WO2017215447A1 - 验证移动通信网中的定位精度的方法和系统 - Google Patents
验证移动通信网中的定位精度的方法和系统 Download PDFInfo
- Publication number
- WO2017215447A1 WO2017215447A1 PCT/CN2017/086778 CN2017086778W WO2017215447A1 WO 2017215447 A1 WO2017215447 A1 WO 2017215447A1 CN 2017086778 W CN2017086778 W CN 2017086778W WO 2017215447 A1 WO2017215447 A1 WO 2017215447A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- location information
- positioning
- measurement report
- channel measurement
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/029—Location-based management or tracking services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/025—Services making use of location information using location based information parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
Definitions
- the present application relates to the field of mobile communication positioning technologies, for example, to a method and system for verifying positioning accuracy in a mobile communication network.
- a system for verifying the positioning accuracy in a mobile communication network is also provided.
- a method for verifying positioning accuracy in a mobile communication network comprising:
- the error between the geographical location information and the positioning data corresponding to the same code stream is calculated.
- the geographic location information and the positioning data each include a latitude and longitude value.
- the step of acquiring drive test data with geographic location information includes:
- the method further includes: counting the total number of drive test data, calculating the number of positioning data according to the channel measurement report, and the number of error data within each error segment.
- the method further includes: performing map rendering on all obtained geographical location information and positioning data.
- a system for verifying positioning accuracy in a mobile communication network comprising:
- a road test device configured to perform road test and generate drive test data with geographic location information
- a wireless communication controller configured to acquire a channel measurement report of the air interface
- a positioning calculation device configured to calculate positioning data according to the channel measurement report
- the error calculation device is configured to match geographical location information and positioning data corresponding to the same code stream according to the drive test data and the channel measurement report, and calculate an error between the geographical location information and the positioning data corresponding to the same code stream .
- the geographic location information and the positioning data each include a latitude and longitude value.
- the drive test device includes a road tester and a geographic location information unit coupled to the drive tester, the walk tester being configured to perform repeated movements within a set time period and a set area Voice dialing, and add the current geographical location information for each road test data obtained by the dial test.
- the error calculation device is further configured to: count the total number of drive test data, calculate the number of positioning data from the channel measurement report, and the number of error data within each error segment.
- the error calculation device is further configured to: map all the obtained geographical location information and the positioning data to a map.
- the above method and system obtain the data of the MR type in the drive test data and bind the geographical location information, and use the consistency of the road test data and the MR data of the air interface to obtain the same dial test time.
- the geographical location information and the positioning data calculated from the MR data enable calculation of the positioning difference.
- Embodiments of the present disclosure also provide a non-transitory computer readable storage medium storing computer executable instructions arranged to perform the above method.
- An embodiment of the present disclosure further provides an electronic device, including:
- At least one processor At least one processor
- the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to cause the at least one processor to perform the method described above.
- the positioning algorithm can be tested and evaluated through the comparison and statistics of a large amount of data.
- FIG. 1 is a flow chart of a method for verifying positioning accuracy in a mobile communication network according to an embodiment
- 3 is a map rendering result generated based on positioning data
- Figure 4 is a result of the synthesis of Figure 2 and Figure 3;
- FIG. 5 is a system structural diagram for verifying positioning accuracy in a mobile communication network according to an embodiment
- FIG. 6 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
- Positioning tool using mobile communication network There are many methods, for example, using at least three base stations in the vicinity of the mobile terminal, the mobile terminal sends a signal to the base station, and calculates the distance from the base station according to the time of arrival of the signal, and the mobile terminal is in a circle centered on the base station and radiused by the distance. Up, three circles can uniquely determine the location of the mobile terminal.
- this method requires a more accurate synchronization clock in order to accurately calculate the arrival time of the mobile terminal.
- positioning calculations that can cause inaccurate positioning for a variety of reasons.
- the method of the following embodiments is used to verify the accuracy of positioning by using a channel measurement report, which has the advantages of being fast and efficient.
- FIG. 1 it is a flowchart of a method for verifying the positioning accuracy in a mobile communication network according to an embodiment.
- the method includes the following steps.
- Step S110 Acquire drive test data with geographic location information.
- Road test is a method of testing road wireless signals in the communication industry. To improve test efficiency, testers are all sitting in cars and testing with test instruments. The test instrument can be called a road tester.
- Drive test data generally includes signal level, quality, signaling, and call conditions.
- This step can include the following sub-steps.
- Sub-step S111 Repeated mobile voice dialing is performed within the set time period and the set area.
- the route of the road test can be random or preset.
- the road tester continuously dials.
- the signal sent by the road tester is exchanged in the base station controller (BSC) or the radio network controller (RNC) for wireless connection.
- Drive test data can be generated by the feedback signal.
- Sub-step S112 adding current geographic location information to each of the drive test data obtained by the dial test.
- Geographic location information generally uses GPS (Global Positioning System) information.
- Step S120 Acquire a channel measurement report of the air interface corresponding to the road test.
- the signaling sent by the road tester is transmitted through the air interface, and the air interface simultaneously records these signaling generation channel measurement reports (Measure Reports, MR), which can be generated by the SBCX board on the BSC side or the RNC side.
- MR Signaling generation channel measurement reports
- the MR data of the air interface may be collected in the corresponding time period and area according to the time period and the area in which the road test is performed in step S110.
- Step S130 Calculate positioning data according to the channel measurement report. There are various methods for obtaining positioning data by using MR data for calculation.
- the road test data also includes MR data, which is the key to the positioning accuracy evaluation in this embodiment.
- drive test data including MR data and geographic location information are shown in Table 1 below.
- a.msgcontent is MR data and is saved as a hexadecimal stream.
- B.lon is the longitude value and b.lat is the latitude value.
- the generated drive test data contains MR data, and each MR data is bound to the current geographical location information.
- the corresponding air interface also generates the same MR data, and the positioning data is calculated based on the MR data.
- the middle Lon is the algorithm longitude value
- the Lat is the algorithm latitude value
- the IMSI is the SIM card IMSI information for the road test
- the Uucode is the MR data saved as the hexadecimal code stream.
- Step S140 Match geographical location information and positioning data corresponding to the same code stream according to the drive test data and the channel measurement report. It should be noted that the MR data of the air interface is hardly repeated. Therefore, the signaling corresponding to the same MR data indicates the same connection, that is, the location of the road tester at the time of the dial test is recorded by the geographical location information in the drive test data, and may also be located from the MR data of the signaling. The algorithm is calculated. Due to the limitations of the algorithm, there is a difference between the geographical location information and the calculated positioning data.
- a large number of drive test data are matched with the channel measurement report recorded on the air interface, and a plurality of records including geographical location information and positioning data corresponding to the same code stream can be obtained.
- DriverLon is b.lon in the above Table 1
- DriverLat is b.lat in Table 1 above.
- Step S150 Calculate an error between the geographical location information corresponding to the same code stream and the positioning data.
- the position is represented by the latitude and longitude of the GPS information
- the error between the accurate geographical position information recorded in the drive test and the positioning data calculated from the MR data can be calculated, that is, the distance between the two places is calculated. Thereby verifying the positioning accuracy.
- the method may further include the step S160 of: counting the total number of drive test data, calculating the number of positioning data according to the channel measurement report, and the number of error data within each error segment.
- the positioning data cannot be generated.
- the total number of road test data is 10,501. According to the MR data of the air interface, there are 7084 pieces of positioning data, and 3,417 pieces of position data cannot be generated.
- the method may further include step S170: performing map rendering on all obtained geographical location information and positioning data.
- the obtained geographical location information and positioning data it can be rendered on the map, and the location represented by the geographic location information and the positioning data is displayed on the map.
- the position of the road tester at each dialing test is displayed on the map. All of these locations form the area of the drive test.
- the position obtained by calculating the MR data under the same dialing is displayed on the map. All of these locations form the area where the position is calculated.
- Figures 2 and 3 can be combined to visually show the difference between the two.
- the method of the foregoing embodiment obtains the data of the MR type in the drive test data and binds the geographical location information, and uses the consistency of the road test data and the MR data of the air interface to obtain the same dial test time.
- the geographical location information and the positioning data calculated from the MR data thereby being able to calculate the positioning difference.
- the positioning algorithm can be tested and evaluated through the comparison and statistics of a large amount of data.
- the system for verifying the positioning accuracy in the mobile communication network includes a road test device 100, a wireless communication controller 200, a positioning calculation device 300, and an error calculation device 400.
- the drive test device 100 is configured to perform drive test and generate drive test data with geographic location information.
- the wireless communication controller 200 is configured to acquire a channel measurement report for the air interface.
- the location calculation device 300 is configured to calculate location data based on the channel measurement report.
- the error calculation device 400 is configured to match geographical location information and positioning data corresponding to the same code stream according to the drive test data and the channel measurement report, and calculate an error between the geographical location information and the positioning data corresponding to the same code stream. .
- the geographic location information and the positioning data each include a latitude and longitude value.
- the drive test device 100 can include a road tester 120 and a geographic location information sheet connected to the drive tester Yuan 110.
- the road tester 120 is configured to perform repeated mobile voice dialing in a set time period and a set area, and add current geographic location information for each road test data obtained by the dial test.
- the geographic location information unit 110 is a GPS (Global Positioning System) unit.
- the wireless communication controller 200 can be a BSC or an RNC whose SBCX board can record MR data.
- the positioning calculation device 300 calculates the positioning data based on the MR data recorded therein.
- the error calculation device 400 is further configured to: count the total number of drive test data, calculate the number of positioning data based on the channel measurement report, and the number of error data within each error segment.
- the error calculation device 400 is further configured to perform map rendering on all obtained geographic location information and positioning data.
- the above-described drive test device 100, wireless communication controller 200, positioning calculation device 300, and error calculation device 400 are configured to perform various methods in the foregoing method embodiments.
- a special instrument can be used, and when a general-purpose computer system can be used for data processing, the general-purpose computer system can also be used, and a corresponding processing program can be configured.
- the implementation method will not be limited.
- the system of the foregoing embodiment obtains the data of the MR type in the drive test data and binds the geographical location information, and uses the consistency of the road test data and the MR data of the air interface to obtain the same dial test time.
- the geographical location information and the positioning data calculated from the MR data thereby being able to calculate the positioning difference.
- Embodiments of the present disclosure also provide a non-transitory computer readable storage medium storing computer executable instructions arranged to perform the method of any of the above embodiments.
- the embodiment of the present disclosure further provides a schematic structural diagram of an electronic device.
- the electronic device includes:
- At least one processor 60 which is exemplified by a processor 60 in FIG. 6; and a memory 61, may further include a communication interface 62 and a bus 63.
- the processor 60, the communication interface 62, and the memory 61 can complete communication with each other through the bus 63.
- Communication Interface 62 can be used for information transfer.
- Processor 60 may invoke logic instructions in memory 61 to perform the methods of the above-described embodiments.
- logic instructions in the memory 61 described above may be implemented in the form of a software functional unit and sold or used as a stand-alone product, and may be stored in a computer readable storage medium.
- the memory 61 is used as a computer readable storage medium for storing software programs, computer executable programs, and program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
- the processor 60 executes the function application and the data processing by executing the software programs, the instructions, and the modules stored in the memory 61, that is, the method for verifying the positioning accuracy in the mobile communication network in the above method embodiments.
- the memory 61 may include a storage program area and an storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to usage of the terminal device, and the like. Further, the memory 61 may include a high speed random access memory, and may also include a nonvolatile memory.
- the technical solution of the embodiments of the present disclosure may be embodied in the form of a software product stored in a storage medium, including one or more instructions for causing a computer device (which may be a personal computer, a server, or a network) The device or the like) performs all or part of the steps of the method described in the embodiments of the present disclosure.
- the foregoing storage medium may be a non-transitory storage medium, including: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like.
- the positioning algorithm can be tested and evaluated through the comparison and statistics of a large amount of data.
- the method and system for verifying the positioning accuracy in a mobile communication network provided by the present application can verify the positioning accuracy in the mobile communication network.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Navigation (AREA)
Abstract
本申请涉及一种验证移动通信网中的定位精度的方法和系统。该方法包括:获取带有地理位置信息的路测数据;获取路测对应的空中接口的信道测量报告;根据所述信道测量报告计算定位数据;根据所述路测数据和信道测量报告,匹配对应于同一码流的地理位置信息和定位数据;计算对应于同一码流的地理位置信息和定位数据之间的误差。该系统被配置为执行该方法。上述方法和系统可以验证移动通信网中的定位精度。
Description
本申请涉及移动通信定位技术领域,例如涉及一种验证移动通信网中的定位精度的方法和系统。
随着无线通讯网络的迅猛发展,移动运营商希望通过移动用户的精确定位来判断所处位置的网络状况进行网络评估和优化,同时可以通过采集某一用户的数据,进行虚拟路测分析;公安系统希望通过无线网络来跟踪犯罪分子的活动轨迹,还有好多通过移动网络进行定位用户位置的例子举不胜举,可见定位的准确性在这些系统中起到至关重要的作用。
通过移动网络定位用户所在位置的方法很多,且定位算法参差不齐,需要对各种定位算法进行验证。目前大部分定位算法的验证是通过定点测试来进行,这种验证方法的优点是验证简单,只需要记录当前位置和时间进行移动呼叫即可;缺点是采样点单一,定点测试点数少,无法验证各种环境下定位精度,特别是很难验证移动状态下的用户位置。因此,如何来验证各种环境、移动状态下且有大量移动采样点的定位算法精度验证亟待解决。
发明内容
基于此,有必要提供一种验证移动通信网中的定位精度的方法。
此外,还提供一种验证移动通信网中的定位精度的系统。
一种验证移动通信网中的定位精度的方法,包括:
获取带有地理位置信息的路测数据;
获取路测对应的空中接口的信道测量报告;
根据所述信道测量报告计算定位数据;
根据所述路测数据和信道测量报告,匹配对应于同一码流的地理位置信息
和定位数据;
计算对应于同一码流的地理位置信息和定位数据之间的误差。
在其中一个实施例中,所述地理位置信息和定位数据均包括经纬度值。
在其中一个实施例中,所述获取带有地理位置信息的路测数据的步骤包括:
在设定时间段和设定区域内进行重复的移动语音拨测;
对拨测所获得的每条路测数据,添加当前的地理位置信息。
在其中一个实施例中,还包括:统计路测数据的总数、根据信道测量报告计算定位数据的数量、以及各个误差分段内的误差数据的数量。
在其中一个实施例中,还包括:将所获得的所有地理位置信息和定位数据进行地图渲染。
一种验证移动通信网中的定位精度的系统,包括:
路测装置,被配置为进行路测并生成带有地理位置信息的路测数据;
无线通信控制器,被配置为获取空中接口的信道测量报告;
定位计算装置,被配置为根据所述信道测量报告计算定位数据;
误差计算装置,被配置为根据所述路测数据和信道测量报告,匹配对应于同一码流的地理位置信息和定位数据,并计算对应于同一码流的地理位置信息和定位数据之间的误差。
在其中一个实施例中,所述地理位置信息和定位数据均包括经纬度值。
在其中一个实施例中,所述路测装置包括路测仪和与路测仪连接的地理位置信息单元,所述路测仪被配置为在设定时间段和设定区域内进行重复的移动语音拨测,并对拨测所获得的每条路测数据,添加当前的地理位置信息。
在其中一个实施例中,所述误差计算装置还被配置为:统计路测数据的总数、根据信道测量报告计算定位数据的数量、以及各个误差分段内的误差数据的数量。
在其中一个实施例中,所述误差计算装置还被配置为:将所获得的所有地理位置信息和定位数据进行地图渲染。
上述方法和系统,通过提取路测数据中的信令类型为MR的数据,并为其绑定地理位置信息,利用路测数据和空中接口的MR数据的一致性,获得同一次拨测时的地理位置信息和根据MR数据计算的定位数据,从而能够计算定位差异。
本公开实施例还提供了一种非暂态计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述方法。
本公开实施例还提供了一种电子设备,包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器执行上述的方法。
通过大量数据的比较和统计,可以对定位算法进行检验和评估。
附图概述
图1为一实施例的验证移动通信网中的定位精度的方法流程图;
图2为根据路测数据中的GPS信息生成的地图渲染结果;
图3为根据定位数据生成的地图渲染结果;
图4为图2和图3合成后的结果;
图5为一实施例的验证移动通信网中的定位精度的系统结构图;以及
图6为本公开实施例提供的电子设备的结构示意图。
以下结合附图和实施例进行说明。
利用移动通信网进行定位具有诸多用途,例如运营商根据移动终端的位置优化网络、在地图应用中标注移动终端的位置等。利用移动通信网进行定位具
有很多方法,例如利用移动终端附近的至少三个基站,移动终端向基站发送信号,根据信号到达的时间计算与基站之间的距离,移动终端处于以基站为圆心、以该距离为半径的圆上,三个圆可以唯一确定移动终端的位置。但是这种方法需要较精确的同步时钟,以便精确计算出移动终端的到达时间。还有一些其他的定位计算方法,也会因为各种各样的原因造成定位不准确的问题。
以下实施例的方法,用来验证采用信道测量报告进行定位的精度,具有快捷高效的优点。
如图1所示,为一实施例的验证移动通信网中的定位精度的方法流程图。该方法包括以下步骤。
步骤S110:获取带有地理位置信息的路测数据。路测是一种通信行业中对道路无线信号进行测试的方法,为提高测试效率,测试人员都是坐在汽车中,用测试仪表进行测试。测试仪表可以称为路测仪。路测数据一般包括信号电平、质量、信令、通话情况等。
本步骤可以包括以下子步骤。
子步骤S111:在设定时间段和设定区域内进行重复的移动语音拨测。路测的路线可以是随机的,也可以是预先设定的。在进行移动语音拨测时,路测仪不断拨号,在此过程中,路测仪发送的信令会在基站控制器(BSC)或者无线网络控制器(RNC)中进行交换,以进行无线连接。通过反馈的信号,可以生成路测数据。
子步骤S112:对拨测所获得的每条路测数据,添加当前的地理位置信息。地理位置信息一般采用GPS(Global Positioning System,全球定位系统)信息。
步骤S120:获取路测对应的空中接口的信道测量报告。在进行路测时,路测仪发送的信令通过空中接口进行传输,空中接口同时记录这些信令生成信道测量报告(Measure Report,MR),其可以由BSC侧或RNC侧的SBCX板产生。在获取信道测量报告时,可以根据步骤S110中进行路测的时段、区域,在相应的时段和区域内采集空中接口的MR数据。
步骤S130:根据所述信道测量报告计算定位数据。利用MR数据进行计算获得定位数据的方法有多种。
经过上述步骤之后获得了大量的带有地理位置信息的路测数据,以及根据相应的空中接口的MR数据计算获得的定位数据。其中,路测数据中也包含MR数据,这是本实施例进行定位精度评价的关键。
包含MR数据和地理位置信息的路测数据表示例为下表1。
表1
其中a.msgcontent为MR数据,保存为十六进制码流。b.lon为经度值、b.lat为纬度值。
路测仪在进行路测收集路测数据时,产生的路测数据中包含MR数据,并且每条MR数据与当前的地理位置信息绑定。而与此同时,对应的空中接口也生成了同样的MR数据,并根据该MR数据计算出了定位数据。
包含MR数据和计算出的定位数据的数据表示例为下表2。
表2
其中,中Lon为算法经度值,Lat为算法纬度值,IMSI为路测用的sim卡IMSI信息,Uucode为保存为十六进制码流的MR数据。
基于上述,可以执行以下步骤。
步骤S140:根据所述路测数据和信道测量报告,匹配对应于同一码流的地理位置信息和定位数据。需要说明的是,空中接口的MR数据几乎不会重复。因此对应于同一MR数据的信令表示同一次连接,也即表示该次拨测时的路测仪的位置被路测数据中的地理位置信息记录,也可以从该信令的MR数据根据定位算法计算出来。只是由于算法的局限性,该地理位置信息和计算出来的定位数据之间存在差异。
大量的路测数据和在空中接口记录的信道测量报告进行匹配,可以获得多条同时包含对应于同一码流的地理位置信息和定位数据的记录。
匹配的结果可以参考下表3。
表3
其中,DriverLon即为前述表1中的b.lon,DriverLat即前述表1中的b.lat。
步骤S150:计算对应于同一码流的地理位置信息和定位数据之间的误差。参考表3,以GPS信息的经纬度表示位置时,可以计算路测中记录的精确的地理位置信息和根据MR数据计算的定位数据之间的误差,也即计算两个地点之间的距离。从而验证定位精度。
所述方法还可以包括步骤S160:统计路测数据的总数、根据信道测量报告计算定位数据的数量、以及各个误差分段内的误差数据的数量。
由于路测数据的记录和空中接口的记录并非总能严格对应,或者因为其他原因根据空中接口的MR数据不能计算定位数据(即定位失败),因此有可能存在无法生成定位数据的情况。
经过统计,可以获得诸如下表4所示的情况。
总条数 | 有定位条数 | 无定位条数 | 误差(0. 50]m | 误差(50. 100]m | 误差(100,150]m | 误差(150,200]m | 误差(200,∞)m |
10501 | 7084 | 3417 | 589 | 1334 | 1154 | 707 | 3300 |
表4
路测数据的总数为10501条,根据空中接口的MR数据可以生成定位数据的有7084条,无法生成定位数据的有3417条。
在有定位数据的7084条中,误差在0~50米的有589条,50~100米的有1334条,100~150米的有1154条,150~200米的有707条,200米以上的有3300条。可以理解,误差分段可以有其他的形式。通过统计,可以对定位的精度进行详
细的评估。
所述方法还可以包括步骤S170:将所获得的所有地理位置信息和定位数据进行地图渲染。
根据所获得的地理位置信息和定位数据,可以在地图上进行渲染,将这些地理位置信息和定位数据代表的位置在地图上显示出来。
参考图2,根据路测数据中地理位置信息,在地图上显示出每次拨测时路测仪所处的位置。所有这些位置形成了路测的区域。
参考图3,根据所计算出来的定位数据,在地图上显示出同一次拨测下根据MR数据计算所获得的位置。所有这些位置形成了计算位置的区域。
参考图4,可以将图2和图3合并,直观展示二者之间的差异。
上述实施例的方法,通过提取路测数据中的信令类型为MR的数据,并为其绑定地理位置信息,利用路测数据和空中接口的MR数据的一致性,获得同一次拨测时的地理位置信息和根据MR数据计算的定位数据,从而能够计算定位差异。
通过大量数据的比较和统计,可以对定位算法进行检验和评估。
如图5所示,为一实施例的验证移动通信网中的定位精度的系统结构图。该验证移动通信网中的定位精度的系统包括:路测装置100、无线通信控制器200、定位计算装置300以及误差计算装置400。路测装置100被配置为进行路测并生成带有地理位置信息的路测数据。无线通信控制器200被配置为获取空中接口的信道测量报告。定位计算装置300被配置为根据所述信道测量报告计算定位数据。误差计算装置400被配置为根据所述路测数据和信道测量报告,匹配对应于同一码流的地理位置信息和定位数据,并计算对应于同一码流的地理位置信息和定位数据之间的误差。
在其中一个实施例中,所述地理位置信息和定位数据均包括经纬度值。
所述路测装置100可以包括路测仪120和与路测仪连接的地理位置信息单
元110。所述路测仪120被配置为在设定时间段和设定区域内进行重复的移动语音拨测,并对拨测所获得的每条路测数据,添加当前的地理位置信息。一般地,地理位置信息单元110为GPS(全球定位系统)单元。
无线通信控制器200可以是BSC或RNC,其SBCX板可以记录MR数据。定位计算装置300则根据其记录的MR数据计算出定位数据。
所述误差计算装置400还被配置为:统计路测数据的总数、根据信道测量报告计算定位数据的数量、以及各个误差分段内的误差数据的数量。
所述误差计算装置400还被配置为:将所获得的所有地理位置信息和定位数据进行地图渲染。
上述的路测装置100、无线通信控制器200、定位计算装置300以及误差计算装置400被配置为执行前述方法实施例中的各种方法。在需要特殊仪器的场合,可以采用特殊仪器,在可以利用通用计算机系统进行数据处理时,也可以采用该通用计算机系统,而为其配置相应的处理程序。只要可以实现其相应的功能即可,实现方法将不做限制。
上述实施例的系统,通过提取路测数据中的信令类型为MR的数据,并为其绑定地理位置信息,利用路测数据和空中接口的MR数据的一致性,获得同一次拨测时的地理位置信息和根据MR数据计算的定位数据,从而能够计算定位差异。
本公开实施例还提供了一种非暂态计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述任一实施例中的方法。
本公开实施例还提供了一种电子设备的结构示意图。参见图6,该电子设备包括:
至少一个处理器(processor)60,图6中以一个处理器60为例;和存储器(memory)61,还可以包括通信接口(Communications Interface)62和总线63。其中,处理器60、通信接口62、存储器61可以通过总线63完成相互间的通信。通信
接口62可以用于信息传输。处理器60可以调用存储器61中的逻辑指令,以执行上述实施例的方法。
此外,上述的存储器61中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器61作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器60通过运行存储在存储器61中的软件程序、指令以及模块,从而执行功能应用以及数据处理,即实现上述方法实施例中的验证移动通信网中的定位精度的方法。
存储器61可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器61可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
通过大量数据的比较和统计,可以对定位算法进行检验和评估。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本公开的几种实施方式,其描述较为详细,但并
不能因此而理解为对公开专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本公开实施例的范围的前提下,还可以做出若干变形和改进,这些都属于本公开的保护范围。因此,本公开专利的保护范围应以所附权利要求为准。
本申请提供的验证移动通信网中的定位精度的方法和系统,可以验证移动通信网中的定位精度。
Claims (11)
- 一种验证移动通信网中的定位精度的方法,包括:获取带有地理位置信息的路测数据;获取路测对应的空中接口的信道测量报告;根据所述信道测量报告计算定位数据;根据所述路测数据和信道测量报告,匹配对应于同一码流的地理位置信息和定位数据;计算对应于同一码流的地理位置信息和定位数据之间的误差。
- 根据权利要求1所述的方法,其中,所述地理位置信息和定位数据均包括经纬度值。
- 根据权利要求1所述的方法,其中,所述获取带有地理位置信息的路测数据的步骤包括:在设定时间段和设定区域内进行重复的移动语音拨测;对拨测所获得的每条路测数据,添加当前的地理位置信息。
- 根据权利要求1所述的方法,还包括:统计路测数据的总数、根据信道测量报告计算定位数据的数量、以及各个误差分段内的误差数据的数量。
- 根据权利要求1所述的方法,还包括:将所获得的所有地理位置信息和定位数据进行地图渲染。
- 一种验证移动通信网中的定位精度的系统,包括:路测装置,被配置为进行路测并生成带有地理位置信息的路测数据;无线通信控制器,被配置为获取空中接口的信道测量报告;定位计算装置,被配置为根据所述信道测量报告计算定位数据;误差计算装置,被配置为根据所述路测数据和信道测量报告,匹配对应于同一码流的地理位置信息和定位数据,并计算对应于同一码流的地理位置信息和定位数据之间的误差。
- 根据权利要求6所述的系统,其中,所述地理位置信息和定位数据均包 括经纬度值。
- 根据权利要求6所述的系统,其中,所述路测装置包括路测仪和与路测仪连接的地理位置信息单元,所述路测仪被配置为在设定时间段和设定区域内进行重复的移动语音拨测,并对拨测所获得的每条路测数据,添加当前的地理位置信息。
- 根据权利要求6所述的系统,其中,所述误差计算装置还被配置为:统计路测数据的总数、根据信道测量报告计算定位数据的数量、以及各个误差分段内的误差数据的数量。
- 根据权利要求6所述的系统,其中,所述误差计算装置还被配置为:将所获得的所有地理位置信息和定位数据进行地图渲染。
- 一种非暂态计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行权利要求1-5中任一项的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610428394.XA CN107517440A (zh) | 2016-06-15 | 2016-06-15 | 验证移动通信网中的定位精度的方法和系统 |
CN201610428394.X | 2016-06-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017215447A1 true WO2017215447A1 (zh) | 2017-12-21 |
Family
ID=60662957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/086778 WO2017215447A1 (zh) | 2016-06-15 | 2017-06-01 | 验证移动通信网中的定位精度的方法和系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107517440A (zh) |
WO (1) | WO2017215447A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113381900A (zh) * | 2020-03-10 | 2021-09-10 | 中国移动通信集团设计院有限公司 | 路测数据的可视化方法及装置 |
CN114466451A (zh) * | 2022-04-08 | 2022-05-10 | 成都瀚德科技有限公司 | 基于路测频谱数据的定位方法、定位装置以及存储介质 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4233404A4 (en) * | 2020-10-26 | 2024-08-14 | Nokia Technologies Oy | POSITIONING BASED ON A PLURALITY OF MEASUREMENT REPORTS |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101025440A (zh) * | 2006-02-24 | 2007-08-29 | 仇伟军 | Gps与移动通信网络复合定位方法 |
CN101631349A (zh) * | 2008-07-14 | 2010-01-20 | 中国移动通信集团设计院有限公司 | 一种定位终端的方法、装置及无线操作维护中心 |
CN103379429A (zh) * | 2012-04-16 | 2013-10-30 | 中兴通讯股份有限公司 | 一种联合定位的方法及装置 |
CN103687005A (zh) * | 2013-12-26 | 2014-03-26 | 上海大唐移动通信设备有限公司 | 一种基于室内路测系统的测试点定位方法及装置 |
-
2016
- 2016-06-15 CN CN201610428394.XA patent/CN107517440A/zh active Pending
-
2017
- 2017-06-01 WO PCT/CN2017/086778 patent/WO2017215447A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101025440A (zh) * | 2006-02-24 | 2007-08-29 | 仇伟军 | Gps与移动通信网络复合定位方法 |
CN101631349A (zh) * | 2008-07-14 | 2010-01-20 | 中国移动通信集团设计院有限公司 | 一种定位终端的方法、装置及无线操作维护中心 |
CN103379429A (zh) * | 2012-04-16 | 2013-10-30 | 中兴通讯股份有限公司 | 一种联合定位的方法及装置 |
CN103687005A (zh) * | 2013-12-26 | 2014-03-26 | 上海大唐移动通信设备有限公司 | 一种基于室内路测系统的测试点定位方法及装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113381900A (zh) * | 2020-03-10 | 2021-09-10 | 中国移动通信集团设计院有限公司 | 路测数据的可视化方法及装置 |
CN114466451A (zh) * | 2022-04-08 | 2022-05-10 | 成都瀚德科技有限公司 | 基于路测频谱数据的定位方法、定位装置以及存储介质 |
CN114466451B (zh) * | 2022-04-08 | 2022-07-05 | 成都瀚德科技有限公司 | 基于路测频谱数据的定位方法、定位装置以及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN107517440A (zh) | 2017-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108377468B (zh) | 无线网络场景化评估方法、装置、设备及介质 | |
CN106658399B (zh) | 一种基于手机用户位置指纹进行手机位置定位的方法 | |
US20110189960A1 (en) | Estimating Whether A Wireless Terminal Is Indoors Using Pattern Classification | |
WO2017215447A1 (zh) | 验证移动通信网中的定位精度的方法和系统 | |
CN107231636B (zh) | 一种校准网络覆盖评估的方法和装置 | |
CA2746279A1 (en) | Method for position estimation using generalized error distributions | |
CN103929719B (zh) | 定位信息的优化方法和优化装置 | |
CN112218330A (zh) | 定位方法及通信装置 | |
CN103068039A (zh) | 一种基于WiFi信号的RSSI值的定位方法 | |
CN106899985A (zh) | 一种网络覆盖的评估方法及装置 | |
EP3290944B1 (en) | Hybrid tdoa closed form hyperbolic and spherical iteration geo-location technique | |
CN111372183A (zh) | 一种识别质差终端的方法、装置、设备及存储介质 | |
CN102802144B (zh) | 一种话单数据的分析方法及装置 | |
CN103686995A (zh) | 一种非视距环境定位方法及装置 | |
CN107770788B (zh) | 基站小区方位角异常检测方法和装置 | |
CN106604297B (zh) | 一种优化基站扇区中心经纬度数据的方法和设备 | |
Lehne et al. | Measuring user-induced randomness to evaluate smart phone performance in real environments | |
CN110727752B (zh) | 位置指纹库处理方法、设备及计算机可读存储介质 | |
US10517063B2 (en) | Enhancing an estimate of the location of a wireless terminal by using one or more types of identifiers of a wireless network | |
CN108401222B (zh) | 定位方法和装置 | |
CN111356085B (zh) | 漫游用户的定位方法、装置、设备和介质 | |
Ventura et al. | Estimation of urban noise with the assimilation of observations crowdsensed by the mobile application Ambiciti | |
CN113873431B (zh) | 楼宇网络质量呈现方法和装置 | |
CN113132891B (zh) | 一种基于移动信令的客流统计方法和系统 | |
WO2016106667A1 (zh) | 一种处理用于定位的信息的方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17812558 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17812558 Country of ref document: EP Kind code of ref document: A1 |