WO2017213336A1 - Method for manufacturing electrode assembly having irregular structure, and irregular electrode assembly - Google Patents

Method for manufacturing electrode assembly having irregular structure, and irregular electrode assembly Download PDF

Info

Publication number
WO2017213336A1
WO2017213336A1 PCT/KR2017/003167 KR2017003167W WO2017213336A1 WO 2017213336 A1 WO2017213336 A1 WO 2017213336A1 KR 2017003167 W KR2017003167 W KR 2017003167W WO 2017213336 A1 WO2017213336 A1 WO 2017213336A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
separator
electrode assembly
assembly
outer periphery
Prior art date
Application number
PCT/KR2017/003167
Other languages
French (fr)
Korean (ko)
Inventor
최진우
안인구
윤형구
정재한
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201790000396.7U priority Critical patent/CN209133616U/en
Publication of WO2017213336A1 publication Critical patent/WO2017213336A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing an electrode assembly having an amorphous structure and to an amorphous electrode assembly.
  • Lithium battery cells occupy an important position on the basis of the development to such a ubiquitous society. Specifically, lithium battery cells capable of charging and discharging are not only widely used as energy sources for wearable electronic devices worn on a wireless mobile device or body, but also for air pollution of conventional gasoline vehicles and diesel vehicles using fossil fuel. It is also used as an energy source for electric vehicles and hybrid electric vehicles, which are being proposed as a solution to the problem.
  • lithium battery cells are diversified to provide outputs and capacities suitable for the devices to which they are applied.
  • lithium battery cells are manufactured in consideration of the size and shape of the device using them as a power source, and in recent years, the product is used in a variety of lithium battery cells, so that it is applicable to a variety of devices having a curved or curved, rectangular Apart from the structure, at least five polygonal structures or geometrically irregular designs are manufactured.
  • 1 and 2 illustrate an example electrode assembly of one exemplary amorphous structure.
  • the electrode assembly 10 has a structure in which an anode 2, a separator 3a, a cathode 6, a separator 3b, and an anode 4 are sequentially stacked and planarized. It consists of hexagonal structure with six internal angles.
  • the electrode structure shown in FIG. 1 is defined as an electrode assembly having an amorphous structure under this concept.
  • each of the electrodes 2, 4, and 6 has a shape in which a lower edge forms an oblique line with respect to the direction leader lines x and y.
  • the separators 3a and 3b have a larger size than the electrodes 2, 4 and 6 due to contact between the electrodes 2, 4 and 6 and blocking of foreign substances.
  • the separators 3a and 3b are stacked with the electrodes 2, 4 and 6 so as to correspond to the shape of the bottom edges of the electrodes 2, 4 and 6. Cutting along the imaginary cutting line (C), the separator pieces generated at this time may be introduced into the positive electrode (2, 4) or the negative electrode (4) by the static electricity can reduce the quality of the electrode.
  • the foreign material must be checked with the naked eye and the foreign material of the separator must be removed through manpower.
  • the structure of the electrode may be damaged in this process, which may impair the quality of the electrode assembly.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • an object of the present invention is to provide a manufacturing method that can fundamentally solve the problems caused by the introduction of foreign matter to the separator by cutting in a desired form in a state in which a plurality of separation membranes are bonded to reduce the occurrence of foreign matter.
  • the first separator and the second separator are not cut, but are bonded to each other by lamination and fusion, that is, the fiber tissue of the separator is cut in a cured state.
  • the degree of foreign matter generation can be significantly reduced, and due to the fact that the separator in which the fibrous structure is cured is not easily induced by static electricity, even if a small amount of foreign matter is generated, the inevitable phenomenon of the foreign material adsorbed to the electrode can be considerably alleviated.
  • the first separator and the second separator have a planar rectangular structure
  • the first separator and the second separator have a planar amorphous structure. Can be.
  • the first and second separators having a rectangular shape are first cut into a shape substantially corresponding to the electrode in the process (d) and processed into an amorphous structure, and the cutting is separated into each of the first separator and the second separator.
  • the bar is processed in a state in which a predetermined portion is formed in one, and the cutting process is easy and the manufacturing processability is excellent while the generation of foreign matter is reduced, so that a good electrode assembly can be manufactured.
  • the lamination as defined in the present invention means a process of applying heat to the surfaces of the separators and the electrodes in surface contact, and the separators and the electrodes in contact with each other by mutually joining the surfaces thereof.
  • the separator is composed of an insulating thin polymer membrane having high ion permeability and mechanical strength, the pore diameter is generally 0.01 ⁇ 10 ⁇ m, thickness may be generally 5 ⁇ 300 ⁇ m. In this state, when two or more separators made of polymer are bonded by heat, the fiber structure thereof becomes firm, so that the phenomenon of falling into fine pieces during cutting may be reduced.
  • Olefin type polymers such as a chemical resistance and hydrophobic polypropylene; Sheets or non-woven fabrics made of glass fibers or polyethylene, etc. may be used.
  • the separation membrane may be formed of an organic / inorganic hybrid porous safety-reinforcing separator (SRS) membrane.
  • SRS safety-reinforcing separator
  • the SRS membrane does not generate high temperature heat shrinkage due to the heat resistance of the inorganic particles, even if the electrode assembly is penetrated by the needle conductor, it is possible to maintain the elongation of the safety separator.
  • the SRS separator may have a structure in which an inorganic layer and a binder polymer are coated with an active layer component on a polyolefin-based separator substrate.
  • Such an SRS separator may have a uniform pore structure formed by an interstitial volume between inorganic particles as an active layer component in addition to the pore structure included in the separator substrate itself, and the pores may be formed on the outside of the electrode assembly. Not only can the shock be considerably alleviated, the smooth movement of lithium ions through the pores, and a large amount of electrolyte can be filled to show a high impregnation rate, thereby improving battery performance.
  • the separator substrate and the active layer are present in a form in which the pores of the surface of the polyolefin-based separator substrate and the active layer are entangled with each other (anchoring), so that the separator substrate and the active layer may be physically firmly bonded, wherein the separator substrate and the active layer are physically
  • it may have a thickness ratio of 9: 1 to 1: 9, and in detail, may have a thickness ratio of 5: 5.
  • one of the active layer components formed on the surface of the polyolefin-based separator substrate and / or a part of the pores of the substrate is an inorganic particle commonly used in the art.
  • the inorganic particles may serve as a kind of spacer capable of forming micro pores by allowing the formation of empty spaces between the inorganic particles and maintaining a physical form.
  • the inorganic particles since the inorganic particles generally have a property that physical properties do not change even at a high temperature of 200 degrees Celsius or more, the formed organic / inorganic composite porous film has excellent heat resistance.
  • the inorganic particles are not particularly limited as long as they are electrochemically stable. That is, the inorganic particles that can be used in the present invention are not particularly limited as long as the oxidation and / or reduction reactions do not occur in the operating voltage range of the battery to be applied (for example, 0 to 5 V on the basis of Li / Li +).
  • the inorganic particles having the ion transfer ability since the ion conductivity in the electrochemical device can be improved to improve the performance, it is preferable that the ion conductivity is as high as possible.
  • the inorganic particles have a high density, it is not only difficult to disperse during coating, but also has a problem of weight increase during battery manufacturing, and therefore, it is preferable that the density is as small as possible.
  • an inorganic material having a high dielectric constant it is possible to contribute to an increase in the degree of dissociation of an electrolyte salt such as lithium salt in the liquid electrolyte, thereby improving the ionic conductivity of the electrolyte solution.
  • the inorganic particles may be at least one selected from the group consisting of (a) inorganic particles having piezoelectricity and (b) inorganic particles having lithium ion transfer capability.
  • the piezoelectric inorganic particles are insulators at normal pressure, but when they are applied at a certain pressure, they mean materials having electrical properties through electrical structure change, and exhibit dielectric constants of 100 or more, as well as constant pressures. When tension or compression is applied, electric charge is generated so that one side is positively charged and the other side is negatively charged, thereby generating a potential difference between both surfaces.
  • the positive electrode and the negative electrode may not directly contact due to the inorganic particles coated on the separator when the internal short circuit of both electrodes occurs due to an external impact such as a needle conductor.
  • the piezoelectricity of the inorganic particles due to the piezoelectricity of the inorganic particles, the potential difference in the particles is generated, which results in electron transfer between the two electrodes, that is, a minute current flow, thereby reducing the voltage of the gentle battery and thereby improving safety.
  • Examples of the inorganic particles having piezoelectric properties include BaTiO 3 , Pb (Zr, Ti) O 3 (PZT), Pb 1 - xLa x Zr 1-y Ti y O 3 (PLZT), PB (Mg 3 Nb 2/3 ) One or more selected from the group consisting of O 3 -PbTiO 3 (PMN-PT) and hafnia (HfO 2 ), but is not limited thereto.
  • the inorganic particles having a lithium ion transfer capacity refers to inorganic particles containing lithium elements but having a function of transferring lithium ions without storing lithium, and the inorganic particles having lithium ion transfer ability are present in the particle structure. Since lithium ions can be transferred and moved due to a kind of defect, the lithium ion conductivity in the battery is improved, thereby improving battery performance.
  • Examples of the inorganic particles having the lithium ion transfer ability include lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), and lithium aluminum Titanium phosphate (Li x Al y Ti z (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 3), (LiAlTiP) x O y series glass (0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 13), lithium lanthanum titanate (Li x La y TiO 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), lithium germanium thiophosphate (Li x Ge y P z S w , 0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ w ⁇ 5), lithium nitride (Li
  • the composition ratio of the inorganic particles and the binder polymer as the active layer component is not particularly limited, but may be controlled within a range of 10:90 to 99: 1% by weight, and preferably 80:20 to 99: 1% by weight. If the ratio is less than 10: 90% by weight, the polymer content becomes excessively large, resulting in a decrease in pore size and porosity due to a decrease in the void space formed between the inorganic particles, resulting in deterioration of final cell performance. When the ratio is exceeded, the polymer content is too small, and thus the mechanical properties of the final organic / inorganic composite porous separator may be degraded due to the weakening of the adhesion between the inorganic materials.
  • the active layer in the organic / inorganic composite porous separator may further include other additives commonly known in addition to the above-described inorganic particles and polymers.
  • the substrate coated with a mixture of the inorganic particles and the binder polymer as the active layer component may be a polyolefin-based separator commonly used in the art.
  • the polyolefin-based separator components include high density polyethylene, linear low density polyethylene, low density polyethylene, ultra high molecular weight polyethylene, polypropylene, or derivatives thereof.
  • the first electrode and the third electrode may be an anode or a cathode, and the second electrode may have a different polarity than the first electrode and the third electrode.
  • the electrode assembly manufactured by the method of the present invention the A-type bi-cell structure in which the positive electrode, the separator, the negative electrode, the separator positive electrode is sequentially stacked, or the C-type bicell in which the negative electrode, the separator, the positive electrode, the separator negative electrode is sequentially stacked It may be a structure.
  • the A-type bi-cell generally refers to a bi-cell in which the electrode of the electrode located in the middle layer is an anode, and the C-type bi-cell is a cathode of the electrode located in the middle layer. Refers to a bicell.
  • the manufacturing method according to the present invention may further include a process of manufacturing a modified bicell-type electrode assembly including a separator as well as the A-type and C-type bicells.
  • the third separator is further laminated on an opposite surface of the surface on which the first separator is laminated, and in the process (c), the outer circumferential surface of the third separator is
  • the method may further include laminating the outer circumferential surfaces of the first separator and the second separator.
  • the electrode assembly may have a structure in which a third separator, a first electrode, a first separator, a second electrode, a second separator, and a third electrode are sequentially stacked.
  • the third electrode is further laminated on the opposite surface of the surface on which the second separator is laminated, and in the process (c), the outer circumferential surface of the fourth separator is The method may further include laminating the outer circumferential surfaces of the first separator and the second separator.
  • the electrode assembly may have a structure in which a first electrode, a first separator, a second electrode, a second separator, a third electrode, and a fourth separator are sequentially stacked.
  • both the third separator and the fourth separator may be laminated on the first electrode and the third electrode, respectively, and in this state, the third separator and the fourth separator may be further laminated on the outer peripheral surfaces of the first separator and the second separator.
  • the third separator or the fourth separator is positioned on the outermost electrode, and when the needle conductor penetrates, the third separator or the fourth separator located at the outermost portion is formed with the acicular conductor. Stretching together prevents the mutually opposite electrodes from directly conducting through the needle conductor.
  • the present invention also provides an electrode assembly having an amorphous structure applicable to devices of various designs.
  • the electrode assembly has a structure in which n amorphous electrodes (n ⁇ 3) composed of at least six outer peripheries in a plane are stacked together with n, n-1, or n + 1 separators.
  • Each of the separators has an area of 110% to 150% of the area of the electrode so as to protrude outward from the outer periphery of the adjacent electrode;
  • the outer periphery of the separators adjacent to the protruding periphery is formed at an angle of 30 degrees to 60 degrees with respect to the periphery of the adjacent electrode, and is 0 to the periphery of the electrode. It characterized in that it comprises a junction outer periphery of the structure cut to achieve 10 degrees.
  • the electrode assembly according to the present invention is formed of six or more polymorphs in a plane, and thus it can be seen that the shape is applicable to a device such as a polygon or a geometric structure, and also a circular or curved surface, which is out of a general rectangular design.
  • the separators are cut to correspond to the shape of the at least one electrode, but as described above, the separator portions that do not correspond to the outer periphery of the electrode are cut to be substantially parallel to the outer periphery of the electrode. In this case, the foreign matters that are separated from the separator are significantly reduced, and thus, the electrode assembly has a stable structure without deterioration of electrode performance or deterioration due to foreign matters because there is almost no foreign matter on the electrodes.
  • n, n-1, or n + 1 separators may be bonded to each other around the junction.
  • an edge portion of the electrodes positioned between the separators sharing the outer circumference of the junction may be supported while being surrounded by the outer circumference of the junction.
  • the outer surface of the electrode assembly consisting of the corner portion is relatively small surface area is applied a considerable pressure when the impact is applied, the battery case in this process
  • the electrodes of opposite polarities may be in contact with each other while being strongly rubbed with the inner surface, but the structure, that is, the structure in which the n, n-1, or n + 1 separators are bonded to each other is the inner surface of the battery case.
  • the previous problem can be solved by alleviating the friction degree of the edge portion against.
  • n, n-1, or n + 1 separators may be separated from each other around the junction.
  • the electrode assembly according to the present invention may have a structure in which six or more polymorphic electrodes are stacked on a planar bar, and may have six or more polymorphic structures on a plane, and may include two or more bonding outer peripheries.
  • the electrode assembly may have a second electrode having a different polarity between the first electrode and the third electrode having the same polarity, and the first electrode, the second electrode, and the third electrode may have the same shape.
  • the size of these electrodes for example, the thickness or the planar area may be different from each other.
  • the first electrode and the third electrode may be an anode or a cathode, and the second electrode may have a different polarity from that of the first electrode and the third electrode.
  • the electrode assembly may have a stacked structure in order of an electrode, a separator, an electrode, a separator, and an electrode.
  • the electrode assembly may have a stacked structure in order of a separator, an electrode, a separator, an electrode, a separator, and an electrode.
  • the electrode assembly may have a stacked structure in order of a separator, an electrode, a separator, an electrode, a separator, an electrode, and a separator.
  • Such an electrode stack structure is commonly referred to as a bicell, and more specifically, when the polarity of the electrode positioned in the intermediate layer is an anode, it may be defined as an A-type bicell in a broad sense, and is located in the intermediate layer. When the polarity of the electrode is a cathode, it can be defined as a C-type bicell in a broad sense.
  • each of the outer periphery of the electrode may be interconnected to form an internal angle of less than 60 degrees to less than 270 degrees with an adjacent outer periphery, in detail, may be interconnected to form an internal angle of more than 90 degrees less than 180 degrees. have.
  • the electrodes may each include an electrode tab protruding outward from the outer periphery located in the same direction.
  • the electrode tabs of the first electrode and the third electrode are formed to form the first electrode terminal of the electrode assembly in a state where the electrode tabs are overlapped up and down.
  • the electrode tab of the second electrode forms a second electrode terminal of the electrode assembly at a position spaced from at least the first electrode terminal.
  • the electrode tabs of the first electrode and the second electrode and the electrode tab of the second electrode protrude outward from the outer periphery located in the same direction, they may be spaced apart within a range that does not contact each other.
  • first electrode and the third electrode include electrode tabs protruding outward from the outer periphery positioned in the same direction, and the second electrode is different from the outer periphery where the electrode tabs of the first and third electrodes are located. It may include an electrode tab protruding outwardly from the outer periphery.
  • the first electrode terminal is formed at the same outer periphery of the electrode assembly with the electrode tabs of the first electrode and the third electrode overlapping up and down side by side.
  • the electrode tab of the second electrode may form the second electrode terminal of the electrode assembly at the outer periphery of a position different from the outer periphery of the first electrode terminal.
  • Such a structure is provided by a device in which a first electrode terminal and a second electrode terminal are spaced apart from each other to apply a current to the first electrode terminal and the second electrode terminal in an activation process of the battery cell, that is, an initial charge / discharge process. They may not interfere with each other.
  • the interference may be, for example, interference by a magnetic field formed when a current flows through an electrode terminal.
  • first electrode terminal and the second electrode terminal are formed at outer peripheries in different directions, an electrical connection structure to each of these terminals can be achieved in different directions, and because of this, It is possible to implement the connection structure with the circuit that the electrode assembly can be electrically connected in more various forms.
  • the electrode assembly of the present invention composed of such electrodes consists of a polygonal structure having N internal angles (N ⁇ 6) in plan view, and may be formed of left and right and / or vertically symmetrical structures.
  • the electrode assembly may have a polygonal structure having N internal angles (N ⁇ 6) in a planar shape, and may have a left, right, and / or up and down asymmetrical structure.
  • the present invention also provides a secondary battery including at least one electrode assembly.
  • the type of the secondary battery is not particularly limited, specific examples thereof include lithium ion (Li-ion) batteries, lithium polymer (Li-polymer) batteries having advantages such as high energy density, discharge voltage, and output stability, Or a lithium secondary battery such as a lithium ion polymer battery.
  • a lithium secondary battery is composed of a positive electrode, a negative electrode, a separator, and a lithium salt-containing nonaqueous electrolyte.
  • the positive electrode is prepared by, for example, applying a mixture of a positive electrode active material, a conductive material, and a binder to a positive electrode current collector, followed by drying, and optionally, a filler is further added to the mixture.
  • the positive electrode current collector is generally made to a thickness of 3 to 500 micrometers. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • the surface of stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface treated with carbon, nickel, titanium, silver or the like can be used.
  • the current collector may form fine irregularities on its surface to increase the adhesion of the positive electrode active material, and may be in various forms such as film, sheet, foil, net, porous body, foam, and nonwoven fabric.
  • the conductive material is typically added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the binder is a component that assists the bonding of the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
  • the filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • the negative electrode is manufactured by coating and drying a negative electrode active material on a negative electrode current collector, and optionally, the components as described above may optionally be further included.
  • the negative electrode current collector is generally made to a thickness of 3 to 500 micrometers.
  • a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy, and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • carbon such as hardly graphitized carbon and graphite type carbon
  • Me: Mn, Fe, Pb, Ge; Me' Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen, 0 ⁇ x ⁇ 1; 1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and metal oxides such as Bi 2
  • the electrolyte may be a lithium salt-containing non-aqueous electrolyte, and consists of a non-aqueous electrolyte and a lithium salt.
  • nonaqueous electrolyte nonaqueous organic solvents, organic solid electrolytes, inorganic solid electrolytes, and the like are used, but not limited thereto.
  • non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma Butyl lactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorone, formamide, dimethylformamide, dioxolon , Acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl propionate can be
  • organic solid electrolytes examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymers containing ionic dissociating groups and the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
  • the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide have.
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, Nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride and the like may be added.
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide
  • Nitrobenzene derivatives sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyr
  • a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-Ethylene) may be further included. Carbonate), PRS (Propene sultone) may be further included.
  • lithium salts such as LiPF 6 , LiClO 4 , LiBF 4 , LiN (SO 2 CF 3 ) 2, and the like, may be prepared by cyclic carbonate of EC or PC, which is a highly dielectric solvent, and DEC, DMC, or EMC, which are low viscosity solvents.
  • Lithium salt-containing non-aqueous electrolyte can be prepared by adding to a mixed solvent of linear carbonate.
  • the present invention also provides a device including at least one of the battery cells.
  • the device may be, for example, an electronic device selected from the group consisting of wearable electronic devices, mobile phones, portable computers, smart phones, tablet PCs, smart pads, netbooks, light electronic vehicles (LEVs), and wearable electronic devices. It is not limited only to these.
  • FIGS. 1 and 2 are schematic diagrams of one exemplary amorphous electrode assembly
  • FIG. 3 is a flowchart of a manufacturing method according to one embodiment of the present invention.
  • FIGS. 4 and 5 are schematic views of an electrode assembly according to one embodiment of the present invention.
  • FIG. 6 is an enlarged vertical cross sectional view of the portion L of FIG. 4; FIG.
  • FIG. 7 is a schematic view of an electrode assembly according to another embodiment of the present invention.
  • FIG. 8 is a schematic view of an electrode assembly according to still another embodiment of the present invention.
  • FIG. 9 is a schematic plan view of an electrode assembly according to another embodiment of the present invention.
  • FIG. 10 is a schematic plan view of an electrode assembly according to another embodiment of the present invention.
  • FIG. 11 is a schematic plan view of an electrode assembly according to another embodiment of the present invention.
  • FIG. 3 is a flow chart of a manufacturing method according to one embodiment of the present invention.
  • the manufacturing method 100 according to the present invention for the electrode assembly 200 relative to these electrodes between the first electrode 210 and the second electrode 220 in the process (110). Intervening the first separator 202 and the electrodes with heat except for a portion protruding beyond the first electrode 210 and the second electrode 220 with a rectangular first separator 202 having a large planar area. .
  • the second electrode 220 is interposed between the second electrode 220 and the third electrode 230 with a rectangular second separator 204 having a relatively larger planar area than those of the electrodes.
  • the second separator 204 and the electrodes are laminated as a row except for a portion protruding beyond the third electrode 230.
  • step 140 the outer periphery 240, which is approximately 0 degrees to 10 degrees with respect to the outer periphery of the electrode 208, is formed in the first separator 202 and the second separator 204, The laminated outer peripheral surfaces 260 are cut along the virtual cutting line C.
  • a third separator may be additionally laminated on an opposite surface of the surface where the first separator 202 is laminated on the first electrode 210.
  • the process 130 may further include a process in which the outer circumferential surface of the third separator is further laminated to the outer circumferential surfaces 260 of the first separator 202 and the second separator 204.
  • the third separator may also be cut together with the first separator 202 and the second separator 204 through the process 140.
  • a fourth separator may be additionally laminated on an opposite surface of the surface on which the second separator 204 is laminated on the second electrode 220, and in this case, the process 130 may be performed in a fourth manner.
  • the outer circumferential surface of the separator may further include laminating the outer circumferential surfaces 260 of the first separator 202 and the second separator 204.
  • the fourth separator may also be cut together with the first separator 202 and the second separator 204 through the process 140.
  • the plurality of separators are not cut, but are bonded to each other by lamination and fusion, that is, the fiber tissues of the separators are cut in a cured state. Due to the fact that the separator in which the fibrous structure is cured is not easily induced by static electricity, the inevitable phenomenon that the foreign material is adsorbed to the electrode can be significantly alleviated even when a small amount of foreign material is generated.
  • FIG. 4 and 5 are schematic views of an electrode assembly according to an embodiment of the present invention
  • Figure 6 is a vertical cross-sectional schematic of the L portion of FIG.
  • the electrode assembly 200 is a planar electrode consisting of at least six outer periphery of the first electrode 210, the second electrode 220, the third electrode 230, the first electrode A separator 202 and a second separator 204, and include a first electrode 210, a first separator 202, a second electrode 220, a second separator 204, and a third electrode 230. It consists of a stacked structure in order.
  • the first electrode 210, the second electrode 220, and the third electrode 230 have an amorphous structure having six outer peripheries and six internal angles, respectively, and the shapes thereof are all the same.
  • first electrode 210, the second electrode 220, and the third electrode 230 each include electrode tabs 212, 222, and 232 protruding outward from the outer periphery positioned in the same direction.
  • the electrode tabs 212 and 232 of the first electrode 210 and the third electrode 230 are arranged up and down side by side.
  • the overlapping electrode tabs 212 and 232 having the same polarity form the first electrode terminal 206 of the electrode assembly 200.
  • the electrode tab 222 of the second electrode 220 forms a second electrode terminal of the electrode assembly 200 at a position spaced apart from at least the first electrode terminal 206.
  • first electrode terminal 206 and the second electrode terminal 222 may be combined with a current-carrying member such as an electrode lead by welding or soldering, respectively.
  • the first separator 202 and the second separator 204 have an area of approximately 130% of the planar surface of any one of the first electrode 210, the second electrode 220, and the third electrode 230.
  • the electrode 210, the second electrode 220, and the third electrode 230 have substantially the same shape.
  • first separator 202 and the second separator 204 have a first rectangular structure, and in a state in which the first separator 202 and the second separator 204 are stacked together with the electrodes 210, 220, and 230, the first separator 202 and the second separator 202 may be formed.
  • the fields 260 are bonded to each other, and in this state, the outer circumferential surfaces 260 joined along the imaginary cutting line C, which are 0 to 10 degrees with respect to the outer circumference 208 of the electrode, are cut.
  • the electrode 210, the second electrode 220, and the third electrode 230 have a structure substantially the same shape.
  • the portions of the first separator 202 and the second separator 204 cut in the bonded state as described above are defined as the bonding outer periphery 240 in the present invention.
  • the concept of the bonding outer periphery 240 is, as shown in FIG. (A) or a separator portion from the cut portion to the outer periphery of the adjacent electrode.
  • the first separator 202 and the second separator 204 may be formed at the outer circumferential edge 240a of the bonding. Stay bonded to each other.
  • the corner portion of the second electrode 220 positioned between the separators 202 and 204 sharing the junction outer periphery 240a is supported by the junction outer periphery 240.
  • the electrode assembly according to the present invention is formed of six or more polymorphs in a plane, and it can be seen that the shape is applicable to a device such as a polygon or a geometric structure, and also a circular or curved surface, which is out of the general rectangular design. have.
  • the separators are cut to correspond to the shape of the at least one electrode, but as described above, the separator portions that do not correspond to the outer periphery of the electrode are cut to be substantially parallel to the outer periphery of the electrode. In this case, the foreign matters that are separated from the separator are significantly reduced, and thus, the electrode assembly has a stable structure without deterioration of electrode performance or deterioration due to foreign matters because there is almost no foreign matter on the electrodes.
  • FIG. 7 is a schematic view of an electrode assembly according to another embodiment of the present invention.
  • the electrode assembly 300 may be a first electrode 310, a second electrode 320, a third electrode 330, and a first separator, which are amorphous electrodes having at least six outer peripheries in plan view. 302, a second separator 304, and a sequence of the first electrode 310, the first separator 302, the second electrode 320, the second separator 304, and the third electrode 330. It consists of a laminated structure.
  • the first electrode 310, the second electrode 320, and the third electrode 330 have an amorphous structure having six outer peripheries and six internal angles, respectively, and the shapes thereof are all the same.
  • the first electrode 310 and the third electrode 330 include electrode tabs 312 and 332 protruding outward from the outer periphery positioned in the same direction, and the second electrode 320 includes the first electrode 310 and the first electrode 310. It includes an electrode tab 322 protruding outward from the outer periphery located in a different direction with respect to the outer periphery where the electrode tabs 312 and 332 of the three electrodes 330 are located.
  • the electrode tabs 312 and 332 of the first electrode 310 and the third electrode 330 may be formed. While the first electrode terminal 306 is formed at the same outer periphery of the electrode assembly 300 in a state where the upper and lower sides overlap, the electrode tab of the second electrode 320 has an outer periphery at which the first electrode terminal 306 is located. The second electrode terminal 322 of the electrode assembly 300 is formed at the outer periphery of the position different from the.
  • first electrode terminal 306 and the second electrode terminal 322 are spaced apart from each other so that the first electrode terminal 306 and the second electrode terminal ( By means of devices which respectively apply current to 322, they may not interfere with each other.
  • first electrode terminal 306 and the second electrode terminal 322 are formed at outer peripheries in different directions, an electrical connection structure to each of these terminals can be achieved in different directions, and in this respect Due to this, the connection structure of the electrode assembly 300 and the circuit which can be electrically connected thereto can be implemented in more various forms.
  • FIG. 8 is a vertical cross-sectional view of three electrode assemblies according to still another embodiment of the present invention.
  • the electrode assembly 400 may include a third separator 406, a first electrode 410, a first separator 402, a second electrode 420, and a second electrode.
  • the separator 404 and the third electrode 430 are sequentially stacked.
  • the electrode assembly 500 includes a first electrode 510, a first separator 502, a second electrode 520, a second separator 504, and a third electrode 530. ) And the fourth separator 508 are sequentially stacked.
  • the electrode assembly 600 includes a third separator 606, a first electrode 610, a first separator 602, a second electrode 620, and a second separator 604. ), The third electrode 630 and the fourth separator 608 are sequentially stacked.
  • additional separators As an additional structure, when the needle conductor penetrates the electrode assembly in the direction of the outermost electrode, the third or fourth separator added to the outermost portion may be stretched along the needle conductor to surround the needle conductor surface. For this reason, the needle conductors can block the mutually opposite electrodes, for example, the first electrode and the second electrode, or the second electrode and the third electrode from being directly energized through the needle conductors.
  • the third and fourth separators added to the outermost portion may have a relatively thicker thickness than that of the first and second separators, and in detail, is about 1.5 to 3 times the thickness of the first or second separators. It may have a thickness of twice.
  • 9 to 11 are schematic plan views of electrode assemblies according to still other embodiments of the present invention.
  • the outer periphery of the separators 730, 830, and 930 forming the outermost part of the electrode assembly may be formed.
  • the planar shape of the separator is the same as that of the electrode, and thus, the outer periphery of the electrode assembly may be understood as the outer periphery of the electrode and implemented according to the planar shape of the separator.
  • the electrode assembly 700 has a polygonal structure consisting of six outer peripheries 701, 702, 703, 704, 705, and 706 that are straight in a plane.
  • outer periphery 701, 702, 703, 704, 705, 706 are connected to the adjacent outer periphery at an angle of more than 90 degrees to less than 160 degrees, respectively, the shape of the connection is an amorphous polygonal structure.
  • the electrode assembly 700 is also symmetrically with respect to the vertical axis P-P 'passing through its center in a plane, and has an up and down asymmetrical structure with respect to the horizontal axis H-H'.
  • the first electrode terminal 710 and the second electrode terminal 720 of the electrode assembly 700 protrude side by side at the same outer periphery.
  • FIG 10 schematically shows an electrode assembly according to another embodiment of the present invention.
  • the electrode assembly 800 has a polygonal structure including eight outer peripheries 801, 802, 803, 804, 805, 806, 807, and 808 that are straight in a plane.
  • outer periphery 801, 802, 803, 804, 805, 806, 807, 808 are connected to the adjacent outer periphery at an angle of more than 90 degrees to less than 150 degrees, respectively, the shape is connected to the amorphous polygonal structure .
  • the electrode assembly 800 also consists of left and right symmetry with respect to the vertical axis (P-P ') and the horizontal axis (H-H') passing through its center in a plane.
  • the first electrode terminal 810 and the second electrode terminal 820 of the electrode assembly 800 protrude side by side at the same outer periphery.
  • FIG 11 schematically illustrates an electrode assembly according to another embodiment of the present invention.
  • the electrode assembly 900 has a polygonal structure including seven outer peripheries 901, 902, 903, 904, 905, 906, and 907 that are straight in a plane.
  • outer peripheries 901, 902, 903, 904, 905, 906, and 907 are connected to adjacent outer peripheries at an angle of more than 90 degrees to less than 180 degrees, respectively, and the connected shapes are atypical polygonal structures.
  • the electrode assembly 900 is also asymmetrical with respect to the vertical axis (P-P ') passing through its center in a plane, and has a vertically asymmetrical structure with respect to the horizontal axis (H-H').
  • first electrode terminal 910 and the second electrode terminal 920 of the electrode assembly 900 protrude outward from different outer peripheral surfaces.
  • the first separator and the second separator are not cut, but are bonded to each other by lamination and fusion, that is, the fiber tissue of the separators is cut in a cured state.
  • the generation of fine foreign matters due to cutting can be significantly reduced, and since the separator in which the fibrous structure is cured is not easily induced by static electricity, even if a small amount of foreign matter is generated, the inevitable phenomenon that the foreign material is adsorbed on the electrode is quite significant. Can be mitigated.
  • the electrode assembly according to the present invention consists of six or more polymorphs in planar shape, and is formed in a shape applicable to a device such as a polygon or a geometric structure, and also a circular or curved surface, which is out of a general rectangular design.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention provides a manufacturing method capable of fundamentally resolving a problem caused by an inflow of foreign matter into a separator by cutting the separator into a desired shape in a state in which a plurality of separators are bonded so as to reduce the generation of foreign matter. The present invention also provides an electrode assembly having an irregular structure applicable to devices with various designs.

Description

비정형 구조의 전극조립체 제조 방법 및 비정형 전극조립체A method for manufacturing an electrode assembly having an amorphous structure and an amorphous electrode assembly
본 출원은 2016.06.08자 한국 특허 출원 제10-2016-0070655호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0070655 filed on June 8, 2016, and all the contents disclosed in the literature of that Korean patent application are incorporated as part of this specification.
본 발명은 비정형 구조의 전극조립체 제조 방법 및 비정형 전극조립체에 관한 것이다.The present invention relates to a method for producing an electrode assembly having an amorphous structure and to an amorphous electrode assembly.
IT(Information Technology) 기술이 눈부시게 발달함에 따라 다양한 휴대형 정보통신 기기의 확산이 이뤄짐으로써, 21세기는 시간과 장소에 구애 받지 않고 고품질의 정보서비스가 가능한 '유비쿼터스 사회'로 발전되고 있다.As technology (Information Technology) technology has developed remarkably, the spread of various portable information and communication devices has made it possible to develop the ubiquitous society, which is capable of providing high quality information services regardless of time and place.
이러한 유비쿼터스 사회로의 발전 기반에는, 리튬 전지셀이 중요한 위치를 차지하고 있다. 구체적으로, 충방전이 가능한 리튬 전지셀은 와이어리스 모바일 기기 또는 신체에 착용하는 웨어러블 전자기기의 에너지원으로 광범위하게 사용되고 있을 뿐만 아니라, 화석 연료를 사용하는 기존의 가솔린 차량, 디젤 차량 등의 대기오염 등을 해결하기 위한 방안으로 제시되고 있는 전기자동차, 하이브리드 전기자동차 등의 에너지원으로서도 사용되고 있다. Lithium battery cells occupy an important position on the basis of the development to such a ubiquitous society. Specifically, lithium battery cells capable of charging and discharging are not only widely used as energy sources for wearable electronic devices worn on a wireless mobile device or body, but also for air pollution of conventional gasoline vehicles and diesel vehicles using fossil fuel. It is also used as an energy source for electric vehicles and hybrid electric vehicles, which are being proposed as a solution to the problem.
상기와 같이, 리튬 전지셀이 적용되는 디바이스들이 다양화됨에 따라, 리튬 전지셀은, 적용되는 디바이스에 알맞은 출력과 용량을 제공할 수 있도록 다양화되고 있다. 더불어, 소형 경박화가 강력히 요구되고 있다.As described above, as devices to which lithium battery cells are applied are diversified, lithium battery cells are diversified to provide outputs and capacities suitable for the devices to which they are applied. In addition, there is a strong demand for miniaturization.
한편, 리튬 전지셀은 이를 동력원으로 사용하는 디바이스의 크기 및 형상을 고려하여 제조되고 있고, 최근에는 리튬 전지셀이 사용되는 제품이 다양해지고, 곡선 또는 곡면을 가지는 다양한 디바이스에 적용 가능하도록, 장방형의 구조에서 벗어나, 적어도 5개의 다각 구조나 기하학적인 비정형 디자인으로 제조되고 있다.On the other hand, lithium battery cells are manufactured in consideration of the size and shape of the device using them as a power source, and in recent years, the product is used in a variety of lithium battery cells, so that it is applicable to a variety of devices having a curved or curved, rectangular Apart from the structure, at least five polygonal structures or geometrically irregular designs are manufactured.
이에 대해 도 1과 도 2에는 하나의 예시적인 비정형 구조의 전극조립체가 도시되어 있다.1 and 2 illustrate an example electrode assembly of one exemplary amorphous structure.
도 1와 도 2를 참조하면, 전극조립체(10)는 양극(2), 분리막(3a), 음극(6), 분리막(3b), 양극(4)이 순차적으로 적층된 구조로 이루어져 있으며, 평면상으로 6개의 내각을 가지는 육각 구조로 이루어져 있다.1 and 2, the electrode assembly 10 has a structure in which an anode 2, a separator 3a, a cathode 6, a separator 3b, and an anode 4 are sequentially stacked and planarized. It consists of hexagonal structure with six internal angles.
이는 평면상으로 4개의 내각을 가지며, 전반적으로 육면체 형상을 장방형 구조와 비교하여, 평면상으로 더 많은 내각을 가지면서도 그 형상이 장방형 구조와 비교하여 복잡한 것을 알 수 있으며, 이러한 형상을 넓은 의미에서 비정형이라 지칭할 수 있다. It has four internal angles in plan view, and the overall hexahedral shape is compared with the rectangular structure, and the shape is more complicated than the rectangular structure while having more internal angles in the plane. It may be referred to as atypical.
이에, 본 발명에서는 이 개념하에 도 1과 같은 전극 구조체를 비정형 구조의 전극조립체라 정의한다.Accordingly, in the present invention, the electrode structure shown in FIG. 1 is defined as an electrode assembly having an amorphous structure under this concept.
다시 도 1과 도 2에 도시된 비정형 전극조립체(10)를 참조하면, 각 전극들(2, 4, 6)은 하단 측 모서리가 방향 지시선들(x, y)에 대해 사선을 이루는 형태로 이루어져 있으며, 분리막들(3a, 3b)은 전극들(2, 4, 6) 간 접촉, 이물질 차단 등을 이유로 각 전극들(2, 4, 6) 대비 상대적으로 큰 크기로 이루어져 있다.Referring again to the atypical electrode assembly 10 shown in FIGS. 1 and 2, each of the electrodes 2, 4, and 6 has a shape in which a lower edge forms an oblique line with respect to the direction leader lines x and y. The separators 3a and 3b have a larger size than the electrodes 2, 4 and 6 due to contact between the electrodes 2, 4 and 6 and blocking of foreign substances.
이러한 전극조립체의 제조 시, 분리막들(3a, 3b)은 전극들(2, 4, 6)과 함께 적층된 상태에서 각 전극(2, 4, 6)의 하단 측 모서리 형태와 대응되도록 도 1의 가상의 커팅선(C)을 따라 커팅되는데 이때 발생되는 분리막 조각들이 정전기에 의해 양극(2, 4)이나 음극(4)에 유입되면서 전극의 품질을 저하시킬 수 있다.In the manufacturing of the electrode assembly, the separators 3a and 3b are stacked with the electrodes 2, 4 and 6 so as to correspond to the shape of the bottom edges of the electrodes 2, 4 and 6. Cutting along the imaginary cutting line (C), the separator pieces generated at this time may be introduced into the positive electrode (2, 4) or the negative electrode (4) by the static electricity can reduce the quality of the electrode.
이를 해소하기 위해서는 육안으로 이물을 확인하고 인력을 통해 분리막 이물의 제거가 이루어져야 하나, 이 과정에서 전극의 구조 손상이 발생되어 전극조립체의 품질을 저해할 수 있다. In order to solve this problem, the foreign material must be checked with the naked eye and the foreign material of the separator must be removed through manpower. However, the structure of the electrode may be damaged in this process, which may impair the quality of the electrode assembly.
따라서, 비정형의 전극조립체를 보다 안정적으로 제조할 수 있는 방법과, 비정형 구조로서 보다 다양한 디바이스에 적용 가능한 전극조립체에 대한 필요성이 높은 실정이다.Therefore, there is a high demand for a method for more stably manufacturing an amorphous electrode assembly, and an electrode assembly applicable to more various devices as an amorphous structure.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.The present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
구체적으로 본 발명의 목적은, 이물의 발생이 적도록 복수의 분리막을 접합시킨 상태에서 소망하는 형태로 커팅함으로써, 분리막 이물 유입으로 인한 문제점을 근본적으로 해소할 수 있는 제조 방법을 제공하는 것이다.Specifically, an object of the present invention is to provide a manufacturing method that can fundamentally solve the problems caused by the introduction of foreign matter to the separator by cutting in a desired form in a state in which a plurality of separation membranes are bonded to reduce the occurrence of foreign matter.
본 발명의 또 다른 목적은, 그 구조가 안정적인 비정형 전극조립체를 제공하는 것이다.It is still another object of the present invention to provide an amorphous electrode assembly whose structure is stable.
이러한 목적을 달성하기 위한 본 발명에 따른 제조 방법은,The manufacturing method according to the present invention for achieving this object is
평면상으로 적어도 6개의 외주변들로 이루어진 비정형 구조의 전극조립체를 제조하는 방법으로서, A method of manufacturing an electrode assembly having an amorphous structure consisting of at least six outer peripheries on a plane,
(a) 제 1 전극과 제 2 전극 사이에 이들 전극 중 어느 하나 대비 평면적이 110% 내지 150%인 제 1 분리막을 개재하고, 제 1 전극과 제 2 전극 이상으로 돌출된 부위를 제외한 나머지 제 1 분리막과 전극들을 라미네이션(lamination) 시키는 과정;(a) between a first electrode and a second electrode, a first separator having a plane area of 110% to 150% of any one of these electrodes, except for a portion protruding beyond the first electrode and the second electrode; Laminating the separator and the electrodes;
(b) 제 2 전극과 제 3 전극 사이에 이들 전극 중 어느 하나 대비 평면적이 110% 내지 150%인 제 2 분리막을 개재하고, 제 2 전극과 제 3 전극 이상으로 돌출된 부위를 제외한 제 2 분리막과 전극들을 라미네이션 시키는 과정;(b) a second separator between the second electrode and the third electrode with a second separator having a plane area of 110% to 150% relative to any one of these electrodes, except for a portion protruding beyond the second electrode and the third electrode; Laminating the electrodes;
(c) 제 1 분리막과 제 2 분리막 각각의 외주변들 중, 인접한 전극의 외주변에 대해 30도 내지 60도의 각도를 이루면서 돌출되어 있는 외주변에 인접한 제 1 분리막과 제 2 분리막의 외주면들을 서로 라미네이션 시키는 과정;(c) Among the outer peripheries of each of the first separator and the second separator, the outer peripheral surfaces of the first separator and the second separator adjacent to the protruding outer periphery are formed at an angle of 30 to 60 degrees with respect to the outer periphery of the adjacent electrode. Lamination process;
(d) 상기 과정(c)의 전극 외주변에 대해 0도 내지 10도를 이루는 외주변이 제 1 분리막과 제 2 분리막에 형성되도록, 라미네이션된 외주면들을 커팅(cutting)하는 과정;을 포함하는 것을 특징으로 한다.(d) cutting the laminated outer circumferential surfaces such that an outer circumference of 0 degrees to 10 degrees with respect to the outer circumference of the electrode of the step (c) is formed on the first and second separators. It features.
즉, 본 발명의 제조 방법은 제 1 분리막과 제 2 분리막이 각각 커팅되는 것이 아니라 서로가 라미네이션으로 접합되어 융착된 상태, 즉, 분리막들의 섬유 조직이 경화된 상태로 커팅되는 바, 커팅으로 인한 미세 이물 발생 정도가 현저히 감소될 수 있으며, 섬유 조직이 경화된 분리막은 정전기에 의해 쉽게 유도되지 않는 점으로 인하여, 소량의 이물이 발생되더라도 이물이 전극에 흡착되는 불가피한 현상이 상당히 완화될 수 있다.That is, in the manufacturing method of the present invention, the first separator and the second separator are not cut, but are bonded to each other by lamination and fusion, that is, the fiber tissue of the separator is cut in a cured state. The degree of foreign matter generation can be significantly reduced, and due to the fact that the separator in which the fibrous structure is cured is not easily induced by static electricity, even if a small amount of foreign matter is generated, the inevitable phenomenon of the foreign material adsorbed to the electrode can be considerably alleviated.
특히, 이물의 전극 흡착에 정전기가 거의 관여하지 않으므로, 송풍 등의 간단한 방법으로 전극 표면으로부터 이물을 제거할 수 있는 점 역시, 본 발명의 특징으로 이해할 수 있다.In particular, since the static electricity is hardly involved in the electrode adsorption of foreign matters, it is also understood as a feature of the present invention that foreign matters can be removed from the electrode surface by a simple method such as blowing.
하나의 구체적인 예에서, 상기 과정(a) 내지 과정(c)에서 제 1 분리막과 제 2 분리막은 평면상으로 장방형 구조이고, 과정(d)에서 제 1 분리막과 제 2 분리막은 평면상으로 비정형 구조일 수 있다.In one specific example, in the above processes (a) to (c), the first separator and the second separator have a planar rectangular structure, and in step (d), the first separator and the second separator have a planar amorphous structure. Can be.
즉, 본 발명에서는 최초에 장방형인 제 1 분리막과 제 2 분리막이 과정(d)에서 전극과 대략 대응되는 형상으로 커팅되어 비정형 구조로 가공되되, 제 1 분리막과 제 2 분리막 각각으로 분리되어 있던 커팅 예정 부위가 하나를 이루도록 라미네이션 된 상태에서 가공되는 바, 커팅 공정이 수월하여 제조 공정성이 우수한 반면에 이물의 발생은 감소되어, 양품의 전극조립체 제조가 가능한 점에 주목해야 한다.That is, in the present invention, the first and second separators having a rectangular shape are first cut into a shape substantially corresponding to the electrode in the process (d) and processed into an amorphous structure, and the cutting is separated into each of the first separator and the second separator. It should be noted that the bar is processed in a state in which a predetermined portion is formed in one, and the cutting process is easy and the manufacturing processability is excellent while the generation of foreign matter is reduced, so that a good electrode assembly can be manufactured.
본 발명에서 정의하는 라미네이션이란, 분리막과 전극들이 면 접촉된 상태, 및 분리막과 분리막의 면 접촉된 상태에서, 이들의 표면에 열을 인가하여 상호 접합하는 공정을 의미한다.The lamination as defined in the present invention means a process of applying heat to the surfaces of the separators and the electrodes in surface contact, and the separators and the electrodes in contact with each other by mutually joining the surfaces thereof.
상기 분리막은 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 고분자 막으로 구성되어 있으며, 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛일 수 있다. 이처럼 고분자로 이루어진 둘 이상의 분리막이 열에 의해 접합된 상태에서는 그것의 섬유 조직이 견고해지기 때문에 커팅 시에도 미세한 조각들로 결락되는 현상이 감소될 수 있는 것이다.The separator is composed of an insulating thin polymer membrane having high ion permeability and mechanical strength, the pore diameter is generally 0.01 ~ 10 ㎛, thickness may be generally 5 ~ 300 ㎛. In this state, when two or more separators made of polymer are bonded by heat, the fiber structure thereof becomes firm, so that the phenomenon of falling into fine pieces during cutting may be reduced.
상기 분리막을 구성하는 고분자로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용될 수 있다.As a polymer which comprises the said separator, For example, Olefin type polymers, such as a chemical resistance and hydrophobic polypropylene; Sheets or non-woven fabrics made of glass fibers or polyethylene, etc. may be used.
경우에 따라서는 분리막은 유/무기 복합 다공성의 SRS(Safety-Reinforcing Separators) 막으로 이루어질 수 있다.In some cases, the separation membrane may be formed of an organic / inorganic hybrid porous safety-reinforcing separator (SRS) membrane.
이러한 SRS 막은 무기물 입자의 내열성으로 인해 고온 열수축이 발생하지 않는바, 침상 도체에 의해 전극조립체가 관통되더라도, 안전 분리막의 연신율을 유지할 수 있다. Since the SRS membrane does not generate high temperature heat shrinkage due to the heat resistance of the inorganic particles, even if the electrode assembly is penetrated by the needle conductor, it is possible to maintain the elongation of the safety separator.
상기 SRS 분리막은 폴리올레핀 계열 분리막 기재상에 무기물 입자와 바인더 고분자를 활성층 성분이 도포된 구조일 수 있다. The SRS separator may have a structure in which an inorganic layer and a binder polymer are coated with an active layer component on a polyolefin-based separator substrate.
이러한, SRS 분리막은 분리막 기재 자체에 포함된 기공 구조와 더불어 활성층 성분인 무기물 입자들간의 빈 공간(interstitial volume)에 의해 형성된 균일한 기공 구조를 가질 수 있고, 상기 기공은 전극조립체에 가해지는 외부의 충격을 상당히 완화 시킬 수 있을 뿐만 아니라, 기공을 통해 리튬 이온의 원활한 이동이 이루어지고, 다량의 전해액이 채워져 높은 함침율을 나타낼 수 있으므로, 전지의 성능 향상을 함께 도모할 수 있다. Such an SRS separator may have a uniform pore structure formed by an interstitial volume between inorganic particles as an active layer component in addition to the pore structure included in the separator substrate itself, and the pores may be formed on the outside of the electrode assembly. Not only can the shock be considerably alleviated, the smooth movement of lithium ions through the pores, and a large amount of electrolyte can be filled to show a high impregnation rate, thereby improving battery performance.
상기 분리막 기재와 활성층은 폴리올레핀 계열 분리막 기재 표면의 기공과 활성층이 상호 엉켜있는 형태(anchoring)로 존재하여 분리막 기재와 활성층이 물리적으로 견고하게 결합할 수 있으며, 이 때, 상기 분리막 기재와 활성층은 물리적 결합력과 분리막 상에 존재하는 기공 구조를 고려하여 9 : 1 내지 1 : 9의 두께 비를 가질 수 있으며, 상세하게는 5 : 5의 두께 비를 가질 수 있다.The separator substrate and the active layer are present in a form in which the pores of the surface of the polyolefin-based separator substrate and the active layer are entangled with each other (anchoring), so that the separator substrate and the active layer may be physically firmly bonded, wherein the separator substrate and the active layer are physically In consideration of the bonding force and the pore structure present on the separation membrane, it may have a thickness ratio of 9: 1 to 1: 9, and in detail, may have a thickness ratio of 5: 5.
상기 SRS 분리막에서, 폴리올레핀 계열 분리막 기재의 표면 및/또는 기재 중 기공부 일부에 형성되는 활성층 성분 중 하나는 당 업계에서 통상적으로 사용되는 무기물 입자이다. In the SRS separator, one of the active layer components formed on the surface of the polyolefin-based separator substrate and / or a part of the pores of the substrate is an inorganic particle commonly used in the art.
상기 무기물 입자는 무기물 입자들간 빈 공간의 형성을 가능하게 하여 미세 기공을 형성하는 역할과 물리적 형태를 유지할 수 있는 일종의 스페이서(spacer) 역할을 겸하게 된다. 또한, 상기 무기물 입자는 일반적으로 섭씨 200도 이상의 고온이 되어도 물리적 특성이 변하지 않는 특성을 갖기 때문에, 형성된 유/무기 복합 다공성 필름이 탁월한 내열성을 갖게 된다.The inorganic particles may serve as a kind of spacer capable of forming micro pores by allowing the formation of empty spaces between the inorganic particles and maintaining a physical form. In addition, since the inorganic particles generally have a property that physical properties do not change even at a high temperature of 200 degrees Celsius or more, the formed organic / inorganic composite porous film has excellent heat resistance.
상기 무기물 입자는 전기화학적으로 안정하기만 하면 특별히 제한되지 않는다. 즉, 본 발명에서 사용할 수 있는 무기물 입자는 적용되는 전지의 작동 전압 범위(예컨대, Li/Li+ 기준으로 0~5V)에서 산화 및/또는 환원 반응이 일어나지 않는 것이면 특별히 제한되지 않는다. 특히, 이온 전달 능력이 있는 무기물 입자를 사용하는 경우, 전기 화학 소자 내의 이온 전도도를 높여 성능 향상을 도모할 수 있으므로, 가능한 이온 전도도가 높은 것이 바람직하다. 또한, 상기 무기물 입자가 높은 밀도를 갖는 경우, 코팅시 분산시키는데 어려움이 있을 뿐만 아니라 전지 제조시 무게 증가의 문제점도 있으므로, 가능한 밀도가 작은 것이 바람직하다. 또한, 유전율이 높은 무기물인 경우, 액체 전해질 내 전해질 염, 예컨대 리튬염의 해리도 증가에 기여하여 전해액의 이온 전도도를 향상시킬 수 있다.The inorganic particles are not particularly limited as long as they are electrochemically stable. That is, the inorganic particles that can be used in the present invention are not particularly limited as long as the oxidation and / or reduction reactions do not occur in the operating voltage range of the battery to be applied (for example, 0 to 5 V on the basis of Li / Li +). In particular, in the case of using the inorganic particles having the ion transfer ability, since the ion conductivity in the electrochemical device can be improved to improve the performance, it is preferable that the ion conductivity is as high as possible. In addition, when the inorganic particles have a high density, it is not only difficult to disperse during coating, but also has a problem of weight increase during battery manufacturing, and therefore, it is preferable that the density is as small as possible. In addition, in the case of an inorganic material having a high dielectric constant, it is possible to contribute to an increase in the degree of dissociation of an electrolyte salt such as lithium salt in the liquid electrolyte, thereby improving the ionic conductivity of the electrolyte solution.
전술한 이유들로 인해, 상기 무기물 입자는 (a) 압전성(piezoelectricity)을 갖는 무기물 입자 및 (b) 리튬 이온 전달 능력을 갖는 무기물 입자로 구성된 군으로부터 선택된 1종 이상일 수 있다.For the above reasons, the inorganic particles may be at least one selected from the group consisting of (a) inorganic particles having piezoelectricity and (b) inorganic particles having lithium ion transfer capability.
상기 압전성(piezoelectricity) 무기물 입자는 상압에서는 부도체이나, 일정 압력이 인가되었을 경우 내부 구조 변화에 의해 전기가 통하는 물성을 갖는 물질을 의미하는 것으로서, 유전율 상수가 100 이상인 고유전율 특성을나타낼 뿐만 아니라 일정 압력을 인가하여 인장 또는 압축되는 경우 전하가 발생하여 한 면은 양으로, 반대편은 음으로 각각 대전됨으로써, 양쪽 면 간에 전위차가 발생하는 기능을 갖는 물질이다.The piezoelectric inorganic particles are insulators at normal pressure, but when they are applied at a certain pressure, they mean materials having electrical properties through electrical structure change, and exhibit dielectric constants of 100 or more, as well as constant pressures. When tension or compression is applied, electric charge is generated so that one side is positively charged and the other side is negatively charged, thereby generating a potential difference between both surfaces.
상기와 같은 특징을 갖는 무기물 입자를 다공성 활성층 성분으로 사용하는 경우, 침상 도체와 같은 외부 충격에 의해 양 전극의 내부 단락이 발생하는 경우 분리막에 코팅된 무기물 입자로 인해 양극과 음극이 직접 접촉하지 않을 뿐만 아니라, 무기물 입자의 압전성으로 인해 입자 내 전위차가 발생하게 되고 이로 인해 양 전극 간의 전자 이동, 즉 미세한 전류의 흐름이 이루어짐으로써, 완만한 전지의 전압 감소 및 이로 인한 안전성 향상을 도모할 수 있다.In the case of using the inorganic particles having the above characteristics as the porous active layer component, the positive electrode and the negative electrode may not directly contact due to the inorganic particles coated on the separator when the internal short circuit of both electrodes occurs due to an external impact such as a needle conductor. In addition, due to the piezoelectricity of the inorganic particles, the potential difference in the particles is generated, which results in electron transfer between the two electrodes, that is, a minute current flow, thereby reducing the voltage of the gentle battery and thereby improving safety.
상기 압전성을 갖는 무기물 입자의 예로는BaTiO3, Pb(Zr,Ti)O3 (PZT), Pb1 -xLaxZr1-yTiyO3 (PLZT), PB(Mg3Nb2/3)O3-PbTiO3 (PMN-PT) 및 hafnia (HfO2)로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 이에 한정되는 것은 아니다.Examples of the inorganic particles having piezoelectric properties include BaTiO 3 , Pb (Zr, Ti) O 3 (PZT), Pb 1 - xLa x Zr 1-y Ti y O 3 (PLZT), PB (Mg 3 Nb 2/3 ) One or more selected from the group consisting of O 3 -PbTiO 3 (PMN-PT) and hafnia (HfO 2 ), but is not limited thereto.
상기 리튬 이온 전달 능력을 갖는 무기물 입자는 리튬 원소를 함유하되 리튬을 저장하지 아니하고 리튬 이온을 이동시키는 기능을 갖는 무기물 입자를 지칭하는 것으로서, 리튬 이온 전달 능력을 갖는 무기물 입자는 입자 구조 내부에 존재하는 일종의 결함(defect)으로 인해 리튬 이온을 전달 및 이동시킬 수 있기 때문에, 전지 내 리튬 이온 전도도가 향상되고, 이로 인해 전지 성능 향상을 도모할 수 있다.The inorganic particles having a lithium ion transfer capacity refers to inorganic particles containing lithium elements but having a function of transferring lithium ions without storing lithium, and the inorganic particles having lithium ion transfer ability are present in the particle structure. Since lithium ions can be transferred and moved due to a kind of defect, the lithium ion conductivity in the battery is improved, thereby improving battery performance.
상기 리튬 이온 전달 능력을 갖는 무기물 입자의 예로는 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0<x<2, 0<y<3), 리튬알루미늄티타늄포스페이트 (LixAlyTiz(PO4)3, 0<x<2, 0<y<1, 0<z<3), (LiAlTiP)xOy 계열 glass(0<x<4, 0<y<13), 리튬란탄티타네이트 (LixLayTiO3, 0<x<2, 0<y<3), 리튬게르마니움티오포스페이트 (LixGeyPzSw, 0<x<4, 0<y<1, 0<z<1, 0<w<5), 리튬나이트라이드 (LixNy, 0<x<4, 0<y<2), SiS2 (LixSiySz, 0<x<3, 0<y<2, 0<z<4) 계열 glass 및 P2S5 (LixPySz, 0<x<3, 0<y< 3, 0<z<7) 계열 glass로 이루어진 군으로부터 선택된 1종 이상일 수 있으나 이에 한정되는 것은 아니다.Examples of the inorganic particles having the lithium ion transfer ability include lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 <x <2, 0 <y <3), and lithium aluminum Titanium phosphate (Li x Al y Ti z (PO 4 ) 3 , 0 <x <2, 0 <y <1, 0 <z <3), (LiAlTiP) x O y series glass (0 <x <4, 0 <y <13), lithium lanthanum titanate (Li x La y TiO 3 , 0 <x <2, 0 <y <3), lithium germanium thiophosphate (Li x Ge y P z S w , 0 <x <4, 0 <y <1, 0 <z <1, 0 <w <5), lithium nitride (Li x N y , 0 <x <4, 0 <y <2), SiS 2 (Li x Si y S z , 0 <x <3, 0 <y <2, 0 <z <4) series glass and P 2 S 5 (Li x P y S z , 0 <x <3, 0 <y <3, 0 <z <7) may be one or more selected from the group consisting of glass, but is not limited thereto.
상기 활성층 성분인 무기물 입자 및 바인더 고분자의 조성비는 크게 제약은 없으나, 10:90 내지 99:1 중량% 비범위 내에서 조절 가능하며, 80:20 내지 99:1 중량% 비 범위가 바람직하다. 10:90 중량% 비 미만인 경우, 고분자의 함량이 지나치게 많게 되어 무기물 입자들 사이에 형성된 빈 공간의 감소로 인한 기공 크기 및 기공도가 감소되어 최종 전지 성능 저하가 야기되며, 반대로 99:1 중량% 비를 초과하는 경우, 고분자 함량이 너무 적기 때문에 무기물 사이의 접착력 약화로 인해 최종 유/무기 복합 다공성 분리막의 기계적 물성이 저하될 수 있다.The composition ratio of the inorganic particles and the binder polymer as the active layer component is not particularly limited, but may be controlled within a range of 10:90 to 99: 1% by weight, and preferably 80:20 to 99: 1% by weight. If the ratio is less than 10: 90% by weight, the polymer content becomes excessively large, resulting in a decrease in pore size and porosity due to a decrease in the void space formed between the inorganic particles, resulting in deterioration of final cell performance. When the ratio is exceeded, the polymer content is too small, and thus the mechanical properties of the final organic / inorganic composite porous separator may be degraded due to the weakening of the adhesion between the inorganic materials.
상기 유/무기 복합 다공성 분리막 중 활성층은 전술한 무기물 입자 및 고분자 이외에, 통상적으로 알려진 기타 첨가제를 더 포함할 수 있다.The active layer in the organic / inorganic composite porous separator may further include other additives commonly known in addition to the above-described inorganic particles and polymers.
상기 유/무기 복합 다공성 분리막에서, 상기 활성층 구성 성분인 무기물 입자와 바인더 고분자의 혼합물로 코팅되는 기재(substrate)는 당 업계에서 통상적으로 사용되는 폴리올레핀 계열 분리막일 수 있다. 상기 폴리올레핀 계열 분리막 성분의 예로는 고밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 초고분자량 폴리에틸렌, 폴리프로필렌 또는 이들의 유도체 등이 있다.In the organic / inorganic composite porous separator, the substrate coated with a mixture of the inorganic particles and the binder polymer as the active layer component may be a polyolefin-based separator commonly used in the art. Examples of the polyolefin-based separator components include high density polyethylene, linear low density polyethylene, low density polyethylene, ultra high molecular weight polyethylene, polypropylene, or derivatives thereof.
하나의 구체적인 예에서, 상기 제 1 전극과 제 3 전극은 양극 또는 음극이며, 상기 제 2 전극은 제 1 전극 및 제 3 전극과 상이한 극성을 가질 수 있다.In one specific example, the first electrode and the third electrode may be an anode or a cathode, and the second electrode may have a different polarity than the first electrode and the third electrode.
따라서, 본 발명의 방법으로 제조된 전극조립체는, 양극, 분리막, 음극, 분리막 양극이 순차적으로 적층된 A형 바이셀 구조, 또는 음극, 분리막, 양극, 분리막 음극이 순차적으로 적층된 C형 바이셀 구조일 수 있다.Therefore, the electrode assembly manufactured by the method of the present invention, the A-type bi-cell structure in which the positive electrode, the separator, the negative electrode, the separator positive electrode is sequentially stacked, or the C-type bicell in which the negative electrode, the separator, the positive electrode, the separator negative electrode is sequentially stacked It may be a structure.
상기 A형 바이셀은 통상적으로, 중간 층에 위치하는 전극의 극성이 음극(anode)인 바이셀을 지칭하며, 상기 C형 바이셀은, 중간 층에 위치하는 전극의 극성이 양극(cathode)인 바이셀을 지칭한다.The A-type bi-cell generally refers to a bi-cell in which the electrode of the electrode located in the middle layer is an anode, and the C-type bi-cell is a cathode of the electrode located in the middle layer. Refers to a bicell.
본 발명에 따른 제조 방법은 또한, 상기 A형 바이셀과 C형 바이셀 뿐만 아니라, 분리막을 추가로 포함하는 변형된 바이셀 형태의 전극조립체를 제조할 수 있는 과정을 추가로 포함할 수 있다. In addition, the manufacturing method according to the present invention may further include a process of manufacturing a modified bicell-type electrode assembly including a separator as well as the A-type and C-type bicells.
구체적으로 상기 제조 방법의 상기 과정(a)에서 제 1 전극은, 제 1 분리막이 라미네이션된 면의 대향면에 제 3 분리막이 추가로 라미네이션 되고, 상기 과정(c)에서 제 3 분리막의 외주면이 제 1 분리막과 제 2 분리막의 외주면들에 추가로 라미네이션 되는 과정을 추가로 포함할 수 있다.Specifically, in the process (a) of the manufacturing method, the third separator is further laminated on an opposite surface of the surface on which the first separator is laminated, and in the process (c), the outer circumferential surface of the third separator is The method may further include laminating the outer circumferential surfaces of the first separator and the second separator.
이 과정을 통해 전극조립체는 제 3 분리막, 제 1 전극, 제 1 분리막, 제 2 전극, 제 2 분리막 및 제 3 전극이 순차적으로 적층된 구조로 구현될 수 있다.Through this process, the electrode assembly may have a structure in which a third separator, a first electrode, a first separator, a second electrode, a second separator, and a third electrode are sequentially stacked.
이와 유사하게 상기 제조 방법의 상기 과정(b)에서 제 3 전극은 제 2 분리막이 라미네이션된 면의 대향면에 제 4 분리막이 추가로 라미네이션 되고, 상기 과정(c)에서 제 4 분리막의 외주면이 제 1 분리막과 제 2 분리막의 외주면들에 추가로 라미네이션 되는 과정을 추가로 포함할 수 있다.Similarly, in the process (b) of the manufacturing method, the third electrode is further laminated on the opposite surface of the surface on which the second separator is laminated, and in the process (c), the outer circumferential surface of the fourth separator is The method may further include laminating the outer circumferential surfaces of the first separator and the second separator.
이 과정을 통해 전극조립체는 제 1 전극, 제 1 분리막, 제 2 전극, 제 2 분리막, 제 3 전극 및 제 4 분리막이 순차적으로 적층된 구조로 구현될 수 있다.Through this process, the electrode assembly may have a structure in which a first electrode, a first separator, a second electrode, a second separator, a third electrode, and a fourth separator are sequentially stacked.
경우에 따라서는 제 3 분리막과 제 4 분리막 모두가 제 1전극과 제 3 전극에 각각 라미네이션 될 수도 있으며, 이 상태에서는, 제 1 분리막과 제 2 분리막의 외주면들에 추가로 라미네이션 될 수 있다.In some cases, both the third separator and the fourth separator may be laminated on the first electrode and the third electrode, respectively, and in this state, the third separator and the fourth separator may be further laminated on the outer peripheral surfaces of the first separator and the second separator.
이상의 실시예를 통해 제조된 전극조립체는 최외곽 전극 상에 제 3 분리막이나 제 4 분리막이 위치하게 되는 바, 침상 도체 등의 관통 시, 최외곽에 위치한 제 3 분리막이나 제 4 분리막이 침상도체와 함께 연신되면서 상호 반대극성의 전극들이 침상 도체를 통해 직접적으로 통전되는 것을 차단할 수 있다.In the electrode assembly manufactured according to the above embodiment, the third separator or the fourth separator is positioned on the outermost electrode, and when the needle conductor penetrates, the third separator or the fourth separator located at the outermost portion is formed with the acicular conductor. Stretching together prevents the mutually opposite electrodes from directly conducting through the needle conductor.
본 발명은 또한, 다양한 디자인의 디바이스에 적용 가능한 비정형 구조의 전극조립체를 제공한다. The present invention also provides an electrode assembly having an amorphous structure applicable to devices of various designs.
상기 전극조립체는 구체적으로, 평면상으로 적어도 6개의 외주변들로 이루어진 비정형 전극들 n개(n≥3)가 n개, n-1개, 또는 n+1개의 분리막들과 함께 적층된 구조이고, 상기 분리막들 각각, 인접한 전극의 외주변들 이상으로 외향 돌출되도록 상기 전극의 평면적 대비 110% 내지 150%의 면적을 가지며;Specifically, the electrode assembly has a structure in which n amorphous electrodes (n≥3) composed of at least six outer peripheries in a plane are stacked together with n, n-1, or n + 1 separators. Each of the separators has an area of 110% to 150% of the area of the electrode so as to protrude outward from the outer periphery of the adjacent electrode;
분리막들 각각의 외주변들 중, 인접한 전극의 외주변에 대해 30도 내지 60도의 각도를 이루면서 돌출되어 있는 외주변에 인접한 분리막들의 외주면들이 서로 접합된 상태로 상기 전극의 외주변에 대해 0도 내지 10도를 이루도록 커팅된 구조의 접합 외주변을 포함하는 것을 특징으로 한다.Among the outer peripheries of each of the separators, the outer periphery of the separators adjacent to the protruding periphery is formed at an angle of 30 degrees to 60 degrees with respect to the periphery of the adjacent electrode, and is 0 to the periphery of the electrode. It characterized in that it comprises a junction outer periphery of the structure cut to achieve 10 degrees.
즉, 본 발명에 따른 전극조립체는, 평면 상으로 6개 이상의 다변형으로 이루어진 바, 일반적인 장방형 디자인에서 벗어난 다각 또는 기하학 구조, 나아가 원형이나 곡면 등의 디바이스에 적용 가능한 형태임을 알 수 있다.That is, the electrode assembly according to the present invention is formed of six or more polymorphs in a plane, and thus it can be seen that the shape is applicable to a device such as a polygon or a geometric structure, and also a circular or curved surface, which is out of a general rectangular design.
뿐만 아니라, 분리막들이 비정형 전극들의 형상에 대응되도록 커팅되되, 상기와 같이 전극의 외주변에 대응되지 않는 분리막 부위들이 일체로 접합된 상태로 전극의 외주변과 대략 평행하도록 커팅되는 바, 접합된 분리막에서 결락되는 분리막 이물이 현저하게 감소된 구조이고, 그로 인해 상기 전극조립체는 전극에 분리막 이물이 거의 존재하지 않아 이물로 인한 전극 성능 저하나 품질 저하 등이 없는 안정적인 구조로 이루어져 있다.In addition, the separators are cut to correspond to the shape of the at least one electrode, but as described above, the separator portions that do not correspond to the outer periphery of the electrode are cut to be substantially parallel to the outer periphery of the electrode. In this case, the foreign matters that are separated from the separator are significantly reduced, and thus, the electrode assembly has a stable structure without deterioration of electrode performance or deterioration due to foreign matters because there is almost no foreign matter on the electrodes.
하나의 구체적인 예에서, 상기 접합 외주변에서 n개, n-1개, 또는 n+1개의 분리막들은 서로 접합되어 있을 수 있다.In one specific example, n, n-1, or n + 1 separators may be bonded to each other around the junction.
이러한 구조에서는 접합 외주변을 공유하는 분리막들 사이에 위치한 전극에서 모서리 부위가 접합 외주변에 의해 감싸진 상태로 지지될 수 있다. In such a structure, an edge portion of the electrodes positioned between the separators sharing the outer circumference of the junction may be supported while being surrounded by the outer circumference of the junction.
이에, 본 발명의 전극조립체가 전지케이스에 장착된 전지셀의 개념으로 확대하면, 상기 모서리 부위로 구성된 전극조립체 외면은 상대적으로 표면적이 작아 충격이 가해질 경우 상당한 압력이 인가되는데, 이 과정에서 전지케이스 내면과 강하게 마찰되면서 상호 반대 극성의 전극이 서로 접촉할 수 있으나, 상기 구조, 즉, n개, n-1개, 또는 n+1개의 분리막들은 서로 접합되어 있는 구조는 접합 외주변이 전지케이스 내면에 대한 모서리 부위의 마찰 정도를 완화하여 앞선 문제점을 해소할 수 있다.Thus, if the electrode assembly of the present invention is expanded to the concept of a battery cell mounted in the battery case, the outer surface of the electrode assembly consisting of the corner portion is relatively small surface area is applied a considerable pressure when the impact is applied, the battery case in this process The electrodes of opposite polarities may be in contact with each other while being strongly rubbed with the inner surface, but the structure, that is, the structure in which the n, n-1, or n + 1 separators are bonded to each other is the inner surface of the battery case. The previous problem can be solved by alleviating the friction degree of the edge portion against.
이와는 달리, 상기 접합 외주변에서 n개, n-1개, 또는 n+1개의 분리막들은 서로 분리되어 있을 수도 있다.Alternatively, n, n-1, or n + 1 separators may be separated from each other around the junction.
본 발명에 따른 전극조립체는, 평면 상으로 6개 이상의 다변형 전극들이 적층된 구조인 바 평면상으로 6개 이상의 다변형 구조일 수 있고, 이에 대응하도록 접합 외주변을 둘 이상 포함할 수 있다.The electrode assembly according to the present invention may have a structure in which six or more polymorphic electrodes are stacked on a planar bar, and may have six or more polymorphic structures on a plane, and may include two or more bonding outer peripheries.
하나의 구체적인 예에서, 상기 전극조립체는 극성이 동일한 제 1 전극과 제 3 전극 사이에 상이한 극성의 제 2 전극이 위치하고 있으며, 제 1 전극, 제 2 전극 및 제 3 전극의 형상은 동일할 수 있다. 다만, 이들 전극의 크기, 예를 들어 두께 또는 평면적은 서로 상이할 수 있다.In one specific example, the electrode assembly may have a second electrode having a different polarity between the first electrode and the third electrode having the same polarity, and the first electrode, the second electrode, and the third electrode may have the same shape. . However, the size of these electrodes, for example, the thickness or the planar area may be different from each other.
상기 제 1 전극과 제 3 전극은 양극 또는 음극이며, 상기 제 2 전극은 제 1 전극 및 제 3 전극과 상이한 극성을 가질 수 있다.The first electrode and the third electrode may be an anode or a cathode, and the second electrode may have a different polarity from that of the first electrode and the third electrode.
여기서, 상기 n은 3이고 상기 분리막은 2개일 때, 상기 전극조립체는전극, 분리막, 전극, 분리막, 전극 순으로 적층된 구조일 수 있다.Herein, when n is 3 and the separator is two, the electrode assembly may have a stacked structure in order of an electrode, a separator, an electrode, a separator, and an electrode.
이와는 달리, 상기 n은 3이고, 상기 분리막은 3개인 경우에는, 상기 전극조립체는 분리막, 전극, 분리막, 전극, 분리막, 전극 순으로 적층된 구조일 수 있다.In contrast, when n is 3 and the separator is 3, the electrode assembly may have a stacked structure in order of a separator, an electrode, a separator, an electrode, a separator, and an electrode.
또한, 상기 n은 3이고, 상기 분리막은 4개라면, 전극조립체는 분리막, 전극, 분리막, 전극, 분리막, 전극, 분리막 순으로 적층된 구조일 수 있다.In addition, when n is 3 and the separator is four, the electrode assembly may have a stacked structure in order of a separator, an electrode, a separator, an electrode, a separator, an electrode, and a separator.
이와 같은 전극 적층 구조를 통상적으로 바이셀이라 지칭하며, 더욱 상세하게는 중간 층에 위치하는 전극의 극성이 음극(anode)일 경우 넓은 의미에서 A형 바이셀이라 정의할 수 있고, 중간 층에 위치하는 전극의 극성이 양극(cathode)일 때, 넓은 의미에서 C형 바이셀이라 정의할 수 있다.Such an electrode stack structure is commonly referred to as a bicell, and more specifically, when the polarity of the electrode positioned in the intermediate layer is an anode, it may be defined as an A-type bicell in a broad sense, and is located in the intermediate layer. When the polarity of the electrode is a cathode, it can be defined as a C-type bicell in a broad sense.
하나의 구체적인 예에서, 상기 전극의 외주변들 각각은 인접한 외주변과 60도 이상 내지 270도 미만의 내각을 이루며 상호 연결될 수 있으며, 상세하게는 90도 이상 180도 미만의 내각을 이루며 상호 연결될 수 있다.In one specific example, each of the outer periphery of the electrode may be interconnected to form an internal angle of less than 60 degrees to less than 270 degrees with an adjacent outer periphery, in detail, may be interconnected to form an internal angle of more than 90 degrees less than 180 degrees. have.
한편, 상기 전극들은 각각, 동일한 방향에 위치한 외주변에서 외향 돌출된 전극 탭을 포함할 수 있다.On the other hand, the electrodes may each include an electrode tab protruding outward from the outer periphery located in the same direction.
이때, 상기 전극조립체가 제 1 전극, 제 2 전극 및 제 3 전극이 적층 된 구조라면, 제 1 전극과 제 3 전극의 전극 탭들이 상하 나란히 중첩된 상태로 전극조립체의 제 1 전극 단자를 형성하고, 제 2 전극의 전극 탭은 적어도 제 1 전극 단자로부터 이격된 위치에서 전극조립체의 제 2 전극 단자를 형성한다. In this case, when the electrode assembly has a structure in which the first electrode, the second electrode, and the third electrode are stacked, the electrode tabs of the first electrode and the third electrode are formed to form the first electrode terminal of the electrode assembly in a state where the electrode tabs are overlapped up and down. The electrode tab of the second electrode forms a second electrode terminal of the electrode assembly at a position spaced from at least the first electrode terminal.
즉, 제 1 전극과 제 2 전극의 전극 탭들과 제 2 전극의 전극 탭은 동일한 방향에 위치한 외주변에서 외향 돌출되어 있으나, 이들은 서로에 대해 접촉하지 않는 범위 내에서 이격되어 있을 수 있다.That is, although the electrode tabs of the first electrode and the second electrode and the electrode tab of the second electrode protrude outward from the outer periphery located in the same direction, they may be spaced apart within a range that does not contact each other.
이와는 달리, 상기 제 1 전극과 제 3 전극은 동일한 방향에 위치한 외주변에서 외향 돌출된 전극 탭을 포함하고, 제 2 전극은 제 1 전극과 제 3 전극의 전극 탭이 위치한 외주변에 대해 상이한 방향에 위치한 외주변에서 외향 돌출된 전극 탭을 포함할 수 있다.In contrast, the first electrode and the third electrode include electrode tabs protruding outward from the outer periphery positioned in the same direction, and the second electrode is different from the outer periphery where the electrode tabs of the first and third electrodes are located. It may include an electrode tab protruding outwardly from the outer periphery.
따라서, 제 1 전극, 제 2 전극 및 제 3 전극이 적층된 구조에서, 제 1 전극과 제 3 전극의 전극 탭들이 상하 나란히 중첩된 상태로 전극조립체의 동일한 외주변에서 제 1 전극 단자를 형성하고, 제 2 전극의 전극 탭은 제 1 전극 단자가 위치한 외주변과 상이한 위치의 외주변에서 전극조립체의 제 2 전극 단자를 형성할 수 있다.Accordingly, in the structure in which the first electrode, the second electrode, and the third electrode are stacked, the first electrode terminal is formed at the same outer periphery of the electrode assembly with the electrode tabs of the first electrode and the third electrode overlapping up and down side by side. The electrode tab of the second electrode may form the second electrode terminal of the electrode assembly at the outer periphery of a position different from the outer periphery of the first electrode terminal.
이러한 구조는 제 1 전극 단자와 제 2 전극 단자가 이격되어 위치하여 전지셀의 활성화 공정, 즉, 초기 충방전 공정에서, 제 1 전극 단자와 제 2 전극 단자에 각각 전류를 인가하는 장치에 의해, 이들이 상호 간섭되지 않을 수 있다. 상기 간섭이란, 예를 들면 전극 단자를 통해 전류가 흐를 때 형성되는 자기장에 의한 간섭일 수 있다.Such a structure is provided by a device in which a first electrode terminal and a second electrode terminal are spaced apart from each other to apply a current to the first electrode terminal and the second electrode terminal in an activation process of the battery cell, that is, an initial charge / discharge process. They may not interfere with each other. The interference may be, for example, interference by a magnetic field formed when a current flows through an electrode terminal.
더욱이, 상기 구조에서는 제 1 전극 단자와 제 2 전극 단자가 서로 다른 방향의 외주변들에서 형성되어 있으므로, 이들 단자 각각에 대한 전기적 연결 구조가 상이한 방향에서 달성될 수 있으며, 이 점에 기인하여 상기 전극조립체가 전기적으로 연결될 수 있는 회로와의 연결 구조를 보다 다양한 형태로 구현할 수 있다.Furthermore, in the above structure, since the first electrode terminal and the second electrode terminal are formed at outer peripheries in different directions, an electrical connection structure to each of these terminals can be achieved in different directions, and because of this, It is possible to implement the connection structure with the circuit that the electrode assembly can be electrically connected in more various forms.
이러한 전극들로 구성된 본 발명의 전극조립체는 평면상으로 N개(N≥6)의 내각을 가지는 다각 구조로 이루어져 있고, 좌우 및/또는 상하 대칭 구조로 이루어질 수 있다.The electrode assembly of the present invention composed of such electrodes consists of a polygonal structure having N internal angles (N ≧ 6) in plan view, and may be formed of left and right and / or vertically symmetrical structures.
이와는 달리, 상기 전극조립체는 평면상으로 N개(N≥6)의 내각을 가지는 다각 구조로 이루어져 있고, 좌우 및/또는 상하 비대칭 구조로 이루어질 수 있다.In contrast, the electrode assembly may have a polygonal structure having N internal angles (N ≧ 6) in a planar shape, and may have a left, right, and / or up and down asymmetrical structure.
본 발명은 또한, 상기 전극조립체를 하나 이상 포함하는 이차전지를 제공한다. The present invention also provides a secondary battery including at least one electrode assembly.
상기 이차전지는 그것의 종류가 특별히 한정되는 것은 아니지만, 구체적인 예로서, 높은 에너지 밀도, 방전 전압, 출력 안정성 등의 장점을 가진 리튬 이온(Li-ion) 전지, 리튬 폴리머(Li-polymer) 전지, 또는 리튬 이온 폴리머(Li-ion polymer) 전지 등의 리튬 이차전지일 수 있다.Although the type of the secondary battery is not particularly limited, specific examples thereof include lithium ion (Li-ion) batteries, lithium polymer (Li-polymer) batteries having advantages such as high energy density, discharge voltage, and output stability, Or a lithium secondary battery such as a lithium ion polymer battery.
일반적으로, 리튬 이차전지는 양극, 음극, 분리막, 및 리튬염 함유 비수 전해액으로 구성되어 있다. In general, a lithium secondary battery is composed of a positive electrode, a negative electrode, a separator, and a lithium salt-containing nonaqueous electrolyte.
상기 양극은, 예를 들어, 양극 집전체 상에 양극 활물질, 도전재 및 바인더의 혼합물을 도포한 후 건조하여 제조되며, 필요에 따라서는, 상기 혼합물에 충진제를 더 첨가하기도 한다.The positive electrode is prepared by, for example, applying a mixture of a positive electrode active material, a conductive material, and a binder to a positive electrode current collector, followed by drying, and optionally, a filler is further added to the mixture.
상기 양극 집전체는 일반적으로 3 내지 500 마이크로미터의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.The positive electrode current collector is generally made to a thickness of 3 to 500 micrometers. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery. For example, the surface of stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface treated with carbon, nickel, titanium, silver or the like can be used. The current collector may form fine irregularities on its surface to increase the adhesion of the positive electrode active material, and may be in various forms such as film, sheet, foil, net, porous body, foam, and nonwoven fabric.
상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1 - xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2 - xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.The positive electrode active material may be a layered compound such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; Lithium manganese oxides such as Li 1 + x Mn 2-x O 4 (where x is 0 to 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2, and the like; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , LiFe 3 O 4 , V 2 O 5 , Cu 2 V 2 O 7 and the like; Ni-site type lithium nickel oxide represented by the formula LiNi 1 - x M x O 2 , wherein M = Co, Mn, Al, Cu, Fe, Mg, B, or Ga, and x = 0.01 to 0.3; Formula LiMn 2 - x M x O 2 (wherein M = Co, Ni, Fe, Cr, Zn or Ta and x = 0.01 to 0.1) or Li 2 Mn 3 MO 8 (wherein M = Fe, Co, Lithium manganese composite oxide represented by Ni, Cu or Zn); LiMn 2 O 4 in which a part of Li in the formula is substituted with alkaline earth metal ions; Disulfide compounds; Fe 2 (MoO 4 ) 3 and the like, but are not limited to these.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The conductive material is typically added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material. Such a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.The binder is a component that assists the bonding of the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material. Examples of such binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.The filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery. Examples of the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
상기 음극은 음극 집전체 상에 음극 활물질을 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 성분들이 선택적으로 더 포함될 수도 있다.The negative electrode is manufactured by coating and drying a negative electrode active material on a negative electrode current collector, and optionally, the components as described above may optionally be further included.
상기 음극 집전체는 일반적으로 3 내지 500 마이크로미터의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The negative electrode current collector is generally made to a thickness of 3 to 500 micrometers. Such a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery. For example, the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy, and the like can be used. In addition, like the positive electrode current collector, fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
상기 음극 활물질로는, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1 - xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있다.As said negative electrode active material, For example, carbon, such as hardly graphitized carbon and graphite type carbon; Li x Fe 2 O 3 (0 ≦ x ≦ 1), Li x WO 2 (0 ≦ x ≦ 1), Sn x Me 1 - x Me ' y O z (Me: Mn, Fe, Pb, Ge; Me' Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen, 0 <x ≦ 1; 1 ≦ y ≦ 3; 1 ≦ z ≦ 8); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and metal oxides such as Bi 2 O 5 ; Conductive polymers such as polyacetylene; Li-Co-Ni-based materials and the like can be used.
상기 전해액은 리튬염 함유 비수계 전해액일 수 있고, 비수 전해액과 리튬염으로 이루어져 있다. 비수 전해액으로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용되지만 이들만으로 한정되는 것은 아니다.The electrolyte may be a lithium salt-containing non-aqueous electrolyte, and consists of a non-aqueous electrolyte and a lithium salt. As the nonaqueous electrolyte, nonaqueous organic solvents, organic solid electrolytes, inorganic solid electrolytes, and the like are used, but not limited thereto.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.Examples of the non-aqueous organic solvent include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma Butyl lactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorone, formamide, dimethylformamide, dioxolon , Acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl propionate can be used.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.Examples of the organic solid electrolytes include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymers containing ionic dissociating groups and the like can be used.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.The lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide have.
또한, 비수 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬 수 있다.In addition, for the purpose of improving charge / discharge characteristics, flame retardancy, etc., for example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, Nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride and the like may be added. have. In some cases, in order to impart nonflammability, a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-Ethylene) may be further included. Carbonate), PRS (Propene sultone) may be further included.
하나의 구체적인 예에서, LiPF6, LiClO4, LiBF4, LiN(SO2CF3)2 등의 리튬염을, 고유전성 용매인 EC 또는 PC의 환형 카보네이트와 저점도 용매인 DEC, DMC 또는 EMC의 선형 카보네이트의 혼합 용매에 첨가하여 리튬염 함유 비수계 전해질을 제조할 수 있다.In one specific example, lithium salts such as LiPF 6 , LiClO 4 , LiBF 4 , LiN (SO 2 CF 3 ) 2, and the like, may be prepared by cyclic carbonate of EC or PC, which is a highly dielectric solvent, and DEC, DMC, or EMC, which are low viscosity solvents. Lithium salt-containing non-aqueous electrolyte can be prepared by adding to a mixed solvent of linear carbonate.
본 발명은 또한, 상기 전지셀을 하나 이상 포함하는 디바이스를 제공한다. The present invention also provides a device including at least one of the battery cells.
상기 디바이스는 예를 들어, 웨어러블 전자기기, 휴대폰, 휴대용 컴퓨터, 스마트폰, 태플릿 PC, 스마트 패드, 넷북, LEV(Light Electronic Vehicle), 웨어러블 전자기기로 이루어진 군에서 선택되는 전자기기일 수 있으나, 이들만으로 한정되는 것은 아니다.The device may be, for example, an electronic device selected from the group consisting of wearable electronic devices, mobile phones, portable computers, smart phones, tablet PCs, smart pads, netbooks, light electronic vehicles (LEVs), and wearable electronic devices. It is not limited only to these.
상기 디바이스들은 당업계에 공지되어 있으므로, 본 명세서에서는 그에 대한 구체적인 설명을 생략한다.Since the devices are known in the art, detailed description thereof is omitted herein.
도 1 및 도 2는 하나의 예시적인 비정형 전극조립체의 모식도들이다;1 and 2 are schematic diagrams of one exemplary amorphous electrode assembly;
도 3은 본 발명의 하나의 실시예에 따른 제조 방법의 흐름도이다;3 is a flowchart of a manufacturing method according to one embodiment of the present invention;
도 4 및 도 5는 본 발명의 하나의 실시예에 따른 전극조립체의 모식도들이다;4 and 5 are schematic views of an electrode assembly according to one embodiment of the present invention;
도 6은 도 4의 L부위에 대한 확대 수직 단면도들이다;FIG. 6 is an enlarged vertical cross sectional view of the portion L of FIG. 4; FIG.
도 7은 본 발명의 또 다른 실시예에 따른 전극조립체의 모식도이다;7 is a schematic view of an electrode assembly according to another embodiment of the present invention;
도 8은 본 발명의 또 다른 실시예들에 따른 전극조립체의 모식도들이다;8 is a schematic view of an electrode assembly according to still another embodiment of the present invention;
도 9는 본 발명의 또 다른 실시예에 따른 전극조립체의 평면 모식도이다;9 is a schematic plan view of an electrode assembly according to another embodiment of the present invention;
도 10은 본 발명의 또 다른 실시예에 따른 전극조립체의 평면 모식도이다;10 is a schematic plan view of an electrode assembly according to another embodiment of the present invention;
도 11은 본 발명의 또 다른 실시예에 따른 전극조립체의 평면 모식도이다.11 is a schematic plan view of an electrode assembly according to another embodiment of the present invention.
이하에서는, 본 발명의 실시예에 따른 도면들을 참조하여 본 발명을 더욱 상세하게 설명하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings, but the scope of the present invention is not limited thereto.
도 3에는 본 발명의 하나의 실시예에 따른 제조 방법의 흐름도가 도시되어 있다.3 is a flow chart of a manufacturing method according to one embodiment of the present invention.
전극조립체의 구조를 기반으로 본 발명에 따른 제조 방법을 보다 상세하게 설명하기 위하여, 도 4 및 도 5에 도시된 본 발명의 하나의 실시예에 따른 전극조립체를 도 1과 함께 참조하여 이하에 상술한다.In order to explain the manufacturing method according to the present invention in more detail based on the structure of the electrode assembly, the electrode assembly according to one embodiment of the present invention shown in Figs. do.
이들 도면을 함께 참조하면, 전극조립체(200)에 대한 본 발명에 따른 제조 방법(100)은, 과정(110)에서 제 1 전극(210)과 제 2 전극(220) 사이에 이들 전극 대비 상대적으로 큰 평면적을 가지는 장방형의 제 1 분리막(202)을 개재하고, 제 1 전극(210)과 제 2 전극(220) 이상으로 돌출된 부위를 제외한 나머지 제 1 분리막(202)과 전극들을 열로서 라미네이션 시킨다. Referring to these figures together, the manufacturing method 100 according to the present invention for the electrode assembly 200, relative to these electrodes between the first electrode 210 and the second electrode 220 in the process (110). Intervening the first separator 202 and the electrodes with heat except for a portion protruding beyond the first electrode 210 and the second electrode 220 with a rectangular first separator 202 having a large planar area. .
이어지는 과정(120)에서, 제 2 전극(220)과 제 3 전극(230) 사이에 이들 전극 대비 상대적으로 큰 평면적을 가지는 장방형의 제 2 분리막(204)을 개재하고, 제 2 전극(220)과 제 3 전극(230) 이상으로 돌출된 부위를 제외한 나머지 제 2 분리막(204)과 전극들을 열로서 라미네이션 시킨다.In a subsequent process 120, the second electrode 220 is interposed between the second electrode 220 and the third electrode 230 with a rectangular second separator 204 having a relatively larger planar area than those of the electrodes. The second separator 204 and the electrodes are laminated as a row except for a portion protruding beyond the third electrode 230.
과정(110)과 과정(120)이 완료된 상태에서는 도 5에 도시된 전극조립체(200a)와 같이, 제 1 분리막(202)과 제 2 분리막(204)의 하단 일부가 전극들 이상으로 돌출되어 있다.When the processes 110 and 120 are completed, as shown in FIG. 5, the lower portions of the first separator 202 and the second separator 204 protrude beyond the electrodes, as illustrated in FIG. 5. .
이와 같이 돌출된 부위에 대해 본 발명에서는 제 1 분리막(202)과 제 2 분리막(204) 각각의 외주변들 중, 인접한 전극의 외주변(208)에 대해 30도 내지 60도의 각도(a)를 이루면서 돌출되어 있는 외주변(251, 252)에 인접한 제 1 분리막(202)과 제 2 분리막(204)의 외주면들(260)로 정의한다. In the present invention, the angle (a) of 30 degrees to 60 degrees with respect to the outer periphery 208 of the adjacent electrode among the outer peripheries of each of the first separator 202 and the second separator 204 in the present invention. And the outer peripheral surfaces 260 of the first separation membrane 202 and the second separation membrane 204 adjacent to the outer peripheral edges 251 and 252 protruding from each other.
상기 상태에서, 과정(130)을 통해, 돌출된 제 1 분리막(202)과 제 2 분리막(204)의 일부인 외주면들(260)을 열로서 서로 라미네이션 시킴으로써, 전극들 이상으로 돌출되어 있는 외주면들(260)이 일체를 이루도록 접합시킨다. In this state, through the process 130, by laminating the outer peripheral surfaces 260, which are part of the protruding first separator 202 and the second separator 204 as heat, the outer peripheral surfaces protruding beyond the electrodes ( 260 is bonded to form an integral.
이후, 과정(140)에서는, 상기 전극 외주변(208)에 대해 대략 0도 이상 내지 10도 이하를 이루는 외주변(240)이 제 1 분리막(202)과 제 2 분리막(204)에 형성되도록, 라미네이션된 외주면들(260)을 가상의 커팅선(C)를 따라 커팅(cutting)시킨다. Subsequently, in step 140, the outer periphery 240, which is approximately 0 degrees to 10 degrees with respect to the outer periphery of the electrode 208, is formed in the first separator 202 and the second separator 204, The laminated outer peripheral surfaces 260 are cut along the virtual cutting line C.
도 3에 도시하지는 않았지만, 과정(110)은 제 1 전극(210)에서 제 1 분리막(202)이 라미네이션된 면의 대향면에 제 3 분리막(도시하지 않음)이 추가로 라미네이션 될 수 있으며, 이 경우, 과정(130)은 제 3 분리막의 외주면이 제 1 분리막(202)과 제 2 분리막(204)의 외주면들(260)에 추가로 라미네이션 되는 과정을 추가로 포함할 수 있다.Although not shown in FIG. 3, in the process 110, a third separator (not shown) may be additionally laminated on an opposite surface of the surface where the first separator 202 is laminated on the first electrode 210. In this case, the process 130 may further include a process in which the outer circumferential surface of the third separator is further laminated to the outer circumferential surfaces 260 of the first separator 202 and the second separator 204.
또한, 제 3 분리막이 추가로 라미네이션 된 상태에서, 과정(140)을 통해 제 3 분리막 역시 제 1 분리막(202)과 제 2 분리막(204)과 함께 커팅될 수 있다.In addition, in a state in which the third separator is further laminated, the third separator may also be cut together with the first separator 202 and the second separator 204 through the process 140.
이와 유사하게 제 2 전극(220)에서 제 2 분리막(204)이 라미네이션된 면의 대향면에 제 4 분리막(도시하지 않음)이 추가로 라미네이션 될 수 있으며, 이 경우, 과정(130)은 제 4 분리막의 외주면이 제 1 분리막(202)과 제 2 분리막(204)의 외주면들(260)에 추가로 라미네이션 되는 과정을 추가로 포함할 수 있다.Similarly, a fourth separator (not shown) may be additionally laminated on an opposite surface of the surface on which the second separator 204 is laminated on the second electrode 220, and in this case, the process 130 may be performed in a fourth manner. The outer circumferential surface of the separator may further include laminating the outer circumferential surfaces 260 of the first separator 202 and the second separator 204.
또한, 제 4 분리막이 추가로 라미네이션 된 상태에서, 과정(140)을 통해 제 4 분리막 역시 제 1 분리막(202)과 제 2 분리막(204)과 함께 커팅될 수 있다.In addition, in a state in which the fourth separator is further laminated, the fourth separator may also be cut together with the first separator 202 and the second separator 204 through the process 140.
이처럼 본 발명의 제조 방법은, 복수의 분리막들이 각각 커팅되는 것이 아니라 서로가 라미네이션으로 접합되어 융착된 상태, 즉, 분리막들의 섬유 조직이 경화된 상태로 커팅되는 바, 커팅으로 인한 미세 이물 발생 정도가 현저히 감소될 수 있으며, 섬유 조직이 경화된 분리막은 정전기에 의해 쉽게 유도되지 않는 점으로 인하여, 소량의 이물이 발생되더라도 이물이 전극에 흡착되는 불가피한 현상이 상당히 완화될 수 있다.As described above, in the manufacturing method of the present invention, the plurality of separators are not cut, but are bonded to each other by lamination and fusion, that is, the fiber tissues of the separators are cut in a cured state. Due to the fact that the separator in which the fibrous structure is cured is not easily induced by static electricity, the inevitable phenomenon that the foreign material is adsorbed to the electrode can be significantly alleviated even when a small amount of foreign material is generated.
도 4 및 도 5에는 본 발명의 하나의 실시예에 따른 전극조립체의 모식도들이 도시되어 있고, 도 6에는 도 4의 L 부위의 수직 단면 모식도가 도시되어 있다.4 and 5 are schematic views of an electrode assembly according to an embodiment of the present invention, Figure 6 is a vertical cross-sectional schematic of the L portion of FIG.
이들 도면을 함께 참조하면, 전극조립체(200)는 평면상으로 적어도 6개의 외주변들로 이루어진 비정형 전극인 제 1 전극(210), 제 2 전극(220), 제 3 전극(230), 제 1 분리막(202), 제 2 분리막(204)을 포함하며, 제 1 전극(210), 제 1 분리막(202), 제 2 전극(220), 제 2 분리막(204), 제 3 전극(230)의 순서로 적층된 구조로 이루어져 있다. Referring to these drawings together, the electrode assembly 200 is a planar electrode consisting of at least six outer periphery of the first electrode 210, the second electrode 220, the third electrode 230, the first electrode A separator 202 and a second separator 204, and include a first electrode 210, a first separator 202, a second electrode 220, a second separator 204, and a third electrode 230. It consists of a stacked structure in order.
제 1 전극(210), 제 2 전극(220), 제 3 전극(230)은 각각 6개의 외주변들과 6개의 내각을 가지는 비정형 구조이고, 이들의 형상은 모두 동일하다. The first electrode 210, the second electrode 220, and the third electrode 230 have an amorphous structure having six outer peripheries and six internal angles, respectively, and the shapes thereof are all the same.
또한, 제 1 전극(210), 제 2 전극(220) 및 제 3 전극(230)은 각각, 동일한 방향에 위치한 외주변에서 외향 돌출된 전극 탭(212, 222, 232)을 포함한다. In addition, the first electrode 210, the second electrode 220, and the third electrode 230 each include electrode tabs 212, 222, and 232 protruding outward from the outer periphery positioned in the same direction.
제 1 전극(210), 제 2 전극(220) 및 제 3 전극(230)이 적층 된 상태에서, 제 1 전극(210)과 제 3 전극(230)의 전극 탭들(212, 232)이 상하 나란히 중첩되며, 이와 같이 중첩된 동일 극성의 전극 탭들(212, 232)이 전극조립체(200)의 제 1 전극 단자(206)를 형성한다.  In a state where the first electrode 210, the second electrode 220, and the third electrode 230 are stacked, the electrode tabs 212 and 232 of the first electrode 210 and the third electrode 230 are arranged up and down side by side. The overlapping electrode tabs 212 and 232 having the same polarity form the first electrode terminal 206 of the electrode assembly 200.
제 2 전극(220)의 전극 탭(222)은 적어도 제 1 전극 단자(206)로부터 이격된 위치에서 전극조립체(200)의 제 2 전극 단자를 형성한다.The electrode tab 222 of the second electrode 220 forms a second electrode terminal of the electrode assembly 200 at a position spaced apart from at least the first electrode terminal 206.
도면에 별도로 도시하지는 않았지만, 제 1 전극 단자(206)와 제 2 전극 단자(222)는 각각 전극 리드와 같은 통전 부재와 용접 이나 솔더링에 의해 결합될 수 있다.Although not separately illustrated in the drawings, the first electrode terminal 206 and the second electrode terminal 222 may be combined with a current-carrying member such as an electrode lead by welding or soldering, respectively.
제 1 분리막(202)과 제 2 분리막(204)은 제 1 전극(210), 제 2 전극(220), 제 3 전극(230) 중 어느 하나의 평면적 대비 대략 130%의 면적을 가지며, 제 1 전극(210), 제 2 전극(220), 제 3 전극(230)과 대략 동일한 형상으로 이루어져 있다.The first separator 202 and the second separator 204 have an area of approximately 130% of the planar surface of any one of the first electrode 210, the second electrode 220, and the third electrode 230. The electrode 210, the second electrode 220, and the third electrode 230 have substantially the same shape.
다만, 제 1 분리막(202)과 제 2 분리막(204)은 최초에 장방형 구조를 가지며, 전극들(210, 220, 230)과 함께 적층된 상태에서, 제 1 분리막(202)과 제 2 분리막(204) 각각의 외주변들 중, 인접한 전극의 외주변에 대해 대략 30도 내지 60도의 각도(a, a')를 이루면서 돌출되어 있는 외주변(208)에 인접한 분리막들(202, 204)의 외주면들(260)은 서로 접합되며, 이 상태에서 상기 전극의 외주변(208)에 대해 0도 내지 10도를 이루는 가상의 커팅선(C)을 따라 접합된 외주면들(260)이 커팅되면서 제 1 전극(210), 제 2 전극(220), 제 3 전극(230)과 대략 동일한 형상을 이루는 구조이다.However, the first separator 202 and the second separator 204 have a first rectangular structure, and in a state in which the first separator 202 and the second separator 204 are stacked together with the electrodes 210, 220, and 230, the first separator 202 and the second separator 202 may be formed. Outer peripheral surfaces of the separation membranes 202 and 204 adjacent to the outer peripheral edge 208 protruding at an angle (a, a ') of approximately 30 to 60 degrees with respect to the outer peripheral edge of the adjacent electrode among the respective outer peripheral edges The fields 260 are bonded to each other, and in this state, the outer circumferential surfaces 260 joined along the imaginary cutting line C, which are 0 to 10 degrees with respect to the outer circumference 208 of the electrode, are cut. The electrode 210, the second electrode 220, and the third electrode 230 have a structure substantially the same shape.
이와 같이 접합된 상태로 커팅된 제 1 분리막(202) 및 제 2 분리막(204) 부위를 본 발명에서는 접합 외주변(240)이라 정의한다. 또한, 접합 외주변(240)의 개념은 도 5에서와 같이, 전극조립체(200)를 상부에서 바라볼 때를 기준으로, 가장 외곽에 위치하는 외주변인 분리막의 외주변들 중, 커팅선(C)을 따라 커팅된 부위 또는 이 커팅 부위로부터 인접한 전극의 외주변까지의 분리막 부위를 의미한다.The portions of the first separator 202 and the second separator 204 cut in the bonded state as described above are defined as the bonding outer periphery 240 in the present invention. In addition, the concept of the bonding outer periphery 240 is, as shown in FIG. (A) or a separator portion from the cut portion to the outer periphery of the adjacent electrode.
만약, 도 6의 (i)에서와 같이, 접합된 외주면이 일부 잔존하도록 커팅선(C-C)을 따라 커팅된다면, 접합 외주변(240a)에서 제 1 분리막(202)과 제 2 분리막(204)은 서로 접합된 상태를 유지한다. 이러한 구조에서는 접합 외주변(240a)을 공유하는 분리막들(202, 204) 사이에 위치한 제 2 전극(220)에서 모서리 부위는 접합 외주변(240)에 의해 감싸진 상태로 지지된다.6, if the bonded outer circumferential surface is cut along the cutting line CC so that some of the remaining outer circumferential surface remains, the first separator 202 and the second separator 204 may be formed at the outer circumferential edge 240a of the bonding. Stay bonded to each other. In this structure, the corner portion of the second electrode 220 positioned between the separators 202 and 204 sharing the junction outer periphery 240a is supported by the junction outer periphery 240.
이와는 달리, 도 6의 (ii)에서와 같이, 접합된 외주면이 서로 분리되도록 커팅선(C-C)을 따라 커팅된다면, 접합 외주변에서 제 1 분리막(202)과 제 2 분리막(204)은 서로 분리된 상태로 존재한다.On the contrary, as shown in (ii) of FIG. 6, if the bonded outer circumferential surfaces are cut along the cutting line CC so as to be separated from each other, the first separator 202 and the second separator 204 are separated from each other at the outer circumferential junction. Exists in a closed state.
이상에서 설명한 바와 같이, 본 발명에 따른 전극조립체는, 평면 상으로 6개 이상의 다변형으로 이루어진 바, 일반적인 장방형 디자인에서 벗어난 다각 또는 기하학 구조, 나아가 원형이나 곡면 등의 디바이스에 적용 가능한 형태임을 알 수 있다.As described above, the electrode assembly according to the present invention is formed of six or more polymorphs in a plane, and it can be seen that the shape is applicable to a device such as a polygon or a geometric structure, and also a circular or curved surface, which is out of the general rectangular design. have.
뿐만 아니라, 분리막들이 비정형 전극들의 형상에 대응되도록 커팅되되, 상기와 같이 전극의 외주변에 대응되지 않는 분리막 부위들이 일체로 접합된 상태로 전극의 외주변과 대략 평행하도록 커팅되는 바, 접합된 분리막에서 결락되는 분리막 이물이 현저하게 감소된 구조이고, 그로 인해 상기 전극조립체는 전극에 분리막 이물이 거의 존재하지 않아 이물로 인한 전극 성능 저하나 품질 저하 등이 없는 안정적인 구조로 이루어져 있다.In addition, the separators are cut to correspond to the shape of the at least one electrode, but as described above, the separator portions that do not correspond to the outer periphery of the electrode are cut to be substantially parallel to the outer periphery of the electrode. In this case, the foreign matters that are separated from the separator are significantly reduced, and thus, the electrode assembly has a stable structure without deterioration of electrode performance or deterioration due to foreign matters because there is almost no foreign matter on the electrodes.
도 7에는 본 발명의 또 다른 실시예에 따른 전극조립체의 모식도가 도시되어 있다.7 is a schematic view of an electrode assembly according to another embodiment of the present invention.
도 7을 참조하면, 전극조립체(300)는 평면상으로 적어도 6개의 외주변들로 이루어진 비정형 전극인 제 1 전극(310), 제 2 전극(320), 제 3 전극(330), 제 1 분리막(302), 제 2 분리막(304)을 포함하며, 제 1 전극(310), 제 1 분리막(302), 제 2 전극(320), 제 2 분리막(304), 제 3 전극(330)의 순서로 적층된 구조로 이루어져 있다. Referring to FIG. 7, the electrode assembly 300 may be a first electrode 310, a second electrode 320, a third electrode 330, and a first separator, which are amorphous electrodes having at least six outer peripheries in plan view. 302, a second separator 304, and a sequence of the first electrode 310, the first separator 302, the second electrode 320, the second separator 304, and the third electrode 330. It consists of a laminated structure.
제 1 전극(310), 제 2 전극(320), 제 3 전극(330)은 각각 6개의 외주변들과 6개의 내각을 가지는 비정형 구조이고, 이들의 형상은 모두 동일하다.The first electrode 310, the second electrode 320, and the third electrode 330 have an amorphous structure having six outer peripheries and six internal angles, respectively, and the shapes thereof are all the same.
제 1 전극(310)과 제 3 전극(330)은 동일한 방향에 위치한 외주변에서 외향 돌출된 전극 탭(312, 332)을 포함하고, 제 2 전극(320)은 제 1 전극(310)과 제 3 전극(330)의 전극 탭(312, 332)이 위치한 외주변에 대해 상이한 방향에 위치한 외주변에서 외향 돌출된 전극 탭(322)을 포함한다.The first electrode 310 and the third electrode 330 include electrode tabs 312 and 332 protruding outward from the outer periphery positioned in the same direction, and the second electrode 320 includes the first electrode 310 and the first electrode 310. It includes an electrode tab 322 protruding outward from the outer periphery located in a different direction with respect to the outer periphery where the electrode tabs 312 and 332 of the three electrodes 330 are located.
따라서, 제 1 전극(310), 제 2 전극(320) 및 제 3 전극(330)이 적층된 구조에서, 제 1 전극(310)과 제 3 전극(330)의 전극 탭들(312, 332)이 상하 나란히 중첩된 상태로 전극조립체(300)의 동일한 외주변에서 제 1 전극 단자(306)를 형성하는 반면에, 제 2 전극(320)의 전극 탭은 제 1 전극 단자(306)가 위치한 외주변과 상이한 위치의 외주변에서 전극조립체(300)의 제 2 전극 단자(322)를 형성한다.Accordingly, in the structure in which the first electrode 310, the second electrode 320, and the third electrode 330 are stacked, the electrode tabs 312 and 332 of the first electrode 310 and the third electrode 330 may be formed. While the first electrode terminal 306 is formed at the same outer periphery of the electrode assembly 300 in a state where the upper and lower sides overlap, the electrode tab of the second electrode 320 has an outer periphery at which the first electrode terminal 306 is located. The second electrode terminal 322 of the electrode assembly 300 is formed at the outer periphery of the position different from the.
이러한 구조는 제 1 전극 단자(306)와 제 2 전극 단자(322)가 이격되어 위치하여 전지셀의 활성화 공정, 즉, 초기 충방전 공정에서, 제 1 전극 단자(306)와 제 2 전극 단자(322)에 각각 전류를 인가하는 장치에 의해, 이들이 상호 간섭되지 않을 수 있다. In this structure, the first electrode terminal 306 and the second electrode terminal 322 are spaced apart from each other so that the first electrode terminal 306 and the second electrode terminal ( By means of devices which respectively apply current to 322, they may not interfere with each other.
더욱이, 제 1 전극 단자(306)와 제 2 전극 단자(322)가 서로 다른 방향의 외주변들에서 형성되어 있으므로, 이들 단자 각각에 대한 전기적 연결 구조가 상이한 방향에서 달성될 수 있으며, 이 점에 기인하여 전극조립체(300) 및 이에 전기적으로 연결될 수 있는 회로의 연결 구조가 보다 다양한 형태로 구현될 수 있다.Furthermore, since the first electrode terminal 306 and the second electrode terminal 322 are formed at outer peripheries in different directions, an electrical connection structure to each of these terminals can be achieved in different directions, and in this respect Due to this, the connection structure of the electrode assembly 300 and the circuit which can be electrically connected thereto can be implemented in more various forms.
도 8에는 본 발명의 또 다른 실시예들에 따른 세 가지 전극조립체들의 수직 단면도들이 도시되어 있다.8 is a vertical cross-sectional view of three electrode assemblies according to still another embodiment of the present invention.
먼저 도 8의 제 1 형태(i)를 참조하면, 전극조립체(400)는 제 3 분리막(406), 제 1 전극(410), 제 1 분리막(402), 제 2 전극(420), 제 2 분리막(404) 및 제 3 전극(430)이 순차적으로 적층된 구조로 이루어져 있다.First, referring to the first form (i) of FIG. 8, the electrode assembly 400 may include a third separator 406, a first electrode 410, a first separator 402, a second electrode 420, and a second electrode. The separator 404 and the third electrode 430 are sequentially stacked.
도 8의 제 2 형태(ii)에 따른 전극조립체(500)는 제 1 전극(510), 제 1 분리막(502), 제 2 전극(520), 제 2 분리막(504), 제 3 전극(530) 및 제 4 분리막(508)이 순차적으로 적층된 구조로 이루어져 있다.The electrode assembly 500 according to the second aspect (ii) of FIG. 8 includes a first electrode 510, a first separator 502, a second electrode 520, a second separator 504, and a third electrode 530. ) And the fourth separator 508 are sequentially stacked.
도 8의 제 3 형태(iii)에 따른 전극조립체(600)는 제 3 분리막(606), 제 1 전극(610), 제 1 분리막(602), 제 2 전극(620), 제 2 분리막(604), 제 3 전극(630) 및 제 4 분리막(608)이 순차적으로 적층된 구조로 이루어져 있다.The electrode assembly 600 according to the third aspect (iii) of FIG. 8 includes a third separator 606, a first electrode 610, a first separator 602, a second electrode 620, and a second separator 604. ), The third electrode 630 and the fourth separator 608 are sequentially stacked.
이들 제 1 형태(i), 제 2 형태(ii) 및 제 3 형태(iii)에 도시된 전극조립체들(400, 500, 600)은 공통적으로, 최외곽에 위치하는 전극 상에 분리막이 추가로 부가되어 있는 구조로서, 침상 도체가 최외곽의 전극 방향에서 전극조립체를 관통할 때, 최외곽에 부가된 제 3 분리막이나 제 4 분리막이 침상도체를 따라 연신되면서 침상도체 표면을 감쌀 수 있다. 이러한 이유로 침상도체에 의해 상호 반대극성의 전극들, 예를 들어 제 1 전극과 제 2 전극, 또는 제 2 전극과 제 3 전극이 침상 도체를 통해 직접적으로 통전되는 것이 차단될 수 있다.The electrode assemblies 400, 500, and 600 shown in these first (i), second (ii) and third (iii) commonly have additional separators on the outermost electrode. As an additional structure, when the needle conductor penetrates the electrode assembly in the direction of the outermost electrode, the third or fourth separator added to the outermost portion may be stretched along the needle conductor to surround the needle conductor surface. For this reason, the needle conductors can block the mutually opposite electrodes, for example, the first electrode and the second electrode, or the second electrode and the third electrode from being directly energized through the needle conductors.
이를 위해 최외곽에 부가되는 제 3 분리막과 제 4 분리막은 제 1 분리막이나 제 2 분리막 대비 상대적으로 두꺼운 두께로 이루어질 수 있으며, 상세하게는 제 1 분리막이나 제 2 분리막의 두께 대비 대략 1.5배에서 3배의 두께를 가질 수 있다.To this end, the third and fourth separators added to the outermost portion may have a relatively thicker thickness than that of the first and second separators, and in detail, is about 1.5 to 3 times the thickness of the first or second separators. It may have a thickness of twice.
도 9 내지 도 11에는 본 발명의 또 다른 실시예들에 따른 전극조립체들의 평면 모식도들이 도시되어 있다.9 to 11 are schematic plan views of electrode assemblies according to still other embodiments of the present invention.
설명의 편의를 위하여, 전극조립체들(700, 800, 900)을 상부 또는 하부에서 바라볼 때, 전극조립체의 최외곽을 형성하는 분리막들(730, 830, 930)의 외주변을, 전극조립체의 평면 형상에 관여하는 외주변으로 설정하여 이하 상술하지만, 본 발명에서 분리막의 평면 형상은 전극과 동일한 바, 전극조립체의 평면 형상을 결정하는 외주변들을 전극의 외주변으로 이해하고 이를 이행할 수 있음은 물론이다. For convenience of description, when the electrode assemblies 700, 800, and 900 are viewed from the top or the bottom, the outer periphery of the separators 730, 830, and 930 forming the outermost part of the electrode assembly may be formed. In the present invention, the planar shape of the separator is the same as that of the electrode, and thus, the outer periphery of the electrode assembly may be understood as the outer periphery of the electrode and implemented according to the planar shape of the separator. Of course.
이에, 도 9를 참조하면, 전극조립체(700)는 평면상으로 직선인 6개의 외주변들(701, 702, 703, 704, 705, 706)로 이루어진 다각형 구조로 이루어져 있다.Accordingly, referring to FIG. 9, the electrode assembly 700 has a polygonal structure consisting of six outer peripheries 701, 702, 703, 704, 705, and 706 that are straight in a plane.
이러한 외주변들(701, 702, 703, 704, 705, 706)은 인접한 외주변과 각각 90도 이상 내지 160도 미만의 각도로 연결되어 있으며, 이들이 연결된 형태는 비정형의 다각형 구조이다.These outer periphery 701, 702, 703, 704, 705, 706 are connected to the adjacent outer periphery at an angle of more than 90 degrees to less than 160 degrees, respectively, the shape of the connection is an amorphous polygonal structure.
전극조립체(700)는 또한 평면상으로 그것의 중심부를 경유하는 수직축(P-P')을 기준으로 대칭으로 이루어져 있으며, 수평축(H-H')을 기준으로는 상하 비대칭 구조로 이루어져 있다.The electrode assembly 700 is also symmetrically with respect to the vertical axis P-P 'passing through its center in a plane, and has an up and down asymmetrical structure with respect to the horizontal axis H-H'.
전극조립체(700)의 제 1 전극 단자(710)와 제 2 전극 단자(720)는 동일한 외주변에서 나란히 돌출되어 있다.The first electrode terminal 710 and the second electrode terminal 720 of the electrode assembly 700 protrude side by side at the same outer periphery.
도 10에는 본 발명의 또 다른 실시예에 따른 전극조립체가 모식적으로 도시되어 있다. 10 schematically shows an electrode assembly according to another embodiment of the present invention.
도 10을 참조하면, 전극조립체(800)는 평면상으로 직선인 8개의 외주변들(801, 802, 803, 804, 805, 806, 807, 808)로 이루어진 다각형 구조로 이루어져 있다.Referring to FIG. 10, the electrode assembly 800 has a polygonal structure including eight outer peripheries 801, 802, 803, 804, 805, 806, 807, and 808 that are straight in a plane.
이러한 외주변들(801, 802, 803, 804, 805, 806, 807, 808)은 인접한 외주변과 각각 90도 이상 내지 150도 미만의 각도로 연결되어 있으며, 이들이 연결된 형태는 비정형의 다각형 구조이다.These outer periphery 801, 802, 803, 804, 805, 806, 807, 808 are connected to the adjacent outer periphery at an angle of more than 90 degrees to less than 150 degrees, respectively, the shape is connected to the amorphous polygonal structure .
전극조립체(800)는 또한 평면으로 그것의 중심부를 경유하는 수직축(P-P')과 수평축(H-H')을 기준으로 좌우 및 상하 대칭으로 이루어져 있다.The electrode assembly 800 also consists of left and right symmetry with respect to the vertical axis (P-P ') and the horizontal axis (H-H') passing through its center in a plane.
전극조립체(800)의 제 1 전극 단자(810)와 제 2 전극 단자(820)는 동일한 외주변에서 나란히 돌출되어 있다.The first electrode terminal 810 and the second electrode terminal 820 of the electrode assembly 800 protrude side by side at the same outer periphery.
도 11에는 본 발명의 또 다른 실시예에 따른 전극조립체가 모식적으로 도시되어 있다.11 schematically illustrates an electrode assembly according to another embodiment of the present invention.
도 11을 참조하면, 전극조립체(900)는 평면상으로 직선인 7개의 외주변들(901, 902, 903, 904, 905, 906, 907)로 이루어진 다각형 구조로 이루어져 있다.Referring to FIG. 11, the electrode assembly 900 has a polygonal structure including seven outer peripheries 901, 902, 903, 904, 905, 906, and 907 that are straight in a plane.
이러한 외주변들(901, 902, 903, 904, 905, 906, 907)은 인접한 외주변과 각각 90도 이상 내지 180도 미만의 각도로 연결되어 있으며, 이들이 연결된 형태는 비정형의 다각형 구조이다.These outer peripheries 901, 902, 903, 904, 905, 906, and 907 are connected to adjacent outer peripheries at an angle of more than 90 degrees to less than 180 degrees, respectively, and the connected shapes are atypical polygonal structures.
전극조립체(900)는 또한 평면상으로 그것의 중심부를 경유하는 수직축(P-P')을 기준으로 좌우 비대칭으로 이루어져 있으며, 수평축(H-H')을 기준으로도 상하 비대칭 구조로 이루어져 있다.The electrode assembly 900 is also asymmetrical with respect to the vertical axis (P-P ') passing through its center in a plane, and has a vertically asymmetrical structure with respect to the horizontal axis (H-H').
또한, 전극조립체(900)의 제 1 전극 단자(910)와 제 2 전극 단자(920)는 서로 다른 외주면에서 외측으로 돌출되어 있다.In addition, the first electrode terminal 910 and the second electrode terminal 920 of the electrode assembly 900 protrude outward from different outer peripheral surfaces.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.Those skilled in the art to which the present invention pertains will be able to perform various applications and modifications within the scope of the present invention based on the above contents.
이상에서 설명한 바와 같이, 본 발명에 따른 제조 방법은, 제 1 분리막과 제 2 분리막이 각각 커팅되는 것이 아니라 서로가 라미네이션으로 접합되어 융착된 상태, 즉, 분리막들의 섬유 조직이 경화된 상태로 커팅되는 바, 커팅으로 인한 미세 이물 발생 정도가 현저히 감소될 수 있으며, 섬유 조직이 경화된 분리막은 정전기에 의해 쉽게 유도되지 않는 점으로 인하여, 소량의 이물이 발생되더라도 이물이 전극에 흡착되는 불가피한 현상이 상당히 완화될 수 있다.As described above, in the manufacturing method according to the present invention, the first separator and the second separator are not cut, but are bonded to each other by lamination and fusion, that is, the fiber tissue of the separators is cut in a cured state. Bar, the generation of fine foreign matters due to cutting can be significantly reduced, and since the separator in which the fibrous structure is cured is not easily induced by static electricity, even if a small amount of foreign matter is generated, the inevitable phenomenon that the foreign material is adsorbed on the electrode is quite significant. Can be mitigated.
또한, 본 발명에 따른 전극조립체는, 평면 상으로 6개 이상의 다변형으로 이루어진 바, 일반적인 장방형 디자인에서 벗어난 다각 또는 기하학 구조, 나아가 원형이나 곡면 등의 디바이스에 적용 가능한 형태로 이루어져 있다.In addition, the electrode assembly according to the present invention consists of six or more polymorphs in planar shape, and is formed in a shape applicable to a device such as a polygon or a geometric structure, and also a circular or curved surface, which is out of a general rectangular design.

Claims (19)

  1. 평면상으로 적어도 6개의 외주변들로 이루어진 비정형 구조의 전극조립체를 제조하는 방법으로서, A method of manufacturing an electrode assembly having an amorphous structure consisting of at least six outer peripheries on a plane,
    (a) 제 1 전극과 제 2 전극 사이에 이들 전극 중 어느 하나 대비 평면적이 110% 내지 150%인 제 1 분리막을 개재하고, 제 1 전극과 제 2 전극 이상으로 돌출된 부위를 제외한 나머지 제 1 분리막과 전극들을 라미네이션(lamination) 시키는 과정;(a) between a first electrode and a second electrode, a first separator having a plane area of 110% to 150% of any one of these electrodes, except for a portion protruding beyond the first electrode and the second electrode; Laminating the separator and the electrodes;
    (b) 제 2 전극과 제 3 전극 사이에 이들 전극 중 어느 하나 대비 평면적이 110% 내지 150%인 제 2 분리막을 개재하고, 제 2 전극과 제 3 전극 이상으로 돌출된 부위를 제외한 제 2 분리막과 전극들을 라미네이션 시키는 과정;(b) a second separator between the second electrode and the third electrode with a second separator having a plane area of 110% to 150% relative to any one of these electrodes, except for a portion protruding beyond the second electrode and the third electrode; Laminating the electrodes;
    (c) 제 1 분리막과 제 2 분리막 각각의 외주변들 중, 인접한 전극의 외주변에 대해 30도 내지 60도의 각도를 이루면서 돌출되어 있는 외주변에 인접한 제 1 분리막과 제 2 분리막의 외주면들을 서로 라미네이션 시키는 과정;(c) Among the outer peripheries of each of the first separator and the second separator, the outer peripheral surfaces of the first separator and the second separator adjacent to the protruding outer periphery are formed at an angle of 30 to 60 degrees with respect to the outer periphery of the adjacent electrode. Lamination process;
    (d) 상기 과정(c)의 전극 외주변에 대해 0도 내지 10도를 이루는 외주변이 제 1 분리막과 제 2 분리막에 형성되도록, 라미네이션된 외주면들을 커팅(cutting)하는 과정;(d) cutting the laminated outer circumferential surfaces such that an outer circumference of 0 degrees to 10 degrees with respect to the outer circumference of the electrode of the step (c) is formed in the first and second separators;
    을 포함하는 것을 특징으로 하는 방법.Method comprising a.
  2. 제 1 항에 있어서, 상기 과정(a)에서 제 1 전극은, 제 1 분리막이 라미네이션된 면의 대향면에 제 3 분리막이 추가로 라미네이션 되고, 상기 과정(c)에서 제 3 분리막의 외주면이 제 1 분리막과 제 2 분리막의 외주면들에 추가로 라미네이션 되는 것을 특징으로 하는 방법.The method of claim 1, wherein in the process (a), the first electrode is further laminated on an opposite surface of the surface on which the first separator is laminated, and in the process (c), the outer circumferential surface of the third separator is And lamination to the outer peripheral surfaces of the first separator and the second separator.
  3. 제 1 항에 있어서, 상기 과정(b)에서 제 3 전극은 제 2 분리막이 라미네이션된 면의 대향면에 제 4 분리막이 추가로 라미네이션 되고, 상기 과정(c)에서 제 4 분리막의 외주면이 제 1 분리막과 제 2 분리막의 외주면들에 추가로 라미네이션 되는 것을 특징으로 하는 방법.The method of claim 1, wherein in the process (b), the third electrode is further laminated on the opposite surface of the surface on which the second separator is laminated, and in the process (c), the outer circumferential surface of the fourth separator is formed in the first electrode. And further laminated to the outer peripheral surfaces of the separator and the second separator.
  4. 제 1 항에 있어서, 제 1 전극과 제 3 전극은 양극 또는 음극이며, 상기 제 2 전극은 제 1 전극 및 제 3 전극과 상이한 극성을 가지는 것을 특징으로 하는 방법.The method of claim 1, wherein the first electrode and the third electrode are an anode or a cathode, and the second electrode has a different polarity than the first electrode and the third electrode.
  5. 제 1 항에 있어서, 상기 과정(a) 내지 과정(c)에서 제 1 분리막과 제 2 분리막은 평면상으로 장방형 구조이고, 과정(d)에서 제 1 분리막과 제 2 분리막은 평면상으로 비정형 구조인 것을 특징으로 하는 방법.The method of claim 1, wherein the first separator and the second separator in the process (a) to (c) has a planar rectangular structure, and in the process (d), the first separator and the second separator in a planar amorphous structure Method characterized in that.
  6. 전극조립체로서,As an electrode assembly,
    평면상으로 적어도 6개의 외주변들로 이루어진 비정형 전극들 n개(n≥3)가 n개, n-1개, 또는 n+1개의 분리막들과 함께 적층된 구조이고, 상기 분리막들 각각, 인접한 전극의 외주변들 이상으로 외향 돌출되도록 상기 전극의 평면적 대비 110% 내지 150%의 면적을 가지며;N amorphous electrodes (n≥3) having at least six outer peripheries in a plane are stacked together with n, n-1, or n + 1 separators, and each of the separators is adjacent to each other. Has an area of 110% to 150% relative to the planar surface of the electrode to protrude outward beyond the outer periphery of the electrode;
    분리막들 각각의 외주변들 중, 인접한 전극의 외주변에 대해 30도 내지 60도의 각도를 이루면서 돌출되어 있는 외주변에 인접한 분리막들의 외주면들이 서로 접합된 상태로 상기 전극의 외주변에 대해 0도 내지 10도를 이루도록 커팅된 구조의 접합 외주변을 포함하는 것을 특징으로 하는 전극조립체.Among the outer peripheries of each of the separators, the outer periphery of the separators adjacent to the protruding periphery is formed at an angle of 30 degrees to 60 degrees with respect to the periphery of the adjacent electrode, and is 0 to the periphery of the electrode. Electrode assembly characterized in that it comprises a junction outer periphery of the structure cut to achieve 10 degrees.
  7. 제 6 항에 있어서, 상기 전극의 외주변들 각각은 인접한 외주변과 90도 이상 내지 180도 미만의 내각을 이루며 상호 연결되어 있는 것을 특징으로 하는 전극조립체.The electrode assembly of claim 6, wherein each of the outer peripheries of the electrode is interconnected with an adjacent outer periphery at least 90 degrees to less than 180 degrees.
  8. 제 6 항에 있어서, 상기 전극조립체는 극성이 동일한 제 1 전극과 제3 전극 사이에 상이한 극성의 제 2 전극이 위치하고 있으며, 제 1 전극, 제 2 전극 및 제 3 전극의 형상은 동일한 것을 특징으로 하는 전극조립체.The electrode assembly of claim 6, wherein a second electrode having a different polarity is located between the first electrode and the third electrode having the same polarity, and the first electrode, the second electrode, and the third electrode have the same shape. Electrode assembly.
  9. 제 6 항에 있어서, 상기 전극조립체는 평면상으로 N개(N≥6)의 내각을 가지는 다각 구조로 이루어져 있고, 좌우 및/또는 상하 대칭 구조로 이루어져 있는 것을 특징으로 하는 전극조립체. 7. The electrode assembly of claim 6, wherein the electrode assembly has a polygonal structure having N internal angles (N≥6) in a planar shape, and has a left and right and / or a vertical symmetrical structure.
  10. 제 6 항에 있어서, 상기 전극조립체는 평면상으로 N개(N≥6)의 내각을 가지는 다각 구조로 이루어져 있고, 좌우 및/또는 상하 비대칭 구조로 이루어져 있는 것을 특징으로 하는 전극조립체.7. The electrode assembly of claim 6, wherein the electrode assembly has a polygonal structure having N internal angles (N≥6) in a planar shape, and has left, right, and / or vertically asymmetrical structures.
  11. 제 7 항에 있어서, 상기 전극들은 각각, 동일한 방향에 위치한 외주변에서 외향 돌출된 전극 탭을 포함하는 것을 특징으로 하는 전극조립체.8. The electrode assembly of claim 7, wherein each of the electrodes includes an electrode tab protruding outward from an outer periphery positioned in the same direction.
  12. 제 7 항에 있어서, 상기 제 1 전극과 제 3 전극은 동일한 방향에 위치한 외주변에서 외향 돌출된 전극 탭을 포함하고, 제 2 전극은 제 1 전극과 제 3 전극의 전극 탭이 위치한 외주변에 대해 상이한 방향에 위치한 외주변에서 외향 돌출된 전극 탭을 포함하는 것을 특징으로 하는 전극조립체.The method of claim 7, wherein the first electrode and the third electrode includes an electrode tab protruding outward from the outer periphery located in the same direction, the second electrode is located on the outer periphery where the electrode tab of the first electrode and the third electrode is located; And an electrode tab protruding outward from an outer periphery positioned in a different direction with respect to the electrode assembly.
  13. 제 6 항에 있어서, 상기 접합 외주변에서 n개, n-1개, 또는 n+1개의 분리막들이 서로 접합되어 있는 것을 특징으로 하는 전극조립체.The electrode assembly of claim 6, wherein n, n-1, or n + 1 separators are bonded to each other around the junction.
  14. 제 6 항에 있어서, 상기 전극조립체는 접합 외주변을 둘 이상 포함하는 것을 특징으로 하는 전극조립체.The electrode assembly of claim 6, wherein the electrode assembly includes two or more outer peripheries of the junction.
  15. 제 6 항에 있어서, 상기 전극조립체는 상기 n은 3이고 상기 분리막은 2개이며, 전극, 분리막, 전극, 분리막, 전극 순으로 적층되어 있는 것을 특징으로 하는 전극조립체.The electrode assembly of claim 6, wherein n is 3 and the separator is two, and the electrode assembly is stacked in order of an electrode, a separator, an electrode, a separator, and an electrode.
  16. 제 6 항에 있어서, 상기 전극조립체는 상기 n은 3이고, 상기 분리막은 3개이며, 분리막, 전극, 분리막, 전극, 분리막, 전극 순으로 적층되어 있는 것을 특징으로 하는 전극조립체.7. The electrode assembly of claim 6, wherein n is 3 and the separator is three, and the electrode assembly is stacked in order of a separator, an electrode, a separator, an electrode, a separator, and an electrode.
  17. 제 6 항에 있어서, 상기 전극조립체는 상기 n은 3이고, 상기 분리막은 4개이며, 분리막, 전극, 분리막, 전극, 분리막, 전극, 분리막 순으로 적층되어 있는 것을 특징으로 하는 전극조립체.7. The electrode assembly of claim 6, wherein n is 3 and the separator is four, and the electrode assembly is stacked in order of a separator, an electrode, a separator, an electrode, a separator, an electrode, and a separator.
  18. 제 6 항 내지 제 17 항에 따른 전극조립체를 하나 이상 포함하는 이차전지.A secondary battery comprising at least one electrode assembly according to claim 6.
  19. 제 19 항에 따른 이차전지를 포함하는 디바이스.A device comprising the secondary battery according to claim 19.
PCT/KR2017/003167 2016-06-08 2017-03-24 Method for manufacturing electrode assembly having irregular structure, and irregular electrode assembly WO2017213336A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201790000396.7U CN209133616U (en) 2016-06-08 2017-03-24 Electrode assembly, secondary cell and the electronic device including the secondary cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160070655A KR20170138636A (en) 2016-06-08 2016-06-08 Method for Electrode Assembly of Irregular Structure and Electrode Assembly Having Irregular Structure
KR10-2016-0070655 2016-06-08

Publications (1)

Publication Number Publication Date
WO2017213336A1 true WO2017213336A1 (en) 2017-12-14

Family

ID=60577992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003167 WO2017213336A1 (en) 2016-06-08 2017-03-24 Method for manufacturing electrode assembly having irregular structure, and irregular electrode assembly

Country Status (4)

Country Link
KR (1) KR20170138636A (en)
CN (1) CN209133616U (en)
TW (1) TW201743492A (en)
WO (1) WO2017213336A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102294861B1 (en) * 2018-02-20 2021-08-30 주식회사 엘지에너지솔루션 Device and method of manufacturing electrode assembly
KR102316340B1 (en) 2019-01-22 2021-10-22 주식회사 엘지에너지솔루션 Electrode Assembly, Secondary battery with the Same and Method of thereof and Battery Pack

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100884945B1 (en) * 2006-04-03 2009-02-23 주식회사 엘지화학 Pouch-typed Secondary Battery
KR20140027441A (en) * 2012-05-29 2014-03-06 주식회사 엘지화학 Lectrode assembly, battery cell, manufacturing mathod of electrode assembly and manufacturing mathod of battery cell
KR101402657B1 (en) * 2012-05-07 2014-06-03 주식회사 엘지화학 Battery Pack of Irregular Structure
KR20150072016A (en) * 2013-12-19 2015-06-29 주식회사 엘지화학 Secondary battery and method of manufacturing the same
KR20160009863A (en) * 2014-07-17 2016-01-27 주식회사 엘지화학 Electrode assembly and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100884945B1 (en) * 2006-04-03 2009-02-23 주식회사 엘지화학 Pouch-typed Secondary Battery
KR101402657B1 (en) * 2012-05-07 2014-06-03 주식회사 엘지화학 Battery Pack of Irregular Structure
KR20140027441A (en) * 2012-05-29 2014-03-06 주식회사 엘지화학 Lectrode assembly, battery cell, manufacturing mathod of electrode assembly and manufacturing mathod of battery cell
KR20150072016A (en) * 2013-12-19 2015-06-29 주식회사 엘지화학 Secondary battery and method of manufacturing the same
KR20160009863A (en) * 2014-07-17 2016-01-27 주식회사 엘지화학 Electrode assembly and method for manufacturing the same

Also Published As

Publication number Publication date
KR20170138636A (en) 2017-12-18
TW201743492A (en) 2017-12-16
CN209133616U (en) 2019-07-19

Similar Documents

Publication Publication Date Title
WO2017095002A1 (en) Battery cell of irregular structure, having improved sealing reliability of cell case
WO2016167457A1 (en) Electrode assembly having space part in which tab-lead coupling part of electrode tabs and electrode lead is located
WO2016048002A1 (en) Prismatic battery cell comprising two or more case members
WO2015065118A1 (en) Electrode assembly and lithium secondary battery having same
WO2016126046A1 (en) Secondary battery including high-capacity anode and manufacturing method therefor
WO2017039385A1 (en) Separation membrane comprising adhesive coating parts with different adhesion forces, and electrode assembly comprising same
WO2016060521A1 (en) Electrode tab having electrical insulation layer coated thereon and secondary battery comprising same
WO2014021665A1 (en) Electrode assembly for secondary battery and lithium secondary battery comprising same
WO2016056875A2 (en) Electrode assembly and method for manufacturing same
WO2013118982A1 (en) Secondary battery having novel structure
WO2017034210A1 (en) Method for manufacturing battery cell including reference electrode for measurement of relative electrode potential and battery cell manufactured thereby
WO2015105369A1 (en) Electrode assembly having safety separator, and secondary battery comprising same
WO2017188605A1 (en) Battery cell having excellent manufacturing processability based on standardized structure and improved insulating properties of electrode lead, and battery pack including same
WO2017105098A1 (en) Sealing device for battery case with increased pressing and heat application area
WO2020209529A1 (en) Battery cell including short-circuit inducing member and safety evaluation method using same
WO2020159296A1 (en) Electrode with insulation film, manufacturing method thereof, and lithium secondary battery comprising the same
WO2017082530A1 (en) Battery cell comprising electrode lead having protruding extension and tab connector
WO2015102221A1 (en) Hybrid electrode assembly having stepped structure
WO2017069453A1 (en) Pouch-type battery cell comprising unit electrode having plurality of electrode taps
WO2021025358A1 (en) Electrochemical element for inducing internal short circuit, and method for evaluating safety using same
WO2017099333A1 (en) Battery cell having electrode lead comprising gas adsorbent
WO2015105365A1 (en) Electrode assembly having high elongation separator, and secondary battery comprising same
WO2014168398A1 (en) Electrode laminate comprising electrodes having different areas and secondary battery comprising same
WO2019013449A1 (en) Anode comprising electrode protective layer and lithium secondary battery employing same
WO2016140454A1 (en) Battery cell comprising separator with reinforced adhesive strength

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17810459

Country of ref document: EP

Kind code of ref document: A1