WO2017214982A1 - 一种多工器和设备 - Google Patents

一种多工器和设备 Download PDF

Info

Publication number
WO2017214982A1
WO2017214982A1 PCT/CN2016/086253 CN2016086253W WO2017214982A1 WO 2017214982 A1 WO2017214982 A1 WO 2017214982A1 CN 2016086253 W CN2016086253 W CN 2016086253W WO 2017214982 A1 WO2017214982 A1 WO 2017214982A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonant cavity
tap
branch tap
coupling
branch
Prior art date
Application number
PCT/CN2016/086253
Other languages
English (en)
French (fr)
Inventor
姜涛
袁本贵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/086253 priority Critical patent/WO2017214982A1/zh
Priority to CN201680086654.8A priority patent/CN109314294B/zh
Publication of WO2017214982A1 publication Critical patent/WO2017214982A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a multiplexer.
  • multiplexers are widely used.
  • the multiplexer has multiple signal transmission channels, and each signal transmission channel corresponds to one filter.
  • the working frequency band between different filters in the multiplexer gets closer and closer, the implementation difficulty of the multiplexer becomes larger and larger, and the mutual interference problem between different filters is particularly prominent.
  • the amount of interference between different filters directly affects the overall performance of the multiplexer. Therefore, how to reduce the mutual interference between different filters of the multiplexer, thereby reducing the debugging difficulty of the multiplexer and improving the debugging efficiency of the multiplexer is the focus and design difficulty of the industry.
  • the embodiment of the invention provides a multiplexer and device to reduce mutual interference between different filters of the multiplexer, thereby reducing the debugging difficulty of the multiplexer and improving the debugging efficiency of the multiplexer.
  • an embodiment of the present invention provides a multiplexer including at least two filters, each of the at least two filters being connected to a common tap, each of the filters Include at least a first resonant cavity, a second resonant cavity, a first branch tap, a second branch tap, and a channel tap, wherein the second resonant cavity is directly coupled to the channel tap or the second resonant cavity is different by one or more
  • the resonant cavity of the first resonant cavity and the second resonant cavity is indirectly coupled to the channel tap
  • the first resonant cavity is respectively coupled to the second resonant cavity and the first branch tap
  • the common tap is respectively associated with the first a branch tap is connected to the second branch tap
  • the second branch tap is coupled to the second resonant cavity
  • a coupling manner of the first branch tap and the first resonant cavity In a capacitive coupling manner or an inductive coupling manner, a coupling manner of the second branch tap and the second resonant
  • Embodiments of the present invention introduce a second branch tap in each filter to couple with a second resonant cavity, and a second branch tap is connected to a common tap to introduce an additional transmission path between the common tap and the second resonant cavity.
  • Phase compensation for the out-of-band reflection characteristics of each filter reducing the effect of changes in the transmission characteristics and/or reflection characteristics of each filter on the transmission characteristics and/or reflection characteristics of other filters, ie reducing the different filters
  • the mutual interference between them can reduce the debugging difficulty of the multiplexer and improve the debugging efficiency of the multiplexer.
  • the first branch tap of each filter of the multiplexer is connected to the common tap through a transmission line.
  • the characteristic impedance of the transmission line is 50 ohms, and the length of the transmission line is a quarter wavelength, where the wavelength is the wavelength corresponding to the center frequency of the operating frequency band of the multiplexer.
  • the mutual interference between different filters can be further reduced, thereby further reducing the debugging difficulty of the multiplexer and further improving the debugging efficiency of the multiplexer.
  • the coupling coefficient in each filter of the multiplexer satisfies the following formula:
  • M 12 is a coupling coefficient between the first resonant cavity and the second resonant cavity when the second branch tap is not coupled to the second resonant cavity
  • M L1 is when the second branched tap and the second a coupling coefficient between the first branch tap and the first resonant cavity when the resonant cavity is not coupled
  • M 12 ' is the first resonant cavity and the second when the second branch tap is coupled to the second resonant cavity a coupling coefficient between the resonant cavities
  • M L2 ' is a coupling coefficient between the second branch tap and the second resonant cavity when the second branch tap is coupled to the second resonant cavity
  • M L1 ' is when a coupling coefficient between the first branch tap and the first resonant cavity when the second branch tap is coupled to the second resonant cavity.
  • Embodiments of the present invention adjust a coupling coefficient between a first resonant cavity and a second resonant cavity in each filter, a coupling coefficient of the first branch tap and the first resonant cavity, and a second branch tap and a second resonant cavity
  • the coupling coefficient makes the above three coupling coefficients satisfy the above formula, which can further reduce mutual interference between different filters, thereby further reducing the debugging difficulty of the multiplexer and further improving the debugging efficiency of the multiplexer.
  • two of the at least two filters are on the same plane.
  • one of the at least two filters is located on a single plane.
  • an embodiment of the present invention provides an apparatus, including the multiplexer in the foregoing first embodiment.
  • the device may be a radio frequency unit, a base station, a user equipment, a radar device, and other possible communication devices, which may also be a test device.
  • FIG. 1 is a schematic diagram of an internal structure of a multiplexer according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a coupling manner between a branch tap and a resonant cavity, and between a resonant cavity and a resonant cavity according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of another coupling manner between a branch tap and a resonant cavity, and between a resonant cavity and a resonant cavity according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of coupling between a resonant cavity and a resonant cavity according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a multiplexer including two filters according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a multiplexer including three filters according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a multiplexer including three filters according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of simulation results of transmission characteristics and transmission characteristics of a multiplexer according to an embodiment of the present invention.
  • the multiplexer in the embodiment of the present invention includes a duplexer with two channels and a multiplexer with more than two channels, for example, three channels of triplexers and four channels of quadruples. Five-channel five-worker and more channel multiplexers. Each channel of the multiplexer corresponds to one filter. In the embodiment of the present invention, the filter refers to a filter corresponding to a certain channel of the multiplexer.
  • a multiplexer provided by an embodiment of the present invention includes at least two filters, each of the at least two filters being connected to a common tap, each filter including at least a first resonant cavity and a second resonant cavity a first branch tap, a second branch tap, and a channel tap, wherein the second resonant cavity is directly coupled to the channel tap or the second resonant cavity passes through one or more different from the first resonant cavity and the second resonant cavity
  • the cavity of the cavity is indirectly coupled to the channel tap, the first harmonic
  • the oscillating cavity is coupled to the second resonant cavity and the first branch tap, respectively, the common tap is connected to the first branch tap and the second branch tap, respectively, and the second branch tap is coupled to the second resonant cavity.
  • the coupling manner of the first branch tap and the first resonant cavity is a capacitive coupling manner or an inductive coupling manner
  • the coupling manner of the second branch tap and the second resonant cavity is a capacitive coupling manner or an inductive coupling manner
  • the coupling manner between the first branch tap, the second branch tap, the first resonant cavity and the second resonant cavity is one of the following combinations:
  • the coupling manner of the first branch tap and the first resonant cavity is the same as the coupling manner of the second branch tap and the second resonant cavity, and the coupling manner of the first resonant cavity and the second resonant cavity is a capacitive coupling manner ;or,
  • the coupling manner of the first branch tap and the first resonant cavity is different from the coupling manner of the second branch tap and the second resonant cavity, and the coupling manner of the first resonant cavity and the second resonant cavity is an inductive coupling manner.
  • Embodiments of the present invention introduce a second branch tap in each filter to couple with a second resonant cavity, and a second branch tap is connected to a common tap to introduce an additional transmission path between the common tap and the second resonant cavity.
  • Phase compensation for the out-of-band reflection characteristics of each filter reducing the effect of changes in the transmission characteristics and/or reflection characteristics of each filter on the transmission characteristics and/or reflection characteristics of other filters, ie reducing the different filters
  • the mutual interference between them can reduce the debugging difficulty of the multiplexer and improve the debugging efficiency of the multiplexer.
  • the coupling between the tap and the resonant cavity and the coupling between the resonant cavity and the resonant cavity are bidirectional, that is, may be referred to as A and B coupling, and may also be referred to as B. Coupled with A, the two descriptions are equivalent in the embodiments of the present invention.
  • the tap here may include a first branch tap, a second branch tap, and a channel tap
  • the resonant cavity may include a first resonant cavity, a second resonant cavity, a third resonant cavity, and a fourth resonant cavity.
  • FIG. 1 is a schematic diagram of an internal structure of a multiplexer according to an embodiment of the present invention.
  • FIG. 1 is an example of a two-channel duplexer, but this does not limit the scope of application of the embodiments of the present invention.
  • the multiplexer includes three ports, specifically port 0, port 1, and port 2.
  • the signal transmission channel between port 0 and port 1 is the signal transmission channel of the first filter
  • the signal transmission channel between port 0 and port 2 is the signal transmission channel of the second filter.
  • the first filter includes a first resonant cavity 3101, a second resonant cavity 3102, a first branch tap 1101, a second branch tap 1102, and a channel tap 1100.
  • the first filter further A third resonant cavity 3103 and a fourth resonant cavity 3104 are included.
  • the second filter may be similar to the first filter structure, for example, also including a first resonant cavity 3201, a second resonant cavity 3202, a first branch tap 1201, a second branch tap 1202, and a channel tap 1200, optionally,
  • the second filter further includes a third resonant cavity 3203 and a fourth resonant cavity 3204.
  • a multiplexer includes three channels, correspondingly, there are three filters, which are respectively called a first filter, a second filter, and a third filter, wherein the first filter and the second filter
  • the third filter includes only two resonant cavities, respectively a first resonant cavity and a second resonant cavity, and the second resonant cavity is coupled to the channel tap.
  • the second resonant cavity 3102 is directly coupled to the channel tap 1100 or indirectly coupled to the channel tap 1100 through one or more resonant cavities other than the first resonant cavity 3101 and the second resonant cavity 3102. Specifically, as shown in FIG.
  • the second resonant cavity 3102 can be coupled to the third resonant cavity 3103, the third resonant cavity 3103 is coupled to the fourth resonant cavity 3104, and the fourth resonant cavity 3104 is coupled to the channel tap 1100; or,
  • the second resonant cavity 3102 can be coupled to the third resonant cavity 3103, the third resonant cavity 3103 is coupled to channel tap 1100; or, in the absence of a resonant cavity other than the first resonant cavity and the second resonant cavity in the first filter, second resonant cavity 3102 can be coupled directly to channel tap 1100.
  • the first resonant cavity 3101 is coupled to the second resonant cavity 3102, and the first resonant cavity 3101 is coupled to the first branch tap 1101, and the first branch tap 1101 is coupled to the common tap 1000.
  • the second branch tap 1102 is coupled to the second resonant cavity 3102, and the second branch tap 1102 is coupled to the common tap 1000.
  • the above resonant cavity refers to a spatial extent enclosed by the cavity wall 4000 that includes a resonant rod 5000.
  • the coupling mode between the resonant cavity and the resonant cavity may be an inductive coupling mode or a capacitive coupling mode.
  • Figure 2 shows a possible capacitive coupling between the resonant cavity and the resonant cavity: the first resonant cavity and the second resonant cavity are coupled by a dumbbell shaped fly rod.
  • Figure 3 shows an inductive coupling between a possible resonant cavity and a resonant cavity: the first resonant cavity and the second resonant cavity are coupled by windowing.
  • the inductive coupling coefficient between the resonant cavity and the resonant cavity can be adjusted by adjusting the size of the window between the resonant cavity and the resonant cavity. The larger the window opening area, the inductive coupling coefficient The bigger.
  • the capacitive coupling coefficient between the resonant cavity and the resonant cavity can be adjusted by adjusting the shape and height of the dumbbell-shaped flying rod between the resonant cavity and the resonant cavity, wherein The dumbbell-shaped flying rod includes a flying rod disk.
  • Adjusting the shape of the dumbbell-shaped flying rod includes adjusting the area of the flying rod plate. Specifically, the larger the area of the flying rod disk, the larger the capacitive coupling coefficient, the higher the flying rod height, and the capacitive coupling. The larger the coefficient.
  • the capacitive coupling between the resonant cavity and the resonant cavity reference may be made to FIG.
  • the coupling between the tap and the cavity can be either inductive or capacitive.
  • the left side of Figure 2 shows a possible inductive coupling between the tap and the cavity: the wire of the first branch tap is soldered to the resonant rod in the first cavity.
  • the right side of Figure 2 shows a possible capacitive coupling between the tap and the cavity: the tapped coupling pad of the first branch tap is spaced from the resonant bar in the first cavity.
  • the inductive coupling mode can adjust the inductive coupling coefficient between the tap and the resonant cavity by adjusting the position of the connection point between the metal wire and the resonant rod.
  • the capacitive coupling coefficient between the tap and the cavity can be adjusted by adjusting the area of the tap coupling disk and the spacing from the resonant rod.
  • the coupling manner between the first branch tap 1101, the second branch tap 1102, the first resonant cavity 3101, and the second resonant cavity 3102 is one of the following combinations:
  • the coupling manner of the first branch tap 1101 and the first resonant cavity 3101 and the coupling manner of the second branch tap 1102 and the second resonant cavity 3102 are the same.
  • the coupling manner of the first resonant cavity 3101 and the second resonant cavity 3102 is a capacitive coupling manner. ;or,
  • the coupling manner of the first branch tap 1101 and the first resonant cavity 3101 and the coupling manner of the second branch tap 1102 and the second resonant cavity 3102 are different, and the coupling manner of the first resonant cavity 3101 and the second resonant cavity 3102 is inductively coupled.
  • the coupling manner between the first branch tap 1101, the second branch tap 1102, the first resonant cavity 3101, and the second resonant cavity 3102 is one of the following combinations: the first branch tap 1101 and the first resonant cavity
  • the coupling mode of the 3101 and the coupling manner of the second branching tap 1102 and the second resonant cavity 3102 are both capacitive coupling modes, and the coupling manner of the first resonant cavity 3101 and the second resonant cavity 3102 is a capacitive coupling mode; or, first The coupling manner of the branch tap 1101 and the first resonant cavity 3101 and the coupling manner of the second branch tap 1102 and the second resonant cavity 3102 are inductively coupled, and the coupling manner of the first resonant cavity 3101 and the second resonant cavity 3102 is capacitive.
  • the coupling manner of the first branch tap 1101 and the first resonant cavity 3101 is a capacitive coupling manner
  • the coupling manner of the second branch tap 1102 and the second resonant cavity 3102 is an inductive coupling manner
  • the first resonant cavity 3101 and The coupling mode of the second resonant cavity 3102 is an inductive coupling mode
  • the coupling manner of the first branch tap 1101 and the first resonant cavity 3101 is an inductive coupling mode
  • the coupling mode of the two resonators 3102 is a capacitive coupling mode
  • the coupling mode of the cavity 3101 and the second resonant cavity 3102 is an inductive coupling mode.
  • the coupling manner between the first branch tap, the second branch tap, the first resonant cavity and the second resonant cavity can respectively select different combinations.
  • the coupling manner of the first branch tap 1101 and the first resonant cavity 3101 and the coupling manner of the second branch tap 1102 and the second resonant cavity 3102 are both capacitively coupled, and the first resonant cavity 3101 and The coupling manner of the second resonant cavity 3102 is a capacitive coupling manner; and for the second filter, the coupling manner of the first branch tap 1201 and the first resonant cavity 3201 is an inductive coupling manner, and the second branch tap 1202 and the second resonant cavity
  • the coupling mode of the 3202 is a capacitive coupling mode, and the coupling mode of the first resonant cavity 3201 and the second resonant cavity 3202 is an inductive coupling mode.
  • the first branch tap of each filter is connected to the common tap through a transmission line.
  • the first branch tap 1101 of the first filter is connected to the common tap 1000 through a transmission line 2000.
  • the characteristic impedance of the transmission line may be 50 ohms, and the length of the transmission line may be a quarter wavelength, where the wavelength is the wavelength corresponding to the center frequency of the working frequency band of the multiplexer.
  • the bandwidth of the first filter is 925 MHz to 960 MHz and the bandwidth of the second filter is 880 MHz to 915 MHz
  • the center frequency of the corresponding working frequency band of the multiplexer is 920 MHz
  • the corresponding wavelength is 32.6 cm
  • the length of the transmission line is 8.15 cm.
  • the mutual interference between different filters can be further reduced, thereby further reducing the debugging difficulty of the multiplexer and further improving the debugging efficiency of the multiplexer.
  • a coupling coefficient between the first resonant cavity and the second resonant cavity in each of the filters, the first branch tap and the first resonant cavity may be adjusted.
  • the coupling coefficient and the coupling coefficient of the second branch tap and the second resonant cavity are such that:
  • M 12 is a coupling coefficient between the first resonant cavity and the second resonant cavity when the second branch tap is not coupled to the second resonant cavity;
  • M L1 is when the second branch tap is not coupled to the second resonant cavity a coupling coefficient between a branch tap and a first resonant cavity;
  • M 12 ' is a coupling coefficient between the first resonant cavity and the second resonant cavity when the second branch tap is coupled to the second resonant cavity;
  • M L2 ' is a coupling coefficient between the second branch tap and the second resonant cavity when the second branch tap is coupled to the second resonant cavity;
  • M L1 ' is the first branch tap when the second branch tap is coupled to the second resonant cavity Coupling coefficient between the first resonant cavity.
  • M 12 and M L1 can be theoretically calculated by the filter synthesis method; M 12 ' can be obtained by double cavity coupling simulation as shown in Fig. 4; M L1 ' and M L2 ' can be shorted by other resonators. Obtained by measuring the reflection delay of the first cavity and the second cavity, respectively.
  • M 12 is a coupling coefficient between the first resonant cavity 3101 and the second resonant cavity 3102 when the second branch tap 1102 and the second resonant cavity 3102 are not coupled
  • M L1 is a coupling coefficient between the first branch tap 1101 and the first resonant cavity 3101 when the second branch tap 1102 is not coupled to the second resonant cavity 3102
  • M 12 ' is when the second branch tap 1102 and the second resonant cavity 3102 has a coupling coefficient between the first resonant cavity 3101 and the second resonant cavity 3102 when coupled
  • M L2 ' is a second branch tap 1102 and a second resonant cavity when the second branch tap 1102 is coupled with the second resonant cavity 3102
  • the coupling coefficient between 3102; M L1 ' is the coupling coefficient between the first branch tap 1101 and the first resonant cavity 3101 when the second branch tap 1102 is coupled to the second resonant cavity
  • FIG. 5 is a schematic diagram of a multiplexer including two filters according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a multiplexer including three filters according to an embodiment of the present invention. According to the analogy of Fig. 5 and Fig. 6, a schematic diagram of a multiplexer including any number of filters can be drawn.
  • the wavers are located on the same plane of the space; alternatively, one of the filters may be located on one plane of the space alone; or, any combination of the above two spatial structure designs may be used.
  • a multiplexer with seven filters it can be designed as four planes, three of which have two filters on each plane, and the other has only one filter; it can also be designed as five Plane, for each of the two planes, there are two filters on each plane.
  • the other three planes there is only one filter on each plane; it can also be designed as 7 planes, each on each plane. There is only one filter.
  • FIG. 7 is a schematic structural diagram of a multiplexer including three filters according to an embodiment of the present invention. As shown in Figure 7, two of the filters are located on the same plane of space and the other filter is located on the other plane of the space. According to a similar structural design idea, a multiplexer including any number of filters can be designed.
  • FIG. 8 is a schematic diagram of simulation results of transmission characteristics and transmission characteristics of a multiplexer according to an embodiment of the present invention.
  • the center frequency of the first filter in Fig. 8(a) is about 0.905 GHz, keeping the operating frequency of the second filter unchanged, and the center frequency of the first filter is adjusted from 0.905 GHz to 0.86 GHz, as shown in the figure.
  • the transmission characteristics of the second filter and the reflection characteristics of the multiplexer at the operating frequency of the second filter are substantially unchanged.
  • Figure 8 illustrates the adjustment of the operating frequency of the first filter of the multiplexer, the transmission characteristics of the second filter, and the reflection of the multiplexer at the operating frequency of the second filter after employing the solution of the embodiment of the present invention.
  • the characteristic influence is small, that is, the interference of the first filter to the second filter is small, thereby greatly reducing the debugging difficulty of the multiplexer and improving the debugging efficiency of the multiplexer. It can be understood that, since the first filter and the second filter are both adopted in the technical solution of the embodiment of the present invention, the following beneficial effects can also be obtained: adjusting the operating frequency of the second filter of the multiplexer, The transmission characteristics of the first filter and the reflection characteristics of the multiplexer at the operating frequency of the first filter are also small, that is, the interference of the second filter to the first filter is small.
  • the embodiment of the invention further provides an apparatus, which comprises the multiplexer in the above embodiment.
  • the device can be a radio unit, a base station, a user equipment, a radar device, and other possible communications
  • the device may also be a test device, which is not limited by the embodiment of the present invention.
  • a user equipment may be referred to as a terminal, a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal), etc., and the user equipment may be accessed through a radio access network.
  • Radio Access Network, RAN communicates with one or more core networks, for example, the user equipment may be a mobile phone (or "cell phone"), a computer with a mobile terminal, etc., for example, the user equipment may also be portable , pocket, handheld, computer built-in or in-vehicle mobile devices that exchange voice and/or data with a wireless access network.
  • the term "and/or” is merely an association relationship describing an associated object, indicating that there may be three relationships.
  • a and/or B may indicate that A exists separately, and A and B exist simultaneously, and B cases exist alone.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.

Abstract

本发明涉及无线通信技术领域,具体涉及多工器。本发明实施例提供了一种多工器和包括该多工器的设备,该多工器包括至少两个滤波器,每一个滤波器都与公共抽头相连,每一个滤波器包括第一谐振腔、第二谐振腔、第一分支抽头和第二分支抽头,其中第一谐振腔与第二谐振腔耦合;公共抽头与每一个滤波器的第二分支抽头相连,公共抽头通过四分之一波长、特征阻抗为50欧姆的传输线与第一分支抽头相连;每一个滤波器的第一分支抽头与该滤波器的第一谐振腔耦合,该滤波器的第二分支抽头与该滤波器的第二谐振腔耦合。

Description

一种多工器和设备 技术领域
本发明涉及无线通信技术领域,具体涉及多工器。
背景技术
在现有的无线通信系统中,多工器的应用非常广泛。多工器有多个信号传输通道,每一个信号传输通道对应一个滤波器。随着多工器中不同滤波器之间的工作频带越来越近,多工器的实现难度也变得越来越大,其中不同的滤波器之间的相互干扰问题尤为突出。对于多工器而言,不同的滤波器之间干扰的大小直接影响着多工器的整体性能。因此,如何降低多工器不同的滤波器之间的相互干扰,从而降低多工器的调试难度,提升多工器的调试效率,是业界关注的焦点和设计难点。
发明内容
本发明实施例提供了一种多工器和设备,以降低多工器不同的滤波器之间的相互干扰,从而降低多工器的调试难度,提升多工器的调试效率。
本发明实施例具体可以通过如下技术方案实现:
第一方面,本发明实施例提供了一种多工器,该多工器包括至少两个滤波器,该至少两个滤波器中的每一个滤波器都与公共抽头相连,该每一个滤波器至少包括第一谐振腔、第二谐振腔、第一分支抽头、第二分支抽头和通道抽头,其中,该第二谐振腔与该通道抽头直接耦合或者该第二谐振腔通过一个或多个不同于该第一谐振腔和该第二谐振腔的谐振腔与该通道抽头间接耦合,该第一谐振腔分别与该第二谐振腔和该第一分支抽头耦合,该公共抽头分别与该第一分支抽头和该第二分支抽头相连,该第二分支抽头与该第二谐振腔耦合,该第一分支抽头与该第一谐振腔的耦合方式 为容性耦合方式或感性耦合方式,该第二分支抽头与该第二谐振腔的耦合方式为容性耦合方式或感性耦合方式;该第一分支抽头、该第二分支抽头、该第一谐振腔和该第二谐振腔之间的耦合方式为如下组合中的一种:该第一分支抽头与该第一谐振腔的耦合方式和该第二分支抽头与该第二谐振腔的耦合方式相同,该第一谐振腔与该第二谐振腔的耦合方式为容性耦合方式;或者,该第一分支抽头与该第一谐振腔的耦合方式和该第二分支抽头与该第二谐振腔的耦合方式不同,该第一谐振腔与该第二谐振腔的耦合方式为感性耦合方式。
本发明实施例通过在每一个滤波器中引入第二分支抽头与第二谐振腔耦合、第二分支抽头与公共抽头相连,从而在公共抽头和第二谐振腔之间引入额外的传输路径,实现对每一个滤波器的带外反射特性进行相位补偿,降低每一个滤波器传输特性和/或反射特性的变化对其它滤波器的传输特性和/或反射特性的影响,即降低了不同的滤波器之间的相互干扰,从而可以降低多工器的调试难度,提升多工器的调试效率。
在一个可能的设计中,该多工器的每一个滤波器的第一分支抽头通过传输线与公共抽头相连。
在一个可能的设计中,该传输线的特征阻抗为50欧姆,传输线的长度为四分之一波长,此处的波长是该多工器的工作频段的中心频率所对应的波长。
本发明实施例通过在第一分支抽头和公共抽头之间引入传输线,能够进一步降低不同的滤波器之间的相互干扰,从而可以进一步降低多工器的调试难度,进一步提升多工器的调试效率。
在一个可能的设计中,该多工器的每一个滤波器中的耦合系数满足以下公式:
Figure PCTCN2016086253-appb-000001
其中,M12是当该第二分支抽头与该第二谐振腔没有耦合时该第一谐振腔与该第二谐振腔之间的耦合系数,ML1是当该第二分支抽头与该第二谐振腔没有耦合时该第一分支抽头与该第一谐振腔之间的耦合系数,M12′是当该第二分支抽头与该第二谐振腔有耦合时该第一谐振腔与该第二谐振腔之间的耦合系数,ML2′是当该第二分支抽头与该第二谐振腔有耦合时该第二分支抽头与该第二谐振腔之间的耦合系数;ML1′是当该第二分支抽头与该第二谐振腔有耦合时该第一分支抽头与该第一谐振腔之间的耦合系数。
本发明实施例通过调节每一个滤波器中的第一谐振腔与第二谐振腔之间的耦合系数、第一分支抽头与第一谐振腔的耦合系数和第二分支抽头与第二谐振腔的耦合系数,使得上述三个耦合系数满足上述公式,能够进一步降低不同的滤波器之间的相互干扰,从而可以进一步降低多工器的调试难度,进一步提升多工器的调试效率。
在一个可能的设计中,该至少两个滤波器中的两个滤波器位于同一个平面上。
在一个可能的设计中,该至少两个滤波器中的一个滤波器单独位于一个平面上。
第二方面,本发明实施例提供了一种设备,该设备包括上述第一方面实施例中的多工器。该设备可以是射频单元、基站、用户设备、雷达设备以及其它可能的通信设备,该设备还可以是测试设备。
附图说明
图1为本发明实施例提供的一种多工器的内部结构示意图;
图2为本发明实施例提供的分支抽头与谐振腔之间、谐振腔与谐振腔之间的耦合方式示意图;
图3为本发明实施例提供的另一种分支抽头与谐振腔之间、谐振腔与谐振腔之间的耦合方式示意图;
图4为本发明实施例提供的谐振腔与谐振腔之间的耦合示意图;
图5为本发明实施例提供的一种包括两个滤波器的多工器的原理示意图;
图6为本发明实施例提供的一种包括三个滤波器的多工器的原理示意图;
图7为本发明实施例提供的一种包括三个滤波器的多工器的结构示意图;
图8为本发明实施例提供的一种多工器的传输特性和发射特性仿真结果图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,可以理解的是,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
需要说明的是,本发明实施例中的多工器包括两个通道的双工器以及多于两个通道的多工器,例如,三个通道的三工器,四个通道的四工器,五个通道的五工器以及更多通道的多工器。多工器的每一个通道对应一个滤波器。在本发明实施例中,滤波器都是指多工器的某一个通道所对应的滤波器。
本发明实施例所提供的多工器包括至少两个滤波器,该至少两个滤波器中的每一个滤波器都与公共抽头相连,每一个滤波器至少包括第一谐振腔、第二谐振腔、第一分支抽头、第二分支抽头和通道抽头,其中,该第二谐振腔与该通道抽头直接耦合或者该第二谐振腔通过一个或多个不同于该第一谐振腔和该第二谐振腔的谐振腔与该通道抽头间接耦合,该第一谐 振腔分别与该第二谐振腔和该第一分支抽头耦合,该公共抽头分别与该第一分支抽头和该第二分支抽头相连,该第二分支抽头与该第二谐振腔耦合。
该第一分支抽头与该第一谐振腔的耦合方式为容性耦合方式或感性耦合方式,该第二分支抽头与该第二谐振腔的耦合方式为容性耦合方式或感性耦合方式。
该第一分支抽头、该第二分支抽头、该第一谐振腔和该第二谐振腔之间的耦合方式为如下组合中的一种:
该第一分支抽头与该第一谐振腔的耦合方式和该第二分支抽头与该第二谐振腔的耦合方式相同,该第一谐振腔与该第二谐振腔的耦合方式为容性耦合方式;或者,
该第一分支抽头与该第一谐振腔的耦合方式和该第二分支抽头与该第二谐振腔的耦合方式不同,该第一谐振腔与该第二谐振腔的耦合方式为感性耦合方式。
本发明实施例通过在每一个滤波器中引入第二分支抽头与第二谐振腔耦合、第二分支抽头与公共抽头相连,从而在公共抽头和第二谐振腔之间引入额外的传输路径,实现对每一个滤波器的带外反射特性进行相位补偿,降低每一个滤波器传输特性和/或反射特性的变化对其它滤波器的传输特性和/或反射特性的影响,即降低了不同的滤波器之间的相互干扰,从而可以降低多工器的调试难度,提升多工器的调试效率。
可以理解的是,在本发明的实施例中,抽头与谐振腔之间的耦合以及谐振腔与谐振腔之间的耦合都是双向的,即可以称为A与B耦合,也可以称为B与A耦合,这两种描述在本发明实施例中是等效的。这里的抽头可以包括第一分支抽头、第二分支抽头和通道抽头,谐振腔可以包括第一谐振腔、第二谐振腔、第三谐振腔和第四谐振腔。
图1为本发明实施例提供的一种多工器的内部结构示意图。图1以两个通道的双工器为例,但这并不限定本发明实施例的应用范围。
如图1所示,该多工器包括三个端口,具体为端口0、端口1和端口2。其中端口0和端口1之间的信号传输通道为第一滤波器的信号传输通道,端口0和端口2之间的信号传输通道为第二滤波器的信号传输通道。端口0上有公共抽头1000,端口1上有通道抽头1100,端口2上有通道抽头1200。第一滤波器和第二滤波器都与公共抽头1000相连。
如图1所示,上述第一滤波器包括第一谐振腔3101、第二谐振腔3102、第一分支抽头1101、第二分支抽头1102和通道抽头1100,可选地,该第一滤波器还包括第三谐振腔3103和第四谐振腔3104。上述第二滤波器可以是和第一滤波器结构类似,例如也包括第一谐振腔3201、第二谐振腔3202、第一分支抽头1201、第二分支抽头1202和通道抽头1200,可选地,该第二滤波器还包括第三谐振腔3203和第四谐振腔3204。
下面以第一滤波器为例详细介绍本发明实施例中的多工器中的滤波器的设计原则。可以理解的是,根据需求的不同,可以在符合本发明实施例的设计原则的基础上,对于不同的滤波器,可能有不同的设计方案,而不同的设计方案是指以下至少一种因素可以发生变化:谐振腔个数、第一谐振腔和第二谐振腔之外的谐振腔之间是否有耦合以及谐振腔之间的耦合方式。例如,某个多工器包括三个通道,对应的,有三个滤波器,分别称为第一滤波器、第二滤波器和第三滤波器,其中,第一滤波器和第二滤波器的结构可以参考上面对第一滤波器和第二滤波器的描述,第三滤波器只包括两个谐振腔,分别为第一谐振腔和第二谐振腔,第二谐振腔与通道抽头耦合。
第二谐振腔3102与通道抽头1100直接耦合或通过第一谐振腔3101和第二谐振腔3102之外的一个或多个谐振腔与通道抽头1100间接耦合。具体地,如图1所示,第二谐振腔3102可以与第三谐振腔3103耦合,第三谐振腔3103与第四谐振腔3104耦合,第四谐振腔3104与通道抽头1100耦合;或者,第二谐振腔3102可以与第三谐振腔3103耦合,第三谐振腔 3103与通道抽头1100耦合;或者,在第一滤波器中没有除第一谐振腔和第二谐振腔之外的谐振腔的情况下,第二谐振腔3102可以直接与通道抽头1100耦合。
第一谐振腔3101与第二谐振腔3102耦合,第一谐振腔3101与第一分支抽头1101耦合,第一分支抽头1101与公共抽头1000相连。第二分支抽头1102与第二谐振腔3102耦合,第二分支抽头1102与公共抽头1000相连。
上述谐振腔是指由腔壁4000所围成的包含一个谐振杆5000的一个空间范围。
谐振腔与谐振腔之间的耦合方式可以是感性耦合方式也可以是容性耦合方式。图2示出了一种可能的谐振腔与谐振腔之间的容性耦合方式:第一谐振腔与第二谐振腔之间通过哑铃状飞杆进行耦合。图3示出了一种可能的谐振腔与谐振腔之间的感性耦合方式:第一谐振腔与第二谐振腔之间通过开窗的方式进行耦合。对于上述谐振腔与谐振腔之间的感性耦合方式,通过调整谐振腔与谐振腔之间开窗的大小可以调节谐振腔与谐振腔之间的感性耦合系数,开窗面积越大,感性耦合系数越大。对于上述谐振腔与谐振腔之间的容性耦合方式,通过调整谐振腔与谐振腔之间的哑铃状飞杆的形状和高度,可以调节谐振腔与谐振腔之间的容性耦合系数,其中哑铃状飞杆包括飞杆盘,调整哑铃状飞杆的形状包括调整飞杆盘的面积,具体地,飞杆盘面积越大,容性耦合系数越大,飞杆高度越高,容性耦合系数越大。有关谐振腔与谐振腔之间的容性耦合方式,可以进一步参考图4。
抽头与谐振腔之间的耦合方式可以是感性耦合方式也可以是容性耦合方式。图2左边示出了一种可能的抽头与谐振腔之间的感性耦合方式:第一分支抽头的金属线焊接在第一谐振腔内的谐振杆上。图2右边示出了一种可能的抽头与谐振腔之间的容性耦合方式:第一分支抽头的抽头耦合盘与第一谐振腔内的谐振杆之间保持一定距离。对于上述抽头与谐振腔之间 的感性耦合方式,通过调整金属线与谐振杆的连接点的位置可以调节抽头与谐振腔之间的感性耦合系数,金属线与谐振杆的连接点的位置越高,感性耦合系数越大。对于上述抽头与谐振腔之间的容性耦合方式,通过调整抽头耦合盘的面积以及与谐振杆的间距可以调节抽头与谐振腔之间的容性耦合系数,抽头耦合盘的面积越大,容性耦合系数越大,抽头耦合盘与谐振杆的间距越小,容性耦合系数越大。
第一分支抽头1101、第二分支抽头1102、第一谐振腔3101和第二谐振腔3102之间的耦合方式为如下组合中的一种:
第一分支抽头1101与第一谐振腔3101的耦合方式和第二分支抽头1102与第二谐振腔3102的耦合方式相同,第一谐振腔3101与第二谐振腔3102的耦合方式为容性耦合方式;或者,
第一分支抽头1101与第一谐振腔3101的耦合方式和第二分支抽头1102与第二谐振腔3102的耦合方式不同,第一谐振腔3101与第二谐振腔3102的耦合方式为感性耦合方式。
具体地,上述第一分支抽头1101、第二分支抽头1102、第一谐振腔3101和第二谐振腔3102之间的耦合方式为如下组合中的一种:第一分支抽头1101与第一谐振腔3101的耦合方式和第二分支抽头1102与第二谐振腔3102的耦合方式都为容性耦合方式,第一谐振腔3101与第二谐振腔3102的耦合方式为容性耦合方式;或者,第一分支抽头1101与第一谐振腔3101的耦合方式和第二分支抽头1102与第二谐振腔3102的耦合方式都为感性耦合方式,第一谐振腔3101与第二谐振腔3102的耦合方式为容性耦合方式;或者,第一分支抽头1101与第一谐振腔3101的耦合方式为容性耦合方式,第二分支抽头1102与第二谐振腔3102的耦合方式为感性耦合方式,第一谐振腔3101与第二谐振腔3102的耦合方式为感性耦合方式;或者,第一分支抽头1101与第一谐振腔3101的耦合方式为感性耦合方式,第二分支抽头1102与第二谐振腔3102的耦合方式为容性耦合方式,第一谐振 腔3101与第二谐振腔3102的耦合方式为感性耦合方式。
可以理解的是,对于不同的滤波器,其第一分支抽头、第二分支抽头、第一谐振腔和第二谐振腔之间的耦合方式可以分别选择不同的组合。例如,对于第一滤波器,第一分支抽头1101与第一谐振腔3101的耦合方式和第二分支抽头1102与第二谐振腔3102的耦合方式都为容性耦合方式,第一谐振腔3101与第二谐振腔3102的耦合方式为容性耦合方式;而对于第二滤波器,第一分支抽头1201与第一谐振腔3201的耦合方式为感性耦合方式,第二分支抽头1202与第二谐振腔3202的耦合方式为容性耦合方式,第一谐振腔3201与第二谐振腔3202的耦合方式为感性耦合方式。
可选地,每一个滤波器的第一分支抽头通过传输线与公共抽头相连。具体地,如图1所示,第一滤波器的第一分支抽头1101通过传输线2000与公共抽头1000相连。其中,该传输线的特征阻抗可以为50欧姆,传输线的长度可以为四分之一波长,此处的波长是该多工器的工作频段的中心频率所对应的波长。例如,假设第一滤波器的带宽为925MHz~960MHz,第二滤波器的带宽为880MHz~915MHz,那么对应的该多工器的工作频段的中心频率为920MHz,对应的波长为32.6厘米,对应的传输线的长度为8.15厘米。
本发明实施例通过在第一分支抽头和公共抽头之间引入传输线,能够进一步降低不同的滤波器之间的相互干扰,从而可以进一步降低多工器的调试难度,进一步提升多工器的调试效率。
可选地,为了进一步降低不同的滤波器之间的相互干扰,可以调节上述每一个滤波器中的第一谐振腔与第二谐振腔之间的耦合系数、第一分支抽头与第一谐振腔的耦合系数和第二分支抽头与第二谐振腔的耦合系数,使得:
Figure PCTCN2016086253-appb-000002
Figure PCTCN2016086253-appb-000003
ML1'=ML1          (3)
其中,M12是当第二分支抽头与第二谐振腔没有耦合时第一谐振腔与第二谐振腔之间的耦合系数;ML1是当第二分支抽头与第二谐振腔没有耦合时第一分支抽头与第一谐振腔之间的耦合系数;M12′是当第二分支抽头与第二谐振腔有耦合时第一谐振腔与第二谐振腔之间的耦合系数;ML2′是当第二分支抽头与第二谐振腔有耦合时第二分支抽头与第二谐振腔之间的耦合系数;ML1′是当第二分支抽头与第二谐振腔有耦合时第一分支抽头与第一谐振腔之间的耦合系数。M12和ML1可以通过滤波器综合方法理论计算得到;M12′可以通过如图4所示的双腔耦合仿真获得;ML1′和ML2′可以在将其它谐振腔短路的情况下,通过分别测量第一谐振腔和第二谐振腔的反射时延获得。
具体地,对于如图1所示的第一滤波器,M12是当第二分支抽头1102与第二谐振腔3102没有耦合时第一谐振腔3101与第二谐振腔3102之间的耦合系数,ML1是当第二分支抽头1102与第二谐振腔3102没有耦合时第一分支抽头1101与第一谐振腔3101之间的耦合系数,M12′是当第二分支抽头1102与第二谐振腔3102有耦合时第一谐振腔3101与第二谐振腔3102之间的耦合系数,ML2′是当第二分支抽头1102与第二谐振腔3102有耦合时第二分支抽头1102与第二谐振腔3102之间的耦合系数;ML1′是当第二分支抽头1102与第二谐振腔3102有耦合时第一分支抽头1101与第一谐振腔3101之间的耦合系数。
图5为本发明实施例提供的一种包括两个滤波器的多工器的原理图。图6为本发明实施例提供的一种包括三个滤波器的多工器的原理图。根据图5和图6类推,可以画出包括任意多个滤波器的多工器的原理图。
对于多工器中不同滤波器的空间结构设计,可以设计成其中的两个滤 波器位于空间的同一个平面上;或者,也可以设计成其中的一个滤波器单独位于空间的一个平面上;或者,也可以是上述两种空间结构设计的任意组合。例如,对于一个有七个滤波器的多工器,可以设计成四个平面,其中有三个平面每个平面上都有两个滤波器,另外一个平面上只有一个滤波器;也可以设计成五个平面,对于其中的两个平面,每个平面上都有两个滤波器,对于另外三个平面,每个平面上都只有一个滤波器;也可以设计成7个平面,每个平面上都只有一个滤波器。图7为本发明实施例提供的一种包括三个滤波器的多工器的可能的结构示意图。如图7所示,其中两个滤波器位于空间的同一个平面上,而另外一个滤波器位于空间的另外一个平面上。按照类似的结构设计思路,可以设计出包括任意多个滤波器的多工器。
图8为本发明实施例提供的一种多工器的传输特性和发射特性仿真结果图。图8(a)中第一滤波器的中心频点约为0.905GHz,保持第二滤波器的工作频率不变,将该第一滤波器的中心频点从0.905GHz调整到0.86GHz,如图8(b)所示,第二滤波器的传输特性和该多工器在第二滤波器的工作频率上的反射特性基本不变。图8表明,采用本发明实施例的方案后,调整多工器的第一滤波器的工作频率,对第二滤波器的传输特性和该多工器在第二滤波器的工作频率上的反射特性影响很小,也就是第一滤波器对第二滤波器的干扰很小,从而大大降低了多工器的调试难度,提高了多工器的调试效率。可以理解的是,由于上述第一滤波器和第二滤波器都是采用本发明实施例的技术方案,因此我们也可以得到如下的有益效果:调整多工器的第二滤波器的工作频率,对第一滤波器的传输特性和该多工器在第一滤波器的工作频率上的反射特性影响也很小,也就是第二滤波器对第一滤波器的干扰很小。
本发明实施例还提供了一种设备,该设备包括上述实施例中的多工器。该设备可以是射频单元、基站、用户设备、雷达设备以及其它可能的通信 设备,该设备还可以是测试设备,本发明实施例对此不做限定。
在本发明实施例中,用户设备(User Equipment,UE)可称之为终端(Terminal)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal)等,该用户设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝电话”)、具有移动终端的计算机等,例如,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语音和/或数据。
应理解,在本发明实施例中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
以上对本发明实施例所提供的多工器和设备进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (8)

  1. 一种多工器,其特征在于,包括至少两个滤波器,所述至少两个滤波器中的每一个滤波器都与公共抽头相连,所述每一个滤波器至少包括第一谐振腔、第二谐振腔、第一分支抽头、第二分支抽头和通道抽头,其中,所述第二谐振腔与所述通道抽头直接耦合或者所述第二谐振腔通过一个或多个不同于所述第一谐振腔和所述第二谐振腔的谐振腔与所述通道抽头间接耦合,所述第一谐振腔分别与所述第二谐振腔和所述第一分支抽头耦合,所述公共抽头分别与所述第一分支抽头和所述第二分支抽头相连,所述第二分支抽头与所述第二谐振腔耦合,所述第一分支抽头与所述第一谐振腔的耦合方式为容性耦合方式或感性耦合方式,所述第二分支抽头与所述第二谐振腔的耦合方式为容性耦合方式或感性耦合方式;
    所述第一分支抽头、所述第二分支抽头、所述第一谐振腔和所述第二谐振腔之间的耦合方式为如下组合中的一种:
    所述第一分支抽头与所述第一谐振腔的耦合方式和所述第二分支抽头与所述第二谐振腔的耦合方式相同,所述第一谐振腔与所述第二谐振腔的耦合方式为容性耦合方式;或者,
    所述第一分支抽头与所述第一谐振腔的耦合方式和所述第二分支抽头与所述第二谐振腔的耦合方式不同,所述第一谐振腔与所述第二谐振腔的耦合方式为感性耦合方式。
  2. 根据权利要求1所述的多工器,其特征在于,所述第一分支抽头通过传输线与所述公共抽头相连。
  3. 根据权利要求2所述的多工器,其特征在于,所述传输线的特征阻抗为50欧姆,所述传输线的长度为四分之一波长,所述波长为所述多工器的工作频段的中心频率所对应的波长。
  4. 根据权利要求1-3任一项所述的多工器,其特征在于,所述每一个滤波器中的耦合系数满足以下公式:
    Figure PCTCN2016086253-appb-100001
    Figure PCTCN2016086253-appb-100002
    ML1'=ML1
    其中,M12是当所述第二分支抽头与所述第二谐振腔没有耦合时所述第一谐振腔与所述第二谐振腔之间的耦合系数,ML1是当所述第二分支抽头与所述第二谐振腔没有耦合时所述第一分支抽头与所述第一谐振腔之间的耦合系数,M12′是当所述第二分支抽头与所述第二谐振腔有耦合时所述第一谐振腔与所述第二谐振腔之间的耦合系数,ML2′是当所述第二分支抽头与所述第二谐振腔有耦合时所述第二分支抽头与所述第二谐振腔之间的耦合系数;ML1′是当所述第二分支抽头与所述第二谐振腔有耦合时所述第一分支抽头与所述第一谐振腔之间的耦合系数。
  5. 根据权利要求1-4任一项所述的多工器,其特征在于,所述至少两个滤波器中的两个滤波器位于同一个平面上。
  6. 根据权利要求1-5任一项所述的多工器,其特征在于,所述至少两个滤波器中的一个滤波器单独位于一个平面上。
  7. 一种设备,其特征在于,所述设备包括权利要求1-6任一项所述的多工器。
  8. 根据权利要求7所述的设备,其特征在于,所述设备为射频单元、基站、用户设备中的至少一种。
PCT/CN2016/086253 2016-06-17 2016-06-17 一种多工器和设备 WO2017214982A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/086253 WO2017214982A1 (zh) 2016-06-17 2016-06-17 一种多工器和设备
CN201680086654.8A CN109314294B (zh) 2016-06-17 2016-06-17 一种多工器和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/086253 WO2017214982A1 (zh) 2016-06-17 2016-06-17 一种多工器和设备

Publications (1)

Publication Number Publication Date
WO2017214982A1 true WO2017214982A1 (zh) 2017-12-21

Family

ID=60663881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086253 WO2017214982A1 (zh) 2016-06-17 2016-06-17 一种多工器和设备

Country Status (2)

Country Link
CN (1) CN109314294B (zh)
WO (1) WO2017214982A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113054366A (zh) * 2019-12-27 2021-06-29 深圳市大富科技股份有限公司 一种滤波器及通信设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4768849A (en) * 1986-09-15 1988-09-06 Hicks Jr John W Filter tap for optical communications systems
CN202167596U (zh) * 2011-07-14 2012-03-14 凯镭思通讯设备(上海)有限公司 实现耦合传输零点的滤波器
CN102881973A (zh) * 2011-07-14 2013-01-16 凯镭思通讯设备(上海)有限公司 一种实现传输零点的同轴腔体滤波器
CN104852108A (zh) * 2015-04-29 2015-08-19 上海华为技术有限公司 一种多工器的输入输出装置及多工器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI106584B (fi) * 1997-02-07 2001-02-28 Filtronic Lk Oy Korkeataajuussuodatin
CN103138034A (zh) * 2013-02-28 2013-06-05 上海大学 Sir同轴腔体双通带滤波器
CN104900951B (zh) * 2015-04-08 2018-06-05 华为技术有限公司 介质滤波器和通信设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4768849A (en) * 1986-09-15 1988-09-06 Hicks Jr John W Filter tap for optical communications systems
CN202167596U (zh) * 2011-07-14 2012-03-14 凯镭思通讯设备(上海)有限公司 实现耦合传输零点的滤波器
CN102881973A (zh) * 2011-07-14 2013-01-16 凯镭思通讯设备(上海)有限公司 一种实现传输零点的同轴腔体滤波器
CN104852108A (zh) * 2015-04-29 2015-08-19 上海华为技术有限公司 一种多工器的输入输出装置及多工器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113054366A (zh) * 2019-12-27 2021-06-29 深圳市大富科技股份有限公司 一种滤波器及通信设备

Also Published As

Publication number Publication date
CN109314294A (zh) 2019-02-05
CN109314294B (zh) 2020-03-20

Similar Documents

Publication Publication Date Title
WO2019019809A1 (zh) 一种射频电路及电子设备
CN105264771B (zh) 用于降低集成电路(ic)中的磁耦合的系统、以及相关组件和方法
US20170163237A1 (en) Power combiner/divider using mutual inductance
WO2015035854A1 (zh) 一种金属框天线及终端
CN110854533B (zh) 天线模组和终端
CN103811833B (zh) 应用于超宽带频道和窄带频道的高隔离槽线双工器
WO2019205176A1 (zh) 一种天线装置和终端设备
CN101986456A (zh) 一种具有陷波特性的超宽带滤波器
CN104900948B (zh) 一种多频平衡滤波器/双工器用的槽线耦合馈电带通单元
US9478854B2 (en) Devices and methods for reducing interference between closely collocated antennas
CN103326091B (zh) 一种高选择性、高共模抑制的阶梯阻抗梳状线平衡微带带通滤波器
CN109244616A (zh) 基于耦合微带线的双频不等分滤波功分器
CN103779640B (zh) 微带双通带滤波器
WO2017214982A1 (zh) 一种多工器和设备
CN110165347A (zh) 一种加载开路枝节的高隔离度微带双工器
CN104836008B (zh) 一种频率大范围可重构的功率分配器
CN104241797B (zh) 用于同轴谐振双工器的谐振腔和同轴谐振双工器
CN210926320U (zh) 一种应用于Sub-6GHz频段的滤波偶极子天线
CN208986181U (zh) 一种平面型全向偶极子双工天线
CN107768782B (zh) 基于矩形微带结构的双工器
TWI323051B (en) Dual zero points low-pass filter
CN102255125B (zh) 一种双频窄带带通滤波器
CN104409810A (zh) 基于混合电磁耦合的微带双通带滤波器
CN203760598U (zh) 应用于超宽带频道和窄带频道的高隔离槽线双工器
CN203326078U (zh) 用于同轴谐振双工器的谐振腔和同轴谐振双工器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16905096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16905096

Country of ref document: EP

Kind code of ref document: A1