WO2017214860A1 - 一种解调及译码的方法和设备 - Google Patents

一种解调及译码的方法和设备 Download PDF

Info

Publication number
WO2017214860A1
WO2017214860A1 PCT/CN2016/085751 CN2016085751W WO2017214860A1 WO 2017214860 A1 WO2017214860 A1 WO 2017214860A1 CN 2016085751 W CN2016085751 W CN 2016085751W WO 2017214860 A1 WO2017214860 A1 WO 2017214860A1
Authority
WO
WIPO (PCT)
Prior art keywords
bits
symbols
group
information
symbol
Prior art date
Application number
PCT/CN2016/085751
Other languages
English (en)
French (fr)
Inventor
张昌明
蔡梦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/085751 priority Critical patent/WO2017214860A1/zh
Priority to CN201680077493.6A priority patent/CN108432168B/zh
Publication of WO2017214860A1 publication Critical patent/WO2017214860A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • the present invention relates to the field of modulation and coding technologies for mobile communications, and in particular, to a method and apparatus for demodulation and decoding.
  • Coding and modulation are two of the most basic concepts in the field of communications.
  • the coding technology introduces some detectable and identifiable redundant information on the transmitted useful information. After channel transmission and noise influence, the receiving end can use the redundant information to detect and correct, and recover the correct original transmission information.
  • channel coding is to increase the system bandwidth to obtain the coding gain.
  • Modulation maps binary bit information into symbols for transmission, which enables conversion between Signal-to-Noise Ratio (SNR) and bandwidth.
  • SNR Signal-to-Noise Ratio
  • the information transmission rate can be increased by increasing the modulation order, achieving the same effect of low-order modulation in a wideband system.
  • SNR Signal-to-Noise Ratio
  • TCM Trellis Coded Modulation
  • TCM Transmission Control Channel
  • BICM Bit-Interleaved Coded Modulation
  • BICM-ID Bit-Interleaved Coded Modulation with Iterative Decoding
  • the embodiment of the present invention provides a method and a device for demodulating and decoding, which solves that the demodulated information of the first demodulated bit cannot be used for demodulation of other bits in the same symbol, and the iterative process cannot be fully utilized. Get the performance gains.
  • a demodulation and decoding method comprising: receiving a sequence of symbols, the sequence of symbols comprising N symbols, the bits in each symbol belong to K codewords, and the mth bit in each symbol Belong to the same codeword, where N, K and m are positive integers, K>1; the first set of bits in the first symbol are solved according to a priori information of each bit in the first symbol Tuning, obtaining first soft information of the first group of bits in the first symbol, and obtaining the first symbol according to the first soft information of the first group of bits and the a priori information of the corresponding bit in the first symbol a second soft information of a set of bits, wherein the first set of bits includes bits belonging to a first codeword; according to a manner of processing the first set of bits in the first symbol, for the second to Nth symbols The first group of bits is processed to obtain second soft information of the first group of bits of the N symbols; and the second soft information of the first group of bits of the N symbols is decoded
  • the method provided by the embodiment of the invention can enable the demodulation information of the first demodulated bit to be used for demodulation of other bits in the same symbol, fully utilizing the performance gains obtained by the iterative process, and improving the decoding performance of the system.
  • the method further includes: according to the first soft information of the second group of bits in the first symbol and the a priori information of the corresponding bit, Obtaining second soft information of the second group of bits in the first symbol; processing the second group of bits in the second to Nth symbols according to the processing manner of the second group of bits in the first symbol, to obtain N Second soft information of the second set of bits in the symbol; decoding the second soft information of the second set of bits of the N symbols to obtain third soft information of the second set of bits of the N symbols.
  • the method further includes: performing, according to the third soft information of the second group of the N symbols Corresponding to the second soft information of the bit, obtaining first outer information of the second set of bits of the N symbols; according to the first outer information of the first set of bits and the second set of bits in the first symbol, and the first symbol The a priori information of the other bits, demodulating the third group of bits in the first symbol to obtain first soft information of the third group of bits in the first symbol, wherein the third group of bits includes belonging to the third The bits of the codeword.
  • the first symbol is obtained according to the first soft information of the first group of bits in the first symbol and the a priori information of the corresponding bit
  • the second soft information of the first set of bits includes: a first soft information of the first set of bits in the first symbol minus a prior information of the corresponding bit, to obtain a first set of bits in the first symbol
  • the third soft information of the first group of bits in the symbols is subtracted from the second soft information of the corresponding bits, and the first outer information of the first group of bits in the N symbols is obtained.
  • the a priori information for each bit is The log likelihood ratio of the probability that the bit is 0 or 1; for the first iteration, each bit The a priori information is the first outer information of the corresponding bit obtained in the previous iteration.
  • a sum of the number of bits of the Lth group of the N symbols is an integer multiple of a codeword length, where L is not greater than K A positive integer that guarantees that at least one complete codeword is included in the decoded bit.
  • the second soft information of the first group of the N symbols is decoded, and the first group of the N symbols is obtained.
  • the third soft information includes: deinterleaving the second soft information of the first group of the N symbols, and obtaining fourth soft information of the first group of the N symbols, where the N symbols are The fourth soft information of a group of bits is decoded to obtain third soft information of the first group of bits of the N symbols.
  • the third soft information and the corresponding bit according to the first group of the N symbols includes: the third soft information of the first set of bits of the N symbols minus the second soft information of the corresponding bit, to obtain N symbols.
  • the second outer information of the first group of bits is interleaved with the second outer information of the first group of bits of the N symbols to obtain first outer information of the first group of bits of the N symbols.
  • the method further includes: The third soft information of the first to Kth groups of the N symbols are respectively determined to obtain K-path decision information; and the K-way decision information is parallel-converted to recover the first bit sequence.
  • a code modulation method comprising: receiving a first bit sequence, performing a serial-to-parallel conversion process to obtain a K-way bit sequence, wherein K is a positive integer;
  • the bit sequences are respectively encoded to obtain a K-way codeword sequence; at least one bit of each of the K-way codeword sequences is modulated to obtain a symbol, and the symbol is transmitted.
  • the method further includes: The K-way codeword sequences are respectively interleaved to obtain a K-channel interleaved codeword sequence, which can better utilize the error correction capability of the coding technique.
  • the bits in the symbol belong to K different codeword sequences.
  • a demodulation and decoding device including: a receiver, a demodulator, a first processor, a decoder, and a second processor, where
  • the receiver is configured to receive a sequence of symbols, and send the sequence of symbols to the demodulator, where the sequence of symbols includes N symbols, and bits in each symbol belong to K codewords, each The mth bit in the symbol belongs to the same codeword, N, K and m are positive integers, K>1;
  • the demodulator is configured to receive the symbol sequence from the receiver, and demodulate the first group of bits in the first symbol according to a prior information of each bit in the first symbol to obtain a first First soft information of the first group of bits in the symbol; demodulating the first group of bits in the second to Nth symbols according to a demodulation manner of the first group of bits in the first symbol to obtain N symbols Transmitting, by the first soft information of the first group of bits, the first soft information of the first group of the N symbols and the a priori information of the first group of the N symbols to the first processor, where Said first set of bits comprising bits belonging to the first codeword;
  • the first processor configured to receive, from the demodulator, first soft information of a first group of bits of the N symbols and a priori information of a first group of bits of the N symbols, according to the The first soft information of the first group of bits and the a priori information of the corresponding bits, the second soft information of the first group of bits of the N symbols, and the second of the first group of the N symbols Soft information is sent to the decoder and the second processor;
  • the decoder is configured to receive second soft information of a first group of bits of the N symbols from the first processor, and translate second soft information of a first group of bits of the N symbols a third soft information of the first group of bits of the N symbols, and a third soft information of the first group of the N symbols is sent to the second processor;
  • the second processor is configured to receive, from the decoder, third soft information of a first group of bits of the N symbols, and receive, by the first processor, a first group of bits of the N symbols.
  • the second soft information according to the third soft information of the first group of bits and the second soft information of the corresponding bits, obtain the first outer information of the first group of bits of the N symbols, and the N First outer information of the first group of bits in the symbol is sent to the demodulator and the first processor;
  • the demodulator is further configured to receive, from the second processor, a first group ratio of the N symbols a first first outer information, according to the first outer information of the first group of bits in the first symbol, and the a priori information of other bits in the first symbol, performing the second group of bits in the first symbol Demodulation yields first soft information of a second set of bits in the first symbol, the second set of bits including bits belonging to the second codeword.
  • the device provided by the embodiment of the invention can use the demodulated information of the first demodulated bit for demodulation of other bits in the same symbol, fully utilizes the performance gain that can be obtained by the iterative process, and improves the decoding performance of the system.
  • the demodulator is further configured to perform the second to the Nth according to a demodulation manner of the second group of bits in the first symbol.
  • Demodulating a second set of bits in the symbol to obtain first soft information of the second set of bits of the N symbols, and first information of the second set of bits of the N symbols and the second set of N symbols Sending a bit of a priori information to the first processor;
  • the first processor further configured to receive, from the demodulator, first soft information of the second set of bits of the N symbols and the N The a priori information of the second group of bits in the symbol, the second soft information of the second group of the N symbols is obtained according to the first soft information of the second group of the N symbols and the a priori information of the corresponding bit Transmitting, to the decoder and the second processor, second soft information of the second set of bits of the N symbols;
  • the decoder is further configured to receive from the first processor Performing second soft information of the second group of
  • the second processor is further configured to receive the Third soft information of the second set of bits of the N symbols, receiving, by the first processor, second soft information of the second set of bits of the N symbols, according to the second set of bits of the N symbols The third soft information and the second soft information of the corresponding bit, obtain the first outer information of the second group of the N symbols, and send the first outer information of the second group of the N symbols to the demodulation
  • the demodulator is further configured to receive, from the second processor, first outer information of the second set of bits of the N symbols, according to the first set of bits and the second set of bits in the first symbol
  • the first outer information, and the a priori information of other bits in the first symbol solve the third set of bits in the first symbol Tuning, obtaining first soft information of a third set of bits in the first symbol, wherein the third set of bits includes bits belonging to the third codeword.
  • the first processor is specifically configured to: subtract the corresponding bit from the first soft information of the first group of bits in the first symbol The a priori information, the second soft information of the first group of bits in the first symbol is obtained; the second processor is specifically configured to: subtract the third soft information of the first group of the N symbols The second soft information of the bits obtains the first outer information of the first set of bits of the N symbols.
  • the a priori information of each bit is The log likelihood ratio of the probability that the bit is 0 or is 1; when not the first iteration, the a priori information of each bit is the first outer information of the corresponding bit obtained in the previous iteration.
  • a sum of the number of bits of the Lth group of the N symbols is an integer multiple of a codeword length, where L is not greater than K A positive integer that guarantees that at least one complete codeword is included in the decoded bit.
  • the device further includes: a deinterleaver, configured to receive, by the first processor, a first group of bits of the N symbols Second soft information, deinterleaving the second soft information of the first group of bits in the N symbols, to obtain fourth soft information of the first group of bits in the N symbols, and the first group of the N symbols a fourth soft information of the bit is sent to the decoder and the second processor;
  • the decoder is further configured to receive, from the deinterleaver, a fourth of the first set of bits of the N symbols Soft information, decoding fourth soft information of the first group of bits of the N symbols to obtain third soft information of the first group of bits of the N symbols;
  • the second processor is further used for
  • the deinterleaver receives the fourth soft information of the first group of the N symbols, and obtains N symbols according to the third soft information of the first group of the N symbols and the fourth soft information of the corresponding bit.
  • the second outer information of the first set of bits is further configured to receive, by the first processor, a
  • the device further includes: an interleaver, configured to receive the N The second outer information of the first group of bits in the symbol is interleaved with the second outer information of the first group of bits of the N symbols to obtain first outer information of the first group of bits of the N symbols.
  • the device further includes: a determiner and a parallel-to-serial converter,
  • the determiner is configured to receive third soft information of the first to Kth groups of the N symbols from the decoder after the last iteration is completed, for the first to the N symbols
  • the third soft information of the Kth group of bits is respectively determined, and the K way decision information is obtained, and the K way decision information is sent to the parallel-to-serial converter; the parallel-to-serial converter is used from the decider Receiving the K-way decision information, performing parallel-to-serial conversion processing on the K-way decision information, and recovering the first bit sequence.
  • a fourth aspect provides a code modulation device, including: a serial to parallel converter, an encoder, a modulator, and a transmitter, wherein the serial to parallel converter is configured to receive a first bit sequence, Performing serial-to-parallel conversion on the first bit sequence to obtain a K-way bit sequence, and transmitting the K-way bit sequence to the encoder, where K is a positive integer; the encoder is configured to convert from the serial-to-serial conversion Receiving the K-way bit sequence, respectively encoding the K-way bit sequence to obtain a K-way codeword sequence, and transmitting the K-way codeword sequence to the modulator; the modulator for The encoder receives the K-way codeword sequence, modulating at least one bit in each codeword sequence to obtain a symbol, and transmitting the symbol to a transmitter; the transmitter is configured to A modulator receives the symbol and transmits the symbol.
  • the device further includes: an interleaver, configured to receive a K-way codeword sequence from the encoder, and the K-way codeword sequence Performing interleaving separately to obtain a K-way interleaved codeword sequence, and transmitting the K-way interleaved codeword sequence to the modulator; the modulator is further configured to receive the K-channel from the interleaver The interleaved codeword sequence is modulated by at least one bit in each interleaved codeword sequence to obtain a symbol.
  • the bits in the symbol belong to K different codeword sequences.
  • a fifth aspect a modulation and demodulation system, comprising: the demodulation and decoding device according to any one of the foregoing third aspect or the third aspect, and the fourth or fourth aspect as described above A coded modulation device as described in any of the alternatives.
  • the method provided by the embodiment of the present invention can use the demodulated information of the first demodulated bits for the same
  • the demodulation of other bits in the symbol makes full use of the performance gains obtained by the iterative process and improves the decoding performance of the system.
  • Figure 1 is a structural diagram of a BICM-ID system
  • FIG. 2 is a diagram of a demodulation and decoding process for a single iteration of a BICM-ID system
  • FIG. 3 is a flow chart of a method according to an embodiment of the present invention.
  • FIG. 4 is a flow chart of a method according to another embodiment of the present invention.
  • FIG. 5 is a diagram showing a process of demodulation and decoding in a single iteration according to another embodiment of the present invention.
  • FIG. 6 is a comparison diagram of BER performance of another embodiment of the present invention and a conventional Gray code mapping and BICM-ID scheme
  • Figure 7 is a structural diagram of a device according to an embodiment of the present invention.
  • Figure 8 is a structural diagram of a device according to another embodiment of the present invention.
  • Figure 9 is a block diagram of a device according to another embodiment of the present invention.
  • Coding and modulation are the two most basic technologies in the field of communication. The goal is to realize information transmission with high efficiency. In order to adapt to the development of communication technology and meet the needs of large-capacity transmission, it is necessary to jointly design the two. Among them, the coding technique can detect and correct a single error bit or a bit string that is not too long, and cannot correct a long error bit string. On a Rayleigh channel such as land mobile communication, bit errors often occur in a string. This is because the deep fading point with a long duration will affect the successive strings, so the interleaving technique is needed.
  • the interleaving technique allows successive bits in a message to be transmitted in a non-sequential manner, even if a string of errors occurs during transmission, and becomes a single error bit or a short length when the receiver reverts to a successive bit string of messages.
  • the error bit string, and then the error correction function of the coding technique is used to correct the error, and the original message can be recovered.
  • the BICM technology formed by combining the interleaving technology, the coding technology and the modulation technology has the advantages of high spectrum utilization, strong structural flexibility, low implementation complexity and excellent decoding performance, and is widely used.
  • information iteration can be introduced in the BICM system, and the BICM system that introduces the information iteration is the BICM-ID system, and its structure is as shown in FIG. 1 .
  • the BICM-ID system since the bits in the same symbol are usually from the same codeword, and different codewords and different symbols are independent of each other, each bit information obtained by demodulation of the previous codeword cannot be used. Demodulation of the latter codeword that does not belong to the same symbol.
  • bit sequence coded by the source is 16 times in length, one symbol includes 4 bits, and 4 code words are processed in one iteration, and the BICM-ID scheme performs demodulation and decoding processes in a single iteration. as shown in picture 2. It can be seen from the figure that for a single iteration, the four codewords are completely independent, and the demodulated information of the first demodulated bits cannot be used for demodulation of other bits of the same symbol in time, only in different iterations. The demodulation information is passed between and the iterative process is not fully utilized to obtain performance gains.
  • the embodiment of the present invention provides a code modulation method. As shown in FIG. 3, the method may include:
  • the K-bit sequence is separately encoded to obtain a K-way codeword sequence.
  • the coding is to add some detectable and identifiable redundant information on each transmitted bit sequence, and is used for detecting and correcting the redundant information at the receiving end, and the coding mode can be adjusted according to requirements, and can be a convolutional code.
  • the Low Density Parity Check Code (LDPC), the Turbo code, and the like are not limited in this embodiment of the present invention.
  • the method further includes: interleaving the K-way codeword sequences separately, and obtaining the K-way interleaved Codeword sequence.
  • the interleaving technique is to confuse the sequence of the codeword sequence, so that successive bits of the codeword sequence are transmitted in a non-sequential manner, even if a string of bit errors occurs during transmission, after the deinterleaving at the receiving end, it will change. Errors that are single or short in length can make the error correction function of the coding technology work better.
  • the embodiment of the present invention can ensure that the bits included in the symbol are from K different codeword sequences.
  • one bit is modulated in each of the K-way codeword sequences to obtain a symbol, and each bit in the symbol. All of them come from different codewords.
  • the latest demodulation information of each bit in the symbol can be utilized, which is beneficial for the receiving end to make full use of the iterative process to obtain performance improvement.
  • the modulation mode may be selected as Phase Shift Keying (PSK), Amplitude Shift Keying (ASK), and Quadrature Amplitude Modulation (QAM), etc. This is not limited.
  • PSK Phase Shift Keying
  • ASK Amplitude Shift Keying
  • QAM Quadrature Amplitude Modulation
  • the embodiment of the invention provides a demodulation and decoding method. As shown in FIG. 4, the method may include:
  • the first soft information of the first group of bits and the a priori information of the corresponding bits in the first symbol are used to obtain second soft information of the first group of bits in the first symbol.
  • the first group of bits includes bits belonging to the first codeword, and the a priori information of each bit is determined according to the distribution in each of ⁇ 0, 1 ⁇ , and may be a probability of 0 or 1 for each bit.
  • Logarithmic-Likelihood Ratio preferably, it can be assumed that each bit is moderately distributed in ⁇ 0, 1 ⁇ .
  • the soft information of the bit can also be expressed as a log likelihood ratio
  • the demodulation algorithm can be selected as a maximum a posteriori probability (MAP), a logarithmic MAP (Logarithmic MAP, LOG-MAP). Or maximum logarithmic domain maximum posterior probability (Maximum-LOG-MAP, MAX-LOG-MAP) and the like, which are not limited by the embodiment of the present invention.
  • the manner of obtaining the second soft information of the first group of bits in the first symbol is specifically: the first soft information of the first group of bits in the first symbol is subtracted from the a priori information of the corresponding bit to obtain the first The second soft information of the first set of bits in the symbol.
  • the sum of the number of bits of the first group of bits in the N symbols is an integer multiple of the length of the codeword.
  • the manner of obtaining the first outer information of the first group of the N symbols is specifically: the third soft information of the first group of bits in the N symbols minus the second soft information of the corresponding bit, to obtain N symbols.
  • the second set of bits includes bits belonging to the second codeword.
  • the method further includes: obtaining, according to the first soft information of the second group of bits in the first symbol and the a priori information of the corresponding bit, the second group of bits in the first symbol. Second soft information; processing the second group of bits in the second to Nth symbols according to the processing manner of the second group of bits in the first symbol, to obtain second soft information of the second group of bits in the N symbols And decoding the second soft information of the second group of bits of the N symbols to obtain third soft information of the second group of bits of the N symbols.
  • the method further includes: obtaining, according to the third soft information of the second set of bits of the N symbols and the second soft information of the corresponding bits, the first outer information of the second set of bits of the N symbols; The first set of bits in a symbol and the first outer information of the second set of bits, and the a priori information of other bits in the first symbol, demodulate the third set of bits in the first symbol to obtain the first The first soft information of the third set of bits in the symbols, and the third set of bits includes the bits belonging to the third codeword.
  • the group H is demodulated, the first outer information of the H-1th group bit in the first symbol and the a priori information of other bits in the first symbol are used in the first symbol.
  • the group H bits are demodulated to obtain the first soft information of the group H bits in the first symbol, and the group H bits include the bits belonging to the third code word, the subsequent operations are described in the previous embodiment, No longer.
  • demodulation information of a group of bits demodulated first is used for demodulation of other bits in the same symbol, and the performance gains obtained by the iterative process are fully utilized, and the decoding performance of the system is improved.
  • each set of bits contains a number of bits of one.
  • the codeword length of the bit sequence is 16 and one symbol contains 4 bits, and 4 codewords are processed in one iteration.
  • the demodulation and decoding process of the single iteration of the embodiment of the present invention is as shown in FIG. 5.
  • the four bits of the same symbol are from different codewords
  • the first group of bits is the first bit of each symbol
  • the first bit of the 16 symbols constitutes the first codeword.
  • the updated first outer information will be obtained. Since the first bit in the first codeword and the second codeword belong to the same symbol, the first codeword is The first outer information of the first bit can be used for demodulation of the first bit in the second codeword.
  • the first outer information of the second to the 16th bits in the first codeword is also available respectively.
  • the demodulation of the 2nd to 16th bits in the second codeword further improves the accuracy of the decoding.
  • the sum of the number of bits of the Lth group of the N symbols is an integer multiple of the length of the codeword, where L is a positive integer not greater than K.
  • the decoding is to parse the complete codeword, so the number of bits to be decoded together must be an integer multiple of the length of the codeword, that is, the number of bits of any one of the N symbols must be a code.
  • An integer multiple of the length of the word at least equal to the length of one codeword.
  • the a priori information of each bit is a log likelihood ratio of a probability that each bit is 0 or 1; when not the first iteration, each bit The a priori information is the first outer information of the corresponding bit obtained in the previous iteration.
  • the second soft information of the first group of bits in the N symbols is decoded, and the third soft information of the first group of bits in the N symbols is obtained, which specifically includes: The second soft information of the first group of bits is deinterleaved to obtain fourth soft information of the first group of bits of the N symbols, and the fourth soft information of the first group of bits of the N symbols is decoded to obtain N The third soft information of the first set of bits in the symbol.
  • the first outer information of the first group of bits of the N symbols is specifically included: the first group of the N symbols
  • the third soft information of the bit is subtracted from the second soft information of the corresponding bit, and the second outer information of the first group of bits in the N symbols is obtained, and the second outer information of the first group of bits in the N symbols is interleaved to obtain N.
  • the interleaving technique is to confuse the sequence of the codeword sequence, so that successive bits of the codeword sequence are transmitted in a non-sequential manner, even if a string of bit errors occurs during transmission, after the deinterleaving at the receiving end, it will change. Errors that are single or short in length can make the error correction function of the coding technology work better.
  • the method further includes: determining, respectively, the third soft information of the first to the Kth group of the N symbols to obtain the K-path decision information. And performing the parallel conversion of the K-way decision information to recover the first bit sequence.
  • the condition of the iteration termination may be the number of times of the specified iteration or the set of the iteration convergence condition, and the like.
  • AWGN Additive White Gaussian Noise
  • the energy per bit to noise power spectral density ratio (Eb/N0) is only increased within 0.1 dB, and the difference of Eb/N0 under Gray code mapping is about 2.2 dB, at Eb/N0.
  • the BICM-ID and the inventive scheme have performance gains relative to the Gray code mapping.
  • the present invention can achieve a performance gain of about 2.0 dB with respect to Gray code mapping.
  • the present invention introduces a packet mechanism, different groups of bits can transmit information for demodulation in time in the same iteration.
  • the embodiment of the present invention has a BER of 10E-6. It has a performance gain of about 0.5 dB.
  • the method provided by the embodiment of the present invention introduces a grouping mechanism on the basis of BICM-ID.
  • the demodulation and decoding results of each group of bits can be timely fed back to other group bits for demodulation, making full use of The performance gain brought by the iteration improves the decoding performance of the system.
  • An embodiment of the present invention provides a device for code modulation.
  • the device may include: a serial to parallel converter 701, an encoder 702, a modulator 703, and a transmitter 704, where
  • the serial to parallel converter 701 is configured to receive the first bit sequence, perform serial-to-parallel conversion on the first bit sequence, obtain a K-way bit sequence, and send the K-way bit sequence to the encoder 702.
  • the encoder 702 is configured to receive a K-way bit sequence from the serial-to-parallel converter 701, separately encode the K-way bit sequence, obtain a K-way codeword sequence, and send the K-way codeword sequence to the modulator 703;
  • the coding is to add some detectable and identifiable redundant information on each transmitted bit sequence, and is used for detecting and correcting the redundant information at the receiving end, and the coding mode can be adjusted according to requirements, and can be a convolutional code.
  • the LDPC code, the Turbo code, and the like are not limited in this embodiment of the present invention.
  • the modulator 703 is configured to receive a K-way codeword sequence from the encoder 702, and modulate at least one bit in each codeword sequence to obtain a symbol, and send the symbol to the transmitter 704.
  • the modulation mode may be selected as PSK, ASK, and QAM, etc., which is not limited in this embodiment of the present invention.
  • the device further includes: an interleaver 705, configured to receive a K-way codeword sequence from the encoder 702, and separately interleave the K-way codeword sequence to obtain a K-way interleaved code. a sequence of words, the K-way interleaved codeword sequence is sent to the modulator 703; the modulator 703 is further configured to receive the K-way interleaved codeword sequence from the interleaver 705, after each interleaving At least one bit of each of the codeword sequences is modulated to obtain a symbol.
  • an interleaver 705 configured to receive a K-way codeword sequence from the encoder 702, and separately interleave the K-way codeword sequence to obtain a K-way interleaved code.
  • the interleaving technique is to confuse the sequence of the codeword sequence, so that successive bits of the codeword sequence are transmitted in a non-sequential manner, even if a string of bit errors occurs during transmission, after the deinterleaving at the receiving end, it will change. Errors that are single or short in length can make the error correction function of the coding technology work better.
  • a transmitter 704 is configured to receive a symbol from the modulator 703 and transmit the symbol.
  • the embodiment of the present invention can ensure that the bits included in the symbol are from K different codeword sequences.
  • one bit is modulated in each of the K-way codeword sequences to obtain a symbol, and each bit in the symbol. All of them come from different codewords.
  • the latest demodulation information of each bit in the symbol can be utilized, which is beneficial for the receiving end to make full use of the iterative process to obtain performance improvement.
  • An embodiment of the present invention provides a device for demodulation and decoding, as shown in FIG. 8, a receiver 801, a demodulator 802, a first processor 803, a decoder 804, and a second processor 805.
  • the receiver 801 is configured to receive a sequence of symbols and send the sequence of symbols to the demodulator 802.
  • the symbol sequence includes N symbols, and the bits in each symbol belong to K codewords, and the mth bit in each symbol belongs to the same codeword, and N, K, and m are positive integers, K> 1.
  • a demodulator 802 configured to receive the sequence of symbols from the receiver 801, and demodulate the first group of bits in the first symbol according to a prior information of each bit in the first symbol to obtain a first symbol.
  • First soft information of the first set of bits demodulating the first set of bits in the second to Nth symbols according to a demodulation manner of the first set of bits in the first symbol, to obtain a first of the N symbols.
  • the first soft information of the group bits is sent to the first processor 803 by the first soft information of the first group of bits and the a priori information of the first group of bits of the N symbols.
  • the first group of bits includes bits belonging to the first codeword; the a priori information of each bit is determined according to the distribution in each of ⁇ 0, 1 ⁇ , and may be a probability of 0 or 1 for each bit.
  • the LLR preferably, can be assumed to be moderately distributed over ⁇ 0, 1 ⁇ .
  • the sum of the number of bits of the first set of bits in the N symbols is an integer multiple of the length of the codeword.
  • the soft information of the bit can be generally expressed as a log likelihood ratio
  • the demodulation algorithm can be selected as MAP, LOG-MAP, or MAX-LOG-MAP, etc., which is not limited in this embodiment of the present invention.
  • the first processor 803 is configured to receive, from the demodulator 802, a first group of bits of the N symbols. a soft information and a priori information of the first group of bits in the N symbols, according to the first soft information of the first group of bits in the N symbols and the a priori information of the corresponding bits, obtaining the first group of bits of the N symbols.
  • the second soft information transmits the second soft information of the first group of bits of the N symbols to the decoder 804 and the second processor 805.
  • the first processor 803 is specifically configured to: subtract the a priori information of the corresponding bit from the first soft information of the first group of bits in the first symbol, to obtain the first symbol.
  • the decoder 804 is configured to receive, by the first processor 803, second soft information of the first group of bits of the N symbols, and decode the second soft information of the first group of bits of the N symbols to obtain N symbols.
  • the third soft information of the first group of bits transmits the third soft information of the first group of bits of the N symbols to the second processor 805.
  • a second processor 805 configured to receive, by the decoder, third soft information of the first group of bits of the N symbols, and receive, by the first processor 803, second soft information of the first group of bits of the N symbols, according to the N
  • the third soft information of the first group of bits and the second soft information of the corresponding bit obtain the first outer information of the first group of bits of the N symbols, and the first outer information of the first group of bits of the N symbols It is sent to the demodulator 802 and the first processor 803.
  • the second processor 805 is specifically configured to: subtract the second soft information of the first set of bits of the N symbols from the second soft information of the corresponding bit, to obtain the first outer of the first set of bits of the N symbols. information.
  • the first 802. The a priori information of the other bits, demodulating the second set of bits in the first symbol to obtain first soft information of the second set of bits in the first symbol, wherein the second set of bits includes belonging to the second The bits of the codeword.
  • the demodulator 802 is further configured to demodulate the second group of bits in the second to Nth symbols according to a demodulation manner of the second group of bits in the first symbol. Obtaining first soft information of the second group of bits of the N symbols, and transmitting, to the first processor 803, the first soft information of the second group of bits and the a priori information of the second group of the N symbols ;
  • the first processor 803 is further configured to receive, from the demodulator 802, a second group of bits of the N symbols.
  • the first soft information and the a priori information of the second group of the N symbols according to the first soft information of the second group of the N symbols and the a priori information of the corresponding bits, obtaining the second group of bits of the N symbols
  • the second soft information, the second soft information of the second set of bits of the N symbols is sent to the decoder 804 and the second processor 805;
  • the decoder 804 is further configured to receive, by the first processor 803, second soft information of the second set of bits of the N symbols, and decode the second soft information of the second set of bits of the N symbols to obtain N
  • the third soft information of the second set of bits in the symbol sends the third soft information of the second set of bits of the N symbols to the second processor 805.
  • the second processor 805 is further configured to receive third soft information of the second set of bits of the N symbols from the decoder 804, and receive the second softness of the second set of bits of the N symbols from the first processor 803.
  • Information according to the third soft information of the second group of bits and the second soft information of the corresponding bits, obtain the first outer information of the second group of bits of the N symbols, and the second group of bits of the N symbols
  • the first external information is sent to the demodulator 802 and the first processor 803;
  • the demodulator 802 is further configured to receive, by the second processor, first outer information of the second set of bits of the N symbols, according to the first outer information of the first set of bits and the second set of bits of the first symbol, and The a priori information of the other bits in the first symbol demodulates the third group of bits in the first symbol to obtain the first soft information of the third group of bits in the first symbol.
  • the third set of bits includes bits belonging to the third codeword.
  • demodulation information of a group of bits demodulated first is used for demodulation of other bits in the same symbol, and the performance gains obtained by the iterative process are fully utilized, and the decoding performance of the system is improved.
  • each set of bits contains a number of bits of one.
  • the sum of the number of bits of the Lth group of the N symbols is an integer multiple of the length of the codeword, where L is a positive integer not greater than K.
  • the a priori information of each bit is a log likelihood ratio of a probability that each bit is 0 or 1; when not the first iteration, each bit The a priori information is the first outer information of the corresponding bit obtained in the previous iteration.
  • the first processor 803 is further configured to receive the first external information of the first group of the N symbols from the second processor 804, according to the N
  • the first soft information of the first set of bits in the symbol and the first soft message of the corresponding bit in the previous iteration The second soft information of the first set of bits of the N symbols is obtained.
  • the device further includes: a deinterleaver 806, configured to receive, by the first processor 803, second soft information of the first group of bits of the N symbols, where the N symbols are The second soft information of the set of bits is deinterleaved to obtain fourth soft information of the first set of bits of the N symbols, and the fourth soft information of the first set of bits of the N symbols is sent to the decoder 804 and the second
  • the processor 805 is further configured to receive fourth soft information of the first group of bits of the N symbols from the deinterleaver 806, and decode fourth soft information of the first group of bits of the N symbols.
  • the second processor 805 is further configured to receive fourth soft information of the first group of bits of the N symbols from the deinterleaver 806, according to the N symbols
  • the third soft information of the set of bits and the fourth soft information of the corresponding bits obtain the second outer information of the first set of bits of the N symbols.
  • the device further includes: an interleaver 807, configured to receive, from the second processor 805, second outer information of the first group of bits of the N symbols, and second outer information of the first group of bits of the N symbols Interleaving is performed to obtain first outer information of the first group of bits of the N symbols.
  • an interleaver 807 configured to receive, from the second processor 805, second outer information of the first group of bits of the N symbols, and second outer information of the first group of bits of the N symbols Interleaving is performed to obtain first outer information of the first group of bits of the N symbols.
  • the device further includes: a decider 808 and a parallel-serial converter 809,
  • the determiner 808 is configured to receive, after the last iteration, the third soft information of the first to Kth groups of the N symbols from the decoder 804, and the first to the Kth bits of the N symbols.
  • the three soft information are respectively judged, the K way decision information is obtained, and the K way decision information is sent to the parallel string converter 809;
  • the parallel-serial converter 809 is configured to receive the K-way decision information from the decider 808, perform parallel-to-serial conversion processing on the K-way decision information, and recover the first bit sequence.
  • the condition of the iteration termination may be the number of times of the specified iteration or the set of the iteration convergence condition, and the like.
  • the demodulation and decoding device provided by the embodiment of the present invention and the demodulation and decoding device of the BICM-ID system are both demodulated in units of bits, so the calculation amount is consistent.
  • FIG. 9 is a schematic diagram of a demodulation and decoding apparatus according to an embodiment of the present invention.
  • each function is sequentially executed, and the decoder 804 is The device such as the decider 808, the interleaver 807 and the like perform the same function for each group of bits, so that only one device can perform demodulation and decoding functions for each device, and only after the iteration is completed, the decider 808 is unified.
  • the decision result of each group of bits is sent to the parallel-to-serial converter 809 in parallel, and other devices are serially connected. Therefore, the embodiment of the present invention does not add additional hardware resource overhead compared with the BICM-ID system. .
  • the embodiment of the present invention provides a modem system comprising: the demodulation and decoding device according to any one of claims 13 to 21, and the code modulation device according to any one of claims 22-24.
  • the system provided by the embodiment of the invention can use the demodulated information of a group of bits demodulated first for demodulation of other bits in the same symbol, fully utilizing the performance gains obtained by the iterative process, and improving the decoding of the system. performance.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the device is only a logical function division.
  • there may be another division manner for example, multiple devices or components may be combined or Can be integrated into another A system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or device, or an electrical, mechanical or other form of connection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本发明公开了一种解调译码方法和设备,涉及移动通信的调制和编码领域,包括:接收符号序列,对第一个符号中的第一组比特进行解调,根据第一组比特的解调结果和先验信息,得到第一组比特的第二软信息,第一组比特包括属于第一个码字的比特;以此类推,得到N个符号中第一组比特的第二软信息,对N个符号中第一组比特的第二软信息进行译码,根据译码结果和第二软信息,得到N个符号中第一组比特的第一外信息,其中,第一组比特的第一外信息可以用于第二组比特的解调,第二组比特包括属于第二个码字的比特。本发明实施例中,先解调比特的第一外信息可以用于同一符号中其他比特的解调,充分利用了迭代过程来获得性能收益。

Description

一种解调及译码的方法和设备 技术领域
本发明涉及移动通信的调制和编码技术领域,特别涉及一种解调及译码的方法和设备。
背景技术
编码和调制是通信领域中两个最基本的概念。编码技术通过在发送的有用信息上引入一些可检测可识别的冗余信息,经过信道传输及噪声影响之后,在接收端可以利用冗余信息进行检测和纠正,恢复出正确的原始发送信息。本质上,信道编码是以增加系统带宽来获得编码增益。调制将二进制比特信息映射成符号进行传输,其可以实现信噪比(Signal-to-Noise Ratio,SNR)与带宽之间的转换。在频带受限的系统中,通过提高调制阶数能够增大信息传输速率,达到低阶调制在宽带系统中的相同效果。不过,由于高阶调制对SNR的要求更高,信息在传输过程中更容易出错。
传统的编码和调制是相互独立设计的,随着通信技术不断向前发展,这种设计思路逐渐不能适应大容量传输的需要。实际上,编码和调制的目标都是高效无误地实现信息传输,所以将二者进行联合考虑设计的思路逐渐得到重视。在这方面,早在1982年就提出了网格编码调制(Trellis Coded Modulation,TCM)的概念,将调制和编码作为一个整体进行联合优化。TCM通过信号分集扩展获得编码增益,不过其在信道条件发生变化时不能做出自适应调整,在实际系统中未能得到广泛应用。
TCM的交织基于符号完成,其受限的分集阶数成为在衰落信道下制约性能的关键原因。利用交织技术与编码调制相结合,即比特交织编码调制(Bit-Interleaved Coded Modulation,BICM)技术是一种解决上述问题的有效方法,可以在衰落信道下获得误比特率 (Bit Error Ratio,BER)性能的提升。
为了更好地利用比特交织的优势,在BICM的解调和译码之间迭代交换信息,形成了比特交织编码调制迭代译码(Bit-Interleaved Coded Modulation with Iterative Decoding,BICM-ID)系统,进一步地提升了系统性能。然而,在BICM-ID系统中,由于同一个符号中的比特通常来自于同一码字,且不同码字和不同符号彼此之间是独立的,故前一码字解调得到的各比特解调信息不能用于不属于同一符号的后一码字的解调,也就是说,为了获得迭代收益,BICM-ID只能在不同迭代次数间传递比特的解调信息,不能及时在同一符号不同比特间更新比特的解调信息,没有充分利用迭代过程来获得性能收益。
发明内容
有鉴于此,本发明实施例提出一种解调及译码的方法和设备,解决了先解调的比特的解调信息不能用于同一符号中其他比特的解调,无法充分利用迭代过程来获得性能收益的问题。
第一方面,提供一种解调译码方法,包括:接收符号序列,所述符号序列包括N个符号,每个符号中的比特分属于K个码字,每个符号中的第m个比特属于同一个码字,其中,N,K和m均为正整数,K>1;根据第一个符号中每个比特的先验信息对所述第一个符号中的第一组比特进行解调,得到第一个符号中第一组比特的第一软信息,根据所述第一个符号中第一组比特的第一软信息和对应比特的先验信息,得到第一个符号中第一组比特的第二软信息,其中,所述第一组比特包括属于第一个码字的比特;按照第一个符号中第一组比特的处理方式,对第二至第N个符号中的第一组比特进行处理,得到N个符号中第一组比特的第二软信息;对所述N个符号中第一组比特的第二软信息进行译码,得到N个符号中第一组比特的第三软信息,根据所述N个符号中第一组比特的第三软信息和对应比特的第二软信息,得到N个符号中第一组比特的第一外信息;根据第一个符号中第一组比特的第一外信息,以及第一个符号中其他比特的先验信息, 对所述第一个符号中的第二组比特进行解调,得到第一个符号中第二组比特的第一软信息,其中,所述第二组比特包括属于第二个码字的比特。
本发明实施例提供的方法,可以让先解调的比特的解调信息用于同一符号中其他比特的解调,充分利用了迭代过程所能获得的性能收益,提高了系统的译码性能。
结合第一方面,在第一方面的第一种可能的实现方式中,所述方法还包括:根据所述第一个符号中第二组比特的第一软信息和对应比特的先验信息,得到第一个符号中第二组比特的第二软信息;按照第一个符号中第二组比特的处理方式,对第二至第N个符号中的第二组比特进行处理,得到N个符号中第二组比特的第二软信息;对所述N个符号中第二组比特的第二软信息进行译码,得到N个符号中第二组比特的第三软信息。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述方法还包括:根据所述N个符号中第二组比特的第三软信息和对应比特的第二软信息,得到N个符号中第二组比特的第一外信息;根据第一个符号中第一组比特和第二组比特的第一外信息,以及第一个符号中其他比特的先验信息,对第一个符号中的第三组比特进行解调,得到第一个符号中第三组比特的第一软信息,其中,所述第三组比特包括属于第三个码字的比特。
结合第一方面,在第一方面的第三种可能的实现方式中,根据所述第一个符号中第一组比特的第一软信息和对应比特的先验信息,得到第一个符号中第一组比特的第二软信息,具体包括:所述第一个符号中第一组比特的第一软信息减去对应比特的先验信息,得到第一个符号中第一组比特的第二软信息;根据所述N个符号中第一组比特的第三软信息和对应比特的第二软信息,得到N个符号中第一组比特的第一外信息,具体包括:所述N个符号中第一组比特的第三软信息减去对应比特的第二软信息,得到N个符号中第一组比特的第一外信息。
结合第一方面或第一方面的第一种或第二种可能的实现方式,在第一方面的第四种可能的实现方式中,在首次迭代时,每个比特的先验信息为每个比特为0或为1的概率的对数似然比;在非首次迭代时,每个比特的 先验信息为上一次迭代得到的对应比特的第一外信息。
结合第一方面,在第一方面的第五种可能的实现方式中,所述N个符号中的第L组比特的比特数之和为码字长度的整数倍,其中,L为不大于K的正整数,保证进行译码的比特中至少包含一个完整的码字。
结合第一方面,在第一方面的第六种可能的实现方式中,对所述N个符号中第一组比特的第二软信息进行译码,得到N个符号中第一组比特的第三软信息,具体包括:对所述N个符号中第一组比特的第二软信息进行解交织,得到N个符号中第一组比特的第四软信息,将所述N个符号中第一组比特的第四软信息进行译码,得到N个符号中第一组比特的第三软信息。
结合第一方面的第六种可能的实现方式,在第一方面的第七种可能的实现方式中,所述根据所述N个符号中第一组比特的第三软信息和对应比特的第二软信息,得到N个符号中第一组比特的第一外信息具体包括:所述N个符号中第一组比特的第三软信息减去对应比特的第二软信息,得到N个符号中第一组比特的第二外信息,对所述N个符号中第一组比特的第二外信息进行交织,得到N个符号中第一组比特的第一外信息。
结合第一方面或第一方面的第一种或第二种可能的实现方式,在第一方面的第八种可能的实现方式中,在最后一次迭代完成之后,所述方法还包括:对所述N个符号中的第一至第K组比特的第三软信息分别进行判决,得到K路判决信息;将所述K路判决信息进行并串转换,恢复出第一比特序列。
第二方面,提供一种编码调制方法,包括:接收第一比特序列,将所述第一比特序列经过串并转换处理,得到K路比特序列,其中,K为正整数;对所述K路比特序列分别进行编码,得到K路码字序列;在所述K路码字序列中各取至少一个比特进行调制,得到符号,将所述符号发送出去。
结合第二方面,在第二方面的第一种可能的实现方式中,在所述发送设备将所述K路比特序列分别执行编码,得到K路码字序列之后,所述方法还包括:将所述K路码字序列分别进行交织,得到K路交织后的码字序列,可以更好地发挥编码技术的纠错能力。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述符号中的比特属于K个不同的码字序列。
第三方面,提供一种解调译码设备,其特征在于,包括:接收机,解调器,第一处理器,译码器和第二处理器,其中,
所述接收机,用于接收符号序列,将所述符号序列发送给所述解调器,其中,所述符号序列包括N个符号,每个符号中的比特分属于K个码字,每个符号中的第m个比特属于同一个码字,N,K和m均为正整数,K>1;
所述解调器,用于从所述接收机接收所述符号序列,根据第一个符号中每个比特的先验信息对第一个符号中的第一组比特进行解调,得到第一个符号中第一组比特的第一软信息;按照第一个符号中第一组比特的解调方式,对第二至第N个符号中的第一组比特进行解调,得到N个符号中第一组比特的第一软信息,将所述N个符号中第一组比特的第一软信息和N个符号中第一组比特的先验信息发送给所述第一处理器,所述第一组比特包括属于第一个码字的比特;
所述第一处理器,用于从所述解调器接收所述N个符号中第一组比特的第一软信息和所述N个符号中第一组比特的先验信息,根据所述N个符号中第一组比特的第一软信息和对应比特的先验信息,得到N个符号中第一组比特的第二软信息,将所述N个符号中第一组比特的第二软信息发送给所述译码器和所述第二处理器;
所述译码器,用于从所述第一处理器接收所述N个符号中第一组比特的第二软信息,对所述N个符号中第一组比特的第二软信息进行译码,得到N个符号中第一组比特的第三软信息,将所述N个符号中第一组比特的第三软信息发送给所述第二处理器;
所述第二处理器,用于从所述译码器接收所述N个符号中第一组比特的第三软信息,从所述第一处理器接收所述N个符号中第一组比特的第二软信息,根据所述N个符号中第一组比特的第三软信息和对应比特的第二软信息,得到N个符号中第一组比特的第一外信息,将所述N个符号中第一组比特的第一外信息发送给所述解调器和所述第一处理器;
所述解调器,还用于从所述第二处理器接收所述N个符号中第一组比 特的第一外信息,根据第一个符号中第一组比特的第一外信息,以及第一个符号中其他比特的先验信息,对所述第一个符号中的第二组比特进行解调,得到第一个符号中第二组比特的第一软信息,所述第二组比特包括属于第二个码字的比特。
本发明实施例提供的设备,可以让先解调的比特的解调信息用于同一符号中其他比特的解调,充分利用了迭代过程所能获得的性能收益,提高了系统的译码性能。
结合第三方面,在第三方面的第一种可能的实现方式中,所述解调器,还用于按照第一个符号中第二组比特的解调方式,对第二至第N个符号中的第二组比特进行解调,得到N个符号中第二组比特的第一软信息,将所述N个符号中第二组比特的第一软信息和N个符号中第二组比特的先验信息发送给所述第一处理器;所述第一处理器,还用于从所述解调器接收所述N个符号中第二组比特的第一软信息和所述N个符号中第二组比特的先验信息,根据所述N个符号中第二组比特的第一软信息和对应比特的先验信息,得到N个符号中第二组比特的第二软信息,将所述N个符号中第二组比特的第二软信息发送给所述译码器和所述第二处理器;所述译码器,还用于从所述第一处理器接收所述N个符号中第二组比特的第二软信息,对所述N个符号中第二组比特的第二软信息进行译码,得到N个符号中第二组比特的第三软信息,将所述N个符号中第二组比特的第三软信息发送给所述第二处理器。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述第二处理器,还用于从所述译码器接收所述N个符号中第二组比特的第三软信息,从所述第一处理器接收所述N个符号中第二组比特的第二软信息,根据所述N个符号中第二组比特的第三软信息和对应比特的第二软信息,得到N个符号中第二组比特的第一外信息,将所述N个符号中第二组比特的第一外信息发送给所述解调器;所述解调器,还用于从所述第二处理器接收所述N个符号中第二组比特的第一外信息,根据第一个符号中第一组比特和第二组比特的第一外信息,以及第一个符号中其他比特的先验信息,对第一个符号中的第三组比特进行解 调,得到第一个符号中第三组比特的第一软信息,其中,所述第三组比特包括属于第三个码字的比特。
结合第三方面,在第三方面的第三种可能的实现方式中,所述第一处理器,具体用于让所述第一个符号中第一组比特的第一软信息减去对应比特的先验信息,得到第一个符号中第一组比特的第二软信息;所述第二处理器,具体用于让所述N个符号中第一组比特的第三软信息减去对应比特的第二软信息,得到N个符号中第一组比特的第一外信息。
结合第三方面或第三方面的第一种或第二种可能的实现方式,在第三方面的第四种可能的实现方式中,在首次迭代时,每个比特的先验信息为每个比特为0或为1的概率的对数似然比;在非首次迭代时,每个比特的先验信息为上一次迭代得到的对应比特的第一外信息。
结合第三方面,在第三方面的第五种可能的实现方式中,所述N个符号中的第L组比特的比特数之和为码字长度的整数倍,其中,L为不大于K的正整数,保证进行译码的比特中至少包含一个完整的码字。
结合第三方面,在第三方面的第六种可能的实现方式中,所述设备还包括:解交织器,用于从所述第一处理器接收所述N个符号中第一组比特的第二软信息,对所述N个符号中第一组比特的第二软信息进行解交织,得到N个符号中第一组比特的第四软信息,将所述N个符号中第一组比特的第四软信息发送给所述译码器和所述第二处理器;所述译码器,还用于从所述解交织器接收所述N个符号中第一组比特的第四软信息,对所述N个符号中第一组比特的第四软信息进行译码,得到N个符号中第一组比特的第三软信息;所述第二处理器,还用于从所述解交织器接收所述N个符号中第一组比特的第四软信息,根据所述N个符号中第一组比特的第三软信息和对应比特的第四软信息,得到N个符号中第一组比特的第二外信息。
结合第三方面的第六种可能的实现方式,在第三方面的第七种可能的实现方式中,所述设备还包括:交织器,用于从所述第二处理器接收所述N个符号中第一组比特的第二外信息,对所述N个符号中第一组比特的第二外信息进行交织,得到所述N个符号中第一组比特的第一外信息。
结合第三方面或第三方面的第一种或第二种可能的实现方式,在第三方面的第八种可能的实现方式中,所述设备还包括:判决器和并串转换器,
所述判决器,用于在最后一次迭代完成之后,从所述译码器接收所述N个符号中第一至第K组比特的第三软信息,对所述N个符号中第一至第K组比特的第三软信息分别进行判决,得到K路判决信息,将所述K路判决信息发送给所述并串转换器;所述并串转换器,用于从所述判决器中接收所述K路判决信息,对所述K路判决信息进行并串转换处理,恢复出第一比特序列。
第四方面,提供一种编码调制设备,其特征在于,包括:串并转换器,编码器,调制器和发射机,其中,所述串并转换器,用于接收第一比特序列,对所述第一比特序列进行串并转换,得到K路比特序列,将所述K路比特序列发送给所述编码器,其中,K为正整数;所述编码器,用于从所述串并转换器接收所述K路比特序列,对所述K路比特序列分别进行编码,得到K路码字序列,将所述K路码字序列发送给所述调制器;所述调制器,用于从所述编码器接收所述K路码字序列,在每路码字序列中各取至少一个比特进行调制,得到符号,将所述符号发送给发射机;所述发射机,用于从所述调制器接收所述符号,将所述符号发送出去。
结合第四方面,在第四方面的第一种可能的实现方式中,所述设备还包括:交织器,用于从所述编码器接收K路码字序列,对所述K路码字序列分别进行交织,得到K路交织后的码字序列,将所述K路交织后的码字序列发送给所述调制器;所述调制器,还用于从所述交织器接收所述K路交织后的码字序列,在每路交织后的码字序列中各取至少一个比特进行调制,得到符号。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第一种可能的实现方式中,所述符号中的比特属于K个不同的码字序列。
第五方面,提供一种调制解调系统,包括:如上述第三方面或者第三方面的任意一种可选方式中所述的解调译码设备,以及如上述第四方面或者第四方面的任意一种可选方式中所述的编码调制设备。
本发明实施例提供的方法,可以让先解调的比特的解调信息用于同一 符号中其他比特的解调,充分利用了迭代过程所能获得的性能收益,提高了系统的译码性能。
附图说明
为了更透彻地理解本发明,现参阅结合附图和具体实施方式而描述的以下简要说明,其中的相同参考标号表示相同部分。
图1为BICM-ID系统的结构图;
图2为BICM-ID系统单次迭代的解调和译码过程图;
图3为本发明一种实施例的方法流程图;
图4为本发明另一种实施例的方法流程图;
图5为本发明另一种实施例单次迭代的解调和译码过程图;
图6为本发明另一种实施例与传统的格雷码映射及BICM-ID方案的BER性能对比图;
图7为本发明一种实施例的装置结构图;
图8为本发明另一种实施例的装置结构图;
图9为本发明另一种实施例的装置结构图。
具体实施方式
首先应理解,尽管下文提供一项或多项实施例的说明性实施方案,但所公开的系统和/或方法可使用任何数目的技术来实施,无论该技术是当前已知还是现有的。本发明决不应限于下文所说明的说明性实施方案、附图和技术,包括本文所说明并描述的示例性设计和实施方案,而是可在所附权利要求书的范围以及其等效物的完整范围内修改。
编码和调制作为通信领域中两个最基本的技术,其目标都是高效无误地实现信息传输,为了适应通信技术的发展,满足大容量传输的需求,需要将两者进行联合设计。其中,编码技术可以检测和校正单个差错比特或不太长的差错比特串,并不能纠正较长的差错比特串,而在陆地移动通信这种瑞利信道上,比特差错经常是成串发生的,这是由于持续时间较长的深衰落谷点会影响到相继一串的比特,因此需要采用交织技术。
交织技术可以让一条信息中的相继比特以非相继的方式传输,即使在传输过程中发生成串差错,在接收端恢复成相继比特串的消息时,也就变成单个差错比特或长度很短的差错比特串,再用编码技术所具有的纠错功能纠正差错,可以恢复出原消息。将所述交织技术,编码技术和调制技术结合起来形成的BICM技术,具有频谱利用率高、结构灵活性强、实现复杂度低和译码性能优异等优点,得到广泛应用。
为了进一步提高译码性能,可以在BICM系统引入信息迭代,所述引入信息迭代的BICM系统即为BICM-ID系统,其结构如图1所示。在BICM-ID系统中,由于同一个符号中的比特通常来自于同一码字,且不同码字和不同符号彼此之间是独立的,故前一码字解调得到的各比特信息不能用于不属于同一符号的后一码字的解调。
具体的,假设信源发送的比特序列编码后的码字长度为16,一个符号包含4个比特,一次迭代处理4个码字,所述BICM-ID方案单次迭代的解调和译码过程如图2所示。从图中可以看出,对于单次迭代,4个码字之间完全是独立的,先解调的比特的解调信息不能及时用于同一符号其他比特的解调,只能在不同迭代次数间传递解调信息,没有充分利用迭代过程获得性能收益。
有鉴于此,本发明实施例提供一种编码调制方法,如图3所示,该方法可以包括:
301,接收第一比特序列,将第一比特序列经过串并转换处理,得到K路比特序列,其中,K为正整数。
302,对K路比特序列分别进行编码,得到K路码字序列。
其中,编码是在每一路传输的比特序列上添加一些可检测可识别的冗余信息,用于在接收端利用冗余信息进行检测和纠正,编码方式可以根据需要进行调整,可以为卷积码、低密度奇偶校验码(Low Density Parity Check Code,LDPC)、Turbo码等,本发明实施例对此不做限定。
可选地,作为另一个实施例,在对K路比特序列分别进行编码,得到K路码字序列之后,所述方法还包括:将K路码字序列分别进行交织,得到K路交织后的码字序列。
其中,交织技术是将码字序列的顺序打乱,让码字序列的相继比特以非相继的方式传输,即使在传输过程中发生成串的比特错误,在接收端解交织之后,也会变成单个或长度很短的差错,可以让编码技术具有的纠错功能更好地发挥作用。
303,在K路码字序列中各取至少一个比特进行调制,得到符号,将符号发送出去。
其中,本发明实施例可以保证该符号所包含的比特来自于K个不同的码字序列,优选地,在K路码字序列中各取一个比特进行调制,得到符号,该符号中每个比特都来自于不同的码字,在对该符号中每一比特进行解调时,都可以利用该符号中各个比特的最新解调信息,有利于接收端充分利用迭代过程来获得性能提升。
具体的,调制方式可以选择为相移键控(Phase Shift Keying,PSK)、幅移键控(Amplitude Shift Keying,ASK)及正交振幅调制(Quadrature Amplitude Modulation,QAM)等,本发明实施例对此不做限定。
本发明实施例提供一种解调译码方法,如图4所示,该方法可以包括:
401,接收符号序列,该符号序列包括N个符号,每个符号中的比特分属于K个码字,每个符号中的第m个比特属于同一个码字,其中,N,K和m均为正整数,K>1。
402,根据第一个符号中每个比特的先验信息对所述第一个符号中的第一组比特进行解调,得到第一个符号中第一组比特的第一软信息,根据所述第一个符号中第一组比特的第一软信息和对应比特的先验信息,得到第一个符号中第一组比特的第二软信息。
其中,第一组比特包括属于第一个码字的比特,每个比特的先验信息要根据各自在{0,1}中的分布来确定,可以为每个比特为0或为1的概率的对数似然比(Logarithmic-Likelihood Ratio,LLR),优选地,可以假定各比特在{0,1}中等概分布。
具体的,比特的软信息通常也可以表示为对数似然比,解调算法可选择为最大后验概率(Maximum a Posteriori,MAP)、对数域最大后验概率(Logarithmic MAP,LOG-MAP)或最大值对数域最大后验概率 (Maximum-LOG-MAP,MAX-LOG-MAP)等,本发明实施例对此不做限定。
可选地,得到第一个符号中第一组比特的第二软信息的方式具体为,第一个符号中第一组比特的第一软信息减去对应比特的先验信息,得到第一个符号中第一组比特的第二软信息。
403,按照第一个符号中第一组比特的处理方式,对第二至第N个符号中的第一组比特进行处理,得到N个符号中第一组比特的第二软信息。
其中,N个符号中第一组比特的比特数之和为码字长度的整数倍。
404,对N个符号中第一组比特的第二软信息进行译码,得到N个符号中第一组比特的第三软信息,根据N个符号中第一组比特的第三软信息和对应比特的第二软信息,得到N个符号中第一组比特的第一外信息。
可选地,得到N个符号中第一组比特的第一外信息的方式具体为:N个符号中第一组比特的第三软信息减去对应比特的第二软信息,得到N个符号中第一组比特的第一外信息。
405,根据第一个符号中第一组比特的第一外信息,以及第一个符号中其他比特的先验信息,对第一个符号中第二组比特进行解调,得到第一个符号中第二组比特的第一软信息。
其中,第二组比特包括属于第二个码字的比特。
可选地,作为另一个实施例,所述方法还包括:根据第一个符号中第二组比特的第一软信息和对应比特的先验信息,得到第一个符号中第二组比特的第二软信息;按照第一个符号中第二组比特的处理方式,对第二至第N个符号中的第二组比特进行处理,得到N个符号中第二组比特的第二软信息;对N个符号中第二组比特的第二软信息进行译码,得到N个符号中第二组比特的第三软信息。
可选地,所述方法还包括:根据N个符号中第二组比特的第三软信息和对应比特的第二软信息,得到N个符号中第二组比特的第一外信息;根据第一个符号中第一组比特和第二组比特的第一外信息,以及第一个符号中其他比特的先验信息,对第一个符号中的第三组比特进行解调,得到第一个符号中第三组比特的第一软信息,第三组比特包括属于第三个码字的比特。
其中,假设对第H组进行解调时,将根据第一个符号中第H-1组比特的第一外信息,以及第一个符号中其他比特的先验信息,对第一个符号中的第H组比特进行解调,得到第一个符号中第H组比特的第一软信息,第H组比特包括属于第三个码字的比特,后续操作在之前实施例描述过,在此不再赘述。
本发明实施例可以让先解调的一组比特的解调信息用于同一符号中其他比特的解调,充分利用了迭代过程所能获得的性能收益,提高了系统的译码性能。优选地,每一组比特所包含的比特数为1。
具体的,假设比特序列编码后的码字长度为16,一个符号包含4个比特,一次迭代处理4个码字,本发明实施例单次迭代的解调和译码过程如图5所示。从图中可以看出,同一符号的四个比特都来自于不同的码字,第一组比特都是各个符号的第一个比特,16个符号的第一个比特组成了第一个码字,当第一个码字解调之后,将得到更新的第一外信息,由于第一个码字和第二个码字中的第一个比特属于同一个符号,故第一个码字中第一个比特的第一外信息可以用于第二个码字中第一个比特的解调,同理,第一个码字中第2至第16个比特的第一外信息也分别可用于第二个码字中第2至第16个比特的解调,进一步提高译码的准确性。
可选地,N个符号中的第L组比特的比特数之和为码字长度的整数倍,其中,L为不大于K的正整数。
其中,译码是对完整码字进行解析,故一起进行译码的比特个数必须为码字长度的整数倍,也就是说,N个符号中任一组比特的比特个数均必须为码字长度的整数倍,至少等于一个码字的长度。
可选地,作为另一个实施例,在首次迭代时,每个比特的先验信息为每个比特为0或为1的概率的对数似然比;在非首次迭代时,每个比特的先验信息为上一次迭代得到的对应比特的第一外信息。
具体的,以第二次迭代的第四组比特的解调为例,假设K不小于4,由于在第二次迭代过程中,第一至第三组比特已经解调完成,已经更新了第一至第三组比特的第一外信息,而第四至第K组比特还没进行解调,也没有更新第一外信息,故第四至第K组比特的先验信息采用第一次迭代的 第四至第K组比特的第一外信息。
可选地,作为另一个实施例,对N个符号中第一组比特的第二软信息进行译码,得到N个符号中第一组比特的第三软信息,具体包括:对N个符号中第一组比特的第二软信息进行解交织,得到N个符号中第一组比特的第四软信息,将N个符号中第一组比特的第四软信息进行译码,得到N个符号中第一组比特的第三软信息。
相应地,根据N个符号中第一组比特的第三软信息和对应比特的第二软信息,得到N个符号中第一组比特的第一外信息具体包括:N个符号中第一组比特的第三软信息减去对应比特的第二软信息,得到N个符号中第一组比特的第二外信息,对N个符号中第一组比特的第二外信息进行交织,得到N个符号中第一组比特的第一外信息。
其中,交织技术是将码字序列的顺序打乱,让码字序列的相继比特以非相继的方式传输,即使在传输过程中发生成串的比特错误,在接收端解交织之后,也会变成单个或长度很短的差错,可以让编码技术具有的纠错功能更好地发挥作用。
可选地,作为另一个实施例,在最后一次迭代完成之后,所述方法还包括:对N个符号中的第一至第K组比特的第三软信息分别进行判决,得到K路判决信息;将该K路判决信息进行并串转换,恢复出第一比特序列。
其中,迭代终止的条件可以为达到指定的迭代次数或满足设定好的迭代收敛条件等,本发明实施例对此不做限定。
图6示出本发明实施例与传统的格雷码映射及已有的BICM-ID方案的BER性能对比,主要条件如下:编码方式选择IEEE 802.11ad标准中的LDPC码,其编码后的码长为672,码率为13/16;调制方式选择16QAM,K=4,每一路数据选择一个比特;BICM-ID及本发明方案下的星座点映射方式选择为反格雷码;解调算法选择MAX-LOG-MAP;交织深度为256704,即382个LDPC码字;最大迭代次数选择为20;考虑的信道环境为加性高斯白噪声(Additive White Gaussian Noise,AWGN)。
从图中可以发现,已有的BICM-ID及本发明实施例的BER性能曲线相对于经典的格雷码映射调制更加陡峭,从BER=10E-2下降至BER=10E-6 过程中比特信噪比(the energy per bit to noise power spectral density ratio,Eb/N0)仅增大在0.1dB之内,而格雷码映射下Eb/N0的差异达2.2dB左右,在Eb/N0较大时,BICM-ID及本发明方案相对于格雷码映射具有性能增益,在BER为10E-6时,相对于格雷码映射本发明可以取得约2.0dB性能增益。不仅如此,由于本发明引入了分组机制,在同一次迭代内不同组比特可以及时传递用作解调的信息,相对于已有的BICM-ID技术,本发明实施例在BER为10E-6时具有约0.5dB的性能增益。
本发明实施例提供的方法,在BICM-ID的基础上引入了分组机制,在迭代过程中,每一组比特的解调译码结果都可以及时反馈给其他组比特用于解调,充分利用了迭代所带来的性能收益,提高了系统的译码性能。
本发明实施例提供一种用于编码调制的设备,如图7所示,该设备可以包括:串并转换器701,编码器702,调制器703和发射机704,其中,
串并转换器701,用于接收第一比特序列,对该第一比特序列进行串并转换,得到K路比特序列,将K路比特序列发送给编码器702。
编码器702,用于从串并转换器701接收K路比特序列,对K路比特序列分别进行编码,得到K路码字序列,将K路码字序列发送给调制器703;
其中,编码是在每一路传输的比特序列上添加一些可检测可识别的冗余信息,用于在接收端利用冗余信息进行检测和纠正,编码方式可以根据需要进行调整,可以为卷积码、LDPC码、Turbo码等,本发明实施例对此不做限定。
调制器703,用于从编码器702接收K路码字序列,在每路码字序列中各取至少一个比特进行调制,得到符号,将该符号发送给发射机704。
具体的,调制方式可以选择为PSK、ASK及QAM等,本发明实施例对此不做限定。
可选地,作为另一个实施例,所述设备还包括:交织器705,用于从编码器702接收K路码字序列,对K路码字序列分别进行交织,得到K路交织后的码字序列,将K路交织后的码字序列发送给调制器703;调制器703,还用于从交织器705接收K路交织后的码字序列,在每路交织后 的码字序列中各取至少一个比特进行调制,得到符号。
其中,交织技术是将码字序列的顺序打乱,让码字序列的相继比特以非相继的方式传输,即使在传输过程中发生成串的比特错误,在接收端解交织之后,也会变成单个或长度很短的差错,可以让编码技术具有的纠错功能更好地发挥作用。
发射机704,用于从调制器703接收符号,将该符号发送出去。
其中,本发明实施例可以保证该符号所包含的比特来自于K个不同的码字序列,优选地,在K路码字序列中各取一个比特进行调制,得到符号,该符号中每个比特都来自于不同的码字,在对该符号中每一比特进行解调时,都可以利用该符号中各个比特的最新解调信息,有利于接收端充分利用迭代过程来获得性能提升。
本发明实施例提供一种用于解调译码的设备,如图8所示,接收机801,解调器802,第一处理器803,译码器804和第二处理器805,
接收机801,用于接收符号序列,将符号序列发送给解调器802。
其中,该符号序列包括N个符号,每个符号中的比特分属于K个码字,每个符号中的第m个比特属于同一个码字,N,K和m均为正整数,K>1。
解调器802,用于从接收机801接收该符号序列,根据第一个符号中每个比特的先验信息对第一个符号中的第一组比特进行解调,得到第一个符号中第一组比特的第一软信息;按照第一个符号中第一组比特的解调方式,对第二至第N个符号中的第一组比特进行解调,得到N个符号中第一组比特的第一软信息,将N个符号中第一组比特的第一软信息和N个符号中第一组比特的先验信息发送给第一处理器803。
其中,第一组比特包括属于第一个码字的比特;每个比特的先验信息要根据各自在{0,1}中的分布来确定,可以为每个比特为0或为1的概率的LLR,优选地,可以假定各比特在{0,1}中等概分布。
可选地,N个符号中第一组比特的比特数之和为码字长度的整数倍。
具体的,比特的软信息通常可以表示为对数似然比,解调算法可选择为MAP、LOG-MAP或MAX-LOG-MAP等,本发明实施例对此不做限定。
第一处理器803,用于从解调器802接收N个符号中第一组比特的第 一软信息和N个符号中第一组比特的先验信息,根据N个符号中第一组比特的第一软信息和对应比特的先验信息,得到N个符号中第一组比特的第二软信息,将N个符号中第一组比特的第二软信息发送给译码器804和第二处理器805。
可选地,作为另一个实施例,第一处理器803具体用于,让第一个符号中第一组比特的第一软信息减去对应比特的先验信息,得到第一个符号中第一组比特的第二软信息。
译码器804,用于从第一处理器803接收N个符号中第一组比特的第二软信息,对N个符号中第一组比特的第二软信息进行译码,得到N个符号中第一组比特的第三软信息,将N个符号中第一组比特的第三软信息发送给第二处理器805。
第二处理器805,用于从译码器接收N个符号中第一组比特的第三软信息,从第一处理器803接收N个符号中第一组比特的第二软信息,根据N个符号中第一组比特的第三软信息和对应比特的第二软信息,得到N个符号中第一组比特的第一外信息,将N个符号中第一组比特的第一外信息发送给解调器802和第一处理器803。
可选地,第二处理器805,具体用于让N个符号中第一组比特的第三软信息减去对应比特的第二软信息,得到N个符号中第一组比特的第一外信息。
解调器802,还用于从第二处理器805接收N个符号中第一组比特的第一外信息,根据第一个符号中第一组比特的第一外信息,以及第一个符号中其他比特的先验信息,对第一个符号中的第二组比特进行解调,得到第一个符号中第二组比特的第一软信息,其中,第二组比特包括属于第二个码字的比特。
可选地,作为另一个实施例,解调器802,还用于按照第一个符号中第二组比特的解调方式,对第二至第N个符号中的第二组比特进行解调,得到N个符号中第二组比特的第一软信息,将N个符号中第二组比特的第一软信息和N个符号中第二组比特的先验信息发送给第一处理器803;
第一处理器803,还用于从解调器802接收N个符号中第二组比特的 第一软信息和N个符号中第二组比特的先验信息,根据N个符号中第二组比特的第一软信息和对应比特的先验信息,得到N个符号中第二组比特的第二软信息,将N个符号中第二组比特的第二软信息发送给译码器804和第二处理器805;
译码器804,还用于从第一处理器803接收N个符号中第二组比特的第二软信息,对N个符号中第二组比特的第二软信息进行译码,得到N个符号中第二组比特的第三软信息,将N个符号中第二组比特的第三软信息发送给第二处理器805。
其中,第二处理器805,还用于从译码器804接收N个符号中第二组比特的第三软信息,从第一处理器803接收N个符号中第二组比特的第二软信息,根据N个符号中第二组比特的第三软信息和对应比特的第二软信息,得到N个符号中第二组比特的第一外信息,将N个符号中第二组比特的第一外信息发送给解调器802和第一处理器803;
解调器802,还用于从第二处理器接收N个符号中第二组比特的第一外信息,根据第一个符号中第一组比特和第二组比特的第一外信息,以及第一个符号中其他比特的先验信息,对第一个符号中的第三组比特进行解调,得到第一个符号中第三组比特的第一软信息。
其中,第三组比特包括属于第三个码字的比特。
本发明实施例可以让先解调的一组比特的解调信息用于同一符号中其他比特的解调,充分利用了迭代过程所能获得的性能收益,提高了系统的译码性能。优选地,每一组比特所包含的比特数为1。
可选地,N个符号中的第L组比特的比特数之和为码字长度的整数倍,其中,L为不大于K的正整数。
可选地,作为另一个实施例,在首次迭代时,每个比特的先验信息为每个比特为0或为1的概率的对数似然比;在非首次迭代时,每个比特的先验信息为上一次迭代得到的对应比特的第一外信息。
具体的,以第一组比特为例,在非首次迭代时,第一处理器803,还用于从第二处理器804接收N个符号中第一组比特的第一外信息,根据N个符号中第一组比特的第一软信息和上一次迭代中对应比特的第一外信 息,得到N个符号中第一组比特的第二软信息。
可选地,作为另一个实施例,所述设备还包括:解交织器806,用于从第一处理器803接收N个符号中第一组比特的第二软信息,对N个符号中第一组比特的第二软信息进行解交织,得到N个符号中第一组比特的第四软信息,将N个符号中第一组比特的第四软信息发送给译码器804和第二处理器805;译码器804,还用于从解交织器806接收N个符号中第一组比特的第四软信息,对N个符号中第一组比特的第四软信息进行译码,得到N个符号中第一组比特的第三软信息;第二处理器805,还用于从解交织器806接收N个符号中第一组比特的第四软信息,根据N个符号中第一组比特的第三软信息和对应比特的第四软信息,得到N个符号中第一组比特的第二外信息。
相应地,所述设备还包括:交织器807,用于从第二处理器805接收N个符号中第一组比特的第二外信息,对N个符号中第一组比特的第二外信息进行交织,得到N个符号中第一组比特的第一外信息。
可选地,作为另一个实施例,所述设备还包括:判决器808和并串转换器809,
判决器808,用于在最后一次迭代完成之后,从译码器804接收N个符号中第一至第K组比特的第三软信息,对N个符号中第一至第K组比特的第三软信息分别进行判决,得到K路判决信息,将K路判决信息发送给并串转换器809;
并串转换器809,用于从判决器808中接收K路判决信息,对K路判决信息进行并串转换处理,恢复出第一比特序列。
其中,迭代终止的条件可以为达到指定的迭代次数或满足设定好的迭代收敛条件等,本发明实施例对此不做限定。
需要说明的是,本发明实施例提供的解调译码设备与BICM-ID系统的解调译码设备都是以比特为单位进行解调,因此计算量上是一致的。
可选地,作为另一个实施例,所述译码器,解交织器和交织器的数量分别只有一个。图9示出了本发明实施例的解调译码设备示意图,由于在本发明实施例的解调译码设备中,各功能器是顺序执行的,且译码器804, 判决器808,交织器807等器件对每组比特完成的功能都是一样的,故每样器件只需一个即可实现解调译码的功能,只需在迭代完成之后,判决器808再统一将各组比特的判决结果并行发送给并串转换器809,其他器件之间都是串行连接即可,因此,与BICM-ID系统相比,本发明实施例不会增加额外的硬件资源开销。
本发明实施例提供一种调制解调系统,包括:如权利要求13-21中任意一项所述的解调译码设备以及如权利要求22-24中任意一项所述的编码调制设备。
本发明实施例提供的系统,可以让先解调的一组比特的解调信息用于同一符号中其他比特的解调,充分利用了迭代过程所能获得的性能收益,提高了系统的译码性能。
应理解,说明书通篇提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。在本发明的各种实施例中,上述各过程的序号大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的器及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、设备和方法,可以通过其他的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述器的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个器或组件可以结合或者可以集成到另 一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、设备或器的间接耦合或通信连接,也可以是电的,机械的或其他的形式连接。
总之,以上所述仅为本发明技术方案的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (25)

  1. 一种解调译码方法,其特征在于,包括:
    接收符号序列,所述符号序列包括N个符号,每个符号中的比特分属于K个码字,每个符号中的第m个比特属于同一个码字,其中,N,K和m均为正整数,K>1;
    根据第一个符号中每个比特的先验信息对所述第一个符号中的第一组比特进行解调,得到第一个符号中第一组比特的第一软信息,根据所述第一个符号中第一组比特的第一软信息和对应比特的先验信息,得到第一个符号中第一组比特的第二软信息,其中,所述第一组比特包括属于第一个码字的比特;
    按照第一个符号中第一组比特的处理方式,对第二至第N个符号中的第一组比特进行处理,得到N个符号中第一组比特的第二软信息;
    对所述N个符号中第一组比特的第二软信息进行译码,得到N个符号中第一组比特的第三软信息,根据所述N个符号中第一组比特的第三软信息和对应比特的第二软信息,得到N个符号中第一组比特的第一外信息;
    根据第一个符号中第一组比特的第一外信息,以及第一个符号中其他比特的先验信息,对所述第一个符号中的第二组比特进行解调,得到第一个符号中第二组比特的第一软信息,其中,所述第二组比特包括属于第二个码字的比特。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述第一个符号中第二组比特的第一软信息和对应比特的先验信息,得到第一个符号中第二组比特的第二软信息;
    按照第一个符号中第二组比特的处理方式,对第二至第N个符号中的第二组比特进行处理,得到N个符号中第二组比特的第二软信息;
    对所述N个符号中第二组比特的第二软信息进行译码,得到N个符号中第二组比特的第三软信息。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    根据所述N个符号中第二组比特的第三软信息和对应比特的第二软信息,得到N个符号中第二组比特的第一外信息;
    根据第一个符号中第一组比特和第二组比特的第一外信息,以及第一个符号中其他比特的先验信息,对第一个符号中的第三组比特进行解调,得到第一个符号中第三组比特的第一软信息,其中,所述第三组比特包括属于第三个码字的比特。
  4. 根据权利要求1所述的方法,其特征在于,
    根据所述第一个符号中第一组比特的第一软信息和对应比特的先验信息,得到第一个符号中第一组比特的第二软信息,具体包括:所述第一个符号中第一组比特的第一软信息减去对应比特的先验信息,得到第一个符号中第一组比特的第二软信息;
    根据所述N个符号中第一组比特的第三软信息和对应比特的第二软信息,得到N个符号中第一组比特的第一外信息,具体包括:所述N个符号中第一组比特的第三软信息减去对应比特的第二软信息,得到N个符号中第一组比特的第一外信息。
  5. 根据权利要求1至3任一项所述的方法,其特征在于,
    在首次迭代时,每个比特的先验信息表示每个比特为0或为1的概率的对数似然比;
    在非首次迭代时,每个比特的先验信息为上一次迭代得到的对应比特的第一外信息。
  6. 根据权利要求1所述的方法,其特征在于,所述N个符号中的第L组比特的比特数之和为码字长度的整数倍,其中,L为不大于K的正整数。
  7. 根据权利要求1所述的方法,其特征在于,对所述N个符号中第一组比特的第二软信息进行译码,得到N个符号中第一组比特的第三软信息,具体包括:
    对所述N个符号中第一组比特的第二软信息进行解交织,得到N个符号中第一组比特的第四软信息,将所述N个符号中第一组比特的第四软信息进行译码,得到N个符号中第一组比特的第三软信息。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述N个符号中第一组比特的第三软信息和对应比特的第二软信息,得到N个符号中第一组比特的第一外信息具体包括:
    所述N个符号中第一组比特的第三软信息减去对应比特的第二软信息,得到N个符号中第一组比特的第二外信息,对所述N个符号中第一组比特的第二外信息进行交织,得到N个符号中第一组比特的第一外信息。
  9. 根据权利要求1至3任一项所述的方法,其特征在于,在最后一次迭代完成之后,所述方法还包括:
    对所述N个符号中的第一至第K组比特的第三软信息分别进行判决,得到K路判决信息;
    将所述K路判决信息进行并串转换,恢复出第一比特序列。
  10. 一种编码调制方法,其特征在于,包括:
    接收第一比特序列,将所述第一比特序列经过串并转换处理,得到K路比特序列,其中,K为正整数;
    对所述K路比特序列分别进行编码,得到K路码字序列;
    在所述K路码字序列中各取至少一个比特进行调制,得到符号,将所述符号发送出去。
  11. 根据权利要求10所述的方法,其特征在于,在对所述K路比特序列分别进行编码,得到K路码字序列之后,所述方法还包括:
    将所述K路码字序列分别进行交织,得到K路交织后的码字序列。
  12. 根据权利要求10或11所述的方法,其特征在于,所述符号中的比特属于K个不同的码字序列。
  13. 一种解调译码设备,其特征在于,包括:接收机,解调器,第一处理器,译码器和第二处理器,其中,
    所述接收机,用于接收符号序列,将所述符号序列发送给所述解调器,其中,所述符号序列包括N个符号,每个符号中的比特分属于K个码字,每个符号中的第m个比特属于同一个码字,N,K和m均为正整数,K>1;
    所述解调器,用于从所述接收机接收所述符号序列,根据第一个符号中每个比特的先验信息对第一个符号中的第一组比特进行解调,得到第一个符号中第一组比特的第一软信息;按照第一个符号中第一组比特的解调方式,对第二至第N个符号中的第一组比特进行解调,得到N个符号中第一组比特的第一软信息,将所述N个符号中第一组比特的第一软信息和N个符 号中第一组比特的先验信息发送给所述第一处理器,所述第一组比特包括属于第一个码字的比特;
    所述第一处理器,用于从所述解调器接收所述N个符号中第一组比特的第一软信息和所述N个符号中第一组比特的先验信息,根据所述N个符号中第一组比特的第一软信息和对应比特的先验信息,得到N个符号中第一组比特的第二软信息,将所述N个符号中第一组比特的第二软信息发送给所述译码器和所述第二处理器;
    所述译码器,用于从所述第一处理器接收所述N个符号中第一组比特的第二软信息,对所述N个符号中第一组比特的第二软信息进行译码,得到N个符号中第一组比特的第三软信息,将所述N个符号中第一组比特的第三软信息发送给所述第二处理器;
    所述第二处理器,用于从所述译码器接收所述N个符号中第一组比特的第三软信息,从所述第一处理器接收所述N个符号中第一组比特的第二软信息,根据所述N个符号中第一组比特的第三软信息和对应比特的第二软信息,得到N个符号中第一组比特的第一外信息,将所述N个符号中第一组比特的第一外信息发送给所述解调器和所述第一处理器;
    所述解调器,还用于从所述第二处理器接收所述N个符号中第一组比特的第一外信息,根据第一个符号中第一组比特的第一外信息,以及第一个符号中其他比特的先验信息,对所述第一个符号中的第二组比特进行解调,得到第一个符号中第二组比特的第一软信息,所述第二组比特包括属于第二个码字的比特。
  14. 根据权利要求13所述的设备,其特征在于,
    所述解调器,还用于按照第一个符号中第二组比特的解调方式,对第二至第N个符号中的第二组比特进行解调,得到N个符号中第二组比特的第一软信息,将所述N个符号中第二组比特的第一软信息和N个符号中第二组比特的先验信息发送给所述第一处理器;
    所述第一处理器,还用于从所述解调器接收所述N个符号中第二组比特的第一软信息和所述N个符号中第二组比特的先验信息,根据所述N个符号中第二组比特的第一软信息和对应比特的先验信息,得到N个符号中第二组 比特的第二软信息,将所述N个符号中第二组比特的第二软信息发送给所述译码器和所述第二处理器;
    所述译码器,还用于从所述第一处理器接收所述N个符号中第二组比特的第二软信息,对所述N个符号中第二组比特的第二软信息进行译码,得到N个符号中第二组比特的第三软信息,将所述N个符号中第二组比特的第三软信息发送给所述第二处理器。
  15. 根据权利要求14所述的设备,其特征在于,
    所述第二处理器,还用于从所述译码器接收所述N个符号中第二组比特的第三软信息,从所述第一处理器接收所述N个符号中第二组比特的第二软信息,根据所述N个符号中第二组比特的第三软信息和对应比特的第二软信息,得到N个符号中第二组比特的第一外信息,将所述N个符号中第二组比特的第一外信息发送给所述解调器和所述第一处理器;
    所述解调器,还用于从所述第二处理器接收所述N个符号中第二组比特的第一外信息,根据第一个符号中第一组比特和第二组比特的第一外信息,以及第一个符号中其他比特的先验信息,对第一个符号中的第三组比特进行解调,得到第一个符号中第三组比特的第一软信息,其中,所述第三组比特包括属于第三个码字的比特。
  16. 根据权利要求13所述的设备,其特征在于,
    所述第一处理器,具体用于让所述第一个符号中第一组比特的第一软信息减去对应比特的先验信息,得到第一个符号中第一组比特的第二软信息;
    所述第二处理器,具体用于让所述N个符号中第一组比特的第三软信息减去对应比特的第二软信息,得到N个符号中第一组比特的第一外信息。
  17. 根据权利要求13至15任一项所述的设备,其特征在于,
    在首次迭代时,每个比特的先验信息为每个比特为0或为1的概率的对数似然比;
    在非首次迭代时,每个比特的先验信息为上一次迭代得到的对应比特的第一外信息。
  18. 根据权利要求13所述的设备,其特征在于,所述N个符号中的第L 组比特的比特数之和为码字长度的整数倍,其中,L为不大于K的正整数。
  19. 根据权利要求13所述的设备,其特征在于,
    所述设备还包括:解交织器,用于从所述第一处理器接收所述N个符号中第一组比特的第二软信息,对所述N个符号中第一组比特的第二软信息进行解交织,得到N个符号中第一组比特的第四软信息,将所述N个符号中第一组比特的第四软信息发送给所述译码器和所述第二处理器;
    所述译码器,还用于从所述解交织器接收所述N个符号中第一组比特的第四软信息,对所述N个符号中第一组比特的第四软信息进行译码,得到N个符号中第一组比特的第三软信息;
    所述第二处理器,还用于从所述解交织器接收所述N个符号中第一组比特的第四软信息,根据所述N个符号中第一组比特的第三软信息和对应比特的第四软信息,得到N个符号中第一组比特的第二外信息。
  20. 根据权利要求19所述的设备,其特征在于,
    所述设备还包括:交织器,用于从所述第二处理器接收所述N个符号中第一组比特的第二外信息,对所述N个符号中第一组比特的第二外信息进行交织,得到所述N个符号中第一组比特的第一外信息。
  21. 根据权利要求13至15任一项所述的设备,其特征在于,所述设备还包括:判决器和并串转换器,
    所述判决器,用于在最后一次迭代完成之后,从所述译码器接收所述N个符号中第一至第K组比特的第三软信息,对所述N个符号中第一至第K组比特的第三软信息分别进行判决,得到K路判决信息,将所述K路判决信息发送给所述并串转换器;
    所述并串转换器,用于从所述判决器中接收所述K路判决信息,对所述K路判决信息进行并串转换处理,恢复出第一比特序列。
  22. 一种编码调制设备,其特征在于,包括:串并转换器,编码器,调制器和发射机,其中,
    所述串并转换器,用于接收第一比特序列,对所述第一比特序列进行串并转换,得到K路比特序列,将所述K路比特序列发送给所述编码器,其中,K为正整数;
    所述编码器,用于从所述串并转换器接收所述K路比特序列,对所述K路比特序列分别进行编码,得到K路码字序列,将所述K路码字序列发送给所述调制器;
    所述调制器,用于从所述编码器接收所述K路码字序列,在每路码字序列中各取至少一个比特进行调制,得到符号,将所述符号发送给发射机;
    所述发射机,用于从所述调制器接收所述符号,将所述符号发送出去。
  23. 根据权利要求22所述的设备,其特征在于,所述设备还包括:
    交织器,用于从所述编码器接收K路码字序列,对所述K路码字序列分别进行交织,得到K路交织后的码字序列,将所述K路交织后的码字序列发送给所述调制器;
    所述调制器,还用于从所述交织器接收所述K路交织后的码字序列,在每路交织后的码字序列中各取至少一个比特进行调制,得到符号。
  24. 根据权利要求22或23所述的设备,其特征在于,所述符号中的比特属于K个不同的码字序列。
  25. 一种调制解调系统,其特征在于,包括:
    如权利要求13-21中任意一项所述的解调译码设备以及如权利要求22-24中任意一项所述的编码调制设备。
PCT/CN2016/085751 2016-06-14 2016-06-14 一种解调及译码的方法和设备 WO2017214860A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/085751 WO2017214860A1 (zh) 2016-06-14 2016-06-14 一种解调及译码的方法和设备
CN201680077493.6A CN108432168B (zh) 2016-06-14 2016-06-14 一种解调及译码的方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/085751 WO2017214860A1 (zh) 2016-06-14 2016-06-14 一种解调及译码的方法和设备

Publications (1)

Publication Number Publication Date
WO2017214860A1 true WO2017214860A1 (zh) 2017-12-21

Family

ID=60663867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085751 WO2017214860A1 (zh) 2016-06-14 2016-06-14 一种解调及译码的方法和设备

Country Status (2)

Country Link
CN (1) CN108432168B (zh)
WO (1) WO2017214860A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112039537A (zh) * 2020-08-26 2020-12-04 中山大学 一种基于右向信息处理的极化码译码方法及实现装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115134044A (zh) * 2022-05-25 2022-09-30 中山智联未来科技有限公司 超远距离无线传输方法、系统及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043483A (zh) * 2006-03-20 2007-09-26 松下电器产业株式会社 一种基于低密度校验码的高阶编码调制方法
CN101753268A (zh) * 2008-11-28 2010-06-23 株式会社日立制作所 无线通信装置的编码及调制方法、以及解码方法
US20130208836A1 (en) * 2012-02-14 2013-08-15 Hitachi Kokusai Electric Inc. Receiver and received signal decoding method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009534A (zh) * 2007-02-01 2007-08-01 中兴通讯股份有限公司 一种多输入多输出系统的发射方法及系统
CN101291313B (zh) * 2007-04-19 2012-01-11 华为技术有限公司 无线信号发射方法、系统及移动台
CN101374132B (zh) * 2007-08-23 2013-01-16 中兴通讯股份有限公司 多入多出正交频分复用系统开环空间复用发射方法及系统
CN102684840B (zh) * 2012-05-29 2014-12-24 上海交通大学 低密度奇偶校验码的新型编码调制方法及装置
CN105591717B (zh) * 2015-12-31 2019-03-01 电子科技大学 用于载波索引调制的mimo-ofdm系统的低复杂度检测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043483A (zh) * 2006-03-20 2007-09-26 松下电器产业株式会社 一种基于低密度校验码的高阶编码调制方法
CN101753268A (zh) * 2008-11-28 2010-06-23 株式会社日立制作所 无线通信装置的编码及调制方法、以及解码方法
US20130208836A1 (en) * 2012-02-14 2013-08-15 Hitachi Kokusai Electric Inc. Receiver and received signal decoding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112039537A (zh) * 2020-08-26 2020-12-04 中山大学 一种基于右向信息处理的极化码译码方法及实现装置

Also Published As

Publication number Publication date
CN108432168A (zh) 2018-08-21
CN108432168B (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
Li et al. Trellis-coded modulation with bit interleaving and iterative decoding
JP5235629B2 (ja) 無線通信装置の符号化及び変調方法、並びに復号方法
JP4463857B2 (ja) ビットインターリーブ化符号化変調信号を送受信するための方法および装置
KR20110102875A (ko) 변조된 데이터 스트림의 송신 방법 및 수신 방법
CN102684840B (zh) 低密度奇偶校验码的新型编码调制方法及装置
CN101262307B (zh) 一种含有星座图旋转调制方式的串行级联编译码系统
CN115208736A (zh) 适用于混合自动重传请求系统的高阶调制星座设计方法
CN114826284A (zh) 基于扩展Turbo码和连续相位调制的迭代译码方法
CN108306714B (zh) 一种高阶调制下lt码解调译码方法
WO2017214860A1 (zh) 一种解调及译码的方法和设备
CN115225202B (zh) 一种级联译码方法
CN109672500B (zh) Ldpc-bicm-id系统的8apsk映射方法
EP4175185A1 (en) Modulation and encoding method and apparatus, demodulation and decoding method and apparatus, device, and communication system
WO2017157105A1 (zh) 一种调制方法和装置
JP5153588B2 (ja) 無線通信装置
Hung Comparison of BICM-ID to Turbo code with high-ary modulation in wide band communication systems in the future
Zheng et al. TPC together with overlapped time domain multiplexing system based on turbo structure
Chen et al. Constrained decoding for turbo-CRC code with high spectral efficient modulation
Bhownath et al. Repeat-punctured turbo trellis-coded modulation
Cui et al. An efficient joint convolutional code (CC)-coded DQPSK method
Wang et al. An optimized mapping design of 8PSK for BICM-ID
Yuan et al. Turbo-coded M-QAM for fading channels
JP2013070437A (ja) 無線通信装置の符号化及び変調方法、並びに復号方法
Muduli et al. Performance of Turbo codec OFDM in Rayleigh Fading Channel for wireless communication
Benmahmoud et al. The Effects of Signal Mappings on the Performances of a BICM-ID System Based on 8PSK Constellation Operating over a Rayleigh Fading Channel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16904978

Country of ref document: EP

Kind code of ref document: A1