WO2017215509A1 - 剩余电流断路器的切换装置 - Google Patents

剩余电流断路器的切换装置 Download PDF

Info

Publication number
WO2017215509A1
WO2017215509A1 PCT/CN2017/087566 CN2017087566W WO2017215509A1 WO 2017215509 A1 WO2017215509 A1 WO 2017215509A1 CN 2017087566 W CN2017087566 W CN 2017087566W WO 2017215509 A1 WO2017215509 A1 WO 2017215509A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
residual current
power supply
switching
type
Prior art date
Application number
PCT/CN2017/087566
Other languages
English (en)
French (fr)
Inventor
陈永亮
葛伟骏
徐磊
付华
Original Assignee
上海电科电器科技有限公司
浙江正泰电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海电科电器科技有限公司, 浙江正泰电器股份有限公司 filed Critical 上海电科电器科技有限公司
Priority to EP17812620.7A priority Critical patent/EP3471229A4/en
Publication of WO2017215509A1 publication Critical patent/WO2017215509A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/05Details with means for increasing reliability, e.g. redundancy arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers
    • H02H3/332Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers with means responsive to dc component in the fault current

Definitions

  • This invention relates to the field of low voltage electrical appliances and, more particularly, to residual current circuit breakers.
  • the residual current circuit breaker is mainly used for the protection of surge current.
  • 10 surge currents are applied to one of the RCCB/RCBO optional poles, and each applied surge current is applied twice. Polarity, the time interval between the application of inrush currents for two consecutive times is about 30 s.
  • the inrush current is generated by a current generator that attenuates the inrush current by 8/20us.
  • the residual current circuit breaker that meets the above criteria is called the A-type/AC type residual current circuit breaker. It is characterized in that the operation process of the circuit breaker is independent of whether there is a power supply voltage. The basis of the tripping is mainly based on the current judgment.
  • Type B residual current circuit breakers are suitable for electrical equipment that requires uninterrupted power supply, such as frequency converters, medical equipment, elevators, etc. These equipments cannot be disconnected at will due to the requirements of the environment.
  • Type B features cover Type A.
  • the type A residual current circuit breaker and the type B residual current circuit breaker overlap in the working range and function, for example, in the 8/20us surge current. There is overlap.
  • Type A residual current operated circuit breakers may cause false tripping when inrush current occurs. Such phenomena may be randomly generated and conform to the A-type national standard.
  • the existing residual current circuit breakers are not clearly distinguished in the overlapping functions of the A and B types. Therefore, when there is an inrush current in the overlapping portion, for example, when a surge current of 8/20 us occurs, even if the residual current is broken.
  • the device is currently operating in the B mode. Since the A mode is not completely isolated, the above surge current may cause the residual current circuit breaker to trip. Because the residual current circuit breaker works in the B-type mode at this time, false tripping should not be allowed, so a similar surge current will cause the situation not to comply with the national standard. If the electrical equipment at this time is a frequency converter, medical equipment, or elevator electrical equipment, it will cause huge economic loss or even life and property safety.
  • the invention discloses a switching device for a residual current circuit breaker, comprising a type A residual current detecting driving circuit, a B type residual current detecting driving circuit, a switching power supply, a trip execution circuit and a switching driving circuit, wherein the B type residual current detecting driving
  • the circuit is powered by a switching power supply.
  • the drive switching circuit detects the power supply voltage of the switching power supply.
  • the drive switching circuit detects the power supply voltage, the drive switching circuit turns on the B-type residual current detection drive circuit and the trip execution circuit, and the B-type residual current detection drive circuit drives the trip execution circuit.
  • the drive switching circuit does not detect the power supply voltage, the drive switching circuit turns on the A-type residual current detection drive circuit and the trip execution circuit, and the A-type residual current detection drive circuit drives the trip execution circuit.
  • the drive switching circuit includes a switching element and a voltage dividing circuit, the voltage dividing circuit is connected to the switching power supply, and the switching element is connected to the A-type residual current detecting driving circuit.
  • the switching power supply outputs the power supply voltage, the voltage dividing circuit causes the switching element to be turned on, the A type residual current detecting driving circuit is short-circuited, and the A-type residual current detecting driving circuit does not work.
  • the switching power supply does not output the power supply voltage, the switching element is not turned on, and the type A residual current detecting drive circuit operates.
  • the voltage dividing circuit includes a first voltage dividing resistor and a second voltage dividing resistor connected in series, and the first voltage dividing resistor and the second voltage dividing resistor form a resistor series voltage divider.
  • the switching element is an N-channel MOSFET, an N-channel MOSFET
  • the gate is connected between the first voltage dividing resistor and the second voltage dividing resistor, and the source and the drain of the N-channel MOSFET are respectively connected to the anode and the cathode of the A-type residual current detecting driving circuit.
  • the switching power supply outputs the power supply voltage, the voltage dividing circuit makes the N-channel MOSFET turn on, the A-type residual current detecting driving circuit is short-circuited, the A-type residual current detecting driving circuit does not work, the switching power supply does not output the power supply voltage, and the voltage dividing circuit makes N The channel MOSFET is not conducting, and the type A residual current detection drive circuit operates.
  • the drive switching circuit includes a selection component and a voltage divider circuit, the voltage divider circuit is coupled to the switching power supply, and the selection component is selectively coupled to the Type A residual current sense drive circuit or the Type B residual current sense drive circuit.
  • the switching power supply outputs a power supply voltage, and the voltage dividing circuit causes the selection component to select to turn on the B-type residual current detecting driving circuit and disconnect the A-type residual current detecting driving circuit.
  • the switching power supply does not output the power supply voltage, and the voltage dividing circuit causes the selection component to select to turn on the A-type residual current detecting driving circuit and disconnect the B-type residual current detecting driving circuit.
  • the voltage dividing circuit comprises an NPN transistor, a third voltage dividing resistor, a fourth voltage dividing resistor and a Zener diode.
  • the base and emitter of the NPN transistor are connected in parallel with the fourth voltage dividing resistor, and the base of the NPN transistor In series with the Zener diode and the third voltage dividing resistor, the NPN transistor, the third voltage dividing resistor, the fourth voltage dividing resistor and the Zener diode form a resistor series voltage divider.
  • the selection component is a relay
  • the relay is a double pole double throw relay
  • the input of the relay is connected to the collector of the NPN transistor
  • the output of the relay is connected to the trip execution circuit
  • the normally closed contact of the relay is connected to A type residual current detection drive circuit
  • the normally open contact of the relay is connected to the B type residual current detection drive circuit.
  • the switching power supply outputs the power supply voltage, and the voltage dividing circuit causes the normally open contact of the relay to be closed, the normally closed contact to be opened, and the B type residual current detecting driving circuit is turned on to drive the tripping execution circuit.
  • the switching power supply does not output the power supply voltage, the voltage dividing circuit closes the normally closed contact of the relay, the normally open contact opens, and the type A residual current detecting drive circuit is turned on to drive the trip execution circuit.
  • the Type A residual current detecting drive circuit is not powered by the switching power supply, and the Type A residual current detecting drive circuit amplifies the residual current signal by using a capacitor series circuit or a parallel resonant circuit to output a trip signal.
  • the B-type residual current detecting drive circuit is powered by a switching power supply, and the B-type residual current detecting driving circuit detects an AC residual current below 1 kHz, a pulsating DC residual current, a smooth DC residual current, and a B-type residual current detecting driving circuit.
  • the trip signal is output directly.
  • the input of the switching power supply is a commercial frequency alternating current, including 230V alternating current or power frequency 400V alternating current.
  • the output of the switching power supply is positive and negative dual voltage DC, including +5V/-5V, +9V/-9V, or +12V/-12V dual voltage DC.
  • the switching device of the residual current circuit breaker of the present invention can switch between the A-type residual current detecting driving circuit and the B-type residual current detecting driving circuit according to whether or not there is a cell voltage, and eliminates overlapping interference, and switches to the B-type residual current.
  • the phenomenon of erroneous tripping can be avoided.
  • FIG. 1 is a block diagram showing the structure of a switching device for a residual current circuit breaker according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing a drive switching circuit in a switching device of a residual current circuit breaker according to an embodiment of the present invention.
  • FIG. 3 is a circuit diagram showing a drive switching circuit in a switching device of a residual current circuit breaker according to another embodiment of the present invention.
  • FIG. 1 discloses a block diagram of a switching device of a residual current circuit breaker according to an embodiment of the present invention.
  • the switching device of the residual current circuit breaker includes a type A residual current detecting driving circuit 102, a type B residual current detecting driving circuit 104, a switching power supply 106, and a tripping
  • the circuit 108 is executed and the drive circuit 110 is switched.
  • the type A residual current detecting drive circuit 102 is independent of the power supply voltage
  • the type B residual current detecting drive circuit 104 is associated with the power supply voltage
  • the type B residual current detecting drive circuit 104 is powered by the switching power supply 106.
  • the drive switching circuit 110 detects whether or not the power supply voltage of the switching power supply exists.
  • the drive switching circuit 110 detects the power supply voltage, the drive switching circuit 110 turns on the B-type residual current detection drive circuit 104 and the trip execution circuit 108, and the B-type residual current detection drive circuit 104 drives the trip execution circuit 108.
  • the drive switching circuit 110 does not detect the power supply voltage, the drive switching circuit 110 turns on the A-type residual current detection drive circuit 102 and the trip execution circuit 108, and the A-type residual current detection drive circuit 102 drives the trip execution circuit 108.
  • the Type A residual current sensing drive circuit 102 is not powered by the switching power supply 106.
  • the A-type residual current detecting drive circuit 102 amplifies the residual current signal by using a capacitor series circuit or a parallel resonant circuit to output a trip signal.
  • the residual current signal can be collected by a current transformer.
  • the Type B residual current sensing drive circuit 104 is powered by the switching power supply 106.
  • the B-type residual current detecting drive circuit 104 can detect an AC residual current of 1 kHz or less, a pulsating DC residual current, and a smooth DC residual current.
  • the B-type residual current detecting drive circuit 104 can also detect the AC residual current and the pulsating DC residual current in the event of a voltage loss.
  • the B-type residual current detecting drive circuit 104 directly outputs a trip signal.
  • the input of the switching power supply 106 for powering the B-type residual current detecting driving circuit is a commercial frequency alternating current, including 230V alternating current or 400V alternating current
  • the output of the switching power supply 106 is positive and negative dual voltage direct current, including +5V. /-5V, +9V/-9V, or +12V/-12V dual voltage DC.
  • the switching power supply 106 of the present invention can select any phase line and neutral line or any two-phase line as input under the three-phase four-wire system when inputting 400V AC input. normal work.
  • the positive and negative DC voltages generated after the conversion are balanced by the voltage balance circuit to reduce the absolute value error between the positive and negative voltages, so that the detection accuracy of the forward or negative residual current of the residual current detecting circuit portion is similar.
  • the function of the drive switching circuit 110 is to select the type A residual power according to whether the power supply voltage exists or not.
  • the flow detecting drive circuit 102 or the B-type residual current detecting drive circuit 104 functions as a drive circuit of the trip execution circuit 108.
  • the switching mode of the driving switching circuit 110 may be electrical switching or physical switching.
  • the drive switching circuit 110 employs an electrical switching mode.
  • the drive switching circuit includes a switching element and a voltage dividing circuit, the voltage dividing circuit is connected to the switching power supply, and the switching element is connected to the A-type residual current detecting driving circuit 102.
  • the switching power supply outputs the power supply voltage, the voltage dividing circuit causes the switching element to be turned on, the A type residual current detecting driving circuit is short-circuited, and the A-type residual current detecting driving circuit does not work.
  • the B-type residual current detecting drive circuit starts to work, and the trip execution circuit is driven by the B-type residual current detecting driving circuit.
  • the switching power supply does not output the power supply voltage, the switching element is not turned on, and the A-type residual current detecting driving circuit operates.
  • the tripping execution circuit is driven by the A-type residual current detecting driving circuit. Since the B-type residual current detection drive circuit needs to rely on the power supply voltage to operate, the B-type residual current detection drive circuit does not operate when the switching power supply does not output the power supply voltage. Referring to FIG.
  • the voltage dividing circuit includes a first voltage dividing resistor R1 and a second voltage dividing resistor R2 connected in series, and the first voltage dividing resistor R1 and the second voltage dividing resistor R2 form a resistor series voltage divider.
  • the two ends of the resistor series divider are connected to VCC and GND respectively, VCC is the positive terminal of the switching power supply, and GND is ground.
  • the switching element Q1 is an N-channel MOSFET, the gate of the N-channel MOSFET Q1 is connected between the first voltage dividing resistor R1 and the second voltage dividing resistor R2, and the source and the drain of the N-channel MOSFET Q1 are respectively associated with the A type.
  • the positive and negative electrodes of the residual current detecting drive circuit 102 are connected.
  • the switching power supply When the switching power supply outputs the power supply voltage, a voltage is generated in the voltage dividing circuit, so that the N-channel MOSFET is turned on, and the positive and negative terminals of the A-type residual current detecting driving circuit are short-circuited, and the A-type residual current detecting driving circuit does not operate.
  • the power supply voltage outputted by the switching power supply causes the B-type residual current detecting drive circuit to operate, and the trip execution circuit is driven by the B-type residual current detecting driving circuit.
  • the switching power supply does not output the power supply voltage, there is no voltage in the voltage dividing circuit, the N-channel MOSFET is not turned on, and the type A residual current detecting driving circuit operates. Since the switching power supply has no output power supply voltage, the B-type residual current detection drive circuit does not work, and the trip execution circuit is driven by the A-type residual current detection drive circuit. Road drive.
  • the drive switching circuit 110 employs a physical switching manner.
  • the drive switching circuit includes a selection component and a voltage divider circuit, the voltage divider circuit is coupled to the switching power supply, and the selection component is selectively coupled to the Type A residual current detection drive circuit or the Type B residual current detection drive circuit.
  • the switching power supply outputs a power supply voltage, and the voltage dividing circuit causes the selection component to select to turn on the B-type residual current detecting driving circuit to disconnect the A-type residual current detecting driving circuit, and the B-type residual current detecting driving circuit drives the tripping execution circuit.
  • the voltage dividing circuit includes an NPN transistor Q2, a third voltage dividing resistor R3, a fourth voltage dividing resistor R4, and a Zener diode VR.
  • the base and emitter of the NPN transistor Q2 are connected in parallel with the fourth voltage dividing resistor R4.
  • the base of the NPN transistor Q2 is connected in series with the Zener diode VR and the third voltage dividing resistor R3.
  • the NPN transistor Q2, the third voltage dividing resistor R3, the fourth voltage dividing resistor R4, and the Zener diode VR form a resistor series voltage divider.
  • One end of the third voltage dividing resistor R3 is connected to VCC
  • VCC is the positive pole of the switching power supply
  • the emitter of the NPN transistor Q2 is connected to VSS
  • VSS is the negative pole of the switching power supply.
  • the selection component is relay K1 and relay K1 is a double pole double throw relay.
  • the input of the relay K1 is connected to the collector of the NPN transistor Q2.
  • the input of the relay K1 is connected between the collector of the NPN transistor Q2 and VCC, and the collector of the NPN transistor Q2 and A diode D is also provided between the VCCs.
  • the output of relay K1 is coupled to trip execution circuit 108.
  • the normally closed contact of the relay K1 is connected to the A-type residual current detecting drive circuit 102, and the normally open contact of the relay K1 is connected to the B-type residual current detecting drive circuit 104.
  • the switching power supply outputs a power supply voltage, the voltage dividing circuit closes the normally open contact of the relay K1, the normally closed contact opens, and the B type residual current detecting drive circuit 104 is connected to the drive trip execution circuit 108.
  • the B-type residual current detecting drive circuit 104 starts operation when there is a power supply voltage, and the drive trip execution circuit 108 is driven by the B-type residual current detecting drive circuit 104.
  • the switching power supply does not output the power supply voltage, and the voltage dividing circuit closes the normally closed contact of the relay, which is normally open The point open, the type A residual current detecting drive circuit 102 is connected to the drive trip execution circuit 108. Since the power supply voltage does not exist, the B-type residual current detecting drive circuit 104 does not operate.
  • the type A residual current detecting drive circuit 102 does not need to be dependent on the power source voltage, and therefore the drive trip execution circuit 108 is driven by the type A residual current detecting drive circuit 102.
  • the switching device of the residual current circuit breaker of the present invention can switch between the A-type residual current detecting driving circuit and the B-type residual current detecting driving circuit according to whether or not there is a cell voltage, and eliminates overlapping interference, and switches to the B-type residual current.
  • the phenomenon of erroneous tripping can be avoided.

Abstract

一种剩余电流断路器的切换装置,包括A型剩余电流检测驱动电路(102)、B型剩余电流检测驱动电路(104)、开关电源(106)、脱扣执行电路(108)和驱动切换电路(110),其中B型剩余电流检测驱动电路由开关电源供电。驱动切换电路检测开关电源的电源电压。驱动切换电路检测到电源电压,驱动切换电路接通B型剩余电流检测驱动电路和脱扣执行电路,由B型剩余电流检测驱动电路驱动脱扣执行电路。驱动切换电路未检测到电源电压,驱动切换电路接通A型剩余电流检测驱动电路和脱扣执行电路,由A型剩余电流检测驱动电路驱动脱扣执行电路。该装置能够根据是否存在电源电压在A型剩余电流检测驱动电路和B型剩余电流检测驱动电路之间进行切换,能够避免误脱扣的现象。

Description

剩余电流断路器的切换装置 技术领域
本发明涉及低压电器领域,更具体地说,涉及剩余电流断路器。
背景技术
剩余电流断路器主要用于浪涌电流的保护。在国家标准GB 16916.1《家用和类似用途的不带过电流保护的剩余电流动作断路器(RCCB)第1部分一般规则》中的9.19.2条款和国家标准GB 16917.1《家用和类似用途的带过电流保护的剩余电流动作断路器(RCBO)第1部分一般规则》中的9.19.2条款规定:对RCCB/RCBO任选的一极施加10次浪涌电流,每施加两次变换浪涌电流的极性,连续两次施加浪涌电流之间的时间间隔约30s。浪涌电流由电流发生器产生,为8/20us衰减浪涌电流。对一般型RCCB/RCBO允许在试验过程中可以脱扣。满足上述标准的剩余电流断路器称为A型/AC型剩余电流断路器,其特点是断路器的动作过程与是否存在电源电压无关,脱扣的依据主要是根据电流判断。
在国家标准GB 22794《家用和类似用途的不带和带过电流保护的F型和B型剩余电流动作断路器》中的9.19.2条款规定:F型和B型RCCB/RCBO不允许在试验过程中脱扣。GB 22794作为对GB 16916.1/GB 16917.1的补充条款,其中关于浪涌电流试验功能要求不同,而F型和B型RCCB/RCBO需要在满足GB 16916.1/GB 16917.1且同时满足GB 22794,即F型和B型RCCB/RCBO不允许在试验过程中脱扣。GB22794中的浪涌电流也是由电流发生器产生,为8/20us衰减浪涌电流。
B型剩余电流断路器适用于要求不间断供电的电气设备,例如变频器、医疗设备、电梯等等,这些设备由于使用环境的要求,不能随意出现断电现象。B型的功能覆盖了A型。A型剩余电流断路器和B型剩余电流断路器在工作范围和功能上存在重叠的部分,例如在8/20us的浪涌电流上两者 存在重叠。A型剩余电流动作断路器在浪涌电流发生时会产生误脱扣现象,这类现象可能是随机产生的,并且符合A型的国标。现有的剩余电流断路器在A型和B型的功能重叠部分未加以明显区分,因此,当出现重叠部分的浪涌电流时,例如,8/20us的浪涌电流出现时,即使剩余电流断路器目前是工作在B型模式下,由于A型模式并没有被完全隔离,上述的浪涌电流还是可能引起剩余电流断路器出现误脱扣。因为此时剩余电流断路器是工作在B型模式下,应当不允许出现误脱扣,所以类似的浪涌电流会引起不符合国标的情况。如果这时的用电设备是变频器、医疗设备、电梯电气设备,会引起巨大的经济损失或者甚至是生命财产安全。
发明内容
本发明揭示了一种剩余电流断路器的切换装置,包括A型剩余电流检测驱动电路、B型剩余电流检测驱动电路、开关电源、脱扣执行电路和切换驱动电路,其中B型剩余电流检测驱动电路由开关电源供电。驱动切换电路检测开关电源的电源电压。驱动切换电路检测到电源电压,驱动切换电路接通B型剩余电流检测驱动电路和脱扣执行电路,由B型剩余电流检测驱动电路驱动脱扣执行电路。驱动切换电路未检测到电源电压,驱动切换电路接通A型剩余电流检测驱动电路和脱扣执行电路,由A型剩余电流检测驱动电路驱动脱扣执行电路。
在一个实施例中,驱动切换电路包括开关元件和分压电路,分压电路连接到开关电源,开关元件连接到A型剩余电流检测驱动电路。开关电源输出电源电压,分压电路使得开关元件导通,A型剩余电流检测驱动电路被短接,A型剩余电流检测驱动电路不工作。开关电源未输出电源电压,开关元件不导通,A型剩余电流检测驱动电路工作。
在一个实施例中,分压电路包括由串联的第一分压电阻和第二分压电阻,第一分压电阻和第二分压电阻形成电阻串联分压器。
在一个实施例中,开关元件是N沟道MOSFET,N沟道MOSFET的 栅极连接到第一分压电阻和第二分压电阻之间,N沟道MOSFET的源极和漏极分别与A型剩余电流检测驱动电路的正极和负极连接。开关电源输出电源电压,分压电路使得N沟道MOSFET导通,A型剩余电流检测驱动电路被短接,A型剩余电流检测驱动电路不工作,开关电源未输出电源电压,分压电路使得N沟道MOSFET不导通,A型剩余电流检测驱动电路工作。
在一个实施例中,驱动切换电路包括选择元件和分压电路,分压电路连接到开关电源,选择元件选择性地连接A型剩余电流检测驱动电路或B型剩余电流检测驱动电路。开关电源输出电源电压,分压电路使得选择元件选择接通B型剩余电流检测驱动电路而断开A型剩余电流检测驱动电路。开关电源未输出电源电压,分压电路使得选择元件选择接通A型剩余电流检测驱动电路而断开B型剩余电流检测驱动电路。
在一个实施例中,分压电路包括NPN三极管、第三分压电阻、第四分压电阻和稳压管,NPN三极管的基极和发射极与第四分压电阻并联,NPN三极管的基极与稳压管和第三分压电阻串联,NPN三极管、第三分压电阻、第四分压电阻和稳压管形成电阻串联分压器。
在一个实施例中,选择元件是继电器,继电器是双刀双掷继电器,继电器的输入端连接到NPN三极管的集电极,继电器的输出端连接到脱扣执行电路,继电器的常闭触点连接到A型剩余电流检测驱动电路,继电器的常开触点连接到B型剩余电流检测驱动电路。开关电源输出电源电压,分压电路使得继电器的常开触点闭合,常闭触点打开,B型剩余电流检测驱动电路被接通驱动脱扣执行电路。开关电源未输出电源电压,分压电路使得继电器的常闭触点闭合,常开触点打开,A型剩余电流检测驱动电路被接通驱动脱扣执行电路。
在一个实施例中,A型剩余电流检测驱动电路不由开关电源供电,A型剩余电流检测驱动电路利用电容串联电路或者并联谐振电路对剩余电流信号进行放大以输出脱扣信号。
在一个实施例中,B型剩余电流检测驱动电路由开关电源供电,B型剩余电流检测驱动电路检测1kHz以下的交流剩余电流、脉动直流剩余电流、平滑直流剩余电流,B型剩余电流检测驱动电路直接输出脱扣信号。
在一个实施例中,开关电源的输入为工频交流电,包括230V交流电或工频400V交流电。开关电源的输出为正负双电压直流电,包括+5V/-5V、+9V/-9V、或+12V/-12V双电压直流电。
本发明的剩余电流断路器的切换装置能够根据是否存在单元电压在A型剩余电流检测驱动电路和B型剩余电流检测驱动电路之间进行切换,排除重叠干扰的情况,在切换到B型剩余电流检测驱动电路时能够避免误脱扣的现象。
附图说明
本发明上述的以及其他的特征、性质和优势将通过下面结合附图和实施例的描述而变的更加明显,在附图中相同的附图标记始终表示相同的特征,其中:
图1揭示了根据本发明的一实施例的剩余电流断路器的切换装置的结构框图。
图2揭示了根据本发明的一实施例的剩余电流断路器的切换装置中驱动切换电路的电路图。
图3揭示了根据本发明的另一实施例的剩余电流断路器的切换装置中驱动切换电路的电路图。
具体实施方式
参考图1所示,图1揭示了根据本发明的一实施例的剩余电流断路器的切换装置的结构框图。该剩余电流断路器的切换装置包括A型剩余电流检测驱动电路102、B型剩余电流检测驱动电路104、开关电源106、脱扣 执行电路108和切换驱动电路110。A型剩余电流检测驱动电路102与电源电压无关,B型剩余电流检测驱动电路104与电源电压有关,B型剩余电流检测驱动电路104由开关电源106供电。驱动切换电路110检测开关电源的电源电压是否存在。驱动切换电路110检测到电源电压,驱动切换电路110接通B型剩余电流检测驱动电路104和脱扣执行电路108,由B型剩余电流检测驱动电路104驱动脱扣执行电路108。驱动切换电路110未检测到电源电压,驱动切换电路110接通A型剩余电流检测驱动电路102和脱扣执行电路108,由A型剩余电流检测驱动电路102驱动脱扣执行电路108。
在一个实施例中,A型剩余电流检测驱动电路102不由开关电源106供电。A型剩余电流检测驱动电路102利用电容串联电路或者并联谐振电路对剩余电流信号进行放大以输出脱扣信号。剩余电流信号可以由电流互感器采集。
在一个实施例中,B型剩余电流检测驱动电路104由开关电源106供电。B型剩余电流检测驱动电路104能检测1kHz以下的交流剩余电流、脉动直流剩余电流、平滑直流剩余电流。B型剩余电流检测驱动电路104还能在失压情况下检测交流剩余电流及脉动直流剩余电流。B型剩余电流检测驱动电路104直接输出脱扣信号。
在一个实施例中,为B型剩余电流检测驱动电路供电的开关电源106的输入为工频交流电,包括230V交流电或工频400V交流电,开关电源106的输出为正负双电压直流电,包括+5V/-5V、+9V/-9V、或+12V/-12V双电压直流电。与现有技术中的开关电源相比,本发明的开关电源106在400V交流电输入时,在三相四线制下可以选取任意一相线与中性线或者任意两相线作为输入,均可正常工作。转换后产生的正负直流电压经过电压平衡电路进行平衡,使其正负电压之间绝对值误差缩小,这样可以使得剩余电流检测电路部分的正向或者负向剩余电流的检测精度相近。
驱动切换电路110的作用是根据电源电压是否存在来选择A型剩余电 流检测驱动电路102或者B型剩余电流检测驱动电路104作为脱扣执行电路108的驱动电路。驱动切换电路110的切换方式可以采用电气切换或者物理切换。
图2揭示了根据本发明的一实施例的剩余电流断路器的切换装置中驱动切换电路的电路图。在图2所示的实施例中,驱动切换电路110采用电气切换的方式。如图所示,驱动切换电路包括开关元件和分压电路,分压电路连接到开关电源,开关元件连接到A型剩余电流检测驱动电路102。开关电源输出电源电压,分压电路使得开关元件导通,A型剩余电流检测驱动电路被短接,A型剩余电流检测驱动电路不工作。在开关电源输出电源电压时,B型剩余电流检测驱动电路启动工作,此时脱扣执行电路由B型剩余电流检测驱动电路驱动。开关电源未输出电源电压,开关元件不导通,A型剩余电流检测驱动电路工作,此时脱扣执行电路由A型剩余电流检测驱动电路驱动。由于B型剩余电流检测驱动电路需要依靠电源电压才能工作,在开关电源未输出电源电压时,B型剩余电流检测驱动电路不工作。参考图2,分压电路包括由串联的第一分压电阻R1和第二分压电阻R2,第一分压电阻R1和第二分压电阻R2形成电阻串联分压器。电阻串联分压器的两端分别连接到VCC和GND,VCC是开关电源的正极端,GND是地。开关元件Q1是N沟道MOSFET,N沟道MOSFET Q1的栅极连接到第一分压电阻R1和第二分压电阻R2之间,N沟道MOSFET Q1的源极和漏极分别与A型剩余电流检测驱动电路102的正极和负极连接。开关电源输出电源电压时,分压电路中产生电压,使得N沟道MOSFET导通,A型剩余电流检测驱动电路的正极和负极之间被短接,A型剩余电流检测驱动电路不工作。同时,开关电源输出的电源电压使得B型剩余电流检测驱动电路工作,脱扣执行电路由B型剩余电流检测驱动电路驱动。开关电源未输出电源电压,分压电路中没有电压,N沟道MOSFET不导通,A型剩余电流检测驱动电路工作。由于开关电源没有输出电源电压,因此B型剩余电流检测驱动电路不工作,脱扣执行电路由A型剩余电流检测驱动电 路驱动。
图3揭示了根据本发明的另一实施例的剩余电流断路器的切换装置中驱动切换电路的电路图。在图3所示的实施例中,驱动切换电路110采用物理切换的方式。如图所示,驱动切换电路包括选择元件和分压电路,分压电路连接到开关电源,选择元件选择性地连接A型剩余电流检测驱动电路或B型剩余电流检测驱动电路。开关电源输出电源电压,分压电路使得选择元件选择接通B型剩余电流检测驱动电路而断开A型剩余电流检测驱动电路,由B型剩余电流检测驱动电路驱动脱扣执行电路。开关电源未输出电源电压,分压电路使得选择元件选择接通A型剩余电流检测驱动电路而断开B型剩余电流检测驱动电路,由A型剩余电流检测驱动电路驱动脱扣执行电路。如图3所示,分压电路包括NPN三极管Q2、第三分压电阻R3、第四分压电阻R4和稳压管VR。NPN三极管Q2的基极和发射极与第四分压电阻R4并联,NPN三极管Q2的基极与稳压管VR和第三分压电阻R3串联。NPN三极管Q2、第三分压电阻R3、第四分压电阻R4和稳压管VR形成电阻串联分压器。第三分压电阻R3的一端连接到VCC,VCC是开关电源的正极,NPN三极管Q2的发射极连接到VSS,VSS是开关电源的负极。选择元件是继电器K1,继电器K1是双刀双掷继电器。继电器K1的输入端连接到NPN三极管Q2的集电极,在图示的实施例中,继电器K1的输入端连接在NPN三极管Q2的集电极和VCC之间,并且,在NPN三极管Q2的集电极和VCC之间还设置了二极管D。继电器K1的输出端连接到脱扣执行电路108。继电器K1的常闭触点连接到A型剩余电流检测驱动电路102,继电器K1的常开触点连接到B型剩余电流检测驱动电路104。开关电源输出电源电压,分压电路使得继电器K1的常开触点闭合,常闭触点打开,B型剩余电流检测驱动电路104被连接至驱动脱扣执行电路108。B型剩余电流检测驱动电路104在存在电源电压时启动工作,驱动脱扣执行电路108由B型剩余电流检测驱动电路104驱动。开关电源未输出电源电压,分压电路使得继电器的常闭触点闭合,常开触 点打开,A型剩余电流检测驱动电路102被连接至驱动脱扣执行电路108。由于不存在电源电压,B型剩余电流检测驱动电路104不工作。A型剩余电流检测驱动电路102不需要依赖于电源电压,因此驱动脱扣执行电路108由A型剩余电流检测驱动电路102驱动。
本发明的剩余电流断路器的切换装置能够根据是否存在单元电压在A型剩余电流检测驱动电路和B型剩余电流检测驱动电路之间进行切换,排除重叠干扰的情况,在切换到B型剩余电流检测驱动电路时能够避免误脱扣的现象。
上述实施例是提供给熟悉本领域内的人员来实现或使用本发明的,熟悉本领域的人员可在不脱离本发明的发明思想的情况下,对上述实施例做出种种修改或变化,因而本发明的保护范围并不被上述实施例所限,而应该是符合权利要求书提到的创新性特征的最大范围。

Claims (10)

  1. 一种剩余电流断路器的切换装置,其特征在于,包括A型剩余电流检测驱动电路、B型剩余电流检测驱动电路、开关电源、脱扣执行电路和切换驱动电路,其中B型剩余电流检测驱动电路由开关电源供电;
    所述驱动切换电路检测开关电源的电源电压,
    驱动切换电路检测到电源电压,驱动切换电路接通B型剩余电流检测驱动电路和脱扣执行电路,由B型剩余电流检测驱动电路驱动脱扣执行电路;
    驱动切换电路未检测到电源电压,驱动切换电路接通A型剩余电流检测驱动电路和脱扣执行电路,由A型剩余电流检测驱动电路驱动脱扣执行电路。
  2. 如权利要求1所述的剩余电流断路器的切换装置,其特征在于,所述驱动切换电路包括开关元件和分压电路,所述分压电路连接到开关电源,所述开关元件连接到A型剩余电流检测驱动电路;
    开关电源输出电源电压,分压电路使得开关元件导通,A型剩余电流检测驱动电路被短接,A型剩余电流检测驱动电路不工作;
    开关电源未输出电源电压,开关元件不导通,A型剩余电流检测驱动电路工作。
  3. 如权利要求2所述的剩余电流断路器的切换装置,其特征在于,
    所述分压电路包括由串联的第一分压电阻和第二分压电阻,第一分压电阻和第二分压电阻形成电阻串联分压器。
  4. 如权利要求3所述的剩余电流断路器的切换装置,其特征在于,
    所述开关元件是N沟道MOSFET,N沟道MOSFET的栅极连接到第 一分压电阻和第二分压电阻之间,N沟道MOSFET的源极和漏极分别与A型剩余电流检测驱动电路的正极和负极连接;
    开关电源输出电源电压,分压电路使得N沟道MOSFET导通,A型剩余电流检测驱动电路被短接,A型剩余电流检测驱动电路不工作,开关电源未输出电源电压,分压电路使得N沟道MOSFET不导通,A型剩余电流检测驱动电路工作。
  5. 如权利要求1所述的剩余电流断路器的切换装置,其特征在于,所述驱动切换电路包括选择元件和分压电路,所述分压电路连接到开关电源,所述选择元件选择性地连接A型剩余电流检测驱动电路或B型剩余电流检测驱动电路;
    开关电源输出电源电压,分压电路使得选择元件选择接通B型剩余电流检测驱动电路而断开A型剩余电流检测驱动电路;
    开关电源未输出电源电压,分压电路使得选择元件选择接通A型剩余电流检测驱动电路而断开B型剩余电流检测驱动电路。
  6. 如权利要求5所述的剩余电流断路器的切换装置,其特征在于,所述分压电路包括NPN三极管、第三分压电阻、第四分压电阻和稳压管,NPN三极管的基极和发射极与第四分压电阻并联,NPN三极管的基极与稳压管和第三分压电阻串联,NPN三极管、第三分压电阻、第四分压电阻和稳压管形成电阻串联分压器。
  7. 如权利要求6所述的剩余电流断路器的切换装置,其特征在于,所述选择元件是继电器,所述继电器是双刀双掷继电器,所述继电器的输入端连接到NPN三极管的集电极,继电器的输出端连接到脱扣执行电路,继电器的常闭触点连接到A型剩余电流检测驱动电路,继电器的常开触点连接到B型剩余电流检测驱动电路;
    开关电源输出电源电压,分压电路使得继电器的常开触点闭合,常闭触点打开,B型剩余电流检测驱动电路被接通驱动脱扣执行电路;
    开关电源未输出电源电压,分压电路使得继电器的常闭触点闭合,常开触点打开,A型剩余电流检测驱动电路被接通驱动脱扣执行电路。
  8. 如权利要求1所述的剩余电流断路器的切换装置,其特征在于,所述A型剩余电流检测驱动电路不由所述开关电源供电,A型剩余电流检测驱动电路利用电容串联电路或者并联谐振电路对剩余电流信号进行放大以输出脱扣信号。
  9. 如权利要求1所述的剩余电流断路器的切换装置,其特征在于,所述B型剩余电流检测驱动电路由所述开关电源供电,B型剩余电流检测驱动电路检测1kHz以下的交流剩余电流、脉动直流剩余电流、平滑直流剩余电流,B型剩余电流检测驱动电路直接输出脱扣信号。
  10. 如权利要求1所述的剩余电流断路器的切换装置,其特征在于,
    所述开关电源的输入为工频交流电,包括230V交流电或工频400V交流电;
    所述开关电源的输出为正负双电压直流电,包括+5V/-5V、+9V/-9V、或+12V/-12V双电压直流电。
PCT/CN2017/087566 2016-06-12 2017-06-08 剩余电流断路器的切换装置 WO2017215509A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17812620.7A EP3471229A4 (en) 2016-06-12 2017-06-08 SWITCHING APPARATUS FOR RESIDUAL CURRENT CIRCUIT BREAKER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610407747.8A CN105914723B (zh) 2016-06-12 2016-06-12 剩余电流断路器的切换装置
CN201610407747.8 2016-06-12

Publications (1)

Publication Number Publication Date
WO2017215509A1 true WO2017215509A1 (zh) 2017-12-21

Family

ID=56750090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087566 WO2017215509A1 (zh) 2016-06-12 2017-06-08 剩余电流断路器的切换装置

Country Status (3)

Country Link
EP (1) EP3471229A4 (zh)
CN (1) CN105914723B (zh)
WO (1) WO2017215509A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105914723B (zh) * 2016-06-12 2019-05-03 上海电科电器科技有限公司 剩余电流断路器的切换装置
CN112311088B (zh) * 2019-07-29 2024-03-29 南寅 一种电力及家居信息监控系统、方法、设备及介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0797282A2 (de) * 1996-03-18 1997-09-24 Siemens Aktiengesellschaft Fehlerstromschutzschalter mit Energiespeicherschaltung
CN203352135U (zh) * 2013-05-30 2013-12-18 浙江朗威微系统有限公司 一种a型低压漏电保护器专用集成电路
CN104659742A (zh) * 2013-11-15 2015-05-27 西门子公司 一种剩余电流装置
CN104795790A (zh) * 2015-03-27 2015-07-22 余姚市嘉荣电子电器有限公司 可自动识别切换电压电流型漏电保护器装置
CN104934931A (zh) * 2014-03-21 2015-09-23 上海电科电器科技有限公司 剩余电流保护装置
CN105914723A (zh) * 2016-06-12 2016-08-31 上海电科电器科技有限公司 剩余电流断路器的切换装置
CN205863908U (zh) * 2016-06-12 2017-01-04 上海电科电器科技有限公司 剩余电流断路器的切换装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10215019B4 (de) * 2002-04-05 2007-05-16 Doepke Schaltgeraete Gmbh & Co Vorrichtung zum Erfassen von elektrischen Differenzströmen
DE50312885D1 (de) * 2003-05-15 2010-08-26 Siemens Ag Allstromsensitive Fehlerstrom-Schutzeinrichtung
CN201797295U (zh) * 2010-07-09 2011-04-13 上海诺雅克电气有限公司 剩余电流保护器
CN104753023B (zh) * 2013-12-31 2018-01-16 西门子公司 一种剩余电流保护装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0797282A2 (de) * 1996-03-18 1997-09-24 Siemens Aktiengesellschaft Fehlerstromschutzschalter mit Energiespeicherschaltung
CN203352135U (zh) * 2013-05-30 2013-12-18 浙江朗威微系统有限公司 一种a型低压漏电保护器专用集成电路
CN104659742A (zh) * 2013-11-15 2015-05-27 西门子公司 一种剩余电流装置
CN104934931A (zh) * 2014-03-21 2015-09-23 上海电科电器科技有限公司 剩余电流保护装置
CN104795790A (zh) * 2015-03-27 2015-07-22 余姚市嘉荣电子电器有限公司 可自动识别切换电压电流型漏电保护器装置
CN105914723A (zh) * 2016-06-12 2016-08-31 上海电科电器科技有限公司 剩余电流断路器的切换装置
CN205863908U (zh) * 2016-06-12 2017-01-04 上海电科电器科技有限公司 剩余电流断路器的切换装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3471229A4 *

Also Published As

Publication number Publication date
CN105914723A (zh) 2016-08-31
EP3471229A1 (en) 2019-04-17
CN105914723B (zh) 2019-05-03
EP3471229A4 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
US11349296B2 (en) Solid-state circuit interrupters
US10790658B2 (en) Apparatus and methods for monitoring and responding to power supply and/or detection circuit failures within an electronic circuit breaker
AU717339B2 (en) DI protective switching device
US8446700B2 (en) Overcurrent protection in a dimmer circuit
JP4845910B2 (ja) 漏電遮断器
US7852639B2 (en) Low-loss rectifier with optically coupled gate shunting
WO2017215509A1 (zh) 剩余电流断路器的切换装置
US11372047B2 (en) Method for detecting an insulation fault in a motor arrangement, method for detecting a motor phase interruption in a motor arrangement, and drive circuit for driving an electronically commutated motor
US11223192B2 (en) Leakage current protection device with automatic or manual reset after power outage
US6163444A (en) Circuit breaker
AU2014203666A1 (en) Differential protection device for a disconnecting apparatus, and electric disconnecting apparatus comprising one such device
WO2015154558A1 (zh) 交流电源瞬断触发装置
CN205847076U (zh) Ac‑dc电源
JP6239024B2 (ja) 電力変換装置
CN104577968A (zh) 一种三相过压、欠压、缺相一体保护电路
WO2018163413A1 (ja) 電子式回路遮断器
CN103852676A (zh) 无源触点检测装置及方法
CN205863908U (zh) 剩余电流断路器的切换装置
CN204441852U (zh) 一种三相过压、欠压、缺相一体保护电路
RU2294586C1 (ru) Устройство для защиты электродвигателя от неполнофазных режимов и перегрузки
CN205847121U (zh) Ac‑dc电源
CN213125575U (zh) 一种带可选择接地故障保护功能的电子式继电器
CN216560832U (zh) 接地检测电路及电器
CN101577493B (zh) 电源电路
CN103490238A (zh) 漏电保护插头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17812620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017812620

Country of ref document: EP

Effective date: 20190114