WO2017216875A1 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
WO2017216875A1
WO2017216875A1 PCT/JP2016/067678 JP2016067678W WO2017216875A1 WO 2017216875 A1 WO2017216875 A1 WO 2017216875A1 JP 2016067678 W JP2016067678 W JP 2016067678W WO 2017216875 A1 WO2017216875 A1 WO 2017216875A1
Authority
WO
WIPO (PCT)
Prior art keywords
upper bearing
discharge muffler
rotary compressor
crankshaft
flange portion
Prior art date
Application number
PCT/JP2016/067678
Other languages
French (fr)
Japanese (ja)
Inventor
友宏 井柳
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201680086596.9A priority Critical patent/CN109312748A/en
Priority to PCT/JP2016/067678 priority patent/WO2017216875A1/en
Priority to JP2018523078A priority patent/JP6727300B2/en
Publication of WO2017216875A1 publication Critical patent/WO2017216875A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing

Definitions

  • the present invention relates to a rotary compressor provided with a discharge muffler.
  • an upper bearing having a discharge hole for discharging a refrigerant compressed by the compressor is provided, and a discharge muffler is attached so as to cover the discharge hole.
  • the discharge muffler has a muffler space formed therein, and reduces noise generated by pulsation of high-temperature and high-pressure refrigerant gas discharged from the discharge holes.
  • the discharge muffler has a cylindrical shape having an opening on the side attached to the upper bearing, and a flange portion is formed along the edge.
  • the discharge muffler is fastened and fixed to the upper bearing by a fastening member having a flange portion formed of a plurality of bolts or the like.
  • Patent Document 1 discloses a compressor having a configuration in which adhesion is ensured by fastening a discharge muffler to a fixed scroll member with as many bolts as possible.
  • a cloth-like sound insulating material is attached to the outer surface of the sealed container.
  • This sound insulating material has a characteristic that an attenuation effect is exhibited for a high frequency, for example, exceeding 4 kHz, but an attenuation effect is decreased for a low frequency of 4 kHz or less. Therefore, in the rotary compressor, the number of fastening members is increased so that the resonance frequency of the discharge muffler is not 4 kHz or less.
  • a plurality of fastening members are provided, and there are provided at least four portions where the discharge muffler and the upper bearing are in pressure contact with each other.
  • the resonance frequency of the discharge muffler at 4 kHz or less. It is set as the structure which does not have.
  • the number of fastening members is large, the number of parts increases and the number of work steps in the manufacturing process increases, which increases manufacturing costs.
  • the discharge muffler and the upper bearing may be distorted, which may affect the performance of the compressor. Therefore, in the rotary compressor, it is desired to reduce the number of fastening members.
  • the present invention has been made to solve the above-described problems, and has a configuration in which the number of fastening members for fastening the discharge muffler and the upper bearing is reduced, and has a resonance frequency of the discharge muffler at 4 kHz or less. Aim to provide no rotary compressor.
  • the rotary compressor according to the present invention includes a hermetic container, a compression element that is accommodated in the hermetic container and compresses the refrigerant, and a rotation that is accommodated in the hermetic container and disposed inside the stator and the stator. And an electric element that serves as a drive source for the compression element.
  • the compression element passes through a cylinder chamber of the cylinder and the rotation of the electric element through the cylinder chamber of the cylinder.
  • a discharge bearing muffler that is formed along an edge of an upper bearing that rotatably supports the upper bearing, and a cylindrical body that covers the upper bearing.
  • a pair of fastening members that fasten and press-fit the flange portion of the discharge muffler and the upper bearing, and the crankshaft is disposed on the lower surface of the flange portion of the discharge muffler.
  • the center of the rotation axis of the crankshaft is centered on the flange portion of the discharge muffler from the reference axis passing through the rotation axis of the crankshaft and orthogonal to the axis connecting the pair of fastening members.
  • each rotated by 40 ° to the left and right press contact portions protruding toward the upper bearing are provided on both sides across the axis, respectively, together with the press contact portion by the fastening member, The discharge muffler and the upper bearing are pressed against each other at four locations.
  • the rotary compressor according to the present embodiment can reduce the number of fastening members and increase the pressure contact location between the discharge muffler and the upper bearing, and therefore does not have a resonance frequency of the discharge muffler below 4 kHz. Noise due to pulsation of high-temperature and high-pressure refrigerant gas discharged from the discharge hole of the upper bearing can be suppressed.
  • FIG. 3 is an enlarged sectional view taken along line AA indicated in FIG. 2. It is sectional drawing which showed the form from which the discharge muffler of the rotary compressor which concerns on embodiment of this invention differs. It is the graph which showed the resonant frequency of the discharge muffler by a hammering test. It is the graph which showed the resonant frequency of the discharge muffler by a hammering test. It is the graph which showed the resonant frequency of the discharge muffler by a hammering test. It is the graph which showed the resonant frequency of the discharge muffler by a hammering test.
  • FIG. 1 drawings including FIG. 1 are shown schematically, and the relationship between the sizes of the constituent members may be different from the actual one.
  • a vertical rotary compressor will be described as an example.
  • the present invention can be similarly applied to a horizontal rotary compressor.
  • FIG. 1 is a cross-sectional view showing the internal structure of a rotary compressor according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing a discharge muffler of the rotary compressor according to the embodiment of the present invention.
  • FIG. 3 is an enlarged cross-sectional view taken along the line AA indicated in FIG.
  • the rotary compressor 100 according to the present embodiment is used as one element of a refrigeration circuit that forms a refrigeration cycle in a refrigeration apparatus, an air conditioner, a heat pump hot water heater, a refrigerator, or the like. Based on FIG. 1, the structure and operation
  • the rotary compressor 100 includes a sealed container 1, a compression element 4 and an electric element 3 housed in the sealed container 1.
  • Refrigerating machine oil 40 that mainly lubricates the sliding portion of the compression element 4 is stored at the bottom of the sealed container 1.
  • An accumulator 2 is provided on the side of the sealed container 1.
  • the accumulator 2 includes a suction pipe 9 that sucks refrigerant gas into the compression element 4.
  • a suction pipe 9 communicating with the accumulator 2 is connected to the lower part of the sealed container 1.
  • the discharge pipe 1a is connected to the upper part of the airtight container 1, and the compressed refrigerant gas is discharged
  • the accumulator 2 is provided to separate the refrigerant into liquid refrigerant and gas refrigerant so that the liquid refrigerant is not sucked into the compression element 4 as much as possible.
  • the compression element 4 has a mechanism for compressing, for example, CO 2 refrigerant, and includes a cylinder 7, a rolling piston 11, a vane (not shown), a crankshaft 10, an upper bearing 5, a lower bearing 8, a discharge muffler 6, and the like. I have. Note that the refrigerant is not limited to the CO 2 refrigerant.
  • the cylinder 7 in which the compression chamber is formed has a cylinder chamber 7a that is a substantially circular space in plan view, and the outer peripheral portion is fixed to the hermetic container 1 by a bolt or the like (not shown).
  • the cylinder chamber 7a is open at both ends in the axial direction.
  • the cylinder chamber 7 a is provided with a rolling piston 11 that rotates eccentrically by the crankshaft 10.
  • the rolling piston 11 is slidably fitted to the eccentric shaft portion 10a of the crankshaft 10.
  • the cylinder 7 is provided with parallel vane grooves (not shown) extending in the radial direction and communicating with the cylinder chamber 7a in the axial direction.
  • a back pressure chamber (not shown) which is a substantially circular space in plan view communicating with the vane groove is provided on the back surface (outside) of the vane groove.
  • the vane is housed in the vane groove of the cylinder 7 and is always pressed against the rolling piston 11 by a vane spring (not shown) provided in the back pressure chamber.
  • a vane spring (not shown) provided in the back pressure chamber.
  • the vane spring is mainly used for the purpose of pressing the vane against the rolling piston 11 when the rotary compressor 100 is started up (in a state where there is no difference between the pressure in the sealed container 1 and the cylinder chamber 7a).
  • the shape of the vane is a flat shape (the thickness in the circumferential direction is smaller than the length in the radial direction and the axial direction).
  • the suction pipe 9 of the accumulator 2 is connected to the cylinder 7.
  • the cylinder 7 is provided with a discharge port (not shown) in which the vicinity of the edge of a circle forming the cylinder chamber 7a which is a substantially circular space is cut out.
  • the discharge port communicates with a discharge hole 5a including a discharge valve 5b that is a check valve.
  • the electric element 3 includes an electric motor rotor 30 and an electric motor stator 31.
  • the electric motor rotor 30 is fixed to the crankshaft 10 by shrink fitting or the like.
  • the electric motor stator 31 is fixed to the sealed container 1.
  • a glass terminal installed at the upper part of the hermetic container 1 is connected to the electric motor stator 31 via a lead wire.
  • the crankshaft 10 is provided through the cylinder chamber 7a.
  • An upper bearing 5 that rotatably supports the main shaft portion 10 b is provided on the upper surface of the cylinder 7.
  • a lower bearing 8 that rotatably supports the auxiliary shaft portion 10c is provided on the lower surface of the cylinder 7.
  • the upper bearing 5 has a substantially inverted T shape when viewed from the side, and closes the upper surface installed on the cylinder 7.
  • the lower bearing 8 is substantially T-shaped in a side view and closes the lower surface installed on the cylinder 7.
  • the upper bearing 5 is provided with a discharge hole 5a at substantially the same position as the discharge port (not shown) of the cylinder 7 in plan view, and a discharge valve 5b is provided in the discharge hole 5a.
  • the discharge valve 5b receives the pressure in the cylinder chamber 7a and the pressure in the sealed container 1, and when the pressure in the cylinder chamber 7a is lower than the pressure in the sealed container 1, the discharge valve 5b is pressed against the discharge hole 5a. Occlude. On the other hand, when the pressure in the cylinder chamber 7a becomes higher than the pressure in the sealed container 1, the discharge valve 5b is pushed upward by the pressure in the cylinder chamber 7a, opens the discharge hole 5a, and the compressed refrigerant is Guide out of chamber 7a.
  • a discharge muffler 6 covering the upper surface is fixed to the upper surface of the upper bearing 5 by fastening members 60 and 60.
  • the discharge muffler 6 shown in FIG. 2 is in a state before being attached to the upper bearing 5.
  • the discharge muffler 6 is formed of a cylindrical body having an opening on the side attached to the upper bearing 5, and a flange portion 6b extending outward is formed along the edge.
  • the discharge muffler 6 is fastened and fixed to the upper surface of the upper bearing 5 by a pair of fastening members 60, 60 having flange portions 6b made of bolts or the like.
  • the discharge muffler 6 has press contact portions a and c that are pressed by the fastening members 60 and 60.
  • the pair of fastening members 60, 60 are provided at positions facing each other with the crankshaft 10 in between.
  • the discharge muffler 6 has a center hole 6c that is inserted into the boss portion 5c of the upper bearing 5 at the approximate center in plan view. Further, the inside of the discharge muffler 6 is a muffler space 61 that communicates with the discharge hole 5a through the discharge valve 5b, and the discharge hole 6a is opened above the discharge muffler 6. The high-temperature and high-pressure refrigerant gas discharged from the discharge hole 5 a of the upper bearing 5 once enters the muffler space 61 and is then discharged into the sealed container 1 from the discharge hole 6 a of the discharge muffler 6.
  • the flange portion 6 b of the discharge muffler 6 has a crankshaft extending from a reference axis X passing through the rotational axis P of the crankshaft 10 and perpendicular to the axis Y connecting the pair of fastening members 60, 60.
  • press contact portions b and d projecting downward toward the upper bearing 5 are provided on both sides of the axis Y.
  • the pressure contact portions b and d may be provided only on one side of the flange portion 6b with the reference axis X as a boundary (see FIG. 7A).
  • the pressure contact parts b and d may be provided on both sides of the axis line Y within a range in which the pressure contact parts b and d are rotated by 40 ° to one side around the rotation axis P of the crankshaft 10 from the reference axis X. (See FIG. 8A). That is, since the rotary compressor 100 according to the present embodiment includes the pressure contact portions a and c of the discharge muffler 6 and the upper bearing 5 by the fastening members 60 and 60, the discharge muffler 6 and the upper bearing 5 are It is press-contacted at four places.
  • the pressure contact portions b and d are formed with a bent portion 6 d formed by bending the flange portion 6 b of the discharge muffler 6 into a V shape and bending the bent portion 6 d to the upper surface of the upper bearing 5. It is a configuration. The process of bending the flange portion 6b into a V-shape is easy and does not require technical skill, a lot of processing effort, and processing costs.
  • the height L of the bent portion 6d protruding toward the upper bearing 5 is not less than 50 ⁇ m and not more than 300 ⁇ m from the lower surface of the flange portion 6b. If the height L of the bent portion 6d is too small, the flange portion 6b cannot be brought into pressure contact with the upper bearing 5 at the pressure contact portions b and d. On the other hand, if the height L of the bent portion 6d is excessively increased, the flange portion 6b cannot be brought into pressure contact with the upper bearing 5 at the pressure contact portions a and c.
  • the height L that allows the flange portion 6b and the upper bearing 5 to be securely brought into pressure contact with each other at four positions is set to 50 ⁇ m or more and 300 ⁇ m or less.
  • the above height dimension L is an example, and is not limited to 50 ⁇ m or more and 300 ⁇ m or less.
  • the discharge muffler 6 has a plate thickness of 1 mm or more and 2 mm or less. This is because the discharge muffler 6 is liable to bend when the plate thickness is too thin, and may be bent when the fastening member 60 is fastened.
  • the thickness of the discharge muffler 6 is set to 2 mm or less in consideration of drawing processing when the discharge muffler 6 is manufactured.
  • the above dimensions are merely examples, and the thickness of the discharge muffler 6 is not limited to 1 mm or more and 2 mm or less.
  • the discharge muffler 6 becomes difficult to be deformed when fastened by the fastening members 60, 60, and cannot be flexibly pressed against the upper bearing 5, so that a slight gap is generated between the discharge muffler 6 and the upper bearing 5. Therefore, it has a resonance frequency below 4 kHz.
  • the plate thickness due to an increase in refrigerant flow rate and an increase in refrigerant density, it is common to increase the plate thickness in order to ensure the reliability of the discharge muffler.
  • FIG. 4 is a cross-sectional view showing a different form of the discharge muffler of the rotary compressor according to the embodiment of the present invention.
  • the pressure contact portions b and d shown in FIG. 4 have a configuration in which a protrusion 6 e is provided on the flange portion 6 b of the discharge muffler 6 and the protrusion 6 e is pressed against the upper surface of the upper bearing 5.
  • the protruding portion 6e has, for example, a configuration in which the plate thickness of the flange portion 6b is partially increased, a dowel-shaped configuration, a configuration in which a rib is provided, or the like.
  • the protrusion 6e has a size approximately equal to the shaft diameter of the fastening member 60.
  • the height dimension L which the protrusion part 6e protrudes toward the upper bearing 5 shall be 50 micrometers or more and 100 micrometers or less as an example similarly to the bending part 6d.
  • the protrusion part 6e is not limited to the said structure, If it is the structure protruded toward the upper bearing 5, it can implement in a various aspect.
  • the refrigerant of the accumulator 2 is introduced into the compression chamber of the cylinder chamber 7a through the suction pipe 9 and the suction port, and then the electric element 3 is driven.
  • the rolling piston 11 fitted to the eccentric shaft portion 10a of the crankshaft 10 rotates eccentrically, so that the refrigerant is compressed in the cylinder chamber 7a.
  • the refrigerant compressed in the cylinder chamber 7 a is discharged into the muffler space 61 from the discharge hole 5 a of the upper bearing 5, and then discharged into the sealed container 1 from the discharge hole 6 a of the discharge muffler 6.
  • the discharged refrigerant passes through the gaps of the electric element 3 (gap between the electric motor rotor 30 and the electric motor stator 31, grooves provided on the outer peripheral surface of the electric motor stator 31, etc.) and then from the discharge pipe 1a to the refrigeration circuit (FIG. (Not shown).
  • FIG. 5A shows the generation of a resonance frequency in the case where the discharge muffler 6 and the upper bearing 5 are press-contacted at two locations of the press-contact portion a and the press-contact portion c shown in FIG. According to the test results shown in FIG. 5A, it was confirmed that at frequencies of 4 kHz or less, the frequencies were 1.19 kHz and 3.2 kHz and had a resonance frequency.
  • the discharge muffler 6 and the upper bearing 5 are press-contacted at two locations of the press-contact portion a and the press-contact portion c shown in FIG. 2, and further pressed at one location of the press-contact portion b or the press-contact portion d.
  • the generation of the resonance frequency in the case of having a total of three press contact points is shown. According to the test result shown in FIG. 5B, it was confirmed that a frequency of 4 kHz or less has a resonance frequency when the frequency is 2.51 kHz.
  • the discharge muffler 6 and the upper bearing 5 are press-contacted at two locations of the press-contact portion a and the press-contact portion c shown in FIG. 2, and further pressed at two locations of the press-contact portion b and the press-contact portion d.
  • the generation of the resonance frequency in the case of having a total of four pressure contact points is shown.
  • FIG. 6A is an explanatory view showing a specimen A in CAE analysis.
  • FIG. 6B is a graph showing the primary resonance frequency of the discharge muffler when the pressure contact location is changed in the CAE analysis of the test body A.
  • the horizontal axis represents the rotation angle ⁇ from the reference axis X
  • the vertical axis represents the resonance frequency.
  • FIG. 7A is an explanatory diagram showing the specimen B in the CAE analysis.
  • FIG. 7B is a graph showing the primary resonance frequency of the discharge muffler when the pressure contact location is changed in the CAE analysis of the test body B.
  • the horizontal axis represents the rotation angle ⁇ from the reference axis X
  • the vertical axis represents the resonance frequency.
  • the pressure contact portions b and d are provided on both sides of the flange portion 6b across the axis Y at a position rotated from the reference axis X about the rotation axis P of the crankshaft 10 by an angle ⁇ . Each is provided.
  • the pressure contact part b and the pressure contact part d are provided at positions symmetrical with respect to the axis Y.
  • the angle ⁇ is changed in increments of 10 ° in the range of 0 ° to 90 °.
  • region R when the rotation angle ⁇ from the reference axis X is 40 ° or less, it was confirmed that there is no resonance frequency below 4 kHz.
  • FIG. 8A is an explanatory view showing a specimen C in the CAE analysis.
  • FIG. 8B is a graph showing the primary resonance frequency of the discharge muffler when the pressure contact location is changed in the CAE analysis of the specimen C.
  • the horizontal axis represents the rotation angle ⁇ of the reference axis X
  • the vertical axis represents the resonance frequency.
  • the pressure contact portions b and d are provided on both sides of the flange portion 6b across the axis Y at a position rotated from the reference axis X about the rotation axis P of the crankshaft 10 by an angle ⁇ . Each is provided.
  • the pressure contact portion b and the pressure contact portion d are provided at positions that are symmetric with respect to the rotation axis P.
  • the angle ⁇ is changed in increments of 10 ° in the range of 0 ° to 90 °.
  • the rotation angle ⁇ from the reference axis X is 40 ° or less, it was confirmed that there is no resonance frequency at 4 kHz or less.
  • the flange portion 6b of the discharge muffler 6 passes through the rotational axis P of the crankshaft 10 and is orthogonal to the axis Y connecting the pair of fastening members 60 and 60.
  • Pressure contact portions b and d projecting toward the upper bearing 5 within a range S in which a particular effect is obtained by rotating the reference shaft X around the rotation axis P of the crankshaft 10 by 40 ° to the left and right respectively.
  • the discharge muffler 6 and the upper bearing 5 are pressed in four places together with the press contact portions a and c by the fastening members 60 and 60, respectively.
  • the rotary compressor 100 since the rotary compressor 100 according to the present embodiment can reduce the number of fastening members 60 and increase the pressure contact locations of the discharge muffler 6 and the upper bearing 5, the resonance frequency of the discharge muffler 6 can be reduced to 4 kHz or less. The noise caused by the pulsation of the high-temperature and high-pressure refrigerant gas discharged from the discharge hole 5a of the upper bearing 5 can be suppressed.
  • the oil surface of the refrigerating machine oil 40 is generally sealed so as to be an upper surface than the flange portion 6 b of the discharge muffler 6. That is, since the gap between the flange portion 6b and the upper bearing 5 is sealed by the refrigerating machine oil 40, the discharge muffler 6 is sufficiently sealed even if the flange portion 6b and the upper bearing 5 are not completely in close contact with each other. It is secured.
  • the discharge muffler 6 shown in FIG. 2 is provided with a pair of reinforcing ribs 62 and 62 facing each other across the center hole 6c in an arrangement orthogonal to the pair of fastening members 60 and 60 to ensure rigidity. It is. Therefore, the discharge muffler 6 has high rigidity and is not easily deformed in a range in which the discharge muffler 6 is rotated by 5 ° to the left and right about the rotation axis P of the crankshaft 10 from the reference axis X.
  • the discharge muffler 6 has a position where the press contact portions b and d are provided at a position rotated by 5 ° from the reference axis X to the left and right around the rotation axis P of the crankshaft 10 and a position rotated by 40 °. If it is within the range surrounded by, the force required for deformation can be reduced and assembly distortion is reduced.
  • the press contact portions b and d are formed with a bent portion 6d formed by bending the flange portion 6b of the discharge muffler 6 into a V shape, and the bent portion 6d is pressed into contact with the upper bearing 5, so that the processing is easy.
  • the pressure contact portions b and d can be configured such that a protrusion 6e is provided on the flange portion 6b of the discharge muffler 6 and the protrusion 6e is pressed against the upper bearing 5, so that the shape and size of the discharge muffler 6 can be increased.
  • the present invention can be carried out in various modes.
  • the height dimension L projecting from the pressure contact portions b and d toward the upper bearing 5 is not less than 50 ⁇ m and not more than 300 ⁇ m from the lower surface of the flange portion 6 b, so that the flange portion 6 b and the upper bearing 5 are securely connected to each other as described above. Can be pressed in place.
  • the plate thickness of the flange portion 6b of the discharge muffler 6 is not less than 1 mm and not more than 2 mm, it has rigidity capable of preventing the bending that occurs when the fastening members 60 and 60 are tightened, and is further drawn when the discharge muffler 6 is manufactured. Can be easily performed.
  • the present invention has been described above based on the embodiment, the present invention is not limited to the configuration of the embodiment described above.
  • the illustrated internal configuration of the rotary compressor 100 is an example, and is not limited to the above-described content, and can be similarly implemented even with a rotary compressor including other components.
  • the scope of the present invention also includes the scope of various changes, applications, and uses made by those skilled in the art as needed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

This rotary compressor is provided with: a sealed container; a compression element for compressing a coolant; and an electromotive element which serves as a drive source of the compression element. The compression element includes: a cylinder which is fixed to the sealed container; a crank shaft which is fixed to a rotor of the electromotive element; a rolling piston which compresses a coolant; an upper bearing which rotatably supports the crank shaft; a discharge muffler which is formed of a cylindrical body covering the upper bearing, and along an end edge of which a flange part extending outward is formed; and a pair of fastening members which are positioned so as to be opposed to each other with the crank shaft interposed therebetween and which fasten the flange part of the discharge muffler and the upper bearing so as to bring the flange part and the upper bearing into pressure contact with each other. Within ranges each obtained by 40°-rotation, in the left and right directions, around the rotational axial center of the crank shaft from a reference axis that passes the rotational axial center of the crank shaft and that is orthogonal to an axial line connecting the pair of fastening members with each other, pressure contact parts protruding toward the upper bearing are provided, on both sides across the axial line, on a lower surface of the flange part of the discharge muffler.

Description

ロータリー圧縮機Rotary compressor
 本発明は、吐出マフラーを備えたロータリー圧縮機に関するものである。 The present invention relates to a rotary compressor provided with a discharge muffler.
 一般に、ロータリー圧縮機では、圧縮機で圧縮された冷媒が吐出される吐出孔を有する上軸受けが設けられており、その吐出孔を覆うように吐出マフラーが取り付けられている。吐出マフラーは、内部にマフラー空間が形成されており、吐出孔から吐出された高温高圧の冷媒ガスの脈動により発生する騒音を低減させている。吐出マフラーは、上軸受けに取り付ける側に開口を有する筒状からなり、端縁に沿ってフランジ部が形成されている。吐出マフラーは、フランジ部が複数本のボルト等からなる締結部材で上軸受けに締結されて固定されている。例えば、特許文献1には、吐出マフラーが、固定スクロール部材に可能な限り多い本数のボルトで締結されることにより密着性を確保した構成の圧縮機が開示されている。 Generally, in a rotary compressor, an upper bearing having a discharge hole for discharging a refrigerant compressed by the compressor is provided, and a discharge muffler is attached so as to cover the discharge hole. The discharge muffler has a muffler space formed therein, and reduces noise generated by pulsation of high-temperature and high-pressure refrigerant gas discharged from the discharge holes. The discharge muffler has a cylindrical shape having an opening on the side attached to the upper bearing, and a flange portion is formed along the edge. The discharge muffler is fastened and fixed to the upper bearing by a fastening member having a flange portion formed of a plurality of bolts or the like. For example, Patent Document 1 discloses a compressor having a configuration in which adhesion is ensured by fastening a discharge muffler to a fixed scroll member with as many bolts as possible.
 ところで、ロータリー圧縮機では、密閉容器の外面に布状の遮音材が取り付けられている。この遮音材は、例えば4kHz超である高い周波数に対しては減衰効果を奏するが、4kHz以下である低い周波数に対しては減衰効果が低下する特徴を有している。そのため、ロータリー圧縮機では、締結部材の本数を多くして、4kHz以下に吐出マフラーの共振周波数を有さない構成としている。 By the way, in the rotary compressor, a cloth-like sound insulating material is attached to the outer surface of the sealed container. This sound insulating material has a characteristic that an attenuation effect is exhibited for a high frequency, for example, exceeding 4 kHz, but an attenuation effect is decreased for a low frequency of 4 kHz or less. Therefore, in the rotary compressor, the number of fastening members is increased so that the resonance frequency of the discharge muffler is not 4 kHz or less.
特開2011-149299号公報JP 2011-149299 A
 特許文献1に開示された圧縮機のように、一般的には、締結部材を複数本設けて、吐出マフラーと上軸受けとが圧接する部分を4箇所以上備え、4kHz以下に吐出マフラーの共振周波数を有さない構成としている。しかし、締結部材の本数が多いと、部品点数が増えるし、製造過程における作業工数が増えるので、製造コストがかかる。また、複数の締結部材を強く締め付けることにより、吐出マフラーや上軸受けに歪みが生じ、圧縮機の性能に影響を及ぼす虞がある。そのため、ロータリー圧縮機では、締結部材の本数を減らすことが望まれている。しかし、ロータリー圧縮機では、締結部材の本数を減らすと、吐出マフラーと上軸受けの圧接箇所が減り、4kHz以下に吐出マフラーの共振周波数を有することとなるため、遮音材による減衰効果が低下し、吐出孔から吐出された冷媒ガスの脈動により騒音が発生してしまう。 As in the compressor disclosed in Patent Document 1, generally, a plurality of fastening members are provided, and there are provided at least four portions where the discharge muffler and the upper bearing are in pressure contact with each other. The resonance frequency of the discharge muffler at 4 kHz or less. It is set as the structure which does not have. However, if the number of fastening members is large, the number of parts increases and the number of work steps in the manufacturing process increases, which increases manufacturing costs. In addition, by strongly tightening the plurality of fastening members, the discharge muffler and the upper bearing may be distorted, which may affect the performance of the compressor. Therefore, in the rotary compressor, it is desired to reduce the number of fastening members. However, in the rotary compressor, if the number of fastening members is reduced, the pressure contact area between the discharge muffler and the upper bearing is reduced, and the resonance frequency of the discharge muffler is 4 kHz or less, so the damping effect by the sound insulating material is reduced. Noise is generated by the pulsation of the refrigerant gas discharged from the discharge hole.
 本発明は、上記のような課題を解決するためになされたものであり、吐出マフラーと上軸受けとを締結する締結部材の本数を減らした構成で、4kHz以下に吐出マフラーの共振周波数を有さないロータリー圧縮機を提供することを目的とする。 The present invention has been made to solve the above-described problems, and has a configuration in which the number of fastening members for fastening the discharge muffler and the upper bearing is reduced, and has a resonance frequency of the discharge muffler at 4 kHz or less. Aim to provide no rotary compressor.
 本発明に係るロータリー圧縮機は、密閉容器と、前記密閉容器内に収容され、冷媒を圧縮する圧縮要素と、前記密閉容器内に収容され、固定子と前記固定子の内部に配置された回転子とを有し、前記圧縮要素の駆動源となる電動要素と、を備え、前記圧縮要素は、前記密閉容器に固定されたシリンダーと、前記シリンダーのシリンダー室を貫通し前記電動要素の前記回転子に固定されたクランク軸と、前記クランク軸の偏心軸部に嵌合され、前記シリンダー室内で偏心回転して前記冷媒を圧縮するローリングピストンと、前記シリンダーの上端面を閉塞し、前記クランク軸を回転自在に支持する上軸受けと、前記上軸受けを覆う筒状体からなり、外方へ延びるフランジ部が端縁に沿って形成された吐出マフラーと、前記クランク軸を挟んで対向する位置に設けられ、前記吐出マフラーの前記フランジ部と前記上軸受けとを締結して圧接する一対の締結部材と、を有し、前記吐出マフラーの前記フランジ部の下面には、前記クランク軸の回転軸心を通り、且つ一対の前記締結部材を結ぶ軸線に直交する基準軸から、前記クランク軸の回転軸心を中心として左右にそれぞれ40°回転させた範囲内において、前記上軸受けに向かって突き出した圧接部が、前記軸線を挟んで両側にそれぞれ設けられているものである。 The rotary compressor according to the present invention includes a hermetic container, a compression element that is accommodated in the hermetic container and compresses the refrigerant, and a rotation that is accommodated in the hermetic container and disposed inside the stator and the stator. And an electric element that serves as a drive source for the compression element. The compression element passes through a cylinder chamber of the cylinder and the rotation of the electric element through the cylinder chamber of the cylinder. A crankshaft fixed to a child, a rolling piston that is fitted to an eccentric shaft portion of the crankshaft and eccentrically rotates in the cylinder chamber and compresses the refrigerant, and closes an upper end surface of the cylinder, and the crankshaft A discharge bearing muffler that is formed along an edge of an upper bearing that rotatably supports the upper bearing, and a cylindrical body that covers the upper bearing. And a pair of fastening members that fasten and press-fit the flange portion of the discharge muffler and the upper bearing, and the crankshaft is disposed on the lower surface of the flange portion of the discharge muffler. To the upper bearing within a range rotated by 40 ° to the left and right around the rotation axis of the crankshaft from a reference axis that passes through the rotation axis of the crankshaft and is orthogonal to the axis connecting the pair of fastening members. The press-contact portions protruding in this manner are provided on both sides of the axis.
 本発明に係るロータリー圧縮機によれば、吐出マフラーのフランジ部に、クランク軸の回転軸心を通り、且つ一対の締結部材を結ぶ軸線に直交する基準軸から、クランク軸の回転軸心を中心として左右にそれぞれ40°回転させた、特に効果が得られる範囲内において、上軸受けに向かって突き出した圧接部が、軸線を挟んで両側にそれぞれ設けられているので、締結部材による圧接部分と共に、吐出マフラーと上軸受けとが4箇所で圧接される。つまり、本実施の形態に係るロータリー圧縮機は、締結部材の本数を減らして、吐出マフラーと上軸受けの圧接箇所を増やすことができるので、4kHz以下に吐出マフラーの共振周波数を有することがなく、上軸受けの吐出孔から吐出された高温・高圧の冷媒ガスの脈動による騒音を抑制することができる。 According to the rotary compressor of the present invention, the center of the rotation axis of the crankshaft is centered on the flange portion of the discharge muffler from the reference axis passing through the rotation axis of the crankshaft and orthogonal to the axis connecting the pair of fastening members. In the range where the effect is obtained, each rotated by 40 ° to the left and right, press contact portions protruding toward the upper bearing are provided on both sides across the axis, respectively, together with the press contact portion by the fastening member, The discharge muffler and the upper bearing are pressed against each other at four locations. In other words, the rotary compressor according to the present embodiment can reduce the number of fastening members and increase the pressure contact location between the discharge muffler and the upper bearing, and therefore does not have a resonance frequency of the discharge muffler below 4 kHz. Noise due to pulsation of high-temperature and high-pressure refrigerant gas discharged from the discharge hole of the upper bearing can be suppressed.
本発明の実施の形態に係るロータリー圧縮機の内部構造を示した断面図である。It is sectional drawing which showed the internal structure of the rotary compressor which concerns on embodiment of this invention. 本発明の実施の形態に係るロータリー圧縮機の吐出マフラーを示した平面図である。It is the top view which showed the discharge muffler of the rotary compressor which concerns on embodiment of this invention. 図2に指示したA-A線矢視拡大断面図である。FIG. 3 is an enlarged sectional view taken along line AA indicated in FIG. 2. 本発明の実施の形態に係るロータリー圧縮機の吐出マフラーの異なる形態を示した断面図である。It is sectional drawing which showed the form from which the discharge muffler of the rotary compressor which concerns on embodiment of this invention differs. ハンマリング試験による吐出マフラーの共振周波数を示したグラフである。It is the graph which showed the resonant frequency of the discharge muffler by a hammering test. ハンマリング試験による吐出マフラーの共振周波数を示したグラフである。It is the graph which showed the resonant frequency of the discharge muffler by a hammering test. ハンマリング試験による吐出マフラーの共振周波数を示したグラフである。It is the graph which showed the resonant frequency of the discharge muffler by a hammering test. CAE解析における試験体Aを示した説明図である。It is explanatory drawing which showed the test body A in a CAE analysis. 試験体AのCAE解析において圧接箇所を変化させた際の吐出マフラーの1次の共振周波数を示したグラフである。It is the graph which showed the primary resonant frequency of the discharge muffler at the time of changing a press-contact location in the CAE analysis of the test body A. CAE解析における試験体Bを示した説明図である。It is explanatory drawing which showed the test body B in a CAE analysis. 試験体BのCAE解析において圧接箇所を変化させた際の吐出マフラーの1次の共振周波数を示したグラフである。It is the graph which showed the primary resonance frequency of the discharge muffler at the time of changing a press-contact location in the CAE analysis of the test body B. CAE解析における試験体Cを示した説明図である。It is explanatory drawing which showed the test body C in a CAE analysis. 試験体CのCAE解析において圧接箇所を変化させた際の吐出マフラーの1次の共振周波数を示したグラフである。6 is a graph showing a primary resonance frequency of a discharge muffler when a pressure contact location is changed in a CAE analysis of a specimen C.
 実施の形態.
 以下、本発明に係るロータリー圧縮機の実施の形態を図面に基づいて説明する。なお、図1を含め、以下の図面は模式的に表したものであり、各構成部材の大きさの関係についても実際のものと異なる場合がある。また、以下の実施の形態では、縦置き型のロータリー圧縮機を例にとって説明するが、横置き型のロータリー圧縮機にも本発明を同様に適用することができる。
Embodiment.
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a rotary compressor according to the present invention will be described with reference to the drawings. In addition, the following drawings including FIG. 1 are shown schematically, and the relationship between the sizes of the constituent members may be different from the actual one. In the following embodiment, a vertical rotary compressor will be described as an example. However, the present invention can be similarly applied to a horizontal rotary compressor.
 図1は、本発明の実施の形態に係るロータリー圧縮機の内部構造を示した断面図である。図2は、本発明の実施の形態に係るロータリー圧縮機の吐出マフラーを示した平面図である。図3は、図2に指示したA-A線矢視拡大断面図である。本実施の形態に係るロータリー圧縮機100は、冷凍装置、空気調和機、ヒートポンプ式給湯器、冷蔵庫等における冷凍サイクルを形成する冷凍回路の一要素として使用するものである。図1に基づいて、このロータリー圧縮機100の構成および動作について説明する。 FIG. 1 is a cross-sectional view showing the internal structure of a rotary compressor according to an embodiment of the present invention. FIG. 2 is a plan view showing a discharge muffler of the rotary compressor according to the embodiment of the present invention. FIG. 3 is an enlarged cross-sectional view taken along the line AA indicated in FIG. The rotary compressor 100 according to the present embodiment is used as one element of a refrigeration circuit that forms a refrigeration cycle in a refrigeration apparatus, an air conditioner, a heat pump hot water heater, a refrigerator, or the like. Based on FIG. 1, the structure and operation | movement of this rotary compressor 100 are demonstrated.
 ロータリー圧縮機100は、密閉容器1と、密閉容器1内に収容された圧縮要素4および電動要素3と、を備えている。密閉容器1の底部には、主に圧縮要素4の摺動部を潤滑する冷凍機油40が貯留されている。密閉容器1の側方部にはアキュームレーター2が設けられている。アキュームレーター2は、冷媒ガスを圧縮要素4に吸入する吸入管9を備えている。アキュームレーター2と連通する吸入管9は、密閉容器1の下部に接続されている。また、密閉容器1の上部には、吐出管1aが接続されており、圧縮された冷媒ガスが排出される。アキュームレーター2は、冷媒を液冷媒とガス冷媒に分離し、液冷媒がなるべく圧縮要素4内に吸入されないようにするために設けられている。 The rotary compressor 100 includes a sealed container 1, a compression element 4 and an electric element 3 housed in the sealed container 1. Refrigerating machine oil 40 that mainly lubricates the sliding portion of the compression element 4 is stored at the bottom of the sealed container 1. An accumulator 2 is provided on the side of the sealed container 1. The accumulator 2 includes a suction pipe 9 that sucks refrigerant gas into the compression element 4. A suction pipe 9 communicating with the accumulator 2 is connected to the lower part of the sealed container 1. Moreover, the discharge pipe 1a is connected to the upper part of the airtight container 1, and the compressed refrigerant gas is discharged | emitted. The accumulator 2 is provided to separate the refrigerant into liquid refrigerant and gas refrigerant so that the liquid refrigerant is not sucked into the compression element 4 as much as possible.
 圧縮要素4は、例えばCO冷媒を圧縮する機構を有するものであり、シリンダー7、ローリングピストン11、ベーン(図示せず)、クランク軸10、上軸受け5、下軸受け8、吐出マフラー6等を備えている。なお、冷媒はCO冷媒に限定するものではない。 The compression element 4 has a mechanism for compressing, for example, CO 2 refrigerant, and includes a cylinder 7, a rolling piston 11, a vane (not shown), a crankshaft 10, an upper bearing 5, a lower bearing 8, a discharge muffler 6, and the like. I have. Note that the refrigerant is not limited to the CO 2 refrigerant.
 内部に圧縮室が形成されるシリンダー7は、内部に平面視略円形の空間であるシリンダー室7aを有し、外周部が図示しないボルト等により密閉容器1に固定されている。シリンダー室7aは軸方向の両端が開口している。このシリンダー室7aには、クランク軸10によって偏心回転するローリングピストン11が設けられている。ローリングピストン11は、クランク軸10の偏心軸部10aに摺動自在に嵌合されている。シリンダー7のシリンダー室7aの内周面とローリングピストン11の外周面とベーン(図示せず)によって囲まれた空間がローリングピストン11の偏心回転運動によって体積を変化する圧縮室(図示せず)となる。 The cylinder 7 in which the compression chamber is formed has a cylinder chamber 7a that is a substantially circular space in plan view, and the outer peripheral portion is fixed to the hermetic container 1 by a bolt or the like (not shown). The cylinder chamber 7a is open at both ends in the axial direction. The cylinder chamber 7 a is provided with a rolling piston 11 that rotates eccentrically by the crankshaft 10. The rolling piston 11 is slidably fitted to the eccentric shaft portion 10a of the crankshaft 10. A compression chamber (not shown) in which the space surrounded by the inner peripheral surface of the cylinder chamber 7a of the cylinder 7, the outer peripheral surface of the rolling piston 11 and the vane (not shown) changes its volume by the eccentric rotational movement of the rolling piston 11; Become.
 また、シリンダー7には、シリンダー室7aに連通し、半径方向に延びる並行なベーン溝(図示せず)が軸方向に貫通して設けられている。ベーン溝の背面(外側)には、ベーン溝に連通する平面視略円形の空間である背圧室(図示せず)が設けられている。 Further, the cylinder 7 is provided with parallel vane grooves (not shown) extending in the radial direction and communicating with the cylinder chamber 7a in the axial direction. A back pressure chamber (not shown) which is a substantially circular space in plan view communicating with the vane groove is provided on the back surface (outside) of the vane groove.
 ベーンは、シリンダー7のベーン溝内に収納され、背圧室に設けられるベーンスプリング(図示せず)で、ベーンが常にローリングピストン11に押付けられている。ロータリー圧縮機100は、密閉容器1内が高圧であるから、運転を開始するとベーンの背面(背圧室側)に密閉容器1内の高圧とシリンダー室7aの圧力との差圧による力が作用するので、ベーンスプリングは主にロータリー圧縮機100の起動時(密閉容器1内とシリンダー室7aの圧力に差がない状態)に、ベーンをローリングピストン11に押付ける目的で使用される。ベーンの形状は、平たい(周方向の厚さが、径方向及び軸方向の長さよりも小さい)略直方体である。 The vane is housed in the vane groove of the cylinder 7 and is always pressed against the rolling piston 11 by a vane spring (not shown) provided in the back pressure chamber. In the rotary compressor 100, since the inside of the sealed container 1 is at a high pressure, when the operation is started, a force due to the differential pressure between the high pressure in the sealed container 1 and the pressure in the cylinder chamber 7a acts on the back surface (back pressure chamber side) of the vane. Therefore, the vane spring is mainly used for the purpose of pressing the vane against the rolling piston 11 when the rotary compressor 100 is started up (in a state where there is no difference between the pressure in the sealed container 1 and the cylinder chamber 7a). The shape of the vane is a flat shape (the thickness in the circumferential direction is smaller than the length in the radial direction and the axial direction).
 シリンダー7には、アキュームレーター2の吸入管9が接続されている。吸入管9からの冷媒ガスが通る吸入ポート(図示せず)が、シリンダー7の外周からシリンダー室7aに貫通している。 The suction pipe 9 of the accumulator 2 is connected to the cylinder 7. A suction port (not shown) through which the refrigerant gas from the suction pipe 9 passes penetrates the cylinder chamber 7 a from the outer periphery of the cylinder 7.
 シリンダー7には、略円形の空間であるシリンダー室7aを形成する円の縁部付近を切り欠いた吐出ポート(図示せず)が設けられている。吐出ポートは、逆止弁である吐出弁5bを備える吐出孔5aに通じている。 The cylinder 7 is provided with a discharge port (not shown) in which the vicinity of the edge of a circle forming the cylinder chamber 7a which is a substantially circular space is cut out. The discharge port communicates with a discharge hole 5a including a discharge valve 5b that is a check valve.
 電動要素3は、電動機回転子30と電動機固定子31とを備えている。電動機回転子30は、クランク軸10に焼き嵌め等により固定されている。電動機固定子31は、密閉容器1に固定されている。また、電動機固定子31には、電動機固定子31に電力を供給するために、密閉容器1の上部に設置されたガラス端子がリード線を介して接続されている。 The electric element 3 includes an electric motor rotor 30 and an electric motor stator 31. The electric motor rotor 30 is fixed to the crankshaft 10 by shrink fitting or the like. The electric motor stator 31 is fixed to the sealed container 1. Moreover, in order to supply electric power to the electric motor stator 31, a glass terminal installed at the upper part of the hermetic container 1 is connected to the electric motor stator 31 via a lead wire.
 クランク軸10は、シリンダー室7aを貫通して設けられている。そして、シリンダー7の上面には、主軸部10bを回転自在に支持する上軸受け5が設けられている。シリンダー7の下面には、副軸部10cを回転自在に支持する下軸受け8が設けられている。上軸受け5は、側面視略逆T字状であり、シリンダー7に設置される上面を閉塞している。下軸受け8は、側面視略T字状であり、シリンダー7に設置される下面を閉塞している。また、上軸受け5には、シリンダー7の吐出ポート(図示せず)と平面視略同位置に吐出孔5aが設けられ、吐出孔5aには吐出弁5bが設けられている。 The crankshaft 10 is provided through the cylinder chamber 7a. An upper bearing 5 that rotatably supports the main shaft portion 10 b is provided on the upper surface of the cylinder 7. A lower bearing 8 that rotatably supports the auxiliary shaft portion 10c is provided on the lower surface of the cylinder 7. The upper bearing 5 has a substantially inverted T shape when viewed from the side, and closes the upper surface installed on the cylinder 7. The lower bearing 8 is substantially T-shaped in a side view and closes the lower surface installed on the cylinder 7. Further, the upper bearing 5 is provided with a discharge hole 5a at substantially the same position as the discharge port (not shown) of the cylinder 7 in plan view, and a discharge valve 5b is provided in the discharge hole 5a.
 吐出弁5bは、シリンダー室7a内の圧力と密閉容器1内の圧力を受け、シリンダー室7a内の圧力が密閉容器1内の圧力より低い時は、吐出孔5aに押し付けられることで吐出孔5aを閉塞する。一方、シリンダー室7a内の圧力が密閉容器1内の圧力より高くなった時に、吐出弁5bは、シリンダー室7a内の圧力により上方向へ押し上げられ、吐出孔5aを開き、圧縮した冷媒をシリンダー室7a外へ導く。 The discharge valve 5b receives the pressure in the cylinder chamber 7a and the pressure in the sealed container 1, and when the pressure in the cylinder chamber 7a is lower than the pressure in the sealed container 1, the discharge valve 5b is pressed against the discharge hole 5a. Occlude. On the other hand, when the pressure in the cylinder chamber 7a becomes higher than the pressure in the sealed container 1, the discharge valve 5b is pushed upward by the pressure in the cylinder chamber 7a, opens the discharge hole 5a, and the compressed refrigerant is Guide out of chamber 7a.
 上軸受け5の上面には、上面に覆う吐出マフラー6が締結部材60、60によって固定されている。図2に示した吐出マフラー6は、上軸受け5へ取り付ける前の状態である。吐出マフラー6は、図2に示すように、上軸受け5に取り付ける側に開口を有する筒状体からなり、外方へ延びるフランジ部6bが端縁に沿って形成されている。吐出マフラー6は、フランジ部6bがボルト等からなる一対の締結部材60、60で上軸受け5の上面に締結されて固定されている。吐出マフラー6は、締結部材60、60により圧接された圧接部a、cを有している。一対の締結部材60、60は、図2に示すように、クランク軸10を挟んで対向する位置に設けられている。 A discharge muffler 6 covering the upper surface is fixed to the upper surface of the upper bearing 5 by fastening members 60 and 60. The discharge muffler 6 shown in FIG. 2 is in a state before being attached to the upper bearing 5. As shown in FIG. 2, the discharge muffler 6 is formed of a cylindrical body having an opening on the side attached to the upper bearing 5, and a flange portion 6b extending outward is formed along the edge. The discharge muffler 6 is fastened and fixed to the upper surface of the upper bearing 5 by a pair of fastening members 60, 60 having flange portions 6b made of bolts or the like. The discharge muffler 6 has press contact portions a and c that are pressed by the fastening members 60 and 60. As shown in FIG. 2, the pair of fastening members 60, 60 are provided at positions facing each other with the crankshaft 10 in between.
 吐出マフラー6は、平面視略中心に上軸受け5のボス部5cに挿入される中心穴6cを有している。また、吐出マフラー6の内部は、吐出弁5bを介して吐出孔5aに連通するマフラー空間61となっており、さらに吐出穴6aが吐出マフラー6の上部に開口されている。上軸受け5の吐出孔5aから吐出される高温・高圧の冷媒ガスは、一旦マフラー空間61に入り、その後吐出マフラー6の吐出穴6aから密閉容器1内に放出される。 The discharge muffler 6 has a center hole 6c that is inserted into the boss portion 5c of the upper bearing 5 at the approximate center in plan view. Further, the inside of the discharge muffler 6 is a muffler space 61 that communicates with the discharge hole 5a through the discharge valve 5b, and the discharge hole 6a is opened above the discharge muffler 6. The high-temperature and high-pressure refrigerant gas discharged from the discharge hole 5 a of the upper bearing 5 once enters the muffler space 61 and is then discharged into the sealed container 1 from the discharge hole 6 a of the discharge muffler 6.
 吐出マフラー6のフランジ部6bには、図2に示すように、クランク軸10の回転軸心Pを通り、且つ一対の締結部材60、60を結ぶ軸線Yに直交する基準軸Xから、クランク軸10の回転軸心Pを中心として左右にそれぞれ40°回転させた範囲S内において、上軸受け5に向かって下方へ突き出した圧接部b、dが、軸線Yを挟んで両側に設けられている。圧接部b、dは、例えば基準軸Xを境にしてフランジ部6bの一方側にのみ設けた構成としてもよい(図7Aを参照)。または、圧接部b、dは、基準軸Xからクランク軸10の回転軸心Pを中心として一側に40°回転させた範囲内において、軸線Yを挟んで両側にそれぞれ設けた構成としてもよい(図8Aを参照)。つまり、本実施の形態に係るロータリー圧縮機100は、締結部材60、60による吐出マフラー6と上軸受け5の圧接部a、cを有しているので、吐出マフラー6と上軸受け5とが、4箇所で圧接していることになる。 As shown in FIG. 2, the flange portion 6 b of the discharge muffler 6 has a crankshaft extending from a reference axis X passing through the rotational axis P of the crankshaft 10 and perpendicular to the axis Y connecting the pair of fastening members 60, 60. In the range S rotated 40 ° to the left and right about the 10 rotation axis P, press contact portions b and d projecting downward toward the upper bearing 5 are provided on both sides of the axis Y. . For example, the pressure contact portions b and d may be provided only on one side of the flange portion 6b with the reference axis X as a boundary (see FIG. 7A). Alternatively, the pressure contact parts b and d may be provided on both sides of the axis line Y within a range in which the pressure contact parts b and d are rotated by 40 ° to one side around the rotation axis P of the crankshaft 10 from the reference axis X. (See FIG. 8A). That is, since the rotary compressor 100 according to the present embodiment includes the pressure contact portions a and c of the discharge muffler 6 and the upper bearing 5 by the fastening members 60 and 60, the discharge muffler 6 and the upper bearing 5 are It is press-contacted at four places.
 圧接部b、dは、図3に示すように、吐出マフラー6のフランジ部6bをV字状に折り曲げて屈曲させた屈曲部6dが形成され、屈曲部6dを上軸受け5の上面に圧接させた構成である。フランジ部6bをV字形状に折り曲げる加工は容易であり、技術的な熟練と多くの加工手間及び加工費を必要としない。 As shown in FIG. 3, the pressure contact portions b and d are formed with a bent portion 6 d formed by bending the flange portion 6 b of the discharge muffler 6 into a V shape and bending the bent portion 6 d to the upper surface of the upper bearing 5. It is a configuration. The process of bending the flange portion 6b into a V-shape is easy and does not require technical skill, a lot of processing effort, and processing costs.
 屈曲部6dが上軸受け5に向かって突き出す高さ寸法Lは、フランジ部6bの下面から50μm以上300μm以下であることが望ましい。屈曲部6dの高さ寸法Lを小さくし過ぎると、圧接部b、dにおいてフランジ部6bを上軸受け5に圧接させることができない。一方、屈曲部6dの高さ寸法Lを大きくし過ぎると、圧接部a、cにおいてフランジ部6bを上軸受け5に圧接させることができない。つまり、フランジ部6bと上軸受け5とを、確実に4箇所で圧接させることできる高さ寸法Lとして、50μm以上300μm以下としている。但し、上記した高さ寸法Lは一例であって、50μm以上300μm以下に限るものではない。 Desirably, the height L of the bent portion 6d protruding toward the upper bearing 5 is not less than 50 μm and not more than 300 μm from the lower surface of the flange portion 6b. If the height L of the bent portion 6d is too small, the flange portion 6b cannot be brought into pressure contact with the upper bearing 5 at the pressure contact portions b and d. On the other hand, if the height L of the bent portion 6d is excessively increased, the flange portion 6b cannot be brought into pressure contact with the upper bearing 5 at the pressure contact portions a and c. That is, the height L that allows the flange portion 6b and the upper bearing 5 to be securely brought into pressure contact with each other at four positions is set to 50 μm or more and 300 μm or less. However, the above height dimension L is an example, and is not limited to 50 μm or more and 300 μm or less.
 また、吐出マフラー6は、板厚が1mm以上2mm以下であることが望ましい。吐出マフラー6は、板厚を薄くし過ぎると剛性が低下してしまい、締結部材60を締め付けた際に撓む虞があるからである。また、吐出マフラー6の板厚を2mm以下としたのは、吐出マフラー6を製造する際の絞り加工を考慮したものである。但し、上記寸法は一例であって、吐出マフラー6の板厚を1mm以上2mm以下に限るものではない。 Further, it is desirable that the discharge muffler 6 has a plate thickness of 1 mm or more and 2 mm or less. This is because the discharge muffler 6 is liable to bend when the plate thickness is too thin, and may be bent when the fastening member 60 is fastened. In addition, the thickness of the discharge muffler 6 is set to 2 mm or less in consideration of drawing processing when the discharge muffler 6 is manufactured. However, the above dimensions are merely examples, and the thickness of the discharge muffler 6 is not limited to 1 mm or more and 2 mm or less.
 因みに、吐出マフラー6は、板厚を厚くすると締結部材60、60による締結時に変形し難くなり、柔軟に上軸受け5へ圧接させることができず、上軸受け5との間に僅かな隙間が生じるため、4kHz以下に共振周波数を有してしまう。しかし、冷媒流量の増加、及び冷媒密度の増加等より、吐出マフラーの信頼性を確保するため板厚を厚くすることが一般的となっている。 Incidentally, if the thickness of the discharge muffler 6 is increased, the discharge muffler 6 becomes difficult to be deformed when fastened by the fastening members 60, 60, and cannot be flexibly pressed against the upper bearing 5, so that a slight gap is generated between the discharge muffler 6 and the upper bearing 5. Therefore, it has a resonance frequency below 4 kHz. However, due to an increase in refrigerant flow rate and an increase in refrigerant density, it is common to increase the plate thickness in order to ensure the reliability of the discharge muffler.
 図4は、本発明の実施の形態に係るロータリー圧縮機の吐出マフラーの異なる形態を示した断面図である。図4に示す圧接部b、dは、吐出マフラー6のフランジ部6bに突起部6eが設けられ、突起部6eを上軸受け5の上面に圧接させた構成である。突起部6eとしては、例えばフランジ部6bの板厚を部分的に厚くした構成、ダボ形状とした構成、或いはリブを設けた構成等である。突起部6eは、一例として締結部材60の軸径と同程度の大きさとする。また、突起部6eが上軸受け5に向かって突き出す高さ寸法Lは、屈曲部6dと同様に一例として50μm以上100μm以下とする。なお、突起部6eは、前記の構成に限定されず、上軸受け5に向かって突き出す構成であれば、種々の態様で実施することができる。 FIG. 4 is a cross-sectional view showing a different form of the discharge muffler of the rotary compressor according to the embodiment of the present invention. The pressure contact portions b and d shown in FIG. 4 have a configuration in which a protrusion 6 e is provided on the flange portion 6 b of the discharge muffler 6 and the protrusion 6 e is pressed against the upper surface of the upper bearing 5. The protruding portion 6e has, for example, a configuration in which the plate thickness of the flange portion 6b is partially increased, a dowel-shaped configuration, a configuration in which a rib is provided, or the like. As an example, the protrusion 6e has a size approximately equal to the shaft diameter of the fastening member 60. Moreover, the height dimension L which the protrusion part 6e protrudes toward the upper bearing 5 shall be 50 micrometers or more and 100 micrometers or less as an example similarly to the bending part 6d. In addition, the protrusion part 6e is not limited to the said structure, If it is the structure protruded toward the upper bearing 5, it can implement in a various aspect.
 ここで、ロータリー圧縮機100の動作について説明する。このロータリー圧縮機100では、アキュームレーター2の冷媒を吸入管9および吸入ポートを通じてシリンダー室7aの圧縮室に導入してから、電動要素3を駆動する。電動要素3を駆動すると、クランク軸10の偏心軸部10aに嵌合されたローリングピストン11が偏心回転するので、シリンダー室7a内において冷媒が圧縮される。シリンダー室7aで圧縮された冷媒は、上軸受け5の吐出孔5aからマフラー空間61内に吐出された後、吐出マフラー6の吐出穴6aから密閉容器1内に吐出される。吐出された冷媒は電動要素3の隙間(電動機回転子30と電動機固定子31間の隙間、電動機固定子31の外周面に設けた溝等)を通過した後、吐出管1aから冷凍回路(図示せず)へ排出される。 Here, the operation of the rotary compressor 100 will be described. In the rotary compressor 100, the refrigerant of the accumulator 2 is introduced into the compression chamber of the cylinder chamber 7a through the suction pipe 9 and the suction port, and then the electric element 3 is driven. When the electric element 3 is driven, the rolling piston 11 fitted to the eccentric shaft portion 10a of the crankshaft 10 rotates eccentrically, so that the refrigerant is compressed in the cylinder chamber 7a. The refrigerant compressed in the cylinder chamber 7 a is discharged into the muffler space 61 from the discharge hole 5 a of the upper bearing 5, and then discharged into the sealed container 1 from the discharge hole 6 a of the discharge muffler 6. The discharged refrigerant passes through the gaps of the electric element 3 (gap between the electric motor rotor 30 and the electric motor stator 31, grooves provided on the outer peripheral surface of the electric motor stator 31, etc.) and then from the discharge pipe 1a to the refrigeration circuit (FIG. (Not shown).
 次に、ロータリー圧縮機100の動作時における吐出マフラーの共振周波数について説明する。図5A~Cは、ハンマリング試験による吐出マフラーの共振周波数を示したグラフである。図5A~Cにおいて、横軸は周波数、縦軸は応答レベルである。先ず、図5Aは、吐出マフラー6と上軸受け5とが、図2に示す圧接部a及び圧接部cの2箇所で圧接された場合における共振周波数の発生を示している。図5Aに示す試験結果によれば、4kHz以下の周波数において、周波数が1.19kHzと、3.2kHzの場合に共振周波数を有することが確認された。 Next, the resonance frequency of the discharge muffler during the operation of the rotary compressor 100 will be described. 5A to 5C are graphs showing the resonance frequency of the discharge muffler by the hammering test. 5A to 5C, the horizontal axis represents frequency, and the vertical axis represents response level. First, FIG. 5A shows the generation of a resonance frequency in the case where the discharge muffler 6 and the upper bearing 5 are press-contacted at two locations of the press-contact portion a and the press-contact portion c shown in FIG. According to the test results shown in FIG. 5A, it was confirmed that at frequencies of 4 kHz or less, the frequencies were 1.19 kHz and 3.2 kHz and had a resonance frequency.
 次に、図5Bは、吐出マフラー6と上軸受け5とが、図2に示す圧接部a及び圧接部cの2箇所で圧接され、更に圧接部b又は圧接部dの1箇所で圧接された合計3箇所の圧接箇所を有する場合における共振周波数の発生を示している。図5Bに示す試験結果によれば、4kHz以下の周波数において、周波数が2.51kHzの場合に共振周波数を有することが確認された。 Next, in FIG. 5B, the discharge muffler 6 and the upper bearing 5 are press-contacted at two locations of the press-contact portion a and the press-contact portion c shown in FIG. 2, and further pressed at one location of the press-contact portion b or the press-contact portion d. The generation of the resonance frequency in the case of having a total of three press contact points is shown. According to the test result shown in FIG. 5B, it was confirmed that a frequency of 4 kHz or less has a resonance frequency when the frequency is 2.51 kHz.
 次に、図5Cは、吐出マフラー6と上軸受け5とが、図2に示す圧接部a及び圧接部cの2箇所で圧接され、更に圧接部b及び圧接部dの2箇所で圧接された合計4箇所の圧接箇所を有する場合における共振周波数の発生を示している。図5Cに示す試験結果によれば、吐出マフラー6と上軸受け5とを4箇所で圧接させることにより、4kHz以下の周波数において、共振周波数を有さないことが確認された。 Next, in FIG. 5C, the discharge muffler 6 and the upper bearing 5 are press-contacted at two locations of the press-contact portion a and the press-contact portion c shown in FIG. 2, and further pressed at two locations of the press-contact portion b and the press-contact portion d. The generation of the resonance frequency in the case of having a total of four pressure contact points is shown. According to the test results shown in FIG. 5C, it was confirmed that the discharge muffler 6 and the upper bearing 5 were pressed at four locations, so that there was no resonance frequency at a frequency of 4 kHz or less.
 次に、図6~8に基づいて、ロータリー圧縮機100の動作時における圧接箇所と共振周波数との関係について説明する。先ず、図6Aは、CAE解析における試験体Aを示した説明図である。図6Bは、試験体AのCAE解析において圧接箇所を変化させた際の吐出マフラーの1次の共振周波数を示したグラフである。図6Bにおいて、横軸は基準軸Xからの回転角度θ、縦軸は共振周波数である。図6Aに示す試験体Aでは、基準軸Xからクランク軸10の回転軸心Pを中心として角度θだけ回転させた位置において、軸線Yを境にしてフランジ部6bの一方側(図示例では左側)にのみ圧接部bを設けた構成である。角度θは、0°から90°の範囲において、10°刻みで変化させる。図6Bに示す解析結果によれば、すべての回転角度θにおいて、共振周波数が3kHz以下であることが確認された。 Next, with reference to FIGS. 6 to 8, the relationship between the press-contact point and the resonance frequency during the operation of the rotary compressor 100 will be described. First, FIG. 6A is an explanatory view showing a specimen A in CAE analysis. FIG. 6B is a graph showing the primary resonance frequency of the discharge muffler when the pressure contact location is changed in the CAE analysis of the test body A. In FIG. 6B, the horizontal axis represents the rotation angle θ from the reference axis X, and the vertical axis represents the resonance frequency. In the specimen A shown in FIG. 6A, one side of the flange portion 6b (on the left side in the illustrated example) at the position rotated from the reference axis X by the angle θ about the rotation axis P of the crankshaft 10 as a center. ) Only in the pressure contact portion b. The angle θ is changed in increments of 10 ° in the range of 0 ° to 90 °. According to the analysis result shown in FIG. 6B, it was confirmed that the resonance frequency was 3 kHz or less at all the rotation angles θ.
 次に、図7Aは、CAE解析における試験体Bを示した説明図である。図7Bは、試験体BのCAE解析において圧接箇所を変化させた際の吐出マフラーの1次の共振周波数を示したグラフである。図7Bにおいて、横軸は基準軸Xからの回転角度θ、縦軸は共振周波数である。図7Aに示す試験体Bでは、基準軸Xからクランク軸10の回転軸心Pを中心として角度θだけ回転させた位置において、軸線Yを挟んでフランジ部6bの両側に圧接部b、dをそれぞれ設けた構成である。圧接部bと圧接部dは、軸線Yに対して対称となる位置に設けている。角度θは、0°から90°の範囲において、10°刻みで変化させる。図7Bに示す解析結果によれば、領域Rに示すように、基準軸Xからの回転角度θが40°以下の場合において、4kHz以下に共振周波数を有さないことが確認された。 Next, FIG. 7A is an explanatory diagram showing the specimen B in the CAE analysis. FIG. 7B is a graph showing the primary resonance frequency of the discharge muffler when the pressure contact location is changed in the CAE analysis of the test body B. In FIG. 7B, the horizontal axis represents the rotation angle θ from the reference axis X, and the vertical axis represents the resonance frequency. In the test body B shown in FIG. 7A, the pressure contact portions b and d are provided on both sides of the flange portion 6b across the axis Y at a position rotated from the reference axis X about the rotation axis P of the crankshaft 10 by an angle θ. Each is provided. The pressure contact part b and the pressure contact part d are provided at positions symmetrical with respect to the axis Y. The angle θ is changed in increments of 10 ° in the range of 0 ° to 90 °. According to the analysis result shown in FIG. 7B, as shown in region R, when the rotation angle θ from the reference axis X is 40 ° or less, it was confirmed that there is no resonance frequency below 4 kHz.
 次に、図8Aは、CAE解析における試験体Cを示した説明図である。図8Bは、試験体CのCAE解析において圧接箇所を変化させた際の吐出マフラーの1次の共振周波数を示したグラフである。図8Bにおいて、横軸は基準軸Xの回転角度θ、縦軸は共振周波数である。図8Aに示す試験体Cでは、基準軸Xからクランク軸10の回転軸心Pを中心として角度θだけ回転させた位置において、軸線Yを挟んでフランジ部6bの両側に圧接部b、dをそれぞれ設けた構成である。圧接部bと圧接部dは、回転軸心Pに対して対称となる位置に設けている。角度θは、0°から90°の範囲において、10°刻みで変化させる。図8Bに示す解析結果によれば、領域Rに示すように、基準軸Xからの回転角度θが40°以下の場合において、4kHz以下に共振周波数を有さないことが確認された。 Next, FIG. 8A is an explanatory view showing a specimen C in the CAE analysis. FIG. 8B is a graph showing the primary resonance frequency of the discharge muffler when the pressure contact location is changed in the CAE analysis of the specimen C. In FIG. 8B, the horizontal axis represents the rotation angle θ of the reference axis X, and the vertical axis represents the resonance frequency. In the test body C shown in FIG. 8A, the pressure contact portions b and d are provided on both sides of the flange portion 6b across the axis Y at a position rotated from the reference axis X about the rotation axis P of the crankshaft 10 by an angle θ. Each is provided. The pressure contact portion b and the pressure contact portion d are provided at positions that are symmetric with respect to the rotation axis P. The angle θ is changed in increments of 10 ° in the range of 0 ° to 90 °. According to the analysis result shown in FIG. 8B, as shown in the region R, when the rotation angle θ from the reference axis X is 40 ° or less, it was confirmed that there is no resonance frequency at 4 kHz or less.
 したがって、本実施の形態に係るロータリー圧縮機100によれば、吐出マフラー6のフランジ部6bに、クランク軸10の回転軸心Pを通り、且つ一対の締結部材60、60を結ぶ軸線Yに直交する基準軸Xから、クランク軸10の回転軸心Pを中心として左右にそれぞれ40°回転させた、特に効果が得られる範囲S内において、上軸受け5に向かって突き出した圧接部b、dが、軸線Yを挟んで両側にそれぞれ設けられているので、締結部材60、60による圧接部a、cと共に、吐出マフラー6と上軸受け5とが4箇所で圧接される。つまり、本実施の形態に係るロータリー圧縮機100は、締結部材60の本数を減らして、吐出マフラー6と上軸受け5の圧接箇所を増やすことができるので、4kHz以下に吐出マフラー6の共振周波数を有することがなく、上軸受け5の吐出孔5aから吐出された高温・高圧の冷媒ガスの脈動による騒音を抑制することができる。 Therefore, according to the rotary compressor 100 according to the present embodiment, the flange portion 6b of the discharge muffler 6 passes through the rotational axis P of the crankshaft 10 and is orthogonal to the axis Y connecting the pair of fastening members 60 and 60. Pressure contact portions b and d projecting toward the upper bearing 5 within a range S in which a particular effect is obtained by rotating the reference shaft X around the rotation axis P of the crankshaft 10 by 40 ° to the left and right respectively. The discharge muffler 6 and the upper bearing 5 are pressed in four places together with the press contact portions a and c by the fastening members 60 and 60, respectively. That is, since the rotary compressor 100 according to the present embodiment can reduce the number of fastening members 60 and increase the pressure contact locations of the discharge muffler 6 and the upper bearing 5, the resonance frequency of the discharge muffler 6 can be reduced to 4 kHz or less. The noise caused by the pulsation of the high-temperature and high-pressure refrigerant gas discharged from the discharge hole 5a of the upper bearing 5 can be suppressed.
 なお、図1に示すように、一般的に、冷凍機油40の油面は、吐出マフラー6のフランジ部6bよりも上面となるように封入されている。つまり、吐出マフラー6は、フランジ部6bと上軸受け5との隙間が冷凍機油40によってシールされているため、フランジ部6bと上軸受け5とが完全に密着していなくても、シール性が十分確保されている。 Note that, as shown in FIG. 1, the oil surface of the refrigerating machine oil 40 is generally sealed so as to be an upper surface than the flange portion 6 b of the discharge muffler 6. That is, since the gap between the flange portion 6b and the upper bearing 5 is sealed by the refrigerating machine oil 40, the discharge muffler 6 is sufficiently sealed even if the flange portion 6b and the upper bearing 5 are not completely in close contact with each other. It is secured.
 また、図2に示した吐出マフラー6は、一対の締結部材60、60と直交する配置に、中心穴6cを挟んで対向する一対の補強用リブ62、62を設けて、剛性を確保した構成である。そのため、吐出マフラー6は、基準軸Xからクランク軸10の回転軸心Pを中心として左右にそれぞれ5°回転させた範囲において剛性が高く、変形し難い。つまり、吐出マフラー6は、圧接部b、dを設ける位置を、基準軸Xからクランク軸10の回転軸心Pを中心として左右にそれぞれ5°回転させた位置と、40°回転させた位置とで囲まれた範囲内とすると、変形に要する力を小さくすることができ、組立歪みが小さくなる。 Further, the discharge muffler 6 shown in FIG. 2 is provided with a pair of reinforcing ribs 62 and 62 facing each other across the center hole 6c in an arrangement orthogonal to the pair of fastening members 60 and 60 to ensure rigidity. It is. Therefore, the discharge muffler 6 has high rigidity and is not easily deformed in a range in which the discharge muffler 6 is rotated by 5 ° to the left and right about the rotation axis P of the crankshaft 10 from the reference axis X. In other words, the discharge muffler 6 has a position where the press contact portions b and d are provided at a position rotated by 5 ° from the reference axis X to the left and right around the rotation axis P of the crankshaft 10 and a position rotated by 40 °. If it is within the range surrounded by, the force required for deformation can be reduced and assembly distortion is reduced.
 また、圧接部b、dは、吐出マフラー6のフランジ部6bをV字状に屈曲させた屈曲部6dが形成され、屈曲部6dを上軸受け5に圧接させた構成なので、加工が容易であり、技術的な熟練と多くの加工手間及び加工費を必要としない。また、圧接部b、dは、吐出マフラー6のフランジ部6bに突起部6eが設けられ、突起部6eを上軸受け5に圧接させた構成とすることもできるので、吐出マフラー6の形状、大きさ及び厚さ等に応じて種々の態様で実施することができる。 Further, the press contact portions b and d are formed with a bent portion 6d formed by bending the flange portion 6b of the discharge muffler 6 into a V shape, and the bent portion 6d is pressed into contact with the upper bearing 5, so that the processing is easy. Technical skill and much processing effort and processing cost are not required. In addition, the pressure contact portions b and d can be configured such that a protrusion 6e is provided on the flange portion 6b of the discharge muffler 6 and the protrusion 6e is pressed against the upper bearing 5, so that the shape and size of the discharge muffler 6 can be increased. Depending on the thickness and thickness, the present invention can be carried out in various modes.
 また、圧接部b、dが上軸受け5に向かって突き出す高さ寸法Lは、フランジ部6bの下面から50μm以上300μm以下なので、上記したようにフランジ部6bと上軸受け5とを、確実に4箇所で圧接させることできる。 Further, the height dimension L projecting from the pressure contact portions b and d toward the upper bearing 5 is not less than 50 μm and not more than 300 μm from the lower surface of the flange portion 6 b, so that the flange portion 6 b and the upper bearing 5 are securely connected to each other as described above. Can be pressed in place.
 更に、吐出マフラー6のフランジ部6bの板厚は、1mm以上2mm以下なので、締結部材60、60を締め付けた際に生じる撓みを防止できる剛性を備え、更に吐出マフラー6を製造する際の絞り加工を容易に行うことができる。 Further, since the plate thickness of the flange portion 6b of the discharge muffler 6 is not less than 1 mm and not more than 2 mm, it has rigidity capable of preventing the bending that occurs when the fastening members 60 and 60 are tightened, and is further drawn when the discharge muffler 6 is manufactured. Can be easily performed.
 以上に本発明を実施の形態に基づいて説明したが、本発明は上述した実施の形態の構成に限定されるものではない。例えば、図示したロータリー圧縮機100の内部構成は、一例であって、上述した内容に限定されるものではなく、他の構成要素を含んだロータリー圧縮機であっても同様に実施することができる。要するに、いわゆる当業者が必要に応じてなす種々なる変更、応用、利用の範囲をも本発明の要旨(技術的範囲)に含むことを念のため申し添える。 Although the present invention has been described above based on the embodiment, the present invention is not limited to the configuration of the embodiment described above. For example, the illustrated internal configuration of the rotary compressor 100 is an example, and is not limited to the above-described content, and can be similarly implemented even with a rotary compressor including other components. . In short, it should be noted that the scope of the present invention also includes the scope of various changes, applications, and uses made by those skilled in the art as needed.
 1 密閉容器、 1a 吐出管、2 アキュームレーター、3 電動要素、4 圧縮要素、5 上軸受け、5a 吐出孔、5b 吐出弁、5c ボス部、6 吐出マフラー、6a 吐出穴、6b フランジ部、6c 中心穴、6d 屈曲部、6e 突起部、7 シリンダー、7a シリンダー室、8 下軸受け、9 吸入管、10 クランク軸、10a 偏心軸部、10b 主軸部、10c 副軸部、11 ローリングピストン、30 電動機回転子、31 電動機固定子、40 冷凍機油、60 締結部材、61 マフラー空間、62 補強用リブ、100 ロータリー圧縮機、a、b、c、d 圧接部、X 基準軸、Y 軸線。 1 sealed container, 1a discharge pipe, 2 accumulator, 3 electric element, 4 compression element, 5 upper bearing, 5a discharge hole, 5b discharge valve, 5c boss part, 6 discharge muffler, 6a discharge hole, 6b flange part, 6c center Hole, 6d Bend, 6e Projection, 7 Cylinder, 7a Cylinder Chamber, 8 Lower Bearing, 9 Suction Pipe, 10 Crankshaft, 10a Eccentric Shaft, 10b Main Shaft, 10c Subshaft, 11 Rolling Piston, 30 Motor Rotation Child, 31 Motor stator, 40 Refrigerating machine oil, 60 Fastening member, 61 Muffler space, 62 Reinforcing rib, 100 Rotary compressor, a, b, c, d pressure contact part, X reference axis, Y axis

Claims (7)

  1.  密閉容器と、
     前記密閉容器内に収容され、冷媒を圧縮する圧縮要素と、
     前記密閉容器内に収容され、固定子と前記固定子の内部に配置された回転子とを有し、前記圧縮要素の駆動源となる電動要素と、を備え、
     前記圧縮要素は、
     前記密閉容器に固定されたシリンダーと、
     前記シリンダーのシリンダー室を貫通し前記電動要素の前記回転子に固定されたクランク軸と、
     前記クランク軸の偏心軸部に嵌合され、前記シリンダー室内で偏心回転して前記冷媒を圧縮するローリングピストンと、
     前記シリンダーの上端面を閉塞し、前記クランク軸を回転自在に支持する上軸受けと、
     前記上軸受けを覆う筒状体からなり、外方へ延びるフランジ部が端縁に沿って形成された吐出マフラーと、
     前記クランク軸を挟んで対向する位置に設けられ、前記吐出マフラーの前記フランジ部と前記上軸受けとを締結して圧接する一対の締結部材と、を有し、
     前記吐出マフラーの前記フランジ部の下面には、前記クランク軸の回転軸心を通り、且つ一対の前記締結部材を結ぶ軸線に直交する基準軸から、前記クランク軸の回転軸心を中心として左右にそれぞれ40°回転させた範囲内において、前記上軸受けに向かって突き出した圧接部が、前記軸線を挟んで両側にそれぞれ設けられているロータリー圧縮機。
    A sealed container;
    A compression element contained in the sealed container and compressing the refrigerant;
    An electric element housed in the sealed container, having a stator and a rotor disposed inside the stator, and serving as a drive source for the compression element;
    The compression element is
    A cylinder fixed to the sealed container;
    A crankshaft passing through a cylinder chamber of the cylinder and fixed to the rotor of the electric element;
    A rolling piston that is fitted to an eccentric shaft portion of the crankshaft and eccentrically rotates in the cylinder chamber to compress the refrigerant;
    An upper bearing for closing the upper end surface of the cylinder and rotatably supporting the crankshaft;
    A discharge muffler comprising a cylindrical body covering the upper bearing, and a flange portion extending outward is formed along the edge,
    A pair of fastening members that are provided at positions facing each other across the crankshaft, and that fasten and press-fit the flange portion of the discharge muffler and the upper bearing;
    The lower surface of the flange portion of the discharge muffler is laterally centered about the rotation axis of the crankshaft from a reference axis that passes through the rotation axis of the crankshaft and is orthogonal to an axis that connects the pair of fastening members. A rotary compressor in which press contact portions protruding toward the upper bearing are provided on both sides of the axis within a range rotated by 40 °.
  2.  前記圧接部は、前記基準軸を境にして前記フランジ部の一方側にのみ設けられている請求項1に記載のロータリー圧縮機。 The rotary compressor according to claim 1, wherein the pressure contact portion is provided only on one side of the flange portion with the reference axis as a boundary.
  3.  前記圧接部は、前記基準軸から前記クランク軸の回転軸心を中心として一側に40°回転させた範囲内において、前記軸線を挟んで両側にそれぞれ設けられている請求項1に記載のロータリー圧縮機。 2. The rotary according to claim 1, wherein the press contact portions are respectively provided on both sides of the axis line within a range rotated from the reference shaft by 40 ° to one side around the rotation axis of the crankshaft. Compressor.
  4.  前記圧接部として、前記吐出マフラーの前記フランジ部をV字状に屈曲させた屈曲部が形成された請求項1~3のいずれか一項に記載のロータリー圧縮機。 The rotary compressor according to any one of claims 1 to 3, wherein a bent portion obtained by bending the flange portion of the discharge muffler into a V shape is formed as the pressure contact portion.
  5.  前記圧接部として、前記吐出マフラーの前記フランジ部に突起部が設けられた請求項1~3のいずれか一項に記載のロータリー圧縮機。 The rotary compressor according to any one of claims 1 to 3, wherein a protrusion is provided on the flange portion of the discharge muffler as the pressure contact portion.
  6.  前記圧接部が前記上軸受けに向かって突き出す寸法は、前記フランジ部の下面から50μm以上300μm以下である請求項1~5のいずれか一項に記載のロータリー圧縮機。 The rotary compressor according to any one of claims 1 to 5, wherein a dimension of the pressure contact portion projecting toward the upper bearing is not less than 50 µm and not more than 300 µm from a lower surface of the flange portion.
  7.  前記吐出マフラーの前記フランジ部の板厚は、1mm以上2mm以下である請求項1~6のいずれか一項に記載のロータリー圧縮機。 The rotary compressor according to any one of claims 1 to 6, wherein a plate thickness of the flange portion of the discharge muffler is 1 mm or more and 2 mm or less.
PCT/JP2016/067678 2016-06-14 2016-06-14 Rotary compressor WO2017216875A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680086596.9A CN109312748A (en) 2016-06-14 2016-06-14 Rotary compressor
PCT/JP2016/067678 WO2017216875A1 (en) 2016-06-14 2016-06-14 Rotary compressor
JP2018523078A JP6727300B2 (en) 2016-06-14 2016-06-14 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/067678 WO2017216875A1 (en) 2016-06-14 2016-06-14 Rotary compressor

Publications (1)

Publication Number Publication Date
WO2017216875A1 true WO2017216875A1 (en) 2017-12-21

Family

ID=60663980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067678 WO2017216875A1 (en) 2016-06-14 2016-06-14 Rotary compressor

Country Status (3)

Country Link
JP (1) JP6727300B2 (en)
CN (1) CN109312748A (en)
WO (1) WO2017216875A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220112898A1 (en) * 2019-09-24 2022-04-14 Guangdong Meizhi Compressor Co., Ltd. Baffle plate for compressor, compressor, and refrigeration apparatus
JP7143496B1 (en) 2021-09-30 2022-09-28 ダイキン工業株式会社 compressor unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12044224B2 (en) 2021-07-15 2024-07-23 Samsung Electronics Co., Ltd. Rotary compressor and home appliance including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174366A (en) * 2008-01-23 2009-08-06 Daikin Ind Ltd Seal structure and compressor
JP2012062756A (en) * 2010-08-18 2012-03-29 Daikin Industries Ltd Seal structure and compressor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10169585A (en) * 1996-12-10 1998-06-23 Matsushita Refrig Co Ltd Rotary compressor
JP3077983U (en) * 2000-11-28 2001-06-12 船井電機株式会社 Compressor
JP5421732B2 (en) * 2009-10-30 2014-02-19 東芝キヤリア株式会社 Hermetic compressor, refrigeration cycle equipment
JP2012041858A (en) * 2010-08-18 2012-03-01 Daikin Industries Ltd Seal structure and compressor
JP2014122574A (en) * 2012-12-20 2014-07-03 Mitsubishi Electric Corp Rotary compressor
JP2015197057A (en) * 2014-03-31 2015-11-09 ダイキン工業株式会社 compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174366A (en) * 2008-01-23 2009-08-06 Daikin Ind Ltd Seal structure and compressor
JP2012062756A (en) * 2010-08-18 2012-03-29 Daikin Industries Ltd Seal structure and compressor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220112898A1 (en) * 2019-09-24 2022-04-14 Guangdong Meizhi Compressor Co., Ltd. Baffle plate for compressor, compressor, and refrigeration apparatus
US12049897B2 (en) * 2019-09-24 2024-07-30 Guangdong Meizhi Compressor Co., Ltd. Baffle plate for compressor, compressor, and refrigeration apparatus
JP7143496B1 (en) 2021-09-30 2022-09-28 ダイキン工業株式会社 compressor unit
WO2023053578A1 (en) * 2021-09-30 2023-04-06 ダイキン工業株式会社 Compressor unit
JP2023051779A (en) * 2021-09-30 2023-04-11 ダイキン工業株式会社 outdoor unit
JP2023050743A (en) * 2021-09-30 2023-04-11 ダイキン工業株式会社 compressor unit
JP7348568B2 (en) 2021-09-30 2023-09-21 ダイキン工業株式会社 outdoor unit

Also Published As

Publication number Publication date
JP6727300B2 (en) 2020-07-22
CN109312748A (en) 2019-02-05
JPWO2017216875A1 (en) 2019-01-31

Similar Documents

Publication Publication Date Title
JP4750551B2 (en) Method for manufacturing two-cylinder rotary hermetic compressor
US8297957B2 (en) Compressor
US8221096B2 (en) Compressor arrangement with stator welded to a housing
US7866961B2 (en) Compressor with discharge valve arrangement
US20050220655A1 (en) Rolling piston and gas leakage preventing apparatus for rotary compressor having the same
WO2017216875A1 (en) Rotary compressor
US20040096338A1 (en) Assembling mechanism of discharge pipe for hermetic compressor and method thereof
WO2014049914A1 (en) Rotary compressor
US8734142B2 (en) Rotation preventing member of a scroll compressor
EP1808602B1 (en) Muffler installation structure for compressor
US11078911B2 (en) Rotary compressor
US20200166032A1 (en) Rotary compressor
US20100172756A1 (en) Rotary compressor
JP7042455B2 (en) Compressor
US20130064703A1 (en) Scroll compressor
JP2002195158A (en) Sealed compressor
US6912871B2 (en) Structure for reducing refrigerant flow loss in compressor
WO2018138772A1 (en) Closed-type compressor
KR200387142Y1 (en) Refrigerants discharge structure for linear compressor
JP2001099065A (en) Refrigerant compressor
KR20180094708A (en) Compressor
JP2017053316A (en) Rotary Compressor
KR20050097340A (en) Muffler for hermetic type compressor
KR100305864B1 (en) Structure preventing transformation in rotary compressor
KR20040090338A (en) Apparatus reducing noise for hermetic rotary compresser

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018523078

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16905430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16905430

Country of ref document: EP

Kind code of ref document: A1