WO2017213046A1 - Transparent conductive film and touch panel - Google Patents

Transparent conductive film and touch panel Download PDF

Info

Publication number
WO2017213046A1
WO2017213046A1 PCT/JP2017/020616 JP2017020616W WO2017213046A1 WO 2017213046 A1 WO2017213046 A1 WO 2017213046A1 JP 2017020616 W JP2017020616 W JP 2017020616W WO 2017213046 A1 WO2017213046 A1 WO 2017213046A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
layer
resin
transparent
film
Prior art date
Application number
PCT/JP2017/020616
Other languages
French (fr)
Japanese (ja)
Inventor
久登 加藤
圭祐 松本
祥平 岩松
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016221744A external-priority patent/JP6796460B2/en
Priority claimed from JP2016248125A external-priority patent/JP6789801B2/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201780035698.2A priority Critical patent/CN109313962A/en
Priority to KR1020187031334A priority patent/KR102545339B1/en
Publication of WO2017213046A1 publication Critical patent/WO2017213046A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present invention relates to a transparent conductive film and a touch panel including the same.
  • an image display device includes a film for a touch panel on which a transparent wiring layer made of indium tin composite oxide (ITO) or the like is formed.
  • the film for touch panels is generally manufactured by patterning an ITO layer into a wiring pattern in a transparent conductive film in which an ITO layer is laminated on a transparent substrate.
  • transparent resin films such as a plastic film, are used as a transparent base material from a viewpoint of thinness or weight.
  • a transparent conductive film there is a transparent conductive film having a transparent conductive layer (ITO layer) patterned (patterned) on at least one cured resin layer on one surface of the transparent resin film. Proposed.
  • Patent Document 1 discloses such a transparent conductive film.
  • the transparent conductive film has a problem that cracks are generated on the surface of the transparent conductive film during transportation, pattern processing, and the like, and the crack is visually recognized as white.
  • the interface between the transparent resin film and the cured resin layer peeled off, and the cured resin layer was deformed so as to be distorted or raised with respect to the transparent resin film.
  • the inventors have found that the transparent conductive layer cannot follow the complete deformation and cracks are generated.
  • the transparent conductive film is connected to a flexible printed circuit board at its end, but a dynamic load is applied to the connection. Therefore, peeling may occur at the interface between the transparent resin film and the cured resin layer or the transparent conductive layer.
  • An object of the present invention is to provide a transparent conductive film having excellent adhesion between a transparent resin film and a cured resin layer, and a touch panel including the transparent conductive film.
  • the present invention [1] includes a transparent resin film, a cured resin layer, and a transparent conductive layer in this order.
  • the cured resin layer is a cured product obtained by curing a resin composition containing an epoxy resin having a weight average molecular weight of 3000 or more.
  • This invention [2] contains the transparent conductive film as described in [1] whose thickness of the said cured resin layer is 150 nm or less.
  • the present invention includes the transparent conductive film according to [1] or [2], wherein the epoxy resin is a rubber-modified epoxy resin.
  • the present invention [5] includes the transparent conductive film according to any one of [1] to [4], wherein the adhesive strength of the cured resin layer to the transparent resin film is 50 N / 25 mm or more. Yes.
  • the transparent conductive film as described in any one of these is included.
  • the present invention includes a touch panel including the transparent conductive film according to any one of [1] to [6].
  • the transparent conductive film of the present invention includes a transparent resin film, a cured resin layer, and a transparent conductive layer in this order, and the cured resin layer is formed by curing a resin composition containing an epoxy resin having a weight average molecular weight of 3000 or more. It is a cured product film. For this reason, it is excellent in the adhesiveness of a transparent resin film and a cured resin layer. Therefore, it is possible to suppress the occurrence of cracks on the surface of the transparent resin film during conveyance or pattern processing, and to suppress peeling at the joint when connected to the flexible printed circuit board. Can do.
  • FIG. 1 shows a cross-sectional view of a first embodiment of the transparent conductive film of the present invention.
  • FIG. 2 shows a cross-sectional view of a modification of the first embodiment of the transparent conductive film of the present invention (a mode in which the transparent conductive layer is patterned).
  • FIG. 3 shows a cross-sectional view of a modification of the first embodiment of the transparent conductive film of the present invention (embodiment in which a transparent substrate is bonded to a transparent resin film).
  • FIG. 4 shows a cross-sectional view of a second embodiment of the transparent conductive film of the present invention.
  • FIG. 5 shows a cross-sectional view of a third embodiment of the transparent conductive film of the present invention.
  • FIG. 6 shows a schematic diagram of a test for measuring the adhesion of the cured resin layer.
  • the vertical direction of the paper is the vertical direction (thickness direction, first direction)
  • the upper side of the paper is the upper side (one side in the thickness direction, the first direction)
  • the lower side of the paper is the lower side (thickness direction).
  • the right and left direction and the depth direction on the paper surface are plane directions orthogonal to the vertical direction.
  • Other figures are the same as those in FIG.
  • FIG. 1 shows a transparent conductive film 10 which is a first embodiment of the transparent conductive film of the present invention.
  • a transparent conductive film 10 shown in FIG. 1 includes a transparent resin film 1, a cured resin layer 2, and a transparent conductive layer 3 in this order.
  • the transparent conductive film 10 is disposed on the transparent resin film 1, the cured resin layer 2 disposed on the upper surface (one surface in the thickness direction) of the transparent resin film 1, and the upper surface of the cured resin layer 2.
  • the transparent conductive film 10 preferably includes a transparent resin film 1, a cured resin layer 2, and a transparent conductive layer 3.
  • the transparent resin film 1 is not particularly limited, but various plastic films having transparency and flexibility are used.
  • the materials include polyester resins (polyethylene terephthalate, etc.), acetate resins, polyethersulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, polycycloolefin resins, (meth) Examples include acrylic resins, polyvinyl chloride resins, polyvinylidene chloride resins, polystyrene resins, polyvinyl alcohol resins, polyarylate resins, polyphenylene sulfide resins, and the like.
  • polyester-type resin, polycarbonate-type resin, and polyolefin-type resin are mentioned, More preferably, polyester-type resin is mentioned.
  • the thickness of the transparent resin film 1 is not particularly limited, but is, for example, 5 ⁇ m or more, preferably 20 ⁇ m or more, more preferably 40 ⁇ m or more, and for example, 200 ⁇ m or less, preferably 130 ⁇ m or less.
  • the transparent resin film 1 is previously subjected to etching treatment such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, oxidation, and undercoating treatment on the surface, and the transparent resin of the cured resin layer 2 provided thereon. You may make it improve the adhesiveness with respect to the film 1 further. Further, before providing the cured resin layer 2, dust may be removed and cleaned by solvent cleaning, ultrasonic cleaning, or the like, if necessary.
  • etching treatment such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, oxidation, and undercoating treatment on the surface, and the transparent resin of the cured resin layer 2 provided thereon. You may make it improve the adhesiveness with respect to the film 1 further. Further, before providing the cured resin layer 2, dust may be removed and cleaned by solvent cleaning, ultrasonic cleaning, or the like, if necessary.
  • the cured resin layer 2 is a cured product film obtained by curing a resin composition containing an epoxy resin having a weight average molecular weight of 3000 or more (hereinafter also referred to as “high molecular weight epoxy resin”).
  • the high molecular weight epoxy resin is preferably the main component of the resin composition.
  • the main component means a component having the maximum content among the components contained in the resin composition, and the content is preferably 20% by weight or more, and 40% by weight or more based on the total amount of the resin composition. More preferred is 60% by weight or more.
  • epoxy resin those widely used can be used, and one or more epoxy groups such as glycidyl group, alicyclic epoxy group, aliphatic epoxy group, etc. in the molecule, preferably Epoxy group-containing compounds having two or more can be used.
  • epichlorohydrin-bisphenol A type epoxy resin epichlorohydrin-bisphenol F type epoxy resin, glycidyl ether type epoxy resin of tetrabromobisphenol A, novolac type epoxy resin, phenol novolac type epoxy resin, hydrogenated bisphenol A type Epoxy resin, hydrogenated bisphenol F type epoxy resin, glycidyl ether type epoxy resin of bisphenol A propylene oxide adduct, p-oxybenzoic acid-glycidyl ether ester type epoxy resin, III-aminophenol type epoxy resin, diaminodiphenylmethane type epoxy resin , Alicyclic epoxy resin, N, N-diglycidylaniline, N, N-diglycidyl-o-toluidine, triglycidyl isocyanurate, poly Weight average of epoxy resins composed of xylene glycol diglycidyl ether, glycidyl ether of polyhydric alcohol (such as glycer)
  • the weight average molecular weight of the high molecular weight epoxy resin may be 3000 or more, and preferably 3300 or more.
  • the upper limit of the weight average molecular weight is preferably 5000 and more preferably 4000 from the viewpoint of suppressing embrittlement due to excessive curing of the resulting cured resin layer.
  • the weight average molecular weight is a value measured by GPC (gel permeation chromatograph, manufactured by TOSOH, HLC-8320GPC) and calculated in terms of polystyrene.
  • GPC gel permeation chromatograph
  • the measurement conditions are as follows. Column: SHODEX GPC KF-802.5 (inner diameter 8.0 mm ⁇ length 300 mm) / GPC KF-G (inner diameter 4.6 mm ⁇ length 10 mm), eluent: tetrahydrofuran (THF), injection concentration: 0.05% by weight , Flow rate: 1 mL / min, detector: differential refractometer (RI), column temperature: 40 ° C., injection amount: 2 mL
  • RI differential refractometer
  • the high molecular weight epoxy resin is preferably a rubber-modified epoxy resin.
  • the rubber component for modifying the epoxy resin is not particularly limited.
  • conjugated diene rubbers such as butadiene rubber, acrylonitrile butadiene rubber, styrene butadiene rubber, butyl rubber, natural rubber, isoprene rubber, chloroprene rubber; ethylene-propylene rubber , Urethane rubber, silicone rubber, fluorine rubber, ethylene-vinyl acetate rubber, epichlorohydrin rubber and the like.
  • conjugated diene rubber modification is preferable, and butadiene rubber modification, butyl rubber modification, and acrylonitrile butadiene rubber modification are more preferable.
  • the rubber-modified epoxy resin may be used alone or in combination of two or more.
  • a conventionally known method can be adopted as a method for preparing the rubber-modified epoxy resin. For example, a carboxyl group is introduced into the terminal of the polymer main chain of the rubber component, and this carboxyl group and the epoxy group of the epoxy resin are converted into a phosphorus catalyst. And a method of reacting in the presence of a catalyst such as an amine catalyst.
  • an epoxy resin having a weight average molecular weight of less than 3000 (hereinafter also referred to as “low molecular weight epoxy resin”) among the above-listed epoxy resins can be used.
  • the low molecular weight epoxy resin an alicyclic epoxy resin is preferable.
  • the alicyclic epoxy resin known ones can be suitably used.
  • examples thereof include cyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, 1,2-epoxy-4-vinylcyclohexane, 3,4-epoxycyclohexane-1-carboxylate allyl, and hydrogenated bisphenol A type epoxy resin.
  • a low molecular weight epoxy resin may be used independently and may use 2 or more types together.
  • the resin composition preferably contains a curing accelerator.
  • a curing accelerator is not particularly limited.
  • a hardening accelerator contains antimony.
  • the antimony-containing curing accelerator can rapidly and sufficiently advance the curing reaction of the resin composition, and can more efficiently form a hardened cured film with higher adhesion and moisture resistance.
  • a hardening accelerator may be used independently and may use 2 or more types together.
  • content of a hardening accelerator is not specifically limited, For example, 0.01 weight part or more with respect to the whole quantity (100 weight part) of the compound which has an epoxy group contained in a resin composition, Preferably, it is 0.05. Part by weight or more, more preferably 0.1 part by weight or more, and for example, 5 parts by weight or less, preferably 4 parts by weight or less, more preferably 1 part by weight or less. If the content of the curing accelerator is below the lower limit, the curing acceleration effect may be insufficient. On the other hand, when content of a hardening accelerator exceeds the said upper limit, hardened
  • an acrylic resin, a urethane resin, an amide resin, a silicone resin, or the like may be appropriately added to the resin composition.
  • Various additives can also be added to the resin composition. Examples of the additive include leveling agents, pigments, fillers, dispersants, plasticizers, ultraviolet absorbers, surfactants, antioxidants, thixotropic agents, and the like.
  • the adhesion of the cured resin layer 2 to the transparent resin film 1 is 50 N / 25 mm or more.
  • the upper limit is not limited, but is, for example, 100 N / 25 mm.
  • the adhesive strength of the cured resin layer 2 is less than 50 N / 25 mm, the adhesive strength becomes insufficient, and the transparent conductive film 10 is peeled between the transparent resin film 1 and the cured resin layer 2 when the transparent conductive film 10 is transported or processed. Is generated, the cured resin layer 2 is deformed, and a crack may occur in the transparent conductive layer 3.
  • the method for measuring the adhesion is, for example, by cutting the transparent conductive film 10 into a width of 25 mm and a length of 70 mm, and then fixing the transparent conductive layer 3 of the cut transparent conductive film 10 to the substrate via an adhesive. Subsequently, it can be measured by pulling the transparent conductive film 10 along the length direction at an angle of 180 degrees at a speed of 0.3 mm / min using a peel tester.
  • the cured resin layer 2 is provided between the transparent resin film 1 and the transparent conductive layer 3, and does not have a function as a conductor layer. That is, the cured resin layer 2 is provided as a dielectric layer so that it can be insulated between the transparent resin film 1 and the transparent conductive layer 3. Accordingly, the cured resin layer 2 generally has a surface resistance of 1 ⁇ 10 6 ⁇ / ⁇ or more, preferably 1 ⁇ 10 7 ⁇ / ⁇ or more, and more preferably 1 ⁇ 10 8 ⁇ / ⁇ or more. is there. There is no particular upper limit on the surface resistance of the cured resin layer 2. Generally, the upper limit of the surface resistance of the cured resin layer 2 is about 1 ⁇ 10 13 ⁇ / ⁇ , which is a measurement limit, but may exceed 1 ⁇ 10 13 ⁇ / ⁇ .
  • the thickness of the cured resin layer 2 is not particularly limited, but is, for example, 150 nm or less, preferably 100 nm or less, from the viewpoints of adhesion, heat and humidity resistance, suppression of oligomer exudation from the transparent resin film 1, and optical characteristics. Preferably, it is 50 nm or less, for example, 20 nm or more, preferably 30 nm or more.
  • the cured resin layer 2 may be composed of two or more layers.
  • the thickness of each cured resin layer is, for example, 20 nm or more, preferably 25 nm or more, and, for example, 60 nm or less, Preferably, it is 55 nm or less.
  • the refractive index of the cured resin layer 2 is preferably such that the difference between the refractive index of the transparent conductive layer 3 and the refractive index of the cured resin layer 2 is 0.1 or more.
  • the difference between the refractive index of the transparent conductive layer 3 and the refractive index of the cured resin layer 2 is preferably 0.1 or more and 0.9 or less, and more preferably 0.1 or more and 0.6 or less.
  • the refractive index of the cured resin layer 2 is, for example, 1.30 or more, preferably 1.38 or more, more preferably 1.40 or more, and for example, 2.50 or less, preferably 2 .30 or less.
  • the refractive index is measured by an Abbe refractometer.
  • the method for forming the cured resin layer 2 is not particularly limited, but is preferably by coating.
  • a resin composition containing the above components is uniformly dissolved or dispersed in a solvent to prepare a coating solution.
  • the solvent is not particularly limited.
  • aromatic solvents such as toluene and xylene
  • ketone solvents such as methyl ethyl ketone, acetone, methyl isobutyl ketone and cyclohexanone
  • ester solvents such as ethyl acetate, butyl acetate, isopropyl acetate, ethylene glycol
  • the solid concentration of the coating solution is, for example, 0.5% by weight or more, preferably 1.0% by weight or more, more preferably 1.5% by weight or more, and for example, 2.5% by weight or less.
  • the amount is preferably 2.0% by weight or less, more preferably 1.9% by weight or less.
  • the cured resin layer 2 is formed by applying the above coating solution on the transparent resin film 1 and curing it.
  • the application method of the coating solution can be appropriately selected according to the state of the coating solution and the painting process. For example, dip coating method, air knife coating method, curtain coating method, roller coating method, wire bar coating method, gravure coating Method, die coating method and extrusion coating method.
  • the cured resin layer 2 can be formed by heating and curing the obtained coating film.
  • a heating method for example, heating by a hot air dryer, an infrared dryer, a vacuum dryer, a microwave heating dryer or the like can be employed.
  • heating temperature it is 100 degreeC or more, for example, Preferably, it is 120 degreeC or more, for example, is 200 degrees C or less, Preferably, it is 180 degrees C or less.
  • the heating time is, for example, 0.5 minutes or more, preferably 1 minute or more, and for example, 10 minutes or less, preferably 5 minutes or less.
  • the constituent material of the transparent conductive layer 3 is not particularly limited, and is selected from the group consisting of indium, tin, zinc, gallium, antimony, titanium, silicon, zirconium, magnesium, aluminum, gold, silver, copper, palladium, and tungsten. Mention may be made of metal oxides of at least one metal. The metal oxide may further contain a metal atom shown in the above group, if necessary. Preferred examples include indium oxide containing tin oxide (indium-tin composite oxide: ITO), tin oxide containing antimony, and the like.
  • the thickness of the transparent conductive layer 3 is not particularly limited, but a thickness of 10 nm or more is preferable in order to obtain a continuous film having good surface resistance of 1 ⁇ 10 3 ⁇ / ⁇ or less. More preferably, it is 15 nm or more, More preferably, it is 20 nm or more, More preferably, it is 35 nm or less, More preferably, it is 30 nm or less. If the thickness is less than 15 nm, the surface electrical resistance becomes high, and there is a possibility that it becomes difficult to form a continuous film. Moreover, when it exceeds 35 nm, there exists a possibility that transparency may fall.
  • the transparent conductive layer 3 preferably has a refractive index difference with the cured resin layer 2 of 0.1 or more.
  • the refractive index of the transparent conductive layer 3 is, for example, 1.95 or more and 2.05 or less.
  • the method for forming the transparent conductive layer 3 is not particularly limited, and a conventionally known method can be employed. Specific examples include a vacuum deposition method, a sputtering method, and an ion plating method. Also, an appropriate method can be adopted depending on the required layer thickness.
  • the transparent conductive layer 3 After forming the transparent conductive layer 3, it can be crystallized by performing a heat treatment within a range of 100 to 150 ° C., for example, if necessary.
  • the transparent conductive layer 3 is preferably a crystalline film from the viewpoint of good electrical characteristics.
  • the transparent conductive layer 3 is a crystalline film.
  • the transparent conductive layer 3 is an ITO layer, it is immersed in hydrochloric acid (concentration 5% by weight) at 20 ° C. for 15 minutes, washed with water and dried. It can be determined by measuring the resistance between terminals between about 15 mm.
  • hydrochloric acid concentration 5% by weight
  • the transparent conductive film 10 is immersed in hydrochloric acid (20 ° C., concentration: 5% by weight)
  • washed with water washed with water, and dried
  • the resistance between terminals in the transparent conductive layer 3 between 15 mm is less than 10 k ⁇
  • the transparent conductive layer 3 is assumed to be crystalline.
  • the change rate of the surface resistance value of the transparent conductive layer 3 before and after the transparent conductive layer 3 is placed in an atmosphere of 85 ° C. and 85% humidity for 240 hours is preferably 1.5 or less, and 1.3 or less. It is more preferable that Thereby, even when the transparent conductive film 10 is placed in a harsh environment, good electrical characteristics can be exhibited, and various application developments can thereby be achieved.
  • the adhesiveness between the transparent resin film 1 and the cured resin layer 2 is excellent. Therefore, at the time of conveyance or pattern processing, peeling between the cured resin layer 2 and the transparent resin film 1 can be prevented, and distortion and swelling of the cured resin layer 2 can be suppressed. As a result, generation of cracks in the transparent conductive layer 3 on the upper surface of the cured resin layer 2 can be suppressed, and whitening can be prevented. Moreover, even if it is a case where it joins with a printed circuit board, peeling in a junction part can be suppressed.
  • this transparent conductive film 10 is excellent in heat and moisture resistance. That is, the resistivity change can be suppressed even in a high temperature and high humidity environment. Moreover, it is excellent in chemical resistance. That is, swelling and deformation of the cured resin layer 2 with respect to isopropanol or an alkaline solution can be suppressed. Moreover, the oligomer exudation of the cured resin layer 2 under high temperature can also be suppressed.
  • a hard coat layer may be provided on the surface of the transparent resin film 1 opposite to the surface on which the transparent conductive layer 3 is formed, if necessary. .
  • the transparent conductive layer 3 may be patterned (pattern processing).
  • the patterning can form various aspects as various patterns according to the use to which the transparent conductive film 10 is applied. Examples of the pattern shape include a stripe shape.
  • the transparent conductive layer 3 is covered with a mask for forming a pattern, and the transparent conductive layer 3 is etched with an etching solution.
  • An acid is preferably used as the etching solution.
  • the acid include inorganic acids such as hydrogen chloride, hydrogen bromide, sulfuric acid, nitric acid and phosphoric acid, organic acids such as acetic acid, and mixtures thereof, and aqueous solutions thereof.
  • substrate 5 can be bonded together through the transparent adhesive layer 4 to the single side
  • the transparent substrate 5 may have a composite structure in which at least two transparent substrate films are bonded together with a transparent adhesive layer 4. The patterning of the transparent conductive layer 3 can also be performed on the transparent conductive film 10 having such a structure.
  • the thickness of the transparent substrate 5 is, for example, 90 ⁇ m or more, preferably 100 ⁇ m or more, and for example, 300 ⁇ m or less, preferably 250 ⁇ m or less. Moreover, when forming with the several base film which forms the transparent base
  • the pressure-sensitive adhesive layer 4 can be used without particular limitation as long as it has transparency. Specifically, for example, acrylic polymers, silicone polymers, polyesters, polyurethanes, polyamides, polyvinyl ethers, vinyl acetate / vinyl chloride copolymers, modified polyolefins, epoxy systems, fluorine systems, natural rubbers, rubbers such as synthetic rubbers, etc. Those having the above polymer as a base polymer can be appropriately selected and used.
  • an acrylic pressure-sensitive adhesive is preferably used from the viewpoint that it is excellent in optical transparency, exhibits adhesive properties such as appropriate wettability, cohesiveness and adhesiveness, and is excellent in weather resistance and heat resistance.
  • the transparent substrate 5 bonded through the pressure-sensitive adhesive layer 4 gives good mechanical strength to the transparent resin film 1, and in addition to pen input durability and surface pressure durability, in particular, curl Contributes to the prevention of such occurrences.
  • a hard coat layer (for the purpose of protecting the outer surface) is formed on the outer surface of the transparent substrate 5 (the surface opposite to the pressure-sensitive adhesive layer 4).
  • (Resin layer) 6 may be provided.
  • the hard coat layer 6 include a cured film made of a curable resin such as a melanin resin, a urethane resin, an alkyd resin, an acrylic resin, or a silicone resin.
  • the thickness of the hard coat layer 6 is preferably 0.1 ⁇ m or more and 30 ⁇ m or less. If the thickness is less than 0.1 ⁇ m, the hardness may be insufficient. On the other hand, if the thickness exceeds 30 ⁇ m, cracks may occur in the hard coat layer 6 or curl may occur in the entire transparent substrate 5.
  • the transparent conductive film 10 of this embodiment can be suitably applied to, for example, an optical method, an ultrasonic method, a capacitance method, a resistance film method, or the like. In particular, it is suitable for a capacitive touch panel.
  • the patterned transparent conductive film 10 shown in FIG. 2 is used as a touch panel by placing it on a protective substrate such as protective glass.
  • the transparent conductive film of the present embodiment includes, for example, an electrophoresis method, a twist ball method, a thermal rewritable method, an optical writing liquid crystal method, a polymer dispersed liquid crystal method, a guest / host liquid crystal method, a toner display method, and a chromism. It can be suitably used for flexible display elements such as a method and an electric field deposition method.
  • one cured resin layer 2 is provided between the transparent resin film 1 and the transparent conductive layer 3, whereas in the second embodiment, as shown in FIG.
  • an inorganic layer 9 is provided on the upper side. That is, in the second embodiment, the cured resin layer 2 and the inorganic layer 9 are provided in this order from the transparent resin film 1 side.
  • the transparent conductive layer 3 is not patterned, but may be patterned.
  • the inorganic layer 9 may be patterned or may not be patterned.
  • NaF (1.3), Na 3 AlF 6 (1.35), LiF (1.36), MgF 2 (1.38), CaF 2 (1.4), BaF 2 (1.3), SiO 2 (1.46), LaF 3 (1.55), CeF 3 (1.63), Al 2 O 3 (1.63), etc. Is the refractive index of light.
  • a composite oxide containing about 10 to 40 parts by weight of cerium oxide and about 0 to 20 parts by weight of tin oxide with respect to 100 parts by weight of indium oxide can be used.
  • the inorganic layer 9 can be formed as a dry process such as a vacuum deposition method, a sputtering method, an ion plating method, or a wet method (coating method).
  • the SiO 2 film can be suitably formed by applying silica sol or the like.
  • FIG. 4 illustrates the case where the cured resin layer 2 is composed of two layers.
  • the cured resin layer 2 may be three or more layers.
  • the transparent conductive layer 3 through the cured resin layer 2 on both surfaces of the transparent resin film 1.
  • the transparent conductive layers 3 on both sides are not patterned, but may be patterned. Moreover, only the transparent conductive layer 3 on one side may be patterned.
  • Example 1 (Formation of cured resin layer) 100 parts by weight of Adekafilterra CRX-49 mainly composed of rubber-modified epoxy resin (weight average molecular weight of epoxy resin skeleton part: 3500), 0.1 weight of Adekafilterra BUR-4B, which is an antimony curing accelerator Part of the mixture was mixed, and 5000 parts by weight of methyl isobutyl ketone was added to the mixture to prepare a coating solution.
  • the coating solution is applied to one surface of a transparent resin film made of a polyethylene terephthalate film (hereinafter referred to as a PET film) having a thickness of 50 ⁇ m, and the coating film is dried at 195 ° C. for 1 minute, whereby a thickness of 30 nm is cured.
  • a resin layer (light refractive index 1.51) was formed.
  • Comparative Example 1 10 parts by weight of Adekafilterra BUR-12A mainly composed of rubber-modified epoxy resin (weight average molecular weight of epoxy resin skeleton part: 2000), 0.001 by weight of Adekafilterra BUR-12B which is an antimony-based curing accelerator
  • Adekafilterra BUR-12A mainly composed of rubber-modified epoxy resin (weight average molecular weight of epoxy resin skeleton part: 2000)
  • Adekafilterra BUR-12B which is an antimony-based curing accelerator
  • a transparent conductive film of a comparative example was produced in the same manner as in Example 1 except that a coating solution was prepared by adding 5000 parts by weight of methyl isobutyl ketone to this mixture.
  • Comparative Example 2 10 parts by weight of Adekafilterra CRX-5, whose main component is an acrylic-modified epoxy resin (weight average molecular weight of epoxy resin skeleton part: 500), and 0.5 parts by weight of a zinc-based curing accelerator (Adeka Stub) are mixed.
  • a transparent conductive film of a comparative example was produced in the same manner as in Example 1 except that 5000 parts by weight of methyl isobutyl ketone was added to the mixture to prepare a coating solution.
  • Comparative Example 3 10 parts by weight of Adekafilterra CRX-3 mainly composed of an unmodified epoxy resin (weight average molecular weight: 500) and 0.5 parts by weight of a zinc-based curing accelerator (Adeka Stub) are mixed together.
  • a transparent conductive film was produced in the same manner as in Example 1 except that 5000 parts by weight of methyl isobutyl ketone was added to prepare a coating solution.
  • the sample transparent conductive film 10 was peeled off at an angle of 180 ° at a speed of 0.3 m / min using a peeling tester (desktop type triple autograph AG-50KNXD, manufactured by Shimadzu Corporation) (FIG. 6). reference). The force generated during peeling was measured as the adhesion force.
  • the measurement upper limit adhesion force value of the apparatus is 50 N
  • the transparent conductive film is broken in the middle and the measurement value exceeds the upper limit value and measurement is impossible, “50 N / 25 mm or more” did.
  • the shape of the film residue on the SUS substrate was confirmed.
  • the shape of the remnant shape has been maintained at the size of 25 mm x 70 mm when pasted together, it is evaluated as "maintenance of the remnant shape", and only the fragments remain without maintaining the shape of that size was evaluated as “break”.
  • break it can be seen that the transparent conductive film is not cohesive but is cohesive and has good adhesion between the PET layer and the cured resin layer.
  • the surface resistance value ( ⁇ / ⁇ ) of the ITO layer was measured by a four-terminal method according to JIS K7194 (1994), and this was defined as the initial surface resistance value R0 .
  • the surface resistance value R 240 when left in a thermo-hygrostat (manufactured by Espec Corp., LHL-113) set at 85 ° C. and 85% RH for 240 hours was measured. From these, R240 / R0 was calculated
  • the transparent conductive films of the examples have excellent moisture and heat resistance and high adhesion between the cured resin layer and PET. Moreover, it is recognized that the transparent conductive film of an Example is excellent also in chemical resistance, and can suppress the ooze of the oligomer from a cured resin layer.
  • the transparent conductive film and touch panel of the present invention can be applied to various industrial products, and are suitably used for image display devices, for example.

Abstract

This transparent conductive film sequentially comprises a transparent resin film, a cured resin layer and a transparent conductor layer in this order; and the cured resin layer is a film of a cured product, which is obtained by curing a resin composition that contains an epoxy resin having a weight average molecular weight of 3,000 or more.

Description

透明導電性フィルムおよびタッチパネルTransparent conductive film and touch panel
 本発明は、透明導電性フィルム、および、それを備えるタッチパネルに関する。 The present invention relates to a transparent conductive film and a touch panel including the same.
 従来から、画像表示装置は、インジウムスズ複合酸化物(ITO)などからなる透明配線層が形成されたタッチパネル用フィルムを備えることが知られている。タッチパネル用フィルムは、一般的に、ITO層を透明基材に積層した透明導電性フィルムにおいて、ITO層を配線パターンにパターン加工することにより製造される。また、スマートフォンやタブレットなどの携帯端末用途では、薄さや重量の観点から、透明基材としてプラスチックフィルムなどの透明樹脂フィルムが用いられている。 Conventionally, it is known that an image display device includes a film for a touch panel on which a transparent wiring layer made of indium tin composite oxide (ITO) or the like is formed. The film for touch panels is generally manufactured by patterning an ITO layer into a wiring pattern in a transparent conductive film in which an ITO layer is laminated on a transparent substrate. Moreover, in portable terminal uses, such as a smart phone and a tablet, transparent resin films, such as a plastic film, are used as a transparent base material from a viewpoint of thinness or weight.
 このような透明導電性フィルムとしては、透明樹脂フィルムの一方の面に、少なくとも1層の硬化樹脂層を介してパターン化(パターニング)された透明導電層(ITO層)を有する透明導電性フィルムが提案されている。特許文献1には、そのような透明導電性フィルムが開示されている。 As such a transparent conductive film, there is a transparent conductive film having a transparent conductive layer (ITO layer) patterned (patterned) on at least one cured resin layer on one surface of the transparent resin film. Proposed. Patent Document 1 discloses such a transparent conductive film.
特開2009-76432号公報JP 2009-76432 A
 ところで、透明導電性フィルムは、搬送やパターン加工などの際に、透明導電性フィルムの表面にクラックが発生し、そのクラックが白く視認される不具合が生じている。 By the way, the transparent conductive film has a problem that cracks are generated on the surface of the transparent conductive film during transportation, pattern processing, and the like, and the crack is visually recognized as white.
 この原因を本願発明者らが検討したところ、透明樹脂フィルムと硬化樹脂層との界面が剥離してしまい、硬化樹脂層が、透明樹脂フィルムに対して歪んだり、盛り上がるように変形し、そのような変形に透明導電層が追従しきれなくってクラックが発生しているという知見を見出した。 When the inventors of the present invention examined this cause, the interface between the transparent resin film and the cured resin layer peeled off, and the cured resin layer was deformed so as to be distorted or raised with respect to the transparent resin film. The inventors have found that the transparent conductive layer cannot follow the complete deformation and cracks are generated.
 また、透明導電性フィルムは、その端部に、フレキシブル配線回路基板を接続するが、その接続部では力学的な負荷がかかる。そのため、透明樹脂フィルムと、硬化樹脂層や透明導電層との界面に剥離が生じるおそれもある。 Also, the transparent conductive film is connected to a flexible printed circuit board at its end, but a dynamic load is applied to the connection. Therefore, peeling may occur at the interface between the transparent resin film and the cured resin layer or the transparent conductive layer.
 したがって、透明樹脂フィルムと硬化樹脂層との密着性が良好な透明導電フィルムが要望されている。 Therefore, there is a demand for a transparent conductive film having good adhesion between the transparent resin film and the cured resin layer.
 本発明は、透明樹脂フィルムと硬化樹脂層との間の密着性が優れた透明導電性フィルムおよびその透明導電性フィルムを備えるタッチパネルを提供することを目的とする。 An object of the present invention is to provide a transparent conductive film having excellent adhesion between a transparent resin film and a cured resin layer, and a touch panel including the transparent conductive film.
 本発明[1]は、透明樹脂フィルム、硬化樹脂層および透明導電層をこの順に備え、前記硬化樹脂層は、重量平均分子量が3000以上のエポキシ樹脂を含有する樹脂組成物を硬化してなる硬化物膜である、透明導電性フィルムを含んでいる。 The present invention [1] includes a transparent resin film, a cured resin layer, and a transparent conductive layer in this order. The cured resin layer is a cured product obtained by curing a resin composition containing an epoxy resin having a weight average molecular weight of 3000 or more. A transparent conductive film, which is a physical film, is included.
 本発明[2]は、前記硬化樹脂層の厚みが、150nm以下である、[1]に記載の透明導電性フィルムを含んでいる。 This invention [2] contains the transparent conductive film as described in [1] whose thickness of the said cured resin layer is 150 nm or less.
 本発明[3]は、前記エポキシ樹脂が、ゴム変性エポキシ樹脂である、[1]または[2]に記載の透明導電性フィルムを含んでいる。 [3] The present invention [3] includes the transparent conductive film according to [1] or [2], wherein the epoxy resin is a rubber-modified epoxy resin.
 本発明[4]は、前記樹脂組成物が、硬化促進剤を含有し、前記硬化促進剤が、アンチモンを含有する、[1]~[3]のいずれか一項に記載の透明導電性フィルムを含んでいる。 The transparent conductive film according to any one of [1] to [3], wherein the resin composition contains a curing accelerator, and the curing accelerator contains antimony. Is included.
 本発明[5]は、前記透明樹脂フィルムに対する前記硬化樹脂層の密着力が、50N/25mm以上である、[1]~[4]のいずれか一項に記載の透明導電性フィルムを含んでいる。 The present invention [5] includes the transparent conductive film according to any one of [1] to [4], wherein the adhesive strength of the cured resin layer to the transparent resin film is 50 N / 25 mm or more. Yes.
 本発明[6]は、前記透明導電層を温度85℃、湿度85%の雰囲気下に240時間置いた前後での表面抵抗値の変化率が1.5以下である、[1]~[5]のいずれか一項に記載の透明導電性フィルムを含んでいる。 According to the present invention [6], the rate of change of the surface resistance value before and after the transparent conductive layer is placed in an atmosphere at a temperature of 85 ° C. and a humidity of 85% for 240 hours is 1.5 or less. ] The transparent conductive film as described in any one of these is included.
 本発明[7]は、[1]~[6]のいずれか一項に記載の透明導電性フィルムを備える、タッチパネルを含んでいる。 [7] The present invention [7] includes a touch panel including the transparent conductive film according to any one of [1] to [6].
 本発明の透明導電性フィルムは、透明樹脂フィルム、硬化樹脂層および透明導電層をこの順に備え、硬化樹脂層は、重量平均分子量が3000以上のエポキシ樹脂を含有する樹脂組成物を硬化してなる硬化物膜である。このため、透明樹脂フィルムと硬化樹脂層との密着性に優れる。よって、搬送やパターン加工などの際に、透明樹脂フィルムの表面にクラックが発生することを抑制することができ、また、フレキシブル配線回路基板と接続した際に、接合部での剥離を抑制することができる。 The transparent conductive film of the present invention includes a transparent resin film, a cured resin layer, and a transparent conductive layer in this order, and the cured resin layer is formed by curing a resin composition containing an epoxy resin having a weight average molecular weight of 3000 or more. It is a cured product film. For this reason, it is excellent in the adhesiveness of a transparent resin film and a cured resin layer. Therefore, it is possible to suppress the occurrence of cracks on the surface of the transparent resin film during conveyance or pattern processing, and to suppress peeling at the joint when connected to the flexible printed circuit board. Can do.
図1は、本発明の透明導電性フィルムの第1実施形態の断面図を示す。FIG. 1 shows a cross-sectional view of a first embodiment of the transparent conductive film of the present invention. 図2は、本発明の透明導電性フィルムの第1実施形態の変形例(透明導電層がパターニングされている形態)の断面図を示す。FIG. 2 shows a cross-sectional view of a modification of the first embodiment of the transparent conductive film of the present invention (a mode in which the transparent conductive layer is patterned). 図3は、本発明の透明導電性フィルムの第1実施形態の変形例(透明樹脂フィルムに透明基体が貼り合わされている形態)の断面図を示す。FIG. 3 shows a cross-sectional view of a modification of the first embodiment of the transparent conductive film of the present invention (embodiment in which a transparent substrate is bonded to a transparent resin film). 図4は、本発明の透明導電性フィルムの第2実施形態の断面図を示す。FIG. 4 shows a cross-sectional view of a second embodiment of the transparent conductive film of the present invention. 図5は、本発明の透明導電性フィルムの第3実施形態の断面図を示す。FIG. 5 shows a cross-sectional view of a third embodiment of the transparent conductive film of the present invention. 図6は、樹脂硬化層の密着力を測定する試験の模式図を示す。FIG. 6 shows a schematic diagram of a test for measuring the adhesion of the cured resin layer.
 本発明の実施の形態について、図を参照しながら以下に説明する。図1において、紙面上下方向は、上下方向(厚み方向、第1方向)であって、紙面上側が、上側(厚み方向一方側、第1方向一方側)、紙面下側が、下側(厚み方向他方側、第1方向他方側)である。また、紙面左右方向および奥行き方向は、上下方向に直交する面方向である。他の図も、図1と同様である。 Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, the vertical direction of the paper is the vertical direction (thickness direction, first direction), the upper side of the paper is the upper side (one side in the thickness direction, the first direction), and the lower side of the paper is the lower side (thickness direction). The other side, the other side in the first direction). Further, the right and left direction and the depth direction on the paper surface are plane directions orthogonal to the vertical direction. Other figures are the same as those in FIG.
 <第1実施形態>
 (透明導電性フィルム)
 図1は、本発明の透明導電性フィルムの第一実施形態である透明導電性フィルム10を示す。図1に示す透明導電性フィルム10は、透明樹脂フィルム1、硬化樹脂層2および透明導電層3をこの順に備える。具体的には、透明導電性フィルム10は、透明樹脂フィルム1と、透明樹脂フィルム1の上面(厚み方向一方面)に配置される硬化樹脂層2と、硬化樹脂層2の上面に配置される透明導電層3とを備える。透明導電性フィルム10は、好ましくは、透明樹脂フィルム1と、硬化樹脂層2と、透明導電層3とからなる。
<First Embodiment>
(Transparent conductive film)
FIG. 1 shows a transparent conductive film 10 which is a first embodiment of the transparent conductive film of the present invention. A transparent conductive film 10 shown in FIG. 1 includes a transparent resin film 1, a cured resin layer 2, and a transparent conductive layer 3 in this order. Specifically, the transparent conductive film 10 is disposed on the transparent resin film 1, the cured resin layer 2 disposed on the upper surface (one surface in the thickness direction) of the transparent resin film 1, and the upper surface of the cured resin layer 2. And a transparent conductive layer 3. The transparent conductive film 10 preferably includes a transparent resin film 1, a cured resin layer 2, and a transparent conductive layer 3.
 (透明樹脂フィルム)
 透明樹脂フィルム1としては特に制限されないが、透明性および可撓性を有する各種のプラスチックフィルムが用いられる。例えば、その材料として、ポリエステル系樹脂(ポリエチレンテレフタレートなど)、アセテート系樹脂、ポリエーテルスルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、ポリシクロオレフィン系樹脂、(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂、ポリアリレート系樹脂、ポリフェニレンサルファイド系樹脂等が挙げられる。好ましくは、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリオレフィン系樹脂が挙げられ、より好ましくは、ポリエステル系樹脂が挙げられる。
(Transparent resin film)
The transparent resin film 1 is not particularly limited, but various plastic films having transparency and flexibility are used. For example, the materials include polyester resins (polyethylene terephthalate, etc.), acetate resins, polyethersulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, polycycloolefin resins, (meth) Examples include acrylic resins, polyvinyl chloride resins, polyvinylidene chloride resins, polystyrene resins, polyvinyl alcohol resins, polyarylate resins, polyphenylene sulfide resins, and the like. Preferably, polyester-type resin, polycarbonate-type resin, and polyolefin-type resin are mentioned, More preferably, polyester-type resin is mentioned.
 透明樹脂フィルム1の厚みは特に限定されないが、例えば、5μm以上、好ましくは、20μm以上、より好ましくは、40μm以上であり、また、例えば、200μm以下、好ましくは、130μm以下である。 The thickness of the transparent resin film 1 is not particularly limited, but is, for example, 5 μm or more, preferably 20 μm or more, more preferably 40 μm or more, and for example, 200 μm or less, preferably 130 μm or less.
 透明樹脂フィルム1には、表面に予めスパッタリング、コロナ放電、火炎、紫外線照射、電子線照射、化成、酸化などのエッチング処理や下塗り処理を施して、この上に設けられる硬化樹脂層2の透明樹脂フィルム1に対する密着性をさらに向上させるようにしてもよい。また、硬化樹脂層2を設ける前に、必要に応じて溶剤洗浄や超音波洗浄などにより除塵、清浄化してもよい。 The transparent resin film 1 is previously subjected to etching treatment such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, oxidation, and undercoating treatment on the surface, and the transparent resin of the cured resin layer 2 provided thereon. You may make it improve the adhesiveness with respect to the film 1 further. Further, before providing the cured resin layer 2, dust may be removed and cleaned by solvent cleaning, ultrasonic cleaning, or the like, if necessary.
 (硬化樹脂層)
 硬化樹脂層2は、重量平均分子量が3000以上のエポキシ樹脂(以下、「高分子量エポキシ樹脂」ともいう。)を含有する樹脂組成物が硬化した硬化物膜である。高分子量エポキシ樹脂は、樹脂組成物の主成分であることが好ましい。主成分とは、樹脂組成物に含まれる成分のうち含有量が最大の成分のことをいい、その含有量は樹脂組成物の合計量に対して20重量%以上が好ましく、40重量%以上がより好ましく、60重量%以上が特に好ましい。
(Cured resin layer)
The cured resin layer 2 is a cured product film obtained by curing a resin composition containing an epoxy resin having a weight average molecular weight of 3000 or more (hereinafter also referred to as “high molecular weight epoxy resin”). The high molecular weight epoxy resin is preferably the main component of the resin composition. The main component means a component having the maximum content among the components contained in the resin composition, and the content is preferably 20% by weight or more, and 40% by weight or more based on the total amount of the resin composition. More preferred is 60% by weight or more.
 高分子量エポキシ樹脂としては、広く一般的に用いられているものを使用することができ、グリシジル基、脂環式エポキシ基、脂肪族エポキシ基などのエポキシ基を分子中に1つ以上、好ましくは2つ以上有するエポキシ基含有化合物を使用することができる。具体的には、例えば、エピクロルヒドリン-ビスフェノールA型エポキシ樹脂、エピクロルヒドリン-ビスフェノールF型エポキシ樹脂、テトラブロモビスフェノールAのグリシジルエーテル型エポキシ樹脂、ノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂、ビスフェノールAプロピレンオキシド付加物のグリシジルエーテル型エポキシ樹脂、p-オキシ安息香酸-グリシジルエーテルエステル型エポキシ樹脂、III-アミノフェノール系エポキシ樹脂、ジアミノジフェニルメタン系エポキシ樹脂、脂環式エポキシ樹脂、N,N-ジグリシジルアニリン、N,N-ジグリシジル-o-トルイジン、トリグリシジルイソシアヌレート、ポリアルキレングリコールジグリシジルエーテル、多価アルコール(グリセリンなど)のグリシジルエーテル、ヒダントイン型エポキシ樹脂、エポキシ基含有ポリシロキサン、不飽和重合体(石油樹脂など)のエポキシ化物等から構成されるエポキシ樹脂うち重量平均分子量が3000以上のエポキシ樹脂が挙げられる。高分子量エポキシ樹脂は単独で用いてもよく、2種以上を併用してもよい。 As the high molecular weight epoxy resin, those widely used can be used, and one or more epoxy groups such as glycidyl group, alicyclic epoxy group, aliphatic epoxy group, etc. in the molecule, preferably Epoxy group-containing compounds having two or more can be used. Specifically, for example, epichlorohydrin-bisphenol A type epoxy resin, epichlorohydrin-bisphenol F type epoxy resin, glycidyl ether type epoxy resin of tetrabromobisphenol A, novolac type epoxy resin, phenol novolac type epoxy resin, hydrogenated bisphenol A type Epoxy resin, hydrogenated bisphenol F type epoxy resin, glycidyl ether type epoxy resin of bisphenol A propylene oxide adduct, p-oxybenzoic acid-glycidyl ether ester type epoxy resin, III-aminophenol type epoxy resin, diaminodiphenylmethane type epoxy resin , Alicyclic epoxy resin, N, N-diglycidylaniline, N, N-diglycidyl-o-toluidine, triglycidyl isocyanurate, poly Weight average of epoxy resins composed of xylene glycol diglycidyl ether, glycidyl ether of polyhydric alcohol (such as glycerin), hydantoin type epoxy resin, epoxy group-containing polysiloxane, epoxidized product of unsaturated polymer (such as petroleum resin) An epoxy resin having a molecular weight of 3000 or more can be mentioned. A high molecular weight epoxy resin may be used independently and may use 2 or more types together.
 高分子量エポキシ樹脂の重量平均分子量は3000以上であればよく、3300以上が好ましい。なお、上記重量平均分子量の上限は、得られる硬化樹脂層の過度の硬化による脆化抑制の観点から、5000が好ましく、4000がより好ましい。エポキシ樹脂の重量平均分子量を上記範囲とすることで、透明樹脂フィルム1との密着力が高い硬化樹脂層2を形成することができる。 The weight average molecular weight of the high molecular weight epoxy resin may be 3000 or more, and preferably 3300 or more. The upper limit of the weight average molecular weight is preferably 5000 and more preferably 4000 from the viewpoint of suppressing embrittlement due to excessive curing of the resulting cured resin layer. By setting the weight average molecular weight of the epoxy resin within the above range, the cured resin layer 2 having high adhesion with the transparent resin film 1 can be formed.
 なお、本明細書において、重量平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフ、TOSOH製、HLC-8320GPC)により測定し、ポリスチレン換算により算出された値である。測定の条件は以下の通りである。カラム:SHODEXGPC KF-802.5(内径8.0mm×長さ300mm)/GPC KF-G(内径4.6mm×長さ10mm)、溶離液:テトラヒドロフラン(THF)、注入濃度:0.05重量%、流量:1mL/min、検出器:示差屈折計(RI)、カラム温度:40℃、注入量:2mL In the present specification, the weight average molecular weight is a value measured by GPC (gel permeation chromatograph, manufactured by TOSOH, HLC-8320GPC) and calculated in terms of polystyrene. The measurement conditions are as follows. Column: SHODEX GPC KF-802.5 (inner diameter 8.0 mm × length 300 mm) / GPC KF-G (inner diameter 4.6 mm × length 10 mm), eluent: tetrahydrofuran (THF), injection concentration: 0.05% by weight , Flow rate: 1 mL / min, detector: differential refractometer (RI), column temperature: 40 ° C., injection amount: 2 mL
 高分子量エポキシ樹脂は、ゴム変性エポキシ樹脂であることが好ましい。これにより、硬化樹脂層2において、透明樹脂フィルム1との密着性を向上させつつ、耐湿熱性、耐薬品性およびオリゴマー滲出抑制性を好適に付与することができる。エポキシ樹脂を変性するためのゴム成分としては特に限定されず、例えば、ブタジエンゴム、アクリロニトリルブタジエンゴム、スチレンブタジエンゴム、ブチルゴム、天然ゴム、イソプレンゴム、クロロプレンゴム等の共役ジエン系ゴム;エチレン-プロピレンゴム、ウレタンゴム、シリコーンゴム、フッ素ゴム、エチレン-酢酸ビニルゴム、エピクロルヒドリンゴム等が挙げられる。中でも、上記観点から、共役ジエン系ゴム変性が好ましく、ブタジエンゴム変性、ブチルゴム変性、アクリロニトリルブタジエンゴム変性がより好ましい。ゴム変性エポキシ樹脂は単独で用いてもよく、2種以上を併用してもよい。 The high molecular weight epoxy resin is preferably a rubber-modified epoxy resin. Thereby, in the cured resin layer 2, while improving adhesiveness with the transparent resin film 1, moisture-heat resistance, chemical resistance, and oligomer exudation suppression property can be provided suitably. The rubber component for modifying the epoxy resin is not particularly limited. For example, conjugated diene rubbers such as butadiene rubber, acrylonitrile butadiene rubber, styrene butadiene rubber, butyl rubber, natural rubber, isoprene rubber, chloroprene rubber; ethylene-propylene rubber , Urethane rubber, silicone rubber, fluorine rubber, ethylene-vinyl acetate rubber, epichlorohydrin rubber and the like. Among these, from the above viewpoint, conjugated diene rubber modification is preferable, and butadiene rubber modification, butyl rubber modification, and acrylonitrile butadiene rubber modification are more preferable. The rubber-modified epoxy resin may be used alone or in combination of two or more.
 ゴム変性エポキシ樹脂の調製方法は従来公知の方法を採用することができ、例えば、ゴム成分のポリマー主鎖の末端にカルボキシル基を導入し、このカルボキシル基とエポキシ樹脂のエポキシ基とをリン系触媒やアミン系触媒等の触媒存在下にて反応させる方法等が挙げられる。 A conventionally known method can be adopted as a method for preparing the rubber-modified epoxy resin. For example, a carboxyl group is introduced into the terminal of the polymer main chain of the rubber component, and this carboxyl group and the epoxy group of the epoxy resin are converted into a phosphorus catalyst. And a method of reacting in the presence of a catalyst such as an amine catalyst.
 高分子量エポキシ樹脂とともに、上記列挙したエポキシ樹脂のうち重量平均分子量が3000未満のエポキシ樹脂(以下、「低分子量エポキシ樹脂」ともいう。)を用いることができる。低分子量エポキシ樹脂としては、脂環式エポキシ樹脂が好ましい。脂環式エポキシ樹脂としては、公知のものを好適に採用することができ、例えば、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、ε-カプロラクトン変性3’,4’-エポキシシクロヘキシルメチル3,4-エポキシシクロヘキサンカルボキシレート、1,2-エポキシ-4-ビニルシクロヘキサン、3,4-エポキシシクロヘキサン-1-カルボン酸アリル、水添ビスフェノールA型エポキシ樹脂等が挙げられる。低分子量エポキシ樹脂は単独で用いてもよく、2種以上を併用してもよい。 Along with the high molecular weight epoxy resin, an epoxy resin having a weight average molecular weight of less than 3000 (hereinafter also referred to as “low molecular weight epoxy resin”) among the above-listed epoxy resins can be used. As the low molecular weight epoxy resin, an alicyclic epoxy resin is preferable. As the alicyclic epoxy resin, known ones can be suitably used. For example, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, ε-caprolactone modified 3 ′, 4′-epoxy Examples thereof include cyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, 1,2-epoxy-4-vinylcyclohexane, 3,4-epoxycyclohexane-1-carboxylate allyl, and hydrogenated bisphenol A type epoxy resin. A low molecular weight epoxy resin may be used independently and may use 2 or more types together.
 上記樹脂組成物は、硬化促進剤を含有することが好ましい。これによりエポキシ樹脂の硬化反応を迅速かつ十分に進行させることができ、密着性、耐湿性および膜強度の高い硬化物膜を形成することができる。硬化促進剤としては特に限定されず、例えば、オクタン酸、ステアリン酸、アセチルアセトネート、ナフテン酸、サリチル酸等の有機酸と、亜鉛、銅、鉄、アンチモン等の金属とによる有機金属塩;金属キレート等が挙げられる。中でも、硬化促進剤はアンチモンを含有することが好ましい。アンチモン含有硬化促進剤は、樹脂組成物の硬化反応を迅速かつ十分に進行させることができ、より密着性および耐湿性が高く、より強固な硬化物膜を効率的に形成することができる。硬化促進剤は単独で用いてもよく、2種以上を併用してもよい。 The resin composition preferably contains a curing accelerator. Thereby, the hardening reaction of an epoxy resin can be advanced rapidly and fully, and a hardened | cured material film | membrane with high adhesiveness, moisture resistance, and film | membrane intensity | strength can be formed. The curing accelerator is not particularly limited. For example, an organic metal salt of an organic acid such as octanoic acid, stearic acid, acetylacetonate, naphthenic acid or salicylic acid and a metal such as zinc, copper, iron or antimony; Etc. Especially, it is preferable that a hardening accelerator contains antimony. The antimony-containing curing accelerator can rapidly and sufficiently advance the curing reaction of the resin composition, and can more efficiently form a hardened cured film with higher adhesion and moisture resistance. A hardening accelerator may be used independently and may use 2 or more types together.
 硬化促進剤の含有量は特に限定されないが、樹脂組成物中に含まれるエポキシ基を有する化合物の全量(100重量部)に対して、例えば、0.01重量部以上、好ましくは、0.05重量部以上、より好ましくは、0.1重量部以上であり、また、例えば、5重量部以下、好ましくは、4重量部以下、より好ましくは、1重量部以下である。硬化促進剤の含有量が上記下限を下回ると、硬化促進効果が不十分となる場合がある。一方、硬化促進剤の含有量が上記上限を上回ると、硬化物が着色して色相が悪化する場合がある。 Although content of a hardening accelerator is not specifically limited, For example, 0.01 weight part or more with respect to the whole quantity (100 weight part) of the compound which has an epoxy group contained in a resin composition, Preferably, it is 0.05. Part by weight or more, more preferably 0.1 part by weight or more, and for example, 5 parts by weight or less, preferably 4 parts by weight or less, more preferably 1 part by weight or less. If the content of the curing accelerator is below the lower limit, the curing acceleration effect may be insufficient. On the other hand, when content of a hardening accelerator exceeds the said upper limit, hardened | cured material may color and a hue may deteriorate.
 樹脂組成物には、エポキシ樹脂のほか、アクリル樹脂、ウレタン樹脂、アミド樹脂、シリコーン樹脂等を適宜配合してもよい。また、樹脂組成物には、各種の添加剤を加えることもできる。添加剤としては、例えば、レベリング剤、顔料、充填剤、分散剤、可塑剤、紫外線吸収剤、界面活性剤、酸化防止剤、チクソトロピー化剤等が挙げられる。 In addition to the epoxy resin, an acrylic resin, a urethane resin, an amide resin, a silicone resin, or the like may be appropriately added to the resin composition. Various additives can also be added to the resin composition. Examples of the additive include leveling agents, pigments, fillers, dispersants, plasticizers, ultraviolet absorbers, surfactants, antioxidants, thixotropic agents, and the like.
 (硬化樹脂層の物性)
 透明樹脂フィルム1に対する硬化樹脂層2の密着力は、50N/25mm以上である。上限は限定的でないが、例えば、100N/25mmである。硬化樹脂層2の密着力が、50N/25mm未満であると、密着力が不十分となり、透明導電性フィルム10の搬送や加工時において、透明樹脂フィルム1と硬化樹脂層2との間に剥離が生じて、硬化樹脂層2が変形し、透明導電層3にクラックが発生するおそれが生じる。
(Physical properties of cured resin layer)
The adhesion of the cured resin layer 2 to the transparent resin film 1 is 50 N / 25 mm or more. The upper limit is not limited, but is, for example, 100 N / 25 mm. When the adhesive strength of the cured resin layer 2 is less than 50 N / 25 mm, the adhesive strength becomes insufficient, and the transparent conductive film 10 is peeled between the transparent resin film 1 and the cured resin layer 2 when the transparent conductive film 10 is transported or processed. Is generated, the cured resin layer 2 is deformed, and a crack may occur in the transparent conductive layer 3.
 密着力の測定方法は、例えば、透明導電性フィルム10を幅25mm×長さ70mmに切断し、続いて、切断した透明導電性フィルム10の透明導電層3を接着剤を介して基板に固定し、続いて、剥離試験機を用いて0.3mm/minの速度で180度の角度で透明導電性フィルム10を長さ方向に沿って引っ張ることにより、測定することができる。 The method for measuring the adhesion is, for example, by cutting the transparent conductive film 10 into a width of 25 mm and a length of 70 mm, and then fixing the transparent conductive layer 3 of the cut transparent conductive film 10 to the substrate via an adhesive. Subsequently, it can be measured by pulling the transparent conductive film 10 along the length direction at an angle of 180 degrees at a speed of 0.3 mm / min using a peel tester.
 硬化樹脂層2は、透明樹脂フィルム1と透明導電層3の間に設けられるものであり、導電体層としての機能を有しないものである。即ち、硬化樹脂層2は、透明樹脂フィルム1と透明導電層3の間で絶縁できるように誘電体層として設けられる。従って、硬化樹脂層2は、通常、表面抵抗が、1×10Ω/□以上であり、好ましくは、1×10Ω/□以上、さらに好ましくは、1×10Ω/□以上である。なお、硬化樹脂層2の表面抵抗の上限は特にない。一般的には、硬化樹脂層2の表面抵抗の上限は、測定限界である1×1013Ω/□程度であるが、1×1013Ω/□を超えるものであってもよい。 The cured resin layer 2 is provided between the transparent resin film 1 and the transparent conductive layer 3, and does not have a function as a conductor layer. That is, the cured resin layer 2 is provided as a dielectric layer so that it can be insulated between the transparent resin film 1 and the transparent conductive layer 3. Accordingly, the cured resin layer 2 generally has a surface resistance of 1 × 10 6 Ω / □ or more, preferably 1 × 10 7 Ω / □ or more, and more preferably 1 × 10 8 Ω / □ or more. is there. There is no particular upper limit on the surface resistance of the cured resin layer 2. Generally, the upper limit of the surface resistance of the cured resin layer 2 is about 1 × 10 13 Ω / □, which is a measurement limit, but may exceed 1 × 10 13 Ω / □.
 硬化樹脂層2の厚みは特に制限されるものではないが、密着性、耐湿熱性、透明樹脂フィルム1からのオリゴマー滲出抑制、光学特性の点から、例えば、150nm以下、好ましくは、100nm以下、より好ましくは、50nm以下であり、また、例えば、20nm以上、好ましくは、30nm以上である。 The thickness of the cured resin layer 2 is not particularly limited, but is, for example, 150 nm or less, preferably 100 nm or less, from the viewpoints of adhesion, heat and humidity resistance, suppression of oligomer exudation from the transparent resin film 1, and optical characteristics. Preferably, it is 50 nm or less, for example, 20 nm or more, preferably 30 nm or more.
 なお、硬化樹脂層2は、2層以上から構成されていてもよく、その場合、各硬化樹脂層の厚みは、例えば、20nm以上、好ましくは、25nm以上であり、また、例えば、60nm以下、好ましくは、55nm以下である。 The cured resin layer 2 may be composed of two or more layers. In that case, the thickness of each cured resin layer is, for example, 20 nm or more, preferably 25 nm or more, and, for example, 60 nm or less, Preferably, it is 55 nm or less.
 本実施形態では、透明導電層3と硬化樹脂層2とを有することで、表示素子として見栄えが良好なものが得られる。かかる観点から、硬化樹脂層2の屈折率は、透明導電層3の屈折率と硬化樹脂層2の屈折率の差が、0.1以上を有するものが好ましい。透明導電層3の屈折率と硬化樹脂層2の屈折率の差は、0.1以上0.9以下、さらには、0.1以上0.6以下であるのが好ましい。なお、硬化樹脂層2の屈折率は、例えば、1.30以上、好ましくは、1.38以上、より好ましくは、1.40以上であり、また、例えば、2.50以下、好ましくは、2.30以下である。屈折率は、アッベ屈折率計により測定される。 In the present embodiment, by having the transparent conductive layer 3 and the cured resin layer 2, a display device having a good appearance can be obtained. From this viewpoint, the refractive index of the cured resin layer 2 is preferably such that the difference between the refractive index of the transparent conductive layer 3 and the refractive index of the cured resin layer 2 is 0.1 or more. The difference between the refractive index of the transparent conductive layer 3 and the refractive index of the cured resin layer 2 is preferably 0.1 or more and 0.9 or less, and more preferably 0.1 or more and 0.6 or less. The refractive index of the cured resin layer 2 is, for example, 1.30 or more, preferably 1.38 or more, more preferably 1.40 or more, and for example, 2.50 or less, preferably 2 .30 or less. The refractive index is measured by an Abbe refractometer.
 硬化樹脂層2の形成方法は特に限定されないが、コーティングによることが好ましい。まず、上記成分を配合した樹脂組成物を溶媒に均一に溶解または分散して、コーティング溶液を調製する。溶媒としては特に限定されず、例えば、トルエン、キシレンなどの芳香族系溶媒;メチルエチルケトン、アセトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系溶媒;ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、アニソール、フェネトールなどのエーテル系溶媒;酢酸エチル、酢酸ブチル、酢酸イソプロピル、エチレングリコールジアセテートなどのエステル系溶媒;ジメチルホルムアミド、ジエチルホルムアミド、N-メチルピロリドンなどのアミド系溶媒;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブなどのセロソルブ系溶媒;メタノール、エタノール、プロパノールなどのアルコール系溶媒;ジクロロメタン、クロロホルムなどのハロゲン系溶媒;などが挙げられる。溶媒は単独で用いてもよく、2種以上を併用してもよい。 The method for forming the cured resin layer 2 is not particularly limited, but is preferably by coating. First, a resin composition containing the above components is uniformly dissolved or dispersed in a solvent to prepare a coating solution. The solvent is not particularly limited. For example, aromatic solvents such as toluene and xylene; ketone solvents such as methyl ethyl ketone, acetone, methyl isobutyl ketone and cyclohexanone; diethyl ether, isopropyl ether, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene Ether solvents such as glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether, anisole, phenetol; ester solvents such as ethyl acetate, butyl acetate, isopropyl acetate, ethylene glycol diacetate; dimethylformamide, diethylformamide, Amide solvents such as N-methylpyrrolidone; methyl cellosolve, Chiruserosorubu, cellosolve-based solvents such as butyl cellosolve; methanol, ethanol, alcohol solvents such as propanol; and the like; dichloromethane, halogenated solvents such as chloroform. A solvent may be used independently and may use 2 or more types together.
 コーティング溶液の固形分濃度は、例えば、0.5重量%以上、好ましくは、1.0重量%以上、より好ましくは、1.5重量%以上であり、また、例えば、2.5重量%以下、好ましくは、2.0重量%以下、より好ましくは、1.9重量%以下である。 The solid concentration of the coating solution is, for example, 0.5% by weight or more, preferably 1.0% by weight or more, more preferably 1.5% by weight or more, and for example, 2.5% by weight or less. The amount is preferably 2.0% by weight or less, more preferably 1.9% by weight or less.
 硬化樹脂層2は、透明樹脂フィルム1上に、上記のコーティング溶液を塗布し、硬化させることにより形成される。 The cured resin layer 2 is formed by applying the above coating solution on the transparent resin film 1 and curing it.
 コーティング溶液の塗布方法は、コーティング溶液及び塗装工程の状況に応じて適時選択することができ、例えば、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、ダイコート法やエクストルージョンコート法などが挙げられる。 The application method of the coating solution can be appropriately selected according to the state of the coating solution and the painting process. For example, dip coating method, air knife coating method, curtain coating method, roller coating method, wire bar coating method, gravure coating Method, die coating method and extrusion coating method.
 最後に、得られた塗膜を加熱硬化させることによって、硬化樹脂層2を形成することができる。加熱方法としては、例えば、熱風乾燥機、赤外線乾燥機、真空乾燥機、マイクロ波加熱乾燥機等による加熱を採用することができる。加熱温度としては、例えば、100℃以上、好ましくは、120℃以上であり、また、例えば、200℃以下、好ましくは、180℃以下である。加熱時間としては、例えば、0.5分間以上、好ましくは、1分間以上であり、また、例えば、10分間以下、好ましくは、5分間以下である。 Finally, the cured resin layer 2 can be formed by heating and curing the obtained coating film. As a heating method, for example, heating by a hot air dryer, an infrared dryer, a vacuum dryer, a microwave heating dryer or the like can be employed. As heating temperature, it is 100 degreeC or more, for example, Preferably, it is 120 degreeC or more, for example, is 200 degrees C or less, Preferably, it is 180 degrees C or less. The heating time is, for example, 0.5 minutes or more, preferably 1 minute or more, and for example, 10 minutes or less, preferably 5 minutes or less.
 (透明導電層)
 透明導電層3の構成材料としては特に限定されず、インジウム、スズ、亜鉛、ガリウム、アンチモン、チタン、珪素、ジルコニウム、マグネシウム、アルミニウム、金、銀、銅、パラジウム、タングステンからなる群より選択される少なくとも1種の金属の金属酸化物が挙げられる。金属酸化物には、必要に応じて、さらに上記群に示された金属原子を含んでいてもよい。好ましくは、酸化スズを含有する酸化インジウム(インジウム-スズ複合酸化物:ITO)、アンチモンを含有する酸化スズなどが挙げられる。
(Transparent conductive layer)
The constituent material of the transparent conductive layer 3 is not particularly limited, and is selected from the group consisting of indium, tin, zinc, gallium, antimony, titanium, silicon, zirconium, magnesium, aluminum, gold, silver, copper, palladium, and tungsten. Mention may be made of metal oxides of at least one metal. The metal oxide may further contain a metal atom shown in the above group, if necessary. Preferred examples include indium oxide containing tin oxide (indium-tin composite oxide: ITO), tin oxide containing antimony, and the like.
 透明導電層3の厚みは特に制限されないが、その表面抵抗を1×10Ω/□以下の良好な導電性を有する連続被膜とするには、厚み10nm以上が好ましい。より好ましくは、15nm以上であり、さらに好ましくは、20nm以上であり、また、より好ましくは、35nm以下であり、さらに好ましくは、30nm以下である。厚みが15nm未満であると表面電気抵抗が高くなり、また、連続被膜になり難くなるおそれが生じる。また、35nmを超えると透明性が低下するおそれが生じる。 The thickness of the transparent conductive layer 3 is not particularly limited, but a thickness of 10 nm or more is preferable in order to obtain a continuous film having good surface resistance of 1 × 10 3 Ω / □ or less. More preferably, it is 15 nm or more, More preferably, it is 20 nm or more, More preferably, it is 35 nm or less, More preferably, it is 30 nm or less. If the thickness is less than 15 nm, the surface electrical resistance becomes high, and there is a possibility that it becomes difficult to form a continuous film. Moreover, when it exceeds 35 nm, there exists a possibility that transparency may fall.
 透明導電層3は、上記の通り、硬化樹脂層2との屈折率の差が0.1以上であるものが好適である。透明導電層3の屈折率は、例えば、1.95以上、2.05以下である。 As described above, the transparent conductive layer 3 preferably has a refractive index difference with the cured resin layer 2 of 0.1 or more. The refractive index of the transparent conductive layer 3 is, for example, 1.95 or more and 2.05 or less.
 透明導電層3の形成方法としては特に限定されず、従来公知の方法を採用することができる。具体的には、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法が挙げられる。また、必要とする層厚に応じて適宜の方法を採用することもできる。 The method for forming the transparent conductive layer 3 is not particularly limited, and a conventionally known method can be employed. Specific examples include a vacuum deposition method, a sputtering method, and an ion plating method. Also, an appropriate method can be adopted depending on the required layer thickness.
 透明導電層3を形成した後、必要に応じて、例えば、100~150℃の範囲内で加熱処理を施して結晶化することができる。透明導電層3は、良好な電気特性の観点から、結晶質膜であることが好ましい。 After forming the transparent conductive layer 3, it can be crystallized by performing a heat treatment within a range of 100 to 150 ° C., for example, if necessary. The transparent conductive layer 3 is preferably a crystalline film from the viewpoint of good electrical characteristics.
 なお、透明導電層3が結晶質膜であることは、例えば、透明導電層3がITO層である場合は、20℃の塩酸(濃度5重量%)に15分間浸漬した後、水洗・乾燥し、15mm程度の間の端子間抵抗を測定することで判断できる。本明細書においては、透明導電性フィルム10を塩酸(20℃、濃度:5重量%)に浸漬・水洗・乾燥した後に、透明導電層3における15mm間の端子間抵抗が10kΩ未満である場合、透明導電層3が結晶質であるものとする。 The transparent conductive layer 3 is a crystalline film. For example, when the transparent conductive layer 3 is an ITO layer, it is immersed in hydrochloric acid (concentration 5% by weight) at 20 ° C. for 15 minutes, washed with water and dried. It can be determined by measuring the resistance between terminals between about 15 mm. In the present specification, after the transparent conductive film 10 is immersed in hydrochloric acid (20 ° C., concentration: 5% by weight), washed with water, and dried, the resistance between terminals in the transparent conductive layer 3 between 15 mm is less than 10 kΩ, The transparent conductive layer 3 is assumed to be crystalline.
 透明導電層3を温度85℃、湿度85%の雰囲気下で240時間置いた前後での透明導電層3の表面抵抗値の変化率は、1.5以下であることが好ましく、1.3以下であることがより好ましい。これにより、透明導電性フィルム10が過酷な環境下に置かれた場合であっても良好な電気特性を発揮することができ、これにより多様な用途展開を図ることができる。 The change rate of the surface resistance value of the transparent conductive layer 3 before and after the transparent conductive layer 3 is placed in an atmosphere of 85 ° C. and 85% humidity for 240 hours is preferably 1.5 or less, and 1.3 or less. It is more preferable that Thereby, even when the transparent conductive film 10 is placed in a harsh environment, good electrical characteristics can be exhibited, and various application developments can thereby be achieved.
 この透明導電性フィルム10によれば、透明樹脂フィルム1と硬化樹脂層2との密着性に優れる。そのため、搬送時やパターン加工時において、硬化樹脂層2と透明樹脂フィルム1との剥離を防止して、硬化樹脂層2の歪みや盛り上がりを抑制できる。その結果、硬化樹脂層2の上面にある透明導電層3のクラックの発生を抑制して、白化を防止することができる。また、配線回路基板と接合した場合であっても、接合部における剥離を抑制することができる。 According to the transparent conductive film 10, the adhesiveness between the transparent resin film 1 and the cured resin layer 2 is excellent. Therefore, at the time of conveyance or pattern processing, peeling between the cured resin layer 2 and the transparent resin film 1 can be prevented, and distortion and swelling of the cured resin layer 2 can be suppressed. As a result, generation of cracks in the transparent conductive layer 3 on the upper surface of the cured resin layer 2 can be suppressed, and whitening can be prevented. Moreover, even if it is a case where it joins with a printed circuit board, peeling in a junction part can be suppressed.
 さらには、この透明導電性フィルム10は、耐湿熱性に優れる。すなわち、高温高湿環境下においても、抵抗率変化を抑制することができる。また、耐薬品性に優れる。すなわち、イソプロパノールやアルカリ溶液に対する硬化樹脂層2の膨潤や変形を抑制することができる。また、高温下における硬化樹脂層2のオリゴマー滲出も抑制することができる。 Furthermore, this transparent conductive film 10 is excellent in heat and moisture resistance. That is, the resistivity change can be suppressed even in a high temperature and high humidity environment. Moreover, it is excellent in chemical resistance. That is, swelling and deformation of the cured resin layer 2 with respect to isopropanol or an alkaline solution can be suppressed. Moreover, the oligomer exudation of the cured resin layer 2 under high temperature can also be suppressed.
 (変形例)
 図示しないが、透明樹脂フィルム1の透明導電層3が形成されている面と反対側の面には、必要に応じてハードコート層や易接着層、ブロッキング防止層等が設けられていてもよい。
(Modification)
Although not shown, a hard coat layer, an easy adhesion layer, an anti-blocking layer, or the like may be provided on the surface of the transparent resin film 1 opposite to the surface on which the transparent conductive layer 3 is formed, if necessary. .
 また、図2に示すように、透明導電層3は、パターニング(パターン加工)されていてもよい。パターニングは、各種態様を、透明導電性フィルム10が適用される用途に応じて、各種のパターンとして形成することができる。パターンの形状としては、例えば、ストライプ状等が挙げられる。 Further, as shown in FIG. 2, the transparent conductive layer 3 may be patterned (pattern processing). The patterning can form various aspects as various patterns according to the use to which the transparent conductive film 10 is applied. Examples of the pattern shape include a stripe shape.
 パターニングでは、例えば、パターンを形成するためのマスクによって透明導電層3を被覆して、エッチング液により透明導電層3をエッチングする。エッチング液としては、酸が好適に用いられる。酸としては、例えば、塩化水素、臭化水素、硫酸、硝酸、リン酸等の無機酸、酢酸等の有機酸、およびこれらの混合物、ならびにそれらの水溶液が挙げられる。 In patterning, for example, the transparent conductive layer 3 is covered with a mask for forming a pattern, and the transparent conductive layer 3 is etched with an etching solution. An acid is preferably used as the etching solution. Examples of the acid include inorganic acids such as hydrogen chloride, hydrogen bromide, sulfuric acid, nitric acid and phosphoric acid, organic acids such as acetic acid, and mixtures thereof, and aqueous solutions thereof.
 また、図3に示すように、本実施形態の透明導電性フィルム10の片面には、透明な粘着剤層4を介して透明基体5を貼り合わせることができる。すなわち、図3に示す透明導電性フィルム10は、図1に示す透明導電性フィルムの透明樹脂フィルム1(透明導電層3が設けられていない面)に透明な粘着剤層4を介して透明基体5が貼り合わされた構造の透明導電性フィルムである。透明基体5は、少なくとも2枚の透明な基体フィルムを透明な粘着剤層4により貼り合わせた複合構造であってもよい。なお、透明導電層3のパターニングは、かかる構造とした透明導電性フィルム10に対して実施することもできる。 Moreover, as shown in FIG. 3, the transparent base | substrate 5 can be bonded together through the transparent adhesive layer 4 to the single side | surface of the transparent conductive film 10 of this embodiment. That is, the transparent conductive film 10 shown in FIG. 3 has a transparent substrate through a transparent adhesive layer 4 on the transparent resin film 1 (the surface on which the transparent conductive layer 3 is not provided) of the transparent conductive film shown in FIG. 5 is a transparent conductive film having a structure in which 5 is bonded. The transparent substrate 5 may have a composite structure in which at least two transparent substrate films are bonded together with a transparent adhesive layer 4. The patterning of the transparent conductive layer 3 can also be performed on the transparent conductive film 10 having such a structure.
 透明基体5の厚みは、例えば、90μm以上、好ましくは、100μm以上であり、また、例えば、300μm以下、好ましくは、250μm以下である。また、透明基体5を形成する複数の基体フィルムにより形成する場合、各基体フィルムの厚みは、例えば、10μm以上、好ましくは、20μm以上であり、また、例えば、200μm以下、好ましくは、150μm以下であり、これら基体フィルムに透明な粘着剤層を含めた透明基体5としての総厚みが前記範囲に入るように制御される。基体フィルムとしては、前記した透明樹脂フィルム1と同様のものが挙げられる。 The thickness of the transparent substrate 5 is, for example, 90 μm or more, preferably 100 μm or more, and for example, 300 μm or less, preferably 250 μm or less. Moreover, when forming with the several base film which forms the transparent base | substrate 5, the thickness of each base film is 10 micrometers or more, for example, Preferably, it is 20 micrometers or more, for example, is 200 micrometers or less, Preferably, it is 150 micrometers or less. The total thickness of the transparent substrate 5 including the transparent adhesive layer in these substrate films is controlled to fall within the above range. As a base film, the thing similar to the above-mentioned transparent resin film 1 is mentioned.
 粘着剤層4としては、透明性を有するものであれば特に制限なく使用できる。具体的には、例えば、アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリビニルエーテル、酢酸ビニル/塩化ビニルコポリマー、変性ポリオレフィン、エポキシ系、フッ素系、天然ゴム、合成ゴム等のゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いることができる。特に、光学的透明性に優れ、適度な濡れ性、凝集性及び接着性等の粘着特性を示し、耐候性や耐熱性等にも優れるという点からは、アクリル系粘着剤が好ましく用いられる。 The pressure-sensitive adhesive layer 4 can be used without particular limitation as long as it has transparency. Specifically, for example, acrylic polymers, silicone polymers, polyesters, polyurethanes, polyamides, polyvinyl ethers, vinyl acetate / vinyl chloride copolymers, modified polyolefins, epoxy systems, fluorine systems, natural rubbers, rubbers such as synthetic rubbers, etc. Those having the above polymer as a base polymer can be appropriately selected and used. In particular, an acrylic pressure-sensitive adhesive is preferably used from the viewpoint that it is excellent in optical transparency, exhibits adhesive properties such as appropriate wettability, cohesiveness and adhesiveness, and is excellent in weather resistance and heat resistance.
 この様な粘着剤層4を介して貼り合わされる透明基体5は、透明樹脂フィルム1に対して良好な機械的強度を付与し、ペン入力耐久性および面圧耐久性の他に、特に、カールなどの発生防止に寄与する。 The transparent substrate 5 bonded through the pressure-sensitive adhesive layer 4 gives good mechanical strength to the transparent resin film 1, and in addition to pen input durability and surface pressure durability, in particular, curl Contributes to the prevention of such occurrences.
 また、図3の仮想線に示すように、 また必要に応じて、透明基体5の外表面(粘着剤層4とは反対側の面)に、外表面の保護を目的としたハードコート層(樹脂層)6を設けてもよい。ハードコート層6としては、例えば、メラニン系樹脂、ウレタン系樹脂、アルキド系樹脂、アクリル系樹脂、シリコーン系樹脂などの硬化型樹脂からなる硬化被膜が挙げられる。ハードコート層6の厚さとしては、0.1μm以上30μm以下が好ましい。厚さが0.1μm未満であると、硬度が不足する場合がある。また、厚さが30μmを超えると、ハードコート層6にクラックが発生したり、透明基体5全体にカールが発生する場合がある。 Moreover, as shown by the phantom lines in FIG. 3, a hard coat layer (for the purpose of protecting the outer surface) is formed on the outer surface of the transparent substrate 5 (the surface opposite to the pressure-sensitive adhesive layer 4). (Resin layer) 6 may be provided. Examples of the hard coat layer 6 include a cured film made of a curable resin such as a melanin resin, a urethane resin, an alkyd resin, an acrylic resin, or a silicone resin. The thickness of the hard coat layer 6 is preferably 0.1 μm or more and 30 μm or less. If the thickness is less than 0.1 μm, the hardness may be insufficient. On the other hand, if the thickness exceeds 30 μm, cracks may occur in the hard coat layer 6 or curl may occur in the entire transparent substrate 5.
 (タッチパネル)
 本実施形態の透明導電性フィルム10は、例えば、光学方式、超音波方式、静電容量方式、抵抗膜方式などのタッチパネルに好適に適用できる。特に、静電容量方式のタッチパネルに好適である。具体的には、例えば、図2に示すパターニングした透明導電性フィルム10を保護ガラスなどの保護基材に配置することにより、タッチパネルとして用いる。また、本実施形態の透明導電性フィルムは、例えば、電気泳動方式、ツイストボール方式、サーマル・リライタブル方式、光書き込み液晶方式、高分子分散型液晶方式、ゲスト・ホスト液晶方式、トナー表示方式、クロミズム方式、電界析出方式などのフレキシブル表示素子に好適に利用できる。
(Touch panel)
The transparent conductive film 10 of this embodiment can be suitably applied to, for example, an optical method, an ultrasonic method, a capacitance method, a resistance film method, or the like. In particular, it is suitable for a capacitive touch panel. Specifically, for example, the patterned transparent conductive film 10 shown in FIG. 2 is used as a touch panel by placing it on a protective substrate such as protective glass. In addition, the transparent conductive film of the present embodiment includes, for example, an electrophoresis method, a twist ball method, a thermal rewritable method, an optical writing liquid crystal method, a polymer dispersed liquid crystal method, a guest / host liquid crystal method, a toner display method, and a chromism. It can be suitably used for flexible display elements such as a method and an electric field deposition method.
 <第2実施形態>
 第1実施形態では、透明樹脂フィルム1と透明導電層3の間に1層の硬化樹脂層2が設けられているのに対し、第2実施形態では、図4に示すように、硬化樹脂層2に加えて、その上側に無機物層9が設けられている。すなわち、第2実施形態では、透明樹脂フィルム1の側から硬化樹脂層2および無機物層9がこの順で設けられている。図4では、透明導電層3は、パターニングされていないが、パターニングされていてもよい。また、無機物層9は、パターニングされていてもよく、パターニングされていなくてもよい。
Second Embodiment
In the first embodiment, one cured resin layer 2 is provided between the transparent resin film 1 and the transparent conductive layer 3, whereas in the second embodiment, as shown in FIG. In addition to 2, an inorganic layer 9 is provided on the upper side. That is, in the second embodiment, the cured resin layer 2 and the inorganic layer 9 are provided in this order from the transparent resin film 1 side. In FIG. 4, the transparent conductive layer 3 is not patterned, but may be patterned. The inorganic layer 9 may be patterned or may not be patterned.
 上側の無機物層9の材料として、NaF(1.3)、NaAlF(1.35)、LiF(1.36)、MgF(1.38)、CaF(1.4)、BaF(1.3)、SiO(1.46)、LaF(1.55)、CeF(1.63)、Al(1.63)などの無機物〔上記各材料の括弧内の数値は光の屈折率である〕が挙げられる。これらのなかでも、好ましくは、SiO、MgF、A1などが挙げられ、特に好ましくは、SiOが挙げられる。上記の他、酸化インジウム100重量部に対して、酸化セリウムを10~40重量部程度、酸化錫を0~20重量部程度含む複合酸化物を用いることができる。 As the material of the upper inorganic layer 9, NaF (1.3), Na 3 AlF 6 (1.35), LiF (1.36), MgF 2 (1.38), CaF 2 (1.4), BaF 2 (1.3), SiO 2 (1.46), LaF 3 (1.55), CeF 3 (1.63), Al 2 O 3 (1.63), etc. Is the refractive index of light. Among these, preferably, such as SiO 2, MgF 2, A1 2 O 3 and the like, particularly preferably, SiO 2 and the like. In addition to the above, a composite oxide containing about 10 to 40 parts by weight of cerium oxide and about 0 to 20 parts by weight of tin oxide with respect to 100 parts by weight of indium oxide can be used.
 無機物層9は、真空蒸着法、スパッタリング法、イオンプレーティング法等のドライプロセスとして、または、ウェット法(塗工法)などにより形成できる。ウェット法では、シリカゾル等を塗工することによりSiO膜を好適に形成することができる。 The inorganic layer 9 can be formed as a dry process such as a vacuum deposition method, a sputtering method, an ion plating method, or a wet method (coating method). In the wet method, the SiO 2 film can be suitably formed by applying silica sol or the like.
 図4では、硬化樹脂層2が2層からなる場合を例示しているが、例えば、図示しないが、硬化樹脂層2は3層以上であってもよい。 FIG. 4 illustrates the case where the cured resin layer 2 is composed of two layers. For example, although not illustrated, the cured resin layer 2 may be three or more layers.
 <第3実施形態>
 第3実施形態では、図5に示すように、透明樹脂フィルム1の両面に、硬化樹脂層2を介して、透明導電層3を有する。なお、図5に示す透明導電性フィルムは、両側の透明導電層3は、パターニングされていないが、パターニングされていてもよい。また、片側の透明導電層3のみがパターニングされていてもよい。
<Third Embodiment>
In 3rd Embodiment, as shown in FIG. 5, it has the transparent conductive layer 3 through the cured resin layer 2 on both surfaces of the transparent resin film 1. As shown in FIG. In the transparent conductive film shown in FIG. 5, the transparent conductive layers 3 on both sides are not patterned, but may be patterned. Moreover, only the transparent conductive layer 3 on one side may be patterned.
 以下に実施例および比較例を示し、本発明をさらに具体的に説明する。なお、本発明は、何ら実施例および比較例に限定されない。以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. In addition, this invention is not limited to an Example and a comparative example at all. Specific numerical values such as blending ratio (content ratio), physical property values, and parameters used in the following description are described in the above-mentioned “Mode for Carrying Out the Invention”, and the corresponding blending ratio (content ratio) ), Physical property values, parameters, etc. The upper limit value (numerical value defined as “less than” or “less than”) or lower limit value (number defined as “greater than” or “exceeded”) may be substituted. it can.
 実施例1
 (硬化樹脂層の形成)
 ゴム変性エポキシ樹脂(エポキシ樹脂骨格部分の重量平均分子量:3500)を主成分とするアデカフィルテラCRX-49を100重量部、アンチモン系硬化促進剤であるアデカフィルテラBUR-4Bを0.1重量部混合し、この混合物に対してメチルイソブチルケトンを5000重量部添加してコーティング溶液を調製した。厚みが50μmのポリエチレンテレフタレートフィルム(以下、PETフィルムという)からなる透明樹脂フィルムの一方の面に前記コーティング溶液を塗布し、塗膜を195℃で1分間で乾燥させることにより、厚みが30nmの硬化樹脂層(光の屈折率1.51)を形成した。
Example 1
(Formation of cured resin layer)
100 parts by weight of Adekafilterra CRX-49 mainly composed of rubber-modified epoxy resin (weight average molecular weight of epoxy resin skeleton part: 3500), 0.1 weight of Adekafilterra BUR-4B, which is an antimony curing accelerator Part of the mixture was mixed, and 5000 parts by weight of methyl isobutyl ketone was added to the mixture to prepare a coating solution. The coating solution is applied to one surface of a transparent resin film made of a polyethylene terephthalate film (hereinafter referred to as a PET film) having a thickness of 50 μm, and the coating film is dried at 195 ° C. for 1 minute, whereby a thickness of 30 nm is cured. A resin layer (light refractive index 1.51) was formed.
 (透明導電層の形成)
 次に、硬化樹脂層上に、アルゴンガス98%と酸素ガス2%とからなる0.4Paの雰囲気中で、酸化インジウム90重量%、酸化スズ10重量%の焼結体材料を用いた反応性スパッタリング法により、厚み20nmのITO層(光の屈折率2.00)を形成して、透明導電性フィルムを得た。
(Formation of transparent conductive layer)
Next, the reactivity using a sintered body material of 90 wt% indium oxide and 10 wt% tin oxide in an atmosphere of 0.4 Pa composed of 98% argon gas and 2% oxygen gas on the cured resin layer. An ITO layer (light refractive index of 2.00) having a thickness of 20 nm was formed by sputtering to obtain a transparent conductive film.
 (ITO膜の結晶化)
 140℃で90分間の加熱処理を実施してITO層を結晶化させ、実施例の透明導電性フィルムを作製した(図1参照)。
(Crystalization of ITO film)
A heat treatment at 140 ° C. for 90 minutes was performed to crystallize the ITO layer, thereby producing a transparent conductive film of the example (see FIG. 1).
 比較例1
 ゴム変性エポキシ樹脂(エポキシ樹脂骨格部分の重量平均分子量:2000)を主成分とするアデカフィルテラBUR-12Aを10重量部、アンチモン系硬化促進剤であるアデカフィルテラBUR-12Bを0.001重量部混合し、この混合物に対してメチルイソブチルケトンを5000重量部添加してコーティング溶液を調製した以外は、実施例1と同様にして、比較例の透明導電性フィルムを作製した。
Comparative Example 1
10 parts by weight of Adekafilterra BUR-12A mainly composed of rubber-modified epoxy resin (weight average molecular weight of epoxy resin skeleton part: 2000), 0.001 by weight of Adekafilterra BUR-12B which is an antimony-based curing accelerator A transparent conductive film of a comparative example was produced in the same manner as in Example 1 except that a coating solution was prepared by adding 5000 parts by weight of methyl isobutyl ketone to this mixture.
 比較例2
 アクリル変性エポキシ樹脂(エポキシ樹脂骨格部分の重量平均分子量:500)を主成分とするアデカフィルテラCRX-5を10重量部、亜鉛系硬化促進剤(アデカスタブ)を0.5重量部混合し、この混合物に対してメチルイソブチルケトンを5000重量部添加してコーティング溶液を調製した以外は、実施例1と同様にして、比較例の透明導電性フィルムを作製した。
Comparative Example 2
10 parts by weight of Adekafilterra CRX-5, whose main component is an acrylic-modified epoxy resin (weight average molecular weight of epoxy resin skeleton part: 500), and 0.5 parts by weight of a zinc-based curing accelerator (Adeka Stub) are mixed. A transparent conductive film of a comparative example was produced in the same manner as in Example 1 except that 5000 parts by weight of methyl isobutyl ketone was added to the mixture to prepare a coating solution.
 比較例3
 変性処理をしていないエポキシ樹脂(重量平均分子量:500)を主成分とするアデカフィルテラCRX-3を10重量部、亜鉛系硬化促進剤(アデカスタブ)を0.5重量部混合し、この混合物に対してメチルイソブチルケトンを5000重量部添加してコーティング溶液を調製した以外は、実施例1と同様にして透明導電性フィルムを作製した。
Comparative Example 3
10 parts by weight of Adekafilterra CRX-3 mainly composed of an unmodified epoxy resin (weight average molecular weight: 500) and 0.5 parts by weight of a zinc-based curing accelerator (Adeka Stub) are mixed together. A transparent conductive film was produced in the same manner as in Example 1 except that 5000 parts by weight of methyl isobutyl ketone was added to prepare a coating solution.
 実施例および比較例の透明導電性フィルムについて、下記評価を行った。結果を表1に示す。 The following evaluation was performed on the transparent conductive films of Examples and Comparative Examples. The results are shown in Table 1.
 (1)PETと硬化樹脂層との密着力
 丸本ストルアス社製のエポフィックスキット(主剤・硬化剤)を使用し、主剤と硬化剤を重量比15:2で混合して、混合樹脂を得た。SUS基板に混合樹脂を滴下して、続いて、25mm×70mmにカットした実施例および比較例の透明導電性フィルムのITO面を混合樹脂と貼り合せた。その後、混合樹脂を硬化させるため、60℃で150分加熱した。これにより、図6に示すように、SUS基板7の上に接着剤(混合樹脂)8を介して透明導電性フィルム10が固定された密着力測定サンプルを得た。
(1) Adhesive strength between PET and cured resin layer Using a Marumoto Struers Epofix kit (main agent / curing agent), the main agent and the curing agent are mixed at a weight ratio of 15: 2 to obtain a mixed resin. It was. The mixed resin was dropped onto the SUS substrate, and then the ITO surfaces of the transparent conductive films of Examples and Comparative Examples cut to 25 mm × 70 mm were bonded to the mixed resin. Then, in order to harden mixed resin, it heated at 60 degreeC for 150 minutes. Thereby, as shown in FIG. 6, an adhesion measurement sample in which the transparent conductive film 10 was fixed on the SUS substrate 7 via the adhesive (mixed resin) 8 was obtained.
 サンプルの透明導電性フィルム10を、剥離試験機(卓上型3連オートグラフ AG-50KNXD、島津製作所社製)を用いて、0.3m/minの速度で180°の角度で剥離した(図6参照)。剥離の際に発生する力を密着力として測定した。 The sample transparent conductive film 10 was peeled off at an angle of 180 ° at a speed of 0.3 m / min using a peeling tester (desktop type triple autograph AG-50KNXD, manufactured by Shimadzu Corporation) (FIG. 6). reference). The force generated during peeling was measured as the adhesion force.
 なお、装置の測定上限密着力値は50Nとなっているため、透明導電性フィルムが途中で破断して測定値が上限値を超えて測定不可となった場合は、「50N/25mm以上」とした。 In addition, since the measurement upper limit adhesion force value of the apparatus is 50 N, when the transparent conductive film is broken in the middle and the measurement value exceeds the upper limit value and measurement is impossible, “50 N / 25 mm or more” did.
 また、上記測定後において、SUS基板上のフィルムの残片形を確認した。残片形が、貼り合せた際の25mm×70mmのサイズの形状を維持していた場合は、「残片形維持」と評価し、そのサイズの形状を維持せずに、断片のみが残っていた場合は、「破断」と評価した。なお、「破断」では、透明導電性フィルムが界面剥離ではなく凝集破壊されており、PET層-硬化樹脂層間の密着力が良好であることが分かる。 Also, after the above measurement, the shape of the film residue on the SUS substrate was confirmed. When the shape of the remnant shape has been maintained at the size of 25 mm x 70 mm when pasted together, it is evaluated as "maintenance of the remnant shape", and only the fragments remain without maintaining the shape of that size Was evaluated as “break”. In the case of “break”, it can be seen that the transparent conductive film is not cohesive but is cohesive and has good adhesion between the PET layer and the cured resin layer.
 (2)耐湿熱性
 ITO層の表面抵抗値(Ω/□)をJIS K7194(1994年)に準じて四端子法により測定し、これを初期の表面抵抗値Rとした。次いで、85℃、85%RHに設定した恒温恒湿機(エスペック社製、LHL-113)に240時間放置した際の表面抵抗値R240を測定した。これらより、抵抗変化率としてR240/Rを求めた。抵抗変化率が1.5以下であった場合を「○」、1.5を越えた場合を「×」として評価した。
(2) Moisture and heat resistance The surface resistance value (Ω / □) of the ITO layer was measured by a four-terminal method according to JIS K7194 (1994), and this was defined as the initial surface resistance value R0 . Next, the surface resistance value R 240 when left in a thermo-hygrostat (manufactured by Espec Corp., LHL-113) set at 85 ° C. and 85% RH for 240 hours was measured. From these, R240 / R0 was calculated | required as resistance change rate. The case where the resistance change rate was 1.5 or less was evaluated as “◯”, and the case where the resistance change rate exceeded 1.5 was evaluated as “X”.
 (3)耐溶剤性
 ITO層がストライプ状にパターニングされた実施例および比較例の透明導電性フィルムを用いた(図2参照)。このパターニングされた透明導電フィルムを、イソプロパノールに25℃で10分間浸漬した後に取り出し、純水にて洗浄し、乾燥した。そのときの硬化樹脂層の表面を目視にて観察した。外観に変化がなかった場合を「○」、粗化ないし変色等の外観の変化がわずかに観察された場合を「△」、粗化ないし変色等の外観の変化が広範囲にわたって観察された場合を「×」として評価した。
(3) Solvent resistance The transparent conductive films of Examples and Comparative Examples in which the ITO layer was patterned in a stripe shape were used (see FIG. 2). The patterned transparent conductive film was immersed in isopropanol at 25 ° C. for 10 minutes, then taken out, washed with pure water, and dried. The surface of the cured resin layer at that time was visually observed. “○” when there is no change in appearance, “△” when a change in appearance such as roughening or discoloration is observed, and a case where a change in appearance such as roughening or discoloration is observed over a wide range. Evaluated as “x”.
 (4)アルカリ耐久性
 パターニングされた透明導電性フィルムを、アルカリ溶液(5wt%)に50℃で5分間浸漬した後に取り出し、純水にて洗浄し、乾燥した。そのときの硬化樹脂層の表面を目視にて観察した。外観に変化がなかった場合を「○」、粗化ないし変色等の外観の変化がわずかに観察された場合を「△」、粗化ないし変色等の外観の変化が広範囲にわたって観察された場合を「×」として評価した。
(4) Alkali Durability The patterned transparent conductive film was immersed in an alkaline solution (5 wt%) at 50 ° C. for 5 minutes, then taken out, washed with pure water, and dried. The surface of the cured resin layer at that time was visually observed. “○” when there is no change in appearance, “△” when a change in appearance such as roughening or discoloration is observed, and a case where a change in appearance such as roughening or discoloration is observed over a wide range. Evaluated as “x”.
 (5)オリゴマーの滲出の有無
 パターニングされた透明導電性フィルムに対し160℃で2時間加熱処理を実施した。そのときの硬化樹脂層からのオリゴマーの滲出を目視にて確認した。オリゴマーの滲出が観察されなかった場合を「○」、オリゴマーの滲出がわずかに観察された場合を「△」、オリゴマーの滲出が広範囲にわたって観察された場合を「×」として評価した。
(5) Existence of oligomer exudation The patterned transparent conductive film was subjected to heat treatment at 160 ° C. for 2 hours. The oligomer exudation from the cured resin layer at that time was confirmed visually. The case where oligomer exudation was not observed was evaluated as “◯”, the case where oligomer exudation was slightly observed was evaluated as “Δ”, and the case where oligomer exudation was observed over a wide range was evaluated as “x”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、実施例の透明導電性フィルムは、優れた耐湿熱性を有しつつ、かつ、硬化樹脂層とPETとの密着力が高いことが認められる。また、実施例の透明導電性フィルムは、耐薬品性にも優れ、また、硬化樹脂層からのオリゴマーの滲出も抑制できることが認められる。 From Table 1, it can be seen that the transparent conductive films of the examples have excellent moisture and heat resistance and high adhesion between the cured resin layer and PET. Moreover, it is recognized that the transparent conductive film of an Example is excellent also in chemical resistance, and can suppress the ooze of the oligomer from a cured resin layer.
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。 Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an example and should not be interpreted in a limited manner. Variations of the present invention that are apparent to one of ordinary skill in the art are within the scope of the following claims.
本発明の透明導電性フィルムおよびタッチパネルは、各種の工業製品に適用することができ、例えば、画像表示装置などに好適に用いられる。 The transparent conductive film and touch panel of the present invention can be applied to various industrial products, and are suitably used for image display devices, for example.
 1 透明樹脂フィルム
 2 硬化樹脂層
 3 透明導電層
 4 粘着剤層
 5 透明基体
 6 ハードコート層
 7 SUS基板
 8 接着剤
 9 無機物層
10 透明導電性フィルム
 
DESCRIPTION OF SYMBOLS 1 Transparent resin film 2 Cured resin layer 3 Transparent conductive layer 4 Adhesive layer 5 Transparent base 6 Hard coat layer 7 SUS substrate 8 Adhesive 9 Inorganic substance layer 10 Transparent conductive film

Claims (7)

  1.  透明樹脂フィルム、硬化樹脂層および透明導電層をこの順に備え、
     前記硬化樹脂層は、重量平均分子量が3000以上のエポキシ樹脂を含有する樹脂組成物を硬化してなる硬化物膜であることを特徴とする、透明導電性フィルム。
    A transparent resin film, a cured resin layer, and a transparent conductive layer are provided in this order,
    The said cured resin layer is a hardened | cured material film formed by hardening | curing the resin composition containing the epoxy resin whose weight average molecular weight is 3000 or more, The transparent conductive film characterized by the above-mentioned.
  2.  前記硬化樹脂層の厚みが、150nm以下であることを特徴とする、請求項1に記載の透明導電性フィルム。 2. The transparent conductive film according to claim 1, wherein the thickness of the cured resin layer is 150 nm or less.
  3.  前記エポキシ樹脂が、ゴム変性エポキシ樹脂であることを特徴とする、請求項1に記載の透明導電性フィルム。 The transparent conductive film according to claim 1, wherein the epoxy resin is a rubber-modified epoxy resin.
  4.  前記樹脂組成物が、硬化促進剤を含有し、前記硬化促進剤が、アンチモンを含有することを特徴とする、請求項1に記載の透明導電性フィルム。 The transparent conductive film according to claim 1, wherein the resin composition contains a curing accelerator, and the curing accelerator contains antimony.
  5.  前記透明樹脂フィルムに対する前記硬化樹脂層の密着力が、50N/25mm以上であることを特徴とする、請求項1に記載の透明導電性フィルム。 2. The transparent conductive film according to claim 1, wherein the adhesive strength of the cured resin layer to the transparent resin film is 50 N / 25 mm or more.
  6.  前記透明導電層を温度85℃、湿度85%の雰囲気下に240時間置いた前後での表面抵抗値の変化率が1.5以下であることを特徴とする、請求項1に記載の透明導電性フィルム。 2. The transparent conductive layer according to claim 1, wherein a rate of change of the surface resistance value before and after the transparent conductive layer is placed in an atmosphere of a temperature of 85 ° C. and a humidity of 85% for 240 hours is 1.5 or less. Sex film.
  7.  請求項1に記載の透明導電性フィルムを備えることを特徴とする、タッチパネル。 A touch panel comprising the transparent conductive film according to claim 1.
PCT/JP2017/020616 2016-06-10 2017-06-02 Transparent conductive film and touch panel WO2017213046A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780035698.2A CN109313962A (en) 2016-06-10 2017-06-02 Transparent conducting film and touch panel
KR1020187031334A KR102545339B1 (en) 2016-06-10 2017-06-02 Transparent conductive film and touch panel

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-116175 2016-06-10
JP2016116175 2016-06-10
JP2016-221744 2016-11-14
JP2016221744A JP6796460B2 (en) 2016-11-14 2016-11-14 Transparent conductive film and touch panel
JP2016248125A JP6789801B2 (en) 2016-06-10 2016-12-21 Transparent conductive film and touch panel
JP2016-248125 2016-12-21

Publications (1)

Publication Number Publication Date
WO2017213046A1 true WO2017213046A1 (en) 2017-12-14

Family

ID=60578618

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/020596 WO2017213043A1 (en) 2016-06-10 2017-06-02 Transparent conductive film and touch panel
PCT/JP2017/020616 WO2017213046A1 (en) 2016-06-10 2017-06-02 Transparent conductive film and touch panel

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020596 WO2017213043A1 (en) 2016-06-10 2017-06-02 Transparent conductive film and touch panel

Country Status (1)

Country Link
WO (2) WO2017213043A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150508A (en) * 1984-01-18 1985-08-08 日本写真印刷株式会社 Method of producing transparent electrode board
JPH07106617A (en) * 1993-09-30 1995-04-21 Canon Inc Transparent electrode, formation thereof and solar cell employing same
JPH11149826A (en) * 1997-11-17 1999-06-02 Sumitomo Bakelite Co Ltd Conductive film
JP2004118144A (en) * 2002-09-30 2004-04-15 Kimoto & Co Ltd Conductive anti-reflection film
JP2010269504A (en) * 2009-05-21 2010-12-02 Toyobo Co Ltd Transparent electroconductive laminated film, transparent electroconductive laminated sheet and touch panel
JP2014229392A (en) * 2013-05-20 2014-12-08 東洋紡株式会社 Transparent electroconductive film and electrostatic capacitance-style touch panel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150508A (en) * 1984-01-18 1985-08-08 日本写真印刷株式会社 Method of producing transparent electrode board
JPH07106617A (en) * 1993-09-30 1995-04-21 Canon Inc Transparent electrode, formation thereof and solar cell employing same
JPH11149826A (en) * 1997-11-17 1999-06-02 Sumitomo Bakelite Co Ltd Conductive film
JP2004118144A (en) * 2002-09-30 2004-04-15 Kimoto & Co Ltd Conductive anti-reflection film
JP2010269504A (en) * 2009-05-21 2010-12-02 Toyobo Co Ltd Transparent electroconductive laminated film, transparent electroconductive laminated sheet and touch panel
JP2014229392A (en) * 2013-05-20 2014-12-08 東洋紡株式会社 Transparent electroconductive film and electrostatic capacitance-style touch panel

Also Published As

Publication number Publication date
WO2017213043A1 (en) 2017-12-14

Similar Documents

Publication Publication Date Title
KR101511093B1 (en) Surface treating film, surface protection film, and precision electrical and electronic components attached with the same
KR20150016893A (en) Transparent conductive film having protection film
KR20120117646A (en) Transparent conductive film with adhesive layer, laminate film and touch panel
KR101674846B1 (en) Method for producing laminated film
CN107408421B (en) Transparent conductor and touch panel
JP2015135606A (en) transparent conductor and touch panel
CN102893343A (en) Zinc oxide-based conductive multilayer structure, process for producing same, and electronic device
JP2019023274A (en) Conductive coating liquid composition and transparent conductive film for flexible display comprising conductive layer produced from composition
KR20150116396A (en) Low refractive composition, method for producing the same, and transparent conductive film
CN104350121A (en) Adhesive, and transparent substrate using same
TWI729149B (en) Transparent conductive film and touch panel
TWI780239B (en) Transparent Conductive Film
JP2016134320A (en) Transparent conductive body and touch panel
JP6390395B2 (en) Transparent conductor and touch panel
WO2017213046A1 (en) Transparent conductive film and touch panel
CN110088714A (en) Transparent conducting film with carrier thin film and the touch panel using it
KR101465071B1 (en) A flexible transparent electrode using cesium and a flexible transparent electrode produced thereby
JP6796460B2 (en) Transparent conductive film and touch panel
JP6789801B2 (en) Transparent conductive film and touch panel
JP2003296031A (en) Transparent conductive film for touch panel
WO2023027034A1 (en) Circuit sheet, sensor sheet, and film-forming composition
KR102300534B1 (en) Conductive Film
JP5265319B2 (en) Protective sheet
KR102024262B1 (en) Conductive Film
KR20240024571A (en) Transparent electrode film, manufacturing method thereof and device including the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187031334

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17810224

Country of ref document: EP

Kind code of ref document: A1