WO2017215440A1 - 一种通信系统设计方法、装置及通信系统 - Google Patents

一种通信系统设计方法、装置及通信系统 Download PDF

Info

Publication number
WO2017215440A1
WO2017215440A1 PCT/CN2017/086395 CN2017086395W WO2017215440A1 WO 2017215440 A1 WO2017215440 A1 WO 2017215440A1 CN 2017086395 W CN2017086395 W CN 2017086395W WO 2017215440 A1 WO2017215440 A1 WO 2017215440A1
Authority
WO
WIPO (PCT)
Prior art keywords
design
case
matching
designed
communication system
Prior art date
Application number
PCT/CN2017/086395
Other languages
English (en)
French (fr)
Inventor
杜树奎
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017215440A1 publication Critical patent/WO2017215440A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/145Network analysis or design involving simulating, designing, planning or modelling of a network

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a communication system design method, apparatus, and communication system.
  • the system Before the start of the WDM (Wavelength Division Multiplexing) system, the system needs to be planned and designed. According to the service requirements of the user, the optical device parameters and optical performance indicators are selected to meet the requirements of the system. The purpose of normal transmission. When designing the system, it is necessary to weigh the cost, optical performance index, transmission distance, device loss and other factors to select the transmitter, receiver type, amplifier type, number, cable type, design appropriate optical performance indicators, and optical performance. The indicator leaves a certain margin to adapt to the deterioration of the external environment, and the business can be transmitted normally. Therefore, the WDM system design process is very complicated and requires professional domain knowledge. Even a carefully designed system is only a proposal, not necessarily To meet the requirements of the existing network, it still needs to be adjusted for a long time to finally meet the communication requirements.
  • WDM Widelength Division Multiplexing
  • the existing design methods include the worst value method, the statistical method, in which the worst value method is based on the assumption that the system parameters are the worst, the system is designed, but for a long-distance communication system composed of a large number of components.
  • the probability that the various component parameters take the worst value at the same time is very small, so the system has considerable margin when it works normally, so there are disadvantages that the design result is conservative and the total cost is high;
  • the statistical method is for the existing optical communication.
  • the relative worst value method can reduce the cost of system design, but this method is still immature, so it also needs design results. Adjustments can be made to meet the business transmission.
  • the design method of the existing communication system needs to redesign all the parameters for each design, and there are problems such as complicated design process and long cycle.
  • the present disclosure provides a communication system design method, apparatus, and communication system to solve the problem that the existing communication system design method needs to redesign all parameters every time.
  • a communication system design method including:
  • matching is performed in the design case library to obtain a matching case;
  • the design case library stores input parameters and design results of at least one design case;
  • the design of the system to be designed is performed.
  • a communication system design apparatus including: an input module, a design case library, a matching module, and a design module, wherein
  • the design case library is set to store input parameters and design results of at least one design case
  • the input module is configured to obtain input parameters of the system to be designed according to user input;
  • the matching module is set to perform matching in the design case library according to the input parameters to obtain a matching case
  • the design module is set to design the system to be designed according to the design result of the matching case.
  • a communication system for designing a communication system using at least one communication system design apparatus provided by the present disclosure.
  • a computer storage medium having computer executable instructions stored therein, the computer executable instructions being arranged to perform the aforementioned communication system design method.
  • the present disclosure provides a communication system design method, obtains input parameters of a system to be designed, performs matching in a design case library according to input parameters, obtains a matching case, and performs design of a system to be designed according to a design result of the matching case;
  • the case-based reasoning algorithm uses the case-based reasoning algorithm to determine the influencing factors of the system design.
  • the case matching case the case re-use and correction, the design result of the system to be designed is obtained, the WDM system design process is simplified, the system design is complicated, the time is long, the design result is inaccurate, and the opening is improved.
  • the efficiency, reduced cost, and the solution to the existing communication system design method require redesign of all parameters for each design.
  • FIG. 1 is a flowchart of a communication system design method according to a first embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a communication system design apparatus according to a second embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a communication system design apparatus in a third embodiment of the present disclosure.
  • FIG. 1 is a flowchart of a communication system design method according to a first embodiment of the present disclosure.
  • the communication system design provided by the present disclosure includes:
  • S102 Perform matching in the design case library according to the input parameter to obtain a matching case;
  • the design case inventory stores input parameters and design results of at least one design case;
  • S103 Perform design of the system to be designed according to the design result of the matching case.
  • the sequence identification packet for obtaining the received data packet in the above embodiment includes: extracting the serial number carried by the data packet, and identifying the serial number as a sequence; matching the expected value includes: comparing whether the serial number of the data packet is the same as the serial number within the expected value, and if they are the same, matching, otherwise, the matching is not performed.
  • This embodiment provides a specific implementation manner of the sequence identifier, which can implement the sorting of the out-of-order data packets by using the serial number in the existing data packet, and does not need to modify the structure of the existing data packet, and enhances the present invention. Openness of versatility.
  • the communication system design method in the foregoing embodiment further includes:
  • matching in the design case library in the above embodiments includes:
  • how to select a matching case can take a case of a fixed ranking, such as a case of top10 as a matching case, or all cases with a matching value greater than a preset threshold (such as 85%) as a matching case.
  • a preset threshold such as 85%
  • the communication system in the above embodiment includes a wavelength division multiplexing system
  • input parameters include transmission distance, number of spans, loss of transmission segment, number of fully matched wavelengths, wavelength interval, single wave rate, band, topology.
  • One or more of the forms; the design results include one or more of the transmitter type and parameters, the receiver type and parameters, the multiplexer board type and parameters, the amplifier board type and parameters, the cable type, and the topology networking data. .
  • the design result according to the matching case in the above embodiment is performed.
  • the design of the design system includes:
  • the design result of the matching case is taken as the design result of the system to be designed
  • the communication system design method in the foregoing embodiment has multiple matching cases, and further includes:
  • the design of the system to be designed is carried out according to the design results of each matching case
  • the design result of the current matching case cannot satisfy the design of the system to be designed, the design result of the next matching case is used to design the system to be designed.
  • the communication system includes a wavelength division multiplexing system
  • the modification of the design result of the matching case in the above embodiment includes:
  • Gain correction is performed on the actuator in the multiplex section according to the correction principle of the actuator gain canceling fiber attenuation
  • the attenuation correction is performed on the single-board devices of the multiple channels according to the correction principle of the output optical power balance of each channel.
  • the communication system design method in the above embodiment updates the input parameters and design results of the system to be designed to the design case library after obtaining the design result of the system to be designed.
  • the communication system design apparatus includes: an input module 21, a design case library 22, and matching.
  • Module 23 design module 24, wherein
  • the design case library 22 is configured to store input parameters and design results of at least one design case
  • the input module 21 is configured to obtain an input parameter of the system to be designed according to a user input;
  • the matching module 23 is configured to perform matching in the design case library according to the input parameters to obtain a matching case
  • the design module 24 is arranged to design the system to be designed according to the design result of the matching case.
  • the matching module 23 in the above embodiment is configured to sequentially calculate the matching values of the input parameters of the system to be designed and the input parameters of each design case in the design case library, according to the input parameters of the system to be designed and the design cases.
  • the matching values of the input parameters are sorted, the design cases in the design case library are sorted, the design cases whose matching values are greater than the preset threshold are selected, or a specified number of design cases are selected according to the sorting as a matching case.
  • the communication system in the above embodiment includes a wavelength division multiplexing system
  • input parameters include transmission distance, number of spans, loss of transmission segment, number of fully matched wavelengths, wavelength interval, single wave rate, band, topology.
  • One or more of the forms; the design results include one or more of the transmitter type and parameters, the receiver type and parameters, the multiplexer board type and parameters, the amplifier board type and parameters, the cable type, and the topology networking data. .
  • the design module 24 in the above embodiment is configured to directly apply the design result of the matching case to the design environment of the system to be designed to detect whether the communication parameter satisfies the communication requirement, and if satisfied, the design of the matching case is to be satisfied.
  • the design result of the matching case is corrected, and the revised design result is applied to the design environment of the system to be designed; and the communication requirements are continuously detected until the communication is satisfied.
  • the design of the system to be designed is required to be completed, or the design result is corrected to the device limit, the design of the system to be designed cannot be performed according to the design result of the current matching case.
  • the design module 24 in the above embodiment is configured to sort a plurality of matching cases, and according to the sorting, sequentially design the system to be designed according to the design result of each matching case. If the design result of the current matching case cannot satisfy the design of the system to be designed, the design result of the next matching case is used to design the system to be designed.
  • the communication system includes a wavelength division multiplexing system
  • the design module 24 in the above embodiment is configured to import the design result of the matching case into the network management, and use the multiplex section and the multiple channels carried by the same as a correction unit, according to
  • the actuator gain cancels the correction principle of the fiber attenuation, and performs gain correction on the actuator in the multiplex section, and performs attenuation correction on the single-board devices of the multiple channels according to the correction principle of the output optical power balance of each channel.
  • the design module 24 in the above embodiment is configured to update the input parameters and design results of the system to be designed to the design case library after calculating the design result of the system to be designed.
  • all the functional modules in the embodiment shown in FIG. 2, such as the input module 21, the matching module 23, and the design module 24, can be implemented by using a processor, an editing logic device, or the like.
  • the present disclosure provides a communication system for designing a communication system using at least one communication system design apparatus provided by the present disclosure.
  • the embodiment provides a method and device for designing a WDM system based on case-based reasoning, and sets the artificial intelligence algorithm as a WDM system design to at least solve the problem that the existing system design process is complicated, time-consuming, and cannot accurately design a reliable result. .
  • This embodiment provides a method for designing a WDM system based on case-based reasoning, including:
  • Establish a design case library including: selecting factors that affect the design method as input, designing the knot As a case of output, it collects the already-running and well-functioning site data.
  • the factors affecting the design include: transmission distance, number of spans, loss of transmission segment, number of fully matched wavelengths, wavelength interval, single-wave rate, Band, topology, etc.
  • design results include: transmitter type and parameters, receiver type and parameters, multiplexer board type and parameters, amplifier board type and parameters, cable type, topology network data.
  • the case retrieval includes: inputting the influence design factor as the target case, comparing the case input in the source design case library, and calculating the similarity of each case in the design case library according to the similarity formula.
  • the case preference includes: comparing the similarity of the case with the set threshold, and filtering out the case larger than the threshold as a preferred case.
  • Case reuse and correction including: multiple candidate cases optimized by traversing the case, reusing and correcting each case according to the order of similarity; setting the current case result directly to the design environment, checking the end of the case Whether the bit error rate meets the minimum requirements of the channel receiving end, and the correction does not need to be corrected.
  • the result of the case is directly used as the design result. If it is not satisfied, it needs to be repeatedly corrected and verified until the minimum bit error rate of the channel receiving end is met. If the device parameter limit is still not met, then the next case is traversed to continue the above reuse and correction process.
  • Case preservation and learning including: reuse and correct the optimal design results obtained from the source case, as the output, the current impact on the design factors as input, learn to get new cases, save for the next case search.
  • This embodiment provides a device for designing a WDM system based on case-based reasoning, including:
  • the human-computer interaction module is responsible for setting the similarity threshold of the domain expert, setting the weight value of each feature in the influencing factor, and the domain expert correcting the parameter values of the optical device.
  • the case entry module is responsible for entering the collected cases into the design case library.
  • the database module is set to store the source case, and the case is represented as two parts: the influencing factor and the design result.
  • the case retrieval module is responsible for using the factors affecting the design as the input information of the target case, and calculating the similarity of each case of the design case library according to the similarity algorithm in the design case library.
  • the case preference module is configured to compare the similarity of the case with the set threshold, and filter out the case larger than the threshold as a preferred case set.
  • the case reuse and correction module obtains the preferred case set of the case preference module, sets it as the actual environment, traverses the plurality of candidate cases that are preferred by the case, and reuses and corrects each case according to the order of similarity from large to small; Set the current case result directly to the design environment, check whether the bit error rate of the receiving end meets the minimum requirements of the channel receiving end, and the correction does not need to be corrected. The result of the case is directly used as the design result. If it is not satisfied, it needs to be repeatedly corrected and verified. Until the minimum bit error rate of the channel receiving end is met, if the correction to the device parameter limit is still not met, then the next case is traversed to continue the above reuse and correction process.
  • the case study and preservation module is responsible for composing design influence factors and optimal design results into new cases and saving them to the database module.
  • an artificial intelligence case-based reasoning algorithm is adopted, and the influencing factors of the design are input into the design case database through case retrieval, case optimization, case reuse and correction, and the optimal design result is obtained, after the case study and preservation process,
  • the next system design provides new cases.
  • the accuracy of the retrieved cases will be greatly improved, simplifying the WDM system design process, solving the problem of complex system design, long time-consuming, inaccurate design results, and improvement.
  • the efficiency of the opening is reduced and the cost is reduced.
  • the device for designing a WDM system based on case-based reasoning includes:
  • the human-machine interaction module 310 is configured to set a similarity threshold of the domain expert, a weight value of each feature in the influencing factor, and an output parameter value such as a modified optical device;
  • the case retrieval module 312 is configured to calculate, according to the input of the target case, the similarity between the target case (the case corresponding to the system to be designed) and the input feature value of the case in the database according to the relative degree formula;
  • the case preference module 314 is configured to filter out a source case set whose similarity is greater than a threshold
  • the case reuse and correction module 316 traversing the preferred case set negatively, reusing and correcting each case according to the order of similarity; directly setting the current case result
  • the result of the case is directly used as the design result. If it is not satisfied, it needs to be repeatedly corrected and verified until the channel receiving end is satisfied.
  • the minimum code rate requirement if the correction to the device parameter limit is still not met, then traverse the next case, continue the above reuse and correction process, and finally get the best case, and the output of the current design result target case;
  • the case study and preservation module 318 re-constitutes a new case by using the revised design result as the case output and the influence design factor as the input of the target case, and saves it to the database module;
  • the database module 320 is responsible for saving the case obtained by learning and receiving the case of the entry, and realizing the function of the design case library 22;
  • the case entry module 322 is responsible for entering the collected cases into the design case library.
  • the human-computer interaction module 310 records the influence design factors and design results of each site as a case to the database module 320 through the case entry module 322; the case retrieval module 312 sets the target case through the human-computer interaction module 310.
  • the design influencing factors input and thresholds are retrieved from the database module 320.
  • the case optimization module 314 receives the source cases of the case retrieval module 312 to filter out cases larger than the threshold, and displays them in the interface through the human-machine interaction module 310; case reuse and correction
  • the module 316 receives the case set of the optimization module, obtains an optimal case by reusing and correcting the algorithm, outputs the design result through the human-machine interaction module 310, the case learning and saving module 318, and receives the design result of the case reuse and correction module 316, and
  • the input of the target case constitutes a new case, and is stored in the design case library by the book library module 320.
  • the case entry module 322 receives the entry case data of the human-machine interaction module 310 and stores it in the database module 320.
  • the method for designing a WDM system based on case-based reasoning includes:
  • Step 402 start.
  • step 404 a case representation is determined.
  • the influence design factors include: transmission distance, number of spans, loss of transmission section, number of fully matched wavelengths, wavelength interval, Single wave rate, band, topology, etc.; design results include: transmitter type and parameters, receiver type and parameters, multiplexer board type and parameters, amplifier board type and parameters, cable type, topology network data.
  • step 406 a design case library is created.
  • step 408 the influencing factors of the design system are used as input to the target case, and case reasoning begins.
  • Step 410 setting a similarity threshold, and setting a weight value for inputting each feature.
  • Step 412 performing a case retrieval in the database according to the input information.
  • Wi represents the case feature weight
  • Sim(fi, fi, k) is the i-th description feature fi of the input case and the similarity of the k-th case description feature fi, k, calculated by the following formula, defined as:
  • step 416 it is determined whether there is an alternative case set that is greater than the threshold. If yes, step 418 is performed, and if not, step 426 is performed.
  • step 418 an alternative case set is obtained as a priority case set.
  • Step 420 traversing the preferred case set, and reusing and correcting each case according to the order of similarity; setting the current case result directly to the design environment, and checking whether the bit error rate of the receiving end meets the channel receiving end. The minimum requirement, if it is satisfied, does not need to be corrected. The result of the case is directly used as the design result. If it is not satisfied, it needs to be repeatedly corrected and verified until the minimum bit error rate of the channel receiving end is met. If the device parameter limit is still not met, Then traverse the next case and continue the above reuse and correction process, the specific steps are described below.
  • step 422 the design result of the modified optimal case is used as the input of the case and the influence design factor as the input of the target case, and a new case is newly formed.
  • step 424 the new case is saved to the design case library.
  • the step 420 is described.
  • the case reuse and correction steps in the case-based reasoning-based WDM system design method provided by this embodiment include:
  • Step 502 start.
  • step 504 the case set obtained by the case is preferably traversed and corrected in order of similarity in descending order.
  • Step 506 Import the current traversed case into the network management system to form a manageable resource such as a network element, a board, a fiber, and a path.
  • a manageable resource such as a network element, a board, a fiber, and a path.
  • Step 508 dividing the correction unit: using the multiplex section and the plurality of channel layers carried by it as correction
  • the unit uses the actuators in the multiplex section, such as amplifiers and attenuators, as the multiplex section correction component, and the channel-level adjustable channel-attenuated single-board device serves as the channel layer correction component.
  • Step 510 Query the bit error rate performance of the plurality of channel layer receiving ends in each of the correction units.
  • Step 512 For each channel layer in the correction unit, determine whether the error rate of the receiving end meets the minimum bit error rate requirement, and if satisfied, the output design result of the case is reused, and the input and output design results are combined into an optimal case. Continue to step 522.
  • Step 514 an amendment example correction unit.
  • the correction target is to reduce the signal loss and increase the optical signal-to-noise ratio, so as to reduce the bit error rate.
  • the correction method is that the gain of the amplifier component cancels the attenuation of the fiber.
  • the correction target is power equalization of each channel, and the bit error rate of the receiving end meets the minimum requirement.
  • the correction method is to adjust the attenuation of the L-1 WSUs before the adjustment, so that the optical power output of each optical channel is equalized, and the Lth receiving end is adjusted.
  • the WSUs in front of the service board make the optical power corresponding to the output of the channel meet the standard value of the input optical power of the service board. If the error rate of the receiving end is too large, the first i-th WSUs are preferentially adjusted, and the step size is reduced by 0.5 dB each time.
  • step 516 it is determined whether the correction component adjustment amount obtained according to the correction algorithm exceeds the range of the parameter. If not, the process proceeds to step 512. If yes, step 518 is performed.
  • step 518 it is determined whether the current preferred case is the last case in the preferred case set. Otherwise, step 506 is continued, and if yes, step 522 is performed.
  • the above method and device can be realized by software programming, which is convenient to improve and has strong operability.
  • the optimal WDM system can be designed more effectively and accurately according to the influence design factors. .
  • the present disclosure provides a communication system design method, obtains input parameters of a system to be designed, performs matching in a design design case library according to input parameters, obtains a matching case, and performs design of a system to be designed according to a design result of the matching case;
  • the case-based reasoning algorithm is used to input the influencing factors of the system design as input parameters into the design case database.
  • the matching case as the preferred case is obtained, and the case designing and correction operations are obtained, and the design result of the system to be designed is obtained. It simplifies the WDM system design process, solves the problem of complicated system design, long time-consuming, inaccurate design results, improves the efficiency of the opening, reduces the cost, and solves the existing communication system design method. Every design needs to be redesigned. All parameters.
  • embodiments of the present disclosure can be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware aspects. Moreover, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps that are set to implement the functions specified in one or more of the flow or in a block or blocks of the flowchart.
  • the above technical solution provided by the present disclosure adopts a case-based reasoning algorithm, and inputs the influencing factors of the system design as input parameters into the case base through case retrieval and optimization, obtains a matching case as a preferred case, and re-uses and corrects the case, etc.
  • the design result of the system to be designed simplifies the WDM system design process, solves the problem of complicated system design, long time-consuming, inaccurate design results, improves the efficiency of the opening, reduces the cost, and solves the existing communication system design method.
  • the secondary design requires redesigning all parameters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Communication System (AREA)

Abstract

本公开提供了一种通信系统设计方法、装置及通信系统,该方法包括:获取待设计系统的输入参数;根据输入参数,在设计案例库中进行匹配,得到匹配案例;设计案例库存储有至少一个设计案例的输入参数及设计结果;根据匹配案例的设计结果,进行待设计系统的设计。本公开采用案例推理算法,将系统设计的影响因素作为输入参数输入到案例库中经过案例检索及优选,得到作为优选案例的匹配案例,对案例重用和修正等操作,得到待设计系统的设计结果,简化了WDM系统设计过程,解决了系统设计复杂,耗时长,设计结果的不准确的问题,提高了开局的效率,降低了成本,解决了现有通信系统设计方法每次设计都需要重新设计所有参数。

Description

一种通信系统设计方法、装置及通信系统 技术领域
本公开涉及通信领域,尤其涉及一种通信系统设计方法、装置及通信系统。
背景技术
WDM(Wavelength Division Multiplexing,波分复用)系统开局前需要对系统进行规划、设计,根据用户承载的业务要求,选择光器件参数,光性能指标,以满足当系统器件寿命终了时,业务依然能正常传输的目的。系统设计时,需要权衡成本、光性能指标、传输距离、器件的损耗等因素,来选择发送机、接受机类型、放大器类型、个数,光缆类型,设计合适的光性能指标,对光性能的指标留出一定的富裕度,以适应外界环境的劣化后,业务可以正常传输,因此WDM系统设计过程非常复杂,需要专业的领域知识,即使经过仔细设计的系统也只是一种建议方案,不一定满足现网要求,还需要经过长时间的调整,最终才能满足通信要求。
现有的设计方法包括最坏值法,统计法,其中,最坏值法是假定系统参数都是最差的条件下,对系统进行设计,但对于一个由大量元器件组成的长途通信系统而言,各种元器件参数同时取最坏值条件概率极小,因而系统正常工作时有相当大的余度,因此存在设计结果保守,总成本偏高的缺点;统计法是针对现有光通信系统光器件多,且参数的离散性大,可利用参数统计分布特性等特点进行设计,相对最坏值法,可降低系统设计的成本,但此方法目前还不成熟,因此也需要对设计结果进行调整,才可以满足业务传输。
综上,现有通信系统的设计方法每次设计都需要重新设计所有参数,存在设计过程复杂,周期长等问题。
发明内容
本公开提供了一种通信系统设计方法、装置及通信系统,以解决现有通信系统设计方法每次设计都需要重新设计所有参数的问题。
一方面,提供了一种通信系统设计方法,包括:
获取待设计系统的输入参数;
根据输入参数,在设计案例库中进行匹配,得到匹配案例;设计案例库存储有至少一个设计案例的输入参数及设计结果;
根据匹配案例的设计结果,进行待设计系统的设计。
一方面,提供了一种通信系统设计装置,包括:输入模块,设计案例库,匹配模块,设计模块,其中,
设计案例库设置为存储至少一个设计案例的输入参数及设计结果;
输入模块设置为根据用户输入获取待设计系统的输入参数;
匹配模块设置为根据输入参数,在设计案例库中进行匹配,得到匹配案例;
设计模块设置为根据匹配案例的设计结果,进行待设计系统的设计。
另一方面,提供了一种通信系统,使用至少一个本公开提供的通信系统设计装置,进行通信系统的设计。
另一方面,提供了一种计算机存储介质,计算机存储介质中存储有计算机可执行指令,计算机可执行指令设置为执行前述的通信系统设计方法。
本公开的有益效果:
本公开提供了一种通信系统设计方法,获取待设计系统的输入参数,根据输入参数,在设计案例库中进行匹配,得到匹配案例,根据匹配案例的设计结果,进行待设计系统的设计;这样采用案例推理算法,将系统设计的影响因素作为输入参数输入到案例库中经过案例检索及优选,得到作 为优选案例的匹配案例,对案例重用和修正等操作,得到待设计系统的设计结果,简化了WDM系统设计过程,解决了系统设计复杂,耗时长,设计结果的不准确的问题,提高了开局的效率,降低了成本,解决了现有通信系统设计方法每次设计都需要重新设计所有参数。
附图说明
图1为本公开第一实施例提供的通信系统设计方法的流程图;
图2为本公开第二实施例提供的通信系统设计装置的结构示意图;
图3是本公开第三实施例中的通信系统设计装置的结构示意图。
具体实施方式
下面将结合本公开中的附图,对本公开中的技术方案进行清楚、完整地描述,显然,所描述的实施例只是本公开中一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
现通过具体实施方式结合附图的方式对本公开做出进一步的诠释说明。
第一实施例:
图1为本公开第一实施例提供的通信系统设计方法的流程图,由图1可知,在本实施例中,本公开提供的通信系统设计包括:
S101:获取待设计系统的输入参数;
S102:根据输入参数,在设计案例库中进行匹配,得到匹配案例;设计案例库存储有至少一个设计案例的输入参数及设计结果;
S103:根据匹配案例的设计结果,进行待设计系统的设计。
在一些实施例中,上述实施例中的获取接收到的数据包的顺序标识包 括:提取数据包携带的序列号,将序列号作为顺序标识;与预期值进行匹配包括:比较数据包的序列号是否与预期值内的序列号相同,若相同,则匹配,否则不匹配。本实施例提供一种顺序标识的具体实现方式,该方式采用现有数据包内的序列号即可实现对乱序数据包的排序,不需要对现有数据包的结构进行修改,增强了本公开的通用性。
在一些实施例中,上述实施例中的通信系统设计方法在获取待设计系统的输入参数之前,还包括:
选择至少一个已经使用的通信系统的设计案例;
获取所选择的设计案例的输入参数及设计结果;
根据所选择的设计案例的输入参数及设计结果,建立设计案例库。
在一些实施例中,上述实施例中的在设计案例库中进行匹配包括:
依次计算待设计系统的输入参数与设计案例库中各设计案例的输入参数的匹配值;
根据待设计系统的输入参数与各设计案例的输入参数的匹配值,对设计案例库中的设计案例进行排序;
选择匹配值大于预设阈值的设计案例,或者根据排序选择指定数量的设计案例,作为匹配案例。
在实际应用中,如何进行匹配案例的选择,可以取固定名次的案例,如top10等的案例作为匹配案例,还可以是将匹配值大于预设阈值(如85%)的所有案例作为匹配案例。
在一些实施例中,上述实施例中的通信系统包括波分复用系统,输入参数包括传输距离、跨段数、传输段损耗余量、满配波长数、波长间隔、单波速率、波段、拓扑形式中的一个或多个;设计结果包括发送机类型及参数、接收机类型及参数、合分波板类型及参数、放大器板类型及参数、光缆类型、拓扑组网数据中的一个或多个。
在一些实施例中,上述实施例中的根据匹配案例的设计结果,进行待 设计系统的设计包括:
将匹配案例的设计结果,直接运用到待设计系统的设计环境;
检测通信参数是否满足通信要求;
若满足,则将匹配案例的设计结果作为待设计系统的设计结果;
若不满足,则对匹配案例的设计结果进行修正,并将修正后的设计结果运用到待设计系统的设计环境;并继续检测是否满足通信要求,直至满足通信要求完成待设计系统的设计,或者设计结果修正到器件极限时,根据当前匹配案例的设计结果不能进行待设计系统的设计。
在一些实施例中,上述实施例中的通信系统设计方法在存在多个匹配案例,还包括:
对多个匹配案例进行排序;
按照排序,依次根据各匹配案例的设计结果,进行待设计系统的设计;
若当前匹配案例的设计结果不能满足待设计系统的设计,则使用下一匹配案例的设计结果,进行待设计系统的设计。
在一些实施例中,通信系统包括波分复用系统,上述实施例中的对匹配案例的设计结果进行修正包括:
将匹配案例的设计结果导入网管;
将复用段及其承载的多个通道作为修正单元;
根据执行器增益抵消光纤衰减的修正原则,对复用段内的执行器进行增益修正;
根据各通道输出光功率均衡的修正原则,对多个通道的单板器件进行衰减修正。
在一些实施例中,上述实施例中的通信系统设计方法在得到待设计系统的设计结果后,将待设计系统的输入参数及设计结果,对应存储更新到设计案例库。
第二实施例:
图2为本公开第二实施例提供的通信系统设计装置的结构示意图,由图2可知,在本实施例中,本公开提供的通信系统设计装置包括:输入模块21,设计案例库22,匹配模块23,设计模块24,其中,
设计案例库22设置为存储至少一个设计案例的输入参数及设计结果;
输入模块21设置为根据用户输入获取待设计系统的输入参数;
匹配模块23设置为根据输入参数,在设计案例库中进行匹配,得到匹配案例;
设计模块24设置为根据匹配案例的设计结果,进行待设计系统的设计。
在一些实施例中,上述实施例中的匹配模块23设置为依次计算待设计系统的输入参数与设计案例库中各设计案例的输入参数的匹配值,根据待设计系统的输入参数与各设计案例的输入参数的匹配值,对设计案例库中的设计案例进行排序,选择匹配值大于预设阈值的设计案例,或者根据排序选择指定数量的设计案例,作为匹配案例。
在一些实施例中,上述实施例中的通信系统包括波分复用系统,输入参数包括传输距离、跨段数、传输段损耗余量、满配波长数、波长间隔、单波速率、波段、拓扑形式中的一个或多个;设计结果包括发送机类型及参数、接收机类型及参数、合分波板类型及参数、放大器板类型及参数、光缆类型、拓扑组网数据中的一个或多个。
在一些实施例中,上述实施例中的设计模块24设置为将匹配案例的设计结果,直接运用到待设计系统的设计环境,检测通信参数是否满足通信要求,若满足,则将匹配案例的设计结果作为待设计系统的设计结果,若不满足,则对匹配案例的设计结果进行修正,并将修正后的设计结果运用到待设计系统的设计环境;并继续检测是否满足通信要求,直至满足通信要求完成待设计系统的设计,或者设计结果修正到器件极限时,根据当前匹配案例的设计结果不能进行待设计系统的设计。
在一些实施例中,若存在多个匹配案例,上述实施例中的设计模块24设置为对多个匹配案例进行排序,按照排序,依次根据各匹配案例的设计结果,进行待设计系统的设计,若当前匹配案例的设计结果不能满足待设计系统的设计,则使用下一匹配案例的设计结果,进行待设计系统的设计。
在一些实施例中,通信系统包括波分复用系统,上述实施例中的设计模块24设置为将匹配案例的设计结果导入网管,将复用段及其承载的多个通道作为修正单元,根据执行器增益抵消光纤衰减的修正原则,对复用段内的执行器进行增益修正,根据各通道输出光功率均衡的修正原则,对多个通道的单板器件进行衰减修正。
在一些实施例中,上述实施例中的设计模块24设置为在计算得到待设计系统的设计结果后,将待设计系统的输入参数及设计结果,对应存储更新到设计案例库。
在实际应用中,图2所示实施例中的所有功能模块,如输入模块21,匹配模块23,设计模块24等都可以采用处理器、编辑逻辑器件等方式实现。
对应的,本公开提供了一种通信系统,使用至少一个本公开提供的通信系统设计装置,进行通信系统的设计。
第三实施例:
现结合具体应用场景对本公开做进一步的诠释说明。
本实施例提供了一种基于案例推理的WDM系统设计方法及装置,将人工智能算法设置为WDM系统设计,以至少解决现有系统设计过程复杂,耗时,无法准确设计出可靠的结果等问题。
本实施例提供了一种基于案例推理的WDM系统设计方法,包括:
建立设计案例库,案例检索,案例优选,案例重用和修正,案例保存和学习。
建立设计案例库,包括:选用影响设计方法的因素作为输入,设计结 果作为输出的案例表示,收集已开局且运行良好的局点数据,其中,影响设计的因素包括:传输距离、跨段数、传输段损耗余量、满配波长数、波长间隔、单波速率、波段、拓扑形式等;设计结果包括:发送机类型及参数、接收机类型及参数、合分波板类型及参数、放大器板类型及参数、光缆类型、拓扑组网数据。
案例检索,包括:将影响设计因素作为目标案例的输入,对比源设计案例库中的案例输入,根据相似度公式计算设计案例库中各个案例的相似度。
案例优选,包括:将案例的相似度与设定的阈值比较,过滤出大于阈值的案例作为优选案例。
案例重用和修正,包括:遍历案例优选出的多个备选案例,根据相似度由大到小的顺序,对每个案例进行重用和修正;将当前案例结果直接设置为设计环境,检查收端的误码率是否满足通道接收端最低要求,满足则不需要修正,直接使用该案例的结果作为设计结果,如果不满足则需要反复修正、验证,直至满足通道接收端的误码率最低要求,如果修正到器件参数极限仍无法满足,则遍历下一个案例,继续上述重用和修正过程。
案例保存和学习,包括:将源案例重用和修正得到的最优设计结果,作为的输出,将当前影响设计因素作为的输入,学习得到新的案例,保存,供下一次案例检索使用。
本实施例提供一种基于案例推理的WDM系统设计装置,包括:
人机交互模块,负责领域专家设置相似度阈值,设置影响因素中各个特征的权重值,领域专家修正光器件等参数值。
案例录入模块,负责将收集到的案例录入设计案例库。
数据库模块,设置为存储源案例,将案例表示为影响因素和设计结果两部分。
案例检索模块,负责利用影响设计的因素作为目标案例的输入信息,到设计案例库中根据相似度算法计算设计案例库各个案例的相似度。
案例优选模块,设置为负责将案例的相似度与设定的阈值比较,过滤出大于阈值的案例作为优选案例集合。
案例重用和修正模块,将案例优选模块得到优选案例集合,设置为实际环境,遍历案例优选出的多个备选案例,根据相似度由大到小的顺序,对每个案例进行重用和修正;将当前案例结果直接设置为设计环境,检查收端的误码率是否满足通道接收端最低要求,满足则不需要修正,直接使用该案例的结果作为设计结果,如果不满足则需要反复修正、验证,直至满足通道接收端的误码率最低要求,如果修正到器件参数极限仍无法满足,则遍历下一个案例,继续上述重用和修正过程。
案例学习和保存模块,负责将设计影响因素和最优设计结果组成新的案例,并保存到数据库模块。
本实施例采用人工智能案例推理算法,将设计的影响因素作为输入到设计案例库中经过案例检索、案例优选、案例重用和修正、得到最优的设计结果,经过案例学习和保存的过程,为下一次系统设计提供新的案例,随着案例源积累,检索的到案例准确度会大大提高,简化了WDM系统设计过程,解决了系统设计复杂,耗时长,设计结果的不准确的问题,提高了开局的效率,降低了成本。
具体的,如图3所示,本实施例提供的基于案例推理的WDM系统设计装置包括:
人机交互模块310,设置为领域专家设置相似度阈值、影响因素中各个特征的权重值、修正光器件等输出参数值;
案例检索模块312,设置为根据目标案例的输入,根据相对度公式计算出目标案例(待设计系统对应的案例)和数据库内案例的输入特征值的相似度;
案例优选模块314,设置为筛选出相似度出大于阈值的源案例集合;
案例重用和修正模块316,负对优选案例集合进行遍历,根据相似度由大到小的顺序,对每个案例进行重用和修正;将当前案例结果直接设置 为设计环境,检查收端的误码率是否满足通道接收端最低要求,满足则不需要修正,直接使用该案例的结果作为设计结果,如果不满足则需要反复修正、验证,直至满足通道接收端的误码率最低要求,如果修正到器件参数极限仍无法满足,则遍历下一个案例,继续上述重用和修正过程,最终得到最优案例,并将当前设计结果目标案例的输出;
案例学习和保存模块318,将修正的设计结果作为案例的输出和影响设计因素作为目标案例的输入,重新组成一条新的案例,并保存到数据库模块中;
数据库模块320,负责保存学习得到的案例和接收录入的案例,实现设计案例库22的功能;
案例录入模块322,负责将收集到的案例录入设计案例库。
在实际应用中,人机交互模块310,通过案例录入模块322,将各局点的影响设计因素和设计结果作为案例录入到数据库模块320;案例检索模块312,通过人机交互模块310设定目标案例的设计影响因素输入、阈值,到数据库模块320进行检索;案例优化模块314接收案例检索模块312的源案例进行过滤出大于阈值的案例,通过人机交互模块310显示在界面中;案例重用和修正模块316接收优化模块的案例集合,通过重用和修正算法得出最优的案例,通过人机交互模块310输出设计结果;案例学习和保存模块318,接收案例重用和修正模块316的设计结果,和目标案例的输入组成一个新的案例,通过书库模块320存到设计案例库中;案例录入模块322,接收人机交互模块310的录入案例数据,将其存入数据库模块320。
具体的,本实施例提供的基于案例推理的WDM系统设计方法包括:
步骤402,开始。
步骤404,确定案例表示。
选取影响设计因素作为输入,设计结果作为输出。其中,影响设计因素包括:传输距离、跨段数、传输段损耗余量、满配波长数、波长间隔、 单波速率、波段、拓扑形式等;设计结果包括:发送机类型及参数、接收机类型及参数、合分波板类型及参数、放大器板类型及参数、光缆类型、拓扑组网数据。
步骤406,建立设计案例库。
收集已开局且运行良好的局点的数据,根据案例表示,建立设计案例库。
步骤408,将设计系统的影响因素作为目标案例的输入,案例推理开始。
步骤410,设定相似度阈值,设定输入各个特征的权重值。
步骤412,根据输入信息在数据库进行案例检索。
步骤414,计算目标案例输入和数据库案例输入的相似度,设目标案例的影响设计因素输入为D,D的描述特征为F={fi}(i=1,...,8),其中传输距离f1、跨段数f2、传输段损耗余量f3、满配波长数f4、波长间隔f5、单波速率f6、波段f7、拓扑形式f8,其中,拓扑形式f8为枚举类型,包括点到点、环网、网状网等;设计案例库中的案例Dk描述特征Fk={fi,k}(k=1,2,...,K),K为设计案例库中的案例数量。
D和Dk为相似度公式:
Figure PCTCN2017086395-appb-000001
其中,Wi表示案例特征权值,Sim(fi,fi,k)为输入案例的第i个描述特征fi和第k条案例描述特征fi,k的相似度,采用如下公式计算,定义为:
当i=1,2…7时;
sim(fi,fi,k)=1-|fi-fi,k|/max(fi,fi,k)
当i=8,枚举变量时;
Figure PCTCN2017086395-appb-000002
根据计算出的相似度,与阈值进行比较,得到大于阈值的备选案例集合。
步骤416,判断是否存在大于阈值的备选案例集合,存在,则执行步骤418,不存在则执行步骤426.
步骤418,获取备选案例集合,作为优先案例集合。
步骤420,对优选案例集合进行遍历,根据相似度由大到小的顺序,对每个案例进行重用和修正;将当前案例结果直接设置为设计环境,检查收端的误码率是否满足通道接收端最低要求,满足则不需要修正,直接使用该案例的结果作为设计结果,如果不满足则需要反复修正、验证,直至满足通道接收端的误码率最低要求,如果修正到器件参数极限仍无法满足,则遍历下一个案例,继续上述重用和修正过程,具体步骤在下文进行描述。
步骤422,将修正最优案例的设计结果作为案例的输出和影响设计因素作为目标案例的输入,重新组成一条新的案例。
步骤424,将该条新案例保存到设计案例库中。
步骤426,结束。
现对步骤420进行描述,本实施例提供的基于案例推理的WDM系统设计方法中的案例重用和修正步骤包括:
步骤502,开始。
步骤504,将案例优选获得的案例集按照相似度由大到小的顺序,顺序遍历重用和修正每个案例。
步骤506,将当前遍历到的案例导入到网管,形成网元、单板、连纤、路径等可管理的资源。
步骤508,划分修正单元:将复用段和其承载的多个通道层作为修正 单元,将复用段中的执行器,如放大器及衰减器等,作为复用段修正元件,通道层的可调通道衰减的单板器件作为通道层修正元件。
步骤510,查询每个修正单元中的多个通道层接收端的误码率性能。
步骤512,针对修正单元中的每个通道层,判断其接收端误码率是否满足最低误码率要求,满足,则重用该案例的输出设计结果,将输入和输出设计结果组成最优案例,继续步骤522。
步骤514,修正案例修正单元。
修正算法如下:假设复用段OMS,包含了N条通道层OCHj(j=1…N),OMS有M个修正元件OAi(i=1…M),OMS包含H个光纤段Fiber h(h=1…H),OCHj有L个修正单元WSUs(s=1…L)。
对于OMS,修正目标是减少信号能力损耗,增加光信噪比,从而达到减少误码率,修正方式是放大器件增益抵消掉光纤的衰减,采用如下公式,定义为:
Figure PCTCN2017086395-appb-000003
对于OCH,修正目标是各通道功率均衡,接收端误码率满足最低要求,修正方式是调整前L-1个WSUs的衰减量,使得各光通道输出的光功率均衡,调整第L个接收端业务板前的WSUs,使得通道对应输出的光功率满足业务板输入光功率的标准值,如果接收端误码率过大,优先调整前第i个WSUs,按每次减少0.5dB的步长来调整,为稳定接收端的光功率,增大接收端前面的第L个WSUs0.5dB衰减,从而增大光信噪比,减少误码率,如果第1个WSUs衰减量已经调大最大,则往下顺序调整第i+1个WSUs。
步骤516,判断根据修正算法得到的修正元件调整量是否超过参数的范围,没超过,则继续执行步骤512,超过,则执行步骤518。
步骤518,判断当前优选的案例是否是优选案例集中的最后一条案例,否,则继续执行步骤506,是,则执行步骤522。
步骤522,结束。
在实际应用中,上述方法和装置可以通过软件编程来实现,改进方便,而且操作性强,相对于现有技术而言,能够更有效、更准确的根据影响设计因素设计出最优的WDM系统。
由此便可以实现上网等业务流量,在乱序情况的动态保序。
综上可知,通过本公开的实施,至少存在以下有益效果:
本公开提供了一种通信系统设计方法,获取待设计系统的输入参数,根据输入参数,在设计设计案例库中进行匹配,得到匹配案例,根据匹配案例的设计结果,进行待设计系统的设计;这样采用案例推理算法,将系统设计的影响因素作为输入参数输入到设计案例库中经过案例检索及优选,得到作为优选案例的匹配案例,对案例重用和修正等操作,得到待设计系统的设计结果,简化了WDM系统设计过程,解决了系统设计复杂,耗时长,设计结果的不准确的问题,提高了开局的效率,降低了成本,解决了现有通信系统设计方法每次设计都需要重新设计所有参数。
进一步的,经过案例学习和保存的过程,为下一次系统设计提供新的案例,随着案例源积累,检索的到案例准确度会大大提高。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生设置为实 现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供设置为实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上仅是本公开的具体实施方式而已,并非对本公开做任何形式上的限制,凡是依据本公开的技术实质对以上实施方式所做的任意简单修改、等同变化、结合或修饰,均仍属于本公开技术方案的保护范围。
工业实用性
本公开提供的上述技术方案,采用案例推理算法,将系统设计的影响因素作为输入参数输入到案例库中经过案例检索及优选,得到作为优选案例的匹配案例,对案例重用和修正等操作,得到待设计系统的设计结果,简化了WDM系统设计过程,解决了系统设计复杂,耗时长,设计结果的不准确的问题,提高了开局的效率,降低了成本,解决了现有通信系统设计方法每次设计都需要重新设计所有参数。

Claims (18)

  1. 一种通信系统设计方法,包括:
    获取待设计系统的输入参数;
    根据所述输入参数,在设计案例库中进行匹配,得到匹配案例;所述设计案例库存储有至少一个设计案例的输入参数及设计结果;
    根据所述匹配案例的设计结果,进行待设计系统的设计。
  2. 如权利要求1所述的通信系统设计方法,其中,在获取待设计系统的输入参数之前,还包括:
    选择至少一个已经使用的通信系统的设计案例;
    获取所选择的设计案例的输入参数及设计结果;
    根据所述所选择的设计案例的输入参数及设计结果,建立所述设计案例库。
  3. 如权利要求1所述的通信系统设计方法,其中,所述在设计案例库中进行匹配包括:
    依次计算所述待设计系统的输入参数与所述设计案例库中各设计案例的输入参数的匹配值;
    根据所述待设计系统的输入参数与各设计案例的输入参数的匹配值,对所述设计案例库中的设计案例进行排序;
    选择匹配值大于预设阈值的设计案例,或者根据排序选择指定数量的设计案例,作为匹配案例。
  4. 如权利要求1所述的通信系统设计方法,其中,所述通信系统包括波分复用系统,所述输入参数包括传输距离、跨段数、传输段损耗余量、满配波长数、波长间隔、单波速率、波段、拓扑形式中的一个或多个;所述设计结果包括发送机类型及参数、接收机类型及参数、合分波板类型及参数、放大器板类型及参数、光缆类型、拓扑组网数据中的一个或多个。
  5. 如权利要求1至4任一项所述的通信系统设计方法,其中,所述根据所述匹配案例的设计结果,进行待设计系统的设计包括:
    将所述匹配案例的设计结果,直接运用到所述待设计系统的设计环境;
    检测通信参数是否满足通信要求;
    若满足,则将所述匹配案例的设计结果作为所述待设计系统的设计结果;
    若不满足,则对所述匹配案例的设计结果进行修正,并将修正后的设计结果运用到所述待设计系统的设计环境;并继续检测是否满足通信要求,直至满足通信要求完成待设计系统的设计,或者设计结果修正到器件极限时,根据当前匹配案例的设计结果不能进行待设计系统的设计。
  6. 如权利要求5所述的通信系统设计方法,其中,若存在多个匹配案例,还包括:
    对所述多个匹配案例进行排序;
    按照排序,依次根据各匹配案例的设计结果,进行待设计系统的设计;
    若当前匹配案例的设计结果不能满足待设计系统的设计,则使用下一匹配案例的设计结果,进行待设计系统的设计。
  7. 如权利要求5所述的通信系统设计方法,其中,所述通信系统包括波分复用系统,所述对所述匹配案例的设计结果进行修正包括:
    将所述匹配案例的设计结果导入网管;
    将复用段及其承载的多个通道作为修正单元;
    根据执行器增益抵消光纤衰减的修正原则,对所述复用段内的执行器进行增益修正;
    根据各通道输出光功率均衡的修正原则,对所述多个通道的单板器件进行衰减修正。
  8. 如权利要求5所述的通信系统设计方法,其中,在得到所述待设计系统的设计结果后,将所述待设计系统的输入参数及设计结果,对应存储更新到所述设计案例库。
  9. 一种通信系统设计装置,包括:输入模块,设计案例库,匹配模块, 设计模块,其中,
    所述设计案例库设置为存储至少一个设计案例的输入参数及设计结果;
    所述输入模块设置为根据用户输入获取待设计系统的输入参数;
    所述匹配模块设置为根据所述输入参数,在所述设计案例库中进行匹配,得到匹配案例;
    所述设计模块设置为根据所述匹配案例的设计结果,进行待设计系统的设计。
  10. 如权利要求9所述的通信系统设计装置,其中,所述匹配模块设置为依次计算所述待设计系统的输入参数与所述设计案例库中各设计案例的输入参数的匹配值,根据所述待设计系统的输入参数与各设计案例的输入参数的匹配值,对所述设计案例库中的设计案例进行排序,选择匹配值大于预设阈值的设计案例,或者根据排序选择指定数量的设计案例,作为匹配案例。
  11. 如权利要求9所述的通信系统设计装置,其中,所述通信系统包括波分复用系统,所述输入参数包括传输距离、跨段数、传输段损耗余量、满配波长数、波长间隔、单波速率、波段、拓扑形式中的一个或多个;所述设计结果包括发送机类型及参数、接收机类型及参数、合分波板类型及参数、放大器板类型及参数、光缆类型、拓扑组网数据中的一个或多个。
  12. 如权利要求9至11任一项所述的通信系统设计装置,其中,所述设计模块设置为将所述匹配案例的设计结果,直接运用到所述待设计系统的设计环境,检测通信参数是否满足通信要求,若满足,则将所述匹配案例的设计结果作为所述待设计系统的设计结果,若不满足,则对所述匹配案例的设计结果进行修正,并将修正后的设计结果运用到所述待设计系统的设计环境;并继续检测是否满足通信要求,直至满足通信要求完成待设计系统的设计,或者设计结果修正到器件极限时,根据当前匹配案例的设计结果不能进行待设计系统的设计。
  13. 如权利要求12所述的通信系统设计装置,其中,若存在多个匹 配案例,所述设计模块设置为对所述多个匹配案例进行排序,按照排序,依次根据各匹配案例的设计结果,进行待设计系统的设计,若当前匹配案例的设计结果不能满足待设计系统的设计,则使用下一匹配案例的设计结果,进行待设计系统的设计。
  14. 如权利要求12所述的通信系统设计装置,其中,所述通信系统包括波分复用系统,所述设计模块设置为将所述匹配案例的设计结果导入网管,将复用段及其承载的多个通道作为修正单元,根据执行器增益抵消光纤衰减的修正原则,对所述复用段内的执行器进行增益修正,根据各通道输出光功率均衡的修正原则,对所述多个通道的单板器件进行衰减修正。
  15. 如权利要求12所述的通信系统设计装置,其中,所述设计模块设置为在计算得到所述待设计系统的设计结果后,将所述待设计系统的输入参数及设计结果,对应存储更新到所述设计案例库。
  16. 一种通信系统,使用如权利要求9至15任一项所述的通信系统设计装置,进行通信系统的设计。
  17. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述权利要求1至8任一项中所述的方法。
  18. 一种处理器,所述处理器运行程序,其中,所述程序运行时执行上述权利要求1至8任一项中所述的方法。
PCT/CN2017/086395 2016-06-14 2017-05-27 一种通信系统设计方法、装置及通信系统 WO2017215440A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610415272.7A CN107508692B (zh) 2016-06-14 2016-06-14 一种通信系统设计方法、装置及通信系统
CN201610415272.7 2016-06-14

Publications (1)

Publication Number Publication Date
WO2017215440A1 true WO2017215440A1 (zh) 2017-12-21

Family

ID=60662954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086395 WO2017215440A1 (zh) 2016-06-14 2017-05-27 一种通信系统设计方法、装置及通信系统

Country Status (2)

Country Link
CN (1) CN107508692B (zh)
WO (1) WO2017215440A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111198550A (zh) * 2020-02-22 2020-05-26 江南大学 基于案例推理的云端智能生产优化调度在线决策方法及系统
CN112347464A (zh) * 2020-11-08 2021-02-09 北京工业大学 基于案例匹配和工具动态调用的安卓智能设备root方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110113103A (zh) * 2019-05-08 2019-08-09 吉林工程技术师范学院 一种提升主干光纤通信网络可靠性的装置及方法
CN115589235B (zh) * 2022-11-29 2023-03-14 湖北中环测计量检测有限公司 一种多路复用通信模型的室内环境检测数据交互方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110222415A1 (en) * 2010-03-15 2011-09-15 Fujitsu Limited Method and system for implementing link adaptation based on mobility
CN103116701A (zh) * 2013-01-30 2013-05-22 南京理工大学连云港研究院 一种用于水利信息系统的水利信息调度方法
US20130143578A1 (en) * 2011-12-01 2013-06-06 At&T Mobility Ii Llc Range expansion in a wireless network environment
CN103500423A (zh) * 2013-09-26 2014-01-08 国家电网公司 一种电力突发事件案例适配决策方法
CN105574017A (zh) * 2014-10-14 2016-05-11 威海拓达高科船舶科技有限公司 一种用于船舶避碰的智能检索装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030099014A1 (en) * 2001-04-26 2003-05-29 Egner Will A. System and method for optimized design of an optical network
CN1156112C (zh) * 2002-01-24 2004-06-30 北京邮电大学 波分复用光网络模拟方法
US20060045523A1 (en) * 2004-08-31 2006-03-02 Kozischek David R Online system for designing a fiber optic network and associated methods
CN101383027A (zh) * 2008-09-12 2009-03-11 同济大学 一种突发环境事件应急预案的生成方法及系统
CN101834740B (zh) * 2010-04-07 2012-02-29 烽火通信科技股份有限公司 Wdm光网络中的物理器件的自动配置方法
CN102497232B (zh) * 2011-12-15 2014-07-09 北京北方烽火科技有限公司 一种光载无线通信系统的匹配实现方法
CN104243062B (zh) * 2014-08-27 2017-05-10 京信通信系统(中国)有限公司 上行系统以及改善上行系统性能的方法和系统
CN104503920A (zh) * 2015-01-23 2015-04-08 桂林电子科技大学 基于动态描述逻辑和案例推理的软件系统故障检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110222415A1 (en) * 2010-03-15 2011-09-15 Fujitsu Limited Method and system for implementing link adaptation based on mobility
US20130143578A1 (en) * 2011-12-01 2013-06-06 At&T Mobility Ii Llc Range expansion in a wireless network environment
CN103116701A (zh) * 2013-01-30 2013-05-22 南京理工大学连云港研究院 一种用于水利信息系统的水利信息调度方法
CN103500423A (zh) * 2013-09-26 2014-01-08 国家电网公司 一种电力突发事件案例适配决策方法
CN105574017A (zh) * 2014-10-14 2016-05-11 威海拓达高科船舶科技有限公司 一种用于船舶避碰的智能检索装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111198550A (zh) * 2020-02-22 2020-05-26 江南大学 基于案例推理的云端智能生产优化调度在线决策方法及系统
CN112347464A (zh) * 2020-11-08 2021-02-09 北京工业大学 基于案例匹配和工具动态调用的安卓智能设备root方法
CN112347464B (zh) * 2020-11-08 2024-03-29 北京工业大学 基于案例匹配和工具动态调用的安卓智能设备root方法

Also Published As

Publication number Publication date
CN107508692B (zh) 2022-12-06
CN107508692A (zh) 2017-12-22

Similar Documents

Publication Publication Date Title
WO2017215440A1 (zh) 一种通信系统设计方法、装置及通信系统
US10855550B2 (en) Network traffic prediction using long short term memory neural networks
US10417580B2 (en) Iterative refinement of pathways correlated with outcomes
CN108681751B (zh) 确定事件影响因素的方法及终端设备
CN115563610A (zh) 入侵检测模型的训练方法、识别方法和装置
CN115048370B (zh) 用于大数据清洗的人工智能处理方法及大数据清洗系统
CN112565940B (zh) 一种光纤网络的光纤路径规划方法和装置
CN101409596A (zh) 一种动态业务的波长路由光网络规划方法
CN110858805A (zh) 小区网络流量预测方法及装置
CN109547102B (zh) 一种光性能监测方法、装置、电子设备及可读存储介质
Liu et al. A meta-learning-assisted training framework for physical layer modeling in optical networks
US20200133917A1 (en) Method, device and computer program product for managing data replication
CN110378464A (zh) 人工智能平台的配置参数的管理方法和装置
EP4236345A1 (en) Single service resource configuration method and apparatus, computer device and medium
CN114827783B (zh) 一种基于聚合树的跨域分布式机器学习的带宽调度方法
US8843495B2 (en) High-efficiency selection of runtime rules for programmable search
JP2014175820A (ja) ネットワーク設計装置およびネットワーク設計プログラム
Chlamtac et al. Use of computational intelligence techniques for designing optical networks
CN109784495B (zh) 特征处理流程的建立方法、装置、存储介质及电子设备
JP7428831B2 (ja) Otnネットワークリソース最適化方法および装置、コンピュータデバイスならびに記憶媒体
CN116797008B (zh) 基于人工智能的珠宝生产控制方法及系统
KR102233891B1 (ko) 정보의 전파 시간을 예측하는 방법 및 상기 방법을 수행하는 정보 전파 예측 장치
US20230119654A1 (en) Identifying Node Importance in Machine Learning Pipelines
WO2023012971A1 (ja) 学習方法、装置及びプログラム
US20210281513A1 (en) Server apparatus, edge equipment, process pattern specifying method, and control program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17812551

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17812551

Country of ref document: EP

Kind code of ref document: A1