WO2017215385A1 - 一种路径确定方法、装置和系统 - Google Patents

一种路径确定方法、装置和系统 Download PDF

Info

Publication number
WO2017215385A1
WO2017215385A1 PCT/CN2017/084376 CN2017084376W WO2017215385A1 WO 2017215385 A1 WO2017215385 A1 WO 2017215385A1 CN 2017084376 W CN2017084376 W CN 2017084376W WO 2017215385 A1 WO2017215385 A1 WO 2017215385A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
network device
path
transmission path
link
Prior art date
Application number
PCT/CN2017/084376
Other languages
English (en)
French (fr)
Inventor
吴楠
庄顺万
倪辉
李振斌
陈霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17812496.2A priority Critical patent/EP3461078B1/en
Publication of WO2017215385A1 publication Critical patent/WO2017215385A1/zh
Priority to US16/221,568 priority patent/US11323366B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • H04L45/741Routing in networks with a plurality of addressing schemes, e.g. with both IPv4 and IPv6
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0272Transmission of OAMP information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/12Discovery or management of network topologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/145Network analysis or design involving simulating, designing, planning or modelling of a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • H04L45/04Interdomain routing, e.g. hierarchical routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/42Centralised routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]

Definitions

  • the present invention relates to the field of communications, and in particular, to a path determining method, apparatus, and system.
  • a hybrid network When deploying a network, a hybrid network may occur, and the hybrid network may include different types of networks, such as a hybrid network including an IP network and an optical network.
  • a hybrid network network topologies of different types of networks have interconnected relationships, so data transmission paths between two network nodes in a hybrid network may span different types of networks. For example, in a hybrid network including an optical network and an IP network, a part of the data transmission path between the network node a and the network node b needs to use the topology of the IP network, and another part needs to use the topology of the optical network.
  • a network controller manages the network topology information of the network, and the network topology information of different types of networks are respectively managed by different controllers, so that for one controller, the network topology information of the network where the network is located can be obtained, but the network topology information cannot be known. Network topology information for other networks.
  • an embodiment of the present invention provides a path determining method, apparatus, and system, which improve the planning efficiency of a data transmission path.
  • an embodiment of the present invention provides a path determining method, which is applied to a hybrid network including a control function implemented by the same controller, where the hybrid network includes a first network and a second network, where the foregoing method includes:
  • the controller obtains a path determination requirement, where the path determination request is used to request to determine that a starting point is the first network device, the destination is the second network device, and the data is formed by the transmission path portion of the first network and the transmission path portion of the second network.
  • a transmission path the path determination requirement includes an identifier of the first network device and an identifier of the second network device, where the first network device and the second network device are network devices of the first network;
  • the controller acquires network topology information of the first network from the network device in the first network, and acquires network topology information of the second network from the network device in the second network;
  • the controller calculates a path calculation result according to the identifier of the first network device, the identifier of the second network device, the network topology information of the first network, and the network topology information of the second network, where the path calculation result includes the data transmission path at the first a calculation result of a portion of the transmission path in the network and a calculation result of the portion of the transmission path of the data transmission path in the second network;
  • the controller sends a path calculation result to the first network device.
  • the controller can separately obtain the network topology information of the first network and the second network belonging to different network types through the same channel control protocol, and determine the path requirement for the path of the data transmission path by the controller.
  • the controller already has network topology information of the first network and the second network, when calculating the data transmission path, the controller does not need to perform additional information interaction with other devices to determine And including a path calculation result of the transmission path part in the first network and the second network, and sending the path calculation result to the first network device, thereby improving planning efficiency of the data transmission path.
  • the controller sends the path calculation result to the first network device, including:
  • the controller sends a PCEP message carrying the path calculation result to the first network device, where the PCEP message includes a path information field, where the path information field is used to carry interface information of the network device that passes through the data transmission path, and the interface information includes the network device Interface information or inbound interface information.
  • the PCEP message For a link in the data transmission path, the PCEP message carries the interface information of the link on the outbound interface of the network device and at least one interface on the inbound interface.
  • the interface information in the path calculation result can be carried in sequence, so that the first network device path that receives the PCEP message can explicitly establish the interface information required for the data transmission path through the path information field.
  • the PCEP message includes a PCEP-Reply message or a PCEP-Update message.
  • the PCEP message can be identified by the first network device in different application scenarios, and the new PCEP message type does not need to be additionally defined, which reduces the complexity of the implementation of the solution.
  • control channel protocol is PCEP
  • controller performs the acquisition of the network device from the second network.
  • the steps of the network topology information of the network may include:
  • the controller obtains the network topology information of the second network according to the PCEP-LS message sent by the network device in the second network, where the second network is identified by a value in the general routing field of the PCEP-LS message.
  • the controller can distinguish, from the received PCEP-LS message, which are PCEP-LS messages carrying the network topology information of the second network.
  • the PCEP-LS message further includes a node object for identifying a network device in the second network, where the node object includes a network in the second network A description item of the device, where the description item of the network device in the second network is used to carry the identifier and attribute of the network device in the second network.
  • the content carried by the description item of the node object in the PCEP-LS message can make the controller clear the network device in the second network.
  • the PCEP-LS message further includes a link object that is used to identify the network device in the second network;
  • the link object includes a link description item, where the link description item is used to carry link information of a link between the network device in the second network and the adjacent network device;
  • the link description item includes a description item of the network device in the second network, a description item of the adjacent network device, and a link identifier field, where the link identifier field is used to carry a chain between the network device and the adjacent network device in the second network.
  • the interface information of the network device in the second network and the interface information of the adjacent network device are used to carry a chain between the network device and the adjacent network device in the second network.
  • the content carried by the link description item of the link object in the PCEP-LS message can make the controller clear the link information of the link between the network device and the adjacent network device in the second network.
  • the first network is an IP network
  • the link description entry further includes an IP neighbor address field, configured to carry an IP address of the network device in the first network adjacent to the network device in the second network.
  • the controller can further clarify the chain between the network device in the second network and the network device in the first network when the adjacent network device is the network device in the first network. Link information of the road.
  • the first network is an IP network
  • the method further includes:
  • the controller receives the PCEP-LS message sent by the first network device, and the first route is identified by the value in the general route field in the PCEP-LS message, and the link description item is included in the link object, and the link description item includes the local node description.
  • a term, a remote node description item, a link identifier field, and an opaque link attribute field the local node description item and the remote node description item of the link description item are used to carry local node information and remote node information of the VTE link
  • the link identifier field of the link description item is used to carry the virtual local identifier and the virtual remote identifier of the VTE link
  • the opaque link attribute field of the link description item is used to carry the local identifier and the remote identifier of the VTE link, and the VTE
  • the link is a virtual link between the first network device and the second network device under the IP network.
  • the first network device can also report the information of the established VTE link to the controller through the PCEP-LS message, so that the controller can quickly learn the related information that the VTE link has been established, so that the controller can accurately mix the information.
  • the network is regulated and managed.
  • the link description entry further includes a local IP address field and a remote IP address field, and the local IP address field of the link description item is used.
  • the remote interface address information of the link description item is used to carry the remote interface information of the VTE link on the second network device.
  • the link description item of the PCEP-LS message can carry the interface information of the VTE link under the IP network, and further improve the controller. Information about the VTE link.
  • the method before the controller acquires the path determination requirement, the method further includes:
  • the controller acquires planning data for the virtual path, where the planning data includes an identifier of the first network device that is the start of the virtual path, an identifier of the second network device that is the end of the virtual path, an identifier of the virtual path, and a virtual path in the first network.
  • the path information in the path and the path information of the virtual path in the second network; the path determination requirement acquired by the controller further includes an identifier of the virtual path;
  • the controller calculates the path calculation result according to the identifier of the first network device, the identifier of the second network device, the topology information of the first network, and the topology information of the second network, including:
  • the controller matches the planning data according to the identifier of the first network device, the identifier of the second network device, and the identifier of the virtual path;
  • the controller calculates a data transmission path for the virtual link according to the planning data, the network topology information of the first network, and the network topology information of the second network, and determines a path calculation result.
  • the planning data of the data transmission path across the network in the hybrid network can be pre-determined by the manual planning manner, so that the controller can determine the path according to the planning data and the topology information of the first network and the topology information of the second network.
  • the calculation results improve the efficiency of determining the path calculation result.
  • an embodiment of the present invention provides a path determining apparatus, which is applied to a hybrid network including a control function implemented by the same controller, where the hybrid network includes a first network and a second network, where the apparatus includes an acquiring unit, a calculating unit, and Sending unit:
  • An obtaining unit configured to acquire a path determining requirement, where the path determining requirement is used to request to determine that a starting point is a first network device, the ending point is a second network device, and the transmission path part of the first network and the transmission path part of the second network a data transmission path, where the path determination requirement includes an identifier of the first network device and an identifier of the second network device, where the first network device and the second network device are network devices of the first network;
  • the obtaining unit is further configured to acquire network topology information of the first network from the network device in the first network according to the control channel protocol, and obtain network topology information of the second network from the network device in the second network;
  • a calculation unit configured to calculate a path calculation result according to the identifier of the first network device, the identifier of the second network device, the network topology information of the first network, and the network topology information of the second network, where the path calculation result includes the data transmission path a calculation result of a transmission path portion in a network and a calculation result of a transmission path portion of the data transmission path in the second network;
  • a sending unit configured to send a path calculation result to the first network device.
  • the controller can separately obtain the network topology information of the first network and the second network belonging to different network types through the same channel control protocol, and determine the path requirement for the path of the data transmission path by the controller.
  • the controller already has network topology information of the first network and the second network, when calculating the data transmission path, the controller does not need to perform additional information interaction with other devices to determine And including a path calculation result of the transmission path part in the first network and the second network, and sending the path calculation result to the first network device, thereby improving planning efficiency of the data transmission path.
  • the sending unit is configured to send, to the first network device, a PCEP message carrying a path calculation result, where the PCEP message includes a path information field, and the path information field is used to carry the data transmission path.
  • the interface information of the network device that passes through the network device.
  • the interface information includes the outbound interface information or the inbound interface information of the network device.
  • the PCEP message For a link in the data transmission path, the PCEP message carries the link on the network device through the path information field. Interface information of at least one interface on the interface and the inbound interface.
  • the interface information in the path calculation result can be carried in sequence, so that the first network device path that receives the PCEP message can explicitly establish the interface information required for the data transmission path through the path information field.
  • the PCEP message includes a PCEP-Reply message or a PCEP-Update message.
  • the PCEP message can be identified by the first network device in different application scenarios, and the new PCEP message type does not need to be additionally defined, which reduces the complexity of the implementation of the solution.
  • control channel protocol is a PCEP
  • the obtaining unit is specifically configured to use the network device according to the second network.
  • the sent PCEP-LS message obtains the network topology information of the second network, and the value is passed in the general routing field of the PCEP-LS message. Identify the second network.
  • the PCEP-LS message carrying the network topology information of the second network can be distinguished from the received PCEP-LS message by using the identifier function of the common routing field in the PCEP-LS message.
  • the PCEP-LS message further includes a node object for identifying the network device in the second network, where the node object includes the network in the second network.
  • a description item of the device where the description item of the network device in the second network is used to carry the identifier and attribute of the network device in the second network.
  • the network device in the second network can be clarified by the content carried in the description item of the node object in the PCEP-LS message.
  • the PCEP-LS message further includes a link object that is used to identify the network device in the second network;
  • the link object includes a link description item, where the link description item is used to carry link information of a link between the network device in the second network and the adjacent network device;
  • the link description item includes a description item of the network device in the second network, a description item of the adjacent network device, and a link identifier field, where the link identifier field is used to carry a chain between the network device and the adjacent network device in the second network.
  • the interface information of the network device in the second network and the interface information of the adjacent network device are used to carry a chain between the network device and the adjacent network device in the second network.
  • the link information of the link between the network device and the adjacent network device in the second network can be clarified by the content carried in the link description item of the link object in the PCEP-LS message.
  • the first network is an IP network
  • the link description entry further includes an IP neighbor address field, configured to carry an IP address of the network device in the first network adjacent to the network device in the second network.
  • the IP neighbor address field included in the link description item it can be further clarified that when the adjacent network device is the network device in the first network, the link between the network device in the second network and the network device in the first network is Road information.
  • the first network is an IP network
  • the acquiring unit is further configured to receive a PCEP-LS message sent by the first network device, and pass the value in the general routing field in the PCEP-LS message.
  • Identifying the first network including a link description item in the link object, where the link description item includes a local node description item, a remote node description item, a link identifier field, and an opaque link attribute field; a local node of the link description item
  • the description item and the remote node description item are used to carry the local node information and the remote node information of the VTE link;
  • the link identification field of the link description item is used to carry the virtual local identifier and the virtual remote identifier of the VTE link, and the chain
  • the opaque link attribute field of the path description item is used to carry the local identifier and the remote identifier of the VTE link, and the VTE link is a virtual link between the first network device and the second network device under the IP network. road.
  • the first network device can also report the information of the established VTE link through the PCEP-LS message, and can quickly learn related information that has been established on the VTE link, so as to facilitate accurate regulation and management of the hybrid network.
  • the link description entry further includes a local IP address field and a remote IP address field, and the local IP address field of the link description item is used by The remote interface address information of the link description item is used to carry the remote interface information of the VTE link on the second network device.
  • the link description item of the PCEP-LS message can carry the interface information of the VTE link under the IP network, further improving the controller. Information about the VTE link.
  • the acquiring unit is further configured to acquire planning data for the virtual path, where the planning data includes an identifier of the first network device that is the start end of the virtual path, and is the second end of the virtual path.
  • the identifier of the network device, the identifier of the virtual path, the path information of the virtual path in the first network, and the path information of the virtual path in the second network; and the path determination requirement acquired by the controller further includes the identifier of the virtual path;
  • the calculating unit is further configured to match the planning data according to the identifier of the first network device, the identifier of the second network device, and the identifier of the virtual path;
  • the data transmission path for the virtual link is calculated according to the planning data, the network topology information of the first network, and the network topology information of the second network, and the path calculation result is determined.
  • the planning data of the data transmission path across the network in the hybrid network can be pre-determined by the manual planning manner, so that the controller can determine the path according to the planning data and the topology information of the first network and the topology information of the second network.
  • the calculation results improve the efficiency of determining the path calculation result.
  • an embodiment of the present invention provides a path determining method, which is applied to a hybrid network including a control function implemented by the same controller, where the hybrid network includes a first network and a second network, and the first network device and the second network device are both For the network device of the first network, the method includes:
  • the first network device obtains a path calculation result sent by the controller, where the path calculation result is calculated by the controller according to the identifier of the first network device, the identifier of the second network device, the network topology information of the first network, and the network topology information of the second network. Obtained; the path calculation result includes a calculation result of the transmission path part of the data transmission path in the first network and a calculation result of the transmission path part of the data transmission path in the second network; the data transmission path is a starting point of the first network device, and the end point a second network device, and a data transmission path formed by a transmission path portion of the first network and a transmission path portion of the second network;
  • the first network device establishes a data transmission path according to the path calculation result.
  • the network device in the first network can obtain a path calculation result from the controller, where the path calculation result includes a calculation result of the transmission path portion of the data transmission path in the first network and The result of the calculation of the transmission path portion of the data transmission path in the second network, the calculation result of the transmission path portion of the data transmission path in the second network by the first network device is an unencrypted form, when the data is established from the first network device
  • the additional information interaction between the network device and the other controllers in the second network in the conventional manner can be eliminated, and the effect of improving the data transmission path establishment efficiency is achieved.
  • the first network device acquires a path calculation result sent by the controller, including:
  • the first network device acquires a PCEP message sent by the controller, where the PCEP message carries a path calculation result, where the PCEP message includes multiple path information fields sequentially arranged according to the transmission order of the data transmission path, and the path information field is used to carry the data transmission path.
  • the interface information of the link on the network device where the interface information includes the outbound interface information of the link in the data transmission path or the inbound interface information is a link in the data transmission path, and the PCEP message carries at least the path information field.
  • the interface information of the at least one interface on the outbound interface and the inbound interface of the network device is a link in the data transmission path.
  • the interface information in the path calculation result can be carried in sequence, so that the first network device path can explicitly establish the interface information required for the data transmission path through the path information field.
  • the PCEP message includes a PCEP-Reply message or a PCEP-Update message.
  • the PCEP message can be identified by the first network device in different application scenarios, and the new PCEP message type does not need to be additionally defined, which reduces the complexity of the implementation of the solution.
  • the embodiment of the present invention provides a path determining apparatus, which is applied to a hybrid network including a control function implemented by the same controller, where the hybrid network includes a first network and a second network, and the first network device and the second network device are both As a network device of the first network, the device comprises an obtaining unit and an establishing unit:
  • the obtaining unit is configured to obtain a path calculation result sent by the controller, where the path calculation result is that the controller is configured according to the identifier of the first network device, the identifier of the second network device, the network topology information of the first network, and the network topology information of the second network.
  • the path calculation result includes a calculation result of the transmission path part of the data transmission path in the first network and a calculation result of the transmission path part of the data transmission path in the second network
  • the data transmission path is a starting point of the first network device
  • the destination is a second network device, and the data transmission path is formed by the transmission path portion of the first network and the transmission path portion of the second network;
  • a unit is established for establishing a data transmission path according to the path calculation result.
  • the acquiring unit can obtain the path calculation result from the controller, and the path calculation result includes the calculation result of the data transmission path in the transmission path part of the first network and the data transmission path is a calculation result of the transmission path portion in the second network, wherein the calculation result of the transmission path portion of the data transmission path in the second network is an unencrypted form, and the process of establishing the data transmission path from the establishing unit may be exempted.
  • the acquiring unit is specifically configured to obtain a PCEP message sent by the controller, where the PCEP message carries a path calculation result, and the PCEP message includes multiple times according to a transmission sequence of the data transmission path.
  • the path information field is used to carry the interface information of the link in the data transmission path on the network device, and the interface information includes the outbound interface information or the inbound interface information of the link in the data transmission path on the network device, for the data transmission.
  • a link in the path, the PCEP message carries at least the interface information of the at least one interface on the outbound interface and the inbound interface of the network device through the path information field.
  • the path information field in the PCEP message can carry the interface information in the path calculation result in turn, and the interface information required for the data transmission path can be clearly established through the path information field.
  • the PCEP message includes a PCEP-Reply message or a PCEP-Update message.
  • an embodiment of the present invention provides a path determining method, which is applied to a hybrid network including a control function implemented by the same controller, where the hybrid network includes a first network and a second network, and the second network is an optical network, and the target network device For a network device in the second network, the method includes:
  • the target network device sends the network topology information of the second network to the controller, where the control channel protocol is the same as the control channel protocol according to the network device in the first network sending the network topology information of the first network to the controller.
  • the target network device in the optical network can be based on the network in the first network.
  • the network device sends the network topology information of the second network to the controller according to the control channel protocol that the network device sends the network topology information of the first network to the controller, so that the same controller can obtain different networks by using the same channel control protocol.
  • the network topology information of the first network and the second network of the type realizes the control function of the same controller in the hybrid network.
  • control channel protocol is a PCEP
  • target network device sends the network topology information of the second network to the controller, including:
  • the target network device sends a PCEP-LS message carrying the network topology information of the second network to the controller, and the second network is identified by the value in the general routing field of the PCEP-LS message.
  • the controller can distinguish, from the received PCEP-LS message, which are PCEP-LS messages carrying the network topology information of the second network.
  • the PCEP-LS message further includes a node object for identifying a network device in the second network, where the node object includes a network in the second network A description item of the device, where the description item of the network device in the second network is used to carry the identifier and attribute of the network device in the second network.
  • the content carried by the description item of the node object in the PCEP-LS message can make the controller clear the network device in the second network.
  • the PCEP-LS message further includes a link object for identifying a network device in the second network, where the link object includes a link a description item, the link description item is used to carry link information of a link between the network device and the adjacent network device in the second network, where the link description item includes a description item of the network device in the second network, and a description of the neighboring network device And a link identifier field, where the link identifier field is used to carry the interface information between the network device and the adjacent network device in the second network, the interface information of the network device in the second network, and the interface information of the adjacent network device.
  • the content carried by the link description item of the link object in the PCEP-LS message can make the controller clear the link information of the link between the network device and the adjacent network device in the second network.
  • the target network device is a network device in the data transmission path, and according to the transmission sequence of the data transmission path, the previous network device of the target network device on the data transmission path is the first a network device in a network, the data transmission path is a data transmission path formed by the first network device and the second network device, and the transmission path portion of the first network and the transmission path portion of the second network;
  • a network device and a second network device are network devices of the first network; and the method further includes:
  • the target network device establishes a data transmission path according to a calculation result of the data transmission path in the transmission path portion of the second network.
  • the target network device can continue to establish the data transmission path according to the calculation result of the transmission path portion of the data transmission path in the second network. Thereby eliminating the extra information interaction between the traditional controller and the optical controller, and achieving the effect of improving the efficiency of data transmission path establishment.
  • the embodiment of the present invention provides a path determining apparatus, which is applied to a hybrid network including a control function implemented by the same controller, where the hybrid network includes a first network and a second network, and the second network is an optical network, and the device includes Sending unit:
  • a sending unit configured to send network topology information of the second network to the controller according to the control channel protocol, where the control channel protocol is the same as the control channel protocol according to the network device in the first network sending the network topology information of the first network to the controller .
  • the generating unit in the optical network can send the second to the controller according to the control channel protocol according to the network topology information sent by the network device in the first network to the controller to the first network.
  • the network topology information of the network so that the same controller can obtain the network topology information of the first network and the second network belonging to different network types through the same channel control protocol, and realize the control function of the same controller in the hybrid network.
  • control channel protocol is a PCEP
  • sending unit is configured to send, to the controller, a PCEP-LS message carrying network topology information of the second network, and a general route of the PCEP-LS message.
  • the second network is identified by a value in the field.
  • the controller can distinguish, from the received PCEP-LS message, which are PCEP-LS messages carrying the network topology information of the second network.
  • the PCEP-LS message further includes a node object for identifying a network device in the second network, where the node object includes a network in the second network.
  • a description item of the device where the description item of the network device in the second network is used to carry the identifier and attribute of the network device in the second network.
  • the content carried by the description item of the node object in the PCEP-LS message can make the controller clear the network device in the second network.
  • the PCEP-LS message further includes a link object for identifying a network device in the second network, where the link object includes a link a description item, the link description item is used to carry link information of a link between the network device and the adjacent network device in the second network, where the link description item includes a description item of the network device in the second network, and a description of the neighboring network device And a link identifier field, where the link identifier field is used to carry the interface information between the network device and the adjacent network device in the second network, the interface information of the network device in the second network, and the interface information of the adjacent network device.
  • the content carried by the link description item of the link object in the PCEP-LS message can make the controller clear the link information of the link between the network device and the adjacent network device in the second network.
  • the target network device is a network device in the data transmission path, and according to the transmission sequence of the data transmission path, the previous network device of the target network device on the data transmission path is the first a network device in a network, the data transmission path is a data transmission path formed by the first network device and the second network device, and the transmission path portion of the first network and the transmission path portion of the second network;
  • a network device and a second network device are network devices of the first network; the device further includes a receiving unit:
  • a receiving unit configured to acquire, from a previous network device, a calculation result of a part of the transmission path of the data transmission path in the second network
  • the establishing unit is further configured to establish a data transmission path according to a calculation result of the data transmission path in the transmission path portion in the second network.
  • the establishing unit can directly establish the data transmission path according to the calculation result of the transmission path portion of the data transmission path in the second network.
  • the embodiment of the present invention provides a path determining system, which is applied to a hybrid network including a control function implemented by the same controller, where the hybrid network includes a first network and a second network, where the system includes a controller and a first network device.
  • the controller obtains a path determination requirement, and the path determination requirement is used to request to determine a data transmission consisting of a starting point of the first network device, an end point being the second network device, and a transmission path part of the first network and a transmission path part of the second network.
  • the path determining requirement includes an identifier of the first network device and an identifier of the second network device, where the first network device and the second network device are network devices of the first network; and the network in the first network according to the control channel protocol
  • the device acquires network topology information of the first network, and acquires network topology information of the second network from the network device in the second network; according to the identifier of the first network device, the identifier of the second network device, and the network topology information of the first network And calculating a path calculation result by using network topology information of the second network, where the path calculation result includes a calculation result of the transmission path part of the data transmission path in the first network and a calculation result of the transmission path part of the data transmission path in the second network; a network device sends a path calculation result;
  • the first network device acquires a path calculation result sent by the controller; and establishes a data transmission path according to the path calculation result.
  • the controller can respectively obtain the network topology information of the first network and the second network belonging to different network types through the same channel control protocol, and the controller obtains the
  • the path of the data transmission path determines the requirement, since the controller already has network topology information of the first network and the second network, the controller does not need to perform additional with other devices when calculating the data transmission path.
  • the information interaction may determine a path calculation result including the part of the transmission path in the first network and the second network, and send the path calculation result to the first network device, thereby improving the data transmission path. Planning efficiency.
  • the calculation result of the first network device obtaining the data transmission path in the transmission path portion of the second network is an unencrypted form.
  • the traditional method may be omitted.
  • the additional information interaction between the network device and other controllers in the network achieves the effect of improving the efficiency of data transmission path establishment.
  • an embodiment of the present invention provides a path determining system, which is applied to a hybrid network including a control function implemented by the same controller, where the hybrid network includes a first network and a second network, and the second network is an optical network, and the target network device As a network device in the second network, the system includes a controller and a target network device:
  • the controller is configured to obtain a path determination requirement, where the path determination requirement is used to request to determine a data originating from the first network device, the end point being the second network device, and the transmission path portion of the first network and the transmission path portion of the second network.
  • a transmission path the path determination requirement includes an identifier of the first network device and an identifier of the second network device, where the first network device and the second network device are network devices of the first network; according to the control channel protocol, from the first network
  • the network device acquires network topology information of the first network, and acquires network topology information of the second network from the network device in the second network; according to the identifier of the first network device, the identifier of the second network device, and the network topology of the first network
  • the path calculation result is calculated by using the information and the network topology information of the second network, and the path calculation result includes a calculation result of the transmission path part of the data transmission path in the first network and a calculation result of the transmission path part of the data transmission path in the second
  • the target network device is configured to send network topology information of the second network to the controller, where the control channel protocol is the same as the control channel protocol according to the network device in the first network sending the network topology information of the first network to the controller.
  • the target network device in the optical network may send the second network to the controller according to a control channel protocol according to the network topology information sent by the network device in the first network to the controller.
  • the network topology information so that the same controller can obtain the network topology information of the first network and the second network belonging to different network types through the same channel control protocol, and realize the control function of the same controller in the hybrid network.
  • the controller When the controller acquires a path determination requirement for the data transmission path, since the controller already has network topology information of the first network and the second network, when calculating the data transmission path, the controller does not The path calculation result including the part of the transmission path in the first network and the second network needs to be determined by performing additional information interaction with other devices, and the path calculation result is sent to the first network device, thereby improving Planning efficiency for the data transmission path.
  • FIG. 1 is a schematic flowchart of determining a path in a hybrid network according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for determining a path according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a packet format of a PCEP message according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a format of a packet for carrying a node information part in a PCEP-LS message according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a packet format for carrying a link information part in a PCEP-LS message according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a packet format for carrying a link information part in a PCEP-LS message according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a format of a packet for carrying a VTE link part in a PCEP-LS message according to an embodiment of the present disclosure
  • FIG. 8 is a structural diagram of a device of a path determining apparatus according to an embodiment of the present invention.
  • FIG. 9 is a structural diagram of a device of a path determining apparatus according to an embodiment of the present invention.
  • FIG. 10 is a structural diagram of a device of a path determining apparatus according to an embodiment of the present invention.
  • FIG. 11 is a system structural diagram of a path determining system according to an embodiment of the present invention.
  • FIG. 12 is a system structural diagram of a path determining system according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of hardware of a controller according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of hardware of a first network device according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of hardware of a target network device according to an embodiment of the present invention.
  • the network topologies of different types of networks have interconnected relationships, so the data transmission paths between the two network nodes may span different types of networks.
  • the network topology information of the multiple networks needs to be comprehensively considered to complete the determination of the entire data transmission path. Since the network topology information of different types of networks are independent and invisible to each other, in the process of planning the data transmission path, the controllers of the multiple network are required to separately calculate partial paths of the data transmission paths in their respective networks. A large amount of data interaction between multiple controllers is required to completely determine the data transmission path.
  • a data transmission path between two network devices may occur in a part of an IP network and a part of an optical network.
  • the data transmission path needs to be separately calculated by the controllers of the two networks in the transmission path part of different networks, for example, the controller of the IP network needs to calculate the transmission of the data transmission path in the IP network.
  • the controller of the optical network calculates the part of the transmission path of the data transmission path in the optical network, the interaction between the controller of the IP network and the controller of the optical network, and the encryption of the part of the transmission path in the respective network.
  • the two path transmission parts (at least one path transmission part is encrypted) are combined into one path calculation result, and the path calculation result is sent to one of the two network devices to implement subsequent path establishment.
  • an embodiment of the present invention provides a path determining method, apparatus, and system.
  • a controller may separately acquire network topologies of a first network and a second network belonging to different network types by using the same channel control protocol.
  • Information when the controller acquires a path determination requirement for the data transmission path, since the controller already has network topology information of the first network and the second network, when calculating the data transmission path, the control The device does not need to perform additional information interaction with other devices to determine a path calculation result including the transmission path portion in the first network and the second network, and sends the path calculation result to the first network device, thereby The planning efficiency of the data transmission path is improved.
  • Embodiments of the present invention can be applied to a hybrid network including the same controller to implement control functions.
  • the hybrid network in the embodiment of the present invention may include two networks of different network types.
  • the controller is respectively connected to the network device in the first network and the network device in the second network, and implements control functions on the network devices in the two networks.
  • the controller can be a Path Computation Element (PCE).
  • PCE Path Computation Element
  • the first network and the second network are specific to the network of two different network types in the hybrid network, and the first network and the second network may include: an IP network, an Ethernet, a Synchronous Digital Hierarchy (SDH) network, Asynchronous Transfer Mode (ATM) network, Automatically Switched Optical Network (ASON), etc.
  • SDH Synchronous Digital Hierarchy
  • ATM Asynchronous Transfer Mode
  • ASON Automatically Switched Optical Network
  • the first network When the first network is an IP network, the first network may be an Interior Gateway Protocol (IGP), and the network device in the first network may be a router, and the controller may be an IP PCE.
  • IGP Interior Gateway Protocol
  • the network device in the second network When the second network is an optical network, the network device in the second network may be a wavelength division device.
  • the first network may be an IP network, and the second network may be an optical network, such as the application scenario shown in FIG. 1. In the example of the scenario shown in FIG. 1, R1 to R4 may be used.
  • T1 to T5 in the dotted line frame may be network devices (for example, waves) in the optical network (second network)
  • the sub-device), the PCE (controller) can be the same controller of the IP network and the optical network, and the PCE can also be connected to a network cooperative management system such as the Net Matrix.
  • FIG. 2 is a flowchart of a method for determining a path according to an embodiment of the present invention, where the method includes:
  • the controller acquires a path determining requirement, where the path determining requirement is used to request to determine that a starting point is a first network device, and the ending point is a second network device, and is formed by a transmission path part of the first network and a transmission path part of the second network.
  • the data transmission path, the path determination requirement includes an identifier of the first network device and an identifier of the second network device, where the first network device and the second network device are network devices of the first network.
  • R1 may be the first network device
  • R4 may be the second network device.
  • the present invention does not limit how the controller obtains the path determination requirement.
  • the path determination requirement may be sent by any one of the first network or the second network, such as the first network device; the path determination requirement may also be It is sent by the third-party application server to the controller; the path determination requirement can also be generated by directly configuring the input requirements on the controller.
  • the type of the network device is related to the network type of the network where the network device is located. If the network type of the first network is an IP network, the first network device may be a router associated with the IP network.
  • the path determining requirement may include a first network device identifier used to identify the first network device, where the first network device identifier may be an ID of the first network device.
  • the path determining requirement may further include a second network device identifier for identifying the second network device, where the second network device identifier may be an ID of the second network device.
  • the direction of the path of the path or the direction of the data transmission in the path may be used as a basis for clarifying the path start point and the path end point of a data transmission path.
  • the data transmission path is established from the first network device until the second network device completes the establishment of the data transmission path.
  • the data transmission process in the data transmission path can be understood as a process of starting from the first network, then entering the second network, and then returning from the second network to the first network.
  • the controller acquires network topology information of the first network from the network device in the first network according to the control channel protocol, and acquires network topology information of the second network from the network device in the second network.
  • the controller may start to acquire network topology information of the first network and network topology information of the second network after obtaining the path determination requirement.
  • the controller may also obtain the network topology information of the first network and the network topology information of the second network before acquiring the path determination requirement.
  • the network topology information herein may include related information of the network device in the first network and link information between the network device and the adjacent network device in the first network.
  • Control channel protocol The present invention does not limit the need to deploy a control channel protocol between the controller and the network devices in the first network.
  • the controller may be deployed with the network device in the first network that needs to upload the network topology information of the first network.
  • Channel Control Protocol The controller may deploy a channel control protocol with a network device in the second network that needs to upload network topology information of the second network. By implementing a control channel protocol, the controller is implemented to control the channel association.
  • the network topology information of the first network can be obtained, and the network topology information of the second network can also be obtained.
  • the controller calculates a path calculation result according to the identifier of the first network device, the identifier of the second network device, the network topology information of the first network, and the network topology information of the second network, where the path calculation result includes the data transmission path.
  • the controller may obtain the network topology information of the first network and the second network, and the controller may specify the specific location of the first network device in the first network according to the identifier of the first network device, and according to the second The identity of the network device specifies the specific location of the second network device in the second network. And, the controller may further determine network topology information and the like between the first network device and the second network device. Based on the information determined above, sufficient controllers independently calculate path calculation results including the transmission path portion of the first network and the transmission path portion of the second network without additional information interaction with other controllers. In the process of calculating the path calculation result, the controller may manually design a feasible path according to the obtained network topology information of the first network and the second network, or calculate a path according to the pre-planned data.
  • the controller sends a path calculation result to the first network device.
  • the controller may send the path calculation result to the first network device, and the first network device starts to establish the data transmission path according to the path calculation result.
  • FIG. 1 is a scenario in which path determination is performed by a manual pre-planning manner.
  • the numbers in parentheses in Figure 1 can be used to identify the sequence of steps in the execution path determination process.
  • step 0 the network topology information of the IP network and the optical network is obtained through the same controller: PCE.
  • step 1 the user designs the network by hand or through the offline planning tool.
  • the planning data is imported into the NetMatrix through the checksum conversion.
  • the planned data includes the virtual traffic link 14 (VTE Link) from R1 to R4. . That is to say, through the pre-planning, the possible virtual data transmission path between R1 and R4 is determined.
  • VTE Link virtual traffic link 14
  • NetMatrix sends the planning data to the PCE.
  • the planning data includes the identifier of R1 as the starting end of VTE Link 14, the identifier of R4 as the end of VTE Link 14, the identifier of VTE Link 14, and the VTE Link 14 in the IP network. Path information in the path and path information of the VTE Link 14 in the optical network.
  • R1 may send a path determination request to the PCE through the PCEP protocol message, and the path determination requirement may include the identifier of the VTE link 14 in addition to the identifiers including R1 and R4. Further, the PCE is managed to control the tunnel between the T2 and the T2 to provide the PCE with the freedom to plan and determine the specific direction of the data transmission path.
  • the PCE After the PCE obtains the path determination requirement sent by R1, the PCE matches the planning data according to the identifier of R1, the identifier of R4, and the identifier of VTE Link 14.
  • the PCE calculates the data transmission path for the VTE Link 14 according to the planning data, the network topology information of the IP network, and the network topology information of the optical network. Since the PCE has the network topology information of the IP network and the optical network, the PC network can complete the data transmission path in the IP network. Part of the topology in the optical network, in Figure 1, part of the topology in the IP network and the optical network in the data transmission path can be understood as a complete data transmission path, the format is ⁇ R1 ⁇ T2, T2 ⁇ T3, T3 ⁇ T5, T5 ⁇ R4>.
  • step 4 the PCE sends a path calculation result including a partial topology in the IP network and the optical network in the data transmission path to R1.
  • the PCE does not have the network topology information of the optical network, it can only be accessed through multiple data interactions.
  • the controller of the optical network obtains the calculation result of the transmission path portion of the data transmission path in the optical network, resulting in low planning efficiency for the data transmission path.
  • the PCE since the PCE itself cannot identify the topology in the optical network, the PCE finally obtains the format of the data transmission path as ⁇ R1 ⁇ T2, PATH-KEY, T5 ⁇ R4>, and the calculation result of the transmission path part in the optical network passes the PATH-KEY. The way to carry out encryption hiding.
  • the network device for example, T2 in the optical network is also established in the process of establishing the data transmission path according to the path calculation result.
  • the optical PCE needs to be parsed to parse the PATH-KEY part of the encrypted hidden content, and the additional information exchange is added, which is equivalent to the previous data transmission path determination result further affecting the establishment efficiency of establishing the data transmission path.
  • the data transmission path calculated by the PCE is a complete data transmission path, and does not have a hidden encryption part in the traditional manner, and the PCE does not need to perform data interaction with other controllers in the calculation process.
  • T2 eliminates the extra information interaction between the traditional controller and the optical controller, thereby improving the data transmission path establishment. The effect of efficiency.
  • the controller can separately obtain the network topology information of the first network and the second network that belong to different network types through the same channel control protocol, and when the controller obtains the path determination requirement for the data transmission path, The controller already has network topology information of the first network and the second network.
  • the controller does not need to perform additional information interaction with other devices to determine the transmission path including the first network and the second network. Part of the path calculation result, and the path calculation result is sent to the first network device, thereby improving the planning efficiency of the data transmission path.
  • the control channel protocol is a Path Computation Element Communication Protocol (PCEP)
  • PCEP Path Computation Element Communication Protocol
  • the conventional PCEP basically only allows the controller to send a calculation result of the transmission path part of the network (for example, the IP network) where the network device is located in the path calculation result to a network device, and the controller cannot send the path to the network device.
  • the PCEP message may include, in the embodiment of the present invention, the PCEP message may be included in the PCEP message.
  • PCEP-Reply message or PCEP-Update message may be included in the PCEP message.
  • the type value of the Message Type of the PCEP-Reply message can be set to 4, and the Message Name can be a Path Computation Reply.
  • the type value of the message type of the PCEP-Update message can be set to 11, and the message name can be Update.
  • the PCEP message includes a path information field, where the path information field is used to carry interface information of the network device that sequentially passes on the data transmission path, where the interface information includes the network, in the PCEP message that is sent by the controller to the first network device and carries the path calculation result.
  • Outbound interface information or inbound interface information of the device The order of the interface information carried in the path information field is the same as the order of the data transmission path.
  • the outbound interface information or the inbound interface information of the network device can be understood as the outbound interface information or the inbound interface information of the link in the data transmission path on the network device.
  • An interface information can be carried through a path information field.
  • the format of the path information field is related to the type of network device where the interface is located. If a path information field carries interface information of a link on a network device in the IP network, the path information field may include an IP address of the network device, and the IP address may be an IPv4 address or an IPv6 address. If a path information field carries interface information of a link on a network device in an optical network, then the path information The field may include the device identification of the network device and the interface identifier of the network device associated with the link.
  • the path calculation result includes the four-segment link that constitutes the data transmission path.
  • the four links are R1 ⁇ T2, T2 ⁇ T3, and T3. ⁇ T5, T5 ⁇ R4.
  • the interface information carried in the multiple path information fields in the PCEP message is also in accordance with the transmission sequence.
  • the first network device can clearly determine how to start establishing a data transmission path when receiving the PCEP message, and how the other network devices on the data transmission path clearly continue and complete. The establishment of a data transmission path.
  • the embodiment of the present invention does not limit the number or type of the interface information carried in the PCEP message (for example, the outbound interface or the inbound interface on the network device), and can implement the function of instructing the network device to complete the establishment of the data transmission path.
  • the PCEP message carries at least the interface information of the at least one interface of the outbound interface and the inbound interface of the link through the path information field.
  • the four-segment links of the data transmission path are respectively R1 ⁇ T2, T2 ⁇ T3, T3 ⁇ T5, T5 ⁇ R4 in the transmission order.
  • R1 ⁇ T2 Take the link of R1 ⁇ T2 as an example.
  • R1 ⁇ T2 has two interfaces. According to the transmission direction of the link, the interface of R1 ⁇ T2 on R1 is the outgoing interface, and the interface of R1 ⁇ T2 on T2 is the inbound interface.
  • PCEP The message information of one of the two interfaces of R1 ⁇ T2 may be carried in the message, or the interface information of the two interfaces of R1 ⁇ T2 may be carried in the PCEP message.
  • the order of the interface information carried in the path information field is arranged in the order of the transmission of the data transmission path, and the interface information closer to the data transmission path starting point (R1) is carried in the path information closer to the packet header. In the field.
  • the PCEP message sent to the first network device may carry the interface information of a total of eight interfaces of the four links, and the corresponding packet structure of the PCEP message includes eight path information fields.
  • the order of the first that is, the path information field closest to the packet header carries the interface information of the outgoing interface of R1 ⁇ T2 on R1. Since R1 is the network device in the IP network, the first path information The field includes the IP address of R1.
  • the second path information field carries the interface information of the inbound interface of R1 ⁇ T2 on T2. Since T2 is the network device in the optical network, the second path information field includes T2.
  • the third path information field carries the interface information of the outbound interface of T2 ⁇ T3 on T2, because T2 is the network device in the optical network. Therefore, the third path information field includes the device identifier of T2 and the interface identifier of the interface (outbound interface) used by T2 to establish T2 ⁇ T3, and the content carried in the fourth to eighth path information fields may be This type of push is no longer repeated.
  • the PCEP message may carry only the interface information of the outbound interface of the above four links on the network device, or only the interface information of the inbound interface of the four links on the network device, or a combination of other interface information may be omitted. Narration.
  • FIG. 3 a possible message structure of a PCEP message is shown in FIG.
  • the object body has six path information fields.
  • the order of the interface information carried in the six path information fields is the same as the data transmission order in the data transmission path.
  • the interface information carried in sequence is (R1, R1 ⁇ T2), (T2, R1 ⁇ T2), (T3, T2 ⁇ T3), (T5, T3 ⁇ T5), (T5, T5 ⁇ R4), and (R4, T5 ⁇ R4).
  • the PCEP message for the link R1 ⁇ T2, the PCEP message carries the interface information of the outbound interface of the link on R1, and also carries the interface information of the inbound interface of the link on T2.
  • the PCEP message For the links T2 ⁇ T3 and T3 ⁇ T5, the PCEP message carries only the interface information of the inbound interfaces on T3 and T5.
  • the PCEP message For the link T5 ⁇ R4, the PCEP message carries the link at T5.
  • the interface information of the outgoing interface also carries the interface information of the inbound interface of the link on R4.
  • the path information field carrying (R1, R1 ⁇ T2) includes the IPv4 address of R1, and the length of the IPv4 address can be 4 bytes ( Unit: Byte), can also be used to identify the interface identifier of the interface (outbound interface) used by R1 to establish R1 ⁇ T2. As shown in FIG. 3, it is carried in the upper right part and the lower left part of this path information field. It should be noted that, according to the type of the first network, that is, the IP network, the IPv4 address of the above R1 may also be replaced with the IPv6 address of the R1.
  • the path information field carrying (T2, R1 ⁇ T2) includes the device identifier (Router ID) of T2, and T2 is used for Establish the interface ID (Interface ID) of the interface (incoming interface) of R1 ⁇ T2.
  • the number of bytes occupied by this interface identifier can be 32 bits (unit: bit).
  • the path information field carrying (T3, T2 ⁇ T3) includes the device identifier of T3, and T3 is used to establish T2 ⁇ T3.
  • Interface identifier of the interface (inbound interface).
  • the number of bytes occupied by this interface identifier can be 32 bits.
  • the path information field carrying (T5, T3 ⁇ T5) includes the device identifier of T5, and T5 is used to establish T3 ⁇ T5.
  • Interface identifier of the interface inbound interface.
  • the number of bytes occupied by this interface identifier can be 32 bits.
  • the path information field carrying (T5, T5 ⁇ R4) includes the device identifier of T5, and T5 is used to establish T5 ⁇ R4.
  • Interface identifier of the interface (outbound interface). The number of bytes occupied by this interface identifier can be 32 bits.
  • the path information field carrying includes the IPv4 address of R4, and the length of the IPv4 address can be 4 bytes. It can also be used to identify the interface identifier of the interface (incoming interface) used by R4 to establish T5 ⁇ R4. As shown in FIG. 3, it is carried in the upper right part and the lower left part of this path information field. It should be noted that, according to the type of the first network, that is, the IP network, the IPv4 address of the above R4 may also be replaced with the IPv6 address of the R4.
  • the controller can not only carry the calculation result of the transmission path part in the first network (IP network) in the path calculation result through the PCEP message, but also carry the content that cannot be carried by the PCEP message, that is, the path calculation result.
  • the calculation result of the transmission path portion in the second network optical network.
  • the traditional PCEP can basically only enable one controller to obtain the network topology information of the same network type network (for example, an IP network), and cannot implement the function of acquiring the network topology information of at least two types of networks. Therefore, in the embodiment of the present invention, the traditional PCEP is improved or extended, so that the network device in the network type network (for example, the optical network) can use the path Computation Element Communication Protocol Link-State (Path Computation Element Communication Protocol Link-State, The PCEP-LS message carries the network topology information of the network where it is located.
  • the network type network for example, an IP network
  • the traditional PCEP is improved or extended, so that the network device in the network type network (for example, the optical network) can use the path Computation Element Communication Protocol Link-State (Path Computation Element Communication Protocol Link-State,
  • the PCEP-LS message carries the network topology information of the network where it is located.
  • the controller obtains the network topology information of the second network, that is, the optical network, according to the PCEP-LS message sent by the network device in the second network.
  • the network topology information of two types of networks IP network and optical network
  • the controller in order to enable the controller to distinguish that the received network topology information is the network topology information of the second network, a corresponding identifier needs to be added to the PCEP-LS message.
  • the controller is based on the network in the second network.
  • the PCEP-LS message sent by the device obtains the network topology information of the second network, and the second network is identified by the value in the Routing Universe TLV of the PCEP-LS message.
  • the value can be carried in the Identifier field in the general routing field, and the value can be set to "1" to identify the second network, that is, the layer 0Routing topology.
  • the first network may be identified by a value of “0” in the flag bit field of the general routing field. Therefore, when receiving the PCEP-LS message, the controller can distinguish whether the network topology information carried by the PCEP-LS message is the first network or the value of the flag bit field in the general routing field (for example, 0 or 1).
  • the network topology information of the second network may include node information of the network device in the second network and link information of the network device in the second network.
  • the network device uploads the network topology information to the controller through the PCEP-LS message in the second network, the node information and the link information are carried by the corresponding description item.
  • a node can belong to a definition at a logical level and can be used to refer to a network device.
  • a network device can be considered as a node or a network node.
  • a node can be understood as a name or expression of a network device at a logical level.
  • the PCEP-LS message further includes a node object (Node Object) for identifying the network device in the second network, the node The object includes a description item (Local Node Descriptor TLV) of the network device in the second network, where the description item of the network device in the second network is used to carry the identifier and attribute of the network device in the second network.
  • Node Object for identifying the network device in the second network
  • the object includes a description item (Local Node Descriptor TLV) of the network device in the second network, where the description item of the network device in the second network is used to carry the identifier and attribute of the network device in the second network.
  • the node object is one of an object type (Object Type, OT), and the type value of the corresponding object type.
  • the device identifier of the network device may be carried in an optical node identifier field (Optical Node-ID sub-TLV) in the local node description item.
  • the second network is an optical network
  • attributes of the network device in the optical network such as some specific information, for which, in addition to the message shown in FIG.
  • some fields may be added in the local node description item, for example, a Resource Block Information field, a Resource Accessibility field, and a resource wavelength.
  • Resource Wavelength Constraints field Resource Block Pool State field, Resource Block Shared Access Wavelength Availability field, and the like.
  • the format of these fields can be in sub-TLV format.
  • the resource block information field it is a Wavelength Switched Optical Network (WSON).
  • WSON Wavelength Switched Optical Network
  • a hardware component such as a regenerator, a wavelength converter is called a resource
  • a resource block is a collection of resources on the same wavelength-switched optical network node.
  • the resource block information field can be used to carry attribute information of this resource block.
  • the resource access capability field may be used to carry capability information describing an ingress port to access a resource block and capability information of the resource block to access an egress port.
  • the resource wavelength constraint field it can be used to carry a range information of a resource receivable wavelength.
  • the status information of the resource block may be carried.
  • the resource block shared access wavelength availability field may be used to carry the resource block availability information when the resource block is accessed through the shared optical fiber.
  • the link object includes a link description item (Link Descriptor TLV), and the link description item is used to carry link information of a link between the network device in the second network and the adjacent network device, where the link description item includes the second network.
  • the link identifier field is used to carry the interface information of the network device in the second network and the interface information of the adjacent network device on the link between the network device and the adjacent network device in the second network.
  • the contiguous network device of this network device can be understood as other network devices having a link with this network device.
  • the adjacent network device of the network device may include the network device in the second network, and may also include the network device in the first network.
  • the local node description item and the remote node description item are respectively used to carry the local node information and the remote node information of the link.
  • the link identifier field is used to carry the link local identifier (Link Local Identifier) and the remote identifier (Link Remote Identifier) of the link. Since the data transmission in the link is directional, for example, in the scenario shown in FIG. 1, the data transmission direction of the link R1 ⁇ T2 is transmitted from R1 to T2.
  • the local node of the link may be the network device a, and the remote node may be the network device.
  • the local identity of the link can be used to identify the interface on the network device a that is used to establish the link.
  • the remote identifier can be used to identify the interface on the network device b that is used to establish the link.
  • the link information between the network devices in the second network is carried by the PCEP-LS message. Therefore, the local node is a network device in the second network, and the remote node is an adjacent network device.
  • one network device in the second network can have a link with another network device in the second network, it can also have a link with one network device in the first network. Therefore, when the link information of the two different links is carried in the PCEP-LS message, the packet format of the PCEP-LS message may be different. Next, the packet format that may be included in the PCEP-LS message carrying link information will be described in conjunction with the scenario shown in FIG.
  • the link information of the link T2 ⁇ T3 is taken as an example.
  • the format of the packet carrying the link information in the PCEP-LS message refer to FIG. 5, where the local node description
  • the format of the packet in the item and the description of the remote node refer to Figure 4, and details are not described here.
  • the local node description item may carry the node information of the T2, and the remote node description item may carry the node information of the T3, and the local identification field of the link identification field may carry the T2 to establish the interface of the T2 ⁇ T3.
  • the information in the remote identifier field of the link identifier field may carry information about the interface used by T3 to establish T2 ⁇ T3.
  • the "Any Sub-TLV" field shown in FIG. 5 may be other TLV fields that may be defined in the link description item. If other related information needs to be carried for T2 ⁇ T3, the corresponding TLV field may be selected from the above.
  • the field is replaced with the location of the "Any Sub-TLV" field.
  • the Interface Switching Capability Descriptor sub-TLV is another TLV field that can be replaced with the Any Sub-TLV field.
  • the interface switching capability description item can be used to carry information about the switching capabilities of different interfaces.
  • the link information of the link T5 ⁇ R4 is taken as an example.
  • the packet format of the PCEP-LS message carrying the link information refer to FIG. 6.
  • the format of the packet in the local node description item and the remote node description item is shown in FIG. 4, and details are not described herein again.
  • the local node description item may carry the node information of the T5
  • the remote node description item may carry the node information of the T3
  • the local identification field of the link identification field may carry the relevant information of the interface for establishing the T5 ⁇ R4.
  • the information in the remote identifier field of the link identifier field may carry information about the interface used by R4 to establish T5 ⁇ R4. Since one end of the link T5 ⁇ R4 is connected to the network device (R4) in the first network (IP network), the IPv4 address of the R4 can also be carried by the IPv4 neighbor address sub-TLV.
  • the IPv4 address of the R4 can also be replaced with the IPv6 address of the R4, and carried by another IPv6 neighbor address sub-TLV.
  • the length of the neighbor address field (Length) can be 16ytes.
  • the method of uploading the network topology information to the controller through the PCEP-LS message will be described.
  • at least two manners of carrying network topology information by using a PCEP-LS message are provided.
  • the following is a description of the two main modes of carrying the network topology information in the specific scenario.
  • the first network is an IP network
  • the second network is an optical network.
  • the present invention does not limit how the network device in the IP network sends the network topology information of the IP network to the controller through the PCEP-LS message. Therefore, the following mainly describes the network device in the second network.
  • the network device in the second network may be deployed with the PCEP, and each network device may send its own sub-topology information to the controller, that is, the network topology information of the second network. portion.
  • the controller can combine the received sub-topology information to form network topology information of the second network.
  • the first method is generally implemented when a protocol for spreading network topology information (for example, a conventional IGP protocol) is not deployed between the network devices in the second network. Because in this case, each network device in the second network will not separately learn the network topology information of the entire second network, but can only determine its own sub-topology information according to the adjacency relationship.
  • a protocol for spreading network topology information for example, a conventional IGP protocol
  • the sub-topology information of a network device may include node information of the network device and link information of the link between the network device and the adjacent network device.
  • the sub-topology information of the target network device includes node information of the target network device and link information of the link between the target network device and the adjacent network device.
  • the target network device implements sending a PCEP-LS message carrying the network topology information of the second network to the controller
  • the PCEP-LS message carries the sub-topology information of the target network device.
  • other network devices in the second network that are deployed with the controller and the PCEP may also send their own sub-topology information to the controller through the PCEP-LS message.
  • the sub-topology information of T2 in the second network may include node information of T2, link information of T2 ⁇ R1, link information of T2 ⁇ T1, and T2 ⁇ T3. Link information.
  • the node information in the sub-topology information may be carried in the packet format of the local node description item as shown in FIG. 4; If there are multiple links between adjacent network devices, the link information of any link can be carried in the packet format of the link description item shown in Figure 5 or Figure 6.
  • a plurality of link description items carrying multiple pieces of link information may be set in one PCEP-LS message or may be set in multiple PCEP-LS messages (for example, when the number of link information is excessive or the amount of data is too large).
  • a protocol for spreading network topology information is deployed between the network devices in the second network.
  • network topology information of the second network may be spread between the network devices in the second network. So that the target network device can already collect the network topology information of the second network during the diffusion process, then when the target network When the network device sends a PCEP-LS message carrying the network topology information of the second network to the controller, the target network device may directly send the network topology information of the second network to the controller. That is to say, in the second mode, the controller can only obtain the network topology information of the second network by deploying the PCEP with the target network device.
  • the network topology information of the second network may include node information of T1 to T5, and link information of links between T1 and T5 and adjacent network devices.
  • the node information of any node in the network topology information may be carried in the packet format of the local node description item as shown in FIG. 4;
  • the link information of a link can be carried in the packet format of the link description item shown in Figure 5 or Figure 6.
  • a plurality of local node description items carrying multiple node information may be set in one PCEP-LS message or may be set in multiple PCEP-LS messages.
  • a plurality of link description items carrying multiple pieces of link information may be set in one PCEP-LS message or may be set in multiple PCEP-LS messages.
  • the network topology information can be uploaded to the controller through the PCEP-LS message according to different requirements or according to different application scenarios, thereby improving the flexibility and scope of uploading the network topology information.
  • the data transmission path can be established by the first network device.
  • the path calculation result that the controller can determine includes the calculation result of the data transmission path in the transmission path part of the second network, that is, the data transmission path relative to the traditional manner.
  • the part of the transmission path in the second network is already clear in the path calculation result, then in the process of establishing the data transmission path by the network device according to the path calculation result, the network device in the second network does not need to request acquisition with other controllers.
  • the calculation result of the transmission path part of the data transmission path in the second network can be directly established according to the information in the path calculation result.
  • the transmission path portion of the data transmission path in the second network in the path calculation result is in an encrypted state. It cannot be directly identified.
  • the network device in this specific location needs to request decryption from other controllers (for example, the controller of the second network), and after the decryption result is received, the establishment process of the data transmission path in the second network can be continued.
  • the network device of the specific location is located adjacent to the first network and the second network. According to the transmission sequence of the data transmission path, the network device of the specific location in the data transmission path is the network in the first network. Device 1. Taking FIG. 1 as an example, in the transmission sequence of the data transmission path, the previous network device of T2 on the data transmission path is the network device R1 in the first network, so the network device at this specific location may be T2.
  • the target network device is the network device of the specific location, in the embodiment of the present invention, when the target network device obtains the calculation result of the transmission path portion of the data transmission path in the second network from the previous network device, the calculation result may be Directly identified, unencrypted. Therefore, the target network device can directly establish a data transmission path according to the calculation result of the data transmission path in the transmission path portion of the second network. Thereby eliminating the extra information interaction between the traditional controller and the optical controller, and achieving the effect of improving the efficiency of data transmission path establishment.
  • T2 receives the calculation result of the data transmission path in the transmission path part of the second network from R1, T2 can directly establish a path from T2 to T3 according to the calculation result of this part.
  • the data transmission link may be generated in the establishing process to be in the first network device and the second network device under the IP network.
  • the virtual link between them that is, the VTE link.
  • the controller can treat the data transmission path as one in IP.
  • An IP link under the network can be identified by the destination IP and source IP.
  • the first network device may report the information about the established virtual link to the controller. In the embodiment of the present invention, the information about the virtual link may be carried by the -PCEP-LS message.
  • the controller receives the PCEP-LS message sent by the first network device, where the first route is identified by a value in the general route field in the PCEP-LS message, and the link description is included in the link object.
  • the link description item includes a local node description item, a remote node description item, a link identification field, and an opaque link attribute field.
  • the local node description item is used to carry the local node information of the VTE link, that is, the identifier of the first network device.
  • the remote node description item is used to carry the remote node information of the VTE link, that is, the identifier of the second network device.
  • the packet structure of the local node description item and the remote node description item has been described in the foregoing, and will not be described here.
  • the link identifier field (Link Local/Remote ID sub-TLV) of the link description item is used to carry the VLink Local Identifier and the VLink Remote Identifier of the VTE link, and the link description item
  • the opaque link attribute field (Opaque Link Attribute Sub-TLV) is used to carry the local identifier and the remote identifier of the VTE link.
  • the IP addresses of the first network device and the second network device may also be carried together in the PCEP-LS message.
  • the link description item further includes a local IP address field and a remote IP address field, and the local IP address field of the link description item is used to carry the VTE link on the first network device.
  • the local interface information (for example, the IP address of the first network device), and the remote IP address field of the link description item is used to carry the remote interface information of the VTE link on the second network device (for example, the IP address of the second network device) address).
  • the IPv4 addresses of the first network device and the second network device may also be replaced with the IPv6 addresses of the first network device and the second network device.
  • the first network device may report the information of the established VTE link to the controller through the PCEP-LS message, so that the controller can quickly learn related information that the VTE link has been established. It is convenient for the controller to accurately regulate and manage the hybrid network.
  • the path determining apparatus 800 is applied to a hybrid network including a control function implemented by the same controller, where the hybrid network includes a first network and a second network, and the path determining apparatus 800 includes an obtaining unit 801, a calculating unit 802, and a transmitting unit 803:
  • the obtaining unit 801 is configured to acquire a path determining requirement, where the path determining requirement is used to request to determine that a starting point is the first network device, the ending point is the second network device, and the transmission path part of the first network and the transmission path part of the second network
  • the data transmission path is configured to include an identifier of the first network device and an identifier of the second network device, where the first network device and the second network device are network devices of the first network.
  • the obtaining unit 801 is further configured to acquire network topology information of the first network from the network device in the first network according to the control channel protocol, and acquire network topology information of the second network from the network device in the second network.
  • the calculating unit 802 is configured to calculate a path calculation result according to the identifier of the first network device, the identifier of the second network device, the network topology information of the first network, and the network topology information of the second network, where the path calculation result includes the data transmission path The calculation result of the transmission path portion in the first network and the calculation result of the transmission path portion of the data transmission path in the second network.
  • the sending unit 803 is configured to send a path calculation result to the first network device.
  • the obtaining unit is further configured to acquire planning data for the virtual path, where the planning data includes an identifier of the first network device that is the start of the virtual path, an identifier of the second network device that is the end of the virtual path, and an identifier of the virtual path.
  • the path information of the virtual path in the first network and the path information of the virtual path in the second network; the path determination requirement acquired by the controller further includes an identifier of the virtual path;
  • the calculating unit is further configured to match the planning data according to the identifier of the first network device, the identifier of the second network device, and the identifier of the virtual path;
  • the data transmission path for the virtual link is calculated according to the planning data, the network topology information of the first network, and the network topology information of the second network, and the path calculation result is determined.
  • FIG. 8 is a device embodiment for describing the technical solution of the present invention from the controller side.
  • FIG. 8 For the description of the features in the corresponding embodiment of FIG. 8 , reference may be made to the related description of the corresponding embodiment in FIG. 2 , and details are not described herein again.
  • the sending unit is configured to send, to the first network device, a PCEP message carrying a path calculation result, where the PCEP message includes a path information field, where the path information field is used to carry interface information of the network device that passes through the data transmission path.
  • the interface information includes the outbound interface information or the inbound interface information of the network device.
  • the PCEP message carries at least the interface information of the at least one interface of the outbound interface and the inbound interface of the link through the path information field.
  • the PCEP message includes a PCEP-Reply message or a PCEP-Update message.
  • control channel protocol is a PCEP
  • the acquiring unit is configured to obtain, according to the PCEP-LS message sent by the network device in the second network, the network topology information of the second network, and the value of the common routing field in the PCEP-LS message Identify the second network.
  • the PCEP-LS message further includes a node object for identifying the network device in the second network, where the node object includes a description item of the network device in the second network, where the description item of the network device in the second network is used to carry The identifier and attribute of the network device in the second network.
  • the PCEP-LS message further includes a link object that is used to identify the network device in the second network.
  • the link object includes a link description item, where the link description item is used to carry link information of a link between the network device in the second network and the adjacent network device;
  • the link description item includes a description item of the network device in the second network, a description item of the adjacent network device, and a link identifier field, where the link identifier field is used to carry a chain between the network device and the adjacent network device in the second network.
  • the interface information of the network device in the second network and the interface information of the adjacent network device are used to carry a chain between the network device and the adjacent network device in the second network.
  • the first network is an Internet Protocol (IP) network
  • IP Internet Protocol
  • the link description item in the link object of the PCEP-LS message sent by the network device in the second network, the link description item further includes an IP neighbor address field, which is used to carry and The IP address of the network device in the first network adjacent to the network device in the network.
  • IP Internet Protocol
  • the first network is an IP network
  • the acquiring unit is further configured to receive a PCEP-LS message sent by the first network device, where the first network is identified by a value in a common routing field in the PCEP-LS message, in the link object.
  • the link description item includes a local node description item, a remote node description item, a link identifier field, and an opaque link attribute field; a local node description item of the link description item and a remote node description item are used for The local node information and the remote node information of the VTE link are carried; the link identifier field of the link description item is used to carry the virtual local identifier and virtual of the VTE link.
  • the remote identifier, the opaque link attribute field of the link description item is used to carry the local identifier and the remote identifier of the VTE link, and the VTE link is the data transmission link in the first network device and the second network device under the IP network.
  • the link description entry further includes a local IP address field and a remote IP address field, where the local IP address field of the link description item is used to carry the local interface information of the VTE link on the first network device, and the link description The remote IP address field of the item is used to carry the remote interface information of the VTE link on the second network device.
  • VTE link-related information and the related packet format in the PCEP-LS message For the description of the VTE link-related information and the related packet format in the PCEP-LS message, refer to the related description of the corresponding embodiment in FIG. 7 , and details are not described herein again.
  • the controller can separately obtain the network topology information of the first network and the second network that belong to different network types through the same channel control protocol, and when the controller obtains the path determination requirement for the data transmission path, The controller already has network topology information of the first network and the second network.
  • the controller does not need to perform additional information interaction with other devices to determine the transmission path including the first network and the second network. Part of the path calculation result, and the path calculation result is sent to the first network device, thereby improving the planning efficiency of the data transmission path.
  • FIG. 9 is a structural diagram of a device of a path determining apparatus according to an embodiment of the present invention.
  • the path determining apparatus 900 is applied to a hybrid network including a control function implemented by the same controller, where the hybrid network includes a first network and a second network, and the first network
  • the device and the second network device are network devices of the first network
  • the path determining device 900 includes an obtaining unit 901 and an establishing unit 902:
  • the obtaining unit 901 is configured to obtain a path calculation result sent by the controller, where the path calculation result is that the controller is configured according to the identifier of the first network device, the identifier of the second network device, the network topology information of the first network, and the network topology of the second network.
  • the calculation result of the information includes: a calculation result of the transmission path part of the data transmission path in the first network and a calculation result of the transmission path part of the data transmission path in the second network; the data transmission path is a starting point of the first network device And the destination is a second network device, and the data transmission path is composed of a transmission path portion of the first network and a transmission path portion of the second network.
  • the establishing unit 902 is configured to establish a data transmission path according to the path calculation result.
  • the obtaining unit is specifically configured to obtain a PCEP message sent by the controller, where the PCEP message carries a path calculation result, where the PCEP message includes multiple path information fields sequentially arranged according to a transmission sequence of the data transmission path, where the path information field is used. And carrying the interface information of the link in the data transmission path on the network device, where the interface information includes the outbound interface information or the inbound interface information of the link in the data transmission path on the network device.
  • the PCEP message carries at least the interface information of the at least one interface of the outbound interface and the inbound interface of the link through the path information field.
  • the PCEP message includes a PCEP-Reply message or a PCEP-Update message.
  • FIG. 9 is a device embodiment for describing the technical solution of the present invention from the network device side.
  • FIG. 9 For the description of the features in the corresponding embodiment of FIG. 9 , reference may be made to the related description of the corresponding embodiment in FIG. 2 , and details are not described herein again.
  • FIG. 10 is a structural diagram of a device of a path determining apparatus according to an embodiment of the present invention.
  • the path determining apparatus 1000 is applied to a hybrid network including a control function implemented by the same controller, where the hybrid network includes a first network and a second network, and the second network For the optical network, the path determining apparatus 1000 includes a transmitting unit 1001:
  • the sending unit 1001 is configured to send network topology information of the second network to the controller according to the control channel protocol, and control the channel protocol and the network device according to the first network to send the network topology information of the first network to the controller.
  • the channel protocol is the same.
  • control channel protocol is a PCEP
  • sending unit is configured to send a PCEP-LS message carrying the network topology information of the second network to the controller, where the second network is identified by a value in a general routing field of the PCEP-LS message.
  • the PCEP-LS message further includes a node object for identifying the network device in the second network, where the node object includes a description item of the network device in the second network, and the network device in the second network The description item is used to carry the identifier and attribute of the network device in the second network.
  • the PCEP-LS message further includes a link object for identifying a network device in the second network, where the link object includes a link description item, where the link description item is used to carry the network device and the adjacent network in the second network.
  • Link information of the link between the devices, the link description item includes a description item of the network device in the second network, a description item of the adjacent network device, and a link identifier field, where the link identifier field is used to be carried in the second network.
  • the target network device is a network device in the data transmission path.
  • the previous network device of the target network device on the data transmission path is a network device in the first network
  • the data transmission path is a data transmission path formed by the first network device and the second network device, and the transmission path portion of the first network and the transmission path portion of the second network
  • the first network device and the second network device are both a network device of the first network
  • the device further includes a receiving unit:
  • a receiving unit configured to acquire, from a previous network device, a calculation result of a part of the transmission path of the data transmission path in the second network
  • the establishing unit is further configured to establish a data transmission path according to a calculation result of the data transmission path in the transmission path portion in the second network.
  • FIG. 10 is a schematic diagram of an apparatus for transmitting network topology information to a controller in the technical solution of the present invention from a network device side.
  • FIG. 10 For descriptions of features in the corresponding embodiment of FIG. 10, reference may be made to the embodiments of FIG. 4, FIG. 5, and FIG. The relevant instructions are not repeated here.
  • FIG. 11 is a system structural diagram of a path determining system according to an embodiment of the present invention.
  • the path determining system 1100 is applied to a hybrid network including a control function implemented by the same controller, where the hybrid network includes a first network and a second network, and the path determining system 1100
  • the controller 1101 includes a first network device 1102:
  • the controller 1101 acquires a path determination request, and the path determination request is used to request to determine that a starting point is the first network device, the destination is the second network device, and the data consists of the transmission path portion of the first network and the transmission path portion of the second network.
  • the path determination requirement includes an identifier of the first network device and an identifier of the second network device, where the first network device and the second network device are network devices of the first network; according to the control channel protocol, from the first network
  • the network device acquires network topology information of the first network, and acquires network topology information of the second network from the network device in the second network; according to the identifier of the first network device, the identifier of the second network device, and the network topology of the first network
  • the path calculation result is calculated by using the information and the network topology information of the second network, and the path calculation result includes a calculation result of the transmission path part of the data transmission path in the first network and a calculation result of the transmission path part of the data transmission path in the second network;
  • the first network device sends a path calculation result.
  • the first network device 1102 acquires a path calculation result sent by the controller; and establishes a data transmission path according to the path calculation result.
  • FIG. 12 is a system structural diagram of a path determining system according to an embodiment of the present invention.
  • the path determining system 1200 is applied to a hybrid network including a control function implemented by the same controller 1201.
  • the hybrid network includes a first network and a second network, and the second network.
  • the target network device 1202 is a network device in the second network, and the path determination system 1200 includes a controller 1201 and a target network device 1202:
  • the controller 1201 is configured to acquire a path determining requirement, where the path determining requirement is used to request to determine that a starting point is the first network device, the ending point is the second network device, and the transmission path part of the first network and the transmission path part of the second network are configured.
  • the data transmission path, the path determination requirement includes an identifier of the first network device and an identifier of the second network device, where the first network device and the second network device are network devices of the first network; according to the control channel protocol, from the first network
  • the network device in the network acquires network topology information of the first network, and acquires network topology information of the second network from the network device in the second network; according to the identifier of the first network device, the identifier of the second network device, and the first network
  • the network topology information and the network topology information of the second network calculate the path calculation result, and the path calculation result includes a calculation result of the transmission path part of the data transmission path in the first network and a calculation result of the transmission path part of the data transmission path in the second network. Sending a path calculation result to the first network device.
  • the target network device 1202 is configured to send network topology information of the second network to the controller, and control channel protocol and control channel protocol according to the network device in the first network sending the network topology information of the first network to the controller the same.
  • FIG. 13 is a schematic diagram of a hardware structure of a controller according to an embodiment of the present invention.
  • the controller 1300 is the same controller that implements a control function in a hybrid network.
  • the hybrid network includes a first network and a second network, and the controller 1300 includes a memory 1301. a receiver 1302 and a transmitter 1303, and a processor 1304 connected to the memory 1301, the receiver 1302, and the transmitter 1303, respectively.
  • the memory 1301 is configured to store a set of program instructions
  • the processor 1304 is configured to call the program instructions stored in the memory 1301. Do the following:
  • the trigger receiver 1302 acquires a path determination request, and the path determination request is used to request to determine that a starting point is the first network device, the destination is the second network device, and the transmission path portion of the first network and the transmission path portion of the second network are configured.
  • a data transmission path where the path determination requirement includes an identifier of the first network device and an identifier of the second network device, where the first network device and the second network device are network devices of the first network;
  • the trigger receiver 1302 acquires network topology information of the first network from the network device in the first network according to the control channel protocol, and acquires network topology information of the second network from the network device in the second network;
  • the path calculation result includes the transmission path of the data transmission path in the first network Part of the calculation result and the calculation result of the transmission path portion of the data transmission path in the second network;
  • the trigger transmitter 1303 transmits a path calculation result to the first network device.
  • the processor 1304 may be a central processing unit (CPU), the memory 1301 may be an internal memory of a random access memory (RAM) type, and the receiver 1302 and the transmitter 1303 may include a common
  • the physical interface can be an Ethernet interface or an Asynchronous Transfer Mode (ATM) interface.
  • the processor 1304, the transmitter 1303, the receiver 1302, and the memory 1301 may be integrated into one or more independent circuits or hardware, such as an Application Specific Integrated Circuit (ASIC).
  • ASIC Application Specific Integrated Circuit
  • FIG. 14 is a schematic structural diagram of hardware of a first network device according to an embodiment of the present disclosure, where The controller implements a hybrid network of control functions, the hybrid network includes a first network and a second network, the first network device 1400 and the second network device are network devices of the first network, and the first network device 1400 includes a memory 1401 and a receiver. 1402, and a processor 1403 respectively connected to the memory 1401 and the receiver 1402, the memory 1401 is configured to store a set of program instructions, and the processor 1403 is configured to call the program instructions stored in the memory 1401 to perform the following operations:
  • the trigger receiver 1402 obtains a path calculation result sent by the controller, where the path calculation result is calculated by the controller according to the identifier of the first network device, the identifier of the second network device, the network topology information of the first network, and the network topology information of the second network. Obtained; the path calculation result includes a calculation result of the transmission path part of the data transmission path in the first network and a calculation result of the transmission path part of the data transmission path in the second network; the data transmission path is a starting point of the first network device, and the end point a second network device, and a data transmission path formed by a transmission path portion of the first network and a transmission path portion of the second network;
  • the data transmission path is established according to the path calculation result.
  • the processor 1403 may be a CPU
  • the memory 1401 may be a RAM type internal memory
  • the receiver 1402 may include a common physical interface
  • the physical interface may be an Ethernet interface or an ATM interface.
  • the processor 1403, the receiver 1402, and the memory 1401 may be integrated into one or more separate circuits or hardware, such as an ASIC.
  • FIG. 15 is a schematic diagram of a hardware structure of a target network device according to an embodiment of the present disclosure, which is applied to a hybrid network including a control function implemented by the same controller, where the hybrid network includes a first network and a second network, and the second network is an optical network.
  • the target network device 1500 is a network device in the second network.
  • the target network device 1500 includes a memory 1501 and a transmitter 1502, and a processor 1503 connected to the memory 1501 and the transmitter 1502, respectively.
  • the memory 1501 is configured to store a set of program instructions.
  • the processor 1503 is configured to invoke the program instructions stored in the memory 1501 to perform the following operations:
  • the trigger transmitter 1502 sends the network topology information of the second network to the controller according to the control channel protocol, and the control channel protocol is the same as the control channel protocol according to which the network device in the first network sends the network topology information of the first network to the controller.
  • the processor 1503 may be a CPU, the memory 1501 may be a RAM type internal memory, the transmitter 1502 may include a common physical interface, and the physical interface may be an Ethernet interface or an ATM interface.
  • the processor 1503, the transmitter 1502, and the memory 1501 can be integrated into one or more separate circuits or hardware, such as an ASIC.
  • the "first” of the first network and the first network device mentioned in the embodiment of the present invention is only used for name identification, and does not represent the first in the order. The same rule applies to the "second”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明实施例公开了一种路径确定方法、装置和系统,在包含同一控制器实现控制功能的混合网络中,控制器可以通过相同的通道控制协议分别获取属于不同网络类型的第一网络和第二网络的网络拓扑信息,在控制器获取针对该数据传输路径的路径确定需求时,由于所述控制器已经具有所述第一网络和第二网络的网络拓扑信息,在计算所述数据传输路径时,所述控制器不需要与其他设备进行额外的信息交互即可确定出包括所述第一网络和第二网络中传输路径部分的路径计算结果,并向所述第一网络设备发送该路径计算结果,从而提高了对所述数据传输路径的规划效率。

Description

一种路径确定方法、装置和系统
本申请要求于2016年6月16日提交中国专利局、申请号为CN 201610430019.9、发明名称为“一种路径确定方法、装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,特别是涉及一种路径确定方法、装置和系统。
背景技术
随着网络技术的发展,网络的类型越来越多,例如主要使用光纤传输的光网络、传统的互联网协议(Internet Protocol,IP)网络等。在部署网络时,可能会出现混合网络,混合网络中可以包括不同类型的网络,例如包括IP网络和光网络的混合网络。在混合网络中,不同类型网络的网络拓扑之间具有相互连接关系,故在混合网络中的两个网络节点之间的数据传输路径可能会跨越不同类型的网络。例如在包括光网络和IP网络的混合网络中,网络节点a和网络节点b之间的数据传输路径的一部分需要使用IP网络的拓扑,另一部分需要使用光网络的拓扑。
在对混合网络中网络节点之间数据传输路径进行规划时,若该数据传输路径要经过多个不同类型的网络,需要综合考虑这多个网络的网络拓扑信息才能完成对整个数据传输路径的规划。一个网络的控制器管理该网络的网络拓扑信息,不同类型网络的网络拓扑信息分别由不同的控制器所管理,使得对于一个控制器来说,可以获知自身所在网络的网络拓扑信息,但是无法获知其他网络的网络拓扑信息。故在混合网络中规划跨网络的数据传输路径的过程中,需要通过多个网络的控制器分别计算该数据传输路径在各自所在网络中的部分路径,再由这多个控制器之间进行多次数据交互后才能实现对该数据传输路径的完整规划。这种路径确定方式中,控制器之间会需要进行大量的数据交互,对数据传输路径的规划效率不高。
发明内容
为了解决上述技术问题,本发明实施例提供了一种路径确定方法、装置和系统,提高了对数据传输路径的规划效率。
第一方面,本发明实施例提供了一种路径确定方法,应用于包含同一控制器实现控制功能的混合网络,该混合网络包括第一网络以及第二网络,上述方法包括:
控制器获取路径确定需求,该路径确定需求用于请求确定一条起点为第一网络设备、终点为第二网络设备,且由第一网络的传输路径部分和第二网络的传输路径部分构成的数据传输路径,该路径确定需求包括第一网络设备的标识以及第二网络设备的标识,第一网络设备以及第二网络设备均为第一网络的网络设备;
根据控制通道协议,控制器从第一网络中的网络设备获取第一网络的网络拓扑信息,并从第二网络中的网络设备获取第二网络的网络拓扑信息;
控制器根据第一网络设备的标识、第二网络设备的标识、第一网络的网络拓扑信息和第二网络的网络拓扑信息计算得到路径计算结果,路径计算结果包括数据传输路径在第一 网络中传输路径部分的计算结果以及数据传输路径在第二网络中传输路径部分的计算结果;
控制器向第一网络设备发送路径计算结果。
可以看出,在混合网络中,控制器可以通过相同的通道控制协议分别获取属于不同网络类型的第一网络和第二网络的网络拓扑信息,在控制器获取针对该数据传输路径的路径确定需求时,由于所述控制器已经具有所述第一网络和第二网络的网络拓扑信息,在计算所述数据传输路径时,所述控制器不需要与其他设备进行额外的信息交互即可确定出包括所述第一网络和第二网络中传输路径部分的路径计算结果,并向所述第一网络设备发送所述路径计算结果,从而提高了对所述数据传输路径的规划效率。
在第一方面的第一种可能的实现方式中,控制器向第一网络设备发送路径计算结果,包括:
控制器向第一网络设备发送携带有路径计算结果的PCEP消息,PCEP消息包括路径信息字段,路径信息字段用于携带数据传输路径上依次经过的网络设备的接口信息,接口信息包括网络设备的出接口信息或入接口信息,针对数据传输路径中的一条链路,PCEP消息通过路径信息字段携带这条链路在网络设备上出接口和入接口中至少一个接口的接口信息。
可见,通过PCEP消息中的路径信息字段,可以依次携带路径计算结果中的接口信息,使得接收该PCEP消息的第一网络设备路能够通过路径信息字段明确建立数据传输路径所需的接口信息。结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中,PCEP消息包括PCEP-Reply消息或PCEP-Update消息。
使用现有的消息类型作为该PCEP消息,可以保证该PCEP消息在不同应用场景中被第一网络设备识别的可能,不需要再额外定义新的PCEP消息类型,降低了方案实施的复杂程度。
结合第一方面或第一方面的第一种或第二种可能的实现方式,在第三种可能的实现方式中,控制通道协议为PCEP,控制器执行从第二网络中的网络设备获取第二网络的网络拓扑信息的步骤,可以包括:
控制器根据第二网络中的网络设备发送的PCEP-LS消息,获取第二网络的网络拓扑信息,该PCEP-LS消息的通用路由字段中通过数值标识第二网络。
可见,通过该PCEP-LS消息中通用路由字段的标识功能,可以使得控制器从接收到的PCEP-LS消息中区分出哪些是携带第二网络的网络拓扑信息的PCEP-LS消息。
结合第一方面的第三种可能的实现方式,在第四种可能的实现方式中,PCEP-LS消息还包括用于标识第二网络中网络设备的节点对象,节点对象包括第二网络中网络设备的描述项,所述第二网络中网络设备的描述项用于携带所述第二网络中网络设备的标识和属性。
可见,通过PCEP-LS消息中节点对象的描述项所携带的内容,可以使得控制器明确第二网络中所具有的网络设备。
结合第一方面的第三种可能的实现方式,在第五种可能的实现方式中,PCEP-LS消息还包括用于标识第二网络中网络设备的链路对象;
链路对象中包括链路描述项,链路描述项用于携带第二网络中网络设备与邻接网络设备之间链路的链路信息;
链路描述项中包括第二网络中网络设备的描述项、邻接网络设备的描述项和链路标识字段,链路标识字段用于携带在第二网络中网络设备与邻接网络设备之间的链路上,第二网络中网络设备的接口信息和邻接网络设备的接口信息。
可见,通过PCEP-LS消息中链路对象的链路描述项所携带的内容,可以使得控制器明确第二网络中网络设备与邻接网络设备之间链路的链路信息。
结合第一方面的第五种可能的实现方式,在第六种可能的实现方式中,第一网络为IP网络,在第二网络中的网络设备发送的PCEP-LS消息的链路对象中,链路描述项还包括IP邻居地址字段,用于携带与第二网络中网络设备邻接的第一网络中网络设备的IP地址。
可见,通过链路描述项包括的IP邻居地址字段,使得控制器可以进一步明确当邻接网络设备为第一网络中网络设备时,第二网络中网络设备与该第一网络中网络设备之间链路的链路信息。
在第一方面的第七种可能的实现方式中,第一网络为IP网络,该方法还包括:
控制器接收第一网络设备发送的PCEP-LS消息,PCEP-LS消息中的通用路由字段中通过数值标识第一网络,在链路对象中包括链路描述项,链路描述项包括本地节点描述项、远端节点描述项、链路标识字段和不透明链路属性字段;链路描述项的本地节点描述项和远端节点描述项用于携带VTE链路的本地节点信息和远端节点信息;链路描述项的链路标识字段用于携带VTE链路的虚拟本地标识和虚拟远端标识,链路描述项的不透明链路属性字段用于携带VTE链路的本地标识和远端标识,VTE链路为数据传输链路在IP网络下处于第一网络设备和第二网络设备之间的虚拟链路。
可见,第一网络设备还可以通过PCEP-LS消息将建立的VTE链路的信息上报给控制器,使得控制器可以快速的获悉VTE链路已经建立的相关信息,便于控制器能够准确的对混合网络进行调控和管理。
结合第一方面的第七种可能的实现方式,在第八种可能的实现方式中,链路描述项还包括本地IP地址字段和远端IP地址字段,链路描述项的本地IP地址字段用于携带VTE链路在第一网络设备上的本地接口信息,链路描述项的远端IP地址字段用于携带VTE链路在第二网络设备上的远端接口信息。
可见,由于第一网络设备和第二网络设备都是IP网络下的网络设备,可以通过PCEP-LS消息的链路描述项携带VTE链路在IP网络下的接口信息,进一步为控制器完善该VTE链路的相关信息。
在第一方面的第九种可能的实现方式中,在控制器获取路径确定需求之前,还包括:
控制器获取针对虚拟路径的规划数据,该规划数据包括作为虚拟路径起始端的第一网络设备的标识、作为虚拟路径结束端的第二网络设备的标识、虚拟路径的标识、虚拟路径在第一网络中的路径信息以及虚拟路径在第二网络中的路径信息;则控制器获取的路径确定需求中还包括虚拟路径的标识;
控制器根据第一网络设备的标识、第二网络设备的标识、第一网络的拓扑信息和第二网络的拓扑信息计算得到路径计算结果,包括:
控制器根据第一网络设备的标识、第二网络设备的标识和虚拟路径的标识匹配到规划数据;
控制器根据规划数据、第一网络的网络拓扑信息和第二网络的网络拓扑信息计算针对虚拟链路的数据传输路径,确定出路径计算结果。
可见,可以通过人工规划的方式预先确定出混合网络中跨网络的数据传输路径的规划数据,使得控制器可以依据该规划数据,通过第一网络的拓扑信息和第二网络的拓扑信息确定出路径计算结果,提高了确定出路径计算结果的效率。
第二方面,本发明实施例提供了一种路径确定装置,应用于包含同一控制器实现控制功能的混合网络,该混合网络包括第一网络以及第二网络,上述装置包括获取单元、计算单元和发送单元:
获取单元,用于获取路径确定需求,该路径确定需求用于请求确定一条起点为第一网络设备、终点为第二网络设备,且由第一网络的传输路径部分和第二网络的传输路径部分构成的数据传输路径,路径确定需求包括第一网络设备的标识以及第二网络设备的标识,第一网络设备以及第二网络设备均为第一网络的网络设备;
获取单元还用于根据控制通道协议,从第一网络中的网络设备获取第一网络的网络拓扑信息,并从第二网络中的网络设备获取第二网络的网络拓扑信息;
计算单元,用于根据第一网络设备的标识、第二网络设备的标识、第一网络的网络拓扑信息和第二网络的网络拓扑信息计算得到路径计算结果,路径计算结果包括数据传输路径在第一网络中传输路径部分的计算结果以及数据传输路径在第二网络中传输路径部分的计算结果;
发送单元,用于向第一网络设备发送路径计算结果。
可以看出,在混合网络中,控制器可以通过相同的通道控制协议分别获取属于不同网络类型的第一网络和第二网络的网络拓扑信息,在控制器获取针对该数据传输路径的路径确定需求时,由于所述控制器已经具有所述第一网络和第二网络的网络拓扑信息,在计算所述数据传输路径时,所述控制器不需要与其他设备进行额外的信息交互即可确定出包括所述第一网络和第二网络中传输路径部分的路径计算结果,并向所述第一网络设备发送所述路径计算结果,从而提高了对所述数据传输路径的规划效率。
在第二方面的第一种可能的实现方式中,发送单元具体用于向第一网络设备发送携带有路径计算结果的PCEP消息,PCEP消息包括路径信息字段,路径信息字段用于携带数据传输路径上依次经过的网络设备的接口信息,接口信息包括网络设备的出接口信息或入接口信息,针对数据传输路径中的一条链路,PCEP消息通过路径信息字段携带这条链路在网络设备上出接口和入接口中至少一个接口的接口信息。
可见,通过PCEP消息中的路径信息字段,可以依次携带路径计算结果中的接口信息,使得接收该PCEP消息的第一网络设备路能够通过路径信息字段明确建立数据传输路径所需的接口信息。
结合第二方面的第一种可能的实现方式,在第二种可能的实现方式中,PCEP消息包括PCEP-Reply消息或PCEP-Update消息。
使用现有的消息类型作为该PCEP消息,可以保证该PCEP消息在不同应用场景中被第一网络设备识别的可能,不需要再额外定义新的PCEP消息类型,降低了方案实施的复杂程度。
结合第二方面或第二方面的第一种或第二种可能的实现方式,在第三种可能的实现方式中,控制通道协议为PCEP,获取单元具体用于根据第二网络中的网络设备发送的PCEP-LS消息,获取第二网络的网络拓扑信息,PCEP-LS消息的通用路由字段中通过数值 标识第二网络。
可见,通过该PCEP-LS消息中通用路由字段的标识功能,可以从接收到的PCEP-LS消息中区分出哪些是携带第二网络的网络拓扑信息的PCEP-LS消息。
结合第二方面的第三种可能的实现方式,在第四种可能的实现方式中,PCEP-LS消息还包括用于标识第二网络中网络设备的节点对象,节点对象包括第二网络中网络设备的描述项,所述第二网络中网络设备的描述项用于携带所述第二网络中网络设备的标识和属性。
可见,通过PCEP-LS消息中节点对象的描述项所携带的内容,可以明确第二网络中所具有的网络设备。
结合第二方面的第三种可能的实现方式,在第五种可能的实现方式中,PCEP-LS消息还包括用于标识第二网络中网络设备的链路对象;
链路对象中包括链路描述项,链路描述项用于携带第二网络中网络设备与邻接网络设备之间链路的链路信息;
链路描述项中包括第二网络中网络设备的描述项、邻接网络设备的描述项和链路标识字段,链路标识字段用于携带在第二网络中网络设备与邻接网络设备之间的链路上,第二网络中网络设备的接口信息和邻接网络设备的接口信息。
可见,通过PCEP-LS消息中链路对象的链路描述项所携带的内容,可以明确第二网络中网络设备与邻接网络设备之间链路的链路信息。
结合第二方面的第五种可能的实现方式,在第六种可能的实现方式中,第一网络为IP网络,在第二网络中的网络设备发送的PCEP-LS消息的链路对象中,链路描述项还包括IP邻居地址字段,用于携带与第二网络中网络设备邻接的第一网络中网络设备的IP地址。
可见,通过链路描述项包括的IP邻居地址字段,可以进一步明确当邻接网络设备为第一网络中网络设备时,第二网络中网络设备与该第一网络中网络设备之间链路的链路信息。
在第二方面的第七种可能的实现方式中,第一网络为IP网络,获取单元还用于接收第一网络设备发送的PCEP-LS消息,PCEP-LS消息中的通用路由字段中通过数值标识第一网络,在链路对象中包括链路描述项,链路描述项包括本地节点描述项、远端节点描述项、链路标识字段和不透明链路属性字段;链路描述项的本地节点描述项和远端节点描述项用于携带VTE链路的本地节点信息和远端节点信息;链路描述项的链路标识字段用于携带VTE链路的虚拟本地标识和虚拟远端标识,链路描述项的不透明链路属性字段用于携带VTE链路的本地标识和远端标识,VTE链路为数据传输链路在IP网络下处于第一网络设备和第二网络设备之间的虚拟链路。
可见,第一网络设备还可以通过PCEP-LS消息将建立的VTE链路的信息进行上报,可以快速的获悉VTE链路已经建立的相关信息,便于准确的对混合网络进行调控和管理。
结合第二方面的第七种可能的实现方式,在第八种可能的实现方式中,链路描述项还包括本地IP地址字段和远端IP地址字段,链路描述项的本地IP地址字段用于携带VTE链路在第一网络设备上的本地接口信息,链路描述项的远端IP地址字段用于携带VTE链路在第二网络设备上的远端接口信息。
可见,由于第一网络设备和第二网络设备都是IP网络下的网络设备,可以通过PCEP-LS消息的链路描述项携带VTE链路在IP网络下的接口信息,进一步为控制器完善 该VTE链路的相关信息。
在第二方面的第九种可能的实现方式中,获取单元还用于获取针对虚拟路径的规划数据,规划数据包括作为虚拟路径起始端的第一网络设备的标识、作为虚拟路径结束端的第二网络设备的标识、虚拟路径的标识、虚拟路径在第一网络中的路径信息以及虚拟路径在第二网络中的路径信息;则控制器获取的路径确定需求中还包括虚拟路径的标识;
计算单元还用于根据第一网络设备的标识、第二网络设备的标识和虚拟路径的标识匹配到规划数据;
根据规划数据、第一网络的网络拓扑信息和第二网络的网络拓扑信息计算针对虚拟链路的数据传输路径,确定出路径计算结果。
可见,可以通过人工规划的方式预先确定出混合网络中跨网络的数据传输路径的规划数据,使得控制器可以依据该规划数据,通过第一网络的拓扑信息和第二网络的拓扑信息确定出路径计算结果,提高了确定出路径计算结果的效率。
第三方面,本发明实施例提供了一种路径确定方法,应用于包含同一控制器实现控制功能的混合网络,混合网络包括第一网络以及第二网络,第一网络设备以及第二网络设备均为第一网络的网络设备,该方法包括:
第一网络设备获取控制器发送的路径计算结果,路径计算结果为控制器根据第一网络设备的标识、第二网络设备的标识、第一网络的网络拓扑信息和第二网络的网络拓扑信息计算得到的;路径计算结果包括数据传输路径在第一网络中传输路径部分的计算结果以及数据传输路径在第二网络中传输路径部分的计算结果;数据传输路径为一条起点为第一网络设备、终点为第二网络设备,且由第一网络的传输路径部分和第二网络的传输路径部分构成的数据传输路径;
第一网络设备根据路径计算结果建立数据传输路径。
可见,在同一控制器实现控制功能的混合网络中,处于第一网络的网络设备可以从控制器获取路径计算结果,该路径计算结果包括数据传输路径在第一网络中传输路径部分的计算结果以及数据传输路径在第二网络中传输路径部分的计算结果,第一网络设备得到数据传输路径在第二网络中传输路径部分的计算结果是未加密的形式,当从第一网络设备开始建立该数据传输路径的过程中,可以免去如传统做法中第二网络中网络设备与其他控制器之间的额外信息交互,达到了提高数据传输路径建立效率的效果。在第三方面的第一种可能的实现方式中,第一网络设备获取控制器发送的路径计算结果,包括:
第一网络设备获取控制器发送的PCEP消息,PCEP消息携带有路径计算结果,PCEP消息包括根据数据传输路径的传输顺序依次排布的多个路径信息字段,路径信息字段用于携带数据传输路径中链路在网络设备上的接口信息,接口信息包括数据传输路径中链路在网络设备上的出接口信息或入接口信息针对数据传输路径中的一条链路,PCEP消息通过路径信息字段至少携带这条链路在网络设备上出接口和入接口中至少一个接口的接口信息。
可见,通过PCEP消息中的路径信息字段,可以依次携带路径计算结果中的接口信息,使得第一网络设备路能够通过路径信息字段明确建立数据传输路径所需的接口信息。
结合第三方面的第一种可能的实现方式,在第二种可能的实现方式中,PCEP消息包括PCEP-Reply消息或PCEP-Update消息。
使用现有的消息类型作为该PCEP消息,可以保证该PCEP消息在不同应用场景中被第一网络设备识别的可能,不需要再额外定义新的PCEP消息类型,降低了方案实施的复杂程度。
第四方面,本发明实施例提供了一种路径确定装置,应用于包含同一控制器实现控制功能的混合网络,混合网络包括第一网络以及第二网络,第一网络设备以及第二网络设备均为第一网络的网络设备,该装置包括获取单元和建立单元:
获取单元,用于获取控制器发送的路径计算结果,路径计算结果为控制器根据第一网络设备的标识、第二网络设备的标识、第一网络的网络拓扑信息和第二网络的网络拓扑信息计算得到的;路径计算结果包括数据传输路径在第一网络中传输路径部分的计算结果以及数据传输路径在第二网络中传输路径部分的计算结果;数据传输路径为一条起点为第一网络设备、终点为第二网络设备,且由第一网络的传输路径部分和第二网络的传输路径部分构成的数据传输路径;
建立单元,用于根据路径计算结果建立数据传输路径。
可见,在同一控制器实现控制功能的混合网络中,处于获取单元可以从控制器获取路径计算结果,该路径计算结果包括数据传输路径在第一网络中传输路径部分的计算结果以及数据传输路径在第二网络中传输路径部分的计算结果,其中,得到数据传输路径在第二网络中传输路径部分的计算结果是未加密的形式,当从建立单元开始建立该数据传输路径的过程中,可以免去如传统做法中第二网络中网络设备与其他控制器之间的额外信息交互,达到了提高数据传输路径建立效率的效果。
在第四方面的第一种可能的实现方式中,获取单元具体用于获取控制器发送的PCEP消息,PCEP消息携带有路径计算结果,PCEP消息包括根据数据传输路径的传输顺序依次排布的多个路径信息字段,路径信息字段用于携带数据传输路径中链路在网络设备上的接口信息,接口信息包括数据传输路径中链路在网络设备上的出接口信息或入接口信息,针对数据传输路径中的一条链路,PCEP消息通过路径信息字段至少携带这条链路在网络设备上出接口和入接口中至少一个接口的接口信息。
可见,通过PCEP消息中的路径信息字段,可以依次携带路径计算结果中的接口信息,能够通过路径信息字段明确建立数据传输路径所需的接口信息。
结合第四方面的第一种可能的实现方式,在第二种可能的实现方式中,PCEP消息包括PCEP-Reply消息或PCEP-Update消息。
使用现有的消息类型作为该PCEP消息,可以保证该PCEP消息在不同应用场景中被识别的可能,不需要再额外定义新的PCEP消息类型,降低了方案实施的复杂程度。
第五方面,本发明实施例提供了一种路径确定方法,应用于包含同一控制器实现控制功能的混合网络,混合网络包括第一网络以及第二网络,第二网络为光网络,目标网络设备为第二网络中的网络设备,该方法包括:
根据控制通道协议,目标网络设备向控制器发送第二网络的网络拓扑信息,该控制通道协议与第一网络中网络设备向该控制器发送第一网络的网络拓扑信息所根据的控制通道协议相同。
可以看出,在混合网络中,处于光网络中的目标网络设备,可以根据与第一网络中网 络设备向该控制器发送第一网络的网络拓扑信息所根据的控制通道协议向控制器发送第二网络的网络拓扑信息,从而使得同一个控制器可以通过相同的通道控制协议分别获取属于不同网络类型的第一网络和第二网络的网络拓扑信息,实现了同一控制器在混合网络中的控制功能。
在第五方面的第一种可能的实现方式中,控制通道协议为PCEP,目标网络设备向控制器发送第二网络的网络拓扑信息,包括:
目标网络设备向控制器发送携带第二网络的网络拓扑信息的PCEP-LS消息,PCEP-LS消息的通用路由字段中通过数值标识第二网络。
可见,通过该PCEP-LS消息中通用路由字段的标识功能,可以使得控制器从接收到的PCEP-LS消息中区分出哪些是携带第二网络的网络拓扑信息的PCEP-LS消息。
结合第五方面的第一种可能的实现方式,在第二种可能的实现方式中,PCEP-LS消息还包括用于标识第二网络中网络设备的节点对象,节点对象包括第二网络中网络设备的描述项,所述第二网络中网络设备的描述项用于携带所述第二网络中网络设备的标识和属性。
可见,通过PCEP-LS消息中节点对象的描述项所携带的内容,可以使得控制器明确第二网络中所具有的网络设备。
结合第五方面的第一种可能的实现方式,在第三种可能的实现方式中,PCEP-LS消息还包括用于标识第二网络中网络设备的链路对象,链路对象中包括链路描述项,链路描述项用于携带第二网络中网络设备与邻接网络设备之间链路的链路信息,链路描述项中包括第二网络中网络设备的描述项、邻接网络设备的描述项和链路标识字段,链路标识字段用于携带在第二网络中网络设备与邻接网络设备之间的链路上,第二网络中网络设备的接口信息和邻接网络设备的接口信息。
可见,通过PCEP-LS消息中链路对象的链路描述项所携带的内容,可以使得控制器明确第二网络中网络设备与邻接网络设备之间链路的链路信息。
在第五方面的第四种可能的实现方式中,目标网络设备为数据传输路径中的一个网络设备,根据数据传输路径的传输顺序,目标网络设备在数据传输路径上的前一个网络设备为第一网络中的网络设备,数据传输路径为一条起点为第一网络设备、终点为第二网络设备,且由第一网络的传输路径部分和第二网络的传输路径部分构成的数据传输路径;第一网络设备以及第二网络设备均为第一网络的网络设备;方法还包括:
目标网络设备从前一个网络设备获取数据传输路径在第二网络中传输路径部分的计算结果;
目标网络设备根据数据传输路径在第二网络中传输路径部分的计算结果建立数据传输路径。
可见,目标网络设备获取的数据传输路径在第二网络中传输路径部分的计算结果是可以直接识别、未加密的。故目标网络设备可以直接根据该数据传输路径在所述第二网络中传输路径部分的计算结果继续建立该数据传输路径。从而免去了传统做法中与光控制器之间的额外信息交互,达到了提高数据传输路径建立效率的效果。
第六方面,本发明实施例提供了一种路径确定装置,应用于包含同一控制器实现控制功能的混合网络,混合网络包括第一网络以及第二网络,第二网络为光网络,该装置包括 发送单元:
发送单元,用于根据控制通道协议,向控制器发送第二网络的网络拓扑信息,控制通道协议与第一网络中网络设备向控制器发送第一网络的网络拓扑信息所根据的控制通道协议相同。
可以看出,在混合网络中,处于光网络中的发生单元,可以根据与第一网络中网络设备向该控制器发送第一网络的网络拓扑信息所根据的控制通道协议向控制器发送第二网络的网络拓扑信息,从而使得同一个控制器可以通过相同的通道控制协议分别获取属于不同网络类型的第一网络和第二网络的网络拓扑信息,实现了同一控制器在混合网络中的控制功能。
在第六方面的第一种可能的实现方式中,控制通道协议为PCEP,发送单元具体用于向控制器发送携带第二网络的网络拓扑信息的PCEP-LS消息,PCEP-LS消息的通用路由字段中通过数值标识第二网络。
可见,通过该PCEP-LS消息中通用路由字段的标识功能,可以使得控制器从接收到的PCEP-LS消息中区分出哪些是携带第二网络的网络拓扑信息的PCEP-LS消息。
结合第六方面的第一种可能的实现方式,在第二种可能的实现方式中,PCEP-LS消息还包括用于标识第二网络中网络设备的节点对象,节点对象包括第二网络中网络设备的描述项,所述第二网络中网络设备的描述项用于携带所述第二网络中网络设备的标识和属性。
可见,通过PCEP-LS消息中节点对象的描述项所携带的内容,可以使得控制器明确第二网络中所具有的网络设备。
结合第六方面的第一种可能的实现方式,在第三种可能的实现方式中,PCEP-LS消息还包括用于标识第二网络中网络设备的链路对象,链路对象中包括链路描述项,链路描述项用于携带第二网络中网络设备与邻接网络设备之间链路的链路信息,链路描述项中包括第二网络中网络设备的描述项、邻接网络设备的描述项和链路标识字段,链路标识字段用于携带在第二网络中网络设备与邻接网络设备之间的链路上,第二网络中网络设备的接口信息和邻接网络设备的接口信息。
可见,通过PCEP-LS消息中链路对象的链路描述项所携带的内容,可以使得控制器明确第二网络中网络设备与邻接网络设备之间链路的链路信息。
在第六方面的第四种可能的实现方式中,目标网络设备为数据传输路径中的一个网络设备,根据数据传输路径的传输顺序,目标网络设备在数据传输路径上的前一个网络设备为第一网络中的网络设备,数据传输路径为一条起点为第一网络设备、终点为第二网络设备,且由第一网络的传输路径部分和第二网络的传输路径部分构成的数据传输路径;第一网络设备以及第二网络设备均为第一网络的网络设备;装置还包括接收单元:
接收单元,用于从前一个网络设备获取数据传输路径在第二网络中传输路径部分的计算结果;
建立单元还用于根据数据传输路径在第二网络中传输路径部分的计算结果建立数据传输路径。
可见,接收单元获取的数据传输路径在第二网络中传输路径部分的计算结果是可以直接识别、未加密的。故建立单元可以直接根据该数据传输路径在所述第二网络中传输路径部分的计算结果继续建立该数据传输路径。从而免去了传统做法中与光控制器之间的额外 信息交互,达到了提高数据传输路径建立效率的效果。
第七方面,本发明实施例提供了一种路径确定系统,应用于包含同一控制器实现控制功能的混合网络,混合网络包括第一网络以及第二网络,该系统包括控制器、第一网络设备:
控制器获取路径确定需求,路径确定需求用于请求确定一条起点为第一网络设备、终点为第二网络设备,且由第一网络的传输路径部分和第二网络的传输路径部分构成的数据传输路径,路径确定需求包括第一网络设备的标识以及第二网络设备的标识,第一网络设备以及第二网络设备均为第一网络的网络设备;根据控制通道协议,从第一网络中的网络设备获取第一网络的网络拓扑信息,并从第二网络中的网络设备获取第二网络的网络拓扑信息;根据第一网络设备的标识、第二网络设备的标识、第一网络的网络拓扑信息和第二网络的网络拓扑信息计算得到路径计算结果,路径计算结果包括数据传输路径在第一网络中传输路径部分的计算结果以及数据传输路径在第二网络中传输路径部分的计算结果;向第一网络设备发送路径计算结果;
第一网络设备获取控制器发送的路径计算结果;根据路径计算结果建立数据传输路径。
可以看出,在同一控制器实现控制功能的混合网络中,控制器可以通过相同的通道控制协议分别获取属于不同网络类型的第一网络和第二网络的网络拓扑信息,在控制器获取针对该数据传输路径的路径确定需求时,由于所述控制器已经具有所述第一网络和第二网络的网络拓扑信息,在计算所述数据传输路径时,所述控制器不需要与其他设备进行额外的信息交互即可确定出包括所述第一网络和第二网络中传输路径部分的路径计算结果,并向所述第一网络设备发送所述路径计算结果,从而提高了对所述数据传输路径的规划效率。
而第一网络设备得到数据传输路径在第二网络中传输路径部分的计算结果是未加密的形式,当从第一网络设备开始建立该数据传输路径的过程中,可以免去如传统做法中第二网络中网络设备与其他控制器之间的额外信息交互,达到了提高数据传输路径建立效率的效果。
第八方面,本发明实施例提供了一种路径确定系统,应用于包含同一控制器实现控制功能的混合网络,混合网络包括第一网络以及第二网络,第二网络为光网络,目标网络设备为第二网络中的网络设备,该系统包括控制器和目标网络设备:
控制器用于获取路径确定需求,路径确定需求用于请求确定一条起点为第一网络设备、终点为第二网络设备,且由第一网络的传输路径部分和第二网络的传输路径部分构成的数据传输路径,路径确定需求包括第一网络设备的标识以及第二网络设备的标识,第一网络设备以及第二网络设备均为第一网络的网络设备;根据控制通道协议,从第一网络中的网络设备获取第一网络的网络拓扑信息,并从第二网络中的网络设备获取第二网络的网络拓扑信息;根据第一网络设备的标识、第二网络设备的标识、第一网络的网络拓扑信息和第二网络的网络拓扑信息计算得到路径计算结果,路径计算结果包括数据传输路径在第一网络中传输路径部分的计算结果以及数据传输路径在第二网络中传输路径部分的计算结果;向第一网络设备发送路径计算结果;
根据控制通道协议,目标网络设备用于向控制器发送第二网络的网络拓扑信息,控制通道协议与第一网络中网络设备向控制器发送第一网络的网络拓扑信息所根据的控制通道协议相同。
可见,在混合网络中,处于光网络中的目标网络设备,可以根据与第一网络中网络设备向该控制器发送第一网络的网络拓扑信息所根据的控制通道协议向控制器发送第二网络的网络拓扑信息,从而使得同一个控制器可以通过相同的通道控制协议分别获取属于不同网络类型的第一网络和第二网络的网络拓扑信息,实现了同一控制器在混合网络中的控制功能。
在控制器获取针对该数据传输路径的路径确定需求时,由于所述控制器已经具有所述第一网络和第二网络的网络拓扑信息,在计算所述数据传输路径时,所述控制器不需要与其他设备进行额外的信息交互即可确定出包括所述第一网络和第二网络中传输路径部分的路径计算结果,并向所述第一网络设备发送所述路径计算结果,从而提高了对所述数据传输路径的规划效率。
附图说明
为了说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为本发明实施例提供的一种在混合网络中确定路径的流程示意图;
图2为本发明实施例提供的一种路径确定方法的方法流程图;
图3为本发明实施例提供的一种PCEP消息的报文格式示意图;
图4为本发明实施例提供的一种PCEP-LS消息中用于携带节点信息部分的报文格式示意图;
图5为本发明实施例提供的一种PCEP-LS消息中用于携带链路信息部分的报文格式示意图;
图6为本发明实施例提供的一种PCEP-LS消息中用于携带链路信息部分的报文格式示意图;
图7为本发明实施例提供的一种PCEP-LS消息中用于携带VTE链路部分的报文格式示意图;
图8为本发明实施例提供的一种路径确定装置的装置结构图;
图9为本发明实施例提供的一种路径确定装置的装置结构图;
图10为本发明实施例提供的一种路径确定装置的装置结构图;
图11为本发明实施例提供的一种路径确定系统的系统结构图;
图12为本发明实施例提供的一种路径确定系统的系统结构图;
图13为本发明实施例提供的一种控制器的硬件结构示意图;
图14为本发明实施例提供的一种第一网络设备的硬件结构示意图;
图15为本发明实施例提供的一种目标网络设备的硬件结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本 发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在混合网络中,不同类型网络的网络拓扑之间具有相互连接关系,故两个网络节点之间的数据传输路径可能会跨越不同类型的网络。
在确定混合网络中网络节点之间的数据传输路径时,若该数据传输路径要经过多个不同类型的网络,需要综合考虑这多个网络的网络拓扑信息才能完成对整个数据传输路径的确定。由于不同类型网络的网络拓扑信息各自独立,互相不可见,故在规划该数据传输路径的过程中,需要这多个网络的控制器分别计算该数据传输路径在各自所在网络中的部分路径,这多个控制器之间还需要进行大量的数据交互后才能完整确定出该条数据传输路径。
例如在包括IP网络和光网络的混合网络中,两个网络设备之间的数据传输路径可能出现一部分在IP网络中,一部分在光网络中的情况。在计算该数据传输路径时,该数据传输路径在不同网络中传输路径部分需要这两个网络的控制器分别进行计算,例如需要由IP网络的控制器计算该数据传输路径在IP网络中的传输路径部分,由光网络的控制器计算在该数据传输路径在光网络中的传输路径部分,通过IP网络的控制器和光网络的控制器之间的交互,以及对各自网络中传输路径部分的加密,将两个路径传输部分(至少有一个路径传输部分经过了加密)组合到一个路径计算结果中,再将路径计算结果下发给这两个网络设备的其中一个,以便实现后续的路径建立。
为此,本发明实施例提供了一种路径确定方法、装置和系统,在混合网络中,控制器可以通过相同的通道控制协议分别获取属于不同网络类型的第一网络和第二网络的网络拓扑信息,在控制器获取针对该数据传输路径的路径确定需求时,由于所述控制器已经具有所述第一网络和第二网络的网络拓扑信息,在计算所述数据传输路径时,所述控制器不需要与其他设备进行额外的信息交互即可确定出包括所述第一网络和第二网络中传输路径部分的路径计算结果,并向所述第一网络设备发送所述路径计算结果,从而提高了对所述数据传输路径的规划效率。
本发明的网络架构
本发明实施例可以应用于包含同一控制器实现控制功能的混合网络。本发明实施例中的混合网络可以包括两个不同网络类型的网络。在混合网络中,控制器分别与第一网络中的网络设备和第二网络中的网络设备相连,并对这两个网络中的网络设备实现控制功能。该控制器可以为路径计算单元(Path Computation Element,PCE)。第一网络和第二网络为该混合网络中两种不同网络类型的网络具体的,第一网络和第二网络可以包括:IP网络、以太网、同步数字系列(Synchronous Digital Hierarchy,SDH)网络、异步传输模式(Asynchronous Transfer Mode,ATM)网络、自动交换光网络(Automatically Switched Optical Network,ASON)等。在第一网络为IP网络时,第一网络中部署的可以是内部网关协议(Interior Gateway Protocol,IGP),第一网络中的网络设备可以为路由器,该控制器可以为IP PCE。在第二网络为光网络时,第二网络中的网络设备可以为波分设备。在本发明一些可选的应用场景下,第一网络可以是IP网络,第二网络可以是光网络,例如图1所示的应用场景,在图1所示场景的示例中,R1至R4可以为IP网络(第一网络)中的网络设备(例如路由器),虚线框中的T1至T5可以为光网络(第二网络)中的网络设备(例如波 分设备),PCE(控制器)可以为IP网络和光网络的同一控制器,该PCE还可以与网络协同管理系统例如Net Matrix相连。
本发明的方法实施例
图2为本发明实施例提供的一种路径确定方法的方法流程图,该方法包括:
201:控制器获取路径确定需求,该路径确定需求用于请求确定一条起点为第一网络设备、终点为第二网络设备,且由第一网络的传输路径部分和第二网络的传输路径部分构成的数据传输路径,路径确定需求包括第一网络设备的标识以及第二网络设备的标识,第一网络设备以及第二网络设备均为第一网络的网络设备。例如图1所示场景中,R1可以为该第一网络设备,R4可以为该第二网络设备。
举例说明,本发明并不限定控制器如何获取路径确定需求,例如路径确定需求可以是由第一网络或第二网络中的任一网络设备发送的,比如第一网络设备;路径确定需求也可以是由第三方的应用服务器向控制器发送的;路径确定需求也可以是直接在控制器上配置输入的需求而生成的。网络设备的类型和该网络设备所在网络的网络类型相关,若第一网络的网络类型为IP网络,那么第一网络设备可以为与IP网络相关的路由器。其中,路径确定需求中可以包括用于标识第一网络设备的第一网络设备标识,第一网络设备标识可以是第一网络设备的ID。路径确定需求中还可以包括用于标识第二网络设备的第二网络设备标识,第二网络设备标识可以是第二网络设备的ID。
可以以建立路径的顺序或者路径中数据传输的方向作为明确一条数据传输路径的路径起点和路径终点的依据,在本发明实施例中,例如可以根据路径确定需求计算确定出路径计算结果后,将根据路径计算结果,从第一网络设备开始建立数据传输路径,直到第二网络设备为止,完成建立数据传输路径。
由于第一网络设备和第二网络设备均为第一网络中的网络设备,且数据传输路径的一部分处于第二网络中,且数据传输路径是由第一网络的传输路径部分和第二网络的传输路径部分构成的,那么数据传输路径中的数据传输过程可以理解为从第一网络开始,之后进入第二网络,再从第二网络回到第一网络的过程。
201a:根据控制通道协议,控制器从第一网络中的网络设备获取第一网络的网络拓扑信息,并从第二网络中的网络设备获取第二网络的网络拓扑信息。
需要注意的是,本发明并不会通过步骤的数字编号作为限定步骤执行顺序的依据。在本方法流程中,并不限定201和201a之间的执行先后顺序。控制器可以是在获取到路径确定需求之后,再开始获取第一网络的网络拓扑信息以及第二网络的网络拓扑信息。控制器也可以在获取到路径确定需求之前就预先获取了第一网络的网络拓扑信息以及第二网络的网络拓扑信息。这里的网络拓扑信息可以包括第一网络中网络设备的相关信息以及第一网络中网络设备与邻接网络设备之间的链路信息等。
为了能够实现同一个控制器获取至少两个不同网络类型网络的网络拓扑信息,需要在该控制器和第一网络的网络设备之间以及该控制器和第二网络的网络设备之间部署相同的控制通道协议。本发明中并不限定该控制器具体与第一网络中哪些网络设备之间需要部署控制通道协议,该控制器可以与第一网络中需要上传第一网络的网络拓扑信息的网络设备之间部署通道控制协议。控制器可以与第二网络中需要上传第二网络的网络拓扑信息的网络设备之间部署通道控制协议。通过部署控制通道协议,使得控制器实现以控制通道协 议既能够获取第一网络的网络拓扑信息,也能够获取第二网络的网络拓扑信息。
202:控制器根据第一网络设备的标识、该第二网络设备的标识、第一网络的网络拓扑信息和第二网络的网络拓扑信息计算得到路径计算结果,路径计算结果包括数据传输路径在第一网络中传输路径部分的计算结果以及数据传输路径在第二网络中传输路径部分的计算结果。
举例说明,由于控制器已经获取了第一网络和第二网络的网络拓扑信息,故控制器可以根据第一网络设备的标识明确第一网络设备在第一网络中的具体位置,和根据第二网络设备的标识明确第二网络设备在第二网络中的具体位置。以及,控制器还可以确定出第一网络设备和第二网络设备之间的网络拓扑信息等。根据上述确定出的信息,足够控制器在无需与其他控制器额外信息交互的情况下,独立计算出包括第一网络中传输路径部分和第二网络中传输路径部分的路径计算结果。在计算路径计算结果的过程中,控制器可以根据所获取的第一网络和第二网络的网络拓扑信息自行规划出可行的路径,也可以根据预先规划数据计算出路径。
203:控制器向第一网络设备发送路径计算结果。
由于第一网络设备为作为数据传输路径起始点的网络设备,故控制器可以将路径计算结果发至第一网络设备,由第一网络设备根据路径计算结果,开始建立数据传输路径。
接下来将通过具体的应用场景对图2所对应实施例进行进一步说明。可选的,图1所示的具体应用场景为通过人工预先规划的方式进行路径确定的场景。图1中括号内的数字可以用于标识执行路径确定过程中的步骤顺序。
在步骤0中,通过同一的控制器:PCE来获取IP网络和光网络的网络拓扑信息。
在步骤1中,用户手工或者通过离线规划工具进行网络规划设计,规划数据经过校验和转换导入NetMatrix,规划的数据包括从R1到R4的虚拟流量工程链路14(Virtual TE Link,VTE Link)。也就是说,通过预先规划,确定好了R1至R4之间可能的虚拟数据传输路径。
在步骤2中,NetMatrix将规划数据下发给PCE,规划数据包括作为VTE Link 14起始端的R1的标识、作为VTE Link 14结束端的R4的标识、VTE Link 14的标识、VTE Link 14在IP网络中的路径信息以及VTE Link 14在光网络中的路径信息。
在步骤3中,R1可以通过PCEP协议消息向PCE发送路径确定需求,路径确定需求中,除了包括R1和R4的标识外,还可以包括VTE Link 14的标识。进一步的,向PCE托管与T2之间的隧道控制权,以向PCE提供规划、确定数据传输路径具体走向的自由度。
PCE获取R1发送的路径确定需求后,PCE根据R1的标识、R4的标识和VTE Link 14的标识匹配到规划数据。
PCE根据规划数据、IP网络的网络拓扑信息和光网络的网络拓扑信息计算针对VTE Link 14的数据传输路径,由于PCE具有IP网络和光网络的网络拓扑信息,可以自行完成对数据传输路径中在IP网络和光网络中的部分拓扑,在图1中,数据传输路径中在IP网络和光网络中的部分拓扑可以理解为完整的数据传输路径,格式为<R1→T2,T2→T3,T3→T5,T5→R4>。
在步骤4中,PCE将包括数据传输路径中在IP网络和光网络中的部分拓扑的路径计算结果下发至R1。
在传统方式中,由于PCE没有光网络的网络拓扑信息,只能通过多次数据交互才能从 光网络的控制器得到该数据传输路径在光网络中传输路径部分的计算结果,导致对数据传输路径的规划效率很低。而且由于PCE本身也无法识别光网络中的拓扑,使得PCE最终得到数据传输路径的格式为<R1→T2,PATH-KEY,T5→R4>,光网络中传输路径部分的计算结果通过PATH-KEY的方式进行了加密隐藏。还需要注意的是,由于R1所接收到的路径计算结果中包括加密隐藏的PATH-KEY部分,在根据该路径计算结果建立数据传输路径的过程中,光网络中的网络设备(例如T2)还需要向光PCE请求解析PATH-KEY部分加密隐藏的内容,增加的这部分额外的信息交互,相当于由之前的数据传输路径确定结果进一步影响了建立数据传输路径的建立效率。
而在图1所示场景中,PCE计算得到的数据传输路径为完整的数据传输路径,并不会具有传统方式中的隐藏加密部分,计算过程中PCE也不需要与其他控制器进行数据交互。而且由于光网络中传输路径部分的计算结果是直接展示的,在建立数据传输路径的过程中,T2免去了传统做法中与光控制器之间的额外信息交互,达到了提高数据传输路径建立效率的效果。
可见,在混合网络中,控制器可以通过相同的通道控制协议分别获取属于不同网络类型的第一网络和第二网络的网络拓扑信息,在控制器获取针对数据传输路径的路径确定需求时,由于控制器已经具有第一网络和第二网络的网络拓扑信息,在计算数据传输路径时,控制器不需要与其他设备进行额外的信息交互即可确定出包括第一网络和第二网络中传输路径部分的路径计算结果,并向第一网络设备发送路径计算结果,从而提高了对数据传输路径的规划效率。
接下来,在控制通道协议为路径计算通信协议(Path Computation Element Communication Protocol,PCEP)的可选情况下,将针对控制器如何将路径计算结果向第一网络设备发送进行说明。目前传统的PCEP基本上只能实现让控制器向一个网络设备发送路径计算结果中这个网络设备所在网络(例如IP网络)的传输路径部分的计算结果,而无法让控制器向这个网络设备发送路径计算结果中其他网络的传输路径部分的计算结果。为了实现在PCEP下,控制器能够向第一网络设备发送路径计算结果,需要对原有PCEP进行改进或扩展,以便可以通过PCEP消息携带路径计算结果,在本发明实施例中,PCEP消息可以包括PCEP-Reply消息或PCEP-Update消息。PCEP-Reply消息的消息类型(Message Type)的类型值可以设置为4,消息名称(Message Name)可以为路径计算回复(Path Computation Reply)。PCEP-Update消息的消息类型的类型值可以设置为11,消息名称可以为更新(Update)。
在控制器向第一网络设备发送的携带有路径计算结果的PCEP消息中,PCEP消息包括路径信息字段,路径信息字段用于携带数据传输路径上依次经过的网络设备的接口信息,接口信息包括网络设备的出接口信息或入接口信息。路径信息字段所携带的接口信息的排布顺序与数据传输路径的传输顺序一致。网络设备的出接口信息或入接口信息可以理解为数据传输路径中链路在网络设备上的出接口信息或入接口信息。可以通过一个路径信息字段携带一个接口信息。
路径信息字段的格式与接口所在网络设备的类型相关。若一个路径信息字段携带的是一条链路在IP网络中一个网络设备上接口的接口信息,那么这个路径信息字段可以包括这个网络设备的IP地址,这个IP地址可以具体为IPv4地址或者IPv6地址。若一个路径信息字段携带的是一条链路在光网络中一个网络设备上接口的接口信息,那么这个路径信息 字段可以包括这个网络设备的设备标识以及这个网络设备与这条链路相关的接口标识。
以图1所示场景为例,路径计算结果中,包括了组成数据传输路径的四段链路,依据数据传输路径的传输顺序,这四段链路分别为R1→T2,T2→T3,T3→T5,T5→R4。相应的,PCEP消息中多个路径信息字段分别携带的接口信息也同样依据传输顺序。在建立数据传输路径的过程中,通过携带的接口信息,使得第一网络设备在接收到PCEP消息时,可以明确如何开始建立数据传输路径,以及数据传输路径上的其他网络设备明确如何继续以及完成数据传输路径的建立。
本发明实施例中并不限定PCEP消息中携带接口信息的数量或类型(例如在网络设备上的出接口或入接口),能够实现指示网络设备完成建立数据传输路径的功能即可。为了能够实现前述功能,可选的,针对数据传输路径中的一条链路,PCEP消息通过路径信息字段至少携带这条链路在网络设备上出接口和入接口中至少一个接口的接口信息。
以图1所示场景为例,数据传输路径的四段链路按传输顺序分别为R1→T2,T2→T3,T3→T5,T5→R4。以R1→T2的链路为例,R1→T2具有两个接口,根据链路的传输方向,R1→T2在R1上的接口为出接口,R1→T2在T2上的接口为入接口,PCEP消息中可以携带R1→T2的两个接口中一个接口的接口信息,或者将R1→T2的两个接口的接口信息都携带在PCEP消息中。在PCEP消息的报文结构中,路径信息字段所携带接口信息的顺序参照数据传输路径的传输顺序排列,越靠近数据传输路径起始点(R1)的接口信息携带在越靠近报文头的路径信息字段中。
例如为了保证完整性,在向第一网络设备发送的PCEP消息中,可以携带四条链路的共八个接口的接口信息,PCEP消息的报文结构中相应的包括八个路径信息字段,从读取的先后顺序,第一个也就是最靠近报文头的路径信息字段携带的是R1→T2在R1上出接口的接口信息,由于R1是IP网络中的网络设备,故第一个路径信息字段中包括R1的IP地址;第二个路径信息字段携带的是R1→T2在T2上入接口的接口信息,由于T2是光网络中的网络设备,故第二个路径信息字段中包括T2的设备标识以及T2用于建立R1→T2的接口(入接口)的接口标识;第三个路径信息字段携带的是T2→T3在T2上出接口的接口信息,由于T2是光网络中的网络设备,故第三个路径信息字段中包括T2的设备标识以及T2用于建立T2→T3的接口(出接口)的接口标识,之后第四个到第八个路径信息字段所携带的内容可以以此类推,不再一一赘述。
例如PCEP消息还可以只携带上述四条链路在网络设备上出接口的接口信息,或者只携带上述四条链路在网络设备上入接口的接口信息,或者其他接口信息的组合可能,不再一一赘述。
这里举例图1所示场景中的一种接口信息的组合可能,参见图3,图3中所示的为PCEP消息的一种可能的报文结构。对象主体(Object Body)中具有六个路径信息字段,这六个路径信息字段中携带的接口信息的排列顺序与数据传输路径中数据的传输顺序一致,携带的接口信息依次为(R1,R1→T2)、(T2,R1→T2)、(T3,T2→T3)、(T5,T3→T5)、(T5,T5→R4)和(R4,T5→R4)。可见图3所对应实施例中,对于链路R1→T2,PCEP消息中既携带了该链路在R1上的出接口的接口信息,也携带了该链路在T2上的入接口的接口信息,对于链路T2→T3和T3→T5,PCEP消息中只携带了在各自在T3和T5上的入接口的接口信息,对于链路T5→R4,PCEP消息中既携带了该链路在T5上的出接口的接口信息,也携带了该链路在R4上的入接口的接口信息。
对于接口信息(R1,R1→T2),由于R1为IP网络中的网络设备,故携带(R1,R1→T2)的这个路径信息字段中包括R1的IPv4地址,这个IPv4地址长度可以为4bytes(单位:字节),还可以用于标识R1用于建立R1→T2的接口(出接口)的接口标识。如图3中所示,携带在这个路径信息字段的右上部分和左下部分中。需要注意的是,根据第一网络也就是IP网络的类型,上述R1的IPv4地址也可以替换为R1的IPv6地址。
对于接口信息(T2,R1→T2),由于T2为光网络中的网络设备,故携带(T2,R1→T2)的这个路径信息字段中包括T2的设备标识(Router ID),以及T2用于建立R1→T2的接口(入接口)的接口标识(Interface ID),这个接口标识所占用的字节数可以为32bits(单位:比特)。
对于接口信息(T3,T2→T3),由于T3为光网络中的网络设备,故携带(T3,T2→T3)的这个路径信息字段中包括T3的设备标识,以及T3用于建立T2→T3的接口(入接口)的接口标识,这个接口标识所占用的字节数可以为32bits。
对于接口信息(T5,T3→T5),由于T5为光网络中的网络设备,故携带(T5,T3→T5)的这个路径信息字段中包括T5的设备标识,以及T5用于建立T3→T5的接口(入接口)的接口标识,这个接口标识所占用的字节数可以为32bits。
对于接口信息(T5,T5→R4),由于T5为光网络中的网络设备,故携带(T5,T5→R4)的这个路径信息字段中包括T5的设备标识,以及T5用于建立T5→R4的接口(出接口)的接口标识,这个接口标识所占用的字节数可以为32bits。
对于接口信息(R4,T5→R4),由于R4为IP网络中的网络设备,故携带(R4,T5→R4)的这个路径信息字段中包括R4的IPv4地址,这个IPv4地址长度可以为4bytes,还可以用于标识R4用于建立T5→R4的接口(入接口)的接口标识。如图3中所示,携带在这个路径信息字段的右上部分和左下部分中。需要注意的是,根据第一网络也就是IP网络的类型,上述R4的IPv4地址也可以替换为R4的IPv6地址。
可见,通过上述改进,控制器不仅可以通过PCEP消息携带路径计算结果中在第一网络(IP网络)中传输路径部分的计算结果,还可以通过PCEP消息携带原本不能携带的内容,即路径计算结果中在第二网络(光网络)中传输路径部分的计算结果。从而实现了使用PCEP消息携带包括两个不同类型网络(IP网络和光网络)的传输路径部分的路径计算结果,由此可以将路径计算结果统一发送至一个网络设备,提高了对数据传输路径的规划效率。
接下来,在控制通道协议为PCEP的可选情况下,将针对一个控制器如何实现获取至少两种类型网络的网络拓扑信息进行说明。目前传统的PCEP基本上只能实现让一个控制器获取同一种网络类型网络(例如IP网络)的网络拓扑信息,而无法让控制器实现获取至少两种类型网络的网络拓扑信息的功能。故在本发明实施例中,对传统的PCEP进行改进或扩展,使得不同网络类型网络(例如光网络)中的网络设备可以利用路径计算通信协议链路状态(Path Computation Element Communication Protocol Link-State,PCEP-LS)消息携带所在网络的网络拓扑信息。例如在第一网络为IP网络,第二网络为光网络的混合网络场景下,控制器根据第二网络中的网络设备发送的PCEP-LS消息,获取第二网络也就是光网络的网络拓扑信息,从而实现了一个控制器在PCEP下获取两种类型网络(IP网络和光网络)的网络拓扑信息的功能。
接下来具体描述如何实现通过PCEP-LS消息携带第二网络的网络拓扑信息。
一方面,为了能够让控制器能够区分接收到的网络拓扑信息是第二网络的网络拓扑信息,需要在PCEP-LS消息中增加相应的标识,可选的,控制器根据第二网络中的网络设备发送的PCEP-LS消息,获取第二网络的网络拓扑信息,PCEP-LS消息的通用路由字段(Routing Universe TLV)中通过数值标识第二网络。这里数值可以携带在通用路由字段中的标志位(Identifier)字段,数值具体可以设置为“1”,以标识第二网络也就是光层拓扑(layer 0Routing topology)。在传统方式,由第一网络中网络设备向控制器发送的PCEP-LS消息中,可以在通用路由字段的标志位字段中通过数值“0”来标识第一网络。由此,控制器在接收到PCEP-LS消息时,可以通过通用路由字段中标志位字段的数值(例如是0还是1)来区分PCEP-LS消息所携带的网络拓扑信息是第一网络的还是第二网络的。通用路由字段的用法可以参见图4所示,通过“Identifier=1”来标识第二网络。
另一方面,第二网络的网络拓扑信息可以包括第二网络中网络设备的节点信息,以及第二网络中网络设备的链路信息。在第二网络中网络设备通过PCEP-LS消息向控制器上传网络拓扑信息时,需要通过相应的描述项携带上述节点信息以及链路信息。
先说明如何通过PCEP-LS消息携带第二网络中网络设备的节点信息。在说明之前,需要明确网络设备与节点这两个特征之间的关系。节点可以属于逻辑层面上的一个定义,可以用于指代一个网络设备,例如,从逻辑层面上看,一个网络设备可以视为一个节点或者一个网络节点。或者说,节点可以理解为网络设备在逻辑层面上的一种名称或表述形式。
可选的,为了能够通过PCEP-LS消息携带第二网络中网络设备的节点信息,其特征在于,PCEP-LS消息还包括用于标识第二网络中网络设备的节点对象(Node Object),节点对象包括第二网络中网络设备的描述项(Local Node Descriptor TLV),所述第二网络中网络设备的描述项用于携带所述第二网络中网络设备的标识和属性。携带第二网络中网络设备节点信息的PCEP-LS消息的报文格式可以参见图4所示,其中,节点对象为对象类型(Object Type,OT)中的一种,所对应对象类型的类型值可以为1,例如图4所示的“OT=1”。针对第二网络中一个网络设备,这个网络设备的设备标识可以携带在本地节点描述项中的光节点标识字段(Optical Node-ID sub-TLV)中。
对于第二网络为光网络的情况下,在上传节点信息时,一些场景下,可能还需要上传一些光网络中网络设备的属性,例如一些特定信息,为此,除了图4所示的报文结构以外,为了携带光网络中网络设备的特定信息,在本地节点描述项中还可以增加一些字段,例如:资源块信息(Resource Block Information)字段、资源接入能力(Resource Accessibility)字段、资源波长约束(Resource Wavelength Constraints)字段、资源块池状态(Resource Block Pool State)字段、资源块共享接入波长可获得性(Resource Block Shared Access Wavelength Availability)字段等。这些字段的格式可以是sub-TLV格式。
对于资源块信息字段,由于波长交换光网络(WSON,Wavelength Switched Optical Network)。在波长交换光网络中,类似于再生器(regenerator),波道转换器(wavelength converter)等硬件部件被称为资源,资源块就是同一个波长交换光网络节点上资源的集合。资源块信息字段可以用于携带这个资源块的属性信息。
对于资源接入能力字段,可以用于携带描述某个入端口(ingress port)访问资源块的能力信息以及资源块访问某个出端口(egress port)的能力信息。
对于资源波长约束字段,可以用于携带一个资源可接纳波长的范围信息。
对于资源块池状态字段,可以携带资源块的状态信息。
对于资源块共享接入波长可获得性字段,可以用于携带通过共享光纤访问资源块的时候,资源块的可获得性信息。
再说明如何通过PCEP-LS消息携带第二网络中网络设备之间的链路信息。可选的,PCEP-LS消息还包括用于标识第二网络中网络设备的链路对象(Link Object),链路对象为对象类型中的一种,所对应对象类型的类型值可以为2,例如图5和图6所示的“OT=2”。链路对象中包括链路描述项(Link Descriptor TLV),链路描述项用于携带第二网络中网络设备与邻接网络设备之间链路的链路信息,链路描述项中包括第二网络中网络设备的描述项(Local Node Descriptor TLV)、邻接网络设备的描述项(Remote Node Descriptor TLV)和链路标识字段(Link Local/Remote ID sub-TLV)。链路标识字段用于携带在第二网络中网络设备与邻接网络设备之间的链路上,第二网络中网络设备的接口信息和邻接网络设备的接口信息。
针对一个网络设备,这个网络设备的邻接网络设备可以理解为与这个网络设备之间具有链路的其他网络设备。针对第二网络中的一个网络设备,这个网络设备的邻接网络设备可以包括第二网络中的网络设备,也可以包括第一网络中的网络设备。
针对第二网络中网络设备与邻接网络设备之间的一条链路的链路信息,本地节点描述项和远端节点描述项分别用于携带这条链路的本地节点信息和远端节点信息,链路标识字段用于携带这条链路的本地标识(Link Local Identifier)和远端标识(Link Remote Identifier)。由于链路中数据传输是有方向性的,例如图1所示场景中,链路R1→T2的数据传输方向是从R1向T2传输。故针对一条连接网络设备a和网络设备b的链路,若数据传输方向是从网络设备a到网络设备b,那么这条链路的本地节点可以为网络设备a,远端节点可以为网络设备b。这个链路的本地标识可以用于标识网络设备a上用于建立这条链路的接口,远端标识可以用于标识网络设备b上用于建立这条链路的接口。由于是通过PCEP-LS消息携带第二网络中网络设备之间的链路信息。故本地节点为第二网络中网络设备,远端节点为邻接网络设备。
由于第二网络中的一个网络设备可以与第二网络中另一个网络设备之间具有链路,也可以与第一网络中的一个网络设备之间具有链路。故在将这两种不同链路的链路信息携带在PCEP-LS消息中时,PCEP-LS消息的报文格式可能会有一定区别。接下来将结合图1所示场景,说明PCEP-LS消息携带链路信息所可能包括的报文格式。
针对邻接网络设备为第二网络中网络设备的情况,以链路T2→T3的链路信息为例,PCEP-LS消息携带该链路信息的报文格式可以参见图5,其中,本地节点描述项和远端节点描述项中的报文格式可以参见图4所示,这里不再赘述。
在图5中,本地节点描述项可以携带T2的节点信息,远端节点描述项可以携带T3的节点信息,链路标识字段的本地标识字段中可以携带T2用于建立T2→T3的接口的相关信息,链路标识字段的远端标识字段中可以携带T3用于建立T2→T3的接口的相关信息。图5中所示的“Any Sub-TLV”字段可以为可以定义在链路描述项中的其他TLV字段,若针对T2→T3还需携带其他相关信息,可以从上述其他TLV字段中选取相应的字段替换到“Any Sub-TLV”字段的位置。例如接口交换能力描述项(Interface Switching Capability Descriptor sub-TLV)就是一个可以替换到“Any Sub-TLV”字段的其他TLV字段,接口交换能力描述项可以用于携带不同接口的交换能力的相关信息。
针对邻接网络设备为第一网络中网络设备的情况,以链路T5→R4的链路信息为例, PCEP-LS消息携带该链路信息的报文格式可以参见图6,其中,本地节点描述项和远端节点描述项中的报文格式可以参见图4所示,这里不再赘述。
在图6中,本地节点描述项可以携带T5的节点信息,远端节点描述项可以携带T3的节点信息,链路标识字段的本地标识字段中可以携带T5用于建立T5→R4的接口的相关信息,链路标识字段的远端标识字段中可以携带R4用于建立T5→R4的接口的相关信息。由于T5→R4这条链路的一端连接的是第一网络(IP网络)中的网络设备(R4),故还可以通过IP邻居地址字段(IPv4neighbor address sub-TLV)来携带R4的IPv4地址,需要注意的是,根据第一网络也就是IP网络的类型,上述R4的IPv4地址也可以替换为R4的IPv6地址,并通过另一个IP邻居地址字段(IPv6neighbor address sub-TLV)来携带,这个IP邻居地址字段的长度(Length)可以为16ytes。
接下来将站在网络设备的角度,对如何通过PCEP-LS消息向控制器上传网络拓扑信息进行说明。本发明实施例中提供了至少两种利用PCEP-LS消息携带网络拓扑信息的方式。接下来将结合具体场景对其中主要的两种携带网络拓扑信息的方式进行说明,在具体场景中,第一网络为IP网络,第二网络为光网络。由于在上传网络拓扑信息的过程中,本发明并不限定IP网络中网络设备如何通过PCEP-LS消息向控制器发送IP网络的网络拓扑信息,故以下主要针对第二网络中网络设备进行说明。
在第一种方式中,第二网络中网络设备可以均与控制器之间部署有PCEP,每一个网络设备都可以向控制器发送自身的子拓扑信息,也就是第二网络的网络拓扑信息的一部分。而控制器可以将接收到的各个子拓扑信息进行组合,从而形成第二网络的网络拓扑信息。一般当第二网络中各个网络设备之间未部署用于扩散网络拓扑信息的协议(例如传统的IGP协议)时实施第一种方式。因为在这种情况下,第二网络中各个网络设备将不会单独获知整个第二网络的网络拓扑信息,而只能根据邻接关系确定出自身的子拓扑信息。
一个网络设备的子拓扑信息可以包括这个网络设备的节点信息以及这个网络设备与邻接网络设备之间链路的链路信息。以作为第二网络中的任意一个网络设备的目标网络设备为例,目标网络设备的子拓扑信息包括目标网络设备的节点信息以及目标网络设备与邻接网络设备之间链路的链路信息。那么当目标网络设备实施向控制器发送携带第二网络的网络拓扑信息的PCEP-LS消息时,PCEP-LS消息中携带的将是目标网络设备的子拓扑信息。相应的,第二网络中与控制器部署有PCEP的其他网络设备也可以通过PCEP-LS消息向控制器发送自身的子拓扑信息。以图1所示场景,若目标网络设备为T2,T2在第二网络中的子拓扑信息可以包括T2的节点信息、T2→R1的链路信息、T2→T1的链路信息以及T2→T3的链路信息。
在目标网络设备向控制器发送目标网络设备的子拓扑信息时,对于子拓扑信息中的节点信息,可以采用如图4中所示的本地节点描述项的报文格式携带;在目标网络设备与邻接网络设备之间链路为多条的情况下,任意一条链路的链路信息均可以采用图5或图6所示的链路描述项的报文格式携带。携带多条链路信息的多个链路描述项可以设置在一个PCEP-LS消息中,也可以设置在多个PCEP-LS消息中(例如链路信息数量过多或者数据量过大时)。
在第二种方式中,第二网络中各个网络设备之间部署了用于扩散网络拓扑信息的协议,这种情况下可以实现在第二网络中网络设备之间扩散第二网络的网络拓扑信息,从而可以使得目标网络设备在扩散过程中已经收集了第二网络的网络拓扑信息,那么当目标网 络设备实施向控制器发送携带第二网络的网络拓扑信息的PCEP-LS消息时,目标网络设备可以直接将第二网络的网络拓扑信息发送给控制器。也就是说,在第二种方式中,控制器可以只与目标网络设备之间部署PCEP即可实现获取第二网络的网络拓扑信息。以图1所示场景,第二网络的网络拓扑信息可以包括T1至T5的节点信息,以及T1至T5与邻接网络设备之间链路的链路信息。
在目标网络设备向控制器发送第二网络的网络拓扑信息时,对于网络拓扑信息中任意一个节点的节点信息,均可以采用如图4中所示的本地节点描述项的报文格式携带;任意一条链路的链路信息均可以采用图5或图6所示的链路描述项的报文格式携带。携带多个节点信息的多个本地节点描述项可以设置在一个PCEP-LS消息中,也可以设置在多个PCEP-LS消息中。携带多条链路信息的多个链路描述项可以设置在一个PCEP-LS消息中,也可以设置在多个PCEP-LS消息中。
由此,可以根据不同的需求,或者根据不同的应用场景选取所需的方式通过PCEP-LS消息向控制器上传网络拓扑信息,提高了上传网络拓扑信息的灵活性和使用范围。
在控制器向第一网络设备发送路径计算结果之后,可以由第一网络设备开始建立数据传输路径。
需要注意的是,在本发明实施例中,控制器可以确定出的路径计算结果中包括数据传输路径在第二网络中传输路径部分的计算结果,也就是说,相对于传统方式,数据传输路径在第二网络中的传输路径部分已经明确在路径计算结果中,那么在网络设备根据路径计算结果建立数据传输路径的过程中,第二网络中的网络设备将不需要再与其他控制器请求获取数据传输路径在第二网络中传输路径部分的计算结果,可以直接根据路径计算结果中的信息进行建路。
在传统方式的建立数据传输路径的过程中,第二网络中一个特定位置的网络设备在接收到路径计算结果时,该路径计算结果中数据传输路径在第二网络中的传输路径部分处于加密状态,无法直接辨识,需要这个特定位置的网络设备向其他控制器(例如第二网络的控制器)请求解密,在收到解密结果后,才能继续进行数据传输路径在第二网络中的建立过程。
这个特定位置的网络设备位于第一网络和第二网络相邻的位置,根据数据传输路径的传输顺序,这个特定位置的网络设备在数据传输路径上的前一个网络设备为第一网络中的网络设备.以图1为例,在数据传输路径的传输顺序上,T2在数据传输路径上的前一个网络设备为第一网络中的网络设备R1,故这个特定位置的网络设备可以为T2。
若目标网络设备为这个特定位置的网络设备,在本发明实施例中,当目标网络设备从前一个网络设备获取数据传输路径在第二网络中传输路径部分的计算结果时,这部分计算结果是可以直接识别、未加密的。故目标网络设备可以直接根据数据传输路径在第二网络中传输路径部分的计算结果继续建立数据传输路径。从而免去了传统做法中与光控制器之间的额外信息交互,达到了提高数据传输路径建立效率的效果。以图1为例,T2从R1接收到数据传输路径在第二网络中传输路径部分的计算结果时,T2可以直接根据这部分计算结果明确需要建立从T2到T3的路径。
在第一网络为IP网络,第二网络为光网络的场景下,若数据传输路径成功建立,还可以在建立过程中生成数据传输链路在IP网络下处于第一网络设备和第二网络设备之间的虚拟链路(也就是VTE链路)。根据虚拟链路,控制器可以将数据传输路径视为一条在IP 网络下的一条IP链路,可以通过目的IP和源IP来标识。第一网络设备可以将建立的虚拟链路的相关信息上报给控制器,在本发明实施例中,可以通过-PCEP-LS消息来携带虚拟链路的相关信息。
可选的,参照图7所示,控制器接收第一网络设备发送的PCEP-LS消息,PCEP-LS消息中的通用路由字段中通过数值标识第一网络,在链路对象中包括链路描述项,链路描述项包括本地节点描述项、远端节点描述项、链路标识字段和不透明链路属性字段。本地节点描述项用于携带VTE链路的本地节点信息也就是第一网络设备的标识。远端节点描述项用于携带VTE链路的远端节点信息也就是第二网络设备的标识。本地节点描述项和远端节点描述项的报文结构前文中已经说明,这里不再赘述。
链路描述项的链路标识字段(Link Local/Remote ID sub-TLV)用于携带VTE链路的虚拟本地标识(VLink Local Identifier)和虚拟远端标识(VLink Remote Identifier),链路描述项的不透明链路属性字段(Opaque Link Attribute Sub-TLV)用于携带VTE链路的本地标识和远端标识。
由于第一网络设备和第二网络设备都是IP网络下的网络设备,故为了进一步的标识VTE链路,还可以将第一网络设备和第二网络设备的IP地址一同携带在PCEP-LS消息中,可选的,参照图7所示,链路描述项还包括本地IP地址字段和远端IP地址字段,链路描述项的本地IP地址字段用于携带VTE链路在第一网络设备上的本地接口信息(例如第一网络设备的IP地址),链路描述项的远端IP地址字段用于携带VTE链路在第二网络设备上的远端接口信息(例如第二网络设备的IP地址)。需要注意的是,根据第一网络也就是IP网络的类型,上述的第一网络设备和第二网络设备的IPv4地址也可以替换为第一网络设备和第二网络设备的IPv6地址。
由此,在本发明实施例中,第一网络设备还可以通过PCEP-LS消息将建立的VTE链路的信息上报给控制器,使得控制器可以快速的获悉VTE链路已经建立的相关信息,便于控制器能够准确的对混合网络进行调控和管理。
本发明的设备实施例
图8为本发明实施例提供的一种路径确定装置的装置结构图,路径确定装置800应用于包含同一控制器实现控制功能的混合网络,混合网络包括第一网络以及第二网络,路径确定装置800包括获取单元801、计算单元802和发送单元803:
获取单元801,用于获取路径确定需求,路径确定需求用于请求确定一条起点为第一网络设备、终点为第二网络设备,且由第一网络的传输路径部分和第二网络的传输路径部分构成的数据传输路径,路径确定需求包括第一网络设备的标识以及第二网络设备的标识,第一网络设备以及第二网络设备均为第一网络的网络设备。
获取单元801还用于根据控制通道协议,从第一网络中的网络设备获取第一网络的网络拓扑信息,并从第二网络中的网络设备获取第二网络的网络拓扑信息。
计算单元802,用于根据第一网络设备的标识、第二网络设备的标识、第一网络的网络拓扑信息和第二网络的网络拓扑信息计算得到路径计算结果,路径计算结果包括数据传输路径在第一网络中传输路径部分的计算结果以及数据传输路径在第二网络中传输路径部分的计算结果。
发送单元803,用于向第一网络设备发送路径计算结果。
可选的,获取单元还用于获取针对虚拟路径的规划数据,规划数据包括作为虚拟路径起始端的第一网络设备的标识、作为虚拟路径结束端的第二网络设备的标识、虚拟路径的标识、虚拟路径在第一网络中的路径信息以及虚拟路径在第二网络中的路径信息;则控制器获取的路径确定需求中还包括虚拟路径的标识;
计算单元还用于根据第一网络设备的标识、第二网络设备的标识和虚拟路径的标识匹配到规划数据;
根据规划数据、第一网络的网络拓扑信息和第二网络的网络拓扑信息计算针对虚拟链路的数据传输路径,确定出路径计算结果。
图8为从控制器侧描述本发明技术方案的装置实施例,图8所对应实施例中特征的说明可以参见图2所对应实施例的相关说明,这里不再一一赘述。
可选的,发送单元具体用于向第一网络设备发送携带有路径计算结果的PCEP消息,PCEP消息包括路径信息字段,路径信息字段用于携带数据传输路径上依次经过的网络设备的接口信息,接口信息包括网络设备的出接口信息或入接口信息。
可选的,针对数据传输路径中的一条链路,PCEP消息通过路径信息字段至少携带这条链路在网络设备上出接口和入接口中至少一个接口的接口信息。
可选的,PCEP消息包括PCEP-Reply消息或PCEP-Update消息。
上述有关PCEP消息以及PCEP消息中相关报文格式的说明可以参见图3所对应实施例的相关说明,这里不再一一赘述。
可选的,控制通道协议为PCEP,获取单元具体用于根据第二网络中的网络设备发送的PCEP-LS消息,获取第二网络的网络拓扑信息,PCEP-LS消息的通用路由字段中通过数值标识第二网络。
可选的,PCEP-LS消息还包括用于标识第二网络中网络设备的节点对象,节点对象包括第二网络中网络设备的描述项,所述第二网络中网络设备的描述项用于携带所述第二网络中网络设备的标识和属性。
可选的,PCEP-LS消息还包括用于标识第二网络中网络设备的链路对象;
链路对象中包括链路描述项,链路描述项用于携带第二网络中网络设备与邻接网络设备之间链路的链路信息;
链路描述项中包括第二网络中网络设备的描述项、邻接网络设备的描述项和链路标识字段,链路标识字段用于携带在第二网络中网络设备与邻接网络设备之间的链路上,第二网络中网络设备的接口信息和邻接网络设备的接口信息。
可选的,第一网络为互联网协议IP网络,在第二网络中的网络设备发送的PCEP-LS消息的链路对象中,链路描述项还包括IP邻居地址字段,用于携带与第二网络中网络设备邻接的第一网络中网络设备的IP地址。
上述有关PCEP-LS消息以及PCEP-LS消息中相关报文格式的说明可以参见图4、图5和图6所对应实施例的相关说明,这里不再一一赘述。
可选的,第一网络为IP网络,获取单元还用于接收第一网络设备发送的PCEP-LS消息,PCEP-LS消息中的通用路由字段中通过数值标识第一网络,在链路对象中包括链路描述项,链路描述项包括本地节点描述项、远端节点描述项、链路标识字段和不透明链路属性字段;链路描述项的本地节点描述项和远端节点描述项用于携带VTE链路的本地节点信息和远端节点信息;链路描述项的链路标识字段用于携带VTE链路的虚拟本地标识和虚拟 远端标识,链路描述项的不透明链路属性字段用于携带VTE链路的本地标识和远端标识,VTE链路为数据传输链路在IP网络下处于第一网络设备和第二网络设备之间的虚拟链路。
可选的,链路描述项还包括本地IP地址字段和远端IP地址字段,链路描述项的本地IP地址字段用于携带VTE链路在第一网络设备上的本地接口信息,链路描述项的远端IP地址字段用于携带VTE链路在第二网络设备上的远端接口信息。
上述有关通过PCEP-LS消息携带VTE链路相关信息以及PCEP-LS消息中相关报文格式的说明可以参见图7所对应实施例的相关说明,这里不再一一赘述。
可见,在混合网络中,控制器可以通过相同的通道控制协议分别获取属于不同网络类型的第一网络和第二网络的网络拓扑信息,在控制器获取针对数据传输路径的路径确定需求时,由于控制器已经具有第一网络和第二网络的网络拓扑信息,在计算数据传输路径时,控制器不需要与其他设备进行额外的信息交互即可确定出包括第一网络和第二网络中传输路径部分的路径计算结果,并向第一网络设备发送路径计算结果,从而提高了对数据传输路径的规划效率。
图9为本发明实施例提供的一种路径确定装置的装置结构图,路径确定装置900应用于包含同一控制器实现控制功能的混合网络,混合网络包括第一网络以及第二网络,第一网络设备以及第二网络设备均为第一网络的网络设备,路径确定装置900包括获取单元901和建立单元902:
获取单元901,用于获取控制器发送的路径计算结果,路径计算结果为控制器根据第一网络设备的标识、第二网络设备的标识、第一网络的网络拓扑信息和第二网络的网络拓扑信息计算得到的;路径计算结果包括数据传输路径在第一网络中传输路径部分的计算结果以及数据传输路径在第二网络中传输路径部分的计算结果;数据传输路径为一条起点为第一网络设备、终点为第二网络设备,且由第一网络的传输路径部分和第二网络的传输路径部分构成的数据传输路径。
建立单元902,用于根据路径计算结果建立数据传输路径。
可选的,获取单元具体用于获取控制器发送的PCEP消息,PCEP消息携带有路径计算结果,PCEP消息包括根据数据传输路径的传输顺序依次排布的多个路径信息字段,路径信息字段用于携带数据传输路径中链路在网络设备上的接口信息,接口信息包括数据传输路径中链路在网络设备上的出接口信息或入接口信息。
可选的,针对数据传输路径中的一条链路,PCEP消息通过路径信息字段至少携带这条链路在网络设备上出接口和入接口中至少一个接口的接口信息。
可选的,PCEP消息包括PCEP-Reply消息或PCEP-Update消息。
图9为从网络设备侧描述本发明技术方案的装置实施例,图9所对应实施例中特征的说明可以参见图2所对应实施例的相关说明,这里不再一一赘述。
图10为本发明实施例提供的一种路径确定装置的装置结构图,路径确定装置1000应用于包含同一控制器实现控制功能的混合网络,混合网络包括第一网络以及第二网络,第二网络为光网络,路径确定装置1000包括发送单元1001:
发送单元1001,用于根据控制通道协议,向控制器发送第二网络的网络拓扑信息,控制通道协议与第一网络中网络设备向控制器发送第一网络的网络拓扑信息所根据的控制 通道协议相同。
可选的,控制通道协议为PCEP,发送单元具体用于向控制器发送携带第二网络的网络拓扑信息的PCEP-LS消息,PCEP-LS消息的通用路由字段中通过数值标识第二网络。
可选的,PCEP-LS消息还包括用于标识所述第二网络中网络设备的节点对象,所述节点对象包括所述第二网络中网络设备的描述项,所述第二网络中网络设备的描述项用于携带所述第二网络中网络设备的标识和属性。
可选的,PCEP-LS消息还包括用于标识第二网络中网络设备的链路对象,链路对象中包括链路描述项,链路描述项用于携带第二网络中网络设备与邻接网络设备之间链路的链路信息,链路描述项中包括第二网络中网络设备的描述项、邻接网络设备的描述项和链路标识字段,链路标识字段用于携带在第二网络中网络设备与邻接网络设备之间的链路上,第二网络中网络设备的接口信息和邻接网络设备的接口信息。
可选的,目标网络设备为数据传输路径中的一个网络设备,根据数据传输路径的传输顺序,目标网络设备在数据传输路径上的前一个网络设备为第一网络中的网络设备,数据传输路径为一条起点为第一网络设备、终点为第二网络设备,且由第一网络的传输路径部分和第二网络的传输路径部分构成的数据传输路径;第一网络设备以及第二网络设备均为第一网络的网络设备;装置还包括接收单元:
接收单元,用于从前一个网络设备获取数据传输路径在第二网络中传输路径部分的计算结果;
建立单元还用于根据数据传输路径在第二网络中传输路径部分的计算结果建立数据传输路径。
图10为从网络设备侧描述本发明技术方案中向控制器发送网络拓扑信息的装置实施例,图10所对应实施例中特征的说明可以参见图4、图5和图6所对应实施例的相关说明,这里不再一一赘述。
接下来从系统的角度进一步说明本发明的技术方案。
图11为本发明实施例提供一种路径确定系统的系统结构图,路径确定系统1100应用于包含同一控制器实现控制功能的混合网络,混合网络包括第一网络以及第二网络,路径确定系统1100包括控制器1101、第一网络设备1102:
控制器1101获取路径确定需求,路径确定需求用于请求确定一条起点为第一网络设备、终点为第二网络设备,且由第一网络的传输路径部分和第二网络的传输路径部分构成的数据传输路径,路径确定需求包括第一网络设备的标识以及第二网络设备的标识,第一网络设备以及第二网络设备均为第一网络的网络设备;根据控制通道协议,从第一网络中的网络设备获取第一网络的网络拓扑信息,并从第二网络中的网络设备获取第二网络的网络拓扑信息;根据第一网络设备的标识、第二网络设备的标识、第一网络的网络拓扑信息和第二网络的网络拓扑信息计算得到路径计算结果,路径计算结果包括数据传输路径在第一网络中传输路径部分的计算结果以及数据传输路径在第二网络中传输路径部分的计算结果;向第一网络设备发送路径计算结果。
第一网络设备1102获取控制器发送的路径计算结果;根据路径计算结果建立数据传输路径。
图12为本发明实施例提供一种路径确定系统的系统结构图,路径确定系统1200应用于包含同一控制器1201实现控制功能的混合网络,混合网络包括第一网络以及第二网络,第二网络为光网络,目标网络设备1202为第二网络中的网络设备,路径确定系统1200包括控制器1201和目标网络设备1202:
控制器1201用于获取路径确定需求,路径确定需求用于请求确定一条起点为第一网络设备、终点为第二网络设备,且由第一网络的传输路径部分和第二网络的传输路径部分构成的数据传输路径,路径确定需求包括第一网络设备的标识以及第二网络设备的标识,第一网络设备以及第二网络设备均为第一网络的网络设备;根据控制通道协议,从第一网络中的网络设备获取第一网络的网络拓扑信息,并从第二网络中的网络设备获取第二网络的网络拓扑信息;根据第一网络设备的标识、第二网络设备的标识、第一网络的网络拓扑信息和第二网络的网络拓扑信息计算得到路径计算结果,路径计算结果包括数据传输路径在第一网络中传输路径部分的计算结果以及数据传输路径在第二网络中传输路径部分的计算结果;向第一网络设备发送路径计算结果。
根据控制通道协议,目标网络设备1202用于向控制器发送第二网络的网络拓扑信息,控制通道协议与第一网络中网络设备向控制器发送第一网络的网络拓扑信息所根据的控制通道协议相同。
图13为本发明实施例提供的一种控制器的硬件结构示意图,控制器1300为混合网络中实现控制功能的同一控制器,混合网络包括第一网络以及第二网络,控制器1300包括存储器1301、接收器1302和发送器1303,以及分别与存储器1301、接收器1302和发送器1303连接的处理器1304,存储器1301用于存储一组程序指令,处理器1304用于调用存储器1301存储的程序指令执行如下操作:
触发接收器1302获取路径确定需求,路径确定需求用于请求确定一条起点为第一网络设备、终点为第二网络设备,且由第一网络的传输路径部分和第二网络的传输路径部分构成的数据传输路径,路径确定需求包括第一网络设备的标识以及第二网络设备的标识,第一网络设备以及第二网络设备均为第一网络的网络设备;
触发接收器1302根据控制通道协议,从第一网络中的网络设备获取第一网络的网络拓扑信息,并从第二网络中的网络设备获取第二网络的网络拓扑信息;
根据第一网络设备的标识、第二网络设备的标识、第一网络的网络拓扑信息和第二网络的网络拓扑信息计算得到路径计算结果,路径计算结果包括数据传输路径在第一网络中传输路径部分的计算结果以及数据传输路径在第二网络中传输路径部分的计算结果;
触发发送器1303向第一网络设备发送路径计算结果。
可选地,处理器1304可以为中央处理器(Central Processing Unit,CPU),存储器1301可以为随机存取存储器(Random Access Memory,RAM)类型的内部存储器,接收器1302和发送器1303可以包含普通物理接口,物理接口可以为以太(Ethernet)接口或异步传输模式(Asynchronous Transfer Mode,ATM)接口。处理器1304、发送器1303、接收器1302和存储器1301可以集成为一个或多个独立的电路或硬件,如:专用集成电路(Application Specific Integrated Circuit,ASIC)。
图14为本发明实施例提供的一种第一网络设备的硬件结构示意图,应用于包含同一 控制器实现控制功能的混合网络,混合网络包括第一网络以及第二网络,第一网络设备1400以及第二网络设备均为第一网络的网络设备,第一网络设备1400包括存储器1401和接收器1402,以及分别与存储器1401和接收器1402连接的处理器1403,存储器1401用于存储一组程序指令,处理器1403用于调用存储器1401存储的程序指令执行如下操作:
触发接收器1402获取控制器发送的路径计算结果,路径计算结果为控制器根据第一网络设备的标识、第二网络设备的标识、第一网络的网络拓扑信息和第二网络的网络拓扑信息计算得到的;路径计算结果包括数据传输路径在第一网络中传输路径部分的计算结果以及数据传输路径在第二网络中传输路径部分的计算结果;数据传输路径为一条起点为第一网络设备、终点为第二网络设备,且由第一网络的传输路径部分和第二网络的传输路径部分构成的数据传输路径;
根据路径计算结果建立数据传输路径。
可选地,处理器1403可以为CPU,存储器1401可以为RAM类型的内部存储器,接收器1402可以包含普通物理接口,物理接口可以为Ethernet接口或ATM接口。处理器1403、接收器1402和存储器1401可以集成为一个或多个独立的电路或硬件,如:ASIC。
图15为本发明实施例提供的一种目标网络设备的硬件结构示意图,应用于包含同一控制器实现控制功能的混合网络,混合网络包括第一网络以及第二网络,第二网络为光网络,目标网络设备1500为第二网络中的网络设备,目标网络设备1500包括存储器1501和发送器1502,以及分别与存储器1501和发送器1502连接的处理器1503,存储器1501用于存储一组程序指令,处理器1503用于调用存储器1501存储的程序指令执行如下操作:
触发发送器1502根据控制通道协议,向控制器发送第二网络的网络拓扑信息,控制通道协议与第一网络中网络设备向控制器发送第一网络的网络拓扑信息所根据的控制通道协议相同。
处理器1503可以为CPU,存储器1501可以为RAM类型的内部存储器,发送器1502可以包含普通物理接口,物理接口可以为Ethernet接口或ATM接口。处理器1503、发送器1502和存储器1501可以集成为一个或多个独立的电路或硬件,如:ASIC。
本发明实施例中提到的第一网络、第一网络设备的“第一”只是用来做名字标识,并不代表顺序上的第一。该规则同样适用于“第二”。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质可以是下述介质中的至少一种:只读存储器(read-only memory,ROM)、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于设备及系统实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的设备及系统实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领 域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (27)

  1. 一种路径确定方法,其特征在于,应用于包含同一控制器实现控制功能的混合网络,所述混合网络包括第一网络以及第二网络,所述方法包括:
    所述控制器获取路径确定需求,所述路径确定需求用于请求确定一条起点为第一网络设备、终点为第二网络设备,且由所述第一网络的传输路径部分和所述第二网络的传输路径部分构成的数据传输路径,所述路径确定需求包括所述第一网络设备的标识以及所述第二网络设备的标识,所述第一网络设备以及所述第二网络设备均为所述第一网络的网络设备;
    根据控制通道协议,所述控制器从所述第一网络中的网络设备获取所述第一网络的网络拓扑信息,并从所述第二网络中的网络设备获取所述第二网络的网络拓扑信息;
    所述控制器根据所述第一网络设备的标识、所述第二网络设备的标识、第一网络的网络拓扑信息和第二网络的网络拓扑信息计算得到路径计算结果,所述路径计算结果包括所述数据传输路径在所述第一网络中传输路径部分的计算结果以及所述数据传输路径在所述第二网络中传输路径部分的计算结果;
    所述控制器向所述第一网络设备发送所述路径计算结果。
  2. 根据权利要求1所述的方法,其特征在于,所述控制器向所述第一网络设备发送所述路径计算结果,包括:
    所述控制器向所述第一网络设备发送携带有所述路径计算结果的路径计算通信协议PCEP消息,所述PCEP消息包括路径信息字段,所述路径信息字段用于携带所述数据传输路径上依次经过的网络设备的接口信息,所述接口信息包括所述网络设备的出接口信息或入接口信息,针对所述数据传输路径中的一条链路,所述PCEP消息通过路径信息字段携带这条链路在网络设备上出接口和入接口中至少一个接口的接口信息。
  3. 根据权利要求2所述的方法,其特征在于,所述PCEP消息包括路径计算通信协议回复PCEP-Reply消息或路径计算通信协议更新PCEP-Update消息。
  4. 根据权利要求1至3任意一项所述的方法,其特征在于,所述控制通道协议为路径计算通信协议PCEP,所述从所述第二网络中的网络设备获取所述第二网络的网络拓扑信息,包括:
    所述控制器根据所述第二网络中的网络设备发送的路径计算通信协议链路状态PCEP-LS消息,获取所述第二网络的网络拓扑信息,所述PCEP-LS消息的通用路由字段中通过数值标识所述第二网络。
  5. 根据权利要求4所述的方法,其特征在于,所述PCEP-LS消息还包括用于标识所述第二网络中网络设备的节点对象,所述节点对象包括所述第二网络中网络设备的描述项,所述第二网络中网络设备的描述项用于携带所述第二网络中网络设备的标识和属性。
  6. 根据权利要求4所述的方法,其特征在于,所述PCEP-LS消息还包括用于标识所述第二网络中网络设备的链路对象;
    所述链路对象中包括链路描述项,所述链路描述项用于携带所述第二网络中网络设备与邻接网络设备之间链路的链路信息;
    所述链路描述项中包括所述第二网络中网络设备的描述项、所述邻接网络设备的描述项和链路标识字段,所述链路标识字段用于携带在所述第二网络中网络设备与邻接网络设备之间的链路上,所述第二网络中网络设备的接口信息和所述邻接网络设备的接口信息。
  7. 一种路径确定装置,其特征在于,应用于包含同一控制器实现控制功能的混合网络,所述混合网络包括第一网络以及第二网络,所述装置包括获取单元、计算单元和发送单元:
    所述获取单元,用于获取路径确定需求,所述路径确定需求用于请求确定一条起点为第一网络设备、终点为第二网络设备,且由所述第一网络的传输路径部分和所述第二网络的传输路径部分构成的数据传输路径,所述路径确定需求包括所述第一网络设备的标识以及所述第二网络设备的标识,所述第一网络设备以及所述第二网络设备均为所述第一网络的网络设备;
    所述获取单元还用于根据控制通道协议,从所述第一网络中的网络设备获取所述第一网络的网络拓扑信息,并从所述第二网络中的网络设备获取所述第二网络的网络拓扑信息;
    所述计算单元,用于根据所述第一网络设备的标识、所述第二网络设备的标识、第一网络的网络拓扑信息和第二网络的网络拓扑信息计算得到路径计算结果,所述路径计算结果包括所述数据传输路径在所述第一网络中传输路径部分的计算结果以及所述数据传输路径在所述第二网络中传输路径部分的计算结果;
    所述发送单元,用于向所述第一网络设备发送所述路径计算结果。
  8. 根据权利要求7所述的装置,其特征在于,所述发送单元具体用于向所述第一网络设备发送携带有所述路径计算结果的路径计算通信协议PCEP消息,所述PCEP消息包括路径信息字段,所述路径信息字段用于携带所述数据传输路径上依次经过的网络设备的接口信息,所述接口信息包括所述网络设备的出接口信息或入接口信息,针对所述数据传输路径中的一条链路,所述PCEP消息通过路径信息字段携带这条链路在网络设备上出接口和入接口中至少一个接口的接口信息。
  9. 根据权利要求7或8所述的装置,其特征在于,所述控制通道协议为路径计算通信协议PCEP,所述获取单元具体用于根据所述第二网络中的网络设备发送的路径计算通信协议链路状态PCEP-LS消息,获取所述第二网络的网络拓扑信息,所述PCEP-LS消息的通用路由字段中通过数值标识所述第二网络。
  10. 根据权利要求9所述的装置,其特征在于,所述PCEP-LS消息还包括用于标识所述第二网络中网络设备的节点对象,所述节点对象包括所述第二网络中网络设备的描述项,所述第二网络中网络设备的描述项用于携带所述第二网络中网络设备的标识和属性。
  11. 根据权利要求9所述的装置,其特征在于,所述PCEP-LS消息还包括用于标识所述第二网络中网络设备的链路对象;
    所述链路对象中包括链路描述项,所述链路描述项用于携带所述第二网络中网络设备与邻接网络设备之间链路的链路信息;
    所述链路描述项中包括所述第二网络中网络设备的描述项、所述邻接网络设备的描述项和链路标识字段,所述链路标识字段用于携带在所述第二网络中网络设备与邻接网络设备之间的链路上,所述第二网络中网络设备的接口信息和所述邻接网络设备的接口信息。
  12. 一种路径确定方法,其特征在于,应用于包含同一控制器实现控制功能的混合网络,所述混合网络包括第一网络以及第二网络,第一网络设备以及第二网络设备均为所述第一网络的网络设备,所述方法包括:
    所述第一网络设备获取所述控制器发送的路径计算结果,所述路径计算结果为所述控 制器根据所述第一网络设备的标识、所述第二网络设备的标识、第一网络的网络拓扑信息和第二网络的网络拓扑信息计算得到的;所述路径计算结果包括数据传输路径在所述第一网络中传输路径部分的计算结果以及所述数据传输路径在所述第二网络中传输路径部分的计算结果;所述数据传输路径为一条起点为第一网络设备、终点为第二网络设备,且由所述第一网络的传输路径部分和所述第二网络的传输路径部分构成的数据传输路径;
    所述第一网络设备根据所述路径计算结果建立所述数据传输路径。
  13. 根据权利要求12所述的方法,其特征在于,所述第一网络设备获取所述控制器发送的路径计算结果,包括:
    所述第一网络设备获取所述控制器发送的路径计算通信协议PCEP消息,所述PCEP消息携带有所述路径计算结果,所述PCEP消息包括根据所述数据传输路径的传输顺序依次排布的多个路径信息字段,所述路径信息字段用于携带所述数据传输路径中链路在网络设备上的接口信息,所述接口信息包括所述数据传输路径中链路在网络设备上的出接口信息或入接口信息,针对所述数据传输路径中的一条链路,所述PCEP消息通过路径信息字段携带这条链路在网络设备上出接口和入接口中至少一个接口的接口信息。
  14. 一种路径确定装置,其特征在于,应用于包含同一控制器实现控制功能的混合网络,所述混合网络包括第一网络以及第二网络,第一网络设备以及第二网络设备均为所述第一网络的网络设备,所述装置包括获取单元和建立单元:
    所述获取单元,用于获取所述控制器发送的路径计算结果,所述路径计算结果为所述控制器根据所述第一网络设备的标识、所述第二网络设备的标识、第一网络的网络拓扑信息和第二网络的网络拓扑信息计算得到的;所述路径计算结果包括数据传输路径在所述第一网络中传输路径部分的计算结果以及所述数据传输路径在所述第二网络中传输路径部分的计算结果;所述数据传输路径为一条起点为第一网络设备、终点为第二网络设备,且由所述第一网络的传输路径部分和所述第二网络的传输路径部分构成的数据传输路径;
    所述建立单元,用于根据所述路径计算结果建立所述数据传输路径。
  15. 根据权利要求14所述的装置,其特征在于,所述获取单元具体用于获取所述控制器发送的路径计算通信协议PCEP消息,所述PCEP消息携带有所述路径计算结果,所述PCEP消息包括根据所述数据传输路径的传输顺序依次排布的多个路径信息字段,所述路径信息字段用于携带所述数据传输路径中链路在网络设备上的接口信息,所述接口信息包括所述数据传输路径中链路在网络设备上的出接口信息或入接口信息,针对所述数据传输路径中的一条链路,所述PCEP消息通过路径信息字段携带这条链路在网络设备上出接口和入接口中至少一个接口的接口信息。
  16. 一种路径确定方法,其特征在于,应用于包含同一控制器实现控制功能的混合网络,所述混合网络包括第一网络以及第二网络,所述第二网络为光网络,目标网络设备为所述第二网络中的网络设备,所述方法包括:
    根据控制通道协议,所述目标网络设备向所述控制器发送所述第二网络的网络拓扑信息,所述控制通道协议与所述第一网络中网络设备向所述控制器发送所述第一网络的网络拓扑信息所根据的控制通道协议相同。
  17. 根据权利要求16所述的方法,其特征在于,所述控制通道协议为路径计算通信协议PCEP,所述目标网络设备向所述控制器发送所述第二网络的网络拓扑信息,包括:
    所述目标网络设备向所述控制器发送携带所述第二网络的网络拓扑信息的路径计算 通信协议链路状态PCEP-LS消息,所述PCEP-LS消息的通用路由字段中通过数值标识所述第二网络。
  18. 根据权利要求17所述的方法,其特征在于,所述PCEP-LS消息还包括用于标识所述第二网络中网络设备的节点对象,所述节点对象包括所述第二网络中网络设备的描述项,所述第二网络中网络设备的描述项用于携带所述第二网络中网络设备的标识和属性。
  19. 根据权利要求17所述的方法,其特征在于,所述PCEP-LS消息还包括用于标识所述第二网络中网络设备的链路对象,所述链路对象中包括链路描述项,所述链路描述项用于携带所述第二网络中网络设备与邻接网络设备之间链路的链路信息,所述链路描述项中包括所述第二网络中网络设备的描述项、所述邻接网络设备的描述项和链路标识字段,所述链路标识字段用于携带在所述第二网络中网络设备与邻接网络设备之间的链路上,所述第二网络中网络设备的接口信息和所述邻接网络设备的接口信息。
  20. 根据权利要求16所述的方法,其特征在于,所述目标网络设备为数据传输路径中的一个网络设备,根据所述数据传输路径的传输顺序,所述目标网络设备在所述数据传输路径上的前一个网络设备为所述第一网络中的网络设备,所述数据传输路径为一条起点为第一网络设备、终点为第二网络设备,且由所述第一网络的传输路径部分和所述第二网络的传输路径部分构成的数据传输路径;第一网络设备以及第二网络设备均为第一网络的网络设备;所述方法还包括:
    所述目标网络设备从所述前一个网络设备获取所述数据传输路径在所述第二网络中传输路径部分的计算结果;
    所述目标网络设备根据所述数据传输路径在所述第二网络中传输路径部分的计算结果建立所述数据传输路径。
  21. 一种路径确定装置,其特征在于,应用于包含同一控制器实现控制功能的混合网络,所述混合网络包括第一网络以及第二网络,所述第二网络为光网络,所述装置包括发送单元:
    所述发送单元,用于根据控制通道协议,向所述控制器发送所述第二网络的网络拓扑信息,所述控制通道协议与所述第一网络中网络设备向所述控制器发送所述第一网络的网络拓扑信息所根据的控制通道协议相同。
  22. 根据权利要求21所述的装置,其特征在于,所述控制通道协议为路径计算通信协议PCEP,所述发送单元具体用于向所述控制器发送携带所述第二网络的网络拓扑信息的路径计算通信协议链路状态PCEP-LS消息,所述PCEP-LS消息的通用路由字段中通过数值标识所述第二网络。
  23. 根据权利要求22所述的装置,其特征在于,所述PCEP-LS消息还包括用于标识所述第二网络中网络设备的节点对象,所述节点对象包括所述第二网络中网络设备的描述项,所述第二网络中网络设备的描述项用于携带所述第二网络中网络设备的标识和属性。
  24. 根据权利要求22所述的装置,其特征在于,所述PCEP-LS消息还包括用于标识所述第二网络中网络设备的链路对象,所述链路对象中包括链路描述项,所述链路描述项用于携带所述第二网络中网络设备与邻接网络设备之间链路的链路信息,所述链路描述项中包括所述第二网络中网络设备的描述项、所述邻接网络设备的描述项和链路标识字段,所述链路标识字段用于携带在所述第二网络中网络设备与邻接网络设备之间的链路上,所述第二网络中网络设备的接口信息和所述邻接网络设备的接口信息。
  25. 根据权利要求21所述的装置,其特征在于,目标网络设备为数据传输路径中的一个网络设备,根据所述数据传输路径的传输顺序,所述目标网络设备在所述数据传输路径上的前一个网络设备为所述第一网络中的网络设备,所述数据传输路径为一条起点为第一网络设备、终点为第二网络设备,且由所述第一网络的传输路径部分和所述第二网络的传输路径部分构成的数据传输路径;第一网络设备以及第二网络设备均为第一网络的网络设备;所述装置还包括接收单元:
    所述接收单元,用于从所述前一个网络设备获取所述数据传输路径在所述第二网络中传输路径部分的计算结果;
    所述建立单元还用于根据所述数据传输路径在所述第二网络中传输路径部分的计算结果建立所述数据传输路径。
  26. 一种路径确定系统,其特征在于,应用于包含同一控制器实现控制功能的混合网络,所述混合网络包括第一网络以及第二网络,所述系统包括所述控制器、第一网络设备:
    所述控制器获取路径确定需求,所述路径确定需求用于请求确定一条起点为所述第一网络设备、终点为第二网络设备,且由所述第一网络的传输路径部分和所述第二网络的传输路径部分构成的数据传输路径,所述路径确定需求包括所述第一网络设备的标识以及所述第二网络设备的标识,所述第一网络设备以及所述第二网络设备均为所述第一网络的网络设备;根据控制通道协议,从所述第一网络中的网络设备获取所述第一网络的网络拓扑信息,并从所述第二网络中的网络设备获取所述第二网络的网络拓扑信息;根据所述第一网络设备的标识、所述第二网络设备的标识、第一网络的网络拓扑信息和第二网络的网络拓扑信息计算得到路径计算结果,所述路径计算结果包括所述数据传输路径在所述第一网络中传输路径部分的计算结果以及所述数据传输路径在所述第二网络中传输路径部分的计算结果;向所述第一网络设备发送所述路径计算结果;
    所述第一网络设备获取所述控制器发送的所述路径计算结果;根据所述路径计算结果建立所述数据传输路径。
  27. 一种路径确定系统,其特征在于,应用于包含同一控制器实现控制功能的混合网络,所述混合网络包括第一网络以及第二网络,所述第二网络为光网络,目标网络设备为所述第二网络中的网络设备,所述系统包括所述控制器和目标网络设备:
    所述控制器用于获取路径确定需求,所述路径确定需求用于请求确定一条起点为所述第一网络设备、终点为第二网络设备,且由所述第一网络的传输路径部分和所述第二网络的传输路径部分构成的数据传输路径,所述路径确定需求包括所述第一网络设备的标识以及所述第二网络设备的标识,所述第一网络设备以及所述第二网络设备均为所述第一网络的网络设备;根据控制通道协议,从所述第一网络中的网络设备获取所述第一网络的网络拓扑信息,并从所述第二网络中的网络设备获取所述第二网络的网络拓扑信息;根据所述第一网络设备的标识、所述第二网络设备的标识、第一网络的网络拓扑信息和第二网络的网络拓扑信息计算得到路径计算结果,所述路径计算结果包括所述数据传输路径在所述第一网络中传输路径部分的计算结果以及所述数据传输路径在所述第二网络中传输路径部分的计算结果;向所述第一网络设备发送所述路径计算结果;
    根据控制通道协议,所述目标网络设备用于向所述控制器发送所述第二网络的网络拓扑信息,所述控制通道协议与所述第一网络中网络设备向所述控制器发送所述第一网络的网络拓扑信息所根据的控制通道协议相同。
PCT/CN2017/084376 2016-06-16 2017-05-15 一种路径确定方法、装置和系统 WO2017215385A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17812496.2A EP3461078B1 (en) 2016-06-16 2017-05-15 Path determination method, device and system
US16/221,568 US11323366B2 (en) 2016-06-16 2018-12-16 Path determining method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610430019.9 2016-06-16
CN201610430019.9A CN107517157B (zh) 2016-06-16 2016-06-16 一种路径确定方法、装置和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/221,568 Continuation US11323366B2 (en) 2016-06-16 2018-12-16 Path determining method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2017215385A1 true WO2017215385A1 (zh) 2017-12-21

Family

ID=60664369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084376 WO2017215385A1 (zh) 2016-06-16 2017-05-15 一种路径确定方法、装置和系统

Country Status (4)

Country Link
US (1) US11323366B2 (zh)
EP (1) EP3461078B1 (zh)
CN (3) CN112134724A (zh)
WO (1) WO2017215385A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109635201A (zh) * 2018-12-18 2019-04-16 苏州大学 异质社交网络跨平台关联用户账户挖掘方法
WO2020018185A1 (en) * 2018-07-17 2020-01-23 Futurewei Technologies, Inc. Systems and methods to implement path aware networking

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112054960B (zh) * 2019-02-13 2024-04-26 华为技术有限公司 一种路径计算方法、装置及设备
CN111726293B (zh) 2019-03-18 2021-11-30 华为技术有限公司 一种报文传输方法及装置
CN111988682B (zh) * 2019-05-22 2022-11-04 华为技术有限公司 网络控制方法、装置和系统
CN112787923A (zh) * 2019-11-07 2021-05-11 华为技术有限公司 一种报文的处理方法,装置和系统
CN111817644A (zh) * 2020-07-15 2020-10-23 中国船舶重工集团公司第七一六研究所 一种简易高精度伺服转台控制方法
CN114173317B (zh) * 2020-09-10 2023-06-06 华为技术有限公司 传输数据的方法和电子设备
CN113873678A (zh) * 2020-09-10 2021-12-31 华为技术有限公司 传输数据的方法和电子设备
CN115277510B (zh) * 2022-07-28 2023-12-01 科来网络技术股份有限公司 自动识别网络会话中设备、设备接口、设备路径的方法
WO2024045180A1 (zh) * 2022-09-02 2024-03-07 华为技术有限公司 数据报文的传输方法、通信装置和通信系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103348637A (zh) * 2011-02-11 2013-10-09 高通股份有限公司 混合网络中的帧递送路径选择
CN103828440A (zh) * 2011-09-12 2014-05-28 高通股份有限公司 在混和网络中提供通信路径信息
US20140269260A1 (en) * 2013-03-14 2014-09-18 Qualcomm Incorporated Distributed path update in hybrid networks

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101616063B (zh) * 2008-06-26 2012-02-08 华为技术有限公司 一种路由路径建立方法、系统和装置
US8295201B2 (en) * 2009-07-14 2012-10-23 Verizon Patent And Licensing Inc. System and method for providing lower-layer path validation for higher-layer autonomous systems
CN101997765B (zh) * 2009-08-13 2015-01-28 中兴通讯股份有限公司 多层网络中转发邻接的属性继承方法及相应的多层网络
US8089866B2 (en) * 2009-10-16 2012-01-03 Ciena Corporation Spanning tree flooding backbone systems and methods for link state routed networks
JP2011087302A (ja) * 2009-10-19 2011-04-28 Ip Infusion Inc Bgp経路監視装置、bgp経路監視方法、およびプログラム
CN104348732B (zh) * 2013-07-25 2018-09-07 华为技术有限公司 拓扑结构发现方法及装置
US9258238B2 (en) * 2013-08-30 2016-02-09 Juniper Networks, Inc. Dynamic end-to-end network path setup across multiple network layers
EP3038303B1 (en) 2013-09-26 2018-09-19 Huawei Technologies Co., Ltd. Establishment method and device of a cross-domain path
CN105376162B (zh) * 2014-08-30 2019-05-10 华为技术有限公司 一种链路状态信息通告方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103348637A (zh) * 2011-02-11 2013-10-09 高通股份有限公司 混合网络中的帧递送路径选择
CN103828440A (zh) * 2011-09-12 2014-05-28 高通股份有限公司 在混和网络中提供通信路径信息
US20140269260A1 (en) * 2013-03-14 2014-09-18 Qualcomm Incorporated Distributed path update in hybrid networks

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI, XIAOSHUANG: "SDN-based control optimization technology of the combination of IP network and optical network", CHINA MASTER'S THESES FULL-TEXT DATABASE, 31 August 2015 (2015-08-31), pages 1 - 67, XP009511158 *
See also references of EP3461078A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020018185A1 (en) * 2018-07-17 2020-01-23 Futurewei Technologies, Inc. Systems and methods to implement path aware networking
US11343173B2 (en) 2018-07-17 2022-05-24 Huawei Technologies Co., Ltd. Systems and methods to implement path aware networking
CN109635201A (zh) * 2018-12-18 2019-04-16 苏州大学 异质社交网络跨平台关联用户账户挖掘方法
CN109635201B (zh) * 2018-12-18 2020-07-31 苏州大学 异质社交网络跨平台关联用户账户挖掘方法

Also Published As

Publication number Publication date
EP3461078B1 (en) 2021-06-16
US11323366B2 (en) 2022-05-03
EP3461078A4 (en) 2019-04-17
US20190140949A1 (en) 2019-05-09
CN107517157B (zh) 2020-09-11
CN112134724A (zh) 2020-12-25
CN107517157A (zh) 2017-12-26
CN112134725A (zh) 2020-12-25
EP3461078A1 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
WO2017215385A1 (zh) 一种路径确定方法、装置和系统
JP7208386B2 (ja) パケット転送方法、パケット送信装置、およびパケット受信装置
CN107637031B (zh) 用于网络业务的路径计算单元中央控制器
EP3103230B1 (en) Software defined networking (sdn) specific topology information discovery
EP2974133B1 (en) Method and system for controlling an underlying physical network by a software defined network
US7257646B2 (en) Method and arrangement for handling information packets via user selectable relay nodes
US20200396162A1 (en) Service function chain sfc-based communication method, and apparatus
JP2002530939A (ja) インターネット・プロトコル・コネクション指向サービスの管理方法
CN106789637B (zh) 一种跨域业务互通的路径建立方法、控制器及系统
JP2009512287A (ja) イーサネットのgmpls制御
CN107770073A (zh) 一种信息同步的方法,装置及系统
EP3364613A2 (en) Method and device for transmitting traffic via specified path
US11290394B2 (en) Traffic control in hybrid networks containing both software defined networking domains and non-SDN IP domains
JP6605558B2 (ja) ネットワークのプローブ・ルーティング
US10523553B2 (en) Implementing an E-LAN between multi-nodes utilizing a transport network controller
US20160173357A1 (en) Probe Routing in a Network
CN114465946A (zh) 获取转发表项的方法、装置以及系统
JP2021501519A (ja) ターゲット伝送ルートを取得するための方法、関連デバイス、およびシステム
US11296980B2 (en) Multicast transmissions management
Feamster et al. Network-wide BGP route prediction for traffic engineering
CN111526512A (zh) 基于Wi-Fi数据包的网关桥接方法、装置、设备及介质
JP4630298B2 (ja) 機能分散型通信装置、構成要素結合制御方法、およびプログラム
JP7331066B2 (ja) Avbストリームのモジュール式ルーティングの方法及び装置
CN110838965B (zh) 一种隧道建立方法以及接收节点
Vidya et al. Investigation of Open Short Path First for Implementing Hub and Spoke Topologies in Virtual Private Networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17812496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017812496

Country of ref document: EP

Effective date: 20181219