WO2017215572A1 - Self-reinforcing profiled bar, preparation method therefor and application thereof - Google Patents

Self-reinforcing profiled bar, preparation method therefor and application thereof Download PDF

Info

Publication number
WO2017215572A1
WO2017215572A1 PCT/CN2017/087965 CN2017087965W WO2017215572A1 WO 2017215572 A1 WO2017215572 A1 WO 2017215572A1 CN 2017087965 W CN2017087965 W CN 2017087965W WO 2017215572 A1 WO2017215572 A1 WO 2017215572A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforcing
self
styrene
reinforced
temperature
Prior art date
Application number
PCT/CN2017/087965
Other languages
French (fr)
Chinese (zh)
Inventor
陈平绪
叶南飚
肖鹏
李玉虎
官焕祥
魏金刚
陶四平
刘建中
何超雄
Original Assignee
金发科技股份有限公司
广东金发科技有限公司
天津金发新材料有限公司
四川金发科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司, 广东金发科技有限公司, 天津金发新材料有限公司, 四川金发科技发展有限公司 filed Critical 金发科技股份有限公司
Publication of WO2017215572A1 publication Critical patent/WO2017215572A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0013Extrusion moulding in several steps, i.e. components merging outside the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/524Esters of phosphorous acids, e.g. of H3PO3
    • C08K5/526Esters of phosphorous acids, e.g. of H3PO3 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/06Copolymers with vinyl aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/9259Angular velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the invention relates to the technical field of plastic profiles, in particular to a self-reinforced profile material and a preparation method and application thereof.
  • PVC profiles are widely used in building doors and windows, wood-plastic flooring, furniture panels, etc.
  • PVC materials themselves have low rigidity and poor resistance to deformation
  • steel linings are required when used as door and window materials.
  • the traditional metal steel lining can effectively improve the deformation resistance of PVC profiles
  • the steel lining has the disadvantages of high production energy consumption, poor corrosion resistance, thermal insulation, poor sound insulation, high material density and low welding angle strength.
  • the installer needs to fix the steel lining and the steel profile at the construction site, and the assembly process of the door and window installation is added. Based on this situation, related companies have introduced plastic-based materials to replace traditional steel.
  • the plastic itself has the advantages of good heat insulation, corrosion resistance and light weight.
  • the unmodified plastic rigidity is too far from the steel to meet the deformation resistance requirements of the profile.
  • glass fiber reinforced means can greatly increase the rigidity of the plastic, and provides a solution for this purpose, such as CN 102817529 B, CN 203066745 U, CN 202227876 U, CN 103075071 B and the like, a glass fiber reinforced PBT is disclosed. Any one of carbon fiber reinforced PBT and modified PBT is a reinforcing strip, and a self-reinforced profile material based on PVC material is used instead of the conventional steel lining reinforcing profile.
  • CN 103147664 B discloses a profiled co-extrusion die, which solves the problem of paste and compatibility of PVC by providing a heat insulation layer and an internal rib card groove inside the mold, although the above problems can be partially solved, but the mold cost greatly increase.
  • Another object of the present invention is to provide a process for the preparation of the above self-reinforced profile.
  • a self-reinforcing profile comprising a PVC profile and a reinforced lining material disposed within the cavity of the PVC profile, the parts by weight
  • the numbers are as follows:
  • the reinforcing lining material comprises, in parts by weight, the following components:
  • the adhesion between the PVC profile and the reinforced lining material is 400-600 N.
  • the adhesion test is carried out by injection molding a PVC profile into a 2 mm ⁇ 10 mm ⁇ 100 mm spline, and then placing the PVC spline in the same manner.
  • the 4mm ⁇ 10mm ⁇ 100mm mold was over-molded to enhance the lining material, and the adhesion between the PVC profile and the reinforced lining material was obtained. Finally, the adhesion force was tested by Zwick's tensile tester.
  • the lining material has an extrusion temperature range of 160-215 °C.
  • the styrene-based copolymer resin has a melt flow rate of from 1 g/10 min to 80 g/10 min at 220 ° C under a load of 10 kg, which is more easily extruded, preferably from 5 g/10 min to 20 g/10 min, more preferably 10 g/ 10min-15g/10min.
  • the styrene-based copolymer is selected from the group consisting of styrene-acrylonitrile copolymer AS, styrene-butadiene-acrylonitrile copolymer ABS, methyl methacrylate-styrene-butadiene-acrylonitrile copolymer MABS, Acrylonitrile-styrene-acrylate copolymer ASA, acrylonitrile-ethylene propylene diene monomer-styrene copolymer AES, acrylonitrile-silicone rubber-styrene copolymer SAS, methyl methacrylate-styrene copolymer One or several of the MS.
  • the reinforcing agent is selected from one or more of glass fiber, carbon fiber, basalt fiber, talc powder, wollastonite, whisker, glass microbead, preferably glass fiber, and the glass fiber has a diameter of 6-20 ⁇ m.
  • the reinforcing lining material of the present invention further comprises 0.5-10 parts of a compatibilizer, 0.1-5.0 parts of a coupling agent, and 0.1-5.0 parts of a processing aid in parts by weight.
  • the compatibilizer is selected from the group consisting of styrene-butadiene-acrylonitrile-maleic anhydride copolymer, styrene-butadiene-acrylonitrile-glycidyl methacrylate copolymer, styrene-acrylonitrile-Malay One or more of an acid anhydride copolymer, a styrene-acrylonitrile-glycidyl methacrylate copolymer, an acrylate resin, a methyl methacrylate-styrene copolymer resin, a styrene-maleic anhydride copolymer ;
  • the coupling agent is selected from one or more of a silane coupling agent, a titanate coupling agent, an aluminate coupling agent, and a zirconate coupling agent; the processing aid includes a lubricant or an anti- One or several of the oxygen agents.
  • the lubricant is selected from the group consisting of a fatty acid salt, a fatty acid amide, pentaerythritol stearate, a solid paraffin, a liquid paraffin, a stearate, a silicone, an N, N'-ethylene bis stearic acid amide or Several.
  • the antioxidant is tetrakis[ ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid] quaternary tetraol and tris[2,4-di-tert-butylbenzene a mixture of phosphites.
  • the method for preparing a self-reinforced profile according to the present invention comprises the following steps:
  • reinforcing lining material in addition to the reinforcing agent, the raw materials of the reinforcing lining are added to the high-mixing machine according to the mixing ratio to be uniformly mixed; the above mixed material is fed into the twin-screw extruder, wherein the reinforcing agent passes the first A venting or side feeding system is added, and melt extrusion granulation is performed to enhance the lining material;
  • Co-extrusion preparation is carried out by using the main machine and the auxiliary machine vertically designed by the main machine.
  • the main machine is used for extruding PVC profiles
  • the auxiliary machine is used for extrusion and reinforcing lining materials
  • the main machine and auxiliary machine are simultaneously extruded and formed.
  • Post-cooling shaping results in a self-reinforced profile.
  • the mixing temperature is 20-50 ° C, the rotation speed is 100-800 rpm, and the mixing time is 2-5 minutes; the temperature of each section of the twin-screw extruder is 200-240 ° C, double The screw extruder has a length to diameter ratio of 36-48 and a screw speed of 300-500 rpm.
  • the main machine is a twin-screw extruder, and the temperature of each section of the twin-screw extruder is 150-200 ° C;
  • the auxiliary machine is a single-screw extruder, and the temperature of each section of the single-screw extruder is 160-215 ° C.
  • the main machine is a twin-screw extruder
  • the head temperature is 175-195 ° C
  • the temperature of the fuselage one zone is 155-165 ° C
  • the temperature of the fuselage two zone is 165-175 ° C
  • the temperature of the fuselage three zones is 175-185 ° C
  • the temperature of the four fuselage of the fuselage is 175-185 ° C
  • the screw speed is 18-22 rpm
  • the auxiliary machine is a single screw extruder
  • the head temperature is 175-195 ° C
  • the temperature of the fuselage area is 160 -165 ° C
  • the fuselage two zone temperature is 160-175 ° C
  • the fuselage three zone temperature is 175-185 ° C
  • the fuselage four zone temperature is 175-185 ° C
  • the screw speed is 18-22rpm.
  • the invention also provides the use of the above self-reinforced profile in building doors and windows, wood-plastic flooring or furniture panels.
  • the present invention has the following advantages:
  • the reinforcing lining material used in the present invention is an amorphous material, and since it has better compatibility with the PVC profile, the reinforcing lining material is prevented from being promoted during transportation, installation and use of the self-reinforced profiled material.
  • the peeling problem of PVC profiles can be widely used in building doors and windows, wood-plastic flooring or furniture panels;
  • the reinforced lining material used in the invention can be stably extruded in the temperature range of 160-215 ° C, has a wider processing window, and the extrusion molding temperature at 160 ° C is almost the same as that of the PVC material, and is solved from the root cause.
  • the decomposition of PVC profiles due to high temperature extrusion, carbonization, discoloration, and odor problems greatly improve the production stability of co-extruded profiles, while the lower molding temperature also greatly reduces energy consumption.
  • the reinforced lining material used in the present invention has higher melt strength and more excellent processing and molding properties, thereby greatly improving the stability of molding.
  • the reinforced lining material of the invention has lower density, and the self-reinforced co-extruded profile is lighter in weight, conforming to the light weight and low carbon environmental protection trend advocated by the state.
  • Figure 1 is a photograph of the adhesion of a PVC profile to a reinforced liner during the adhesion test.
  • the raw materials used are as follows:
  • ABS resin ABS AG10NP, Taiwan; melt flow rate 6g/10min; PBT resin, PBT 1200-211M, Changchun, Taiwan;
  • ASA styrene-acrylonitrile-acrylate copolymer ASA PW-997, Taiwan Chi Mei; melt flow rate 5g/10min; glass fiber, ECS13-4.5-534A, Tongxiang boulders, diameter 13 ⁇ m.
  • the raw materials of the reinforcing lining are added to the high-mixing machine to be uniformly mixed according to the ratio of Table 1; the above mixed material is fed into the twin-screw extruder, wherein the reinforcing agent passes through the first vent hole or the side feeding
  • the system is added, melt extruded and granulated, that is, the inner liner is reinforced.
  • the mixing temperature is 20-50 ° C
  • the rotation speed is 100-800 rpm
  • the mixing time is 2-5 minutes
  • the temperature of each section of the twin-screw extruder is 200-240 ° C
  • the twin-screw extruder The aspect ratio is 36-48 and the screw speed is 300-500 rpm.
  • the obtained lining material was dried in a blast oven at 90 ° C for 4 hours, and then sampled with a Ningbo Haitian injection molding machine BS650-III, and the injection temperature was set to 230-240-240-250 ° C, and the obtained reinforcing lining was obtained.
  • the properties of the physical property test results of the materials are shown in Table 1.
  • the tensile strength was tested according to the ISO 527 standard.
  • the sample was a type I specimen and the test equipment was a tensile tester Z020 from Zwick, Germany.
  • the bending strength is tested according to ISO 178.
  • the sample size is 4mm ⁇ 10mm ⁇ 80mm, and the test equipment is Z005 Roell's bending tester Z005.
  • the IZOD notched impact strength was tested in accordance with the ISO 180 standard, and the sample size was 4 mm ⁇ 10 mm ⁇ 80 mm, and the notch depth was 2 mm.
  • the test equipment is the impact tester HIT5.5P from Zwick Roell, Germany.
  • the density was tested according to the ISO 1183 standard, and the test equipment was a digital liquid density meter MD-300S of Japan ALFA MIRAGE.
  • Adhesion test PVC resin is injected into 2mm ⁇ 10mm ⁇ 100mm spline, then PVC spline is placed in 4mm ⁇ 10mm ⁇ 100mm mold to re-inject the reinforced lining material to obtain PVC profile and reinforcement. The adherent of the lining material is shown in Figure 1. Finally, Zwick's tensile tester was used to test the bond strength to characterize the bond between the reinforced liner and the PVC profile.
  • Table 1 reinforced lining each group distribution ratio (parts by weight) and physical properties
  • the reinforcing lining material of the present invention has more excellent mechanical properties in the case of the same glass fiber content, and in particular, the rigidity is better than that of the reinforced PBT material, and the advantage in plastic-forming steel is more obvious.
  • the reinforced lining material of the invention has lower density, and the prepared self-reinforced co-extruded profile has a lighter weight, which is in line with the nationally advocated lightweight and low carbon environmental protection trend.
  • the main machine and the auxiliary machine vertically designed by the main machine are used for co-extrusion preparation.
  • the main machine is used for extruding PVC profiles
  • the auxiliary machine is used for extrusion and reinforcing lining materials
  • the main machine and auxiliary machine are simultaneously extruded. Cooling and setting to obtain a self-reinforced profile
  • the main machine is a twin-screw extruder
  • the head temperature is 175-195 ° C
  • the temperature of the fuselage one zone is 155-165 ° C
  • the temperature of the fuselage two zone is 165-175 ° C
  • the temperature of the fuselage three zones is 175 -185 ° C
  • the temperature of the fuselage four zones is 175-185 ° C
  • the screw speed is 18-22 rpm
  • the auxiliary machine is a single screw extruder
  • the head temperature is 175-195 ° C
  • the temperature of the fuselage one zone is 160- At 165 ° C
  • the temperature in the second zone of the fuselage is 160-175 ° C
  • the temperature in the three zones of the fuselage is 175-185 ° C
  • the temperature in the four zones of the fuselage is 175-185 ° C
  • the screw speed is 18-22 rpm.
  • the adhesion between the reinforced PBT material and the PVC profile is only about 140N, and the hair is used.
  • the enhanced lining of the lining has an adhesion to the PVC profile of 400-600 N, which is three times that of the reinforced PBT material, which shows that the reinforced lining of the invention has better compatibility with the PVC profile, in the profile Peeling does not occur during transportation, installation and use.
  • the reinforced PBT material can be plasticized and stabilized in the temperature range of 220-250 ° C, the processing window is narrow and the processing temperature is high, and the reinforced lining of the invention is plasticized within a wide range of 160-215 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

A self-reinforcing profiled bar, a preparation method therefor and an application thereof. The self-reinforcing profiled bar comprises, in parts by weight, 100 parts of PVC profile and 5-120 parts of reinforcing lining material provided in a cavity of the PVC profile. The reinforcing lining material comprises the following components in parts by weight: 25-65 parts of styrene-based copolymer and 30-65 parts of reinforcing agent. The preparation method therefor comprises: first preparing a reinforcing lining material; and then, performing co-extrusion by using a main machine and an auxiliary machine designed perpendicular to the main machine, the main machine being used for extruding a PVC profile, the auxiliary machine being used for extruding the reinforcing lining material, and the main machine and the auxiliary machine performing extrusion simultaneously; and cooling and shaping after molding to obtain a self-reinforcing profiled bar. The self-reinforcing profiled bar can avoid the peeling problem between a reinforcing lining and the profile during transportation, installation and use, and the carbonization problem of the PVC profile caused by high temperature co-extrusion, and therefore has good production stability and molding stability.

Description

一种自增强异型材及其制备方法和应用Self-reinforced profiled material and preparation method and application thereof 技术领域Technical field
本发明涉及塑料型材技术领域,具体涉及一种自增强异型材及其制备方法和应用。The invention relates to the technical field of plastic profiles, in particular to a self-reinforced profile material and a preparation method and application thereof.
背景技术Background technique
PVC异型材广泛应用在建筑门窗,木塑地板,家具板材等方面,然而PVC材料本身刚度较低,抗变形能力差,在用作门窗材料时需加装钢衬。传统的金属钢衬虽能有效提高PVC异型材的抗变形能力,但是钢衬存在生产能耗高,耐腐蚀效果差,保温隔热,隔音效果差,材料密度大,焊角强度低的缺点,而且在型材安装时,工艺复杂,需要安装人员在施工现场将钢衬和塑钢型材固定,增加了门窗安装的装配工序。基于此种情况,相关企业推出以塑代钢的材料,取代传统钢材。塑料本身有着良好的隔热,耐腐蚀,轻量化的优点,然而未改性的塑料刚度与钢材差距太大,不能满足异型材抗变形的要求。PVC profiles are widely used in building doors and windows, wood-plastic flooring, furniture panels, etc. However, PVC materials themselves have low rigidity and poor resistance to deformation, and steel linings are required when used as door and window materials. Although the traditional metal steel lining can effectively improve the deformation resistance of PVC profiles, the steel lining has the disadvantages of high production energy consumption, poor corrosion resistance, thermal insulation, poor sound insulation, high material density and low welding angle strength. Moreover, when the profile is installed, the process is complicated, and the installer needs to fix the steel lining and the steel profile at the construction site, and the assembly process of the door and window installation is added. Based on this situation, related companies have introduced plastic-based materials to replace traditional steel. The plastic itself has the advantages of good heat insulation, corrosion resistance and light weight. However, the unmodified plastic rigidity is too far from the steel to meet the deformation resistance requirements of the profile.
采用玻纤增强的手段,能大幅提高塑料的刚度,为此提供了一种解决方案,如CN 102817529 B,CN 203066745 U,CN 202227876 U,CN 103075071 B等专利公开了一种以玻纤增强PBT,碳纤增强PBT,改性PBT中的任意一种为增强条,以PVC材料为基材的自增强型材,以替代常规的钢衬增强型材。但是在这些方案中,存在以下不足之处:(1)基材PVC与增强条PBT高温共挤容易造成PVC基材的分解发泡,碳化,从而产生型材变色,气味大;(2)增强条PBT与基材PVC的界面结合力差,在型材运输,安装和使用的过程中,由于碰撞和弯曲容易导致基材PVC和增强条PBT的剥离,这样就会大大降低增强条的增强作用,大大限制了其应用。The use of glass fiber reinforced means can greatly increase the rigidity of the plastic, and provides a solution for this purpose, such as CN 102817529 B, CN 203066745 U, CN 202227876 U, CN 103075071 B and the like, a glass fiber reinforced PBT is disclosed. Any one of carbon fiber reinforced PBT and modified PBT is a reinforcing strip, and a self-reinforced profile material based on PVC material is used instead of the conventional steel lining reinforcing profile. However, in these schemes, the following deficiencies exist: (1) The high temperature co-extrusion of the substrate PVC and the reinforcing strip PBT is likely to cause decomposition and foaming of the PVC substrate, carbonization, thereby causing discoloration of the profile and large odor; (2) reinforcing strip The interface between PBT and substrate PVC is poor. During the transportation, installation and use of the profile, the peeling of the substrate PVC and the reinforcing strip PBT is easy due to collision and bending, which greatly reduces the reinforcing effect of the reinforcing strip. Limit its application.
CN 103147664 B公开了一种异型材共挤模头,通过在模具内部设置隔热层和内筋卡槽来解决PVC的糊料问题和相容性问题,虽然可以部分解决以上问题,但模具成本大大增加。CN 103147664 B discloses a profiled co-extrusion die, which solves the problem of paste and compatibility of PVC by providing a heat insulation layer and an internal rib card groove inside the mold, although the above problems can be partially solved, but the mold cost greatly increase.
发明内容Summary of the invention
为了克服上述现有技术的不足,本发明的目的在于提供一种自增强异型材,该自增强异型材可避免在运输,安装和使用过程中增强内衬与PVC型材的剥离问题,且可避免高温共挤造成PVC型材的碳化分解问题,具有良好的生产稳定性和成型稳定性。In order to overcome the above deficiencies of the prior art, it is an object of the present invention to provide a self-reinforcing profile which avoids the problem of peeling of the liner and the PVC profile during transportation, installation and use, and can be avoided. High temperature co-extrusion causes carbonization decomposition of PVC profiles, with good production stability and molding stability.
本发明的另一个目的是在于提供上述自增强异型材的制备方法。Another object of the present invention is to provide a process for the preparation of the above self-reinforced profile.
本发明通过下述技术方案来实现:The invention is achieved by the following technical solutions:
一种自增强异型材,包括PVC型材以及设置在PVC型材型腔内的增强内衬材料,其重量份 数如下:A self-reinforcing profile comprising a PVC profile and a reinforced lining material disposed within the cavity of the PVC profile, the parts by weight The numbers are as follows:
PVC型材  100份PVC profiles 100 parts
增强内衬材料  5份-120份Reinforced lining material 5 parts - 120 parts
其中,所述增强内衬材料按重量份数计,包括如下组分:Wherein, the reinforcing lining material comprises, in parts by weight, the following components:
苯乙烯基共聚物  25-65份;Styrene-based copolymer 25-65 parts;
增强剂  30-65份。Enhancer 30-65 parts.
所述PVC型材与增强内衬材料的粘结力为400-600N,所述粘结力测试采用如下方法:将PVC型材注塑成2mm×10mm×100mm的样条,然后再把PVC样条放置在4mm×10mm×100mm的模具中二次注塑增强内衬材料,得到PVC型材与增强内衬材料的粘附体,最后通过Zwick公司的拉伸试验机来测试粘结力的大小。The adhesion between the PVC profile and the reinforced lining material is 400-600 N. The adhesion test is carried out by injection molding a PVC profile into a 2 mm×10 mm×100 mm spline, and then placing the PVC spline in the same manner. The 4mm×10mm×100mm mold was over-molded to enhance the lining material, and the adhesion between the PVC profile and the reinforced lining material was obtained. Finally, the adhesion force was tested by Zwick's tensile tester.
所述增强内衬材料的挤出温度区间为160-215℃。The lining material has an extrusion temperature range of 160-215 °C.
所述苯乙烯基共聚物树脂在220℃,10kg载荷条件下的熔体流动速率为1g/10min-80g/10min,为更易挤出成型,优选5g/10min-20g/10min,更优选为10g/10min-15g/10min。The styrene-based copolymer resin has a melt flow rate of from 1 g/10 min to 80 g/10 min at 220 ° C under a load of 10 kg, which is more easily extruded, preferably from 5 g/10 min to 20 g/10 min, more preferably 10 g/ 10min-15g/10min.
所述苯乙烯基共聚物选自苯乙烯-丙烯腈共聚物AS、苯乙烯-丁二烯-丙烯腈共聚物ABS、甲基丙烯酸甲酯-苯乙烯-丁二烯-丙烯腈共聚物MABS、丙烯腈-苯乙烯-丙烯酸酯共聚物ASA、丙烯腈-三元乙丙橡胶-苯乙烯共聚物AES、丙烯腈-硅丙橡胶-苯乙烯共聚物SAS、甲基丙烯酸甲酯-苯乙烯共聚物MS中的一种或几种。The styrene-based copolymer is selected from the group consisting of styrene-acrylonitrile copolymer AS, styrene-butadiene-acrylonitrile copolymer ABS, methyl methacrylate-styrene-butadiene-acrylonitrile copolymer MABS, Acrylonitrile-styrene-acrylate copolymer ASA, acrylonitrile-ethylene propylene diene monomer-styrene copolymer AES, acrylonitrile-silicone rubber-styrene copolymer SAS, methyl methacrylate-styrene copolymer One or several of the MS.
所述增强剂选自玻璃纤维、碳纤维,玄武岩纤维、滑石粉、硅灰石、晶须、玻璃微珠中的一种或几种,优选玻璃纤维,所述玻璃纤维的直径为6-20μm。The reinforcing agent is selected from one or more of glass fiber, carbon fiber, basalt fiber, talc powder, wollastonite, whisker, glass microbead, preferably glass fiber, and the glass fiber has a diameter of 6-20 μm.
本发明所述增强内衬材料,按重量份数计,还包括相容剂0.5-10份、偶联剂0.1-5.0份、加工助剂0.1-5.0份。The reinforcing lining material of the present invention further comprises 0.5-10 parts of a compatibilizer, 0.1-5.0 parts of a coupling agent, and 0.1-5.0 parts of a processing aid in parts by weight.
所述相容剂选自苯乙烯-丁二烯-丙烯腈-马来酸酐共聚物、苯乙烯-丁二烯-丙烯腈-甲基丙烯酸缩水甘油酯共聚物、苯乙烯-丙烯腈-马来酸酐共聚物、苯乙烯-丙烯腈-甲基丙烯酸缩水甘油酯共聚物、丙烯酸酯树脂、甲基丙烯酸甲酯-苯乙烯共聚物树脂、苯乙烯-马来酸酐共聚物中的一种或几种;The compatibilizer is selected from the group consisting of styrene-butadiene-acrylonitrile-maleic anhydride copolymer, styrene-butadiene-acrylonitrile-glycidyl methacrylate copolymer, styrene-acrylonitrile-Malay One or more of an acid anhydride copolymer, a styrene-acrylonitrile-glycidyl methacrylate copolymer, an acrylate resin, a methyl methacrylate-styrene copolymer resin, a styrene-maleic anhydride copolymer ;
所述偶联剂选自硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂、锆酸酯偶联剂中的一种或几种;所述加工助剂包括润滑剂或抗氧剂中的一种或几种。The coupling agent is selected from one or more of a silane coupling agent, a titanate coupling agent, an aluminate coupling agent, and a zirconate coupling agent; the processing aid includes a lubricant or an anti- One or several of the oxygen agents.
所述润滑剂选自脂肪酸盐、脂肪酸酰胺、季戊四醇硬脂酸酯、固体石蜡、液体石蜡、硬脂酸盐、硅酮、N,N'-乙撑双硬脂酸酰胺中的一种或几种。The lubricant is selected from the group consisting of a fatty acid salt, a fatty acid amide, pentaerythritol stearate, a solid paraffin, a liquid paraffin, a stearate, a silicone, an N, N'-ethylene bis stearic acid amide or Several.
所述抗氧剂为四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季茂四醇脂和三[2,4-二叔丁基苯 基]亚磷酸酯的混合物。The antioxidant is tetrakis[β-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid] quaternary tetraol and tris[2,4-di-tert-butylbenzene a mixture of phosphites.
本发明所述的自增强异型材的制备方法,包括以下步骤:The method for preparing a self-reinforced profile according to the present invention comprises the following steps:
(1)增强内衬材料的制备:除增强剂外,按配比将增强内衬的各原料加入高混机中混合均匀;将上述混合物料送入双螺杆挤出机中,其中增强剂通过第一排气孔或侧喂系统加入,熔融挤出造粒,即得增强内衬材料;(1) Preparation of reinforcing lining material: in addition to the reinforcing agent, the raw materials of the reinforcing lining are added to the high-mixing machine according to the mixing ratio to be uniformly mixed; the above mixed material is fed into the twin-screw extruder, wherein the reinforcing agent passes the first A venting or side feeding system is added, and melt extrusion granulation is performed to enhance the lining material;
(2)共挤成型:采用主机与该主机垂直设计的辅机进行共挤制备,主机用于挤出PVC型材,辅机用于挤出增强内衬材料,主机、辅机同时挤出,成型后冷却定型得到自增强异型材。(2) Co-extrusion: co-extrusion preparation is carried out by using the main machine and the auxiliary machine vertically designed by the main machine. The main machine is used for extruding PVC profiles, the auxiliary machine is used for extrusion and reinforcing lining materials, and the main machine and auxiliary machine are simultaneously extruded and formed. Post-cooling shaping results in a self-reinforced profile.
步骤(1)中,所述混合温度为20-50℃,转速为100-800转/分钟,混合时间为2-5分钟;所述双螺杆挤出机各段温度为200-240℃,双螺杆挤出机的长径比为36-48,螺杆转速为300-500转/分钟。In the step (1), the mixing temperature is 20-50 ° C, the rotation speed is 100-800 rpm, and the mixing time is 2-5 minutes; the temperature of each section of the twin-screw extruder is 200-240 ° C, double The screw extruder has a length to diameter ratio of 36-48 and a screw speed of 300-500 rpm.
步骤(2)中,所述主机为双螺杆挤出机,双螺杆挤出机各段温度为150-200℃;所述辅机为单螺杆挤出机,单螺杆挤出机各段温度为160-215℃。In the step (2), the main machine is a twin-screw extruder, and the temperature of each section of the twin-screw extruder is 150-200 ° C; the auxiliary machine is a single-screw extruder, and the temperature of each section of the single-screw extruder is 160-215 ° C.
优选的,所述主机为双螺杆挤出机,机头温度为175-195℃,机身一区温度为155-165℃,机身二区温度为165-175℃,机身三区温度为175-185℃,机身四区温度为175-185℃,螺杆转速为18-22rpm;所述辅机为单螺杆挤出机,机头温度为175-195℃,机身一区温度为160-165℃,机身二区温度为160-175℃,机身三区温度为175-185℃,机身四区温度为175-185℃,螺杆转速为18-22rpm。Preferably, the main machine is a twin-screw extruder, the head temperature is 175-195 ° C, the temperature of the fuselage one zone is 155-165 ° C, the temperature of the fuselage two zone is 165-175 ° C, and the temperature of the fuselage three zones is 175-185 ° C, the temperature of the four fuselage of the fuselage is 175-185 ° C, the screw speed is 18-22 rpm; the auxiliary machine is a single screw extruder, the head temperature is 175-195 ° C, the temperature of the fuselage area is 160 -165 ° C, the fuselage two zone temperature is 160-175 ° C, the fuselage three zone temperature is 175-185 ° C, the fuselage four zone temperature is 175-185 ° C, the screw speed is 18-22rpm.
本发明还提供了上述自增强异型材在建筑门窗、木塑地板或家具板材中的应用。The invention also provides the use of the above self-reinforced profile in building doors and windows, wood-plastic flooring or furniture panels.
相对于现有技术,本发明具有如下优点:Compared with the prior art, the present invention has the following advantages:
(1)本发明采用的增强内衬材料为无定形材料,由于其与PVC型材具有更好的相容性,避免了自增强异型材在运输,安装和使用的过程中出现增强内衬材料与PVC型材的剥离问题,可广泛应用于建筑门窗、木塑地板或家具板材中;(1) The reinforcing lining material used in the present invention is an amorphous material, and since it has better compatibility with the PVC profile, the reinforcing lining material is prevented from being promoted during transportation, installation and use of the self-reinforced profiled material. The peeling problem of PVC profiles can be widely used in building doors and windows, wood-plastic flooring or furniture panels;
(2)本发明采用的增强内衬材料能在160-215℃温度范围内稳定的挤出,具有更宽的加工窗口,且160℃的挤出成型温度与PVC材料相差无几,从根源解决了在共挤过程中PVC型材因高温挤出造成的分解发泡,碳化,变色,气味大问题,大大提高了共挤型材的生产稳定性,同时较低的成型温度也会大大降低能耗,更加环保;(2) The reinforced lining material used in the invention can be stably extruded in the temperature range of 160-215 ° C, has a wider processing window, and the extrusion molding temperature at 160 ° C is almost the same as that of the PVC material, and is solved from the root cause. In the co-extrusion process, the decomposition of PVC profiles due to high temperature extrusion, carbonization, discoloration, and odor problems greatly improve the production stability of co-extruded profiles, while the lower molding temperature also greatly reduces energy consumption. Environmental protection;
(3)本发明采用的增强内衬材料具有更高的熔体强度,具有更优异的加工成型性能,从而大大提高成型的稳定性。(3) The reinforced lining material used in the present invention has higher melt strength and more excellent processing and molding properties, thereby greatly improving the stability of molding.
(4)在提供同样刚性的条件下,本发明的增强内衬材料密度更低,自增强共挤型材重量更轻,符合国家提倡的轻量化,低碳环保趋势。 (4) Under the condition of providing the same rigidity, the reinforced lining material of the invention has lower density, and the self-reinforced co-extruded profile is lighter in weight, conforming to the light weight and low carbon environmental protection trend advocated by the state.
附图说明:BRIEF DESCRIPTION OF THE DRAWINGS:
图1为粘结力测试时,PVC型材与增强内衬的粘附体照片。Figure 1 is a photograph of the adhesion of a PVC profile to a reinforced liner during the adhesion test.
具体实施方式detailed description
为更好地理解本发明,下面通过实施例对本发明作进一步的说明,需要说明的是实施例并不构成对本发明保护范围的限制。The invention is further described by the following examples in order to provide a better understanding of the invention.
所用原材料如下:The raw materials used are as follows:
PVC型材,PVC-EX23,金发科技自制;PVC profiles, PVC-EX23, blonde technology homemade;
AS苯乙烯-丙烯腈树脂,SAN PN-137H,台湾奇美,熔体流动速率12g/10min;AS styrene-acrylonitrile resin, SAN PN-137H, Taiwan Chi Mei, melt flow rate 12g/10min;
AS苯乙烯-丙烯腈树脂,SAN NF-5,台化定制;熔体流动速率5g/10min;AS styrene-acrylonitrile resin, SAN NF-5, Taihua custom; melt flow rate 5g/10min;
AS苯乙烯-丙烯腈树脂,SAN NF2200,台化,熔体流动速率35g/10min;AS styrene-acrylonitrile resin, SAN NF2200, Taiwan, melt flow rate 35g/10min;
ABS树脂,ABS AG10NP,台化;熔体流动速率6g/10min;PBT树脂,PBT 1200-211M,台湾长春;ABS resin, ABS AG10NP, Taiwan; melt flow rate 6g/10min; PBT resin, PBT 1200-211M, Changchun, Taiwan;
ASA苯乙烯-丙烯腈-丙烯酸酯共聚物,ASA PW-997,台湾奇美;熔体流动速率5g/10min;玻璃纤维,ECS13-4.5-534A,桐乡巨石,直径为13μm。ASA styrene-acrylonitrile-acrylate copolymer, ASA PW-997, Taiwan Chi Mei; melt flow rate 5g/10min; glass fiber, ECS13-4.5-534A, Tongxiang boulders, diameter 13μm.
马来酸酐苯乙烯共聚物,SMA-700,上海华雯公司;Maleic anhydride styrene copolymer, SMA-700, Shanghai Huawen Company;
偶联剂,KH560,沸点化工;Coupling agent, KH560, boiling point chemical industry;
润滑剂,N,N'-亚乙基双硬脂酰胺,上海宁成;Lubricant, N, N'-ethylene bis stearamide, Shanghai Ningcheng;
抗氧剂,168和1010,瑞士汽巴精化公司。Antioxidants, 168 and 1010, Swiss Ciba Specialty Chemicals.
增强内衬材料的制备:Preparation of reinforced lining materials:
除增强剂外,按表1配比将增强内衬的各原料加入高混机中混合均匀;将上述混合物料送入双螺杆挤出机中,其中增强剂通过第一排气孔或侧喂系统加入,熔融挤出造粒,即得增强内衬。其中,所述混合温度为20-50℃,转速为100-800转/分钟,混合时间为2-5分钟;所述双螺杆挤出机各段温度为200-240℃,双螺杆挤出机的长径比为36-48,螺杆转速为300-500转/分钟。In addition to the reinforcing agent, the raw materials of the reinforcing lining are added to the high-mixing machine to be uniformly mixed according to the ratio of Table 1; the above mixed material is fed into the twin-screw extruder, wherein the reinforcing agent passes through the first vent hole or the side feeding The system is added, melt extruded and granulated, that is, the inner liner is reinforced. Wherein, the mixing temperature is 20-50 ° C, the rotation speed is 100-800 rpm, the mixing time is 2-5 minutes; the temperature of each section of the twin-screw extruder is 200-240 ° C, the twin-screw extruder The aspect ratio is 36-48 and the screw speed is 300-500 rpm.
将得到的增强内衬材料在90℃的鼓风烘箱中干燥4小时后,用宁波海天注射成型机BS650-Ⅲ制样,注塑温度设定为230-240-240-250℃,所得增强内衬材料的物性测试结果性能见表1。The obtained lining material was dried in a blast oven at 90 ° C for 4 hours, and then sampled with a Ningbo Haitian injection molding machine BS650-III, and the injection temperature was set to 230-240-240-250 ° C, and the obtained reinforcing lining was obtained. The properties of the physical property test results of the materials are shown in Table 1.
拉伸强度按ISO 527标准进行测试,试样为Ⅰ型试样,测试设备为德国Zwick公司的拉伸试验机Z020。The tensile strength was tested according to the ISO 527 standard. The sample was a type I specimen and the test equipment was a tensile tester Z020 from Zwick, Germany.
弯曲强度按ISO 178标准进行测试,试样尺寸为4mm×10mm×80mm,测试设备为 德国Zwick Roell公司的弯曲试验机Z005。The bending strength is tested according to ISO 178. The sample size is 4mm × 10mm × 80mm, and the test equipment is Z005 Roell's bending tester Z005.
IZOD缺口冲击强度按照ISO 180标准进行测试,试样尺寸为4mm×10mm×80mm,缺口深度为2mm。测试设备为德国Zwick Roell公司的冲击试验机HIT5.5P。The IZOD notched impact strength was tested in accordance with the ISO 180 standard, and the sample size was 4 mm × 10 mm × 80 mm, and the notch depth was 2 mm. The test equipment is the impact tester HIT5.5P from Zwick Roell, Germany.
密度按ISO 1183标准进行测试,测试设备为日本ALFA MIRAGE的数显液体密度计MD-300S。The density was tested according to the ISO 1183 standard, and the test equipment was a digital liquid density meter MD-300S of Japan ALFA MIRAGE.
粘结力测试:现将PVC树脂注塑成2mm×10mm×100mm的样条,然后再把PVC样条放置在4mm×10mm×100mm的模具中二次注塑增强内衬材料,得到PVC型材与增强内衬材料的粘附体,如图1所示。最后通过Zwick公司的拉伸试验机来测试粘结力的大小,从而表征增强内衬与PVC型材的粘结性能。Adhesion test: PVC resin is injected into 2mm×10mm×100mm spline, then PVC spline is placed in 4mm×10mm×100mm mold to re-inject the reinforced lining material to obtain PVC profile and reinforcement. The adherent of the lining material is shown in Figure 1. Finally, Zwick's tensile tester was used to test the bond strength to characterize the bond between the reinforced liner and the PVC profile.
表1增强内衬各组分配比(重量份)及物性Table 1 reinforced lining each group distribution ratio (parts by weight) and physical properties
[根据细则26改正21.08.2017] 
Figure WO-DOC-FIGURE-1
[Correct according to Rule 26 21.08.2017]
Figure WO-DOC-FIGURE-1
续表1:Continued Table 1:
[根据细则26改正21.08.2017] 
Figure WO-DOC-FIGURE-10
[Correct according to Rule 26 21.08.2017]
Figure WO-DOC-FIGURE-10
从表1可以看出同样玻纤含量的情况下,本发明的增强内衬材料具有更加优异的力学性能,尤其是刚性更要优于增强PBT材料,在以塑代钢方面的优势更加明显。其次,在提供相同刚性的条件下,本发明的增强内衬材料密度更低,所制备的自增强共挤型材重量更轻,符合国家提倡的轻量化,低碳环保趋势。It can be seen from Table 1 that the reinforcing lining material of the present invention has more excellent mechanical properties in the case of the same glass fiber content, and in particular, the rigidity is better than that of the reinforced PBT material, and the advantage in plastic-forming steel is more obvious. Secondly, under the condition of providing the same rigidity, the reinforced lining material of the invention has lower density, and the prepared self-reinforced co-extruded profile has a lighter weight, which is in line with the nationally advocated lightweight and low carbon environmental protection trend.
自增强异型材的制备:Preparation of self-reinforced profiles:
采用主机与该主机垂直设计的辅机进行共挤制备,按表2配比,主机用于挤出PVC型材,辅机用于挤出增强内衬材料,主机、辅机同时挤出,成型后冷却定型得到自增强异型材;The main machine and the auxiliary machine vertically designed by the main machine are used for co-extrusion preparation. According to the ratio of Table 2, the main machine is used for extruding PVC profiles, the auxiliary machine is used for extrusion and reinforcing lining materials, and the main machine and auxiliary machine are simultaneously extruded. Cooling and setting to obtain a self-reinforced profile;
其中,所述主机为双螺杆挤出机,机头温度为175-195℃,机身一区温度为155-165℃,机身二区温度为165-175℃,机身三区温度为175-185℃,机身四区温度为175-185℃,螺杆转速为18-22rpm;所述辅机为单螺杆挤出机,机头温度为175-195℃,机身一区温度为160-165℃,机身二区温度为160-175℃,机身三区温度为175-185℃,机身四区温度为175-185℃,螺杆转速为18-22rpm。Wherein, the main machine is a twin-screw extruder, the head temperature is 175-195 ° C, the temperature of the fuselage one zone is 155-165 ° C, the temperature of the fuselage two zone is 165-175 ° C, and the temperature of the fuselage three zones is 175 -185 ° C, the temperature of the fuselage four zones is 175-185 ° C, the screw speed is 18-22 rpm; the auxiliary machine is a single screw extruder, the head temperature is 175-195 ° C, the temperature of the fuselage one zone is 160- At 165 ° C, the temperature in the second zone of the fuselage is 160-175 ° C, the temperature in the three zones of the fuselage is 175-185 ° C, the temperature in the four zones of the fuselage is 175-185 ° C, and the screw speed is 18-22 rpm.
表2自增强异型材的各组分配比及性能结果(重量份)Table 2 Distribution ratios and performance results of each group of self-reinforced profiles (parts by weight)
[根据细则26改正21.08.2017] 
Figure WO-DOC-FIGURE-2
[Correct according to Rule 26 21.08.2017]
Figure WO-DOC-FIGURE-2
从表2的数据可以看出,增强PBT材料与PVC型材的粘结力只有140N左右,而采用本发 明的增强内衬,其与PVC型材的粘结力提高到400-600N,是增强PBT材料的3倍,这说明本发明的增强内衬与PVC型材具有更好的相容性,在型材的运输,安装和使用过程中不会出现剥离现象。其次,增强PBT材料在220-250℃的温度区间才可以塑化稳定挤出,加工窗口窄且加工温度高,而本发明的增强内衬在160-215℃较宽的范围之内塑化都很好,且可以稳定挤出,这说明本发明的增强内衬具有更宽的加工窗口,且160℃的挤出成型温度与PVC型材相差无几,从根源上避免了高温共挤造成PVC型材的分解发泡,碳化变色,气味大等问题,同时较低的成型温度也会大大降低能耗,更加环保。 It can be seen from the data in Table 2 that the adhesion between the reinforced PBT material and the PVC profile is only about 140N, and the hair is used. The enhanced lining of the lining has an adhesion to the PVC profile of 400-600 N, which is three times that of the reinforced PBT material, which shows that the reinforced lining of the invention has better compatibility with the PVC profile, in the profile Peeling does not occur during transportation, installation and use. Secondly, the reinforced PBT material can be plasticized and stabilized in the temperature range of 220-250 ° C, the processing window is narrow and the processing temperature is high, and the reinforced lining of the invention is plasticized within a wide range of 160-215 ° C. It is very good and can be stably extruded, which shows that the reinforced lining of the invention has a wider processing window, and the extrusion temperature at 160 ° C is almost the same as that of the PVC profile, and the high-temperature co-extrusion of the PVC profile is avoided from the root. Decomposition foaming, carbonization discoloration, large odor, etc., while the lower molding temperature will greatly reduce energy consumption and be more environmentally friendly.

Claims (13)

  1. 一种自增强异型材,其特征在于,包括PVC型材以及设置在PVC型材型腔内的增强内衬材料,其重量份数如下:A self-reinforcing profile characterized by comprising a PVC profile and a reinforcing lining material disposed in the cavity of the PVC profile, the weight fractions of which are as follows:
    PVC型材      100份PVC profiles 100 parts
    增强内衬材料 5份-120份Reinforced lining material 5 parts - 120 parts
    其中,所述增强内衬材料按重量份数计,包括如下组分:Wherein, the reinforcing lining material comprises, in parts by weight, the following components:
    苯乙烯基共聚物  25-65份;Styrene-based copolymer 25-65 parts;
    增强剂          30-65份。Enhancer 30-65 parts.
  2. 根据权利要求1所述的自增强异型材,其特征在于,所述PVC型材与增强内衬材料的粘结力为400-600N,所述粘结力测试采用如下方法:将PVC型材注塑成2mm×10mm×100mm的样条,然后再把PVC样条放置在4mm×10mm×100mm的模具中二次注塑增强内衬材料,得到PVC型材与增强内衬材料的粘附体,最后通过Zwick公司的拉伸试验机来测试粘结力的大小。The self-reinforcing profile according to claim 1, wherein the adhesion of the PVC profile to the reinforcing lining material is 400-600 N, and the adhesion test is performed by: injecting a PVC profile into 2 mm. ×10mm×100mm spline, then put the PVC spline in a 4mm×10mm×100mm mold and over-injection reinforced lining material to obtain the adhesion of PVC profile and reinforced lining material, and finally pass Zwick’s A tensile tester was used to test the amount of adhesion.
  3. 根据权利要求1所述的自增强异型材,其特征在于,所述增强内衬材料的挤出温度区间为160-215℃。The self-reinforced profile of claim 1 wherein the reinforced lining material has an extrusion temperature interval of from 160 to 215 °C.
  4. 根据权利要求1所述的自增强异型材,其特征在于,所述苯乙烯基共聚物在220℃,10kg载荷条件下的熔体流动速率为1g/10min-80g/10min,优选为5g/10min-20g/10min,更优选为10g/10min-15g/10min。The self-reinforcing profile according to claim 1, wherein the styrene-based copolymer has a melt flow rate of from 1 g/10 min to 80 g/10 min, preferably 5 g/10 min at 220 ° C under a load of 10 kg. -20 g/10 min, more preferably 10 g/10 min-15 g/10 min.
  5. 根据权利要求4所述的自增强异型材,其特征在于,所述苯乙烯基共聚物选自苯乙烯-丙烯腈共聚物AS、丙烯腈-丁二烯-苯乙烯共聚物ABS、甲基丙烯酸甲酯-丙烯腈-丁二烯-苯乙烯共聚物MABS、丙烯腈-苯乙烯-丙烯酸酯共聚物ASA、丙烯腈-三元乙丙橡胶-苯乙烯共聚物AES、丙烯腈-硅丙橡胶-苯乙烯共聚物SAS、甲基丙烯酸甲酯-苯乙烯共聚物MS中的一种或几种。The self-reinforced profile according to claim 4, wherein the styrene-based copolymer is selected from the group consisting of styrene-acrylonitrile copolymer AS, acrylonitrile-butadiene-styrene copolymer ABS, methacrylic acid. Methyl ester-acrylonitrile-butadiene-styrene copolymer MABS, acrylonitrile-styrene-acrylate copolymer ASA, acrylonitrile-ethylene propylene diene monomer-styrene copolymer AES, acrylonitrile-silicone rubber One or more of styrene copolymer SAS, methyl methacrylate-styrene copolymer MS.
  6. 根据权利要求1所述的自增强异型材,其特征在于,所述增强剂选自玻璃纤维、碳纤维、玄武岩纤维、滑石粉、硅灰石、晶须、玻璃微珠中的一种或几种,优选玻璃纤维。The self-reinforced profile according to claim 1, wherein the reinforcing agent is one or more selected from the group consisting of glass fiber, carbon fiber, basalt fiber, talc powder, wollastonite, whisker, and glass microbead. Preferred is glass fiber.
  7. 根据权利要求6所述的自增强异型材,其特征在于,所述玻璃纤维的直径为6~20μm。The self-reinforcing profile according to claim 6, wherein the glass fiber has a diameter of 6 to 20 μm.
  8. 根据权利要求1所述的自增强异型材,其特征在于,按重量份数计,所述增强内衬材料还包括相容剂0.5-10份、偶联剂0.1-5.0份、加工助剂0.1-5.0份。The self-reinforced profile according to claim 1, wherein the reinforcing lining material further comprises 0.5-10 parts of a compatibilizer, 0.1-5.0 parts of a coupling agent, and a processing aid 0.1 in parts by weight. -5.0 parts.
  9. 根据权利要求8所述的自增强异型材,其特征在于,所述相容剂选自苯乙烯-丁二烯-丙烯腈-马来酸酐共聚物、苯乙烯-丁二烯-丙烯腈-甲基丙烯酸缩水甘油酯共聚物、苯乙烯-丙烯腈-马来酸酐共聚物、苯乙烯-丙烯腈-甲基丙烯酸缩水甘油酯共聚物、丙烯酸酯树脂、甲基丙烯 酸甲酯-苯乙烯共聚物、苯乙烯-马来酸酐共聚物中的一种或几种;所述偶联剂选自硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂、锆酸酯偶联剂中的一种或几种;所述加工助剂包括润滑剂或抗氧剂中的一种或几种。The self-reinforced profile according to claim 8, wherein the compatibilizing agent is selected from the group consisting of styrene-butadiene-acrylonitrile-maleic anhydride copolymer, styrene-butadiene-acrylonitrile-A Glycidyl acrylate copolymer, styrene-acrylonitrile-maleic anhydride copolymer, styrene-acrylonitrile-glycidyl methacrylate copolymer, acrylate resin, methacrylic acid One or more of a methyl ester-styrene copolymer, a styrene-maleic anhydride copolymer; the coupling agent is selected from the group consisting of a silane coupling agent, a titanate coupling agent, and an aluminate coupling agent One or more of zirconate coupling agents; the processing aid includes one or more of a lubricant or an antioxidant.
  10. 根据权利要求1-9任一项所述的自增强异型材的制备方法,其特征在于,包括以下步骤:The method for preparing a self-reinforced profile according to any one of claims 1 to 9, comprising the steps of:
    (1)增强内衬材料的制备:除增强剂外,按配比将增强内衬材料的各原料加入高混机中混合均匀;将上述混合物料送入双螺杆挤出机中,其中增强剂通过第一排气孔或侧喂系统加入,熔融挤出造粒,即得增强内衬材料;(1) Preparation of reinforcing lining material: in addition to the reinforcing agent, the raw materials of the reinforcing lining material are added to the high-mixing machine according to the mixing ratio to be uniformly mixed; the above mixed material is fed into the twin-screw extruder, wherein the reinforcing agent passes The first venting hole or side feeding system is added, melt extrusion granulation, that is, the lining material is reinforced;
    (2)共挤成型:采用主机与该主机垂直设计的辅机进行共挤制备,主机用于挤出PVC型材,辅机用于挤出增强内衬材料,主机、辅机同时挤出,成型后冷却定型得到自增强异型材。(2) Co-extrusion: co-extrusion preparation is carried out by using the main machine and the auxiliary machine vertically designed by the main machine. The main machine is used for extruding PVC profiles, the auxiliary machine is used for extrusion and reinforcing lining materials, and the main machine and auxiliary machine are simultaneously extruded and formed. Post-cooling shaping results in a self-reinforced profile.
  11. 根据权利要求10所述的增强异型材的制备方法,其特征在于,步骤(1)中,所述混合温度为20-50℃,转速为100-800转/分钟,混合时间为2-5分钟;所述双螺杆挤出机各段温度为200-240℃,双螺杆挤出机的长径比为36-48,螺杆转速为300-500转/分钟。The method for preparing a reinforced profile according to claim 10, wherein in the step (1), the mixing temperature is 20-50 ° C, the rotation speed is 100-800 rpm, and the mixing time is 2-5 minutes. The temperature of each section of the twin-screw extruder is 200-240 ° C, the length-to-diameter ratio of the twin-screw extruder is 36-48, and the screw rotation speed is 300-500 rpm.
  12. 根据权利要求10所述的自增强异型材的制备方法,其特征在于,步骤(2)中,所述主机为双螺杆挤出机,双螺杆挤出机各段温度为150-200℃,所述辅机为单螺杆挤出机,单螺杆挤出机各段温度为160-215℃;优选的,所述主机为双螺杆挤出机,机头温度为175-195℃,机身一区温度为155-165℃,机身二区温度为165-175℃,机身三区温度为175-185℃,机身四区温度为175-185℃,螺杆转速为18-22rpm;所述辅机为单螺杆挤出机,机头温度为175-195℃,机身一区温度为160-165℃,机身二区温度为160-175℃,机身三区温度为175-185℃,机身四区温度为175-185℃,螺杆转速为18-22rpm。The method for preparing a self-reinforcing profile according to claim 10, wherein in the step (2), the main machine is a twin-screw extruder, and the temperature of each section of the twin-screw extruder is 150-200 ° C. The auxiliary machine is a single-screw extruder, and the temperature of each section of the single-screw extruder is 160-215 ° C; preferably, the main machine is a twin-screw extruder, the head temperature is 175-195 ° C, and the fuselage area is The temperature is 155-165 ° C, the temperature of the fuselage two zone is 165-175 ° C, the temperature of the fuselage three zones is 175-185 ° C, the temperature of the fuselage four zones is 175-185 ° C, and the screw rotation speed is 18-22 rpm; The machine is a single-screw extruder with a head temperature of 175-195°C, a temperature of 160-165°C in the fuselage area, 160-175°C in the second zone, and 175-185°C in the fuselage. The temperature of the four zones of the fuselage is 175-185 ° C, and the screw speed is 18-22 rpm.
  13. 权利要求1-9任一项所述的自增强异型材在建筑门窗、木塑地板或家具板材中的应用。 Use of the self-reinforced profile of any of claims 1-9 in building doors and windows, wood-plastic flooring or furniture panels.
PCT/CN2017/087965 2016-06-17 2017-06-12 Self-reinforcing profiled bar, preparation method therefor and application thereof WO2017215572A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610435730.3A CN106084540B (en) 2016-06-17 2016-06-17 A kind of self-reinforcing profile shapes and its preparation method and application
CN201610435730.3 2016-06-17

Publications (1)

Publication Number Publication Date
WO2017215572A1 true WO2017215572A1 (en) 2017-12-21

Family

ID=57235454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087965 WO2017215572A1 (en) 2016-06-17 2017-06-12 Self-reinforcing profiled bar, preparation method therefor and application thereof

Country Status (2)

Country Link
CN (1) CN106084540B (en)
WO (1) WO2017215572A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106084540B (en) * 2016-06-17 2018-03-20 金发科技股份有限公司 A kind of self-reinforcing profile shapes and its preparation method and application
CN106280136A (en) * 2016-08-31 2017-01-04 芜湖海螺型材科技股份有限公司 A kind of high-performance PVC (polyvinyl chloride)/SAN alloy self-reinforcing section bar and production method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101717554A (en) * 2009-12-16 2010-06-02 广东盛恒昌化学工业有限公司 Plastic profiled bar decorative layer combination material with metal-like natural texture, preparation method and application thereof
CN102152515A (en) * 2010-11-20 2011-08-17 何承居 Film-coated profile and manufacturing method thereof
CN102532746A (en) * 2010-12-27 2012-07-04 南京聚隆科技股份有限公司 Soft and hard co-extrusion one-step forming method of un-plasticized polyvinyl chloride (U-PVC) profiled material and PVC adhesive tape
CN102617967A (en) * 2012-03-09 2012-08-01 武汉正浩塑胶有限公司 Plastic profile with surface matte effect and production method thereof
CN102617948A (en) * 2012-02-26 2012-08-01 新疆蓝山屯河型材有限公司 Fiberglass-reinforced PVC sectional material and preparation method thereof
CN103057081A (en) * 2012-12-24 2013-04-24 华之杰塑料建材有限公司 Coating coextrusion polyvinyl chloride (PVC) section bar
CN103075071A (en) * 2013-02-18 2013-05-01 哈尔滨中大型材科技股份有限公司 Preparation method for PVC (Polyvinyl Chloride)/modified PBT (Polybutylece Terephthalate) lining material composite section
CN104672737A (en) * 2015-02-12 2015-06-03 深圳毅彩鸿翔新材料科技有限公司 Weather-resistance ASA-based composite material, co-extruded plastic product and plastic product
US20150191961A1 (en) * 2012-08-30 2015-07-09 Dalian Shide Science & Technology Development Co., Ltd. Self-enhancement plastic profile and production method thereof
CN106084540A (en) * 2016-06-17 2016-11-09 金发科技股份有限公司 A kind of self-reinforcing profile shapes and its preparation method and application

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101717554A (en) * 2009-12-16 2010-06-02 广东盛恒昌化学工业有限公司 Plastic profiled bar decorative layer combination material with metal-like natural texture, preparation method and application thereof
CN102152515A (en) * 2010-11-20 2011-08-17 何承居 Film-coated profile and manufacturing method thereof
CN102532746A (en) * 2010-12-27 2012-07-04 南京聚隆科技股份有限公司 Soft and hard co-extrusion one-step forming method of un-plasticized polyvinyl chloride (U-PVC) profiled material and PVC adhesive tape
CN102617948A (en) * 2012-02-26 2012-08-01 新疆蓝山屯河型材有限公司 Fiberglass-reinforced PVC sectional material and preparation method thereof
CN102617967A (en) * 2012-03-09 2012-08-01 武汉正浩塑胶有限公司 Plastic profile with surface matte effect and production method thereof
US20150191961A1 (en) * 2012-08-30 2015-07-09 Dalian Shide Science & Technology Development Co., Ltd. Self-enhancement plastic profile and production method thereof
CN103057081A (en) * 2012-12-24 2013-04-24 华之杰塑料建材有限公司 Coating coextrusion polyvinyl chloride (PVC) section bar
CN103075071A (en) * 2013-02-18 2013-05-01 哈尔滨中大型材科技股份有限公司 Preparation method for PVC (Polyvinyl Chloride)/modified PBT (Polybutylece Terephthalate) lining material composite section
CN104672737A (en) * 2015-02-12 2015-06-03 深圳毅彩鸿翔新材料科技有限公司 Weather-resistance ASA-based composite material, co-extruded plastic product and plastic product
CN106084540A (en) * 2016-06-17 2016-11-09 金发科技股份有限公司 A kind of self-reinforcing profile shapes and its preparation method and application

Also Published As

Publication number Publication date
CN106084540B (en) 2018-03-20
CN106084540A (en) 2016-11-09

Similar Documents

Publication Publication Date Title
WO2017215577A1 (en) Self-reinforced irregularly-shaped section, manufacturing method for same, and applications thereof
WO2017215579A1 (en) Self-reinforced profile and preparation method therefor and application thereof
WO2017215574A1 (en) Self-reinforcing profiled bar, preparation method therefor, and application thereof
WO2017215576A1 (en) Self-reinforced profile and preparation method therefor and application thereof
WO2017215572A1 (en) Self-reinforcing profiled bar, preparation method therefor and application thereof
CN102070810B (en) Material special for corrugated pipe for high-density polyethylene prestressed concrete and production method thereof
CN105153689A (en) Polyamide 6 composite and preparation method thereof
WO2017215578A1 (en) Self-reinforced irregularly-shaped section, manufacturing method for same, and applications thereof
CN1699468A (en) Polycarbonate / acrylonitrile-butadiene-styrene terpolymer resin / polybutylene terephthalate alloy materials
WO2018076967A1 (en) Reinforced aromatic vinyl copolymer composition and use thereof
CN108250660A (en) A kind of plating grade PC/ABS alloy materials and preparation method thereof
WO2017215575A1 (en) Self-reinforced profile, preparation method therefor and application thereof
CN105131399A (en) High-low temperature and static resistant PE corrugated pipe filling master batch as well as preparation method thereof
CN105017611A (en) Ageing-resistant filling masterbatch for PE bellows and preparation method therefor
WO2017215573A1 (en) Self-reinforced profiled material, preparation method therefor and use thereof
WO2017215571A1 (en) Reinforced profile and preparation method therefor and application thereof
CN107974018B (en) Special material for high-weather-resistance PMMA (polymethyl methacrylate) film and preparation method and application thereof
CN105017610A (en) Filling masterbatch for PE bellows and preparation method therefor
CN113105702A (en) Internal reinforced section bar for alloy modification reinforcement through PETG (polyethylene terephthalate glycol) and PVC (polyvinyl chloride) and preparation method thereof
CN104774384A (en) Polypropylene composite material for vehicle door decoration plate
TWI734076B (en) Continuous pultrusion to produce LFT extruded parts and the used extruder
JP2003003621A (en) Plastic building material and method for producing the same
CN112280213A (en) Formula and production process of high-toughness high-strength PVC-u flame-retardant electrical casing
CN113088016A (en) Internal reinforced section bar reinforced by PVC and preparation method thereof
CN104059346A (en) Preparation method for white flame-retardant polycarbonate composite material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17812683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17812683

Country of ref document: EP

Kind code of ref document: A1