21 and the optical element 22 is, for the first purpose, to set the virtual image forming positions at a plurality of positions in front of the host vehicle (three positions in the present embodiment), and further, intermediate image formation. Between the unit 4 and the optical component 5 that forms the eyepiece optical system, each is provided for correcting aberrations at a position where the image light from the intermediate image forming unit 4 is separated. According to the aberration correction by these optical elements, even if virtual images are formed at different positions, a plurality of virtual images can be displayed at different magnifications by using the same virtual image optical system.
 より具体的には、遠方に位置する虚像V3を形成する光束の収差改善は、光学素子21により行ない、同時に、中間に位置する虚像V2の収差補正は、光学素子22により行なう。また、最も近い位置に形成される虚像V1は、本来の虚像光学系で収差が最適設計されているため、ここでは光学素子を設けていないが、しかしながら、更に収差補正能力を向上させるたに最適設計された光学素子を設けても、本発明の技術的思想または範囲を逸脱するものではないことは言うまでもない。 More specifically, the aberration of the light beam forming the virtual image V3 located far away is improved by the optical element 21, and at the same time, the aberration correction of the virtual image V2 located in the middle is performed by the optical element 22. In addition, the virtual image V1 formed at the closest position is optimally designed for aberration correction in the original virtual image optical system, so no optical element is provided here, however, it is optimal for further improving the aberration correction capability. Needless to say, the provision of the designed optical element does not depart from the technical idea or scope of the present invention.
 また、本実施形態では、説明の都合上、虚像の発生位置を遠方虚像V3、中間虚像V2、近接虚像V1に分割し、それぞれ、個別に光学素子21および22を設けた例について説明したが、しかしながら、これに限定されることなく、例えば、虚像の表示位置を遠方から近接位置まで、連続的に変化させるためには、空間的な光学距離を変化させ、連続的に虚像が発生する位置が変化するように収差を十分に低減するため、共通の光学素子を設けて対応しても、やはり、本発明の技術的思想または範囲を逸脱するものではないことは言うまでもない。 Further, in the present embodiment, for convenience of explanation, an example in which the generation position of the virtual image is divided into the far virtual image V3, the intermediate virtual image V2, and the near virtual image V1, and the optical elements 21 and 22 are individually provided, has been described. However, the present invention is not limited to this. For example, in order to continuously change the display position of the virtual image from a distant place to a close position, the position where the virtual image is continuously generated is changed by changing the spatial optical distance. Needless to say, even if a common optical element is provided in order to sufficiently reduce aberration so as to change, it does not depart from the technical idea or scope of the present invention.
 一方、制御装置30は、記憶装置31と、マイクロコンピュータ(以下「マイコン」と記す)32とを備えている。記憶装置31は、記憶内容を書き換え可能な不揮発性の記憶装置からなる。マイコン32は、電源が切断されても記憶内容を保持する必要がある処理プログラムやデータを格納するROM34と、処理プログラムやデータを一時的に収納するRAM33と、上記ROM34やPAM33に記憶された処理プログラムに従って各種処理を実行するCPU35とを有したコンピュータとを中心にして構成されている。 On the other hand, the control device 30 includes a storage device 31 and a microcomputer (hereinafter referred to as “microcomputer”) 32. The storage device 31 is a non-volatile storage device that can rewrite stored contents. The microcomputer 32 includes a ROM 34 that stores processing programs and data that need to retain stored contents even when the power is turned off, a RAM 33 that temporarily stores processing programs and data, and processes stored in the ROM 34 and PAM 33. It is mainly configured by a computer having a CPU 35 that executes various processes according to a program.
 このうち、ROM34には、車両情報や前景情報などの各種情報が被投影部材6に投影されるように映像投写装置11を制御する情報表示処理をマイコン44が実行するための処理プログラムが格納されている。そして、制御装置30には、車両情報や前景情報の取得元として、少なくとも、ナビゲーションシステム41と運転支援電子制御装置(以下、「運転支援ECU(Electronic Control Unit)と記載)42とが接続されている。 Among these, the ROM 34 stores a processing program for the microcomputer 44 to execute information display processing for controlling the video projection device 11 so that various information such as vehicle information and foreground information is projected onto the projection target member 6. ing. The control device 30 is connected with at least a navigation system 41 and a driving support electronic control device (hereinafter referred to as “driving support ECU (Electronic Control Unit))” 42 as an acquisition source of vehicle information and foreground information. Yes.
 ナビゲーションシステム61は、位置検出装置にて検出した現在位置を地図データ記憶部に記憶されている地図データに照合した結果に従って、設定された目的地までの経路を案内する装置である。地図データには、道路の制限速度や車線数、交差点に関する情報などの各種情報が含まれる。 The navigation system 61 is a device that guides a route to a set destination according to the result of collating the current position detected by the position detection device with the map data stored in the map data storage unit. The map data includes various information such as information on road speed limits, the number of lanes, and intersections.
 制御装置30は、このようなナビゲーションシステム61から、自車両が走行している現在位置に対応する道路の制限速度や車線数、ナビゲーションシステム51に設定された自車両の移動予定経路などの情報を前景情報(即ち、上記虚像により自車両の前方に表示する情報)として取得する。 From such a navigation system 61, the control device 30 obtains information such as the speed limit and number of lanes of the road corresponding to the current position where the host vehicle is traveling, the planned travel route of the host vehicle set in the navigation system 51, and the like. Obtained as foreground information (that is, information displayed in front of the host vehicle by the virtual image).
 運転支援ECU62は、周辺監視装置63での監視の結果として検出された障害物に従って駆動系や制御系を制御することで、運転支援制御を実現する制御装置であり、運転支援制御としはクルーズコントロール、アダプティブクルーズコントロール、プリクラッシュセーフティ、レーンキーピングアシストなどの周知技術を含む。 The driving support ECU 62 is a control device that realizes driving support control by controlling the drive system and the control system in accordance with the obstacle detected as a result of monitoring by the periphery monitoring device 63, and cruise control is used as the driving support control. , Including well-known technologies such as adaptive cruise control, pre-crash safety, lane keeping assistance.
 周辺監視装置63は、自車両の周辺の状況を監視する装置であり、一例としては、自車両の周辺を撮影した画像に基づいて自車両の周辺に存在する物体を検出するカメラや、探査波を送受信した結果に基づいて自車両の周辺に存在する物体を検出する探査装置などである。 The periphery monitoring device 63 is a device that monitors the situation around the host vehicle. As an example, a camera that detects an object around the host vehicle based on an image obtained by shooting the periphery of the host vehicle, an exploration wave, and the like. An exploration device that detects an object that exists in the vicinity of the host vehicle based on the result of transmitting and receiving the vehicle.
 制御装置30は、このような運転支援ECU62からの情報(例えば、先行車両までの距離および先行車両の方位、障害物や標識が存在する位置など)を前景情報として取得する。更に、制御装置30には、イグニッション(IG)信号、および、自車状態情報が入力される。これらの情報の内、自車状態情報とは、車両情報として取得される情報であり、例えば、内燃機関の燃料の残量や冷却水の温度など予め規定された異常状態となったことを表す警告情報を含んでいる。また、方向指示器の操作結果や自車両の走行速度、シフトポジションなどの情報も含まれている。以上述べた制御装置30はイグニッション信号が入力されると起動する。以上が本願発明の情報表示装置全体システムの説明である。 The control device 30 acquires such information from the driving support ECU 62 (for example, the distance to the preceding vehicle, the heading direction of the preceding vehicle, the position where the obstacle or sign is present, etc.) as the foreground information. Further, an ignition (IG) signal and own vehicle state information are input to the control device 30. Among these pieces of information, the own vehicle state information is information acquired as vehicle information, and represents, for example, that a predetermined abnormal state such as the remaining amount of fuel in the internal combustion engine or the temperature of the cooling water has been entered. Contains warning information. Information such as the operation result of the direction indicator, the traveling speed of the host vehicle, and the shift position is also included. The control device 30 described above is activated when an ignition signal is input. The above is the description of the entire information display apparatus system of the present invention.
 <虚像光学系の詳細>
 次に、本実施形態の虚像光学系、および、映像表示装置の更に詳細について、以下に説明する。
<Details of virtual image optical system>
Next, further details of the virtual image optical system and the video display device of the present embodiment will be described below.
 図2は、本実施形態の情報表示装置を搭載した自動車の上面図であり、自動車本体101の運転席前部には、上記被投影部材6としてのフロントガラスが存在する。なお、このフロントガラスは、自動車のタイプによって、車体に対する傾斜角度が異なる。更に、発明者らは、最適な虚像光学系を実現するため、この曲率半径についても調査した。その結果、フロントガラスは、図3に示すように、自動車の接地面に対して平行な水平方向の曲率半径Rhと、水平軸に対して直交する垂直方向の曲率半径Rvとで異なり、RhとRvは一般的には下記の関係があることが分かった。
         Rh>Rv
FIG. 2 is a top view of an automobile equipped with the information display device of the present embodiment, and a windshield as the projection member 6 exists in the front part of the driver's seat of the automobile body 101. The windshield has a different inclination angle with respect to the vehicle body depending on the type of automobile. Furthermore, the inventors investigated the radius of curvature in order to realize an optimal virtual image optical system. As a result, as shown in FIG. 3, the windshield has a horizontal radius of curvature Rh parallel to the ground contact surface of the automobile and a vertical radius of curvature Rv perpendicular to the horizontal axis. It was found that Rv generally has the following relationship.
Rh> Rv
 また、この曲率半径の違い、即ち、Rvに対するRhは、1.5倍から2.5倍の範囲にあるものが多いことも判明した。 It was also found that the difference in radius of curvature, that is, Rh relative to Rv is often in the range of 1.5 to 2.5 times.
 次に、発明者等はフロントガラスの傾斜角度についても市販品を調査した。その結果、車体タイプによっても異なるが、軽自動車や1Boxタイプでは20度~30度、セダンタイプでは30度~40度、スポーツタイプでは40度以上であった。そこで、本発明では、フロントガラスの自動車の接地面に対して平行な水平方向の曲率半径Rhと水平軸に対して直交する垂直方向の曲率半径Rvの違いとフロントガラスの傾斜角について考慮し、虚像光学系の設計を行なった。 Next, the inventors investigated a commercial product for the inclination angle of the windshield. As a result, although it differs depending on the body type, it was 20 to 30 degrees for light cars and 1 Box type, 30 to 40 degrees for sedan type, and 40 degrees or more for sports type. Therefore, in the present invention, considering the difference between the curvature radius Rh in the horizontal direction parallel to the ground contact surface of the windshield and the curvature radius Rv in the vertical direction perpendicular to the horizontal axis and the inclination angle of the windshield, A virtual image optical system was designed.
 より詳細には、被投影部材であるフロントガラスの水平曲率半径Rhと垂直曲率半径Rvが大きく異なるため、光軸(Z軸)に対してフロントガラスの水平軸とこの軸に垂直な軸に対して軸非対称な光学素子を虚像光学系内に設けることで良好な収差補正を実現した。更に、虚像光学系内の被投影部材であるフロントガラスを光学部品として反射面を傾斜させることで、良好な収差補正を実現した。得られた虚像光学系のレンズデータを以下の表1~表3に示す。 More specifically, since the horizontal curvature radius Rh and the vertical curvature radius Rv of the windshield which is the projection member are greatly different, the horizontal axis of the windshield and the axis perpendicular to this axis with respect to the optical axis (Z axis). Aberrant aberration correction was achieved by providing an axially asymmetric optical element in the virtual image optical system. Furthermore, a favorable aberration correction was realized by tilting the reflecting surface using a windshield as a projection member in the virtual image optical system as an optical component. The lens data of the obtained virtual image optical system are shown in Tables 1 to 3 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 これらの表1~表3は、本発明の情報表示装置を実現する虚像光学系の一実施の形態に係るレンズデータを示す図である。表1に示すレンズデータでは、曲率半径は、曲率半径の中心位置が進行方向にある場合を正の符合で表し、面間距離は、各面の頂点位置から次の面の頂点位置までの光軸上の距離で表している。 These Tables 1 to 3 are diagrams showing lens data according to an embodiment of the virtual image optical system that realizes the information display device of the present invention. In the lens data shown in Table 1, the radius of curvature is represented by a positive sign when the center position of the radius of curvature is in the traveling direction, and the inter-surface distance is the light from the vertex position of each surface to the vertex position of the next surface. Expressed as a distance on the axis.
 偏心はY軸方向の値であり、倒れはYZ平面内でX軸回りの回転であり、偏心・倒れは、該当の面で偏心と倒れの順に作用し、「普通偏心」では、偏心・倒れが作用した新しい座標系上での面間距離の位置に次の面が配置される。デセンタ・アンド・リターンの偏心および倒れは、その面でのみ作用し、次の面に影響しない。また、硝材名のPMMAは、プラスチックのアクリル(Polymethyl methacrylate)である。 Eccentricity is a value in the Y-axis direction, tilting is rotation about the X axis in the YZ plane, and eccentricity / falling acts in the order of eccentricity and tilting on the corresponding surface. The next surface is placed at the position of the inter-surface distance on the new coordinate system on which. The decentration and return eccentricity and collapse will only affect one aspect and not the next. Further, the glass material name PMMA is a plastic acrylic (Polymethyl methacrylate).
 被投影部材であるフロントガラスは、X軸とY軸で曲率半径が異なるアナモフィック非球面として定義し、水平方向の曲率半径を9686mm、垂直方向の曲率半径を5531mmとし、それぞれの曲率中心をX軸方向に-340mm、Y軸方向に-1959mm偏心させ、43.7度傾斜させて定義した。 The windshield, which is the projection target, is defined as an anamorphic aspherical surface with different radii of curvature on the X and Y axes, the horizontal radius of curvature is 9686 mm, the vertical radius of curvature is 5531 mm, and each center of curvature is the X axis. The angle was defined as -340 mm in the direction, -1959 mm in the Y-axis direction, and inclined by 43.7 degrees.
 表2は、同実施形態に係る虚像光学系の自由曲面係数の表である。表2の自由曲面係数は、下式(1)により求められる。 Table 2 is a table of free-form surface coefficients of the virtual image optical system according to the embodiment. The free-form surface coefficient in Table 2 is obtained by the following equation (1).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 自由曲面係数Cは、それぞれの光軸(Z軸)に対して回転非対称な形状であり、円錐項の成分とXYの多項式の項の成分で定義される形状である。例えば、Xが2次(m=2)でYが3次(n=3)の場合は、j={(2+3)+2+3×3}/2+1=19であるC19の係数が対応する。また、自由曲面のそれぞれの光軸の位置は、表1のレンズデータでの偏心・倒れの量によって定まる。 Free-form surface coefficient C j is a rotationally asymmetric shape with respect to each of the optical axis (Z axis), a shape defined by the component sections of the component and the XY polynomial conical section. For example, when X is second order (m = 2) and Y is third order (n = 3), the coefficient of C 19 corresponding to j = {(2 + 3) 2 + 2 + 3 × 3} / 2 + 1 = 19 corresponds. The position of each optical axis of the free-form surface is determined by the amount of decentering / falling in the lens data in Table 1.
 表3は、本願実施形態に係る虚像光学系の奇数次非球面係数を示した表である。表3の自由曲面係数は、下式(2)により求められる。 Table 3 is a table showing odd-order aspheric coefficients of the virtual image optical system according to the embodiment of the present application. The free-form surface coefficient in Table 3 is obtained by the following equation (2).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 また、本発明の実施形態に係るフロントガラス6に対応した虚像光学系のアナモフィック非球面係数は、下式(3)により求められる。なお、下式(3)のcuy(=1/rdy)とcux(=1/rdx)は、上記表1に記載した、rdy=9686mm、rdx=5531mmであり、その他の係数は、全て0とした。 Further, the anamorphic aspheric coefficient of the virtual image optical system corresponding to the windshield 6 according to the embodiment of the present invention is obtained by the following expression (3). Note that cuy (= 1 / rdy) and cux (= 1 / rdx) in the following expression (3) are rdy = 9666 mm and rdx = 5531 mm described in Table 1 above, and other coefficients are all 0. did.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 上述したフロントガラス6のアナモフィック性を光学的にキャンセルするため、虚像光学系に設けた反射ミラーをシリンダー形状とした。 In order to optically cancel the anamorphic property of the windshield 6 described above, the reflecting mirror provided in the virtual image optical system was formed into a cylinder shape.
 また、本発明の実施形態である虚像光学系によって得られる監視者の監視範囲(アイボックスサイズ)や、視野角などの値を、水平方向、垂直方向の順に示すと、以下のようになる。 Further, the values of the monitoring range (eye box size) and the viewing angle obtained by the virtual image optical system according to the embodiment of the present invention are shown in the horizontal direction and the vertical direction as follows.
 アイボックスサイズ 100×50mm
 スクリーン板での映像光の有効サイズ 40.30×18.86mm
 接平面での虚像サイズ   1603×534mm
 視野角(全画角)     5.4×1.8度
Eye box size 100 × 50mm
Effective size of image light on screen plate 40.30 × 18.86mm
Virtual image size on the tangent plane 1603 × 534mm
Viewing angle (full angle of view) 5.4 x 1.8 degrees
 次に、本実施形態の光学性能について図12から図14を用いて説明する。なお、図12は、画面歪性能を説明するため、虚像面7と、運転者8から見た虚像面7との関係を説明する図であり、図13は、本願発明の実施形態の虚像光学系の歪性能を表す図であり、同様に、図14は、虚像光学系のスポット図である。 Next, the optical performance of this embodiment will be described with reference to FIGS. FIG. 12 is a diagram for explaining the relationship between the virtual image plane 7 and the virtual image plane 7 viewed from the driver 8 in order to explain the screen distortion performance, and FIG. 13 is a virtual image optical system according to the embodiment of the present invention. FIG. 14 is a spot diagram of the virtual image optical system.
 図12に示す曲面形状の虚像面7での画面歪性能は、図13(b)に示すように、大きな歪量となっているが、虚像面7自体が曲面形状であるため、監視者である運転者が見た場合のみかけの歪性能とは異なる。このため、実際に自動車を運転している運転者の眼の位置を基準とし、虚像面7と接する接平面への投影虚像面70での歪性能を計算した。その結果を図13(a)に示す。運転者の眼から見た歪は十分な矩形状となる実用上問題の無いレベルである。 The screen distortion performance on the curved virtual image surface 7 shown in FIG. 12 is a large amount of distortion as shown in FIG. 13B, but the virtual image surface 7 itself has a curved surface shape. It differs from the apparent distortion performance when seen by a certain driver. For this reason, the distortion performance on the projection virtual image plane 70 on the tangential plane in contact with the virtual image plane 7 was calculated based on the position of the eyes of the driver who actually drives the car. The result is shown in FIG. The distortion seen from the driver's eyes is a level with no problem in practice, which is a sufficiently rectangular shape.
 なお、図13(a)および(b)は、虚像面7に物点を配置し、中間像結像部4上の矩形枠が虚像面7でどう歪んでいるかを表している。また、図13(a)および(b)の虚像の大きさは、光軸を含む十字の線上で、水平が1020mm、垂直が155.6mmなので、運転者の眼8から虚像面7までの距離5000mmで計算して、水平視野角が11.6度(=atan(1020/2/5000))、垂直視野角が1.8度(=atan(155.6/2/5000))となり、大きな視野角を実現していることが分かる。 13A and 13B show how an object point is arranged on the virtual image plane 7 and how the rectangular frame on the intermediate image imaging unit 4 is distorted on the virtual image plane 7. Further, the size of the virtual image in FIGS. 13A and 13B is 1020 mm in the horizontal direction and 155.6 mm in the vertical direction on the cross line including the optical axis, and therefore the distance from the driver's eye 8 to the virtual image plane 7. Calculated at 5000 mm, the horizontal viewing angle is 11.6 degrees (= atan (1020/2/5000)) and the vertical viewing angle is 1.8 degrees (= atan (155.6 / 2/5000)), which is large. It can be seen that the viewing angle is realized.
 図14は、虚像面7に物点を配置し、中間像結像部4でのスポット(光線の集光度合)を計算した結果を示したスポット図であり、良好な光学性能を実現している。なお、このスポット図では、監視者が虚像を監視できる範囲(アイボックス)9が水平110mm×垂直50mmとした場合に通過する全光束によって形成されるスポットである。一方、実際の監視者(運転者)が見る虚像の場合は、人の眼の虹彩の大きさ(最大でφ7mmと言われている)でもフィルタリングされるため得られるスポットは、図14よりも大幅に良くなる。 FIG. 14 is a spot diagram showing the result of calculating the spot (light ray condensing degree) at the intermediate image forming unit 4 by placing an object point on the virtual image plane 7 and realizing good optical performance. Yes. In this spot diagram, the spot is formed by the total luminous flux that passes when the range (eye box) 9 in which the observer can monitor the virtual image is 110 mm horizontal × 50 mm vertical. On the other hand, in the case of a virtual image viewed by an actual supervisor (driver), the spot obtained by filtering even by the size of the iris of the human eye (which is said to be φ7 mm at the maximum) is much larger than that in FIG. Get better.
 続いて、上述した虚像光学系の構成について図9を参照して説明する。図9は、本発明の第一の実施形態になる虚像光学系5の全体光線図であり、特に、図9(a)は、YZ平面において虚像面7の映像情報を観察者の眼で見ている様子を表し、図9(b)は、XZ平面において虚像面7の映像情報を観察者の眼で見ている様子を表している。YZ平面では右眼と左眼が重なっており(符号8参照)、XZ平面では右眼と左眼が別々に見えている。 Subsequently, the configuration of the above-described virtual image optical system will be described with reference to FIG. FIG. 9 is an overall ray diagram of the virtual image optical system 5 according to the first embodiment of the present invention. In particular, FIG. 9A shows the image information of the virtual image plane 7 on the YZ plane as viewed by the observer's eyes. FIG. 9B shows a state in which the video information on the virtual image plane 7 is viewed with an observer's eyes on the XZ plane. The right eye and the left eye overlap on the YZ plane (see reference numeral 8), and the right eye and the left eye appear separately on the XZ plane.
 更に、図10は、上記第一の実施形態の虚像光学系5の要部拡大図であり、図11は、図10において虚像光学系を構成する接眼光学系5aを構成するレンズ部の斜視拡大図である。これら図10と図11に示すように、自由曲面レンズ54および自由曲面ミラー56のそれぞれは、回転非対称な形状に構成される。なお、凸レンズ51および凹レンズ52は、大きな偏心量(前後面での偏心は無し)を持っている。 Further, FIG. 10 is an enlarged view of a main part of the virtual image optical system 5 of the first embodiment, and FIG. 11 is an enlarged perspective view of a lens part constituting the eyepiece optical system 5a constituting the virtual image optical system in FIG. FIG. As shown in FIGS. 10 and 11, each of the free-form surface lens 54 and the free-form surface mirror 56 is configured in a rotationally asymmetric shape. The convex lens 51 and the concave lens 52 have a large amount of eccentricity (no eccentricity on the front and rear surfaces).
 図11に示すように、この虚像光学系5は、中間像表示部4側から順に、正の屈折力の凸レンズ51と、負の屈折力の凹レンズ52と、正の屈折力の凸レンズ53と、回転非対称な自由曲面レンズ54と、シリンダーミラー55と、回転非対称な自由曲面ミラー56とを、フロントガラス6と並べて配置することにより構成されている。そして、上述したフロントガラス6の水平方向と垂直方向の曲率半径の差異を、シリンダーミラー55を追加することでキャンセルする構成としている。更に、反射面の回転非対称な自由曲面ミラー56は、台形歪みの補正作用を有する。 As shown in FIG. 11, the virtual image optical system 5 includes a convex lens 51 having a positive refractive power, a concave lens 52 having a negative refractive power, and a convex lens 53 having a positive refractive power in order from the intermediate image display unit 4 side. A rotationally asymmetric free-form surface lens 54, a cylinder mirror 55, and a rotationally asymmetric free-form surface mirror 56 are arranged side by side with the windshield 6. And the difference of the curvature radius of the horizontal direction and the vertical direction of the windshield 6 mentioned above is set as the structure canceled by adding the cylinder mirror 55. FIG. Furthermore, the rotationally asymmetric free-form surface mirror 56 of the reflecting surface has a trapezoidal distortion correcting action.
 <映像投写装置>
 以上に詳述した実施形態では、映像投写装置11は、例えば、小型の液晶パネルやDMD(Digital Mirror Device)などの映像表示素子により映像信号に合わせて光の強度を変調し、この変調された光を投写手段によって中間像表示部4に拡大投写する構成となっている。または、光源光をMEMS(Micro Electro Mechanical Systems)の微細ミラーでスキャンすることで前述と同様の映像情報を得ても良い。更には、TFT方式のカラー液晶パネルやカラーフィルターを備えた単板LCOS(Liquid Crystal On Silicon)、OLED(Organic Light Emitting Diode)などの平面ディスプレイであっても良く、その場合には、当該平面ディスプレイ(映像表示部)が中間像表示部4となる。この場合、映像表示部そのものが虚像光学系の映像源となり、その表示面が平面である場合には、設計の自由度としては虚像光学系の光軸に対して傾斜させフロントガラスの傾斜を考慮して台形歪みの補正をするなどの自由度が存在する。
<Image projection device>
In the embodiment described in detail above, the image projection device 11 modulates the intensity of light in accordance with the image signal by using an image display element such as a small liquid crystal panel or DMD (Digital Mirror Device). The light is enlarged and projected onto the intermediate image display unit 4 by the projection means. Alternatively, image information similar to that described above may be obtained by scanning light source light with a micro mirror of MEMS (Micro Electro Mechanical Systems). Furthermore, a flat display such as a single plate LCOS (Liquid Crystal On Silicon) or an OLED (Organic Light Emitting Diode) provided with a TFT color liquid crystal panel or a color filter may be used. The (video display unit) becomes the intermediate image display unit 4. In this case, when the image display unit itself is the image source of the virtual image optical system and the display surface is a flat surface, the design freedom is inclined with respect to the optical axis of the virtual image optical system and the inclination of the windshield is taken into consideration. Thus, there is a degree of freedom such as correction of trapezoidal distortion.
 即ち、表示情報を表す映像は、映像投写装置11からの映像光を中間像表示(結像)部4の同一面に表示して、当該情報を虚像として表示する。そのための構成として、最終反射面である自動車のフロントガラス6も含めて最適設計された上記の虚像光学系5を備えている。このため、投写手段の最良像面やスキャンによって得られた映像面を中間像表示部4の平面形状と略一致させ、当該平面形状以外の、例えば、球面、非球面、自由曲面とすることによれば、虚像光学系5の設計自由度を大きくすることもできる。 That is, for the video representing the display information, the video light from the video projection device 11 is displayed on the same surface of the intermediate image display (imaging) unit 4 and the information is displayed as a virtual image. For this purpose, the virtual image optical system 5 is optimally designed including the automobile windshield 6 which is the final reflecting surface. For this reason, the best image plane of the projection means and the image plane obtained by scanning are made to substantially coincide with the planar shape of the intermediate image display unit 4, and other than the planar shape, for example, a spherical surface, an aspherical surface, and a free curved surface. Accordingly, the degree of freedom in designing the virtual image optical system 5 can be increased.
 なお、ここで、再び、上述した虚像光学系について述べる。即ち、虚像光学系は、被投影部材とされていたフロントガラス6の車両水平方向の曲率半径と垂直方向の曲率半径との差をも含めて最適設計を行ない、フロントガラス6と映像表示部または中間像表示部4との間には、フロントガラス側に凹面を向けた凹面ミラー56が存在し、映像表示部または中間像表示部4に投写された映像を拡大してフロントガラス6において反射する。そして、当該凹面ミラー56と映像表示部または中間像表示部4の間には、複数の光学素子が配置されている。これにより、運転者の視点位置に対応して結像する前記映像の拡大像(虚像)を形成する映像光束は、映像表示装置または中間像表示部の間に配置された光学素子を通過する際に互いに分離した位置を通過するように配置され、そして、それぞれの光束に対応し、光学素子を分割して得られる最適収差補正を行なうことにより、運転者の複数の視点位置に対応した視認性の高い虚像を得ることが可能となる。 Here, the above-described virtual image optical system will be described again. That is, the virtual image optical system performs an optimal design including the difference between the curvature radius in the vehicle horizontal direction and the curvature radius in the vertical direction of the windshield 6 that has been the projection target member, and the windshield 6 and the image display unit or A concave mirror 56 with a concave surface facing the windshield exists between the intermediate image display unit 4 and the image projected on the video display unit or the intermediate image display unit 4 is enlarged and reflected on the windshield 6. . A plurality of optical elements are arranged between the concave mirror 56 and the video display unit or intermediate image display unit 4. As a result, the image light beam forming the enlarged image (virtual image) of the image formed corresponding to the viewpoint position of the driver passes through the optical element disposed between the image display device or the intermediate image display unit. Are arranged so as to pass through positions separated from each other, and by performing optimum aberration correction obtained by dividing the optical element corresponding to each light beam, visibility corresponding to a plurality of viewpoint positions of the driver It is possible to obtain a high virtual image.
 より具体的には、本第一の実施形態では、フロントガラス6の上部(車体垂直方向上部)で反射されて得られる虚像は、より遠方に結像する必要がある。このため、これに対応した映像が表示される映像表示部または中間像表示部4の上部から発散される映像光束を良好に結像させるためには、上述の凹面ミラー56と映像表示部または中間像表示部4の間に配置した複数の光学素子の合成焦点距離f1は、短く、それとは反対に、フロントガラス6の下部(車体垂直方向下部)で反射されて得られる虚像は、より近傍に結像する必要がある。このため、これに対応した映像が表示される映像表示部および中間像表示部4の下部から発散される映像光束を良好に結像させるためには、上述の凹面ミラー56と映像表示部または中間像表示部4の間に配置した複数の光学素子の合成焦点距離f2を長く設定されると良い。言い換えると両者の関係は、f1<f2となるように設定されることが好ましい。なお、既述した本発明の目的を実現するためには、上述したように映像表示部および中間像表示部4を幾つかに分割して必要な情報を表示するように構成しても良く、または、連続的な情報表示を行なうように構成することも可能であろう。 More specifically, in the first embodiment, the virtual image obtained by being reflected by the upper part of the windshield 6 (the upper part in the vehicle body vertical direction) needs to be formed farther away. For this reason, in order to favorably image the image light flux emitted from the upper part of the image display unit or the intermediate image display unit 4 on which the corresponding image is displayed, the above-described concave mirror 56 and the image display unit or intermediate The composite focal length f1 of the plurality of optical elements arranged between the image display units 4 is short. On the contrary, the virtual image obtained by being reflected by the lower part of the windshield 6 (the lower part in the vehicle body vertical direction) is closer to the vicinity. It is necessary to form an image. For this reason, in order to favorably form the image light flux diverged from the lower part of the image display unit and the intermediate image display unit 4 on which an image corresponding to this is displayed, the above-described concave mirror 56 and the image display unit or intermediate The combined focal length f2 of the plurality of optical elements arranged between the image display units 4 is preferably set long. In other words, the relationship between the two is preferably set so that f1 <f2. In order to realize the above-described object of the present invention, as described above, the video display unit and the intermediate image display unit 4 may be divided into some pieces to display necessary information. Alternatively, it may be configured to display information continuously.
 更に、上記図1に示す実施形態では、フロントガラス6の上部(車体垂直方向上部)に反射されて得られる虚像V3は、より遠方に結像する必要がある。このため、これに対応した映像が表示される中間像表示部4の上部から発散される映像光束を良好に結像させるためには、上述の凹面ミラー56と中間像表示部4の間に配置した複数の光学素子の合成焦点距離f1は、短く、それとは反対に、フロントガラス6の下部(車体垂直方向下部)に反射されて得られる虚像V1は、より近傍に結像する必要がある。このため、これに対応した映像が表示される中間像表示部4の下部から発散される映像光束を良好に結像させるためには、上述の凹面ミラー56と中間像表示部4の間に配置した複数の光学素子の合成焦点距離f2は、相対的に長く設定されている。 Furthermore, in the embodiment shown in FIG. 1, the virtual image V3 obtained by being reflected on the upper part of the windshield 6 (upper part in the vehicle body direction) needs to be formed further away. For this reason, in order to form an image light beam diverging from the upper part of the intermediate image display unit 4 on which an image corresponding to this is displayed, it is disposed between the concave mirror 56 and the intermediate image display unit 4 described above. The combined focal length f1 of the plurality of optical elements is short, and on the contrary, the virtual image V1 obtained by being reflected by the lower part of the windshield 6 (lower part in the vehicle body vertical direction) needs to be formed closer to the image. For this reason, in order to form an image light beam diverging from the lower part of the intermediate image display unit 4 on which an image corresponding to this is displayed, it is disposed between the concave mirror 56 and the intermediate image display unit 4 described above. The combined focal length f2 of the plurality of optical elements is set to be relatively long.
 加えて、本実施形態では、フロントガラス6の水平方向(地面に平行)曲率半径と垂直方向(フロントガラス水平方向に垂直な方向)の曲率半径が異なることで運転者が観視する虚像の画面歪みを補正するため、上述した虚像光学系5に光軸に対して軸対称性が異なる光学素子を配置しており、これにより上述した歪みの補正を実現している。 In addition, in the present embodiment, the screen of the virtual image that the driver sees because the curvature radius of the windshield 6 in the horizontal direction (parallel to the ground) and the curvature radius in the vertical direction (direction perpendicular to the windshield horizontal direction) are different. In order to correct the distortion, optical elements having different axial symmetry with respect to the optical axis are arranged in the virtual image optical system 5 described above, thereby realizing the correction of the distortion described above.
 更に、前述のフロントガラス6反射面の形状に起因して生じる表示する文字や図形の歪みは、文字や図形の縦横比を表示画像の位置によって変更することにより、運転者が観視する虚像の形状をより自然に(縦横比がより正しい比率に)表現することができる。 Furthermore, the distortion of the displayed characters and figures caused by the shape of the reflection surface of the windshield 6 described above is caused by changing the aspect ratio of the characters and the figures according to the position of the display image, so that the virtual image that the driver sees is changed. The shape can be expressed more naturally (with a more correct aspect ratio).
 <第二の実施形態>
 次に、図5を用いて、本発明の第二の実施形態に係る情報表示装置の光学系の基本構造について説明する。なお、この図5に示す光学系は、画像形成ユニット10および虚像光学系5を構成する接眼光学系5aを含む。これにより、投写光学系20から出射された映像光を自動車(図示せず)のフロントガラス6に反射させて運転者の眼8に入射させる構成を備えている。
<Second Embodiment>
Next, the basic structure of the optical system of the information display apparatus according to the second embodiment of the present invention will be described with reference to FIG. The optical system shown in FIG. 5 includes an image forming unit 10 and an eyepiece optical system 5a constituting the virtual image optical system 5. Thus, the image light emitted from the projection optical system 20 is reflected on the windshield 6 of an automobile (not shown) and is incident on the driver's eyes 8.
 より詳細には、バックライト1から液晶表示パネル2に照射された光束は、液晶表示パネル2に表示された映像情報を含んだ映像光束として、リレー光学系3に入射する。リレー光学系3での結像作用により、液晶表示パネル2上の映像情報は拡大され、その後、中間像結像部4上に拡大投写される。液晶表示パネル2上の点P1・P2・P3が、それぞれ中間像結像部4の点Q1・Q2・Q3に対応する。リレー光学系3を用いることで、表示サイズの小さい液晶表示パネルを使用することができる。バックライト1、液晶表示パネル2、リレー光学系3、および中間像結像部4は、中間像結像部4上に画像情報(映像情報)を形成するので、これらを総称して画像形成ユニット10と言う。 More specifically, the light beam emitted from the backlight 1 to the liquid crystal display panel 2 is incident on the relay optical system 3 as an image light beam including video information displayed on the liquid crystal display panel 2. The image information on the liquid crystal display panel 2 is enlarged by the imaging action in the relay optical system 3 and then enlarged and projected onto the intermediate image imaging unit 4. The points P1, P2, and P3 on the liquid crystal display panel 2 correspond to the points Q1, Q2, and Q3 of the intermediate image forming unit 4, respectively. By using the relay optical system 3, a liquid crystal display panel having a small display size can be used. Since the backlight 1, the liquid crystal display panel 2, the relay optical system 3, and the intermediate image forming unit 4 form image information (video information) on the intermediate image forming unit 4, they are collectively referred to as an image forming unit. Say ten.
 次に、中間像結像部4上の画像情報は、虚像光学系5によって、フロントガラス6に投写され、フロントガラス6で反射した光束が、観察者の眼8の位置に到達する。これを観察者の眼から見ると、あたかも、自車両前方の虚像面7の画像情報を見ているような関係性が成立する。中間像結像部4上の点Q1・Q2・Q3が、それぞれ虚像面7の点V1・V2・V3に対応する。なお、観察者が眼8の位置を動かしても、虚像面7上の点V1・V2・V3が見ることができる範囲が、所謂、アイボックス9である。このように、虚像光学系5は、カメラのファインダーの接眼レンズや、顕微鏡での接眼レンズと同様に、物(空間像)と像(虚像)を観察者の眼の前に表示する光学系である。 Next, the image information on the intermediate image forming unit 4 is projected onto the windshield 6 by the virtual image optical system 5, and the light beam reflected by the windshield 6 reaches the position of the eye 8 of the observer. When this is viewed from the eyes of the observer, a relationship is established as if viewing image information of the virtual image plane 7 in front of the host vehicle. Points Q1, Q2, and Q3 on the intermediate image forming unit 4 correspond to points V1, V2, and V3 on the virtual image plane 7, respectively. The range in which the points V1, V2, and V3 on the virtual image plane 7 can be seen even if the observer moves the position of the eye 8 is a so-called eye box 9. As described above, the virtual image optical system 5 is an optical system that displays an object (aerial image) and an image (virtual image) in front of an observer's eyes, like an eyepiece lens of a camera finder or an eyepiece lens of a microscope. is there.
 また、中間像結像部4は、マイクロレンズを2次元状に配置したマイクロレンズアレイにより構成される。これにより拡散作用が生じ、中間像結像部4を出射する光束の広がり角を大きくしており、アイボック9の大きさを、所定の大きさにしている。なお、中間像結像部4の拡散作用は、拡散粒子を内蔵することでも実現できる。 Further, the intermediate image forming unit 4 is configured by a microlens array in which microlenses are two-dimensionally arranged. As a result, a diffusing action occurs, the spread angle of the light beam emitted from the intermediate image forming unit 4 is increased, and the size of the eyebock 9 is set to a predetermined size. The diffusing action of the intermediate image forming unit 4 can also be realized by incorporating diffusing particles.
 即ち、この第二の実施形態では、図5の中間像結像部4側から虚像光学系5を構成する接眼光学系5aまでの間に、虚像発生位置に対応して、収差補正用の光学素子を配置する。より具体的には、最も遠方に位置するV3に対応する光束が通過する位置には補正用の光学素子21を配置することにより、虚像光学系5の虚像発生位置を遠方に遠ざけ高倍率化を図ると同時に、虚像で発生する歪みと収差を低減する。次いで、中間位置に成立する虚像V2に対応する光束が通過する位置には補正用の光学素子22を配置することにより、虚像光学系5の虚像発生位置を中間位置に成立させ中倍率化を図ると同時に、虚像で発生する歪みと収差を低減する。換言すれば、監視者に対して最も近傍に成立する虚像V1に対応する光束が通過する位置には補正用光学素子を配置しなくても良いように、虚像光学系5を構成する接眼光学系5aを最適設計する。 That is, in the second embodiment, the aberration correction optical system corresponds to the virtual image generation position between the intermediate image forming unit 4 side of FIG. 5 and the eyepiece optical system 5a constituting the virtual image optical system 5. Arrange the elements. More specifically, by disposing the correction optical element 21 at the position where the light beam corresponding to V3 located farthest passes, the virtual image generation position of the virtual image optical system 5 is moved far away to increase the magnification. At the same time, distortion and aberration generated in the virtual image are reduced. Next, a correction optical element 22 is disposed at a position where the light beam corresponding to the virtual image V2 established at the intermediate position passes, thereby establishing the virtual image generation position of the virtual image optical system 5 at the intermediate position and increasing the medium magnification. At the same time, distortion and aberration generated in the virtual image are reduced. In other words, the eyepiece optical system that constitutes the virtual image optical system 5 so that the correcting optical element does not have to be disposed at the position where the light beam corresponding to the virtual image V1 formed closest to the observer passes. 5a is optimally designed.
 より具体的には、基準となる最も近傍に成立する虚像V1に対して接眼光学系5aを最適設計しておき、他方、中間距離に成立するV2および遠方に成立するV3に対しては、補正用の光学素子21、22を配置する。このように、補正用の光学素子21、22をそれぞれ配置することは、中間像結像部4と接眼光学系5aとの間の光学距離を短縮することとなるため、虚像の高倍率化に有利であるばかりでなく、それぞれの像位置で成立する虚像の歪みと収差を補正するのに最適となる。 More specifically, the eyepiece optical system 5a is optimally designed for the virtual image V1 that is formed closest to the reference. On the other hand, the correction is made for V2 that is established at an intermediate distance and V3 that is established at a far distance. Optical elements 21 and 22 are disposed. As described above, the arrangement of the correction optical elements 21 and 22 shortens the optical distance between the intermediate image forming unit 4 and the eyepiece optical system 5a, so that the magnification of the virtual image is increased. Not only is it advantageous, it is optimal for correcting distortion and aberration of the virtual image established at each image position.
 即ち、本実施形態では、遠方に成立する虚像V3に対応する光束と、中間に成立する虚像V2に対応する光束と、そして、近傍に成立する虚像V1とに対応する光束が分離して虚像光学系5に入射する位置に、それぞれの虚像に対応して補正用の光学系を配置することで、虚像の歪み、収差補正を行なうものである。なお、虚像の成立位置が遠方から近傍にかけて連続的であっても、虚像光学系5と中間像結像部4の光学距離がそれぞれの虚像成立位置に対応して変化させ補正光学素子を配置すれば良いことは当業者には自明であり、本発明の技術的思想または範囲を逸脱するものではないことは言うまでもない。 That is, in the present embodiment, the light beam corresponding to the virtual image V3 formed in the distance, the light beam corresponding to the virtual image V2 formed in the middle, and the light beam corresponding to the virtual image V1 formed in the vicinity are separated, and the virtual image optics By disposing an optical system for correction corresponding to each virtual image at a position incident on the system 5, distortion and aberration correction of the virtual image is performed. Even if the virtual image formation position is continuous from a distance to the vicinity, the optical distance between the virtual image optical system 5 and the intermediate image forming unit 4 is changed corresponding to each virtual image formation position, and the correction optical element is arranged. It should be obvious to those skilled in the art that the present invention is not deviated from the technical idea or scope of the present invention.
 <第三の実施形態>
 次に、本発明の第三の実施形態に係る情報表示装置の光学系について、添付の図6および図7を用いながら以下に詳細に説明する。
<Third embodiment>
Next, the optical system of the information display apparatus according to the third embodiment of the present invention will be described in detail below with reference to the attached FIG. 6 and FIG.
 図6に示す情報表示装置では、映像源として平面ディスプレイ(例えば、液晶表示パネル)4aを使用する。バックライト1から照射された光束は、液晶表示パネル4aに表示された映像情報を含んだ映像光束として、虚像光学系5を構成する接眼光学系5aに入射する。なお、本実施形態では、上記第二の実施形態と同様に、液晶表示パネル4aと虚像光学系5を構成する接眼光学系5aの間に、虚像発生位置に対応して、収差補正用の光学素子を配置する。具体的には、最も遠方に位置するV3に対応する光束が通過する位置には補正用の光学素子24を配置し、これにより、虚像光学系5の虚像発生位置を遠方に遠ざけて高倍率化を図ると同時に、虚像で発生する歪みと収差を低減する。 6 uses a flat display (for example, a liquid crystal display panel) 4a as an image source. The light beam emitted from the backlight 1 enters the eyepiece optical system 5a constituting the virtual image optical system 5 as a video light beam including video information displayed on the liquid crystal display panel 4a. In this embodiment, similarly to the second embodiment, an aberration correcting optical device is provided between the liquid crystal display panel 4a and the eyepiece optical system 5a constituting the virtual image optical system 5, corresponding to the virtual image generation position. Arrange the elements. Specifically, a correction optical element 24 is disposed at a position where a light beam corresponding to V3 located at the farthest position passes, thereby increasing the magnification by moving the virtual image generation position of the virtual image optical system 5 far away. At the same time, distortion and aberration generated in a virtual image are reduced.
 次いで、中間位置に成立する虚像V2に対応する光束が通過する位置には補正用の光学素子23を配置し、これにより、虚像光学系5の虚像発生位置を中間位置に成立させて中倍率化を図ると同時に、虚像で発生する歪みと収差を低減する。最後に、監視者に対して最も近傍に成立する虚像V1に対応する光束が通過する位置には、補正用光学素子を配置しない。即ち、虚像光学系5を構成する接眼光学系5aを、虚像V1に対応する光束が通過する位置では補正用光学素子を配置しなくても良いようにするように最適設計する。 Next, an optical element 23 for correction is disposed at a position where the light beam corresponding to the virtual image V2 established at the intermediate position passes, and thereby, the virtual image generation position of the virtual image optical system 5 is established at the intermediate position to increase the medium magnification. At the same time, distortion and aberration generated in a virtual image are reduced. Finally, no correction optical element is disposed at a position where a light beam corresponding to the virtual image V1 formed closest to the observer passes. That is, the eyepiece optical system 5a constituting the virtual image optical system 5 is optimally designed so that the correcting optical element does not have to be disposed at the position where the light beam corresponding to the virtual image V1 passes.
 このように、虚像光学系5の設計基準となるように監視者の最も近傍に成立する虚像V1に対して虚像光学系5を最適設計しておき、中間距離に成立するV2および遠方に成立するV3に対しては、補正用の光学素子をそれぞれ配置することは、上記第二実施形態におけると同様に、中間像結像部4と虚像光学系5の光学距離を短縮することになるため、虚像の高倍率化に有利であるばかりでなく、それぞれの像位置で成立する虚像の歪みと収差を補正するのに最適となる。 As described above, the virtual image optical system 5 is optimally designed with respect to the virtual image V1 that is formed closest to the observer so as to be the design reference of the virtual image optical system 5, and the virtual image optical system 5 is formed at V2 that is established at an intermediate distance and far away. For V3, arranging the correction optical elements respectively shortens the optical distance between the intermediate image forming unit 4 and the virtual image optical system 5 as in the second embodiment. This is advantageous not only for increasing the magnification of a virtual image but also for correcting distortion and aberration of the virtual image established at each image position.
 また、本実施形態は、上述した中間映像結像部4に対応する映像面をフラットパネルディスプレイとして構成するものであり、具体的には、TFT方式のカラー液晶パネルやカラーフィルターを供えた単板LCOS(Liquid Crystal On Silicon)、OLED(Organic Light Emitting Diode)などの平面ディスプレイにより構成される。かかる構成によれば、光源からの光の利用効率に優れた情報表示装置を実現することが可能となる。なお、表示画面サイズとしては、例えば、1インチから5インチ程度までが良く、特に、映像光の有効利用を考慮すれば、3インチ程度までが好ましい。 In the present embodiment, the image plane corresponding to the intermediate image forming unit 4 described above is configured as a flat panel display. Specifically, a single plate provided with a TFT color liquid crystal panel and a color filter is provided. It is composed of a flat display such as LCOS (Liquid Crystal On Silicon) and OLED (Organic Light Emitting Diode). According to such a configuration, it is possible to realize an information display device that is excellent in use efficiency of light from the light source. Note that the display screen size may be, for example, about 1 inch to 5 inches, and preferably about 3 inches in consideration of effective use of image light.
 次に、図7に示す情報表示装置では、映像源として複数の平面ディスプレイ(例えば、液晶表示パネル)4b,4cを使用する。バックライト1b,1cから照射された光束は、液晶表示パネル4b,4cに表示された映像情報を含んだ映像光束として虚像光学系5に入射する。虚像光学系5とそれぞれの虚像V3、V2、V1に対応した補正用光学素子の働きについては、上記図6で示したと同様であり、ここではその説明を省略する。 Next, in the information display apparatus shown in FIG. 7, a plurality of flat displays (for example, liquid crystal display panels) 4b and 4c are used as video sources. The light beams emitted from the backlights 1b and 1c enter the virtual image optical system 5 as video light beams including video information displayed on the liquid crystal display panels 4b and 4c. The operations of the virtual image optical system 5 and the correction optical elements corresponding to the virtual images V3, V2, and V1 are the same as those shown in FIG. 6, and description thereof is omitted here.
 上述したように、映像源として複数の液晶表示パネルを使用することによれば、以下に述べる特有の効果を得ることができる。 As described above, by using a plurality of liquid crystal display panels as video sources, the following specific effects can be obtained.
 第一に、複数の液晶表示パネルを映像源として使用することで、合成の解像度を高くすることができる。この結果、虚像全体の情報量を大きくできるので、上記図3にも示すように、フロントガラス6のほぼ全域にわたって虚像を成立させることが可能となる。 First, the composition resolution can be increased by using a plurality of liquid crystal display panels as video sources. As a result, since the amount of information of the entire virtual image can be increased, it is possible to establish a virtual image over almost the entire area of the windshield 6 as shown in FIG.
 なお、通常はフロントガラス6の全面に虚像を成立させることなく、画像表示領域1(a)、または、画像表示領域1(c)または1(a)、1(c)の両方に虚像を成立させる。この結果、上記図4に示すように、走行中の自動車101の運転者が注視する前方視界に重ね、上記図1に示した周辺監視装置からの映像情報や注意喚起の情報、更には、ナビゲーションシステムからの情報などを表示することができ、仮想現実が実現できる。更に、右折しようとした場合に走行安全上問題となる歩行者の情報などは、周辺監視装置で認識した後、撮影した映像情報に注意喚起の情報を重ねて表示することにより、安全運転の補助となる。 Normally, a virtual image is formed in the image display area 1 (a) or both of the image display areas 1 (c), 1 (a), and 1 (c) without forming a virtual image on the entire surface of the windshield 6. Let As a result, as shown in FIG. 4, the video information and alert information from the periphery monitoring apparatus shown in FIG. Information from the system can be displayed and virtual reality can be realized. In addition, information on pedestrians that may cause problems in driving safety when attempting to make a right turn is recognized by the perimeter monitoring device, and then alert information is displayed on the captured video information to assist safe driving. It becomes.
 また、進行方向の左よりを走行中の自動車102に対しては、安全上問題となれば、上記図3の画像表示領域2に注意喚起の映像を断続的に表示するなど、運転者の安全認識強化に役立てることができる。 Further, for a car 102 traveling from the left in the direction of travel, if there is a safety problem, the driver's safety may be displayed, for example, by intermittently displaying a warning image in the image display area 2 of FIG. It can be used to enhance awareness.
 第二に、虚像光学系の物面範囲内の所望の位置に配置することで、得られる虚像成立位置と倍率を制御できる。 Second, the virtual image formation position and the magnification obtained can be controlled by arranging them at desired positions within the object plane range of the virtual image optical system.
 更に、第三に、それぞれの液晶表示パネルの向きを前記接眼光学系5aの入射瞳方向に傾けることで、映像光の利用効率が向上でき明るい虚像を得ることができる。同様に、液晶表示パネルの配置位置によってそれぞれの成立する虚像の収差と歪み補正に有利なように液晶表示パネルを傾けることで設計の自由度を向上できる。 Third, by tilting the direction of each liquid crystal display panel toward the entrance pupil direction of the eyepiece optical system 5a, the use efficiency of image light can be improved and a bright virtual image can be obtained. Similarly, the degree of freedom of design can be improved by tilting the liquid crystal display panel so as to be advantageous in correcting aberrations and distortions of virtual images that are formed depending on the position of the liquid crystal display panel.
 その結果、図6に示した例に比較し、虚像光学系における設計の自由度が増加し、更には、解像性能と収差補正や歪み補正の自由度の向上が可能となると共に、運転者の視点から見た場合の虚像の成立位置を所望の位置に成立させることが可能となる。 As a result, compared to the example shown in FIG. 6, the degree of freedom of design in the virtual image optical system is increased, and further, the resolution performance and the degree of freedom of aberration correction and distortion correction can be improved. The formation position of the virtual image when viewed from the viewpoint can be established at a desired position.
 上記図7に示した例では、2個の液晶表示パネル4b、4cが並列に配置された例が記載されているが、本発明ではこれに限定されることなく、これらを虚像光学系5の光軸方向に移動して配置し、間の空間に上述した補正光学素子を挿入しても良いことは言うまでもない。更には、それぞれの液晶表示パネルを虚像光学系の光軸に対して傾けることによって歪み補正や収差補正の自由度を向上させることも有効である。 In the example shown in FIG. 7, an example in which two liquid crystal display panels 4 b and 4 c are arranged in parallel is described. However, the present invention is not limited to this, and these are not included in the virtual image optical system 5. Needless to say, the correction optical element described above may be inserted in the space between the optical axis and moved in the optical axis direction. It is also effective to improve the degree of freedom of distortion correction and aberration correction by tilting each liquid crystal display panel with respect to the optical axis of the virtual image optical system.
 このように、本実施形態では、小型の映像表示素子を複数台並べ映像表示装置を構成することで高解像度の情報表示装置を安価に実現できる。更に、上述した虚像光学系に対して複数の映像表示素子の配置場所を適宜選択することにより、運転者から見た場合の虚像の発生位置と倍率とを、適宜、制御することが可能となる。また、小型の平面ディスプレイを複数用い組み合わせることで所望の解像度を得ることも可能である。更に、複数の小型の平面ディスプレイを用いた情報表示装置では、虚像光学系に対して小型の平面ディスプレイを配置する場所を変えることによっても、上述した虚像の発生位置と倍率を制御できる。 As described above, in this embodiment, a high-resolution information display device can be realized at low cost by arranging a plurality of small video display elements to form a video display device. Furthermore, the generation position and magnification of the virtual image when viewed from the driver can be appropriately controlled by appropriately selecting the arrangement location of the plurality of video display elements with respect to the virtual image optical system described above. . It is also possible to obtain a desired resolution by combining a plurality of small flat displays. Furthermore, in the information display apparatus using a plurality of small flat displays, the above-described virtual image generation position and magnification can be controlled by changing the location where the small flat display is disposed with respect to the virtual image optical system.
 <その他の実施形態>
 図8は、本願発明の更に他の実施形態として、映像光源として、液晶表示パネル4aとバックライト1を含めて一体とした構成の全体の概略を示した断面図である。固体光源である白色LED46からの出射光は、ライトファネル44の働きによってその発散角が小さく抑制され、かつ、その強度分布も均一化される。そして、光学素子43上で、略平行光とされ、更に、偏光変換用のPBS45において、単一の偏波に揃えられる。その後、反射面41で反射させて液晶表示パネル4aに入射させる。この時、液晶表示パネル4aによって得られる映像光束がコントラスト性能の優れたものとなるように、当該液晶表示パネル4aへの光束入射角度を制御するための光学素子17を設ける。
<Other embodiments>
FIG. 8 is a cross-sectional view showing an outline of the entire configuration including the liquid crystal display panel 4a and the backlight 1 as a video light source as still another embodiment of the present invention. The light emitted from the white LED 46, which is a solid light source, has its divergence angle suppressed by the action of the light funnel 44, and the intensity distribution is made uniform. Then, the light is substantially parallel light on the optical element 43, and is further aligned with a single polarization in the PBS 45 for polarization conversion. Thereafter, the light is reflected by the reflecting surface 41 and is incident on the liquid crystal display panel 4a. At this time, an optical element 17 for controlling the incident angle of the light beam to the liquid crystal display panel 4a is provided so that the image light beam obtained by the liquid crystal display panel 4a has excellent contrast performance.
 即ち、TFT方式のカラー液晶パネルやカラーフィルターを供えた単板LCOS(Liquid Crystal On Silicon)、OLED(Organic Light Emitting Diode)など、特定の偏光のみを用いる映像表示装置では、光源光を偏光変換して所望の偏波成分のみ取り出す光学素子を、光源と映像表示装置との間に設けることで、光源光の有効な活用が可能となる。更に、光源光の発散角度を制御して前述の映像表示装置からの出力光の中からコントラスト性能の高い角度成分のみを使用することで、映像のコントラスト性能を高めることも可能となる。 That is, in an image display device using only a specific polarization such as a single-plate LCOS (Liquid Crystal On Silicon) provided with a TFT color liquid crystal panel or a color filter, or an OLED (Organic Light Emitting Diode), the light source light is converted into polarized light. By providing an optical element for extracting only a desired polarization component between the light source and the video display device, the light source light can be effectively used. Further, by controlling the divergence angle of the light source light and using only the angle component having high contrast performance from the output light from the above-mentioned image display device, it is possible to improve the contrast performance of the image.
 更に、液晶表示素子4aの光入射面と出射面には、それぞれ偏光板(図示せず)が設けられており、これにより、コントラスト性能の優れた映像光束を得る。更に、液晶表示パネル4aの出射面には、λ/4板46を設け、これにより出射光を円偏光とする。この結果、運転者が偏光サングラスを装着していても良好な虚像を監視することができる。 Furthermore, polarizing plates (not shown) are respectively provided on the light incident surface and the light exit surface of the liquid crystal display element 4a, thereby obtaining an image light beam with excellent contrast performance. Further, a λ / 4 plate 46 is provided on the exit surface of the liquid crystal display panel 4a, thereby making the emitted light circularly polarized. As a result, a good virtual image can be monitored even if the driver wears polarized sunglasses.
 加えて、虚像光学系5に最も近接した位置に、紫外線反射膜や紫外線反射膜と赤外線反射膜を合わせた光学部材47を設けることによれば、外光(太陽光)が入射しても液晶表示パネルや偏光板をその温度上昇によるダメージから軽減でき、信頼性を損なうことが無い情報表示装置を実現することができる。 In addition, by providing the ultraviolet reflection film or the optical member 47 in which the ultraviolet reflection film and the infrared reflection film are combined at a position closest to the virtual image optical system 5, liquid crystal can be used even when external light (sunlight) is incident. An information display device can be realized in which the display panel and the polarizing plate can be reduced from damage due to the temperature rise, and the reliability is not impaired.
 最後に、フロントガラス6の反射面は、運転者が入れ替わった場合など、運転者の視点位置が異なるため、複数の視点位置を考慮しなければならない場合がある。かかる場合には、フロントガラスの車体垂直方向曲率半径および車体水平方向曲率半径の中心位置と運転者の眼の位置が異なるため、虚像で得られる画像の歪がそれぞれ異なってしまう。かかる課題を解決するため、例えば、自動車の車内に運転者の視点位置を計測することが可能なカメラ等を設ける(図示せず)ことが考えられる。この場合、当該カメラにより測定した運転者の瞳の位置を測定することにより予め虚像で発生する歪みを演算し、これを補正するように映像表示装置への表示画像を歪ませておけば良い。なお、これらの処理は、上記図1に示した制御装置30により実行すれば良い。 Finally, the reflection surface of the windshield 6 has a different viewpoint position of the driver, such as when the driver is replaced, and therefore there are cases where a plurality of viewpoint positions must be taken into consideration. In such a case, since the center position of the vehicle body vertical direction radius of curvature and the vehicle body horizontal direction radius of curvature of the windshield and the position of the driver's eyes are different, the distortion of the image obtained by the virtual image is different. In order to solve such a problem, for example, it is conceivable to provide a camera or the like (not shown) that can measure the viewpoint position of the driver in a car. In this case, the distortion generated in the virtual image is calculated in advance by measuring the position of the driver's pupil measured by the camera, and the display image on the video display device may be distorted so as to correct the distortion. In addition, what is necessary is just to perform these processes by the control apparatus 30 shown in the said FIG.
 以上に詳細に述べたように、本発明の情報表示装置によれば、運転者の複数の視点位置(異なる距離)に視認性の高い虚像を形成することができる。更に、本発明の情報表示装置によれば、上述した特許文献1および特許文献2に示された技術に比較して、簡単な構成で実現でき、装置構造の大型化や複雑化を可能な限り抑制することができる。また、本発明の情報表示装置では、特に、上述した特許文献2に記載の技術に比較し、投写手段の焦点距離を個々の結像手段に合わせて高速で調整する必要が無く、安価で簡単な構成で運転者の視点に合わせて近距離(フロントガラスの下方に相当)や遠距離(フロントガラスの上方に相当)など運転者の視線に適合する位置に虚像を形成することができる。この結果、利用者にとっては、比較的安価で使い勝手に優れた情報表示装置を提供することが可能となる。 As described in detail above, according to the information display device of the present invention, a highly visible virtual image can be formed at a plurality of viewpoint positions (different distances) of the driver. Furthermore, according to the information display device of the present invention, it can be realized with a simple configuration as compared with the techniques disclosed in Patent Document 1 and Patent Document 2 described above, and the apparatus structure can be increased in size and complexity as much as possible. Can be suppressed. Further, in the information display device of the present invention, it is not necessary to adjust the focal length of the projection means at a high speed according to the individual image forming means, especially compared to the technique described in Patent Document 2 described above, and it is inexpensive and simple. With such a configuration, a virtual image can be formed at a position suitable for the driver's line of sight such as a short distance (corresponding to the lower part of the windshield) or a long distance (corresponding to the upper part of the windshield) according to the viewpoint of the driver. As a result, it is possible for a user to provide an information display device that is relatively inexpensive and easy to use.
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために全体を詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Note that the present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiments are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
1…バックライト、2…液晶表示パネル、3…リレー光学系、4…中間像結像(表示)部、5a…接眼光学系(光学部品)、5…虚像光学系、6…被投影部材(フロントガラス)、7…虚像面、8…アイボックス、9…観察者の眼、10…画像形成ユニット、11…映像投写装置、17…光学素子、20…投写光学系、21…光学素子、22…光学素子、23…光学素子、30…制御装置、31…記憶装置、32…マイコン、33…RAM、34…ROM、35…CPU、41…反射面、42…λ/2板、43…光学素子、44…ライトファネル、45…PBS、46…固体光源、47…紫外線および赤外線反射シート、48…λ/4板、51…凸レンズ(第一の光学素子)、52…凹レンズ(第二の光学素子)、53…凸レンズ、54…自由曲面レンズ、55…シリンダーミラー(反射ミラー)、56…自由曲面ミラー(反射ミラー)、61…ナビゲーションシステム、62…運転支援ECU、63…周辺監視装置、V1、V2、V3…虚像。 DESCRIPTION OF SYMBOLS 1 ... Back light, 2 ... Liquid crystal display panel, 3 ... Relay optical system, 4 ... Intermediate image formation (display) part, 5a ... Eyepiece optical system (optical component), 5 ... Virtual image optical system, 6 ... Projection member ( Windshield), 7 ... virtual image plane, 8 ... eye box, 9 ... observer's eye, 10 ... image forming unit, 11 ... video projection device, 17 ... optical element, 20 ... projection optical system, 21 ... optical element, 22 ... Optical element, 23 ... Optical element, 30 ... Control device, 31 ... Storage device, 32 ... Microcomputer, 33 ... RAM, 34 ... ROM, 35 ... CPU, 41 ... Reflecting surface, 42 ... λ / 2 plate, 43 ... Optical Element: 44 ... Light funnel, 45 ... PBS, 46 ... Solid light source, 47 ... Ultraviolet and infrared reflecting sheet, 48 ... λ / 4 plate, 51 ... Convex lens (first optical element), 52 ... Concave lens (second optical) Element), 53 ... convex lens, 54 ... free Curved lens, 55 ... Cylinder mirror (reflection mirror), 56 ... Free-form curved mirror (reflection mirror), 61 ... Navigation system, 62 ... Driving assistance ECU, 63 ... Perimeter monitoring device, V1, V2, V3 ... Virtual image.

Claims (14)

  1.  乗り物のフロントガラスに虚像の映像情報を表示する情報表示装置であって、
     前記映像情報を形成する画像形成ユニットと、
     前記画像形成ユニットから出射された光を前記フロントガラスで反射することで虚像を前記乗り物の前方に表示させるための前記フロントガラスを含む虚像光学系とを備えており、
     前記フロントガラスの水平方向の曲率半径Rhと垂直方向の曲率半径Rvは異なっており、かつ、
     前記虚像光学系は、少なくとも前記フロントガラスの車体水平方向の曲率半径Rhと垂直方向の曲率半径Rvの差異を相殺する反射曲面を持つ凹面反射ミラーを含んでいる、情報表示装置。
    An information display device for displaying virtual image image information on a windshield of a vehicle,
    An image forming unit for forming the video information;
    A virtual image optical system including the windshield for displaying a virtual image in front of the vehicle by reflecting light emitted from the image forming unit on the windshield,
    The horizontal curvature radius Rh and the vertical curvature radius Rv of the windshield are different, and
    The virtual image optical system includes at least a concave reflecting mirror having a reflection curved surface that cancels out a difference between a curvature radius Rh in the vehicle body horizontal direction and a curvature radius Rv in the vertical direction of the windshield.
  2.  請求項1に記載の情報表示装置において、
     前記フロントガラスの車体水平方向の曲率半径Rhと垂直方向の曲率半径Rvの関係が以下に示す式を満足する、情報表示装置。
     Rh>Rv
    The information display device according to claim 1,
    An information display device in which a relationship between a curvature radius Rh in the vehicle body horizontal direction and a curvature radius Rv in the vertical direction of the windshield satisfies the following expression.
    Rh> Rv
  3.  請求項1に記載の情報表示装置において、
     前記フロントガラスの車体水平方向の曲率半径Rhと垂直方向の曲率半径Rvの関係が以下に示す式を満足する投影光学系を備えている、情報表示装置。
     1.5Rv<Rh<2.5Rv
    The information display device according to claim 1,
    An information display device comprising a projection optical system in which a relationship between a curvature radius Rh in the vehicle body horizontal direction of the windshield and a curvature radius Rv in the vertical direction satisfies the following expression.
    1.5Rv <Rh <2.5Rv
  4.  請求項1に記載の情報表示装置において、
     前記虚像光学系は、更に、前記虚像を形成する光束が分離する位置において、収差補正用の光学素子をそれぞれ配置している、情報表示装置。
    The information display device according to claim 1,
    The virtual image optical system further includes an aberration correction optical element disposed at a position where a light beam forming the virtual image is separated.
  5.  請求項1に記載の情報表示装置において、
     前記虚像光学系は、更に、正の屈折力を持つ第一の光学素子と、負の屈折力を持つ第二の光学素子と、を備えており、
     前記画像形成ユニット側から、前記正の屈折力を持つ第一の光学素子、前記負の屈折力を持つ第二の光学素子、前記凹面の反射ミラーの順に並べて配置されている、情報表示装置。
    The information display device according to claim 1,
    The virtual image optical system further includes a first optical element having a positive refractive power and a second optical element having a negative refractive power,
    An information display device, wherein the first optical element having a positive refractive power, the second optical element having a negative refractive power, and the concave reflecting mirror are arranged in this order from the image forming unit side.
  6.  請求項5に記載の情報表示装置において、
     前記画像形成ユニットとして平面ディスプレイである液晶表示パネルを使用している、情報表示装置。
    The information display device according to claim 5,
    An information display device using a liquid crystal display panel which is a flat display as the image forming unit.
  7.  請求項6に記載の情報表示装置において、
     前記画像形成ユニットとしての前記平面ディスプレイである液晶表示パネルを複数枚使用している、情報表示装置。
    The information display device according to claim 6,
    An information display device using a plurality of liquid crystal display panels as the flat display as the image forming unit.
  8.  請求項6に記載の情報表示装置において、
     前記画像形成ユニットとしての前記平面ディスプレイである液晶表示パネルに偏光板を設けている、情報表示装置。
    The information display device according to claim 6,
    An information display device, wherein a polarizing plate is provided on a liquid crystal display panel which is the flat display as the image forming unit.
  9.  請求項8に記載した情報表示装置において、
     前記画像形成ユニットとしての前記平面ディスプレイである液晶表示パネルに加えてライトファネルを備えている、情報表示装置。
    The information display device according to claim 8,
    An information display device comprising a light funnel in addition to a liquid crystal display panel which is the flat display as the image forming unit.
  10.  請求項1に記載の情報表示装置において、
     前記画像形成ユニットは、光源、前記虚像として表示される前記映像情報を表示する透過性を有する液晶表示パネル、前記光源から出射して前記液晶パネルを透過した前記画像情報を含む光束が入射されるリレー光学系、および拡散機能を有するスクリーン板を含んで構成されている、情報表示装置。
    The information display device according to claim 1,
    The image forming unit receives a light source, a transmissive liquid crystal display panel that displays the video information displayed as the virtual image, and a light beam including the image information that is emitted from the light source and transmitted through the liquid crystal panel. An information display device comprising a relay optical system and a screen plate having a diffusion function.
  11.  請求項1に記載の情報表示装置において、
     更に、前記乗り物の運転者の瞳の位置を検出する手段を備えている、情報表示装置。
    The information display device according to claim 1,
    The information display device further comprises means for detecting a position of a pupil of the vehicle driver.
  12.  乗り物のフロントガラスに複数の虚像の映像情報を距離の異なる位置に表示する情報表示装置であって、
     前記映像情報を複数個形成する画像形成ユニットと、
     前記画像形成ユニットから出射された光を前記フロントガラスで反射することで虚像を前記乗り物の前方に表示させるための、前記フロントガラスを含む虚像光学系と、を備えており、
     前記虚像光学系は、前記画像形成ユニットからの光を拡大投写して得られる中間像を形成する中間像結像部を有し、かつ、前記中間像結像部に拡大投写し得られた前記中間像を、その距離と倍率を異にして、運転者に複数の虚像を成立させる光学系であり、更に、
     前記フロントガラスと前記中間像結像部との間において、前記複数の虚像のそれぞれを形成する光束が分離する位置に配置された収差補正用の光学素子を有している、情報表示装置。
    An information display device that displays video information of a plurality of virtual images at different distances on a windshield of a vehicle,
    An image forming unit for forming a plurality of the video information;
    A virtual image optical system including the windshield for displaying a virtual image in front of the vehicle by reflecting the light emitted from the image forming unit on the windshield,
    The virtual image optical system includes an intermediate image forming unit that forms an intermediate image obtained by magnifying and projecting light from the image forming unit, and the magnifying image obtained by magnifying and projecting on the intermediate image forming unit An intermediate image is an optical system that allows a driver to create a plurality of virtual images at different distances and magnifications.
    An information display apparatus comprising: an aberration correcting optical element disposed at a position where a light beam forming each of the plurality of virtual images is separated between the windshield and the intermediate image forming unit.
  13.  前記請求項12に記載の情報表示装置において、
     前記フロントガラスと前記中間像結像部との間で前記複数の虚像を形成する光束が分離する位置に配置された前記収差補正用の光学素子は、遠方の位置に成立する虚像の収差補正用の光学素子と、前記遠方より近傍の位置に成立する虚像の収差補正用光学素子とで、その光学長さが異なっている、映像表示装置。
    The information display device according to claim 12, wherein
    The aberration correcting optical element disposed at a position where the light beams forming the plurality of virtual images are separated between the windshield and the intermediate image forming unit is for correcting the aberration of the virtual image formed at a distant position. An optical display device in which the optical length of the optical element is different from that of the virtual image aberration correcting optical element formed at a position nearer than the far distance.
  14.  乗り物のフロントガラスに虚像の映像情報を表示する情報表示装置であって、
     前記映像情報を表示する平面ディスプレイと、
     前記平面ディスプレイから出射された光を前記フロントガラスで反射することで虚像を前記乗り物の前方に表示させるための前記フロントガラスを含む虚像光学系と、を備えており、
     前記フロントガラスの水平方向の曲率半径Rhと垂直方向の曲率半径Rvは、互いに異なっており、かつ、
     前記虚像光学系は、前記フロントガラスの車体水平方向の曲率半径Rhと垂直方向の曲率半径Rvの違いを相殺する相殺光学素子を含み、更に、
     前記平面ディスプレイ側から順に、正の屈折力を持つ第一の光学素子と、負の屈折力を持つ第二の光学素子と、凹面の反射ミラーが並べて配置されて構成された投影光学系と、を有している、情報表示装置。
    An information display device for displaying virtual image image information on a windshield of a vehicle,
    A flat display for displaying the video information;
    A virtual image optical system including the windshield for displaying a virtual image in front of the vehicle by reflecting light emitted from the flat display by the windshield, and
    The horizontal curvature radius Rh and the vertical curvature radius Rv of the windshield are different from each other, and
    The virtual image optical system includes a canceling optical element that cancels a difference between a curvature radius Rh in the vehicle body horizontal direction and a curvature radius Rv in the vertical direction of the windshield,
    In order from the flat display side, a first optical element having a positive refractive power, a second optical element having a negative refractive power, and a projection optical system configured by arranging concave reflecting mirrors side by side, An information display device.
PCT/JP2015/078677 2015-10-08 2015-10-08 Information display device WO2017061016A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/078677 WO2017061016A1 (en) 2015-10-08 2015-10-08 Information display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/078677 WO2017061016A1 (en) 2015-10-08 2015-10-08 Information display device

Publications (1)

Publication Number Publication Date
WO2017061016A1 true WO2017061016A1 (en) 2017-04-13

Family

ID=58488257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078677 WO2017061016A1 (en) 2015-10-08 2015-10-08 Information display device

Country Status (1)

Country Link
WO (1) WO2017061016A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107703633A (en) * 2017-10-30 2018-02-16 苏州车萝卜汽车电子科技有限公司 Windscreen formula head-up display device and the method for weakening ghost image
WO2018229961A1 (en) * 2017-06-16 2018-12-20 マクセル株式会社 Light source device and headup display device
CN109407316A (en) * 2018-11-13 2019-03-01 苏州车萝卜汽车电子科技有限公司 Augmented reality head-up-display system, automobile
CN111788085A (en) * 2018-03-22 2020-10-16 麦克赛尔株式会社 Information display device
CN113165514A (en) * 2019-01-17 2021-07-23 麦克赛尔株式会社 Vehicle information display system and information display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168230A (en) * 2002-11-21 2004-06-17 Nissan Motor Co Ltd Display device for vehicle
JP2005500568A (en) * 2001-08-15 2005-01-06 レイセオン・カンパニー Information display method and apparatus using day / night mode head-up display
US20140036374A1 (en) * 2012-08-01 2014-02-06 Microvision Inc. Bifocal Head-up Display System

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005500568A (en) * 2001-08-15 2005-01-06 レイセオン・カンパニー Information display method and apparatus using day / night mode head-up display
JP2004168230A (en) * 2002-11-21 2004-06-17 Nissan Motor Co Ltd Display device for vehicle
US20140036374A1 (en) * 2012-08-01 2014-02-06 Microvision Inc. Bifocal Head-up Display System

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018229961A1 (en) * 2017-06-16 2018-12-20 マクセル株式会社 Light source device and headup display device
JPWO2018229961A1 (en) * 2017-06-16 2020-03-26 マクセル株式会社 Light source device and head-up display device
US11422367B2 (en) 2017-06-16 2022-08-23 Maxell, Ltd. Light source apparatus and head up display apparatus
CN107703633A (en) * 2017-10-30 2018-02-16 苏州车萝卜汽车电子科技有限公司 Windscreen formula head-up display device and the method for weakening ghost image
CN111788085A (en) * 2018-03-22 2020-10-16 麦克赛尔株式会社 Information display device
CN109407316A (en) * 2018-11-13 2019-03-01 苏州车萝卜汽车电子科技有限公司 Augmented reality head-up-display system, automobile
CN113165514A (en) * 2019-01-17 2021-07-23 麦克赛尔株式会社 Vehicle information display system and information display device

Similar Documents

Publication Publication Date Title
JP6726674B2 (en) Information display device
CN113433699B (en) Head-up display device
US11828938B2 (en) Information display apparatus
CN108292039B (en) Projection optical system and head-up display device
JP6762807B2 (en) Information display device
JP6749334B2 (en) Projection optical system and head-up display device
JP6876580B2 (en) Information display device
CN111213114B (en) Information display device and space sensing device thereof
WO2017061016A1 (en) Information display device
JP7018922B2 (en) Head-up display device
JP6579180B2 (en) Virtual image display device
JP7095018B2 (en) Head-up display device
JP2021036317A (en) Information display device
WO2017061041A1 (en) Projection optical system and head-up display device
WO2017199441A1 (en) Projection optical system, head-up display device, and automobile
EP3534202B1 (en) Virtual image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15905835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP