WO2017216838A1 - Exhaust gas recirculation valve - Google Patents

Exhaust gas recirculation valve Download PDF

Info

Publication number
WO2017216838A1
WO2017216838A1 PCT/JP2016/067520 JP2016067520W WO2017216838A1 WO 2017216838 A1 WO2017216838 A1 WO 2017216838A1 JP 2016067520 W JP2016067520 W JP 2016067520W WO 2017216838 A1 WO2017216838 A1 WO 2017216838A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
wall portion
recirculation valve
rib
gas recirculation
Prior art date
Application number
PCT/JP2016/067520
Other languages
French (fr)
Japanese (ja)
Inventor
智広 奥村
拓朗 頭井
健 篠▲崎▼
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/067520 priority Critical patent/WO2017216838A1/en
Priority to JP2018523051A priority patent/JP6501975B2/en
Publication of WO2017216838A1 publication Critical patent/WO2017216838A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/66Lift valves, e.g. poppet valves
    • F02M26/69Lift valves, e.g. poppet valves having two or more valve-closing members

Definitions

  • This invention relates to an exhaust gas recirculation valve that recirculates exhaust gas to the intake side.
  • the housing When the wall of the housing faces the exhaust gas inlet, high-temperature exhaust gas flowing from the exhaust gas inlet directly hits the wall.
  • the wall portion is heated by direct hitting of high-temperature exhaust gas, so it must be designed to withstand such high temperature.
  • the housing is made of a high heat resistant material.
  • the present invention has been made in order to solve the above-described problems. Even when the wall portion of the housing is opposed to the exhaust gas inlet, the exhaust gas can reduce the temperature rise of the wall portion.
  • the purpose is to obtain a recirculation valve.
  • An exhaust gas recirculation valve includes a housing having therein a passage that connects an exhaust gas inlet and an exhaust gas outlet, and a valve body that is provided inside the housing and opens and closes the passage. And a wall portion facing the exhaust gas inlet, and ribs that are continuously or intermittently arranged in a frame shape on the wall and projecting toward the exhaust gas inlet.
  • the rib on the wall portion of the housing that faces the exhaust gas inlet, even if the wall portion of the housing faces the exhaust gas inlet, the temperature of the wall portion is increased. Can be reduced.
  • Embodiment 1 is a partial cross-sectional view showing an exhaust gas recirculation valve according to Embodiment 1 of the present invention. It is a front view of the wall part when it sees from the A direction in FIG. It is sectional drawing which shows the mode of the exhaust gas around a wall part. It is sectional drawing which shows the modification of a rib. It is sectional drawing which shows the modification of the exhaust-gas recirculation valve which concerns on Embodiment 1 of this invention. It is sectional drawing which shows the exhaust-gas recirculation valve which concerns on Embodiment 2 of this invention.
  • FIG. 1 is a partial cross-sectional view showing an exhaust gas recirculation valve 1 according to Embodiment 1 of the present invention.
  • the actuator portion 9, the cover member 11, the gasket 10 and the like are shown as side views.
  • FIG. 2 is a front view of the wall portion 24 when viewed from the direction A in FIG.
  • An exhaust gas inlet 21 and two exhaust gas outlets 22 and 23 are formed in the housing 2 of the exhaust gas recirculation valve 1.
  • the interior of the housing 2 is a passage that connects the exhaust gas inlet 21 and the exhaust gas outlets 22 and 23.
  • the passage is opened and closed by a valve body 3 provided inside the housing 2.
  • FIG. 1 shows a state in which the passage is closed by the valve body 3.
  • the exhaust gas inlet 21 faces the wall portion 24 of the housing 2.
  • an annular rib 25 is formed on the wall portion 24 when viewed from the direction A in FIG. 1.
  • the rib 25 is convex toward the exhaust gas inlet 21.
  • An exhaust gas outlet 22 is formed on the upper side in FIG. 1 when viewed from the wall 24, and an exhaust gas outlet 23 is formed on the lower side.
  • An annular valve seat 4 is fixed to the housing 2 in the middle of the passage from the exhaust gas inlet 21 to the exhaust gas outlet 22 and in the middle of the passage from the exhaust gas inlet 21 to the exhaust gas outlet 23. Has been.
  • valve body 3 is fixed to the valve shaft 5 and moves in the axial direction integrally with the valve shaft 5.
  • the valve shaft 5 is supported by a bearing 6.
  • a spring holder 7 is fixed to the upper end of the valve shaft 5 in FIG.
  • a spring 8 provided between the spring holder 7 and the housing 2 urges the valve shaft 5 in a direction in which the valve body 3 comes into contact with the valve seat 4.
  • the housing 2 is provided with an actuator unit 9 having a motor and the like.
  • the output shaft 91 of the actuator unit 9 moves the valve shaft 5 in a direction in which the valve body 3 is separated from the valve seat 4.
  • a cover member 11 is attached via a gasket 10 on the side where the exhaust gas outlets 22 and 23 are formed.
  • the cover member 11 is provided with a connection portion 12 for connection to an intake side of an internal combustion engine (not shown).
  • the temperature of the turbulent flow in the region B is lowered by heat exchange with the wall portion 24, and the wall portion 24 faces the exhaust gas inlet 21 through which the high-temperature exhaust gas is introduced through the exhaust gas whose temperature has decreased. To do. As described above, in the region B, the heat insulation barrier layer is formed by the turbulent flow stayed by the rib 25.
  • the turbulent flow generated by the exhaust gas entering the housing 2 from the exhaust gas inlet 21 colliding with the wall 24 may remain in the region B. become unable. Therefore, the exhaust gas that subsequently enters the inside of the housing 2 from the exhaust gas inlet 21 hits the wall portion 24 directly, and compared with the case where the rib 25 that forms the heat insulating barrier layer is provided. The part 24 becomes hot.
  • the rib 25 may have a shape other than the substantially perfect circle as shown in FIG. 2 as long as the shape when viewed from the A direction is a frame shape. For example, an ellipse having a different major axis and a minor axis, a rounded polygon, or the like may be used. Further, when viewed from the A direction, instead of the continuous rib 25, the intermittent rib 25, that is, the rib 25 may be partially interrupted. In short, the ribs 25 may be continuously or intermittently arranged in a frame shape so that a heat insulating barrier layer can be formed.
  • the rib 25 is preferably formed such that its diameter C is smaller than the diameter D of the exhaust gas inlet 21. Diameter C and diameter D are shown in FIG. By not increasing the diameter C, the influence on the flow rate characteristics of the exhaust gas recirculation valve 1 due to the provision of the rib 25 can be suppressed. Further, since the exhaust gas that has entered the inside of the housing 2 from the exhaust gas inlet 21 is guided to the exhaust gas outlets 22 and 23 by the pressure difference, the flow spreads in a trumpet shape as shown in FIG. Therefore, a part of the exhaust gas that enters the inside of the housing 2 from the exhaust gas inlet 21 does not flow so as to hit the wall portion 24 directly from the front, so that the diameter C of the rib 25 is the diameter D of the exhaust gas inlet 21.
  • the inner peripheral surface 26 of the rib 25 may be a concave surface that is positioned closer to the inner peripheral side of the rib 25 as it approaches the wall portion 24.
  • the outer peripheral surface 27 of the rib 25 may be a concave surface that is positioned closer to the outer peripheral side of the rib 25 as it approaches the wall portion 24.
  • the turbulent flow is effective in reducing the increase in temperature at the portion of the wall portion 24 located on the outer periphery of the rib 25.
  • the height of the ribs 25 is preferably 2 mm or more. Further, if the rib 25 is too high, the rib 25 and the valve body 3 approach each other at the time of valve opening and affect the flow characteristics such as a decrease in the flow rate. Therefore, the height of the rib 25 is preferably 5 mm or less.
  • the wall 24 may be moved away from the valve shaft 5, that is, in the direction of the cover member 11 so that the rib 25 and the valve body 3 do not approach when the valve is opened. Since the design change of moving the wall portion 24 in addition to the formation of the rib 25 is required for the structure, the manufacturing becomes complicated.
  • the exhaust gas recirculation valve 1 may be a so-called single valve type valve in which one valve body 3 and one valve seat 4 are provided.
  • FIG. 5 shows an example in which the exhaust gas recirculation valve 1 is a single valve type valve. Also in the case of the single valve type, by providing the rib 25 on the wall portion 24 facing the exhaust gas inlet 21, the heat insulating barrier layer can be formed, and the temperature rise of the wall portion 24 can be reduced.
  • the heat insulating barrier layer is formed by providing the rib 25 on the wall portion 24 facing the exhaust gas inlet 21.
  • the height of the rib 25 is 2 mm or more and 5 mm or less. If it does in this way, a heat insulation barrier layer will be easy to be formed appropriately, and manufacture will not become complicated.
  • the housing 2 is made of aluminum.
  • the aluminum housing 2 is low-cost and lightweight.
  • FIG. FIG. 6 shows a cross-sectional view of an exhaust gas recirculation valve 1 according to Embodiment 2 of the present invention.
  • components having the same or corresponding functions as those already described in the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simplified.
  • the exhaust gas recirculation valve 1 according to the second embodiment is different from the first embodiment in that a water cooling passage 13 is provided in contact with the back surface 28 of the surface of the wall portion 24 facing the exhaust gas inlet 21. Different from 1. By providing the water cooling passage 13, the temperature of the wall 24 can be further reduced as compared with the first embodiment.
  • the water cooling passage 13 is preferably provided with a guide member for directing the cooling water toward the wall portion 24 so that the cooling water flowing through the water cooling passage 13 can cool the wall portion 24 more efficiently.
  • FIG. 6 illustrates a case where a partition 14 is provided.
  • the partition 14 is a wall extending from the housing 2 forming the water cooling passage 13 toward the inside of the water cooling passage 13.
  • the cooling water tends to flow along the shortest path along the flow E when going from the inlet 13a to the outlet 13b. For this reason, the flow rate of the cooling water is high in the vicinity of the flow E, and the flow rate of the cooling water is decreased in the vicinity of the wall portion 24. Therefore, it becomes difficult to efficiently cool the wall portion 24.
  • the cooling water flows along a path along the flow F when it goes from the inlet 13 a to the outlet 13 b, and the cooling water can be directed to the wall portion 24. In this way, the flow rate of the cooling water near the wall portion 24 is increased, and the wall portion 24 is efficiently cooled.
  • fins 15 extend from the wall portion 24 toward the cover member 11, and the fins 15 promote heat exchange between the wall portion 24 and the cooling water.
  • the partitions 14 or the fins 15 may be omitted as appropriate.
  • the temperature of the wall portion 24 can be further reduced as compared with the first embodiment.
  • the exhaust gas recirculation valve according to the present invention has a structure in which the wall portion of the housing faces the exhaust gas inflow port, since the temperature rise of the wall portion can be reduced, It is suitable for use when the exhaust gas is recirculated.
  • Exhaust gas recirculation valve 2 housing, 3 valve body, 4 valve seat, 5 valve shaft, 6 bearing, 7 spring holder, 8 spring, 9 actuator part, 10 gasket, 11 cover member, 12 connection part, 13 water cooling passage , 13a inlet, 13b outlet, 14 partitions, 15 fins, 21 exhaust gas inlet, 22, 23 exhaust gas outlet, 24 walls, 25 ribs, 26 inner peripheral surface, 27 outer peripheral surface, 28 rear surface, 91 output shaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

Exhaust gas enters from an exhaust gas inflow port (21) into the exhaust gas recirculation valve (1). An annular rib (25) protruding toward the exhaust gas inflow port (21) is disposed on a wall part (24) located on the opposite side of a housing (2) from the exhaust gas inflow port (21).

Description

排気ガス再循環バルブExhaust gas recirculation valve
 この発明は、排気ガスを吸気側へ再循環させる排気ガス再循環バルブに関するものである。 This invention relates to an exhaust gas recirculation valve that recirculates exhaust gas to the intake side.
 従来より、内燃機関で発生した排気ガスの一部を吸気側へ導いて循環させる排気ガス再循環バルブが知られている。例えば、特許文献1に記載の排気ガス再循環バルブでは、排気ガス流入口に対して、軸線方向の上下に並ぶ2つの排気ガス流出口が設けられている。従って、2つの排気ガス流出口の間に位置するハウジングの壁部が、排気ガス流入口に対向している。 Conventionally, there has been known an exhaust gas recirculation valve that guides and circulates part of exhaust gas generated in an internal combustion engine to the intake side. For example, in the exhaust gas recirculation valve described in Patent Document 1, two exhaust gas outlets arranged vertically in the axial direction are provided with respect to the exhaust gas inlet. Therefore, the wall of the housing located between the two exhaust gas outlets faces the exhaust gas inlet.
特開2012-26270号公報JP 2012-26270 A
 排気ガス流入口にハウジングの壁部が対向している構造の場合、当該壁部に、排気ガス流入口から流れ込む高温の排気ガスが直撃する。当該壁部は、高温の排気ガスの直撃を受けて高温化するので、そうした高温に耐えられるように設計する必要があった。例えば、コストは掛かるが、高耐熱材でハウジングを構成するなどしていた。 When the wall of the housing faces the exhaust gas inlet, high-temperature exhaust gas flowing from the exhaust gas inlet directly hits the wall. The wall portion is heated by direct hitting of high-temperature exhaust gas, so it must be designed to withstand such high temperature. For example, although the cost is high, the housing is made of a high heat resistant material.
 この発明は、上記のような課題を解決するためになされたもので、排気ガス流入口にハウジングの壁部が対向している構造であっても、当該壁部の高温化を低減できる排気ガス再循環バルブを得ることを目的とする。 The present invention has been made in order to solve the above-described problems. Even when the wall portion of the housing is opposed to the exhaust gas inlet, the exhaust gas can reduce the temperature rise of the wall portion. The purpose is to obtain a recirculation valve.
 この発明に係る排気ガス再循環バルブは、排気ガス流入口と排気ガス流出口とをつなぐ通路を内部に有するハウジングと、ハウジングの内部に設けられ、通路を開閉する弁体とを備え、ハウジングは、排気ガス流入口に対向する壁部と、壁部に連続的又は断続的に枠状に並ぶ、排気ガス流入口に向けて凸のリブとを有することを特徴とするものである。 An exhaust gas recirculation valve according to the present invention includes a housing having therein a passage that connects an exhaust gas inlet and an exhaust gas outlet, and a valve body that is provided inside the housing and opens and closes the passage. And a wall portion facing the exhaust gas inlet, and ribs that are continuously or intermittently arranged in a frame shape on the wall and projecting toward the exhaust gas inlet.
 この発明によれば、排気ガス流入口に対向するハウジングの壁部にリブを設けることにより、排気ガス流入口にハウジングの壁部が対向している構造であっても、当該壁部の高温化を低減できる。 According to the present invention, by providing the rib on the wall portion of the housing that faces the exhaust gas inlet, even if the wall portion of the housing faces the exhaust gas inlet, the temperature of the wall portion is increased. Can be reduced.
この発明の実施の形態1に係る排気ガス再循環バルブを示す部分断面図である。1 is a partial cross-sectional view showing an exhaust gas recirculation valve according to Embodiment 1 of the present invention. 図1中のA方向から見たときの壁部の正面図である。It is a front view of the wall part when it sees from the A direction in FIG. 壁部周辺の排気ガスの様子を示す断面図である。It is sectional drawing which shows the mode of the exhaust gas around a wall part. リブの変形例を示す断面図である。It is sectional drawing which shows the modification of a rib. この発明の実施の形態1に係る排気ガス再循環バルブの変形例を示す断面図である。It is sectional drawing which shows the modification of the exhaust-gas recirculation valve which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る排気ガス再循環バルブを示す断面図である。It is sectional drawing which shows the exhaust-gas recirculation valve which concerns on Embodiment 2 of this invention.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、この発明の実施の形態1に係る排気ガス再循環バルブ1を示す部分断面図である。図1では、アクチュエータ部9とカバー部材11とガスケット10等については側面図として示している。また、図2は、図1中のA方向から見たときの壁部24の正面図である。
Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
FIG. 1 is a partial cross-sectional view showing an exhaust gas recirculation valve 1 according to Embodiment 1 of the present invention. In FIG. 1, the actuator portion 9, the cover member 11, the gasket 10 and the like are shown as side views. FIG. 2 is a front view of the wall portion 24 when viewed from the direction A in FIG.
 排気ガス再循環バルブ1のハウジング2には、1つの排気ガス流入口21と、2つの排気ガス流出口22,23が形成されている。そして、ハウジング2の内部は、排気ガス流入口21と排気ガス流出口22,23とをつなぐ通路となっている。当該通路は、ハウジング2の内部に設けられた弁体3によって開閉される。図1は、当該通路が弁体3によって閉じられた状態を示している。
 排気ガス流入口21は、ハウジング2の壁部24に対向している。壁部24には、図2に示すように、図1中のA方向から見て円環状のリブ25が形成されている。リブ25は、排気ガス流入口21に向けて凸となっている。
An exhaust gas inlet 21 and two exhaust gas outlets 22 and 23 are formed in the housing 2 of the exhaust gas recirculation valve 1. The interior of the housing 2 is a passage that connects the exhaust gas inlet 21 and the exhaust gas outlets 22 and 23. The passage is opened and closed by a valve body 3 provided inside the housing 2. FIG. 1 shows a state in which the passage is closed by the valve body 3.
The exhaust gas inlet 21 faces the wall portion 24 of the housing 2. As shown in FIG. 2, an annular rib 25 is formed on the wall portion 24 when viewed from the direction A in FIG. 1. The rib 25 is convex toward the exhaust gas inlet 21.
 壁部24から見て図1における上側に排気ガス流出口22が形成され、下側に排気ガス流出口23が形成されている。排気ガス流入口21から排気ガス流出口22へ向かう通路の途中、及び、排気ガス流入口21から排気ガス流出口23へ向かう通路の途中にはそれぞれ、円環状の弁座4がハウジング2に固定されている。 An exhaust gas outlet 22 is formed on the upper side in FIG. 1 when viewed from the wall 24, and an exhaust gas outlet 23 is formed on the lower side. An annular valve seat 4 is fixed to the housing 2 in the middle of the passage from the exhaust gas inlet 21 to the exhaust gas outlet 22 and in the middle of the passage from the exhaust gas inlet 21 to the exhaust gas outlet 23. Has been.
 弁体3は、弁軸5に固定されており、弁軸5と一体的に軸方向に移動する。
 弁軸5は、軸受6により支持されている。弁軸5の図1における上端部には、スプリングホルダ7が固定されている。スプリングホルダ7とハウジング2との間に設けられたスプリング8は、弁体3が弁座4に当接する方向に、弁軸5を付勢している。
The valve body 3 is fixed to the valve shaft 5 and moves in the axial direction integrally with the valve shaft 5.
The valve shaft 5 is supported by a bearing 6. A spring holder 7 is fixed to the upper end of the valve shaft 5 in FIG. A spring 8 provided between the spring holder 7 and the housing 2 urges the valve shaft 5 in a direction in which the valve body 3 comes into contact with the valve seat 4.
 ハウジング2には、モータ等を備えたアクチュエータ部9が取り付けられている。アクチュエータ部9の出力軸91は、弁体3が弁座4から離れる方向に、弁軸5を移動させる。 The housing 2 is provided with an actuator unit 9 having a motor and the like. The output shaft 91 of the actuator unit 9 moves the valve shaft 5 in a direction in which the valve body 3 is separated from the valve seat 4.
 ハウジング2では、排気ガス流出口22,23が形成されている側に、ガスケット10を介してカバー部材11が取り付けられている。カバー部材11には、不図示の内燃機関の吸気側と接続するための接続部12が設けられている。 In the housing 2, a cover member 11 is attached via a gasket 10 on the side where the exhaust gas outlets 22 and 23 are formed. The cover member 11 is provided with a connection portion 12 for connection to an intake side of an internal combustion engine (not shown).
 排気ガス再循環バルブ1では、内燃機関が稼働すると、アクチュエータ部9の出力軸91が弁軸5をスプリング8の付勢力に抗して図1における下方向に移動させる。これにより、弁体3と弁座4との間に流路が形成されて、排気ガス流入口21から排気ガス流出口22,23へと排気ガスが流れる。 In the exhaust gas recirculation valve 1, when the internal combustion engine is operated, the output shaft 91 of the actuator unit 9 moves the valve shaft 5 downward in FIG. 1 against the urging force of the spring 8. Thereby, a flow path is formed between the valve body 3 and the valve seat 4, and the exhaust gas flows from the exhaust gas inlet 21 to the exhaust gas outlets 22 and 23.
 排気ガス流入口21から排気ガス流出口22,23へと排気ガスが流れるときの、壁部24周辺の排気ガスの様子を図3に示す。
 排気ガス流入口21からハウジング2の内部に入り込んだ排気ガスは、正面の壁部24に衝突して、図3に示すような乱流を生じる。その後も引き続き排気ガス流入口21から排気ガスがハウジング2の内部に入り込んでくるが、生じた乱流はリブ25によって領域Bに留まることとなり、ハウジング2の内部に入り込んでくる排気ガスが壁部24に直撃するのを抑制する。領域B内の乱流は、壁部24との熱交換により温度が下げられ、壁部24は、温度の下がった排気ガスを介して、高温の排気ガスを導入する排気ガス流入口21と対向する。このように、領域Bには、リブ25により留まる乱流によって、断熱バリア層が形成される。
The state of the exhaust gas around the wall 24 when the exhaust gas flows from the exhaust gas inlet 21 to the exhaust gas outlets 22 and 23 is shown in FIG.
The exhaust gas that has entered the inside of the housing 2 from the exhaust gas inlet 21 collides with the wall portion 24 on the front surface, and generates a turbulent flow as shown in FIG. After that, the exhaust gas continues to enter the inside of the housing 2 from the exhaust gas inlet 21, but the generated turbulent flow remains in the region B by the ribs 25, and the exhaust gas entering the inside of the housing 2 becomes the wall portion. Suppresses hitting 24 directly. The temperature of the turbulent flow in the region B is lowered by heat exchange with the wall portion 24, and the wall portion 24 faces the exhaust gas inlet 21 through which the high-temperature exhaust gas is introduced through the exhaust gas whose temperature has decreased. To do. As described above, in the region B, the heat insulation barrier layer is formed by the turbulent flow stayed by the rib 25.
 一方、リブ25が壁部24に形成されていない場合、排気ガス流入口21からハウジング2の内部に入り込んだ排気ガスが壁部24に衝突して生じた乱流は、領域Bに留まることができなくなる。従って、その後に引き続いて排気ガス流入口21からハウジング2の内部に入り込んでくる排気ガスは、壁部24に直撃することとなり、断熱バリア層を形成するリブ25を設けた場合に比べて、壁部24が高温化する。 On the other hand, when the rib 25 is not formed on the wall 24, the turbulent flow generated by the exhaust gas entering the housing 2 from the exhaust gas inlet 21 colliding with the wall 24 may remain in the region B. become unable. Therefore, the exhaust gas that subsequently enters the inside of the housing 2 from the exhaust gas inlet 21 hits the wall portion 24 directly, and compared with the case where the rib 25 that forms the heat insulating barrier layer is provided. The part 24 becomes hot.
 リブ25を設けて断熱バリア層を形成することにより、壁部24の高温化を低減することができ、ハウジング2の材料として、高耐熱材である鉄、ステンレス鋼等に代えて、耐熱温度は低いが低コストのアルミニウムを採用することが可能となる。アルミニウムは、鉄及びステンレスに比べて軽いので、排気ガス再循環バルブ1の軽量化にも寄与する。 By forming the heat insulating barrier layer by providing the ribs 25, it is possible to reduce the high temperature of the wall portion 24. Instead of the high heat resistant material such as iron or stainless steel as the material of the housing 2, the heat resistant temperature is Low but low cost aluminum can be employed. Since aluminum is lighter than iron and stainless steel, it contributes to weight reduction of the exhaust gas recirculation valve 1.
 なお、リブ25は、A方向から見たときの形状が枠状であれば、図2に示すような略真円形以外であってもよい。例えば、長径と短径が異なる楕円形、角丸の多角形等でもよい。また、A方向から見たときに連続的なリブ25ではなく、断続的なリブ25つまり部分的にリブ25が途切れていてもよい。要は、断熱バリア層を形成できるような、連続的又は断続的に枠状に並ぶリブ25であればよい。 The rib 25 may have a shape other than the substantially perfect circle as shown in FIG. 2 as long as the shape when viewed from the A direction is a frame shape. For example, an ellipse having a different major axis and a minor axis, a rounded polygon, or the like may be used. Further, when viewed from the A direction, instead of the continuous rib 25, the intermittent rib 25, that is, the rib 25 may be partially interrupted. In short, the ribs 25 may be continuously or intermittently arranged in a frame shape so that a heat insulating barrier layer can be formed.
 また、リブ25は、その直径Cが、排気ガス流入口21の直径Dよりも小さくなるように形成することが好ましい。直径C及び直径Dは、図1に示している。
 直径Cを大径化させないことで、リブ25を設けることによる排気ガス再循環バルブ1の流量特性への影響を抑えることができる。また、排気ガス流入口21からハウジング2の内部に入り込んだ排気ガスは、圧力差によって排気ガス流出口22,23へ導かれるので、図3に示すようにラッパ状に流れが広がる。従って、排気ガス流入口21からハウジング2の内部に入り込む排気ガスの一部は、壁部24に正面から直撃するようには流れないので、リブ25の直径Cが排気ガス流入口21の直径Dよりも小さくても、壁部24の高温化の低減には十分である。
 図1中のA方向から見たときのリブ25の形状が円形以外の場合も考慮すると、要は、リブ25の内周面26に囲まれて形成されるリブ25の内側領域の外形が、排気ガス流入口21の流路断面の外形よりも小さくなるようにすればよい。
The rib 25 is preferably formed such that its diameter C is smaller than the diameter D of the exhaust gas inlet 21. Diameter C and diameter D are shown in FIG.
By not increasing the diameter C, the influence on the flow rate characteristics of the exhaust gas recirculation valve 1 due to the provision of the rib 25 can be suppressed. Further, since the exhaust gas that has entered the inside of the housing 2 from the exhaust gas inlet 21 is guided to the exhaust gas outlets 22 and 23 by the pressure difference, the flow spreads in a trumpet shape as shown in FIG. Therefore, a part of the exhaust gas that enters the inside of the housing 2 from the exhaust gas inlet 21 does not flow so as to hit the wall portion 24 directly from the front, so that the diameter C of the rib 25 is the diameter D of the exhaust gas inlet 21. Even smaller than this is sufficient for reducing the increase in the temperature of the wall 24.
Considering the case where the shape of the rib 25 when viewed from the direction A in FIG. 1 is other than circular, the outline of the inner region of the rib 25 formed by being surrounded by the inner peripheral surface 26 of the rib 25 is What is necessary is just to make it smaller than the external shape of the flow-path cross section of the exhaust gas inflow port 21. FIG.
 また、図4の断面図に示すように、リブ25の内周面26が、壁部24に近づくほどリブ25の内周側に位置するような凹面であってもよい。このようにすることで、図3で示したように巻く乱流が、領域Bで生じやすくなる。
 また、リブ25の外周面27が、壁部24に近づくほどリブ25の外周側に位置するような凹面であってもよい。このようにすることで、リブ25の外周部分に乱流が生じやすくなる。当該乱流は、壁部24のうちリブ25の外周に位置する部分での高温化の低減に効果的である。
Further, as shown in the cross-sectional view of FIG. 4, the inner peripheral surface 26 of the rib 25 may be a concave surface that is positioned closer to the inner peripheral side of the rib 25 as it approaches the wall portion 24. By doing in this way, the turbulent flow wound as shown in FIG.
Further, the outer peripheral surface 27 of the rib 25 may be a concave surface that is positioned closer to the outer peripheral side of the rib 25 as it approaches the wall portion 24. By doing in this way, it becomes easy to produce a turbulent flow in the outer peripheral part of the rib 25. The turbulent flow is effective in reducing the increase in temperature at the portion of the wall portion 24 located on the outer periphery of the rib 25.
 また、リブ25が低すぎると断熱バリア層が適切に形成されにくくなるので、リブ25の高さは2mm以上であることが好ましい。
 また、リブ25が高すぎると、開弁時にリブ25と弁体3とが接近して流量が低下するなど流量特性に影響を及ぼすので、リブ25の高さは5mm以下であることが好ましい。開弁時にリブ25と弁体3とが接近しないように、壁部24を弁軸5から遠ざかる位置つまりカバー部材11の方向に移動させて設けてもよいが、従来の排気ガス再循環バルブの構造に対してリブ25の形成に加え壁部24の移動という設計変更を要するので、製造が煩雑となる。
Further, if the ribs 25 are too low, the heat insulating barrier layer is difficult to be formed properly, and therefore the height of the ribs 25 is preferably 2 mm or more.
Further, if the rib 25 is too high, the rib 25 and the valve body 3 approach each other at the time of valve opening and affect the flow characteristics such as a decrease in the flow rate. Therefore, the height of the rib 25 is preferably 5 mm or less. The wall 24 may be moved away from the valve shaft 5, that is, in the direction of the cover member 11 so that the rib 25 and the valve body 3 do not approach when the valve is opened. Since the design change of moving the wall portion 24 in addition to the formation of the rib 25 is required for the structure, the manufacturing becomes complicated.
 また、上記では、弁体3及び弁座4をそれぞれ複数有するいわゆる多弁式のバルブを例に説明をした。しかしながら、排気ガス再循環バルブ1は、弁体3及び弁座4がそれぞれ1つずつ設けられたいわゆる単弁式のバルブであってもよい。
 排気ガス再循環バルブ1を単弁式のバルブとした場合の例を、図5に示す。単弁式の場合も、排気ガス流入口21に対向する壁部24にリブ25を設けることで断熱バリア層を形成し、壁部24の高温化を低減することができる。
In the above description, a so-called multi-valve valve having a plurality of valve bodies 3 and valve seats 4 has been described as an example. However, the exhaust gas recirculation valve 1 may be a so-called single valve type valve in which one valve body 3 and one valve seat 4 are provided.
FIG. 5 shows an example in which the exhaust gas recirculation valve 1 is a single valve type valve. Also in the case of the single valve type, by providing the rib 25 on the wall portion 24 facing the exhaust gas inlet 21, the heat insulating barrier layer can be formed, and the temperature rise of the wall portion 24 can be reduced.
 以上のように、この実施の形態1に係る排気ガス再循環バルブ1によれば、排気ガス流入口21に対向する壁部24にリブ25を設けることで、断熱バリア層を形成する。これにより、排気ガス流入口21にハウジング2の壁部24が対向している構造であっても、壁部24の高温化を低減できる。 As described above, according to the exhaust gas recirculation valve 1 according to the first embodiment, the heat insulating barrier layer is formed by providing the rib 25 on the wall portion 24 facing the exhaust gas inlet 21. Thereby, even if it is the structure where the wall part 24 of the housing 2 is facing the exhaust gas inflow port 21, the high temperature of the wall part 24 can be reduced.
 また、リブ25の内側領域の外形は、排気ガス流入口21の流路断面の外形よりも小さいこととした。このようにすると、流量特性への影響を抑えながら、壁部24の高温化を低減できる。 Further, the outer shape of the inner region of the rib 25 is smaller than the outer shape of the flow path cross section of the exhaust gas inlet 21. If it does in this way, high temperature of the wall part 24 can be reduced, suppressing the influence on flow volume characteristic.
 また、リブ25の内周面26は、壁部24に近づくほど内周側に位置する凹面であることとした。このようにすると、乱流が生じやすくなる。 Further, the inner peripheral surface 26 of the rib 25 is a concave surface positioned closer to the inner peripheral side as it approaches the wall portion 24. If it does in this way, it will become easy to produce turbulent flow.
 また、リブ25の外周面27は、壁部24に近づくほど外周側に位置する凹面であることとした。このようにすると、乱流が生じやすくなる。 Further, the outer peripheral surface 27 of the rib 25 is a concave surface positioned closer to the outer peripheral side as it approaches the wall portion 24. If it does in this way, it will become easy to produce turbulent flow.
 また、リブ25の高さは、2mm以上5mm以下であることとした。このようにすると、断熱バリア層が適切に形成されやすく、製造も煩雑にならない。 Further, the height of the rib 25 is 2 mm or more and 5 mm or less. If it does in this way, a heat insulation barrier layer will be easy to be formed appropriately, and manufacture will not become complicated.
 また、ハウジング2は、アルミニウム製であることとした。アルミニウム製のハウジング2は、低コストで軽量である。 The housing 2 is made of aluminum. The aluminum housing 2 is low-cost and lightweight.
実施の形態2.
 図6に、この発明の実施の形態2に係る排気ガス再循環バルブ1の断面図を示す。なお、実施の形態1で既に説明した構成と同一又は相当する機能を有する構成については、同一の符号を付し、その説明を省略又は簡略化する。また、スプリング8、アクチュエータ部9等の一部の構成については、図1と同様であり、図示を省略している。
 実施の形態2に係る排気ガス再循環バルブ1は、壁部24の面のうち排気ガス流入口21に対向する面の裏面28に接触する水冷通路13が設けられている点で、実施の形態1と異なる。
 水冷通路13を設けることにより、実施の形態1と比べて壁部24の高温化を更に低減できる。
Embodiment 2. FIG.
FIG. 6 shows a cross-sectional view of an exhaust gas recirculation valve 1 according to Embodiment 2 of the present invention. Note that components having the same or corresponding functions as those already described in the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simplified. Moreover, about a part structure of the spring 8, the actuator part 9, etc., it is the same as that of FIG. 1, and abbreviate | omitting illustration.
The exhaust gas recirculation valve 1 according to the second embodiment is different from the first embodiment in that a water cooling passage 13 is provided in contact with the back surface 28 of the surface of the wall portion 24 facing the exhaust gas inlet 21. Different from 1.
By providing the water cooling passage 13, the temperature of the wall 24 can be further reduced as compared with the first embodiment.
 その際、水冷通路13には、水冷通路13を流れる冷却水が壁部24の冷却をより効率的に行えるように、冷却水を壁部24に向かわせる誘導部材が設けられていると尚よい。このような誘導部材として、図6では、仕切り14を設けた場合を例示している。仕切り14は、水冷通路13を形成するハウジング2から、水冷通路13の内部に向けて伸びる壁である。 At that time, the water cooling passage 13 is preferably provided with a guide member for directing the cooling water toward the wall portion 24 so that the cooling water flowing through the water cooling passage 13 can cool the wall portion 24 more efficiently. . As such a guide member, FIG. 6 illustrates a case where a partition 14 is provided. The partition 14 is a wall extending from the housing 2 forming the water cooling passage 13 toward the inside of the water cooling passage 13.
 仕切り14が設けられていない場合、冷却水は入口13aから出口13bに向かう際に、流れEに沿う最短経路で流れようとしてしまう。このため、流れE付近で冷却水の流速が速く、壁部24付近では冷却水の流速は低下する。従って、壁部24の冷却を効率的に行うことが難しくなる。
 一方、仕切り14を設けることで、冷却水は入口13aから出口13bに向かう際に、流れFに沿う経路で流れることとなり、冷却水を壁部24に向かわせることができる。このようにして、壁部24付近での冷却水の流速を速め、壁部24の冷却を効率的に行う。
When the partition 14 is not provided, the cooling water tends to flow along the shortest path along the flow E when going from the inlet 13a to the outlet 13b. For this reason, the flow rate of the cooling water is high in the vicinity of the flow E, and the flow rate of the cooling water is decreased in the vicinity of the wall portion 24. Therefore, it becomes difficult to efficiently cool the wall portion 24.
On the other hand, by providing the partition 14, the cooling water flows along a path along the flow F when it goes from the inlet 13 a to the outlet 13 b, and the cooling water can be directed to the wall portion 24. In this way, the flow rate of the cooling water near the wall portion 24 is increased, and the wall portion 24 is efficiently cooled.
 なお、水冷通路13の内部では、壁部24からカバー部材11に向けてフィン15が伸びており、フィン15は、壁部24と冷却水との間での熱交換を促進する。
 排気ガス流入口21からハウジング2の内部に入り込む排気ガスの温度に応じて、仕切り14又はフィン15を適宜省略してもよい。
In the water cooling passage 13, fins 15 extend from the wall portion 24 toward the cover member 11, and the fins 15 promote heat exchange between the wall portion 24 and the cooling water.
Depending on the temperature of the exhaust gas entering the housing 2 from the exhaust gas inlet 21, the partitions 14 or the fins 15 may be omitted as appropriate.
 また、図6では、ハウジング2から水冷通路13の内部に向けて仕切り14を伸ばした場合の構成を示した。しかしながら、カバー部材11から水冷通路13の内部つまり壁部24に向けて壁を伸ばすことで、仕切り14と同様に冷却水を壁部24に向かわせる誘導部材として当該壁を機能させてもよい。 FIG. 6 shows a configuration when the partition 14 is extended from the housing 2 toward the inside of the water cooling passage 13. However, by extending the wall from the cover member 11 toward the inside of the water cooling passage 13, that is, toward the wall portion 24, the wall may function as a guide member for directing the cooling water toward the wall portion 24 in the same manner as the partition 14.
 以上のように、この実施の形態2に係る排気ガス再循環バルブ1によれば、水冷通路13を設けることで、実施の形態1と比べて壁部24の高温化を更に低減できる。 As described above, according to the exhaust gas recirculation valve 1 according to the second embodiment, by providing the water cooling passage 13, the temperature of the wall portion 24 can be further reduced as compared with the first embodiment.
 また、水冷通路13に設けられ、水冷通路13を流れる冷却水を壁部24に向かわせる誘導部材を備えることとした。このようにすると、水冷通路13を流れる冷却水の流速が壁部24付近でも速くなって壁部24の冷却が効率的に行われ、壁部24の高温化を更に低減できる。 In addition, an induction member provided in the water cooling passage 13 and directing the cooling water flowing through the water cooling passage 13 toward the wall portion 24 is provided. If it does in this way, the flow rate of the cooling water which flows through the water-cooling channel | path 13 will become quick also in the wall part 24 vicinity, the wall part 24 will be cooled efficiently, and the high temperature of the wall part 24 can further be reduced.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態においての任意の構成要素の省略が可能である。 In the invention of the present application, within the scope of the invention, any combination of the embodiments, a modification of any component of each embodiment, or omission of any component in each embodiment is possible. is there.
 以上のように、この発明に係る排気ガス再循環バルブは、排気ガス流入口にハウジングの壁部が対向している構造であっても、当該壁部の高温化を低減できるので、特に高温の排気ガスを再循環させる場合等に用いるのに適している。 As described above, even if the exhaust gas recirculation valve according to the present invention has a structure in which the wall portion of the housing faces the exhaust gas inflow port, since the temperature rise of the wall portion can be reduced, It is suitable for use when the exhaust gas is recirculated.
 1 排気ガス再循環バルブ、2 ハウジング、3 弁体、4 弁座、5 弁軸、6 軸受、7 スプリングホルダ、8 スプリング、9 アクチュエータ部、10 ガスケット、11 カバー部材、12 接続部、13 水冷通路、13a 入口、13b 出口、14 仕切り、15 フィン、21 排気ガス流入口、22,23 排気ガス流出口、24 壁部、25 リブ、26 内周面、27 外周面、28 裏面、91 出力軸。 1 Exhaust gas recirculation valve, 2 housing, 3 valve body, 4 valve seat, 5 valve shaft, 6 bearing, 7 spring holder, 8 spring, 9 actuator part, 10 gasket, 11 cover member, 12 connection part, 13 water cooling passage , 13a inlet, 13b outlet, 14 partitions, 15 fins, 21 exhaust gas inlet, 22, 23 exhaust gas outlet, 24 walls, 25 ribs, 26 inner peripheral surface, 27 outer peripheral surface, 28 rear surface, 91 output shaft.

Claims (8)

  1.  排気ガス流入口と排気ガス流出口とをつなぐ通路を内部に有するハウジングと、
     前記ハウジングの内部に設けられ、前記通路を開閉する弁体とを備え、
     前記ハウジングは、
     前記排気ガス流入口に対向する壁部と、
     前記壁部に連続的又は断続的に枠状に並ぶ、前記排気ガス流入口に向けて凸のリブとを有することを特徴とする排気ガス再循環バルブ。
    A housing having therein a passage connecting the exhaust gas inlet and the exhaust gas outlet;
    A valve body provided inside the housing and opening and closing the passage;
    The housing is
    A wall facing the exhaust gas inlet;
    An exhaust gas recirculation valve characterized by having a rib protruding toward the exhaust gas inlet, which is continuously or intermittently arranged in a frame shape on the wall portion.
  2.  前記リブの内側領域の外形は、前記排気ガス流入口の流路断面の外形よりも小さいことを特徴とする請求項1記載の排気ガス再循環バルブ。 The exhaust gas recirculation valve according to claim 1, wherein an outer shape of an inner region of the rib is smaller than an outer shape of a flow path cross section of the exhaust gas inlet.
  3.  前記リブの内周面は、前記壁部に近づくほど内周側に位置する凹面であることを特徴とする請求項1記載の排気ガス再循環バルブ。 The exhaust gas recirculation valve according to claim 1, wherein the inner peripheral surface of the rib is a concave surface positioned closer to the inner peripheral side as it approaches the wall portion.
  4.  前記リブの外周面は、前記壁部に近づくほど外周側に位置する凹面であることを特徴とする請求項1記載の排気ガス再循環バルブ。 The exhaust gas recirculation valve according to claim 1, wherein the outer peripheral surface of the rib is a concave surface positioned closer to the outer peripheral side as approaching the wall portion.
  5.  前記リブの高さは、2mm以上5mm以下であることを特徴とする請求項1記載の排気ガス再循環バルブ。 The exhaust gas recirculation valve according to claim 1, wherein the height of the rib is 2 mm or more and 5 mm or less.
  6.  前記壁部の面のうち前記排気ガス流入口に対向する面の裏面に接触する水冷通路を備えることを特徴とする請求項1記載の排気ガス再循環バルブ。 The exhaust gas recirculation valve according to claim 1, further comprising a water cooling passage that contacts a back surface of a surface of the wall portion facing the exhaust gas inlet.
  7.  前記水冷通路に設けられ、前記水冷通路を流れる冷却水を前記壁部に向かわせる誘導部材を備えることを特徴とする請求項6記載の排気ガス再循環バルブ。 The exhaust gas recirculation valve according to claim 6, further comprising a guide member provided in the water cooling passage and directing cooling water flowing through the water cooling passage toward the wall portion.
  8.  前記ハウジングは、アルミニウム製であることを特徴とする請求項1記載の排気ガス再循環バルブ。 The exhaust gas recirculation valve according to claim 1, wherein the housing is made of aluminum.
PCT/JP2016/067520 2016-06-13 2016-06-13 Exhaust gas recirculation valve WO2017216838A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/067520 WO2017216838A1 (en) 2016-06-13 2016-06-13 Exhaust gas recirculation valve
JP2018523051A JP6501975B2 (en) 2016-06-13 2016-06-13 Exhaust gas recirculation valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/067520 WO2017216838A1 (en) 2016-06-13 2016-06-13 Exhaust gas recirculation valve

Publications (1)

Publication Number Publication Date
WO2017216838A1 true WO2017216838A1 (en) 2017-12-21

Family

ID=60663620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067520 WO2017216838A1 (en) 2016-06-13 2016-06-13 Exhaust gas recirculation valve

Country Status (2)

Country Link
JP (1) JP6501975B2 (en)
WO (1) WO2017216838A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022085157A1 (en) * 2020-10-22 2022-04-28

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999061775A1 (en) * 1998-05-27 1999-12-02 Mitsubishi Denki Kabushiki Kaisha Exhaust gas reflux valve
JP2002004961A (en) * 2000-06-27 2002-01-09 Toyota Motor Corp Gas mixture system
WO2003006815A1 (en) * 2001-07-09 2003-01-23 Mitsubishi Denki Kabushiki Kaisha Mounting device for exhaust gas recirculation valve
WO2008015823A1 (en) * 2006-08-04 2008-02-07 Mitsubishi Electric Corporation Valve device
US20110108013A1 (en) * 2009-11-09 2011-05-12 International Engine Intellectual Property Company, Llc Exhaust gas recirculation valve with bypass capability and method
WO2011061795A1 (en) * 2009-11-18 2011-05-26 三菱電機株式会社 Exhaust gas recirculation valve, and system for attaching same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999061775A1 (en) * 1998-05-27 1999-12-02 Mitsubishi Denki Kabushiki Kaisha Exhaust gas reflux valve
JP2002004961A (en) * 2000-06-27 2002-01-09 Toyota Motor Corp Gas mixture system
WO2003006815A1 (en) * 2001-07-09 2003-01-23 Mitsubishi Denki Kabushiki Kaisha Mounting device for exhaust gas recirculation valve
WO2008015823A1 (en) * 2006-08-04 2008-02-07 Mitsubishi Electric Corporation Valve device
US20110108013A1 (en) * 2009-11-09 2011-05-12 International Engine Intellectual Property Company, Llc Exhaust gas recirculation valve with bypass capability and method
WO2011061795A1 (en) * 2009-11-18 2011-05-26 三菱電機株式会社 Exhaust gas recirculation valve, and system for attaching same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022085157A1 (en) * 2020-10-22 2022-04-28
WO2022085157A1 (en) * 2020-10-22 2022-04-28 三菱電機株式会社 Exhaust gas recirculation valve
JP7237251B2 (en) 2020-10-22 2023-03-10 三菱電機株式会社 Exhaust gas recirculation valve

Also Published As

Publication number Publication date
JP6501975B2 (en) 2019-04-17
JPWO2017216838A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
JP6098561B2 (en) Engine cooling structure
JP6036668B2 (en) Multi-cylinder engine cooling structure
US20150218997A1 (en) Exhaust Heat Recovery Device
US20160146150A1 (en) Exhaust manifold-integrated cylinder head with water jacket
TWI655359B (en) Water cooled sohc engine
JP5926094B2 (en) Turbocharger bearing housing
JP6079594B2 (en) Multi-cylinder engine cooling structure
JP2019073990A (en) Cooling structure of multi-cylinder engine
US20170268455A1 (en) Water jacket for cylinder head
WO2017216838A1 (en) Exhaust gas recirculation valve
JP2015203379A (en) turbine housing
JP6275479B2 (en) Thermostat housing
JP4248095B2 (en) EGR cooler
US11078872B2 (en) Engine with EGR device
JP2008014263A (en) Cooling structure for internal combustion engine and cylinder head gasket used for same
WO2014155435A1 (en) Egr device
JP4279758B2 (en) Cooling device for internal combustion engine
CN110080858B (en) Exhaust heat recovery device
JP5494357B2 (en) Cooling device for internal combustion engine
WO2022085157A1 (en) Exhaust gas recirculation valve
WO2017126118A1 (en) Exhaust heat recovery device
JP2002364456A (en) Cylinder liner cooling structure of diesel for ship
CN109653893B (en) Cooling jacket for cylinder head
KR101976953B1 (en) Egr valve assembly
JP7252108B2 (en) exhaust turbocharger

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018523051

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16905393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16905393

Country of ref document: EP

Kind code of ref document: A1