WO2017212961A1 - Boron-containing polymer and use thereof - Google Patents

Boron-containing polymer and use thereof Download PDF

Info

Publication number
WO2017212961A1
WO2017212961A1 PCT/JP2017/019845 JP2017019845W WO2017212961A1 WO 2017212961 A1 WO2017212961 A1 WO 2017212961A1 JP 2017019845 W JP2017019845 W JP 2017019845W WO 2017212961 A1 WO2017212961 A1 WO 2017212961A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron
containing polymer
polymer compound
nitrogen
ring
Prior art date
Application number
PCT/JP2017/019845
Other languages
French (fr)
Japanese (ja)
Inventor
武士 大前
英樹 羽田
Original Assignee
綜研化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 綜研化学株式会社 filed Critical 綜研化学株式会社
Publication of WO2017212961A1 publication Critical patent/WO2017212961A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/856Thermoelectric active materials comprising organic compositions

Definitions

  • the present invention relates to a boron-containing polymer compound and its use.
  • the polymer organic semiconductor has an advantage that an excellent film quality can be easily obtained upon application and the device characteristics are easily stabilized. It is known that in order to make the high molecular organic semiconductor more mobile, it is desirable that a unit structure having a large ⁇ -conjugated area is introduced and that the high molecular weight semiconductor be a higher molecular weight body.
  • Non-Patent Document 1 it is disclosed in Non-Patent Document 1 that the LUMO / HOMO level is deepened by introducing a boron-nitrogen coordination bond structure, and it is disclosed in Patent Document 1 that the organic semiconductor performance can be improved. ing.
  • a polymer organic semiconductor having a unit having a large ⁇ -conjugated area has a problem in handling in the coating process because its solubility is lowered when the molecular weight is increased and the stability in the solution is deteriorated accordingly.
  • the molecular arrangement has a great influence on the properties, so unless the chain-like substituents are placed at appropriate positions in the structure, the arrangement and arrangement of the molecules in the organic semiconductor film after drying is not appropriate. Disappear.
  • the molecular arrangement since the molecular arrangement also has a great influence on mobility, even if solubility is improved, it does not necessarily lead to further improvement in mobility. Therefore, it is difficult to achieve both solubility and mobility.
  • Patent Document 1 only provides a dimer structure.
  • Non-Patent Document 1 although polymerization was successful, the side chain was not appropriate and the ⁇ -conjugated area of the unit structure was small, so that sufficient semiconductor characteristics were not obtained.
  • the present invention has been made in view of such circumstances, and the LUMO / HOMO level is deep, and the unit structure has a wide ⁇ -conjugated plane, and can have a high molecular weight due to high solubility.
  • the present invention provides a boron-containing polymer compound for an organic semiconductor that can be suitably used for applications such as an organic thin film solar cell, organic EL, organic transistor, organic memory, electronic paper, thermoelectric conversion element, and optical sensor.
  • the structure W is represented by the following formula (1) including a structure W having at least two boron-nitrogen coordination bonds and a structure ⁇ that is a divalent substituent having a conjugated structure.
  • a high molecular compound containing a structural unit m represents 0 or 1;
  • the structure W is represented by the following formula (2) or (3): Rings X 1 , X 2 , and Z represent a single ring or a condensed ring having a conjugated structure, Rings Y 1 and Y 2 are 5-membered rings having the boron-nitrogen coordination bond, any one of ⁇ 1 and ⁇ 3 is a nitrogen atom, one of ⁇ 2 and ⁇ 4 is a nitrogen atom, R 1 to R 4 may be the same or different, may be bonded to boron via another skeleton, and may have at least a linear or branched alkyl group having 10 to 40 carbon atoms that may be substituted.
  • the present inventor has studied a boron-containing polymer compound having excellent mobility. As a result, at least two boron-nitrogen coordination bonds are introduced into a unit structure having a wide conjugate plane, and an alkyl group is contained on the boron atom. It has been found that by introducing a substituent, a polymer compound having a deep LUMO / HOMO level and a high molecular weight contributing to improvement in mobility and having a wide conjugated plane in the unit structure can be provided.
  • the polymer compound can be used as an organic semiconductor.
  • the weight average amount is 2 ⁇ 10 4 to 1 ⁇ 10 6 .
  • W is bonded to adjacent W or ⁇ via a 5-membered ring in W.
  • the organic semiconductor containing said boron containing high molecular compound is provided.
  • the boron-containing polymer compound according to an embodiment of the present invention can be used as an organic semiconductor, and is a polymer compound represented by the following formula (1).
  • the unit structure includes a structure ⁇ which is a divalent substituent having a conjugated structure in addition to W. That is, m is 0 or 1, preferably 1. This is because it is assumed that the structure containing ⁇ has both structures serving as a donor and an acceptor in the unit structure, the interaction between the molecular chains tends to be strong, and the mobility is improved. .
  • the unit structure represented by W in the above formula (1) is a structure represented by the following formula (2) or (3) having at least two boron-nitrogen coordination bonds.
  • the electronic bias between boron and nitrogen is thought to strengthen the interaction between the molecular chains.
  • the electronic bias becomes larger and the molecule It is considered that the mobility is improved by the stronger interaction between the chains.
  • W is composed of rings X 1 , X 2 , Y 1 , Y 2 , and Z, and rings X 1 , X 2 , and Z represent a single ring or a condensed ring having a conjugated structure.
  • ⁇ 1 and ⁇ 2 may be the same as or different from each other, and are preferably the same. Further, ⁇ 3 and ⁇ 4 may be the same or different from each other, preferably the same. When they are the same, there is an advantage that the synthesis is easier than when they are different, and since the target property is high, the arrangement and arrangement of the molecular chains are likely to be appropriate, and the mobility tends to be high.
  • One of ⁇ 1 and ⁇ 3 is a nitrogen atom that forms a boron-nitrogen coordination bond with the boron atom in ring Y 1 , and the other is not particularly limited, but is, for example, a carbon atom.
  • One of ⁇ 2 and ⁇ 4 is a nitrogen atom that forms a boron-nitrogen coordination bond with a boron atom in the ring Y 2 , and the other is not particularly limited, but is, for example, a carbon atom.
  • Rings X 1 and X 2 are monocyclic or condensed rings having a conjugated structure and may contain a nitrogen atom that forms a boron-nitrogen coordination bond.
  • Rings X 1 and X 2 may not contain a hetero atom, but are preferably a hetero ring containing a hetero atom.
  • the heterocyclic ring is, for example, pyrrole, furan, thiophene, selenophene, imidazole, pyrazole, oxazole, thiazole, pyridine, pyrimidine, pyridazine, pyrazine and the like, and these are condensed structures, more preferably containing a sulfur atom.
  • thiophene thienothiophene
  • benzothiophene benzodithiophene
  • thiazole thiazolothiazole and the like, more preferably thiophene or thiazole.
  • rings X 1 and X 2 contain a nitrogen atom that forms a boron-nitrogen coordination bond with the boron atom in the rings Y 1 and Y 2
  • examples thereof include imidazole, pyrazole, thiazole, and pyridine.
  • Preferred are thiazole and pyridine, and more preferred are rings X 1 and X 2 containing a sulfur atom, for example, thiazole.
  • the monocyclic ring or condensed ring of the rings X 1 and X 2 may be substituted as long as the semiconductor properties are not impaired, and the substituent is not limited, but specifically, a linear, branched, or cyclic alkyl Group, alkoxy group, alkylthio group, sulfo group, hydroxy group, carboxy group, amino group, amide group, ester group, phenyl group, etc., and substituted with sulfo group, hydroxy group, carboxy group, amino group, halogen group It may be a linear or branched alkyl group, an alkoxyalkyl group, an alkylene oxide group, a phenyl group or the like, and may have a plurality of substituents.
  • W is bonded to adjacent W or ⁇ via a 5-membered ring or 6-membered ring in W, preferably bonded via a 5-membered ring. This is because in the case of a five-membered ring, there is little steric repulsion with the adjacent W or ⁇ , it is easy to form a continuous planar structure, and the mobility is considered to be improved.
  • Ring Z is a monocyclic or condensed ring having a conjugated structure and may contain a nitrogen atom forming a boron-nitrogen coordination bond. Ring Z may or may not contain heteroatoms, such as benzene, naphthalene, anthracene, pyrazine, thienothiophene, benzodithiophene, thiazolothiazole, benzobisthiazole, and the like.
  • ring Z contains a nitrogen atom that forms a boron-nitrogen coordination bond with the boron atom in rings Y 1 and Y 2
  • ring Z is, for example, pyrazine, thiazolothiazole, naphthyridine, benzobisthiazole, pyrazino Bisthiazole and the like.
  • Preferred is thiazolothiazole or benzobisthiazole.
  • Rings Y 1 and Y 2 are 5-membered rings having a boron-nitrogen coordination bond.
  • the boron atoms forming the boron-nitrogen coordination bond in the rings Y 1 and Y 2 have alkyl group-containing substituents R 1 to R 4 which may be the same or different.
  • the two boron atoms may be located on different sides as in the above formula (2), or may be located on the same side as in the above formula (3). You may do it.
  • the appropriate position differs depending on the substituents introduced into each ring, so that the position is not limited to any one. In any case, it has two boron-nitrogen coordination bonds, and the same effect is considered to be achieved. . However, from the viewpoint of ease of synthesis, it is considered that it is often advantageous to be located on different sides as in the above formula (2).
  • R 1 to R 4 may be the same or different, and are monovalent substituents having at least one linear or branched alkyl group having 10 to 40 carbon atoms which may be substituted.
  • the alkyl group may be directly bonded to the boron atom or may be bonded via another skeleton.
  • the number of carbon atoms of the alkyl group is preferably 12 or more, more preferably 14 or more.
  • the number of carbon atoms of the alkyl group is preferably 30 or less, more preferably 25 or less.
  • the said carbon number is 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 32, 33, 34, 35, 36, 37, 38, 39, 40, and may be within a range between any two of the numerical values exemplified here.
  • the solubility in a solvent mainly means the solubility in a halogen solvent, an aromatic solvent, etc., specifically, chloroform, chlorobenzene, dichlorobenzene, toluene, mesitylene, anisole, tetralin, cyclohexyl. It means solubility in benzene.
  • Examples of the substituent that may substitute the alkyl group in R 1 to R 4 include a sulfo group, a hydroxy group, an alkoxy group, an alkylthio group, a carboxy group, an ester group, an amino group, an amide group, a halogen group, A phenyl group and the like;
  • examples of the other skeleton include heteroatoms such as oxygen, nitrogen, and sulfur, a benzene ring, a naphthalene ring, an azulene ring, and an anthracene ring.
  • Aromatic ring such as phenanthrene ring, pyrene ring, chrysene ring, tetracene ring, triphenylene ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, pentacene ring, perylene ring, pentaphen ring, picene ring, pyranthrene ring, pyridine , Imidazole, thiophene and the like, and a plurality of them may be combined. Further, an alkyl chain having 1 to 6 carbon atoms may be interposed between another skeleton and boron.
  • R 1 to R 4 are preferably such that a linear or branched alkyl group is directly bonded to boron, or bonded to boron through oxygen or sulfur and / or a phenyl group, benzyl group, phenethyl group, Preferably, a linear or branched alkyl group is directly bonded to boron, and more preferably, a linear alkyl group is directly bonded to boron.
  • Synthesis of boron-containing compounds can be synthesized by various methods.
  • W represented by the above formula (2) can be synthesized by the following reaction formula (5) or It can be synthesized by the route of reaction formula (6).
  • R 1 to R 4 in Formula (5) are the same as in Chemical Formula (2), and R 5 represents halogen.
  • R 1 to R 4 in formula (6) are the same as in chemical formula (2), and R 5 represents halogen.
  • the reaction vessel is not particularly limited, and glass, Teflon (registered trademark), or the like can be used.
  • the reaction solvent is not particularly limited, and may be any solvent in which the reaction proceeds, and examples thereof include tetrahydrofuran, tert-butyl methyl ether, acetonitrile, phenol, benzene, toluene and the like.
  • the inert gas includes nitrogen, argon, helium and the like.
  • the stirring method is not particularly limited, but a stirrer or a shaker may be used.
  • the purification step may be any step that can isolate the target product, and known methods can be used. Specific examples include separation extraction, isolation by column chromatography, and recrystallization. Isolation and purification may be performed in combination.
  • the base is not particularly limited, and may be any base that allows BN crosslinking reaction to proceed.
  • Examples of the base include alkyl lithium, and specific examples include methyl lithium, n-butyl lithium, sec-butyl lithium. Tert-butyllithium and the like.
  • the cooling temperature when adding the base is ⁇ 100 ° C. to ⁇ 50 ° C., preferably ⁇ 90 ° C. to ⁇ 70 ° C. Specifically, this temperature is, for example, ⁇ 100, ⁇ 90, ⁇ 80, ⁇ 70, ⁇ 60, or 50 ° C., and may be within a range between any two of the numerical values exemplified here.
  • the stirring for several hours after the addition of the base is not particularly limited, but is, for example, 1 to 6 hours, and preferably 1 to 4 hours. Specifically, this time is, for example, 1, 2, 3, 4, 5 or 6 hours, and may be within a range between any two of the numerical values exemplified here.
  • the substituted borane is not particularly limited as long as it is a borane having substituents R 1 to R 4 that can be used in the present invention and in which a BN crosslinking reaction proceeds.
  • the stirring time after adding the borane is not particularly limited, but is, for example, 1 to 24 hours, preferably 8 to 24 hours. Specifically, this time is, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 18, 21 or 24 hours. It may be within the range between any two.
  • the stirring temperature after adding the borane is ⁇ 78 ° C. to 25 ° C., preferably 0 ° C. to 25 ° C. Specifically, this temperature is, for example, 0, 5, 10, 15, 20, or 25 ° C., and may be within a range between any two of the numerical values exemplified here.
  • boron tribromide is used as borane
  • BBr 2 is converted into a crosslinked product
  • a Grignard reaction is performed using a Grignard reagent such as alkylmagnesium bromide to introduce substituents R 1 to R 4 . May be.
  • ⁇ in the above formula (1) represents a divalent substituent having a conjugated structure, and is preferably represented by the following formula (7).
  • the group is unsubstituted or substituted with one or more groups R 6 and a and b may be the same or different and represent an integer of 0-2.
  • R 6 represents H, a halogen, a cyano group, or a linear or branched alkyl group having 1 to 40 carbon atoms, an alkoxy group, or an alkylthio group.
  • the site bonded to W is —CH ⁇ CH—, —C ⁇ C—, or a 5-membered ring. This is because in these cases, there is little steric repulsion with the bonded W, it is easy to form a continuous planar structure, and the mobility is considered to be improved.
  • the structure shown in the following formula (8) is exemplified, but not limited thereto.
  • the boron-containing polymer compound of the present invention may contain a copolymer containing the structure represented by the chemical formula (1) in the polymer compound, but in order to further strengthen the interaction between the molecular chains.
  • the weight average molecular weight (Mw) of the boron-containing polymer compound of the present invention is a value in terms of polystyrene measured by gel permeation chromatography (hereinafter referred to as “GPC”), and is usually 2 ⁇ 10 4 to 2 ⁇ . 10 8 .
  • the weight average molecular weight of the polymer compound is preferably 2 ⁇ 10 4 to 1 ⁇ 10 6 , more preferably 3 ⁇ 10 4 to 5 ⁇ 10. 5 .
  • the method for polymerizing the boron-containing polymer compound including the above formula (1) is not particularly limited, but Suzuki coupling, Still coupling Ullmann reaction, Gracer reaction, Heck reaction, Negishi coupling, Sonogashira coupling, Kumada Coupling and the like can be used, and Suzuki coupling and Stille coupling are preferable in terms of ease of synthesis and few restrictions on the monomers that can be used.
  • W and / or ⁇ bonded with boronic acid or a boronic acid ester and halogenated W and / or ⁇ are used as raw materials in the presence of a palladium catalyst and a base. It is preferable to carry out the reaction in a reaction system in which the catalyst is not deactivated in an inert atmosphere such as argon gas or nitrogen gas. For example, it is preferable to carry out in a system sufficiently substituted with argon gas, nitrogen gas or the like.
  • W and / or ⁇ bonded with organotin is reacted with halogenated W and / or ⁇ in the presence of a palladium catalyst. It is preferable to carry out the reaction in a reaction system in which the catalyst is not deactivated under an inert atmosphere such as argon gas or nitrogen gas. For example, it is preferable to carry out in a system sufficiently substituted with argon gas, nitrogen gas or the like.
  • boron-containing polymer compound of the present invention is not limited, but it can be used as a p-type organic semiconductor, an n-type organic semiconductor, an ambipolar semiconductor, an organic thin film solar cell, organic EL, organic transistor, organic memory, electronic It can be suitably used for applications such as paper, thermoelectric conversion elements, and optical sensors.
  • the weight average molecular weight of the polymer compound (polymer) was determined by using a high-speed GPC device (manufactured by Tosoh Corporation, model HLC-8320GPC ECcoSEC), an ultraviolet absorption detector (manufactured by Tosoh Corporation, model UV-8320).
  • the measurement solvent was chloroform
  • the GPC column was TSKguardcolumn HHR-H ⁇ 1 + TSKgel GMHHR-H ⁇ 1 (both manufactured by Tosoh Corporation).
  • ⁇ Evaluation of solubility> The boron-containing polymer compound was mixed with chloroform at 0.5% by weight and stirred at 20 ° C. for 15 minutes. A sample that was completely dissolved was marked with ⁇ , and a sample that had undissolved was marked with ⁇ .
  • HOMO ionization potential
  • a solution prepared by dissolving a boron-containing polymer compound (P1) in chloroform at a concentration of 5 mg / g was dropped onto a conductive film of glass with a fluorine-doped tin oxide film, and dried at room temperature in the atmosphere as a measurement sample. The ionization potential was measured using an ionization potential measuring apparatus (PYS-201, manufactured by Sumitomo Heavy Industries, Ltd.).
  • the mobility was measured by evaluating a field effect transistor (TFT).
  • TFT field effect transistor
  • ZEOCOAT ES2110-10 manufactured by Nippon Zeon Co., Ltd.
  • spin coating 500 rpm / 3 sec. And 2000 rpm / 15 sec.
  • a glass substrate on which a Cr gate electrode having a thickness of 500 mm was formed was formed, and 90 ° C. for 2 min. After heating at 150 ° C. for 1 hr.
  • a gate insulating film was formed by heating at Next, a boron-containing polymer compound (P1) solution (0.5 wt%, chlorobenzene solvent) is applied onto the substrate by a spin coating method (1000 rpm, 60 sec.), And is heated at 80 ° C. for 30 minutes on a hot plate in nitrogen. .
  • An organic semiconductor thin film was formed by annealing.
  • gold was vacuum-deposited to a film thickness of 50 nm using a metal mask to form a source electrode and a drain electrode having a channel length of 50 ⁇ m, and a bottom gate / top contact type organic thin film transistor was manufactured.
  • the organic transistor fabricated as described above was measured for current-voltage (IV) characteristics in the atmosphere, and the charge mobility was determined from the saturation region.
  • reaction solution was returned to room temperature and stirred at room temperature for 1 hour. After concentration of the reaction solution, 0.39 g (0.24 mmol) of the boron-containing compound (A1-2) was obtained as a pale orange solid in a yield of 79% by column chromatography using a developing solvent chloroform.
  • Synthesis Example 2 Synthesis of boron-containing compounds A2 and A2-2 / Synthesis of boron-containing compound A2
  • dimesitylfluoroborane was used as a raw material instead of trihexadecylborane.
  • 0.463 g (0.543 mmol) was used as a yellow solid in 28% yield.
  • Example 1 Synthesis and Evaluation of Boron-Containing Polymer Compound (P1) 0.10 g (0.0624 mmol) of boron-containing compound (A1-2), 5,5′-dibromo-2, 2′-bithiophene (Tokyo Chemical Industry) 20.2 mg (0.0624 mmol), tris (dibenzylideneacetone) dipalladium 2.9 mg (5 mol%), tri (o-tolyl) phosphine 1.9 mg (10 mol%), Chlorobenzene (5 mL) was added, and the mixture was stirred for 8 hours under heating under reflux.
  • P1 Synthesis and Evaluation of Boron-Containing Polymer Compound (P1) 0.10 g (0.0624 mmol) of boron-containing compound (A1-2), 5,5′-dibromo-2, 2′-bithiophene (Tokyo Chemical Industry) 20.2 mg (0.0624 mmol), tris (dibenzylideneacetone
  • Example 2 Synthesis and evaluation of boron-containing polymer compound (P2)
  • P1 synthesis method of boron-containing polymer compound (P1)
  • 5,5'-dibromo-2,2'-bithiophene Tokyo Chemical Industry
  • 5,5 ′′ -dibromo-2,2 ′: 5 ′, 2 ′′ -terthiophene Tokyo Chemical Industry
  • 63 mg of a boron-containing polymer compound (P2) was obtained as a dark purple solid.
  • the evaluation results are shown in Table 1.
  • Example 3 Synthesis and evaluation of boron-containing polymer compound (P3)
  • P3 In the synthesis method of boron-containing polymer compound (P1), instead of 5,5'-dibromo-2,2'-bithiophene (Tokyo Chemical Industry) Using 4,7-bis (5-bromo-2-thienyl) -2,1,3-benzothiadiazole, 52 mg of a boron-containing polymer compound (P3) was obtained as a blue solid.
  • the evaluation results are shown in Table 1.
  • Example 4 Synthesis and evaluation of boron-containing polymer compound (P4 )
  • P4 boron-containing polymer compound
  • P1 synthesis method of boron-containing polymer compound (P1), instead of 5,5'-dibromo-2,2'-bithiophene (Tokyo Chemical Industry)
  • 2,6-dibromodithieno [3,2-b: 2 ′, 3′-d] thiophene 58 mg of boron-containing compound (P4) was obtained as a dark purple solid.
  • the evaluation results are shown in Table 1.
  • Example 5 Synthesis and evaluation of boron-containing polymer compound (P5 )
  • P5 boron-containing polymer compound
  • P1 synthesis method of boron-containing polymer compound (P1), instead of 5,5'-dibromo-2,2'-bithiophene (Tokyo Chemical Industry)
  • a boron-containing polymer compound (P5) was obtained as a green solid.
  • Table 1 The evaluation results are shown in Table 1.
  • Compound B1 was prepared according to J.I. Mater. Chem. C, 2014, 2, 3457 and J.H. Mater. Chem. C, 2014, 2, 6376 were referred to and synthesized.
  • Comparative Example 2 Instead of the boron-containing polymer compound (P1) in Example 1, P3HT (manufactured by Soken Chemical Co., Ltd., Verazol HT, weight average molecular weight 47,000) was used, and the annealing conditions for transistor fabrication were 150 ° C. for 30 min. The evaluation was performed in the same manner except that it was changed to. The results are shown in Table 1.
  • P3HT manufactured by Soken Chemical Co., Ltd., Verazol HT, weight average molecular weight 47,000
  • Examples 1 to 5 all showed higher solubility in chloroform than the comparative examples.
  • semiconductor characteristics p-type semiconductor characteristics were exhibited, and a mobility of 10 ⁇ 4 cm 2 / Vs or higher and an on / off value of 10 4 or higher were exhibited.
  • Comparative Example 1 could not be polymerized, and Comparative Example 2 was undissolved in chloroform, and high solubility was not obtained.
  • semiconductor characteristics since the ionization potential is shallow, the atmospheric stability is low and the on / off value is low.

Landscapes

  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Thin Film Transistor (AREA)

Abstract

Provided is a boron-containing polymer for organic semiconductors which has deep LUMO/HOMO potentials and which contains a unit structure having a large π-conjugated plane and, despite this, can be made to have a high molecular weight due to the high solubility. According to some embodiments of the present invention, provided is a boron-containing polymer containing a structural unit represented by formula (1), which includes a structure W that has at least two boron-nitrogen coordination bonds and a structure π that is a divalent substituent having a conjugated structure. In formula (1), m is 0 or 1, and structure W is represented by formula (2) or (3). In formulae (2) and (3), rings X1, X2, and Z each represent a monocycle or fused ring having a conjugated structure, rings Y1 and Y2 each represent a five-membered ring having the boron-nitrogen coordination bond, either α1 or α3 is a nitrogen atom, either α2 or α4 is a nitrogen atom, and R1 to R4 may be the same or different and each represent a monovalent substituent which comprises at least one optionally substituted, linear or branched C10-40 alkyl group and which may have be bonded to the boron atom through another skeleton.

Description

ホウ素含有高分子化合物及びその用途Boron-containing polymer compound and use thereof
 本発明は、ホウ素含有高分子化合物及びその用途に関する。 The present invention relates to a boron-containing polymer compound and its use.
 有機半導体素子の実用化に際しては、高性能且つ、安価な塗布プロセスによる製造方法が適用可能な有機半導体が必要となる。中でも高分子有機半導体は、塗布に際して優れた膜質が得られ易く素子特性も安定し易いという利点がある。そして、高分子有機半導体をより高移動度にするには、π共役面積が大きい単位構造を導入し、且つ、より高分子量体であることが望ましいことが知られている。 When putting an organic semiconductor element into practical use, an organic semiconductor to which a high-performance and inexpensive manufacturing method using a coating process is applicable is necessary. Among them, the polymer organic semiconductor has an advantage that an excellent film quality can be easily obtained upon application and the device characteristics are easily stabilized. It is known that in order to make the high molecular organic semiconductor more mobile, it is desirable that a unit structure having a large π-conjugated area is introduced and that the high molecular weight semiconductor be a higher molecular weight body.
 一方、ホウ素-窒素配位結合構造の導入により、LUMO/HOMO準位を深化させることが非特許文献1に開示されており、有機半導体性能の向上も可能であることが特許文献1に開示されている。 On the other hand, it is disclosed in Non-Patent Document 1 that the LUMO / HOMO level is deepened by introducing a boron-nitrogen coordination bond structure, and it is disclosed in Patent Document 1 that the organic semiconductor performance can be improved. ing.
国際公開第2006/070817号International Publication No. 2006/070817
 しかしながら、π共役面積が大きいユニットを有する高分子有機半導体は、高分子量化すると溶解性が低下し、それに伴い、溶液での安定性が悪くなるため、塗布プロセスにおける取扱いに問題があった。一般に、より溶解性を高めるためには、π共役ユニットに鎖状置換基を結合させ、その鎖状置換基を伸長させることや、分岐させることなどが考えられる。しかし、有機半導体においては分子の配列が特性に大きな影響を与えるため、構造上適切な位置に鎖状置換基を配置させなければ、乾燥後の有機半導体膜内における分子の配置・配列が適切ではなくなる。有機半導体において、分子の配列も移動度に大きな影響を与えるため、溶解性が向上したとしても、更なる移動度の向上に繋がるとは限らない。従って、溶解性と移動度の両立は困難であった。 However, a polymer organic semiconductor having a unit having a large π-conjugated area has a problem in handling in the coating process because its solubility is lowered when the molecular weight is increased and the stability in the solution is deteriorated accordingly. In general, in order to further increase the solubility, it is conceivable to bond a chain substituent to the π-conjugated unit and extend or branch the chain substituent. However, in organic semiconductors, the molecular arrangement has a great influence on the properties, so unless the chain-like substituents are placed at appropriate positions in the structure, the arrangement and arrangement of the molecules in the organic semiconductor film after drying is not appropriate. Disappear. In an organic semiconductor, since the molecular arrangement also has a great influence on mobility, even if solubility is improved, it does not necessarily lead to further improvement in mobility. Therefore, it is difficult to achieve both solubility and mobility.
 また、LUMO/HOMO準位を深化させ、有機半導体の性能を向上させる可能性は示されているが、特許文献1では得られるのはダイマー構造にとどまる。非特許文献1ではポリマー化には成功しているものの、側鎖が適切ではなく、単位構造のπ共役面積も小さいため、十分な半導体特性が得られていなかった。 Moreover, although the possibility of deepening the LUMO / HOMO level and improving the performance of the organic semiconductor has been shown, Patent Document 1 only provides a dimer structure. In Non-Patent Document 1, although polymerization was successful, the side chain was not appropriate and the π-conjugated area of the unit structure was small, so that sufficient semiconductor characteristics were not obtained.
 本発明はこのような事情に鑑みてなされたものであり、LUMO/HOMO準位が深く、且つ、単位構造中に広いπ共役平面を有しながら、高い可溶性によって高分子量化も可能であり、有機薄膜太陽電池、有機EL、有機トランジスタ、有機メモリー、電子ペーパー、熱電変換素子、光センサなどの用途に対して好適に用いることができる有機半導体用ホウ素含有高分子化合物を提供するものである。 The present invention has been made in view of such circumstances, and the LUMO / HOMO level is deep, and the unit structure has a wide π-conjugated plane, and can have a high molecular weight due to high solubility. The present invention provides a boron-containing polymer compound for an organic semiconductor that can be suitably used for applications such as an organic thin film solar cell, organic EL, organic transistor, organic memory, electronic paper, thermoelectric conversion element, and optical sensor.
 本発明のいくつかの態様によれば、ホウ素-窒素配位結合を少なくとも2つ有する構造Wと、共役構造を持つ2価の置換基である構造πを含んだ下記式(1)で表される構造単位を含む高分子化合物であって
Figure JPOXMLDOC01-appb-C000004
mは0または1を表し、
構造Wは、下記式(2)または(3)で表され、
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
環X、X、Zは共役構造を持つ単環または縮合環を示し、
環Y、Yは前記ホウ素-窒素配位結合を有する5員環であり、
α及びαの何れか一方が窒素原子であり、
α及びαの何れか一方が窒素原子であり、
~Rは同一でも異なっていてもよく、他の骨格を介してホウ素に結合していてもよく、置換されていてもよい炭素数10~40の直鎖または分岐のアルキル基を少なくとも1つ有する1価の置換基を表す、
ホウ素含有高分子化合物が提供される。
According to some embodiments of the present invention, the structure W is represented by the following formula (1) including a structure W having at least two boron-nitrogen coordination bonds and a structure π that is a divalent substituent having a conjugated structure. A high molecular compound containing a structural unit
Figure JPOXMLDOC01-appb-C000004
m represents 0 or 1;
The structure W is represented by the following formula (2) or (3):
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Rings X 1 , X 2 , and Z represent a single ring or a condensed ring having a conjugated structure,
Rings Y 1 and Y 2 are 5-membered rings having the boron-nitrogen coordination bond,
any one of α 1 and α 3 is a nitrogen atom,
one of α 2 and α 4 is a nitrogen atom,
R 1 to R 4 may be the same or different, may be bonded to boron via another skeleton, and may have at least a linear or branched alkyl group having 10 to 40 carbon atoms that may be substituted. Represents a monovalent substituent having one,
Boron-containing polymeric compounds are provided.
 本発明者が、移動度に優れたホウ素含有高分子化合物について検討を行ったところ、少なくとも2つのホウ素-窒素配位結合を共役平面の広い単位構造中に導入し、ホウ素原子上にアルキル基含有置換基を導入することによって、LUMO/HOMO準位が深く、且つ、移動度の向上に寄与する高分子量であり、単位構造中に広い共役平面を有する高分子化合物を提供できることを見出した。また該高分子化合物は有機半導体として用いることが可能である。 The present inventor has studied a boron-containing polymer compound having excellent mobility. As a result, at least two boron-nitrogen coordination bonds are introduced into a unit structure having a wide conjugate plane, and an alkyl group is contained on the boron atom. It has been found that by introducing a substituent, a polymer compound having a deep LUMO / HOMO level and a high molecular weight contributing to improvement in mobility and having a wide conjugated plane in the unit structure can be provided. The polymer compound can be used as an organic semiconductor.
 以下、本発明の種々の実施形態を例示する。以下に示す実施形態は互いに組み合わせ可能である。
 好ましくは、重量平均分量が2×10~1×10である。
 好ましくは、Wは、隣接するWまたはπと、W中の5員環を介して結合している。
 本発明の別の観点によれば、上記のホウ素含有高分子化合物を含有する有機半導体が提供される。
Hereinafter, various embodiments of the present invention will be exemplified. The following embodiments can be combined with each other.
Preferably, the weight average amount is 2 × 10 4 to 1 × 10 6 .
Preferably, W is bonded to adjacent W or π via a 5-membered ring in W.
According to another viewpoint of this invention, the organic semiconductor containing said boron containing high molecular compound is provided.
 以下、本発明の一実施形態について説明する。以下に示す実施形態中で示した各種特徴事項は、互いに組み合わせ可能である。また、各特徴事項について独立して発明が成立する。 Hereinafter, an embodiment of the present invention will be described. Various characteristic items shown in the following embodiments can be combined with each other. In addition, the invention is independently established for each feature.
 本発明の一実施形態によるホウ素含有高分子化合物は有機半導体として用いることが可能であり、下記式(1)で表される高分子化合物である。
Figure JPOXMLDOC01-appb-C000007
The boron-containing polymer compound according to an embodiment of the present invention can be used as an organic semiconductor, and is a polymer compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000007
 すなわち、少なくともホウ素-窒素配位結合を少なくとも2つ有する構造Wを含む構造を単位構造とした高分子化合物である。好ましくは、単位構造はWに加えて共役構造を持つ2価の置換基である構造πを含む。すなわち、mは0または1であり、好ましくは1である。なぜなら、πを含む構成にすることにより、単位構造中にドナー及びアクセプターの役割を果たす両構造を有し、分子鎖間の相互作用が強くなり易く、移動度が向上していると推測される。 That is, a polymer compound having a structure including a structure W having at least two boron-nitrogen coordination bonds as a unit structure. Preferably, the unit structure includes a structure π which is a divalent substituent having a conjugated structure in addition to W. That is, m is 0 or 1, preferably 1. This is because it is assumed that the structure containing π has both structures serving as a donor and an acceptor in the unit structure, the interaction between the molecular chains tends to be strong, and the mobility is improved. .
 上記式(1)中Wで表される単位構造は、ホウ素-窒素配位結合を少なくとも2つ有する下記式(2)または(3)で表される構造である。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
The unit structure represented by W in the above formula (1) is a structure represented by the following formula (2) or (3) having at least two boron-nitrogen coordination bonds.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 ホウ素-窒素配位結合を単位構造中に少なくとも2つ有することが、移動度の観点から好ましい。ホウ素-窒素間の電子的な偏りが分子鎖間の相互作用を強めると考えられ、ホウ素-窒素配位結合を単位構造中に2つ以上含むことにより、より電子的な偏りが大きくなり、分子鎖間の相互作用が強くなることで移動度が向上すると考えられる。合成の容易性の観点からホウ素-窒素配位結合を単位構造中に2つ有することがより好ましい。 From the viewpoint of mobility, it is preferable to have at least two boron-nitrogen coordination bonds in the unit structure. The electronic bias between boron and nitrogen is thought to strengthen the interaction between the molecular chains. By including two or more boron-nitrogen coordination bonds in the unit structure, the electronic bias becomes larger and the molecule It is considered that the mobility is improved by the stronger interaction between the chains. From the viewpoint of ease of synthesis, it is more preferable to have two boron-nitrogen coordination bonds in the unit structure.
 ホウ素-窒素配位結合を有することによる別の効果として、LUMO/HOMO準位を深くし、大気安定性が向上することが期待される。本発明の一実施形態ではホウ素-窒素配位結合を単位構造中に2以上含むことにより、さらに効果を奏すると考えられる。 As another effect of having a boron-nitrogen coordination bond, it is expected that the LUMO / HOMO level is deepened and the atmospheric stability is improved. In one embodiment of the present invention, it is considered that a further effect can be obtained by including two or more boron-nitrogen coordination bonds in the unit structure.
 Wは、環Xと、Xと、Yと、Yと、Zにより構成され、環X、X、Zは共役構造を持つ単環または縮合環を示す。 W is composed of rings X 1 , X 2 , Y 1 , Y 2 , and Z, and rings X 1 , X 2 , and Z represent a single ring or a condensed ring having a conjugated structure.
 αとαは、互いに同一でも異なっていてもよく、好ましくは同一である。また、αとαは、互いに同一でも異なっていてもよく、好ましくは同一である。同一である場合には、異なる場合に比べ合成が容易である利点を有し、また対象性が高いことから分子鎖の配置・配列が適切になり易く、移動度が高くなり易い。 α 1 and α 2 may be the same as or different from each other, and are preferably the same. Further, α 3 and α 4 may be the same or different from each other, preferably the same. When they are the same, there is an advantage that the synthesis is easier than when they are different, and since the target property is high, the arrangement and arrangement of the molecular chains are likely to be appropriate, and the mobility tends to be high.
 αとαの一方は、環Y中のホウ素原子とホウ素-窒素配位結合を形成する窒素原子であり、他方は特に限定されないが、例えば炭素原子である。また、αとαの一方は、環Y中のホウ素原子とホウ素-窒素配位結合を形成する窒素原子であり、他方は特に限定されないが、例えば炭素原子である。 One of α 1 and α 3 is a nitrogen atom that forms a boron-nitrogen coordination bond with the boron atom in ring Y 1 , and the other is not particularly limited, but is, for example, a carbon atom. One of α 2 and α 4 is a nitrogen atom that forms a boron-nitrogen coordination bond with a boron atom in the ring Y 2 , and the other is not particularly limited, but is, for example, a carbon atom.
 環X、Xは共役構造を持つ単環または縮合環であり、ホウ素-窒素配位結合を形成する窒素原子を含む場合がある。 Rings X 1 and X 2 are monocyclic or condensed rings having a conjugated structure and may contain a nitrogen atom that forms a boron-nitrogen coordination bond.
 環X、Xはヘテロ原子を含まなくてもよいが、好ましくはヘテロ原子を含む複素環である。複素環は、例えば、ピロール、フラン、チオフェン、セレノフェン、イミダゾール、ピラゾール、オキサゾール、チアゾール、ピリジン、ピリミジン、ピリダジン、ピラジン等であり、またこれらが縮合した構造であり、より好ましくは硫黄原子を含有し、例えば、チオフェン、チエノチオフェン、ベンゾチオフェン、ベンゾジチオフェン、チアゾール、チアゾロチアゾール等であり、さらに好ましくは、チオフェンまたはチアゾールである。 Rings X 1 and X 2 may not contain a hetero atom, but are preferably a hetero ring containing a hetero atom. The heterocyclic ring is, for example, pyrrole, furan, thiophene, selenophene, imidazole, pyrazole, oxazole, thiazole, pyridine, pyrimidine, pyridazine, pyrazine and the like, and these are condensed structures, more preferably containing a sulfur atom. For example, thiophene, thienothiophene, benzothiophene, benzodithiophene, thiazole, thiazolothiazole and the like, more preferably thiophene or thiazole.
 環X、Xが環Y、Y中のホウ素原子とホウ素-窒素配位結合を形成する窒素原子を含む場合には、例えば、イミダゾール、ピラゾール、チアゾール、ピリジン等である。好ましくは、チアゾール、ピリジンであり、さらに好ましくは環X、Xは硫黄原子を含有し、例えば、チアゾールである。 When the rings X 1 and X 2 contain a nitrogen atom that forms a boron-nitrogen coordination bond with the boron atom in the rings Y 1 and Y 2 , examples thereof include imidazole, pyrazole, thiazole, and pyridine. Preferred are thiazole and pyridine, and more preferred are rings X 1 and X 2 containing a sulfur atom, for example, thiazole.
 環X及びXの単環または縮合環は、半導体特性を損なわない範囲で置換されていてもよく、置換基には限定はないが、具体的には直鎖、分岐、または環状のアルキル基、アルコキシ基、アルキルチオ基、スルホ基、ヒドロキシ基、カルボキシ基、アミノ基、アミド基、エステル基、フェニル基等、及び、スルホ基、ヒドロキシ基、カルボキシ基、アミノ基、ハロゲン基で置換された直鎖または分岐状のアルキル基、アルコキシアルキル基、アルキレンオキサイド基、フェニル基等であってもよく、置換基は複数有してもよい。 The monocyclic ring or condensed ring of the rings X 1 and X 2 may be substituted as long as the semiconductor properties are not impaired, and the substituent is not limited, but specifically, a linear, branched, or cyclic alkyl Group, alkoxy group, alkylthio group, sulfo group, hydroxy group, carboxy group, amino group, amide group, ester group, phenyl group, etc., and substituted with sulfo group, hydroxy group, carboxy group, amino group, halogen group It may be a linear or branched alkyl group, an alkoxyalkyl group, an alkylene oxide group, a phenyl group or the like, and may have a plurality of substituents.
 Wは、隣接するWまたはπと、W中の5員環または6員環を介して結合しており、好ましくは5員環を介して結合している。5員環の場合には隣接するWまたはπとの立体反発が少なく、連続した平面構造を形成し易くなり、移動度が向上すると考えられるからである。 W is bonded to adjacent W or π via a 5-membered ring or 6-membered ring in W, preferably bonded via a 5-membered ring. This is because in the case of a five-membered ring, there is little steric repulsion with the adjacent W or π, it is easy to form a continuous planar structure, and the mobility is considered to be improved.
 環Zは共役構造を持つ単環または縮合環であり、ホウ素-窒素配位結合を形成する窒素原子を含む場合がある。環Zはヘテロ原子を含んでも含まなくてもよく、例えば、ベンゼン、ナフタレン、アントラセン、ピラジン、チエノチオフェン、ベンゾジチオフェン、チアゾロチアゾール、ベンゾビスチアゾール等である。 Ring Z is a monocyclic or condensed ring having a conjugated structure and may contain a nitrogen atom forming a boron-nitrogen coordination bond. Ring Z may or may not contain heteroatoms, such as benzene, naphthalene, anthracene, pyrazine, thienothiophene, benzodithiophene, thiazolothiazole, benzobisthiazole, and the like.
 環Zが環Y、Y中のホウ素原子とホウ素-窒素配位結合を形成する窒素原子を含む場合には、環Zは例えば、ピラジン、チアゾロチアゾール、ナフチリジン、ベンゾビスチアゾール、ピラジノビスチアゾール等である。好ましくは、チアゾロチアゾールまたはベンゾビスチアゾールである。 When ring Z contains a nitrogen atom that forms a boron-nitrogen coordination bond with the boron atom in rings Y 1 and Y 2 , ring Z is, for example, pyrazine, thiazolothiazole, naphthyridine, benzobisthiazole, pyrazino Bisthiazole and the like. Preferred is thiazolothiazole or benzobisthiazole.
 環Y、Yはホウ素-窒素配位結合を有する5員環である。環Y及びY中でホウ素-窒素配位結合を形成するホウ素原子は同一でも異なってもよいアルキル基含有置換基R~Rを有する。 Rings Y 1 and Y 2 are 5-membered rings having a boron-nitrogen coordination bond. The boron atoms forming the boron-nitrogen coordination bond in the rings Y 1 and Y 2 have alkyl group-containing substituents R 1 to R 4 which may be the same or different.
 Wがホウ素-窒素配位結合を2つ有する場合、2つのホウ素原子は、上記(2)式のように異なる側に位置していてもよく、上記(3)式のように同じ側に位置していてもよい。各環に導入される置換基により適切な位置は異なるため何れかに限定されるものではなく、また何れの場合でもホウ素-窒素配位結合を2つ有するため同様の効果を奏するものと考えられる。ただ、合成の容易性の観点からは、上記(2)式の様に異なる側に位置していることが優位な場合が多いと考えられる。 When W has two boron-nitrogen coordination bonds, the two boron atoms may be located on different sides as in the above formula (2), or may be located on the same side as in the above formula (3). You may do it. The appropriate position differs depending on the substituents introduced into each ring, so that the position is not limited to any one. In any case, it has two boron-nitrogen coordination bonds, and the same effect is considered to be achieved. . However, from the viewpoint of ease of synthesis, it is considered that it is often advantageous to be located on different sides as in the above formula (2).
 R~Rは同一でも異なっていてもよく、置換されていてもよい直鎖または分岐の炭素数10~40のアルキル基を少なくとも1つ有する1価の置換基である。R~Rは、アルキル基がホウ素原子に直接結合していても、他の骨格を介して結合していてもよい。上記アルキル基の炭素数は、好ましくは12以上であり、より好ましくは14以上である。上記アルキル基の炭素数は、好ましくは30以下であり、より好ましくは25以下である。なお、上記炭素数は、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。このようなアルキル基含有置換基を導入した場合、溶媒への溶解性が高く塗布プロセスにより有機半導体を作製することができる。ここで、溶媒への溶解性とは、主にハロゲン系溶媒、芳香族系溶媒等への溶解性を意味し、具体的にはクロロホルム、クロロベンゼン、ジクロロベンゼン、トルエン、メシチレン、アニソール、テトラリン、シクロヘキシルベンゼンに対する溶解性を意味する。 R 1 to R 4 may be the same or different, and are monovalent substituents having at least one linear or branched alkyl group having 10 to 40 carbon atoms which may be substituted. In R 1 to R 4 , the alkyl group may be directly bonded to the boron atom or may be bonded via another skeleton. The number of carbon atoms of the alkyl group is preferably 12 or more, more preferably 14 or more. The number of carbon atoms of the alkyl group is preferably 30 or less, more preferably 25 or less. In addition, the said carbon number is 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 32, 33, 34, 35, 36, 37, 38, 39, 40, and may be within a range between any two of the numerical values exemplified here. When such an alkyl group-containing substituent is introduced, the organic semiconductor can be produced by a coating process with high solubility in a solvent. Here, the solubility in a solvent mainly means the solubility in a halogen solvent, an aromatic solvent, etc., specifically, chloroform, chlorobenzene, dichlorobenzene, toluene, mesitylene, anisole, tetralin, cyclohexyl. It means solubility in benzene.
 R~Rの中のアルキル基を置換してもよい置換基としては、例えば、スルホ基、ヒドロキシ基、アルコキシ基、アルキルチオ基、カルボキシ基、エステル基、アミノ基、アミド基、ハロゲン基、フェニル基等である。 Examples of the substituent that may substitute the alkyl group in R 1 to R 4 include a sulfo group, a hydroxy group, an alkoxy group, an alkylthio group, a carboxy group, an ester group, an amino group, an amide group, a halogen group, A phenyl group and the like;
 R~Rが他の骨格を介して結合している場合には、上記他の骨格としては、例えば、酸素、窒素、硫黄等のヘテロ原子、ベンゼン環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、テトラセン環、トリフェニレン環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピラントレン環等の芳香環、ピリジン、イミダゾール、チオフェン等の複素環であり、複数を組み合わせても良い。更に、他の骨格とホウ素との間に更に炭素数が1~6のアルキル鎖を介しても良い。 When R 1 to R 4 are bonded via another skeleton, examples of the other skeleton include heteroatoms such as oxygen, nitrogen, and sulfur, a benzene ring, a naphthalene ring, an azulene ring, and an anthracene ring. , Aromatic ring such as phenanthrene ring, pyrene ring, chrysene ring, tetracene ring, triphenylene ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, pentacene ring, perylene ring, pentaphen ring, picene ring, pyranthrene ring, pyridine , Imidazole, thiophene and the like, and a plurality of them may be combined. Further, an alkyl chain having 1 to 6 carbon atoms may be interposed between another skeleton and boron.
 R~Rは、好ましくは、直鎖または分岐のアルキル基が直接ホウ素に結合、または、酸素または硫黄及び/またはフェニル基、ベンジル基、フェネチル基を介してホウ素に結合しており、より好ましくは、直鎖または分岐のアルキル基がホウ素に直接結合しており、さらに好ましくは、直鎖のアルキル基がホウ素に直接結合している。 R 1 to R 4 are preferably such that a linear or branched alkyl group is directly bonded to boron, or bonded to boron through oxygen or sulfur and / or a phenyl group, benzyl group, phenethyl group, Preferably, a linear or branched alkyl group is directly bonded to boron, and more preferably, a linear alkyl group is directly bonded to boron.
 Wの具体的な構造として、具体的には、下記式(4)に示す構造が例示されるがこれに限定されない。
Figure JPOXMLDOC01-appb-C000010
Specific examples of the structure of W include, but are not limited to, the structure represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000010
<1.ホウ素含有化合物の合成>
 上記式(2)または式(3)で表されるWの合成は、種々の方法により合成可能であるが、上記式(2)で表されるWは、例えば下記反応式(5)または下記反応式(6)の経路で合成することができる。
Figure JPOXMLDOC01-appb-C000011
(式(5)中のR~Rは、化学式(2)と同じであり、Rはハロゲンを表す。)
Figure JPOXMLDOC01-appb-C000012
(式(6)中のR~Rは、化学式(2)と同じであり、Rはハロゲンを表す。)
<1. Synthesis of boron-containing compounds>
Synthesis of W represented by the above formula (2) or formula (3) can be synthesized by various methods. For example, W represented by the above formula (2) can be synthesized by the following reaction formula (5) or It can be synthesized by the route of reaction formula (6).
Figure JPOXMLDOC01-appb-C000011
(R 1 to R 4 in Formula (5) are the same as in Chemical Formula (2), and R 5 represents halogen.)
Figure JPOXMLDOC01-appb-C000012
(R 1 to R 4 in formula (6) are the same as in chemical formula (2), and R 5 represents halogen.)
<1-1.ホウ素置換基の導入>
 不活性ガスで置換した反応容器に化合物WA-1またはWB-1、反応溶媒を計量し、冷却した後、塩基を加え、数時間撹拌した後、置換ボランを加え攪拌を行う。反応終了後、精製工程を行いホウ素置換基が導入されたWA-2またはWB-2が得られる。
<1-1. Introduction of boron substituent>
The compound WA-1 or WB-1 and the reaction solvent are weighed in a reaction vessel substituted with an inert gas, cooled, a base is added, and the mixture is stirred for several hours, and then substituted borane is added and stirred. After completion of the reaction, a purification step is performed to obtain WA-2 or WB-2 having a boron substituent introduced.
 前記反応容器は、特に限定されないが、ガラス製やテフロン(登録商標)製などを用いることができる。 The reaction vessel is not particularly limited, and glass, Teflon (registered trademark), or the like can be used.
 前記反応溶媒としては、特に限定されないが、反応が進行する溶媒であればよく、テトラヒドロフラン、tert-ブチルメチルエーテル、アセトニトリル、フェノール、ベンゼン、トルエン等があげられる。 The reaction solvent is not particularly limited, and may be any solvent in which the reaction proceeds, and examples thereof include tetrahydrofuran, tert-butyl methyl ether, acetonitrile, phenol, benzene, toluene and the like.
 前記不活性ガスは窒素、アルゴン、ヘリウムなどがあげられる。 The inert gas includes nitrogen, argon, helium and the like.
 前記攪拌方法は、特に限定はしないが、スターラーを用いてもよく、振とう機を用いてもよい。 The stirring method is not particularly limited, but a stirrer or a shaker may be used.
 前記精製工程は、目的物が単離できる工程であればよく、公知の方法を用いることができ、具体的に分液抽出、カラムクロマトグラフィーによる単離、再結晶などの方法があげられ、それらを組み合わせて単離精製を行っても良い。 The purification step may be any step that can isolate the target product, and known methods can be used. Specific examples include separation extraction, isolation by column chromatography, and recrystallization. Isolation and purification may be performed in combination.
 前記塩基としては、特に限定されないが、B-N架橋反応が進行する塩基であればよく、アルキルリチウム等の塩基があげられ、具体的には、メチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム等があげられる。 The base is not particularly limited, and may be any base that allows BN crosslinking reaction to proceed. Examples of the base include alkyl lithium, and specific examples include methyl lithium, n-butyl lithium, sec-butyl lithium. Tert-butyllithium and the like.
 前記塩基を加える際の冷却温度は、-100℃~-50℃であり、好ましくは-90℃~-70℃である。この温度は、具体的には例えば、-100、-90、-80、-70、-60または50℃であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The cooling temperature when adding the base is −100 ° C. to −50 ° C., preferably −90 ° C. to −70 ° C. Specifically, this temperature is, for example, −100, −90, −80, −70, −60, or 50 ° C., and may be within a range between any two of the numerical values exemplified here.
 前記塩基を加えたあとの数時間の撹拌は、特に限定はしないが、例えば1~6時間であり、好ましくは1~4時間である。この時間は、具体的には例えば、1、2、3、4、5または6時間であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The stirring for several hours after the addition of the base is not particularly limited, but is, for example, 1 to 6 hours, and preferably 1 to 4 hours. Specifically, this time is, for example, 1, 2, 3, 4, 5 or 6 hours, and may be within a range between any two of the numerical values exemplified here.
 前記置換ボランとしては、本発明に用いることが可能な置換基R~Rを有し、B-N架橋反応が進行するボランであれば特に制限はされない。 The substituted borane is not particularly limited as long as it is a borane having substituents R 1 to R 4 that can be used in the present invention and in which a BN crosslinking reaction proceeds.
 前記ボランを加えたあとの撹拌時間は、特に限定はしないが、例えば1~24時間であり、好ましくは8~24時間である。この時間は、具体的には例えば、1、2、3、4、5、6、7、8、9、10、11、12、15、18、21または24時間であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The stirring time after adding the borane is not particularly limited, but is, for example, 1 to 24 hours, preferably 8 to 24 hours. Specifically, this time is, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 18, 21 or 24 hours. It may be within the range between any two.
 前記ボランを加えたあとの撹拌温度は、-78℃~25℃であり、好ましくは0℃~25℃である。この温度は、具体的には例えば、0、5、10、15、20または、25℃であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The stirring temperature after adding the borane is −78 ° C. to 25 ° C., preferably 0 ° C. to 25 ° C. Specifically, this temperature is, for example, 0, 5, 10, 15, 20, or 25 ° C., and may be within a range between any two of the numerical values exemplified here.
 また、B-N架橋反応において、ボランにボロントリブロマイドを用いて、BBrを架橋体とし、その後、アルキルマグネシウムブロマイドのようなグリニャール試薬を用いてグリニャール反応行い置換基R~Rを導入してもよい。 Also, in the BN crosslinking reaction, boron tribromide is used as borane, BBr 2 is converted into a crosslinked product, and then a Grignard reaction is performed using a Grignard reagent such as alkylmagnesium bromide to introduce substituents R 1 to R 4 . May be.
 上記式(1)中のπは共役構造を持つ2価の置換基を表し、好ましくは下記式(7)で表される。
Figure JPOXMLDOC01-appb-C000013
 ここで、V及びVは同一でも異なってもよく、-CR=CR-、-C≡C-、2~40個の炭素原子を有する2価の芳香環または複素環であり、該基は無置換であるか、1個以上の基Rで置換されており、a及びbは、同一でも異なっていてもよく、0~2の整数を表す。
 RはH、ハロゲン、シアノ基、あるいは炭素数1~40である直鎖または分岐鎖のアルキル基、アルコキシ基、アルキルチオ基を表す。
 より好ましくは、Wと結合している部位が、-CH=CH-、-C≡C-、あるいは、5員環である。これらの場合には結合しているWとの立体反発が少なく、連続した平面構造を形成し易くなり、移動度が向上すると考えられるからである。具体的には、下記式(8)に示す構造が例示されるがこれに限定されない。
Figure JPOXMLDOC01-appb-C000014
Π in the above formula (1) represents a divalent substituent having a conjugated structure, and is preferably represented by the following formula (7).
Figure JPOXMLDOC01-appb-C000013
Here, V 1 and V 2 may be the same or different and are —CR 6 = CR 6 —, —C≡C—, a divalent aromatic ring or heterocyclic ring having 2 to 40 carbon atoms, The group is unsubstituted or substituted with one or more groups R 6 and a and b may be the same or different and represent an integer of 0-2.
R 6 represents H, a halogen, a cyano group, or a linear or branched alkyl group having 1 to 40 carbon atoms, an alkoxy group, or an alkylthio group.
More preferably, the site bonded to W is —CH═CH—, —C≡C—, or a 5-membered ring. This is because in these cases, there is little steric repulsion with the bonded W, it is easy to form a continuous planar structure, and the mobility is considered to be improved. Specifically, the structure shown in the following formula (8) is exemplified, but not limited thereto.
Figure JPOXMLDOC01-appb-C000014
 本発明のホウ素含有高分子化合物は、高分子化合物中に前記化学式(1)に示された構造を含んだ共重合体を含んでいれば良いが、分子鎖間の相互作用をより強くするため、前記化学式(1)中のmが1である、Wとπが交互に配置された交互共重合体を含んでいることが好ましい。 The boron-containing polymer compound of the present invention may contain a copolymer containing the structure represented by the chemical formula (1) in the polymer compound, but in order to further strengthen the interaction between the molecular chains. In addition, it is preferable to include an alternating copolymer in which m in the chemical formula (1) is 1, and W and π are alternately arranged.
 本発明のホウ素含有高分子化合物の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(以下、「GPC」という。)で測定したポリスチレン換算の値であり、通常、2×10~2×10である。移動度と、溶解性及び成膜性のバランスの観点から、高分子化合物の重量平均分子量は2×10~1×10であることが好ましく、より好ましくは3×10~5×10である。 The weight average molecular weight (Mw) of the boron-containing polymer compound of the present invention is a value in terms of polystyrene measured by gel permeation chromatography (hereinafter referred to as “GPC”), and is usually 2 × 10 4 to 2 ×. 10 8 . From the viewpoint of the balance between mobility, solubility, and film formability, the weight average molecular weight of the polymer compound is preferably 2 × 10 4 to 1 × 10 6 , more preferably 3 × 10 4 to 5 × 10. 5 .
 上記式(1)を含むホウ素含有高分子化合物の重合方法としては、特に限定は無いが、鈴木カップリング、スティルカップリングウルマン反応、グレーサー反応、ヘック反応、根岸カップリング、園頭カップリング、熊田カップリングなどを用いることができ、合成の容易さや、使用できるモノマーの制限が少ないという点で鈴木カップリングやスティルカップリングが好ましい。 The method for polymerizing the boron-containing polymer compound including the above formula (1) is not particularly limited, but Suzuki coupling, Still coupling Ullmann reaction, Gracer reaction, Heck reaction, Negishi coupling, Sonogashira coupling, Kumada Coupling and the like can be used, and Suzuki coupling and Stille coupling are preferable in terms of ease of synthesis and few restrictions on the monomers that can be used.
鈴木カップリングによる重合を行う方法としては、通常、ホウ素酸またはホウ素酸エステルが結合したW及び/またはπと、ハロゲン化されたW及び/またはπを原料として、パラジウム触媒および塩基の存在下で反応させて重合することが挙げられ、アルゴンガス、窒素ガス等の不活性雰囲気下において、触媒が失活しない反応系で行うことが好ましい。例えば、アルゴンガスや窒素ガス等で十分置換された系で行うことが好ましい。 As a method for performing polymerization by Suzuki coupling, usually, W and / or π bonded with boronic acid or a boronic acid ester and halogenated W and / or π are used as raw materials in the presence of a palladium catalyst and a base. It is preferable to carry out the reaction in a reaction system in which the catalyst is not deactivated in an inert atmosphere such as argon gas or nitrogen gas. For example, it is preferable to carry out in a system sufficiently substituted with argon gas, nitrogen gas or the like.
スティルカップリングによる重合を行う方法としては、通常、有機スズが結合したW及び/またはπと、ハロゲン化されたW及び/またはπを原料として、パラジウム触媒の存在下で反応させて重合することが挙げられ、アルゴンガス、窒素ガス等の不活性雰囲気下において、触媒が失活しない反応系で行うことが好ましい。例えば、アルゴンガスや窒素ガス等で十分置換された系で行うことが好ましい。 As a method of performing polymerization by Still coupling, usually, W and / or π bonded with organotin is reacted with halogenated W and / or π in the presence of a palladium catalyst. It is preferable to carry out the reaction in a reaction system in which the catalyst is not deactivated under an inert atmosphere such as argon gas or nitrogen gas. For example, it is preferable to carry out in a system sufficiently substituted with argon gas, nitrogen gas or the like.
 本発明のホウ素含有高分子化合物の用途には限定はないが、p型有機半導体、n型有機半導体、アンバイポーラ型半導体として利用でき、有機薄膜太陽電池、有機EL、有機トランジスタ、有機メモリー、電子ペーパー、熱電変換素子、光センサなどの用途に好適に用いることができる。 The use of the boron-containing polymer compound of the present invention is not limited, but it can be used as a p-type organic semiconductor, an n-type organic semiconductor, an ambipolar semiconductor, an organic thin film solar cell, organic EL, organic transistor, organic memory, electronic It can be suitably used for applications such as paper, thermoelectric conversion elements, and optical sensors.
<分子量の測定>
以下の実施例において、高分子化合物(重合体)の重量平均分子量は、高速GPC装置(東ソー株式会社製、型式HLC-8320GPC ECcoSEC)、紫外吸光検出器(東ソー株式会社製、型式UV-8320)を用いて測定し、ポリスチレン換算によって算出した。測定溶媒はクロロホルムを用い、GPCカラムは、TSKguardcolumn HHR-H×1+TSKgel GMHHR-H×1(いずれも東ソー株式会社製)を用いた。
<Measurement of molecular weight>
In the following examples, the weight average molecular weight of the polymer compound (polymer) was determined by using a high-speed GPC device (manufactured by Tosoh Corporation, model HLC-8320GPC ECcoSEC), an ultraviolet absorption detector (manufactured by Tosoh Corporation, model UV-8320). Was calculated using polystyrene conversion. The measurement solvent was chloroform, and the GPC column was TSKguardcolumn HHR-H × 1 + TSKgel GMHHR-H × 1 (both manufactured by Tosoh Corporation).
<可溶性の評価>
 ホウ素含有高分子化合物を、0.5重量%になるようにしてクロロホルムに混合し、20℃で15分間撹拌した。完全に溶解したものを○、溶け残りがあるものを×とした。
<イオン化ポテンシャル(HOMO)の測定>
 ホウ素含有高分子化合物(P1)を5mg/gの濃度でクロロホルムに溶解させた溶液をフッ素ドープ酸化スズ膜付きガラスの導電膜上に滴下させ、室温、大気下で乾燥させたものを測定サンプルとして、イオン化ポテンシャル測定装置(PYS-201、住友重機械工業製)を用いて測定した。
<Evaluation of solubility>
The boron-containing polymer compound was mixed with chloroform at 0.5% by weight and stirred at 20 ° C. for 15 minutes. A sample that was completely dissolved was marked with ◯, and a sample that had undissolved was marked with ×.
<Measurement of ionization potential (HOMO)>
A solution prepared by dissolving a boron-containing polymer compound (P1) in chloroform at a concentration of 5 mg / g was dropped onto a conductive film of glass with a fluorine-doped tin oxide film, and dried at room temperature in the atmosphere as a measurement sample. The ionization potential was measured using an ionization potential measuring apparatus (PYS-201, manufactured by Sumitomo Heavy Industries, Ltd.).
<エネルギーギャップ(Eg)及びLUMOの測定>
ホウ素含有高分子化合物をクロロホルムに溶解させた溶液を、紫外可視近赤分光光度計(JASCO、V-670)によって紫外可視光吸収スペクトルを測定し、スペクトルの長波長側の吸収端での波長をエネルギーに換算した値をEgとした。また、イオン化ポテンシャル(HOMO)とEgの値を差し引き、LUMOを換算した。
<Measurement of energy gap (Eg) and LUMO>
A solution in which a boron-containing polymer compound is dissolved in chloroform is measured with an ultraviolet-visible near-red spectrophotometer (JASCO, V-670), and an ultraviolet-visible light absorption spectrum is measured. The value converted into energy was defined as Eg. Also, the ionization potential (HOMO) and Eg values were subtracted to convert LUMO.
<移動度の測定>
 移動度の測定は電界効果トランジスタ(TFT)の評価によって行った。
 厚さ500ÅのCrゲート電極を作成したガラス基板上に、ZEOCOAT ES2110-10(日本ゼオン株式会社製)をスピンコート法(500rpm/3sec.及び2000rpm/15sec.)によって塗布し、90℃2min.で加熱した後、更に150℃1hr.で加熱することによってゲート絶縁膜を形成した。次に、ホウ素含有高分子化合物(P1)溶液(0.5wt%、クロロベンゼン溶媒)を、基板上にスピンコート法(1000rpm、60sec.)によって塗布し、窒素下中、ホットプレート上で80℃30min.でアニール処理を行い、有機半導体薄膜を形成した。次に、メタルマスクを用いて金を50nmの膜厚に真空蒸着することで、50μmのチャネル長を持つソース電極、ドレイン電極を形成し、ボトムゲート・トップコンタクト型の有機薄膜トランジスタを作製した。
 以上のように作製した有機トランジスタを大気下にて電流-電圧(I-V)特性を測定し、飽和領域から電荷移動度を求めた。
<Measurement of mobility>
The mobility was measured by evaluating a field effect transistor (TFT).
ZEOCOAT ES2110-10 (manufactured by Nippon Zeon Co., Ltd.) was applied by spin coating (500 rpm / 3 sec. And 2000 rpm / 15 sec.) On a glass substrate on which a Cr gate electrode having a thickness of 500 mm was formed, and 90 ° C. for 2 min. After heating at 150 ° C. for 1 hr. A gate insulating film was formed by heating at Next, a boron-containing polymer compound (P1) solution (0.5 wt%, chlorobenzene solvent) is applied onto the substrate by a spin coating method (1000 rpm, 60 sec.), And is heated at 80 ° C. for 30 minutes on a hot plate in nitrogen. . An organic semiconductor thin film was formed by annealing. Next, gold was vacuum-deposited to a film thickness of 50 nm using a metal mask to form a source electrode and a drain electrode having a channel length of 50 μm, and a bottom gate / top contact type organic thin film transistor was manufactured.
The organic transistor fabricated as described above was measured for current-voltage (IV) characteristics in the atmosphere, and the charge mobility was determined from the saturation region.
<Wの合成>
合成例1:ホウ素含有化合物A1、A1-2の合成
・2,5-ビス(3-ブロモ-2-チエニル)ベンゾビスチアゾール(A1-1)の合成
 窒素置換した500mLシュレンク管に2,5-ジアミノ-1,4-ベンゼンジチオール二塩酸塩4.40g(17.9mmol)とポリリン酸50gを投入し、100℃で3時間加熱攪拌した。この溶液に、3-ブロモチオフェン-2-カルボン酸7.80g(37.7mmol)のスルホラン(47g)溶液を加え、さらに100℃で5時間過熱攪拌した。反応溶液を室温に戻し、水を加えた後、ろ過で固体を回収した。得られた個体をジメチルホルムアミドにより洗浄することで、2,5-ビス(3-ブロモ-2-チエニル)ベンゾビスチアゾール(A1-1)8.03g(15.6mmol)を淡黄色の固体として収率87%で得た。
<Synthesis of W>
Synthesis Example 1: Synthesis of boron-containing compounds A1 and A1-2-Synthesis of 2,5-bis (3-bromo-2-thienyl) benzobisthiazole (A1-1) 2,5-bis (3-1-1) was added to a nitrogen-substituted 500 mL Schlenk tube. Diamino-1,4-benzenedithiol dihydrochloride (4.40 g, 17.9 mmol) and polyphosphoric acid (50 g) were added, and the mixture was heated and stirred at 100 ° C. for 3 hours. To this solution was added a solution of 7.80 g (37.7 mmol) of 3-bromothiophene-2-carboxylic acid in sulfolane (47 g), and the mixture was further heated and stirred at 100 ° C. for 5 hours. The reaction solution was returned to room temperature, water was added, and the solid was collected by filtration. The obtained solid was washed with dimethylformamide to obtain 8.03 g (15.6 mmol) of 2,5-bis (3-bromo-2-thienyl) benzobisthiazole (A1-1) as a pale yellow solid. Obtained at a rate of 87%.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
・ホウ素含有化合物A1の合成
 窒素置換した500mLシュレンク管に2,5-ビス(3-ブロモ-2-チエニル)ベンゾビスチアゾール(化合物A1-1)1.00g(1.94mmol)、脱水テトラヒドロフラン75mLを投入し、tert-ブチルリチウム1.6M溶液5.1mL(8.15mmol)を-78℃で滴下し、そのまま1時間攪拌した。この溶液に、後述するトリへキサデシルボラン0.91M溶液42.7mL(3.89mmol)を-78℃で滴下した。
 ここで、トリヘキサデシルボラン溶液は、窒素置換したシュレンク管に1-ヘキサデセン3.3mL(11.6mmol)、脱水テトラヒドロフラン35mlを投入し、ボラン-テトラヒドロフラン コンプレックス0.9M溶液4.3mL(3.88mmol)を0℃で滴下し、そのまま1時間攪拌することで調整した。
 反応溶液をゆっくりと室温に戻し、室温で3時間撹拌した。反応液を濃縮後、展開溶媒にヘキサンを用いたカラムクロマトグラフィーにより、ホウ素含有化合物(A1)1.09g(0.85mmol)を淡黄色の固体として収率44%で得た。
Synthesis of boron-containing compound A1 To a nitrogen-substituted 500 mL Schlenk tube, 1.00 g (1.94 mmol) of 2,5-bis (3-bromo-2-thienyl) benzobisthiazole (compound A1-1) and 75 mL of dehydrated tetrahydrofuran were added. Then, 5.1 mL (8.15 mmol) of a tert-butyllithium 1.6M solution was added dropwise at −78 ° C., and the mixture was stirred as it was for 1 hour. To this solution, 42.7 mL (3.89 mmol) of a trihexadecylborane 0.91M solution described later was added dropwise at −78 ° C.
Here, the trihexadecylborane solution was charged with 3.3 mL (11.6 mmol) of 1-hexadecene and 35 mL of dehydrated tetrahydrofuran in a Schlenk tube purged with nitrogen, and 4.3 mL (3.88 mmol) of a borane-tetrahydrofuran complex 0.9M solution. ) Was added dropwise at 0 ° C. and the mixture was stirred for 1 hour.
The reaction solution was slowly returned to room temperature and stirred at room temperature for 3 hours. After concentration of the reaction solution, 1.09 g (0.85 mmol) of the boron-containing compound (A1) was obtained as a pale yellow solid in a yield of 44% by column chromatography using hexane as a developing solvent.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
・ホウ素含有化合物A1-2の合成
 窒素置換した100mLシュレンク管にホウ素含有化合物(化合物A1)0.40g(0.31mmol)、脱水テトラヒドロフラン20mLを投入し、テトラメチルピペリジルマグネシウムクロリド・リチウムクロリド1.0M溶液1.9mL(1.90mmol)を0℃で滴下し、そのまま1時間攪拌した。この溶液に、0℃でトリメチルスズクロリド0.38g(1.90mmol)を加え、同じ温度で1時間攪拌した。その後、反応溶液を室温に戻し、室温で1時間撹拌した。反応液を濃縮後、展開溶媒クロロホルムを用いたカラムクロマトグラフィーにより、ホウ素含有化合物(A1-2)0.39g(0.24mmol)を淡橙色の固体として収率79%で得た。
Synthesis of boron-containing compound A1-2 Boron-containing compound (compound A1) 0.40 g (0.31 mmol) and dehydrated tetrahydrofuran 20 mL were charged into a nitrogen-substituted 100 mL Schlenk tube, and tetramethylpiperidylmagnesium chloride / lithium chloride 1.0 M 1.9 mL (1.90 mmol) of the solution was added dropwise at 0 ° C. and stirred as it was for 1 hour. To this solution, 0.38 g (1.90 mmol) of trimethyltin chloride was added at 0 ° C., and the mixture was stirred at the same temperature for 1 hour. Then, the reaction solution was returned to room temperature and stirred at room temperature for 1 hour. After concentration of the reaction solution, 0.39 g (0.24 mmol) of the boron-containing compound (A1-2) was obtained as a pale orange solid in a yield of 79% by column chromatography using a developing solvent chloroform.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
合成例2:ホウ素含有化合物A2、A2-2の合成
・ホウ素含有化合物A2の合成
 ホウ素含有化合物A1の合成法において、トリヘキサデシルボランの代わりにジメシチルフルオロボランを原料として用いることで、A2を0.463g(0.543mmol)黄色の固体として収率28%で得た。
Figure JPOXMLDOC01-appb-C000018
Synthesis Example 2: Synthesis of boron-containing compounds A2 and A2-2 / Synthesis of boron-containing compound A2 In the synthesis method of boron-containing compound A1, dimesitylfluoroborane was used as a raw material instead of trihexadecylborane. Of 0.463 g (0.543 mmol) as a yellow solid in 28% yield.
Figure JPOXMLDOC01-appb-C000018
・ホウ素含有化合物(A2-2)の合成
 ホウ素化合物A2-2は、A2が不溶であったため、合成することが出来なかった。
Figure JPOXMLDOC01-appb-C000019
Synthesis of boron-containing compound (A2-2) Boron compound A2-2 could not be synthesized because A2 was insoluble.
Figure JPOXMLDOC01-appb-C000019
<ホウ素含有高分子化合物の合成と評価>
実施例1:ホウ素含有高分子化合物(P1)の合成と評価
 窒素置換した20mLシュレンク管にホウ素含有化合物(A1-2)を0.10g(0.0624mmol)、5,5'-ジブロモ-2,2'-ビチオフェン(東京化成工業)を20.2mg(0.0624mmol)、トリス(ジベンジリデンアセトン)ジパラジウム2.9mg(5mol%)、トリ(o-トリル)ホスフィン1.9mg(10mol%)、クロロベンゼン5mLを投入し、8時間加熱還流条件で攪拌した。その後、2-トリブチルスタンニルチオフェン100mg(0.309mmol)を加え、30分間反応させた。室温に戻し、メタノールを加え、固体をろ過で回収し、メタノール及びヘキサンを使用したソックスレー精製で、低分子体を除去した。最後にクロロホルムを使用したソックスレー精製により、抽出したクロロホルムを濃縮し、メタノールを加え、固体を析出させ、ろ過により回収することで、ホウ素含有高分子化合物(P1)61mgを濃紫色の固体として得た。得られた高分子化合物の重量平均分子量をGPC法により測定したところ、63000であった。測定されたHOMOの値は-5.7eV、Egの値は2.0eVであり、それらから換算したLUMOは-3.7eVであった。また、可溶性試験を行ったところ、クロロホルム十分に溶解した。トランジスタによる評価を行ったところ、1.8×10-3cm/Vsであり、on/off値は10であった。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-C000020
(P1)
<Synthesis and evaluation of boron-containing polymer compounds>
Example 1: Synthesis and Evaluation of Boron-Containing Polymer Compound (P1) 0.10 g (0.0624 mmol) of boron-containing compound (A1-2), 5,5′-dibromo-2, 2′-bithiophene (Tokyo Chemical Industry) 20.2 mg (0.0624 mmol), tris (dibenzylideneacetone) dipalladium 2.9 mg (5 mol%), tri (o-tolyl) phosphine 1.9 mg (10 mol%), Chlorobenzene (5 mL) was added, and the mixture was stirred for 8 hours under heating under reflux. Thereafter, 100 mg (0.309 mmol) of 2-tributylstannylthiophene was added and reacted for 30 minutes. It returned to room temperature, methanol was added, solid was collect | recovered by filtration, and the low molecular body was removed by Soxhlet refinement | purification using methanol and hexane. Finally, the extracted chloroform was concentrated by Soxhlet purification using chloroform, methanol was added, the solid was precipitated, and recovered by filtration to obtain 61 mg of a boron-containing polymer compound (P1) as a dark purple solid. . It was 63000 when the weight average molecular weight of the obtained high molecular compound was measured by GPC method. The measured HOMO value was -5.7 eV, Eg value was 2.0 eV, and the LUMO value converted from them was -3.7 eV. Moreover, when the solubility test was done, chloroform fully melt | dissolved. As a result of evaluation with a transistor, it was 1.8 × 10 −3 cm 2 / Vs, and the on / off value was 10 6 . The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-C000020
(P1)
実施例2:ホウ素含有高分子化合物(P2)の合成と評価
 ホウ素含有高分子化合物(P1)の合成方法において、5,5'-ジブロモ-2,2'-ビチオフェン(東京化成工業)の代わりに5,5''-ジブロモ-2,2':5',2''-ターチオフェン(東京化成工業)を用いて、ホウ素含有高分子化合物(P2)63mgを濃紫色の固体として得た。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-C000021
Example 2: Synthesis and evaluation of boron-containing polymer compound (P2) In the synthesis method of boron-containing polymer compound (P1), instead of 5,5'-dibromo-2,2'-bithiophene (Tokyo Chemical Industry) Using 5,5 ″ -dibromo-2,2 ′: 5 ′, 2 ″ -terthiophene (Tokyo Chemical Industry), 63 mg of a boron-containing polymer compound (P2) was obtained as a dark purple solid. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-C000021
実施例3:ホウ素含有高分子化合物(P3)の合成と評価
 ホウ素含有高分子化合物(P1)の合成方法において、5,5'-ジブロモ-2,2'-ビチオフェン(東京化成工業)の代わりに4,7-ビス(5-ブロモ-2-チエニル)-2,1,3-ベンゾチアジアゾールを用いて、ホウ素含有高分子化合物(P3)52mgを青色の固体として得た。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-C000022
Example 3: Synthesis and evaluation of boron-containing polymer compound (P3) In the synthesis method of boron-containing polymer compound (P1), instead of 5,5'-dibromo-2,2'-bithiophene (Tokyo Chemical Industry) Using 4,7-bis (5-bromo-2-thienyl) -2,1,3-benzothiadiazole, 52 mg of a boron-containing polymer compound (P3) was obtained as a blue solid. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-C000022
実施例4:ホウ素含有高分子化合物(P4)の合成と評価
 ホウ素含有高分子化合物(P1)の合成方法において、5,5'-ジブロモ-2,2'-ビチオフェン(東京化成工業)の代わりに2,6-ジブロモジチエノ[3,2-b:2',3'-d]チオフェンを用いて、ホウ素含有化合物(P4)58mgを濃紫色の固体として得た。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-C000023
Example 4: Synthesis and evaluation of boron-containing polymer compound (P4 ) In the synthesis method of boron-containing polymer compound (P1), instead of 5,5'-dibromo-2,2'-bithiophene (Tokyo Chemical Industry) By using 2,6-dibromodithieno [3,2-b: 2 ′, 3′-d] thiophene, 58 mg of boron-containing compound (P4) was obtained as a dark purple solid. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-C000023
実施例5:ホウ素含有高分子化合物(P5)の合成と評価
 ホウ素含有高分子化合物(P1)の合成方法において、5,5'-ジブロモ-2,2'-ビチオフェン(東京化成工業)の代わりに下記化合物Bを用いて、ホウ素含有高分子化合物(P5)81mgを緑色の固体として得た。評価結果を表1に示す。
なお、化合物B1は、J.Mater.Chem.C,2014,2,3457及びJ.Mater.Chem.C,2014,2,6376を参考にして合成した。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Example 5: Synthesis and evaluation of boron-containing polymer compound (P5 ) In the synthesis method of boron-containing polymer compound (P1), instead of 5,5'-dibromo-2,2'-bithiophene (Tokyo Chemical Industry) Using the following compound B, 81 mg of a boron-containing polymer compound (P5) was obtained as a green solid. The evaluation results are shown in Table 1.
Compound B1 was prepared according to J.I. Mater. Chem. C, 2014, 2, 3457 and J.H. Mater. Chem. C, 2014, 2, 6376 were referred to and synthesized.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
比較例1
 前述のように、A2を有する重合体は、A2がクロロベンゼンに対する溶解性が無いことから、重合するための前駆体であるA2-2が合成できず、評価することができなかった。結果を表1に示す。
Comparative Example 1
As described above, since A2 has no solubility in chlorobenzene, A2-2, which is a precursor for polymerization, cannot be synthesized and evaluated. The results are shown in Table 1.
比較例2
 実施例1におけるホウ素含有高分子化合物(P1)の代わりにP3HT(綜研化学製、ベラゾールHT、重量平均分子量47,000)を用い、トランジスタ作製におけるアニール条件を150℃30min.に変更した以外は同じ方法で評価を行った。結果を表1に示す。
Comparative Example 2
Instead of the boron-containing polymer compound (P1) in Example 1, P3HT (manufactured by Soken Chemical Co., Ltd., Verazol HT, weight average molecular weight 47,000) was used, and the annealing conditions for transistor fabrication were 150 ° C. for 30 min. The evaluation was performed in the same manner except that it was changed to. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 実施例1~5は、比較例に対し、全てクロロホルムへの高い溶解性を示した。また、半導体特性については、p型半導体特性を示し、10-4cm/Vs以上の移動度と、10以上のon/off値を示した。一方、比較例1は重合することができず、比較例2は、クロロホルムに対して溶け残りがあり、高い溶解性が得られなかった。また、半導体特性に関しては、イオン化ポテンシャルが浅いことから、大気安定性も低くon/off値が低い値となった。 Examples 1 to 5 all showed higher solubility in chloroform than the comparative examples. As for semiconductor characteristics, p-type semiconductor characteristics were exhibited, and a mobility of 10 −4 cm 2 / Vs or higher and an on / off value of 10 4 or higher were exhibited. On the other hand, Comparative Example 1 could not be polymerized, and Comparative Example 2 was undissolved in chloroform, and high solubility was not obtained. Regarding semiconductor characteristics, since the ionization potential is shallow, the atmospheric stability is low and the on / off value is low.

Claims (4)

  1. ホウ素-窒素配位結合を少なくとも2つ有する構造Wと、共役構造を持つ2価の置換基である構造πを含んだ下記式(1)で表される構造単位を含む高分子化合物であって
    Figure JPOXMLDOC01-appb-C000001
    mは0または1を表し、
    構造Wは、下記式(2)または(3)で表され、
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    環X、X、Zは共役構造を持つ単環または縮合環を示し、
    環Y、Yは前記ホウ素-窒素配位結合を有する5員環であり、
    α及びαの何れか一方が窒素原子であり、
    α及びαの何れか一方が窒素原子であり、
    ~Rは同一でも異なっていてもよく、他の骨格を介してホウ素に結合していてもよく、置換されていてもよい炭素数10~40の直鎖または分岐のアルキル基を少なくとも1つ有する1価の置換基を表す、
    ホウ素含有高分子化合物。
    A polymer compound including a structural unit represented by the following formula (1) including a structure W having at least two boron-nitrogen coordination bonds and a structure π that is a divalent substituent having a conjugated structure.
    Figure JPOXMLDOC01-appb-C000001
    m represents 0 or 1;
    The structure W is represented by the following formula (2) or (3):
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Rings X 1 , X 2 , and Z represent a single ring or a condensed ring having a conjugated structure,
    Rings Y 1 and Y 2 are 5-membered rings having the boron-nitrogen coordination bond,
    any one of α 1 and α 3 is a nitrogen atom,
    one of α 2 and α 4 is a nitrogen atom,
    R 1 to R 4 may be the same or different, may be bonded to boron via another skeleton, and may have at least a linear or branched alkyl group having 10 to 40 carbon atoms that may be substituted. Represents a monovalent substituent having one,
    Boron-containing polymer compound.
  2. 重量平均分子量が2×10~1×10である請求項1に記載のホウ素含有高分子化合物。 The boron-containing polymer compound according to claim 1, having a weight average molecular weight of 2 × 10 4 to 1 × 10 6 .
  3. Wは、隣接するWまたはπと、W中の5員環を介して結合している、請求項1または2の何れか1つに記載のホウ素含有高分子化合物。 The boron-containing polymer compound according to claim 1, wherein W is bonded to adjacent W or π via a 5-membered ring in W.
  4. 請求項1~3の何れか1つに記載のホウ素含有高分子化合物を含有する有機半導体。 An organic semiconductor containing the boron-containing polymer compound according to any one of claims 1 to 3.
PCT/JP2017/019845 2016-06-08 2017-05-29 Boron-containing polymer and use thereof WO2017212961A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016114799A JP2019135274A (en) 2016-06-08 2016-06-08 Boron-containing polymer compound and application thereof
JP2016-114799 2016-06-08

Publications (1)

Publication Number Publication Date
WO2017212961A1 true WO2017212961A1 (en) 2017-12-14

Family

ID=60578250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019845 WO2017212961A1 (en) 2016-06-08 2017-05-29 Boron-containing polymer and use thereof

Country Status (3)

Country Link
JP (1) JP2019135274A (en)
TW (1) TW201811857A (en)
WO (1) WO2017212961A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112707926A (en) * 2020-12-29 2021-04-27 华南理工大学 Red electroluminescent compound and preparation method and application thereof
CN114685763A (en) * 2022-05-06 2022-07-01 青岛大学 Conjugated polymer based on triarylboron, and preparation method and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041015A (en) * 2018-09-06 2020-03-19 日本放送協会 Boron-containing polymer
JP7359328B2 (en) 2021-10-18 2023-10-11 東洋紡株式会社 organic semiconductor materials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121397A1 (en) * 2011-03-10 2012-09-13 国立大学法人京都大学 Organic dye material and dye-sensitized solar cell using same
CN105295010A (en) * 2015-10-15 2016-02-03 中国科学院长春应用化学研究所 Conjugated polymer based on double boron and nitrogen bridged bipyridine and preparation method and application thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121397A1 (en) * 2011-03-10 2012-09-13 国立大学法人京都大学 Organic dye material and dye-sensitized solar cell using same
CN105295010A (en) * 2015-10-15 2016-02-03 中国科学院长春应用化学研究所 Conjugated polymer based on double boron and nitrogen bridged bipyridine and preparation method and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEI FANG ET AL.: "Low Band Gap Coplanar Conjugated Molecules Featuring Dynamic Intramolecular Lewis Acid-Base Coordination", THE JOURNAL OF ORGANIC CHEMISTRY, vol. 81, 20 April 2016 (2016-04-20), pages 4347 - 4352, XP055444388 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112707926A (en) * 2020-12-29 2021-04-27 华南理工大学 Red electroluminescent compound and preparation method and application thereof
CN112707926B (en) * 2020-12-29 2021-10-22 华南理工大学 Red electroluminescent compound and preparation method and application thereof
CN114685763A (en) * 2022-05-06 2022-07-01 青岛大学 Conjugated polymer based on triarylboron, and preparation method and application thereof
CN114685763B (en) * 2022-05-06 2023-08-22 青岛大学 Conjugated polymer based on triarylboron and preparation method and application thereof

Also Published As

Publication number Publication date
JP2019135274A (en) 2019-08-15
TW201811857A (en) 2018-04-01

Similar Documents

Publication Publication Date Title
Fei et al. Alkylated selenophene-based ladder-type monomers via a facile route for high-performance thin-film transistor applications
Kim et al. Modulation of majority charge carrier from hole to electron by incorporation of cyano groups in diketopyrrolopyrrole-based polymers
Kawabata et al. Very small bandgap π-conjugated polymers with extended thienoquinoids
Liu et al. Highly disordered polymer field effect transistors: N-alkyl dithieno [3, 2-b: 2′, 3′-d] pyrrole-based copolymers with surprisingly high charge carrier mobilities
Koizumi et al. Thienoisoindigo-based low-band gap polymers for organic electronic devices
Rieger et al. Backbone curvature in polythiophenes
Gao et al. High mobility ambipolar diketopyrrolopyrrole-based conjugated polymers synthesized via direct arylation polycondensation: Influence of thiophene moieties and side chains
Fei et al. Conjugated copolymers of vinylene flanked naphthalene diimide
An et al. Benzodithiophene–Thiadiazoloquinoxaline as an acceptor for ambipolar copolymers with deep LUMO level and distinct linkage pattern
Yi et al. Effect of the longer β-unsubstituted oliogothiophene unit (6T and 7T) on the organic thin-film transistor performances of diketopyrrolopyrrole-oliogothiophene copolymers
Hwang et al. New thienothiadiazole-based conjugated copolymers for electronics and optoelectronics
Cao et al. An Amorphous n‐Type Conjugated Polymer with an Ultra‐Rigid Planar Backbone
Wang et al. Narrow band gap D–A copolymer of indacenodithiophene and diketopyrrolopyrrole with deep HOMO level: Synthesis and application in field‐effect transistors and polymer solar cells
Hwang et al. Synthesis and characterization of new thermally stable poly (naphthodithiophene) derivatives and applications for high-performance organic thin film transistors
Kim et al. Copolymers Comprising 2, 7‐Carbazole and Bis‐benzothiadiazole Units for Bulk‐Heterojunction Solar Cells
WO2017212961A1 (en) Boron-containing polymer and use thereof
Tsai et al. New thiophene‐phenylene‐thiophene acceptor random conjugated copolymers for optoelectronic applications
Li et al. Low bandgap donor-acceptor π-conjugated polymers from diarylcyclopentadienone-fused naphthalimides
Wu et al. (Z)-(Thienylmethylene) oxindole-based polymers for high-performance solar cells
Zhang et al. High-performance unipolar n-type conjugated polymers enabled by highly electron-deficient building blocks containing F and CN groups
US9761803B2 (en) Semiconductor composition
Mishra et al. Synthesis and characterization of soluble narrow band gap conducting polymers based on diketopyrrolopyrrole and propylenedioxythiophenes
Zhang et al. Synthesis and optimization solid-state order using side-chain position of thieno-isoindigo derivative-based D–A polymers for high-performance ambipolar organic thin films transistors
Jeong et al. Acceptor–acceptor-type conjugated polymer for use in n-type organic thin-film transistors and thermoelectric devices
Lai et al. Synthesis and properties of new dialkoxyphenylene quinoxaline‐based donor‐acceptor conjugated polymers and their applications on thin film transistors and solar cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17810140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP