WO2017215473A1 - 一种数据传输的方法及装置 - Google Patents

一种数据传输的方法及装置 Download PDF

Info

Publication number
WO2017215473A1
WO2017215473A1 PCT/CN2017/087123 CN2017087123W WO2017215473A1 WO 2017215473 A1 WO2017215473 A1 WO 2017215473A1 CN 2017087123 W CN2017087123 W CN 2017087123W WO 2017215473 A1 WO2017215473 A1 WO 2017215473A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical module
bob
protocol
multilateral
bob optical
Prior art date
Application number
PCT/CN2017/087123
Other languages
English (en)
French (fr)
Inventor
程兵
徐群立
苏得生
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017215473A1 publication Critical patent/WO2017215473A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/18Multiprotocol handlers, e.g. single devices capable of handling multiple protocols

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a method and an apparatus for data transmission.
  • the optical transceiver module is an important device in optical fiber communication systems.
  • the optical transceiver module includes an optical device unit, a laser driving circuit unit, an optical signal receiving circuit unit and other control unit portions integrally provided in the same module.
  • the laser driving circuit unit includes an optical power control circuit, a bias current monitoring circuit, a bias driving circuit, a backlight control circuit, and a light modulation driving circuit.
  • the laser's optical drive current consists of a modulating current and a bias current, and is simultaneously controlled by a shutdown control signal to achieve a fast turn-on or turn-off.
  • SFP optical module In the scenario of the traditional SMALL FORM PLUGGABLE (SFP) optical module (hereinafter referred to as SFP optical module), the single-chip central processing unit (CPU) accesses the peripheral SFP optical module through the IIC bus.
  • Bi-Directional Optical Sub-Assembly (BOSA) driver chip, Microcontroller Unit (MCU) and Electrically Erasable Programmable Read Memory -Only Memory (referred to as EEPROM) combines the industry standard multilateral protocol - SFF-8472 protocol, providing digital diagnostic optical module - digital diagnostics of DDMI.
  • BOB optical module the BOSA-On-Board optical module
  • the BOB optical module has omitted the PCB board and the outer casing of the SFP optical module
  • the SFP optical module is directly disposed on the PCB of the system, but in the use scenario, the optical module disposed on the PCB of the system is still
  • the SFF-8472 protocol can be implemented by using its own MCU and EEPROM to support the DDMI digital diagnosis and other functions, which causes the overlap and waste of the hardware structure in the BOB optical module.
  • the purpose of the embodiments of the present disclosure is to provide a method and an apparatus for data transmission, which solves the overlap and waste of the hardware structure in the BOB optical module.
  • an embodiment of the present disclosure provides a data transmission method, where the method is applied to a BOB optical module, including:
  • the BOB optical module initializes a laser driver chip of the BOB optical module according to the configuration data, and Activating the laser driver chip;
  • the BOB optical module constructs an industry standard multilateral protocol, and controls the laser driver chip to perform data transmission of the optical module according to the industry standard multilateral protocol.
  • the embodiment of the present disclosure further provides a device for data transmission, where the device is applied to the BOB optical module, including:
  • a startup unit configured to control the configuration data of the storage device of the BOB optical module by the BOB optical module
  • a configuration unit configured to control the BOB optical module to initialize a laser driver chip of the BOB optical module according to the configuration data, and start the laser driver chip;
  • an operation unit configured to control the BOB optical module to construct an industry standard multilateral protocol, and control the laser driver chip to perform data transmission of the optical module according to the industry standard multilateral protocol.
  • Embodiments of the present disclosure also provide a computer storage medium having stored therein one or more programs executable by a computer, the one or more programs being executed by the computer to cause the computer to perform as described above A method of data transmission provided.
  • the BOB optical module acquires configuration data of a storage device of the BOB optical module; the BOB optical module initializes a laser driver chip of the BOB optical module according to the configuration data, and starts the laser driver a chip; the BOB optical module constructs an industry standard multilateral protocol, and controls the laser driver chip to perform data transmission according to the industry standard multilateral protocol.
  • the BOB optical module can perform data transmission and DDMI digital diagnosis according to the SFF-8472 protocol, and the internal MCU and EEPROM of the traditional SFP optical module hardware are omitted, the structure is simple, and the overlapping of hardware structures in the BOB optical module is reduced. And waste.
  • FIG. 1 is a flowchart of a method for data transmission according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of another method for data transmission according to an embodiment of the present disclosure
  • FIG. 3 is a structural diagram of an apparatus for data transmission according to an embodiment of the present disclosure.
  • the present disclosure is to realize an optical transceiver module (BOSA-On-Board, referred to as BOB) optical module (hereinafter collectively referred to as BOB optical module) supporting the industry standard multilateral agreement - SFF-8472 protocol (hereinafter collectively referred to as SFF-8472 protocol) Methods.
  • BOB optical module optical transceiver module
  • SFF-8472 protocol industry standard multilateral agreement - SFF-8472 protocol
  • the present disclosure is based on The SFF-8472 protocol, which is pre-written to the memory, can exist in the program as a dynamically loadable driver, so that the BOB optical module supports the SFF-8472 protocol, and the driver is automatically loaded during the board startup process.
  • an embodiment of the present disclosure provides a data transmission method, where the method is applied to a BOB optical module, and includes the following steps:
  • Step S101 The BOB optical module acquires configuration data of a storage device of the BOB optical module.
  • the storage device is a flash EEPROM (Flash EEPROM Memory) storage device of the BOB optical module itself, instead of the conventional SFP optical module hardware internal electrically erasable programmable read only memory (Electrically Erasable Programmable Read- Only Memory (EEPROM), here, the BOB optical module in this disclosure does not contain the EEPROM inside the traditional SFP optical module hardware.
  • flash EEPROM Flash EEPROM Memory
  • the driver of the BOB optical module is started, and the driver invokes a control command to enable the BOB optical module to acquire configuration data of the storage device of the BOB optical module.
  • Step S102 The BOB optical module initializes a laser driver chip of the BOB optical module according to the configuration data, and starts the laser driver chip.
  • the laser driver chip in the BOB optical module is configured by using the configuration data, and the initialization of the laser driver chip is completed.
  • the BOB optical module can start the operation normally, and then the laser driver chip is activated to operate the laser driver chip to drive the laser of the BOB optical module to perform subsequent data transmission.
  • Step S103 The BOB optical module constructs an industry standard multilateral protocol, and controls the laser driver chip to perform data transmission according to the industry standard multilateral protocol.
  • the driver control of the BOB optical module constructs the industry standard multilateral protocol, and the industry standard multilateral protocol is constructed according to a preset rule, and data transmission is performed according to the industry standard multilateral protocol.
  • the default rules are based on the industry's uniform rules and will not be described here.
  • the industry standard multilateral agreement may be the SFF-8472 protocol.
  • the BOB optical module controls activation of the laser driver chip, the laser driver chip drives laser illumination operation of the BOB optical module, and the industry standard multilateral protocol performs data transmission.
  • the BOB optical module acquires configuration data of a storage device of the BOB optical module; the BOB optical module initializes a laser driver chip of the BOB optical module according to the configuration data, and starts the laser driver a chip; the BOB optical module constructs the industry standard multilateral protocol, and controls the laser driver chip to perform data transmission according to the industry standard multilateral protocol.
  • the BOB optical module can perform data transmission according to the SFF-8472 protocol, and the internal MCU and EEPROM of the traditional SFP optical module hardware are omitted, the structure is simple, and the overlapping and waste of the hardware structure in the BOB optical module is reduced.
  • the embodiment of the present disclosure provides another method for data transmission, where the method is applied to an optical transceiver component in a board (BOB) optical module, including the following steps:
  • Step S201 The BOB optical module acquires configuration data about the laser driver chip in a storage device of the BOB optical module.
  • the storage device is a flash EEPROM (Flash EEPROM Memory) storage device of the BOB optical module itself, instead of the conventional SFP optical module hardware internal electrically erasable programmable read only memory (Electrically Erasable Programmable Read- Only Memory (EEPROM), here, the BOB optical module in this disclosure does not contain the EEPROM inside the traditional SFP optical module hardware.
  • flash EEPROM Flash EEPROM Memory
  • step S201 is replaceable, that is, step S201 can be understood as a limitation on step S101 in the embodiment shown in FIG. 1, but in the embodiment of the present disclosure, step S101 is not limited to the implementation of step S201.
  • step S101 is not limited to the implementation of step S201.
  • configuration data in other parts or components of the BOB optical module that can provide configuration data can also be obtained.
  • the driver of the BOB optical module is started, and the driver invokes a control command to enable the BOB optical module to acquire the laser in the storage device of the BOB optical module.
  • Configuration data of the driver chip
  • Step S202 the BOB optical module initializes a laser driver chip of the BOB optical module according to the configuration data
  • Step S203 The BOB optical module constructs an industry standard multilateral protocol, and controls the laser driver chip to perform data transmission according to the industry standard multilateral protocol.
  • Step S202 and step S203 are the same as step S102 and step S103 in the first embodiment of the present disclosure, and are not described herein.
  • step S203 includes:
  • the industry standard multilateral protocol is constructed in the memory of the driver of the BOB optical module, and the industry standard multilateral protocol is initialized.
  • the memory of the driver refers to a random access memory (Random Access Memory), not a NAND flash memory or NAND flash for storing data.
  • the random access memory refers to a temporary storage medium, usually referred to as an operating system or other running program, also referred to as system memory, such as the RAM of a mobile phone or the memory of a computer.
  • step S203 includes:
  • a data table conforming to the industry standard multilateral protocol format is constructed and initialized.
  • the industry standard multilateral protocol may be the SFF-8472 protocol
  • the data table is initialized to ensure the compatibility of the constructed data table and facilitate the writing and reading of subsequent data.
  • step S203 includes:
  • the data table includes a first data table and a second data table, the first data table and the second data table being bytes An array of the same size.
  • the SFF-8472 protocol includes two data tables A0 and A2 that conform to the SFF-8472 protocol format.
  • the first data table is The data table A0
  • the second data table is the data table A2, but is not limited thereto, the first data table may also be A2, and the second data table may also be A0.
  • the data tables A0 and A2 are two arrays of the same size, both of which are 256 bytes, that is, the first data table and the second data table are also two-byte arrays.
  • the array byte size is 256.
  • data transmission and detection may be performed according to the SFF-8472 protocol.
  • the following uses the DDMI digital diagnostic function of the BOB optical module as an example:
  • the driver controls to start the BOB optical module.
  • the kernel thread of the CPU which runs once every 100ms.
  • the booted kernel thread first reads the laser driver chip internal temperature register value, then converts to the SFF-8472 protocol format value according to a calibration algorithm, and updates to the second data table. Finally, the current temperature alarm identifier is updated to the second data table according to the temperature alarm threshold.
  • the activated kernel thread then reads the laser driver chip internal modulation voltage register value, and then converts to the SFF-8472 protocol format value according to a calibration algorithm, and updates to the second data table. Finally, the current modulation voltage alarm identifier is updated to the second data table according to the modulation voltage alarm threshold.
  • the activated kernel thread then reads the laser driver chip internal bias current register value, and then converts to the SFF-8472 protocol format value according to a calibration algorithm, and updates to the second data table. Finally, the current bias current alarm identifier is updated to the second data table according to the bias current alarm threshold.
  • the activated kernel thread then reads the laser driver chip internal transmit power register value, and then converts to the SFF-8472 protocol format value according to a calibration algorithm, and updates to the second data table. Finally, the current transmit power alarm identifier is updated to the second data table according to the transmit power alarm threshold.
  • the booted kernel thread then reads the laser driver chip internal receive power register value, then converts to the SFF-8472 protocol format value according to a calibration algorithm, and updates to the second data table. Finally, the current received power alarm identifier is updated according to the received power alarm threshold to the second data table.
  • the driver reads the power control pin value of the GPIO port of the BOB optical module of the board, updates the corresponding transmit power control status bit in the second data table, and performs the sending power of the laser of the BOB optical module. Turn it on or off.
  • the driver reads the transmit error status indication pin value of the GPIO port of the single-board BOB optical module, and updates the corresponding transmit error status bit in the second data table.
  • the above is an example of the DDMI digital diagnostic function of the BOB optical module.
  • the BOB optical module implements the SFF-8472 protocol, but is not limited thereto.
  • the BOB optical module acquires configuration data about the laser driver chip in a storage device of the BOB optical module; and the BOB optical module initializes the BOB according to the configuration data.
  • a laser driver chip of the optical module and the laser driver chip is activated;
  • the BOB optical module constructs the industry standard multilateral protocol, and controls the laser driver chip to perform data transmission according to the industry standard multilateral protocol.
  • the BOB optical module can perform data transmission and DDMI digital diagnosis according to the SFF-8472 protocol, and the internal MCU and EEPROM of the traditional SFP optical module hardware are omitted, the structure is simple, and the overlapping of hardware structures in the BOB optical module is reduced. And waste.
  • FIG. 3 is a schematic structural diagram of a device 300 for data transmission according to the present disclosure.
  • the device 300 is applied to a BOB optical module, and includes:
  • the startup unit 301 is configured to control the configuration data of the storage device of the BOB optical module by the BOB optical module.
  • the configuration unit 302 is configured to control the BOB optical module to initialize the laser driver chip of the BOB optical module according to the configuration data, and start the laser driver chip;
  • the operating unit 303 is configured to control the BOB optical module to construct an industry standard multilateral protocol, and control the laser driver chip to perform data transmission of the optical module according to the industry standard multilateral protocol.
  • the startup unit 301 is configured to control the BOB optical module to acquire configuration data about the laser driver chip in a storage device of the BOB optical module.
  • the running unit 303 is configured to construct the industry standard multilateral protocol in a memory of a driver of the BOB optical module, and initialize the industry standard multilateral protocol.
  • the running unit 303 is configured to construct a data table conforming to the industry standard multilateral protocol format, and initialize the data table.
  • the data table includes a first data table and a second data table, where the first data table and the second data table are an array of the same byte size.
  • the device includes: a startup unit, configured to control the configuration data of the storage device of the BOB optical module, and a configuration unit, configured to control the BOB optical module to be initialized according to the configuration data.
  • a laser driver chip of the BOB optical module and activating the laser driver chip; an operation unit for controlling the BOB optical module to construct the industry standard multilateral protocol, and controlling the laser driver chip to be multilateral according to the industry standard
  • the protocol performs data transmission.
  • the BOB optical module realizes the functions of data transmission and DDMI digital diagnosis according to the SFF-8472 protocol, and the internal MCU and EEPROM of the traditional SFP optical module hardware are omitted, the structure is simple, and the overlapping of the hardware structures in the BOB optical module is reduced. And waste.
  • the BOB optical module initializes a laser driver chip of the BOB optical module according to the configuration data, and starts the laser driver chip;
  • the BOB optical module constructs an industry standard multilateral protocol and controls the laser driver chip to perform data transmission according to the industry standard multilateral protocol.
  • the step of acquiring the configuration data of the storage device of the BOB optical module by the BOB optical module includes:
  • the BOB optical module acquires configuration data about the laser driver chip in a storage device of the BOB optical module.
  • the BOB optical module constructs the industry standard multilateral protocol, and controls the step of the laser driver chip performing data transmission according to the industry standard multilateral protocol, including:
  • An industry standard multilateral protocol is built in the memory of the driver of the BOB optical module, and the industry standard multilateral protocol is initialized.
  • the BOB optical module constructs the industry standard multilateral protocol, including:
  • a data table conforming to the industry standard multilateral protocol format is constructed and initialized.
  • the data table includes a first data table and a second data table, where the first data table and the second data table are an array of the same byte size.
  • the storage medium is, for example, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the data transmission method provided by the present disclosure is applicable to the optical transceiver module in the BOB optical module, and the laser driver of the BOB optical module is initialized according to the configuration data by acquiring configuration data of the storage device of the BOB optical module. Chip, and starting the laser driver chip, then constructing an industry standard multilateral protocol, and controlling the laser driver chip to perform data transmission according to the industry standard multilateral protocol, enabling the BOB optical module to transmit data according to the SFF-8472 protocol and DDMI digital diagnosis and other functions, and the traditional SFP optical module hardware internal MCU and EEPROM are omitted, the structure is simple, and the overlap and waste of the hardware structure in the BOB optical module is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Security & Cryptography (AREA)
  • Optical Communication System (AREA)

Abstract

本公开提供一种数据传输的方法及装置,包括:所述BOB光模块获取所述BOB光模块的存储装置的配置数据;所述BOB光模块根据所述配置数据初始化所述BOB光模块的激光驱动器芯片,并启动所述激光驱动器芯片;所述BOB光模块构建工业标准多边协议,并控制所述激光驱动器芯片按照所述工业标准多边协议进行光模块的数据传输。这样,可以实现BOB光模块按照SFF-8472协议进行数据的传输及DDMI数字诊断等功能,而且省去了传统SFP光模块硬件内部MCU和EEPROM,结构简单有效,减少了BOB光模块中硬件结构的重叠和浪费。

Description

一种数据传输的方法及装置 技术领域
本公开涉及通信技术领域,特别涉及一种数据传输的方法及装置。
背景技术
光纤通信已经成为现代信息网络的主要传输手段之一,光收发一体模块是光纤通信系统中重要的器件。光收发一体模块包括一体化设置在同一模块中的光器件单元,激光器驱动电路单元和光信号接收电路单元及其它控制单元部分。激光器驱动电路单元包括光功率控制电路、偏置电流监控电路、偏置驱动电路、背光控制电路及光调制驱动电路等部分。激光器的光驱动电流由调制电流与偏置电流组成,并同时受控于关断控制信号实现快速的开启或关断。
传统的小型可插拔(SMALL FORM PLUGGABLE,简称SFP)光模块(下文统称SFP光模块)的使用场景中,单板主控中央处理器(CentralProcessingUnit,简称CPU)通过IIC总线访问外围设备SFP光模块,通过SFP光模块硬件内部光收发一体组件(Bi-Directional Optical Sub-Assembly,简称BOSA)驱动芯片、微控制单元(Microcontroller Unit,简称MCU)和电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,简称EEPROM)结合的方式实现工业标准多边协议—SFF-8472协议,提供数字诊断光模块—DDMI的数字诊断等功能。
目前,各种网络中所需要的光收发一体模块种类越来越多,要求也越来越高。为了满足系统不断增长的需求,光传输模块正不断走向标准化、小型化、智能化发展。其中,基于BOB技术的光收发一体组件在板(BOSA-On-Board,简称BOB)光模块(以下简称BOB光模块)的使用越来越多。
然而,BOB光模块虽然已省去了SFP光模块的PCB板、外壳等,直接将SFP光模块设置于系统的PCB板上,但在使用场景中,设置于系统的PCB板上的光模块还是使用自身的MCU和EEPROM来实现SFF-8472协议,才能支持DDMI数字诊断等功能,这样就造成了BOB光模块中硬件结构的重叠和浪费。
发明内容
本公开实施例的目的在于提供一种数据传输的方法及装置,解决了BOB光模块中硬件结构的重叠和浪费。
为了达到上述目的,本公开实施例提供一种数据传输的方法,所述方法应用于BOB光模块中,包括:
所述BOB光模块获取所述BOB光模块的存储装置的配置数据;
所述BOB光模块根据所述配置数据初始化所述BOB光模块的激光驱动器芯片,并 启动所述激光驱动器芯片;
所述BOB光模块构建工业标准多边协议,并控制所述激光驱动器芯片按照所述工业标准多边协议进行光模块的数据传输。
本公开实施例还提供了一种数据传输的装置,所述装置应用于所述BOB光模块中,包括:
启动单元,用于控制所述BOB光模块获取所述BOB光模块的存储装置的配置数据;
配置单元,用于控制所述BOB光模块根据所述配置数据初始化所述BOB光模块的激光驱动器芯片,并启动所述激光驱动器芯片;
运行单元,用于控制所述BOB光模块构建工业标准多边协议,并控制所述激光驱动器芯片按照所述工业标准多边协议进行光模块的数据传输。
本公开实施例还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行的一个或多个程序,所述一个或多个程序被所述计算机执行时使所述计算机执行如上述提供的一种数据传输的方法。
上述技术方案中的一个技术方案具有如下优点或有益效果:
本公开实施例,所述BOB光模块获取所述BOB光模块的存储装置的配置数据;所述BOB光模块根据所述配置数据初始化所述BOB光模块的激光驱动器芯片,并启动所述激光驱动器芯片;所述BOB光模块构建工业标准多边协议,并控制所述激光驱动器芯片按照所述工业标准多边协议进行数据传输。这样,可以实现BOB光模块按照SFF-8472协议进行数据的传输及DDMI数字诊断等功能,而且省去了传统SFP光模块硬件内部MCU和EEPROM,结构简单,减少了BOB光模块中硬件结构的重叠和浪费。
附图说明
图1为本公开实施例提供的一种数据传输的方法的流程图;
图2为本公开实施例提供的另一种数据传输的方法的流程图;
图3是本公开实施例提供的一种数据传输的装置的结构图;
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本公开是要实现一种光收发一体组件在板(BOSA-On-Board,简称BOB)光模块(下文统称BOB光模块)支持工业标准多边协议—SFF-8472协议(下文统称SFF-8472协议)的方法。由于本公开的BOB光模块中的光模块部分,在电路板上没有控制其工作的专用微控制单元(Microcontroller Unit,简称MCU)和保存配置数据的电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,简称EEPROM),同时又需要光模块支持标准的SFF-8472协议和保持与传统SFP光模块的兼容性。因此,本公开是基于 预先写入内存的SFF-8472协议,在程序中可以以一种可动态加载的驱动程序存在,使BOB光模块支持SFF-8472协议,该驱动程序在单板启动过程中自动加载。
第一实施例
如图1所示,本公开实施例提供一种数据传输的方法,所述方法应用于BOB光模块中,包括以下步骤:
步骤S101、所述BOB光模块获取所述BOB光模块的存储装置的配置数据。
所述存储装置为所述BOB光模块的电路板自身的闪存(Flash EEPROM Memory,简称Flash)存储装置,而不是传统的SFP光模块硬件内部带电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,简称EEPROM),此处,本公开中的BOB光模块中不含有传统的SFP光模块硬件内部的EEPROM。
本步骤中,向系统供电,启动系统后,启动所述BOB光模块的驱动程序,所述驱动程序调用控制命令,使所述BOB光模块获取所述BOB光模块的存储装置的配置数据。
步骤S102、所述BOB光模块根据所述配置数据初始化所述BOB光模块的激光驱动器芯片,并启动所述激光驱动器芯片。
本步骤中,所述BOB光模块的驱动程序在获取到所述配置数据后,使用所述配置数据对BOB光模块中的激光驱动器芯片进行配置,完成所述激光驱动器芯片的初始化,以使所述BOB光模块能够正常启动工作,接着启动所述激光驱动器芯片,以使所述激光驱动器芯片工作用以驱动控制所述BOB光模块的激光器工作,来进行后续的数据传输。
步骤S103、所述BOB光模块构建工业标准多边协议,并控制所述激光驱动器芯片按照所述工业标准多边协议进行数据传输。
本步骤中,所述BOB光模块的驱动程序控制构建所述工业标准多边协议,所述工业标准多边协议是按照预设的规则进行构建的,并按照所述工业标准多边协议进行数据传输。预设的规则采用业界统一规定,在此不做赘述。
其中,所述工业标准多边协议可以为SFF-8472协议。
所述BOB光模块控制启动所述激光驱动器芯片,所述激光驱动器芯片驱动所述BOB光模块的激光器发光工作,所述工业标准多边协议进行数据传输。
本公开实施例,所述BOB光模块获取所述BOB光模块的存储装置的配置数据;所述BOB光模块根据所述配置数据初始化所述BOB光模块的激光驱动器芯片,并启动所述激光驱动器芯片;所述BOB光模块构建所述工业标准多边协议,并控制所述激光驱动器芯片按照所述工业标准多边协议进行数据传输。这样,可以实现BOB光模块按照SFF-8472协议进行数据的传输,而且省去了传统SFP光模块硬件内部MCU和EEPROM,结构简单,减少了BOB光模块中硬件结构的重叠和浪费。
第二实施例
如图2所示,本公开实施例提供另一种数据传输的方法,所述方法应用于光收发一体组件在板(BOB)光模块中,包括以下步骤:
步骤S201、所述BOB光模块获取所述BOB光模块的存储装置中有关所述激光驱动器芯片的配置数据。
所述存储装置为所述BOB光模块的电路板自身的闪存(Flash EEPROM Memory,简称Flash)存储装置,而不是传统的SFP光模块硬件内部带电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,简称EEPROM),此处,本公开中的BOB光模块中不含有传统的SFP光模块硬件内部的EEPROM。
需要说明的,步骤S201是可替换的,即步骤S201可以理解为对图1所示的实施例中的步骤S101的限定,但在本公开实施例中,步骤S101并不限定为步骤S201的实施方式,还可以获取所述BOB光模块中其他可以提供配置数据的零件或部件中的配置数据来使用。
本步骤中,向系统供电,启动系统后,启动所述BOB光模块的驱动程序,所述驱动程序调用控制命令,使所述BOB光模块获取所述BOB光模块的存储装置中有关所述激光驱动器芯片的配置数据。
步骤S202、所述BOB光模块根据所述配置数据初始化所述BOB光模块的激光驱动器芯片;
步骤S203、所述BOB光模块构建工业标准多边协议,并控制所述激光驱动器芯片按照所述工业标准多边协议进行数据传输。
步骤S202和步骤S203分别与本公开的第一实施例中的步骤S102和步骤S103相同,在此不做赘述。
可选的,步骤S203包括:
在所述BOB光模块的驱动程序的内存中构建所述工业标准多边协议,并初始化所述工业标准多边协议。
该实施方式中,所述驱动程序的内存是指随机存储器(Random Access Memory),而不是作为存储数据用的NAND闪存或者叫NAND Flash。所述随机存储器是指通常是作为操作系统或其他正在运行程序的临时存储介质,也称作系统内存,比如手机的RAM或者电脑的内存。
由于随机存储器的性质是可读可写,掉电清空,所以每次运行程序都需要重新构建所述工业标准多边协议,并且在构建完所述工业标准多边协议后需要初始化所述工业标准多边协议,以保证构建的所述工业标准多边协议的兼容性完好,运行准确流畅。
可选的,步骤S203包括:
构建符合所述工业标准多边协议格式的数据表,并初始化所述数据表。
本实施方式中,所述工业标准多边协议可以为SFF-8472协议,初始化所述数据表是为了保证构建好的所述数据表的兼容性,便于后续数据的写入与读取。
可选的,步骤S203包括:
所述数据表包括第一数据表和第二数据表,所述第一数据表和所述第二数据表为字节 大小相同的数组。
根据所述SFF-8472协议规定,其中所述SFF-8472协议中包含两个符合所述SFF-8472协议格式的数据表A0和A2,本实施例中,优选的,所述第一数据表为数据表A0,所述第二数据表为数据表A2,但并不局限于此,所述第一数据表还可以为A2,所述第二数据表还可以为A0。其中,数据表A0和A2为两个字节大小相同的数组,均为256字节,也就是说,所述第一数据表和所述第二数据表也为两个字节大小的数组,数组字节大小为256。
构建完成所述第一数据表和所述第二数据表后,即可按照所述SFF-8472协议进行数据的传输、检测等,下面以BOB光模块的DDMI数字诊断功能为例进行说明:
在构建所述SFF-8472协议及所述SFF-8472协议的数据表完成并初始化所述SFF-8472协议及所述SFF-8472协议的数据表后,所述驱动程序控制启动所述BOB光模块的CPU的内核线程,所述内核线程每100ms运行一次。
启动的所述内核线程首先读取所述激光器驱动芯片内部温度寄存器值,然后按照校准算法转换为所述SFF-8472协议格式值,并更新到所述第二数据表中。最后根据温度告警门限更新当前温度告警标识到所述第二数据表。
接着,启动的所述内核线程接着读取所述激光器驱动芯片内部调制电压寄存器值,然后按照校准算法转换为所述SFF-8472协议格式值,并更新到所述第二数据表中。最后根据调制电压告警门限更新当前调制电压告警标识到所述第二数据表。
接着,启动的所述内核线程接着读取所述激光器驱动芯片内部偏置电流寄存器值,然后按照校准算法转换为所述SFF-8472协议格式值,并更新到所述第二数据表中。最后根据偏置电流告警门限更新当前偏置电流告警标识到所述第二数据表。
接着,启动的所述内核线程接着读取所述激光器驱动芯片内部发送功率寄存器值,然后按照校准算法转换为所述SFF-8472协议格式值,并更新到所述第二数据表中。最后根据发送功率告警门限更新当前发送功率告警标识到所述第二数据表。
接着,启动的所述内核线程接着读取所述激光器驱动芯片内部接收功率寄存器值,然后按照校准算法转换为所述SFF-8472协议格式值,并更新到所述第二数据表中。最后根据接收功率告警门限更新当前接收功率告警标识到所述第二数据表。
接着,驱动程序读取单板BOB光模块的GPIO端口的电源控制管脚值,更新所述第二数据表中对应的发送电源控制状态位,并对所述BOB光模块的激光器的发送电源进行开启或关闭。
接着,驱动程序读取单板BOB光模块的GPIO端口的发送错误状态指示管脚值,更新所述第二数据表中对应的发送错误状态位。
然后,所述内核线程睡眠100ms,再一次重复上述各个数据监测的动作。
上述是以所述BOB光模块的DDMI数字诊断功能为例,进行说明所述BOB光模块实现所述SFF-8472协议,但并不局限于此。
由上述描述可知,本公开的实施例,所述BOB光模块获取所述BOB光模块的存储装置中有关所述激光驱动器芯片的配置数据;所述BOB光模块根据所述配置数据初始化所述BOB光模块的激光驱动器芯片,并启动所述激光驱动器芯片;所述BOB光模块构建所述工业标准多边协议,并控制所述激光驱动器芯片按照所述工业标准多边协议进行数据传输。这样,可以实现BOB光模块按照SFF-8472协议进行数据的传输及DDMI数字诊断等功能,而且省去了传统SFP光模块硬件内部MCU和EEPROM,结构简单,减少了BOB光模块中硬件结构的重叠和浪费。
第三实施例
参见图3,图3是本公开提供的一种数据传输的装置300的结构示意图,所述装置300应用于BOB光模块中,包括:
启动单元301,用于控制所述BOB光模块获取所述BOB光模块的存储装置的配置数据;
配置单元302,用于控制所述BOB光模块根据所述配置数据初始化所述BOB光模块的激光驱动器芯片,并启动所述激光驱动器芯片;
运行单元303,用于控制所述BOB光模块构建工业标准多边协议,并控制所述激光驱动器芯片按照所述工业标准多边协议进行光模块的数据传输。
可选的,所述启动单元301用于控制所述BOB光模块获取所述BOB光模块的存储装置中有关所述激光驱动器芯片的配置数据。
可选的,所述运行单元303用于在所述BOB光模块的驱动程序的内存中构建所述工业标准多边协议,并初始化所述工业标准多边协议。
可选的,所述运行单元303用于构建符合所述工业标准多边协议格式的数据表,并初始化所述数据表。
可选的,所述数据表包括第一数据表和第二数据表,所述第一数据表和所述第二数据表为字节大小相同的数组。
本实施例,所述装置包括:启动单元,用于控制所述BOB光模块获取所述BOB光模块的存储装置的配置数据;配置单元,用于控制所述BOB光模块根据所述配置数据初始化所述BOB光模块的激光驱动器芯片,并启动所述激光驱动器芯片;运行单元,用于控制所述BOB光模块构建所述工业标准多边协议,并控制所述激光驱动器芯片按照所述工业标准多边协议进行数据传输。这样,实现了BOB光模块按照SFF-8472协议进行数据的传输及DDMI数字诊断等功能,而且省去了传统SFP光模块硬件内部MCU和EEPROM,结构简单,减少了BOB光模块中硬件结构的重叠和浪费。
本领域普通技术人员可以理解实现上述实施例方法的全部或者部分步骤是可以通过程序指令相关的硬件来完成,所述的程序可以存储于一计算机可读取介质中,该程序在执行时,包括以下步骤:
所述BOB光模块获取所述BOB光模块的存储装置的配置数据;
所述BOB光模块根据所述配置数据初始化所述BOB光模块的激光驱动器芯片,并启动所述激光驱动器芯片;
所述BOB光模块构建工业标准多边协议,并控制所述激光驱动器芯片按照所述工业标准多边协议进行数据传输。
可选的,所述BOB光模块获取所述BOB光模块的存储装置的配置数据的步骤,包括:
所述BOB光模块获取所述BOB光模块的存储装置中有关所述激光驱动器芯片的配置数据。
可选的,所述BOB光模块构建所述工业标准多边协议,并控制所述激光驱动器芯片按照所述工业标准多边协议进行数据传输的步骤,包括:
在所述BOB光模块的驱动程序的内存中构建工业标准多边协议,并初始化所述工业标准多边协议。
可选的,所述BOB光模块构建所述工业标准多边协议,包括:
构建符合所述工业标准多边协议格式的数据表,并初始化所述数据表。
可选的,所述数据表包括第一数据表和第二数据表,所述第一数据表和所述第二数据表为字节大小相同的数组。
所述的存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
以上所述是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。
工业实用性
本公开提供的数据传输方法,可应用于光收发一体组件在板BOB光模块中,通过获取所述BOB光模块的存储装置的配置数据,根据所述配置数据初始化所述BOB光模块的激光驱动器芯片,并启动所述激光驱动器芯片,然后构建工业标准多边协议,并控制所述激光驱动器芯片按照所述工业标准多边协议进行数据传输,能够实现BOB光模块按照SFF-8472协议进行数据的传输及DDMI数字诊断等功能,而且省去了传统SFP光模块硬件内部MCU和EEPROM,结构简单,减少了BOB光模块中硬件结构的重叠和浪费。

Claims (10)

  1. 一种数据传输的方法,应用于光收发一体组件在板BOB光模块中,其中,所述方法包括:
    所述BOB光模块获取所述BOB光模块的存储装置的配置数据;
    所述BOB光模块根据所述配置数据初始化所述BOB光模块的激光驱动器芯片,并启动所述激光驱动器芯片;
    所述BOB光模块构建工业标准多边协议,并控制所述激光驱动器芯片按照所述工业标准多边协议进行数据传输。
  2. 如权利要求1所述的方法,其中,所述BOB光模块获取所述BOB光模块的存储装置的配置数据的步骤,包括:
    所述BOB光模块获取所述BOB光模块的存储装置中有关所述激光驱动器芯片的配置数据。
  3. 如权利要求1所述的方法,其中,所述BOB光模块构建工业标准多边协议,并控制所述激光驱动器芯片按照所述工业标准多边协议进行光模块的数据传输的步骤,包括:
    在所述BOB光模块的驱动程序的内存中构建所述工业标准多边协议,并初始化所述工业标准多边协议。
  4. 如权利要求1所述的方法,其中,所述BOB光模块构建工业标准多边协议,包括:
    构建符合所述工业标准多边协议格式的数据表,并初始化所述数据表。
  5. 如权利要求4所述的方法,其中,所述数据表包括第一数据表和第二数据表,所述第一数据表和所述第二数据表为字节大小相同的数组。
  6. 一种数据传输的装置,应用于光收发一体组件在板BOB光模块中,其中,所述装置包括:
    启动单元,设置为控制所述BOB光模块获取所述BOB光模块的存储装置的配置数据;
    配置单元,设置为控制所述BOB光模块根据所述配置数据初始化所述BOB光模块的激光驱动器芯片,并启动所述激光驱动器芯片;
    运行单元,设置为控制所述BOB光模块构建工业标准多边协议,并控制所述激光驱动器芯片按照所述工业标准多边协议进行光模块的数据传输。
  7. 如权利要求6所述装置,其中,所述启动单元设置为控制所述BOB光模块获取所述BOB光模块的存储装置中有关所述激光驱动器芯片的配置数据。
  8. 如权利要求6所述装置,其中,所述运行单元设置为在所述BOB光模块的驱动程序的内存中构建所述工业标准多边协议,并初始化所述工业标准多边协议。
  9. 如权利要求6所述装置,其中,所述运行单元设置为构建符合所述工业标准多边 协议格式的数据表,并初始化所述数据表。
  10. 如权利要求9所述装置,其中,所述数据表包括第一数据表和第二数据表,所述第一数据表和所述第二数据表为字节大小相同的数组。
PCT/CN2017/087123 2016-06-17 2017-06-05 一种数据传输的方法及装置 WO2017215473A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610437392.7 2016-06-17
CN201610437392.7A CN107517083A (zh) 2016-06-17 2016-06-17 一种数据传输的方法及装置

Publications (1)

Publication Number Publication Date
WO2017215473A1 true WO2017215473A1 (zh) 2017-12-21

Family

ID=60663376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087123 WO2017215473A1 (zh) 2016-06-17 2017-06-05 一种数据传输的方法及装置

Country Status (2)

Country Link
CN (1) CN107517083A (zh)
WO (1) WO2017215473A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090245800A1 (en) * 2008-03-28 2009-10-01 Sumitomo Electric Industries, Ltd. Optical module implemented with tri-plexer optical subassembly
CN102164006A (zh) * 2011-03-15 2011-08-24 成都新易盛通信技术有限公司 一种双通道紧凑小型可插拔光模块电路
CN202014251U (zh) * 2011-04-18 2011-10-19 青岛海信宽带多媒体技术有限公司 基于bob的光网络单元自发光调试系统
CN103188014A (zh) * 2013-04-12 2013-07-03 深圳市共进电子股份有限公司 一种具有测试环路的pon onu bob产品
CN105515648A (zh) * 2015-12-18 2016-04-20 成都广达新网科技股份有限公司 Bosa on board onu模块参数校准平台及其工作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090245800A1 (en) * 2008-03-28 2009-10-01 Sumitomo Electric Industries, Ltd. Optical module implemented with tri-plexer optical subassembly
CN102164006A (zh) * 2011-03-15 2011-08-24 成都新易盛通信技术有限公司 一种双通道紧凑小型可插拔光模块电路
CN202014251U (zh) * 2011-04-18 2011-10-19 青岛海信宽带多媒体技术有限公司 基于bob的光网络单元自发光调试系统
CN103188014A (zh) * 2013-04-12 2013-07-03 深圳市共进电子股份有限公司 一种具有测试环路的pon onu bob产品
CN105515648A (zh) * 2015-12-18 2016-04-20 成都广达新网科技股份有限公司 Bosa on board onu模块参数校准平台及其工作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KE , JIAN: "Research and Design on Test System of Optical Module based on BOB Technology", ELECTRONIC TECHNOLOGY & INFORMATION SCIENCE , CHINA MASTER'S THESES FULL-TEXT DATABASE, 15 May 2015 (2015-05-15), pages 1136 - 195 *

Also Published As

Publication number Publication date
CN107517083A (zh) 2017-12-26

Similar Documents

Publication Publication Date Title
US20150186150A1 (en) Baseboard management controller and method of loading firmware
US10054922B2 (en) Apparatus and a system for controlling sensors
JP2004222298A (ja) トランシーバ
JP6717110B2 (ja) 光トランシーバ及びそのダウンロードデータの書き込み方法
JP2010140266A (ja) 電子デバイスシステムと電子デバイス
JP2010130316A (ja) 光送信装置及びファームウェアの更新方法
US20160004526A1 (en) Bridge module for updating basic input/output system and updating method thereof
US20150277774A1 (en) Hard disk system operation method, storage system, and processor
CN104965744A (zh) 一种系统升级方法及嵌入式系统
CN111399945B (zh) 一种基于10g pon bob设备的校准及配置管理方法
CN108390728B (zh) 光模块上电控制方法及装置
US11099339B1 (en) Management interface handler to expedite module boot time in pluggable optical modules
WO2015196479A1 (zh) 程序数据的更新方法及设备
JP2013257465A (ja) 光トランシーバ
CN108847959B (zh) 服务器监控方法和服务器
WO2017215473A1 (zh) 一种数据传输的方法及装置
CA2954077A1 (en) Beacon device control method and beacon device
US20210051217A1 (en) System and Method to Provide Heterogeneous Protocols on Network Interface Devices
WO2016184231A1 (zh) 一种风扇板风扇转速控制方法及装置
US20140292384A1 (en) Methods of multi-protocol system and integrated circuit for multi-protocol communication on single wire
JP6350308B2 (ja) 光トランシーバ
CN111447514B (zh) 无源光网络sfp ont的eeprom系统以及其数据更新控制方法
CN107911816A (zh) 用于多模IoT设备的启动方法、多模IoT设备及存储介质
US11119547B2 (en) System and method for qualifying a power-on sequence based on feedback
JP7281275B2 (ja) モジュール及びこれを備える情報処理装置、並びにモジュールのプログラムデータを更新するプログラムデータ更新方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17812584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17812584

Country of ref document: EP

Kind code of ref document: A1