WO2017212538A1 - Sheet molding die, sheet molding method, and sheet - Google Patents

Sheet molding die, sheet molding method, and sheet Download PDF

Info

Publication number
WO2017212538A1
WO2017212538A1 PCT/JP2016/066864 JP2016066864W WO2017212538A1 WO 2017212538 A1 WO2017212538 A1 WO 2017212538A1 JP 2016066864 W JP2016066864 W JP 2016066864W WO 2017212538 A1 WO2017212538 A1 WO 2017212538A1
Authority
WO
WIPO (PCT)
Prior art keywords
manifold
nozzle
sheet
secondary material
outlet
Prior art date
Application number
PCT/JP2016/066864
Other languages
French (fr)
Japanese (ja)
Inventor
富山 秀樹
岩村 真
政樹 上田
和哉 横溝
洋輔 田子
Original Assignee
株式会社日本製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本製鋼所 filed Critical 株式会社日本製鋼所
Priority to JP2018522197A priority Critical patent/JP6711912B2/en
Priority to PCT/JP2016/066864 priority patent/WO2017212538A1/en
Publication of WO2017212538A1 publication Critical patent/WO2017212538A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • B29C48/31Extrusion nozzles or dies having a wide opening, e.g. for forming sheets being adjustable, i.e. having adjustable exit sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets

Definitions

  • the present invention relates to a sheet forming die, a sheet forming method, and a sheet formed with the sheet forming die, and more particularly to the configuration of the sheet forming die.
  • a sheet of a thermoplastic resin having an encapsulation structure in which a secondary material is wrapped with a main material in a partial region in the width direction of the sheet is known.
  • Such a sheet can be handled in the same manner as a single-layer sheet formed of only the main material because the surface properties of the sheet such as chemical resistance and adhesiveness depend on the main material.
  • Patent Document 1 discloses an L die that allows a main material to flow from an end portion of the die into a die manifold.
  • a probe for supplying the secondary material is provided through the die manifold in the sheet width direction. The secondary material is discharged from the outlet of the probe and discharged together with the main material from the slit connected to the manifold, thereby forming an encapsulation structure sheet.
  • Patent Document 2 discloses a T-die having a probe supported at one end of a manifold and shorter than the entire length of the manifold.
  • Patent Document 3 discloses a T die having probes supported at both ends of a manifold.
  • the secondary material outlet is provided at one end of the probe.
  • Patent Document 4 discloses a sheet forming apparatus including a flow path member that defines flow paths for a main material and a secondary material on the upstream side of a T die.
  • the flow path member has two flow paths branched from the main material inflow path and a secondary material flow path passing between the two flow paths.
  • An encapsulated structure sheet is formed by discharging the main material and the sub-material while the sub-material discharged from the sub-material flow path is sandwiched between the main materials discharged from the two flow paths.
  • Patent Document 1 Japanese Patent No. 3241200 Patent Document 2: Japanese Patent No. 1663079 Patent Document 3: Japanese Patent No. 4686208 Patent Document 4: Japanese Patent No. 5220607
  • the secondary material is provided to give the sheet a function such as light shielding properties, high accuracy may be required for the secondary material forming width, forming position, thickness, and the like. For this reason, it may be necessary to replace the probe when adjusting the formation width, formation position, thickness, etc. of the secondary material.
  • the probes described in Patent Documents 1 to 3 are fixed to a die, replacement work is complicated. In the sheet forming apparatus described in Patent Document 4, the replacement work of the flow path member is complicated, and it is necessary to design and manufacture a flow path member having a complicated configuration.
  • An object of the present invention is to provide a sheet forming die capable of easily adjusting the formation width and formation position of the secondary material.
  • the present invention relates to a sheet forming die for forming a sheet in which a secondary material is laminated on a part of a main material.
  • the die for sheet forming of the present invention is located at the end of at least one axial direction of the manifold, in which the main material is introduced, and at least one of the ends in the axial direction, and communicates with the open end.
  • a side plate provided with a through-hole, an inlet located inside the manifold for supplying the secondary material, and an outlet for discharging the secondary material to the manifold, and a nozzle having a smaller cross-sectional area than the manifold, and at least partly Is inserted into the through hole, supports the nozzle, and has a plug body that is detachably supported by the side plate, and a plug member connected to the manifold and having outlets for the main material and the secondary material discharged from the manifold. And a slit provided.
  • the plug body is detachably supported on the side plate. For this reason, when adjusting the formation width and the formation position of the secondary material, the plug body can be removed together with the nozzle supported by the plug body, and a new plug member can be attached. Therefore, according to the present invention, it is possible to provide a sheet forming die capable of easily adjusting the formation width and formation position of the secondary material.
  • FIG. 1 is a cross-sectional view of a die according to an embodiment of the present invention. It is the A section enlarged view of FIG. It is the A section enlarged view of FIG. 1 which abbreviate
  • the x direction is the flow path height direction of the slit
  • the y direction is the vertical direction
  • the z direction is a direction in which the manifold extends, and is also referred to as an axial direction or a longitudinal direction.
  • the sheet molding die of the present invention can be suitably applied to molding of a thermoplastic resin sheet having an encapsulation structure in which a secondary material is laminated on a part of a main material.
  • 1 is a cross-sectional view of a die cut at half the channel height between the manifold and the slit
  • FIG. 2 is an enlarged view of a portion A in FIG.
  • FIG. 3 is a portion A in FIG. It is an enlarged view.
  • the nozzle 11 is shown as an outline drawing.
  • the die 1 includes a die plate 2, a pair of side plates 8a and 8b fixed to the die plate 2, and plug members 3 and 13 attached to the side plates 8a and 8b.
  • the die plate 2 is a pair of molds and is fastened to each other by a bolt (not shown).
  • a manifold 4 into which the main material is introduced and a slit 5 connected to the manifold 4 are formed inside the die plate 2 (a space between the pair of molds).
  • the manifold 4 is a cylindrical tubular space extending substantially in the horizontal direction (z direction), and the slit 5 is a flat space extending in the vertical direction (y direction) and the z direction.
  • the cross-sectional shape of the manifold 4 is not limited to a circle and may be a polygon such as a rectangle.
  • a main material supply path 6 connected to the manifold 4 is formed at the longitudinal center of the manifold 4.
  • a main material inlet 6 a is formed at the upper end of the main material supply path 6. The main material supplied from the main material supply path 6 is filled in the manifold 4.
  • the die 1 is a so-called T die in which the manifold 4 and the main material supply path 6 form a T-shape, but the main material supply path 6 is provided at one end of the manifold 4. It may be an L die.
  • the T-die of the present embodiment includes the manifold 4 that extends linearly, but various known shapes such as a hanger coat type in which the flow path is bent or curved around the central portion in the longitudinal direction can be applied. .
  • the slit 5 is connected to the lower portion of the manifold 4 and has a width (z-direction dimension) substantially equal to the sheet width.
  • the slit 5 is connected to the manifold 4 and has an outlet 5a for the main material and the auxiliary material at the lower end.
  • the pressurized resin in the manifold 4 flows into the slit 5 from the connecting portion 7 between the manifold 4 and the slit 5, and is discharged from the outlet 5a.
  • the ends on both sides in the longitudinal direction (z direction) of the manifold 4 are open ends 4a and 4b.
  • a pair of side plates 8 a and 8 b are provided on both sides of the die plate 2 in the longitudinal direction (z direction) of the manifold 4, that is, on the axial end of the manifold 4.
  • the side plates 8a and 8b are provided with through holes 9 communicating with the open ends 4a and 4b of the manifold 4 (see FIG. 3).
  • the through hole 9 of one side plate 8a is closed by a first plug member 3 to which a secondary material is supplied, and the through hole 9 of the other side plate 8b is a second plug member 13 to which no secondary material is supplied. It is blocked by.
  • the second plug member 13 has an insertion portion 13 a that is inserted into the manifold 4.
  • the insertion portion 13 a has an upper portion that is longer than the lower portion so that the width (dimension in the z direction) of the internal space of the manifold 4 gradually increases toward the slit 5.
  • the opening end 4b of the manifold 4 to which the secondary material is not supplied may be closed with a side plate having no opening.
  • the manifold 4 may have an opening end 4 a only at one axial end, and the other axial end may be closed by the die plate 2. That is, it is only necessary that an opening end is formed at at least one axial end of the manifold 4.
  • the first plug members 3 When the secondary material is formed on both sides of the sheet, the first plug members 3 may be provided in the through holes 9 on both sides. A side plate packing 10 is inserted between the die plate 2 and the side plates 8a and 8b to prevent resin leakage.
  • the first plug member 3 is simply referred to as a plug member 3.
  • the through hole 9 of the side plate 8 a is coaxial with the opening end 4 a of the manifold 4, and the inner diameter gradually increases as the distance from the manifold 4 increases.
  • the through hole 9 of the side plate 8a includes a first portion 9a on the manifold 4 side, a third portion 9c on the outer surface side of the side plate 8a, and a first portion 9a. And a second portion 9b located between the third portions 9c.
  • the inner diameter of the first portion 9a is substantially equal to the inner diameter of the manifold 4, the inner diameter of the second portion 9b is larger than the inner diameter of the first portion 9a, and the inner diameter of the third portion 9c is larger than the inner diameter of the second portion 9b. large.
  • a first surface 8c located in the xy plane is formed between the first portion 9a and the second portion 9b of the through hole 9 of the side plate 8a.
  • a second surface 8d parallel to the first surface 8c is formed between the second portion 9b and the third portion 9c of the through hole 9 of the side plate 8a.
  • the side plate 8b has the same configuration as the side plate 8a.
  • FIG. 4 is a perspective view of the plug member 3, and FIG. 5 is a cross-sectional view taken along the line AA of FIG.
  • the plug member 3 is mounted in the through hole 9 of the side plate 8a.
  • the plug member 3 includes a nozzle 11 having an outlet 18 through which the secondary material flows out, and a plug body 12 that supports the nozzle 11 and is detachably held on the side plate 8a.
  • the nozzle 11 is integrally formed with the plug body 12 by cutting or the like.
  • the wall thickness of the nozzle 11 may be increased toward the plug body 12 in order to suppress stress concentration at the connection portion 14 with the plug body 12.
  • the nozzle 11 and the plug body 12 have a circular cross section, but may be polygonal or elliptical.
  • a flow path 15 through which a secondary material flows is provided inside the nozzle 11, a flow path 15 through which a secondary material flows is provided.
  • the flow path 15 communicates with the flow path 16 of the plug body 12 at the inlet 15 a, and the flow path 16 is connected to an external secondary material supply source (not shown) by a pipe 17.
  • an external secondary material supply source not shown
  • a secondary material outlet 18 communicating with the flow path 15 is provided on the lower surface of the nozzle 11 facing the connecting portion 7 between the die plate 2 and the slit 5. Therefore, the secondary material is supplied from the supply source through the pipe 17 and the flow path 16 to the nozzle 11 from the inflow port 15 a and discharged from the outflow port 18.
  • the outlet 18 is an elongated opening extending in the axial direction z of the nozzle 11, and its length and position are determined according to the formation range of the secondary material. Further, the thickness of the secondary material can be adjusted by adjusting the width (frontage) in the x direction of the outlet 18. Since the outflow port 18 is provided at the lowermost part of the nozzle 11, the secondary material is discharged downward in the vertical direction.
  • the outer cross-sectional area of the surface of the nozzle 11 perpendicular to the z-axis is smaller than the cross-sectional area of the surface of the manifold 4 perpendicular to the z-axis, and the periphery of the nozzle 11 is the space of the manifold 4. For this reason, the main material flows around the nozzle 11 and reaches the end of the manifold 4 in the z direction.
  • the nozzle 11 in the range 19 from the vicinity of the center of the nozzle 11 in the axial direction to the tip, the nozzle 11 is gradually flattened in the x direction, whereby the main material flows around the nozzle 11. Sexuality is enhanced. As shown in FIG.
  • the secondary material flows out from the nozzle 11 in a range 27 corresponding to the length (z-direction dimension) of the outlet 18.
  • the main material reaches the end in the longitudinal direction z of the manifold 4 and flows out of the manifold 4 in a range 28 corresponding to the length of the manifold 4 (dimension in the z direction).
  • the secondary material flowing out from the nozzle 11 is wrapped in the main material, and a three-layered molten resin layer is formed.
  • the molten resin layer flows into the slit 5, flows downward through the slit 5 while maintaining this state, and is discharged from the outlet 5a.
  • a sheet-like resin 23 having an encapsulation structure in which the sub-material 22 is wrapped in the main material 21 is formed.
  • FIG. 6 shows a cross-sectional view of the resin thus formed.
  • the nozzle 11 is supported only by the plug body 12. That is, no support structure such as a support leg for supporting the nozzle 11 is provided between the nozzle 11 and the inner surface of the manifold 4. Since the support structure inhibits the uniform flow of the main material, it tends to cause appearance defects such as streaking in the formed sheet, and may affect the quality of the sheet. In this embodiment, since the support structure which inhibits the flow of the main material is not provided in the manifold 4, such a problem is unlikely to occur. In this embodiment, the nozzle 11 having a length necessary for discharging the secondary material is supported by the plug body 12 in a cantilever structure, and it is not necessary to provide the nozzle 11 over the entire length of the manifold 4. That is, since it is not necessary to provide the nozzle 11 at a position where only the main material is formed, an adverse effect on the fluidity of the main material is suppressed.
  • the nozzle 11 is provided eccentrically from the central axis in the longitudinal direction of the plug main body 12 downward in the vertical direction y.
  • the central axis in the longitudinal direction of the nozzle 11 is closer to the connecting portion 7 between the manifold 4 and the slit 5 than the central axis of the manifold 4.
  • FIG. 7A shows an example in which the nozzle 11 is eccentrically provided on the upper side of the manifold 4. Immediately after flowing out of the nozzle 11, the secondary material is pushed toward the end of the manifold 4 by the main material that flows in the manifold 4 toward the end in the z direction.
  • FIG. 7B shows an example in which the nozzle 11 is eccentrically provided on the lower side of the manifold 4. Immediately after the secondary material flows out of the nozzle 11, the main material is affected in the same manner. However, since the distance between the outlet 18 of the nozzle 11, the manifold 4 and the connection portion 7 of the slit 5 is short, the secondary material is formed. Is difficult to shift in the axial direction. Therefore, the secondary material can be formed at a position assumed with higher accuracy.
  • the plug body 12 has a shape complementary to the through hole 9 of the side plate 8a.
  • the plug body 12 includes three portions having different outer diameters, that is, a small diameter portion 12a, an intermediate diameter portion 12b, and a large diameter portion 12c.
  • the small diameter portion 12a has a larger outer diameter and cross-sectional area than the nozzle 11
  • the medium diameter portion 12b has a larger outer diameter and cross sectional area than the small diameter portion 12a
  • the large diameter portion 12c has a larger outer diameter than the medium diameter portion 12b. It has a cross-sectional area.
  • the small diameter part 12a, the medium diameter part 12b, and the large diameter part 12c are coaxial.
  • the small diameter portion 12a has a first end surface 12d that forms an axial end portion of the manifold 4, and the nozzle 11 extends from the first end surface 12d.
  • the connecting portion of the medium diameter portion 12b with the small diameter portion 12a forms a second end surface 12e parallel to the first end surface 12d.
  • a connecting portion with the middle diameter portion 12b of the large diameter portion 12c forms a third end surface 12f parallel to the first and second end surfaces 12d and 12e. Since the first end face 12d substantially coincides with the side face of the die plate 2, the length of the nozzle 11 is minimized, and the strength of the nozzle 11 is easily ensured.
  • the small diameter portion 12a is accommodated in the first portion 9a of the through hole 9 of the side plate 8a
  • the medium diameter portion 12b is accommodated in the second portion 9b of the through hole 9 of the side plate 8a
  • the large diameter portion 12c is the side plate. It is accommodated in the third portion 9c of the through hole 9 of 8a.
  • the side surface 12g adjacent to the first end surface 12d of the small diameter portion 12a is adjacent to the inner peripheral portion of the side plate packing 10 and suppresses contact between the side plate packing 10 and the main material. For this reason, the sealing effect of the side plate packing 10 can be enhanced.
  • a plug packing 20 is provided between the first surface 8c of the side plate 8a and the second end surface 12e of the medium diameter portion 12b.
  • the middle diameter portion 12b serves as a pressing portion that presses the plug packing 20.
  • the plug packing 20 prevents the main material from leaking from the gap between the through hole 9 of the side plate 8a and the plug body 12.
  • the large-diameter portion 12c of the plug body 12 is provided with a plurality of through holes 28 in the circumferential direction.
  • the second surface 8d of the side plate 8a is provided with a hole 24 formed with a thread groove that faces the through hole 28.
  • the largest third end surface 12f of the plug body 12 is in close contact with the second surface 8d of the side plate 8a.
  • the plug body 12 is firmly fixed to the side plate 8a.
  • the plug body 12 can be easily removed from the side plate 8a.
  • the entire plug body 12 is accommodated in the through hole 9 of the side plate 8, but a part of the plug body 12 may protrude from the through hole 9 of the side plate 8a. The part should just block the through-hole 9.
  • FIG. 8A is a perspective view showing another embodiment 103 of the plug member.
  • FIG. 8B is a view similar to FIGS. 7A and 7B of the embodiment shown in FIG. 8A.
  • the nozzle 111 has a semicircular cross section having the same diameter as the manifold 4 having a circular cross section. As a result, the nozzle 111 is in contact with a part of the inner peripheral surface of the manifold 4 (in this embodiment, a length corresponding to a half circumference). The end portion of the nozzle 111 faces the central portion in the x direction of the connection portion 7 between the manifold 4 and the slit 5.
  • a part of the connecting portion 7 between the manifold 4 and the slit 5 communicates with the outlet 18 of the nozzle 111, and the other communicates with the internal space of the manifold 4. Since one side of the connecting portion 7 in the x direction is a flow path for the secondary material and the rest is a flow path for the primary material, the secondary material is laminated on the primary material without being surrounded by the primary material, The two-layer structure is formed.
  • the cross-sectional shape of the nozzle 111 is not limited to a semicircle, and may be a third circle or a quarter circle.
  • the nozzle 111 covers a portion of the connecting portion 7 between the slit 5 and the manifold 4 from one end 5b in the flow path height h direction (x direction) of the slit 5 to the middle of the flow path height h. It is sufficient that the outlet 18 of the nozzle 111 faces the portion of the connecting portion 7.
  • the plug member 3 When molding a sheet, the plug member 3 is inserted into the through hole 9 and fixed to the side plate 8a. As a result, the nozzle 11 is positioned inside the manifold 4, the plug member 3 is accommodated in the through hole 9 of the side plate 8a, and the plug member 3 is mounted so as to be supported by the side plate 8a. Next, the main material is introduced into the manifold 4. At the same time, the auxiliary material is introduced into the plug member 3 and discharged from the outlet 18 of the nozzle 11. As a result, a main material introduced into the manifold 4 and a sub-material layer discharged from the outlet 18 of the nozzle 11 are formed and discharged from the outlet 18 of the slit 5. The plug member 3 can be easily replaced depending on the sheet forming condition.
  • the plug body 12 can be shared by all the plug members 3, a plurality of plug members 3 having different lengths of the nozzles 11, the lengths of the outlets 18, the widths of the outlets 18 and the like may be prepared. A plurality of plug members 3 having different eccentric positions of the nozzles 11 can also be prepared.
  • the die 1 used in Examples 1 to 4 and the comparative example has the same configuration as the die 1 shown in FIGS. 1 to 4, the die 1 has a width (z-direction dimension) of 270 mm, and the manifold 4 has an inner diameter of 20 mm. It is a perfect circle shape.
  • the cross-sectional shape of the nozzle 11 is circular, the z-direction length is 67 mm, the secondary material outlet 18 is measured from the axial end surface of the manifold 4 and extends from a position of 10 mm to a position of 60 mm, and the length is 50 mm.
  • Table 1 shows the parameters in Examples 1 to 4 and the comparative example together with the shape and position of the formed secondary material.
  • the center of the nozzle 11 coincides with the center of the manifold 4, and in Example 4, the center of the nozzle 11 is eccentric from the center of the manifold 4.
  • Example 1 nozzle diameter 16 mm
  • Example 2 nozzle diameter 13 mm
  • Example 3 nozzle diameter 10 mm
  • Example 3 nozzle diameter 10 mm
  • Example 4 nozzle diameter 10 mm in which the nozzle 11 was eccentric 3 mm from the center of the manifold 4 to the die 1 outlet side, good encapsulation was obtained and the secondary material was formed at a substantially desired position. This is presumably because the flow of the main material can be sufficiently secured to the end of the manifold 4, the main material has spread to the end of the manifold 4, and the secondary material is relatively unaffected by the flow of the main material. Is done.
  • the formation position of the secondary material rarely coincides with the position of the outlet 18 of the nozzle 11 because of the deformation behavior of the sheet that occurs after resin discharge from the die 1 such as neck-in.
  • the length of the material rarely matches the length of the outlet 18 of the nozzle 11.
  • the ratio of the cross-sectional area of the nozzle 11 to the cross-sectional area of the manifold 4 and the installation position of the nozzle 11 can be optimized in advance, and the deformation behavior of the sheet can also be analyzed beforehand. Predictable. Therefore, it is possible to design in advance the plug member 3 suitable for producing a sheet that can be obtained at a level where the accuracy of the shape and position of the secondary material can be used industrially.
  • Examples 1 to 4 and the comparative example are implemented by replacing the plug member 3. That is, after the experiment of one embodiment or comparative example is completed, the resin in the T die is discharged until the resin pressure drops to approximately 0 Pa, the resin pipe is removed from the plug member 3, and the plug member 3 is removed from the die 1. A new plug member 3 is removed and attached to the die 1, and a resin pipe is connected to the newly attached plug member 3. The time required for replacing the plug member 3 including these steps was about 15 minutes. Since the plug member 3 can be easily replaced, Examples 1 to 4 and the comparative example can be completed in one day. That is, since the plug member 3 can be replaced in a short time in the die 1 of the present invention, the sheet forming conditions can be optimized easily and quickly.
  • Table 2 shows Example 5 using the semicircular nozzle 111 shown in FIG. 8A.
  • the nozzle diameter was 20 mm.
  • the flow of the main material in the manifold 4 is restricted to one side, so that a two-layer laminated shape of the secondary material and the main material could be formed.
  • the occupation ratio of the cross-sectional area of the nozzle 11 with respect to the cross-sectional area of the manifold 4 is 64% or less. It is more preferable that the central axis of the nozzle 11 be closer to the connecting portion 7 with the slit 5 than the center of the cross section of the manifold 4, and the secondary material becomes less susceptible to the flow of the main material, and the secondary material is more accurately positioned. Can be formed.
  • MFR relatively high viscosity
  • the internal resin pressure distribution obtained by the flow analysis was set as the pressure boundary condition of the wall surface of the T-die channel, and the structural analysis was performed to determine the stress generated in each part.
  • the target 270 mm wide T-die generally discharges several kg to 25 kg of resin per hour, but in this analysis, a discharge amount of 100 kg per hour was assumed on the safe side.
  • the maximum stress was generated at the base portion of the nozzle 11 and the value was 63.2 MPa.
  • the yield stress of a general carbon steel material is about 350 MPa
  • the rolled steel material is about 200 MPa
  • the yield stress of chromium molybdenum steel usually employed as a T-die member is about 835 MPa.
  • the maximum stress obtained by the analysis was sufficiently lower than the yield stress, and it was confirmed that sufficient strength of the nozzle 11 could be secured without providing a support structure such as a support leg.

Abstract

The purpose of the present invention is to provide a sheet molding die with which it is easy to adjust a forming width and a forming position of secondary material. A sheet molding die 1 comprises: a manifold 4 into which primary material is introduced and which has an opening end formed at least at one axial end thereof; a side plate 8a positioned at the at least one axial end of the manifold 4 and provided with a through-hole 9 communicating with the opening end; a plug member 3 having a nozzle 11 and a plug body 12, wherein the nozzle 11 is positioned inside the manifold 4, is provided with an inlet to which the secondary material is supplied and an outlet 18 from which the secondary material flows out, and has a smaller cross-sectional area than that of the manifold 4, and wherein the plug body 12 is at least partially accommodated in the through-hole 9, supports the nozzle 11, and is attachably/detachably supported by the side plate 8a; and a slit 5 connected to the manifold 4 and provided with an outlet for the primary material and the secondary material discharged from the manifold 4.

Description

シート成形用ダイ、シートの成形方法及びシートSheet forming die, sheet forming method and sheet
 本発明は、シート成形用ダイと、シートの成形方法と、シート成形用ダイで成型されたシートに関し、特にシート成形用ダイの構成に関する。 The present invention relates to a sheet forming die, a sheet forming method, and a sheet formed with the sheet forming die, and more particularly to the configuration of the sheet forming die.
 シートの幅方向の一部領域に副材が主材で包み込まれたエンカプシュレーション構造を有する熱可塑性樹脂のシートが知られている。このようなシートは、耐薬品性や、粘着性といったシートの表面特性が主材に依存するため、主材だけで形成された単層シートと同様に扱うことができる。 A sheet of a thermoplastic resin having an encapsulation structure in which a secondary material is wrapped with a main material in a partial region in the width direction of the sheet is known. Such a sheet can be handled in the same manner as a single-layer sheet formed of only the main material because the surface properties of the sheet such as chemical resistance and adhesiveness depend on the main material.
 特許文献1には、主材をダイの端部からダイのマニホールドへ流入させるLダイが開示されている。副材を供給するプローブがダイのマニホールドをシートの幅方向に貫通して設けられている。プローブの流出口から副材を吐出させ、マニホールドに接続されたスリットから主材とともに排出させることで、エンカプシュレーション構造のシートが形成される。 Patent Document 1 discloses an L die that allows a main material to flow from an end portion of the die into a die manifold. A probe for supplying the secondary material is provided through the die manifold in the sheet width direction. The secondary material is discharged from the outlet of the probe and discharged together with the main material from the slit connected to the manifold, thereby forming an encapsulation structure sheet.
 特許文献2には、マニホールドの一端で支持されマニホールドの全長より短いプローブを備えたTダイが開示されている。 Patent Document 2 discloses a T-die having a probe supported at one end of a manifold and shorter than the entire length of the manifold.
 特許文献3には、マニホールドの両端で支持されたプローブを備えたTダイが開示されている。副材の流出口はプローブの一端側に設けられている。 Patent Document 3 discloses a T die having probes supported at both ends of a manifold. The secondary material outlet is provided at one end of the probe.
 特許文献4には、Tダイの上流側に主材と副材の流路を規定する流路部材を備えたシート成形装置が開示されている。流路部材は主材の流入路から分岐した2つの流路と、2つの流路の間を通る副材の流路を有する。2つの流路から排出された主材の間に副材の流路から排出された副材が挟まれた状態で主材と副材が排出されることでエンカプシュレーション構造のシートが形成される。 Patent Document 4 discloses a sheet forming apparatus including a flow path member that defines flow paths for a main material and a secondary material on the upstream side of a T die. The flow path member has two flow paths branched from the main material inflow path and a secondary material flow path passing between the two flow paths. An encapsulated structure sheet is formed by discharging the main material and the sub-material while the sub-material discharged from the sub-material flow path is sandwiched between the main materials discharged from the two flow paths. The
  特許文献1:特許第3241200号明細書
  特許文献2:特許第1663079号明細書
  特許文献3:特許第4686208号明細書
  特許文献4:特許第5220607号明細書
Patent Document 1: Japanese Patent No. 3241200 Patent Document 2: Japanese Patent No. 1663079 Patent Document 3: Japanese Patent No. 4686208 Patent Document 4: Japanese Patent No. 5220607
 副材は遮光性などの機能をシートに付与するために設けられることから、副材の形成幅、形成位置、厚さなどについて高い精度が求められることがある。このため、副材の形成幅、形成位置、厚さなどを調整する際にプローブの交換が必要となることがある。しかし、特許文献1~3に記載されたプローブはダイに固定されているため、交換作業が煩雑である。特許文献4に記載されたシート成形装置では流路部材の交換作業が煩雑なほか、複雑な構成の流路部材の設計及び製作が必要となる。 Since the secondary material is provided to give the sheet a function such as light shielding properties, high accuracy may be required for the secondary material forming width, forming position, thickness, and the like. For this reason, it may be necessary to replace the probe when adjusting the formation width, formation position, thickness, etc. of the secondary material. However, since the probes described in Patent Documents 1 to 3 are fixed to a die, replacement work is complicated. In the sheet forming apparatus described in Patent Document 4, the replacement work of the flow path member is complicated, and it is necessary to design and manufacture a flow path member having a complicated configuration.
 本発明は、副材の形成幅や形成位置の調整を容易に行うことのできるシート成形用ダイを提供することを目的とする。 An object of the present invention is to provide a sheet forming die capable of easily adjusting the formation width and formation position of the secondary material.
 本発明は、主材の一部に副材が積層されたシートを成形するためのシート成形用ダイに関する。本発明のシート成形用ダイは、主材が導入され、少なくとも一方の軸方向端部に開口端が形成されたマニホールドと、マニホールドの少なくとも一方の軸方向端部に位置し、開口端と連通する貫通孔を備えたサイドプレートと、マニホールドの内部に位置し、副材が供給される流入口と副材をマニホールドに排出する流出口とを備え、マニホールドより断面積が小さいノズルと、少なくとも一部が貫通孔に収容され、ノズルを支持し、サイドプレートに着脱可能に支持されるプラグ本体と、を有するプラグ部材と、マニホールドに接続され、マニホールドから排出された主材及び副材の流出口を備えるスリットと、を有する。 The present invention relates to a sheet forming die for forming a sheet in which a secondary material is laminated on a part of a main material. The die for sheet forming of the present invention is located at the end of at least one axial direction of the manifold, in which the main material is introduced, and at least one of the ends in the axial direction, and communicates with the open end. A side plate provided with a through-hole, an inlet located inside the manifold for supplying the secondary material, and an outlet for discharging the secondary material to the manifold, and a nozzle having a smaller cross-sectional area than the manifold, and at least partly Is inserted into the through hole, supports the nozzle, and has a plug body that is detachably supported by the side plate, and a plug member connected to the manifold and having outlets for the main material and the secondary material discharged from the manifold. And a slit provided.
 本発明によれば、プラグ本体がサイドプレートに着脱可能に支持される。このため、副材の形成幅や形成位置の調整の際に、プラグ本体をプラグ本体に支持されたノズルとともに取外し、新たなプラグ部材を取り付けることができる。従って、本発明によれば、副材の形成幅や形成位置の調整を容易に行うことのできるシート成形用ダイを提供することができる。 According to the present invention, the plug body is detachably supported on the side plate. For this reason, when adjusting the formation width and the formation position of the secondary material, the plug body can be removed together with the nozzle supported by the plug body, and a new plug member can be attached. Therefore, according to the present invention, it is possible to provide a sheet forming die capable of easily adjusting the formation width and formation position of the secondary material.
本発明の一実施形態に係るダイの断面図である。1 is a cross-sectional view of a die according to an embodiment of the present invention. 図1のA部拡大図である。It is the A section enlarged view of FIG. プラグ部材の図示を省略した、図1のA部拡大図である。It is the A section enlarged view of FIG. 1 which abbreviate | omitted illustration of the plug member. プラグ部材の斜視図である。It is a perspective view of a plug member. ノズルの断面図である。It is sectional drawing of a nozzle. 本発明のダイで形成される熱可塑性樹脂のシートの断面図である。It is sectional drawing of the sheet | seat of the thermoplastic resin formed with the die | dye of this invention. ノズルが上側に偏心配置されたダイの断面図である。It is sectional drawing of the die | dye by which the nozzle is eccentrically arranged above. ノズルが下側に偏心配置されたダイの断面図である。It is sectional drawing of the die | dye by which the nozzle is eccentrically arranged below. プラグ部材の他の実施形態を示す斜視図である。It is a perspective view which shows other embodiment of a plug member. 図8Aに示すプラグ部材を備えたダイの断面図である。It is sectional drawing of die | dye provided with the plug member shown to FIG. 8A.
 1 ダイ
 2 ダイプレート
 3,103 プラグ部材
 4 マニホールド
 4a,4b 開口端
 5 スリット
 5a 流出口
 6 供給路
 8a,8b サイドプレート
 9 貫通孔
 11,111 ノズル
 12 プラグ本体
 18 流出口
 21 主材
 22 副材
DESCRIPTION OF SYMBOLS 1 Die 2 Die plate 3,103 Plug member 4 Manifold 4a, 4b Open end 5 Slit 5a Outlet 6 Supply path 8a, 8b Side plate 9 Through-hole 11,111 Nozzle 12 Plug body 18 Outlet 21 Main material 22 Secondary material
 本発明のシート成形用ダイ(以下、ダイ1という)のいくつかの実施形態を、図面を参照して説明する。以下の説明で、x方向はスリットの流路高さ方向、y方向は鉛直方向である。z方向はマニホールドの延びる方向であり、軸方向または長手方向ともいう。本発明のシート成形用ダイは、主材の一部に副材が積層されたエンカプシュレーション構造を有する熱可塑性樹脂のシートの成形に好適に適用できる。図1はマニホールドとスリットの流路高さの半分の位置で切ったダイの断面図、図2は図1のA部拡大図、図3はプラグ部材の図示を省略した、図1のA部拡大図である。図1では、ノズル11は外形図として示されている。 Several embodiments of a sheet forming die (hereinafter referred to as a die 1) of the present invention will be described with reference to the drawings. In the following description, the x direction is the flow path height direction of the slit, and the y direction is the vertical direction. The z direction is a direction in which the manifold extends, and is also referred to as an axial direction or a longitudinal direction. The sheet molding die of the present invention can be suitably applied to molding of a thermoplastic resin sheet having an encapsulation structure in which a secondary material is laminated on a part of a main material. 1 is a cross-sectional view of a die cut at half the channel height between the manifold and the slit, FIG. 2 is an enlarged view of a portion A in FIG. 1, and FIG. 3 is a portion A in FIG. It is an enlarged view. In FIG. 1, the nozzle 11 is shown as an outline drawing.
 ダイ1は、ダイプレート2と、ダイプレート2に固定された一対のサイドプレート8a,8bと、サイドプレート8a,8bに装着されるプラグ部材3,13と、を備えている。ダイプレート2は一対の金型であり、図示しないボルトによって互いに締結されている。ダイプレート2の内部(一対の金型で挟まれた空間)には主材が導入されるマニホールド4と、マニホールド4に接続されたスリット5と、が形成されている。マニホールド4は概ね水平方向(z方向)に延びる円筒形状の管状空間であり、スリット5は鉛直方向(y方向)及びz方向に広がる平板状の空間である。マニホールド4の断面形状は円形に限定されず、矩形などの多角形でもよい。ダイプレート2の内部にはさらに、マニホールド4の長手方向中央部でマニホールド4に接続される主材の供給路6が形成されている。主材の供給路6の上端には主材の流入口6aが形成されている。主材の供給路6から供給された主材はマニホールド4に充填される。 The die 1 includes a die plate 2, a pair of side plates 8a and 8b fixed to the die plate 2, and plug members 3 and 13 attached to the side plates 8a and 8b. The die plate 2 is a pair of molds and is fastened to each other by a bolt (not shown). A manifold 4 into which the main material is introduced and a slit 5 connected to the manifold 4 are formed inside the die plate 2 (a space between the pair of molds). The manifold 4 is a cylindrical tubular space extending substantially in the horizontal direction (z direction), and the slit 5 is a flat space extending in the vertical direction (y direction) and the z direction. The cross-sectional shape of the manifold 4 is not limited to a circle and may be a polygon such as a rectangle. In the die plate 2, a main material supply path 6 connected to the manifold 4 is formed at the longitudinal center of the manifold 4. A main material inlet 6 a is formed at the upper end of the main material supply path 6. The main material supplied from the main material supply path 6 is filled in the manifold 4.
 ダイ1は、本実施形態においては、マニホールド4と主材の供給路6がT字形をなすいわゆるTダイであるが、主材の供給路6がマニホールド4の一方の端部に設けられたいわゆるLダイであってもよい。また、本実施形態のTダイは直線状に延びるマニホールド4を備えているが、長手方向中央部を中心に流路が屈曲または湾曲したハンガーコート型など、公知の種々の形状が適用可能である。 In the present embodiment, the die 1 is a so-called T die in which the manifold 4 and the main material supply path 6 form a T-shape, but the main material supply path 6 is provided at one end of the manifold 4. It may be an L die. In addition, the T-die of the present embodiment includes the manifold 4 that extends linearly, but various known shapes such as a hanger coat type in which the flow path is bent or curved around the central portion in the longitudinal direction can be applied. .
 スリット5はマニホールド4の下部に連結されており、シート幅とほぼ等しい幅(z方向寸法)を有している。スリット5はマニホールド4に接続され、下端に主材と副材の流出口5aを備えている。マニホールド4内の加圧された樹脂はマニホールド4とスリット5の接続部7からスリット5に流入し、流出口5aから排出される。 The slit 5 is connected to the lower portion of the manifold 4 and has a width (z-direction dimension) substantially equal to the sheet width. The slit 5 is connected to the manifold 4 and has an outlet 5a for the main material and the auxiliary material at the lower end. The pressurized resin in the manifold 4 flows into the slit 5 from the connecting portion 7 between the manifold 4 and the slit 5, and is discharged from the outlet 5a.
 マニホールド4の長手方向(z方向)両側の端部は開口端4a,4bとなっている。また、ダイプレート2の、マニホールド4の長手方向(z方向)に関する両側側方、すなわちマニホールド4の軸方向端部には、一対のサイドプレート8a,8bが設けられている。サイドプレート8a,8bには、マニホールド4の開口端4a,4bと連通する貫通孔9が設けられている(図3参照)。一方のサイドプレート8aの貫通孔9は副材が供給される第1のプラグ部材3で塞がれており、他方のサイドプレート8bの貫通孔9は副材が供給されない第2のプラグ部材13で塞がれている。第2のプラグ部材13はマニホールド4に挿入される挿入部13aを有している。挿入部13aはマニホールド4の内部空間の幅(z方向寸法)がスリット5に向けて漸増するように、上部が下部より長く形成されている。第2のプラグ部材13を設ける代わりに、副材が供給されない方のマニホールド4の開口端4bを、開口のないサイドプレートで塞いでもよい。また、マニホールド4が一方の軸方向端部のみに開口端4aを有し、他方の軸方向端部はダイプレート2で塞がれていてもよい。すなわち、マニホールド4の少なくとも一方の軸方向端部に開口端が形成されていればよい。シートの両側に副材を形成する場合は、両側の貫通孔9に第1のプラグ部材3を設けてもよい。ダイプレート2とサイドプレート8a,8bの間には樹脂の漏えいを防止するためのサイドプレートパッキン10が挿入されている。以下、第1のプラグ部材3を単にプラグ部材3という。 The ends on both sides in the longitudinal direction (z direction) of the manifold 4 are open ends 4a and 4b. Further, a pair of side plates 8 a and 8 b are provided on both sides of the die plate 2 in the longitudinal direction (z direction) of the manifold 4, that is, on the axial end of the manifold 4. The side plates 8a and 8b are provided with through holes 9 communicating with the open ends 4a and 4b of the manifold 4 (see FIG. 3). The through hole 9 of one side plate 8a is closed by a first plug member 3 to which a secondary material is supplied, and the through hole 9 of the other side plate 8b is a second plug member 13 to which no secondary material is supplied. It is blocked by. The second plug member 13 has an insertion portion 13 a that is inserted into the manifold 4. The insertion portion 13 a has an upper portion that is longer than the lower portion so that the width (dimension in the z direction) of the internal space of the manifold 4 gradually increases toward the slit 5. Instead of providing the second plug member 13, the opening end 4b of the manifold 4 to which the secondary material is not supplied may be closed with a side plate having no opening. Further, the manifold 4 may have an opening end 4 a only at one axial end, and the other axial end may be closed by the die plate 2. That is, it is only necessary that an opening end is formed at at least one axial end of the manifold 4. When the secondary material is formed on both sides of the sheet, the first plug members 3 may be provided in the through holes 9 on both sides. A side plate packing 10 is inserted between the die plate 2 and the side plates 8a and 8b to prevent resin leakage. Hereinafter, the first plug member 3 is simply referred to as a plug member 3.
 サイドプレート8aの貫通孔9はマニホールド4の開口端4aと同軸であり、マニホールド4から遠ざかるにつれて内径が段階的に増加している。具体的には、図3に示すようにサイドプレート8aの貫通孔9はマニホールド4側の第1の部分9aと、サイドプレート8aの外面側の第3の部分9cと、第1の部分9aと第3の部分9cの間に位置する第2の部分9bと、からなっている。第1の部分9aの内径はマニホールド4の内径とほぼ等しく、第2の部分9bの内径は第1の部分9aの内径より大きく、第3の部分9cの内径は第2の部分9bの内径より大きい。サイドプレート8aの貫通孔9の第1の部分9aと第2の部分9bの間には、x―y平面に位置する第1の面8cが形成されている。サイドプレート8aの貫通孔9の第2の部分9bと第3の部分9cの間には、第1の面8cと平行な第2の面8dが形成されている。説明は省略するが、サイドプレート8bもサイドプレート8aと同じ構成を有している。 The through hole 9 of the side plate 8 a is coaxial with the opening end 4 a of the manifold 4, and the inner diameter gradually increases as the distance from the manifold 4 increases. Specifically, as shown in FIG. 3, the through hole 9 of the side plate 8a includes a first portion 9a on the manifold 4 side, a third portion 9c on the outer surface side of the side plate 8a, and a first portion 9a. And a second portion 9b located between the third portions 9c. The inner diameter of the first portion 9a is substantially equal to the inner diameter of the manifold 4, the inner diameter of the second portion 9b is larger than the inner diameter of the first portion 9a, and the inner diameter of the third portion 9c is larger than the inner diameter of the second portion 9b. large. Between the first portion 9a and the second portion 9b of the through hole 9 of the side plate 8a, a first surface 8c located in the xy plane is formed. A second surface 8d parallel to the first surface 8c is formed between the second portion 9b and the third portion 9c of the through hole 9 of the side plate 8a. Although description is omitted, the side plate 8b has the same configuration as the side plate 8a.
 図4はプラグ部材3の斜視図を、図5は図4のA-A線で切った断面図を示している。サイドプレート8aの貫通孔9にはプラグ部材3が装着されている。プラグ部材3は副材が流出する流出口18を備えたノズル11と、ノズル11を支持し、サイドプレート8aに着脱可能に保持されるプラグ本体12と、を有している。ノズル11の強度を高めるため、ノズル11は切削加工などによってプラグ本体12と一体形成されている。プラグ本体12との接続部14における応力集中を抑えるため、ノズル11の肉厚がプラグ本体12に向かって増加するようにしてもよい。ノズル11とプラグ本体12は円形の断面を有しているが、多角形、楕円形などでもよい。 4 is a perspective view of the plug member 3, and FIG. 5 is a cross-sectional view taken along the line AA of FIG. The plug member 3 is mounted in the through hole 9 of the side plate 8a. The plug member 3 includes a nozzle 11 having an outlet 18 through which the secondary material flows out, and a plug body 12 that supports the nozzle 11 and is detachably held on the side plate 8a. In order to increase the strength of the nozzle 11, the nozzle 11 is integrally formed with the plug body 12 by cutting or the like. The wall thickness of the nozzle 11 may be increased toward the plug body 12 in order to suppress stress concentration at the connection portion 14 with the plug body 12. The nozzle 11 and the plug body 12 have a circular cross section, but may be polygonal or elliptical.
 ノズル11の内部には副材が流通する流路15が設けられている。図2に示すように、流路15は流入口15aにおいてプラグ本体12の流路16と連通しており、流路16は外部の副材の供給源(図示せず)と配管17で接続されている。ダイプレート2とスリット5との接続部7に面するノズル11の下面には流路15と連通する副材の流出口18が設けられている。従って、副材は供給源から、配管17、流路16を通って、流入口15aからノズル11に供給され、流出口18から排出される。流出口18はノズル11の軸方向zに延びる細長い開口であり、副材の形成範囲に応じてその長さ、位置が決定される。また、流出口18のx方向の幅(間口)を調整することで副材の厚みを調整することができる。流出口18はノズル11の最下部に設けられているため、副材は鉛直方向下方に吐出される。 Inside the nozzle 11, a flow path 15 through which a secondary material flows is provided. As shown in FIG. 2, the flow path 15 communicates with the flow path 16 of the plug body 12 at the inlet 15 a, and the flow path 16 is connected to an external secondary material supply source (not shown) by a pipe 17. ing. On the lower surface of the nozzle 11 facing the connecting portion 7 between the die plate 2 and the slit 5, a secondary material outlet 18 communicating with the flow path 15 is provided. Therefore, the secondary material is supplied from the supply source through the pipe 17 and the flow path 16 to the nozzle 11 from the inflow port 15 a and discharged from the outflow port 18. The outlet 18 is an elongated opening extending in the axial direction z of the nozzle 11, and its length and position are determined according to the formation range of the secondary material. Further, the thickness of the secondary material can be adjusted by adjusting the width (frontage) in the x direction of the outlet 18. Since the outflow port 18 is provided at the lowermost part of the nozzle 11, the secondary material is discharged downward in the vertical direction.
 ノズル11のz軸と直交する面における外側断面積は、マニホールド4のz軸と直交する面における断面積より小さく、ノズル11の周囲はマニホールド4の空間となっている。このため、主材はノズル11の周囲を流動し、マニホールド4のz方向端部まで行き渡る。特に、図4に示すように、ノズル11の軸方向中央付近から先端部にかけての範囲19では、ノズル11がx方向に徐々に扁平化しており、これによってノズル11の周囲での主材の流動性が高められている。図1に示すように、副材は流出口18の長さ(z方向寸法)に対応する範囲27でノズル11から流出する。主材はマニホールド4の長手方向zの端部まで到達し、マニホールド4の長さ(z方向寸法)に対応する範囲28でマニホールド4から流出する。ノズル11から流出した副材は主材に包み込まれ、3層構造の溶融樹脂層が形成される。溶融樹脂層はスリット5へ流入し、この状態を保ったままスリット5を下方に流れ、流出口5aから吐出される。これによって、主材21に副材22が包まれたエンカプシュレーション構造のシート状の樹脂23が形成される。図6にはこのようにして形成された樹脂の断面図を示している。 The outer cross-sectional area of the surface of the nozzle 11 perpendicular to the z-axis is smaller than the cross-sectional area of the surface of the manifold 4 perpendicular to the z-axis, and the periphery of the nozzle 11 is the space of the manifold 4. For this reason, the main material flows around the nozzle 11 and reaches the end of the manifold 4 in the z direction. In particular, as shown in FIG. 4, in the range 19 from the vicinity of the center of the nozzle 11 in the axial direction to the tip, the nozzle 11 is gradually flattened in the x direction, whereby the main material flows around the nozzle 11. Sexuality is enhanced. As shown in FIG. 1, the secondary material flows out from the nozzle 11 in a range 27 corresponding to the length (z-direction dimension) of the outlet 18. The main material reaches the end in the longitudinal direction z of the manifold 4 and flows out of the manifold 4 in a range 28 corresponding to the length of the manifold 4 (dimension in the z direction). The secondary material flowing out from the nozzle 11 is wrapped in the main material, and a three-layered molten resin layer is formed. The molten resin layer flows into the slit 5, flows downward through the slit 5 while maintaining this state, and is discharged from the outlet 5a. Thus, a sheet-like resin 23 having an encapsulation structure in which the sub-material 22 is wrapped in the main material 21 is formed. FIG. 6 shows a cross-sectional view of the resin thus formed.
 ノズル11はプラグ本体12だけに支持されている。すなわち、ノズル11とマニホールド4の内面の間に、ノズル11を支持する支持脚などの支持構造物は設けられていない。支持構造物は主材の均一な流動を阻害するため、形成されたシートに筋が入るなどの外観不良を招きやすく、シートの品質に影響を与える場合がある。本実施形態ではマニホールド4内に主材の流動を阻害する支持構造物が設けられていないため、このような問題が生じにくい。また、本実施形態では、副材の吐出に必要なだけの長さのノズル11が片持ち梁構造でプラグ本体12に支持されており、マニホールド4全長に渡ってノズル11を設ける必要がない。すなわち、主材だけが形成される位置にノズル11を設ける必要がないため、主材の流動性への悪影響が抑制される。 The nozzle 11 is supported only by the plug body 12. That is, no support structure such as a support leg for supporting the nozzle 11 is provided between the nozzle 11 and the inner surface of the manifold 4. Since the support structure inhibits the uniform flow of the main material, it tends to cause appearance defects such as streaking in the formed sheet, and may affect the quality of the sheet. In this embodiment, since the support structure which inhibits the flow of the main material is not provided in the manifold 4, such a problem is unlikely to occur. In this embodiment, the nozzle 11 having a length necessary for discharging the secondary material is supported by the plug body 12 in a cantilever structure, and it is not necessary to provide the nozzle 11 over the entire length of the manifold 4. That is, since it is not necessary to provide the nozzle 11 at a position where only the main material is formed, an adverse effect on the fluidity of the main material is suppressed.
 ノズル11はプラグ本体12の長手方向中心軸から鉛直方向y下方に偏心して設けられている。この結果、ノズル11の長手方向中心軸はマニホールド4の中心軸よりも、マニホールド4とスリット5の接続部7に近接している。図7Aには、ノズル11がマニホールド4の上側に偏心して設けられている例を示している。副材はノズル11から流出した直後に、マニホールド4内をz方向端部に向けて流動する主材によって、マニホールド4の端部に向けて押される。この結果、副材はシート内の想定した位置よりマニホールド4の端部側に形成されやすくなり、さらに副材の軸方向長さも想定通りに形成されない可能性が増加する。図7Bには、ノズル11がマニホールド4の下側に偏心して設けられている例を示している。副材はノズル11から流出された直後に、主材から同様の影響を受けるが、ノズル11の流出口18とマニホールド4とスリット5の接続部7との距離が短いため、副材の形成位置が軸方向にずれにくい。従って、副材をより高い精度で想定した位置に形成することが可能となる。 The nozzle 11 is provided eccentrically from the central axis in the longitudinal direction of the plug main body 12 downward in the vertical direction y. As a result, the central axis in the longitudinal direction of the nozzle 11 is closer to the connecting portion 7 between the manifold 4 and the slit 5 than the central axis of the manifold 4. FIG. 7A shows an example in which the nozzle 11 is eccentrically provided on the upper side of the manifold 4. Immediately after flowing out of the nozzle 11, the secondary material is pushed toward the end of the manifold 4 by the main material that flows in the manifold 4 toward the end in the z direction. As a result, the secondary material is more easily formed on the end side of the manifold 4 than the assumed position in the sheet, and the possibility that the axial length of the secondary material is not formed as expected increases. FIG. 7B shows an example in which the nozzle 11 is eccentrically provided on the lower side of the manifold 4. Immediately after the secondary material flows out of the nozzle 11, the main material is affected in the same manner. However, since the distance between the outlet 18 of the nozzle 11, the manifold 4 and the connection portion 7 of the slit 5 is short, the secondary material is formed. Is difficult to shift in the axial direction. Therefore, the secondary material can be formed at a position assumed with higher accuracy.
 図2に示すように、プラグ本体12はサイドプレート8aの貫通孔9と相補的な形状を有している。具体的には、プラグ本体12は外径が異なる3つの部分、すなわち小径部12aと中径部12bと大径部12cとからなっている。小径部12aはノズル11より大きな外径と断面積を有し、中径部12bは小径部12aより大きな外径と断面積を有し、大径部12cは中径部12bより大きな外径と断面積を有している。小径部12aと中径部12bと大径部12cは同軸である。小径部12aはマニホールド4の軸方向端部を形成する第1の端面12dを有し、ノズル11は第1の端面12dから延びている。中径部12bの小径部12aとの接続部は第1の端面12dと平行な第2の端面12eを形成している。大径部12cの中径部12bとの接続部は第1及び第2の端面12d,12eと平行な第3の端面12fを形成している。第1の端面12dがダイプレート2の側面とほぼ一致しているため、ノズル11の長さが最小化され、ノズル11の強度の確保が容易となっている。小径部12aはサイドプレート8aの貫通孔9の第1の部分9aに収容され、中径部12bはサイドプレート8aの貫通孔9の第2の部分9bに収容され、大径部12cはサイドプレート8aの貫通孔9の第3の部分9cに収容される。 As shown in FIG. 2, the plug body 12 has a shape complementary to the through hole 9 of the side plate 8a. Specifically, the plug body 12 includes three portions having different outer diameters, that is, a small diameter portion 12a, an intermediate diameter portion 12b, and a large diameter portion 12c. The small diameter portion 12a has a larger outer diameter and cross-sectional area than the nozzle 11, the medium diameter portion 12b has a larger outer diameter and cross sectional area than the small diameter portion 12a, and the large diameter portion 12c has a larger outer diameter than the medium diameter portion 12b. It has a cross-sectional area. The small diameter part 12a, the medium diameter part 12b, and the large diameter part 12c are coaxial. The small diameter portion 12a has a first end surface 12d that forms an axial end portion of the manifold 4, and the nozzle 11 extends from the first end surface 12d. The connecting portion of the medium diameter portion 12b with the small diameter portion 12a forms a second end surface 12e parallel to the first end surface 12d. A connecting portion with the middle diameter portion 12b of the large diameter portion 12c forms a third end surface 12f parallel to the first and second end surfaces 12d and 12e. Since the first end face 12d substantially coincides with the side face of the die plate 2, the length of the nozzle 11 is minimized, and the strength of the nozzle 11 is easily ensured. The small diameter portion 12a is accommodated in the first portion 9a of the through hole 9 of the side plate 8a, the medium diameter portion 12b is accommodated in the second portion 9b of the through hole 9 of the side plate 8a, and the large diameter portion 12c is the side plate. It is accommodated in the third portion 9c of the through hole 9 of 8a.
 小径部12aの第1の端面12dに隣接する側面12gはサイドプレートパッキン10の内周部と隣接しており、サイドプレートパッキン10と主材の接触を抑制している。このため、サイドプレートパッキン10のシール効果を高めることができる。サイドプレート8aの第1の面8cと中径部12bの第2の端面12eとの間にはプラグパッキン20が設けられている。中径部12bはプラグパッキン20を押し付ける押圧部としての役目を有している。プラグパッキン20は、サイドプレート8aの貫通孔9とプラグ本体12との間の隙間からの主材の漏洩を防止する。 The side surface 12g adjacent to the first end surface 12d of the small diameter portion 12a is adjacent to the inner peripheral portion of the side plate packing 10 and suppresses contact between the side plate packing 10 and the main material. For this reason, the sealing effect of the side plate packing 10 can be enhanced. A plug packing 20 is provided between the first surface 8c of the side plate 8a and the second end surface 12e of the medium diameter portion 12b. The middle diameter portion 12b serves as a pressing portion that presses the plug packing 20. The plug packing 20 prevents the main material from leaking from the gap between the through hole 9 of the side plate 8a and the plug body 12.
 図2,4に示すように、プラグ本体12の大径部12cには複数の貫通孔28が円周方向に設けられている。サイドプレート8aの第2の面8dには、貫通孔28と対向する、ねじ溝が形成された穴24が設けられている。ボルト25を貫通孔28に通し、穴24に係合させ、ナット26で締め付けることで、プラグ本体12の最も大きな大きな第3の端面12fがサイドプレート8aの第2の面8dに密着する。これによって、プラグ本体12はサイドプレート8aに強固に固定される。ナット26を緩めることでプラグ本体12をサイドプレート8aから容易に取り外すことができる。本実施形態ではプラグ本体12の全体がサイドプレート8の貫通孔9に収容されるが、プラグ本体12の一部がサイドプレート8aの貫通孔9から突き出していてもよく、プラグ本体12の少なくとも一部が貫通孔9を塞いでいればよい。 2 and 4, the large-diameter portion 12c of the plug body 12 is provided with a plurality of through holes 28 in the circumferential direction. The second surface 8d of the side plate 8a is provided with a hole 24 formed with a thread groove that faces the through hole 28. By passing the bolt 25 through the through hole 28, engaging with the hole 24, and tightening with the nut 26, the largest third end surface 12f of the plug body 12 is in close contact with the second surface 8d of the side plate 8a. As a result, the plug body 12 is firmly fixed to the side plate 8a. By loosening the nut 26, the plug body 12 can be easily removed from the side plate 8a. In the present embodiment, the entire plug body 12 is accommodated in the through hole 9 of the side plate 8, but a part of the plug body 12 may protrude from the through hole 9 of the side plate 8a. The part should just block the through-hole 9.
 図8Aはプラグ部材の他の実施形態103を示す斜視図である。図8Bは図8Aに示す実施形態の図7A,7Bと同様の図である。ノズル111は円形断面のマニホールド4と同じ径の半円断面を有している。この結果、ノズル111はマニホールド4の内周面の一部と(本実施形態では半周分の長さで)接している。ノズル111の端部はマニホールド4とスリット5の接続部7のx方向中央部と対向している。従って、マニホールド4とスリット5の接続部7は、一部がノズル111の流出口18と連通し、他はマニホールド4の内部空間と連通している。接続部7のx方向片側が副材の流路となり、残りが主材の流路となるため、副材は主材に囲まれることなく主材の上に積層され、主材と副材との2層構造が形成される。ノズル111の断面形状は半円形に限定されず、三分の一円、四分の一円でもよい。より一般的には、ノズル111は、スリット5とマニホールド4の接続部7の、スリット5の流路高さh方向(x方向)における一端5bから流路高さhの途中までの部分を覆っていればよく、ノズル111の流出口18は接続部7の当該部分と対向していればよい。 FIG. 8A is a perspective view showing another embodiment 103 of the plug member. FIG. 8B is a view similar to FIGS. 7A and 7B of the embodiment shown in FIG. 8A. The nozzle 111 has a semicircular cross section having the same diameter as the manifold 4 having a circular cross section. As a result, the nozzle 111 is in contact with a part of the inner peripheral surface of the manifold 4 (in this embodiment, a length corresponding to a half circumference). The end portion of the nozzle 111 faces the central portion in the x direction of the connection portion 7 between the manifold 4 and the slit 5. Therefore, a part of the connecting portion 7 between the manifold 4 and the slit 5 communicates with the outlet 18 of the nozzle 111, and the other communicates with the internal space of the manifold 4. Since one side of the connecting portion 7 in the x direction is a flow path for the secondary material and the rest is a flow path for the primary material, the secondary material is laminated on the primary material without being surrounded by the primary material, The two-layer structure is formed. The cross-sectional shape of the nozzle 111 is not limited to a semicircle, and may be a third circle or a quarter circle. More generally, the nozzle 111 covers a portion of the connecting portion 7 between the slit 5 and the manifold 4 from one end 5b in the flow path height h direction (x direction) of the slit 5 to the middle of the flow path height h. It is sufficient that the outlet 18 of the nozzle 111 faces the portion of the connecting portion 7.
 シートを成形するときは、プラグ部材3を貫通孔9に挿入し、サイドプレート8aに固定する。これによって、ノズル11がマニホールド4の内部に位置し、プラグ部材3がサイドプレート8aの貫通孔9に収容され、プラグ部材3がサイドプレート8aに支持されるように装着される。次に、主材をマニホールド4に導入する。これとともに、副材をプラグ部材3に導入し、ノズル11の流出口18から排出させる。これによって、マニホールド4に導入された主材と、ノズル11の流出口18から排出された副材の層が形成され、スリット5の流出口18から排出される。プラグ部材3はシートの成形件によって容易に交換することができる。プラグ本体12は全てのプラグ部材3で共通とすることができるため、ノズル11の長さ、流出口18の長さ、流出口18の幅などが異なる複数のプラグ部材3を準備すればよい。ノズル11の偏心位置が互いに異なる複数のプラグ部材3を用意することもできる。 When molding a sheet, the plug member 3 is inserted into the through hole 9 and fixed to the side plate 8a. As a result, the nozzle 11 is positioned inside the manifold 4, the plug member 3 is accommodated in the through hole 9 of the side plate 8a, and the plug member 3 is mounted so as to be supported by the side plate 8a. Next, the main material is introduced into the manifold 4. At the same time, the auxiliary material is introduced into the plug member 3 and discharged from the outlet 18 of the nozzle 11. As a result, a main material introduced into the manifold 4 and a sub-material layer discharged from the outlet 18 of the nozzle 11 are formed and discharged from the outlet 18 of the slit 5. The plug member 3 can be easily replaced depending on the sheet forming condition. Since the plug body 12 can be shared by all the plug members 3, a plurality of plug members 3 having different lengths of the nozzles 11, the lengths of the outlets 18, the widths of the outlets 18 and the like may be prepared. A plurality of plug members 3 having different eccentric positions of the nozzles 11 can also be prepared.
 (実施例)
 以下、本発明のいくつかの実施例について説明する。実施例1~4と比較例で用いたダイ1は図1~4に示すダイ1と同様の構成を有しており、ダイ1の幅(z方向寸法)は270mm、マニホールド4は内径20mmの真円形状である。ノズル11の断面形状は円形、z方向長さは67mm、副材の流出口18はマニホールド4の軸方向端面から測って10mmの位置から60mmの位置まで延びており、長さは50mmである。主材及び副材としてフィルム成形グレードのポリプロピレン(メルトインデックス(MI)=3)を使用した。主材、副材とも同一の原料を使用し、副材を顔料で着色することで副材の積層形状を観察した。
(Example)
Several embodiments of the present invention will be described below. The die 1 used in Examples 1 to 4 and the comparative example has the same configuration as the die 1 shown in FIGS. 1 to 4, the die 1 has a width (z-direction dimension) of 270 mm, and the manifold 4 has an inner diameter of 20 mm. It is a perfect circle shape. The cross-sectional shape of the nozzle 11 is circular, the z-direction length is 67 mm, the secondary material outlet 18 is measured from the axial end surface of the manifold 4 and extends from a position of 10 mm to a position of 60 mm, and the length is 50 mm. Film-forming grade polypropylene (melt index (MI) = 3) was used as the main material and sub-material. The same raw material was used for both the main material and the secondary material, and the secondary material was colored with a pigment to observe the laminated shape of the secondary material.
 表1に、実施例1~4と比較例におけるパラメータを、形成された副材の形状及び位置とともに示す。比較例1と実施例1~3ではノズル11の中心がマニホールド4の中心と一致しており、実施例4ではノズル11の中心がマニホールド4の中心から偏心している。 Table 1 shows the parameters in Examples 1 to 4 and the comparative example together with the shape and position of the formed secondary material. In Comparative Example 1 and Examples 1 to 3, the center of the nozzle 11 coincides with the center of the manifold 4, and in Example 4, the center of the nozzle 11 is eccentric from the center of the manifold 4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
  比較例(ノズル径18mm)では、副材だけがシート端部に形成され、副材と主材のエンカプシュレーション構造が明確にみられなかった。これはノズル径が大きく、マニホールド4内での主材の流路が狭くなったため、主材がノズル11の周囲を流れにくくなったためと推察される。 比較 In the comparative example (nozzle diameter 18 mm), only the secondary material was formed at the sheet end, and the encapsulation structure of the secondary material and the main material was not clearly seen. This is presumably because the nozzle diameter is large and the flow path of the main material in the manifold 4 becomes narrow, so that the main material is less likely to flow around the nozzle 11.
 実施例1(ノズル径16mm)では、副材の周囲への主材の積層が確認できた。このとき、ノズル11のz方向と直交する面における断面積の、マニホールド4のz方向と直交する面における断面積に対する比率は64%であった。実施例2(ノズル径13mm)では、主材がマニホールド4の端部まで行き渡り、比較的良好なエンカプシュレーション構造が得られた。実施例3(ノズル径10mm)では、実施例2と同様、比較的良好なエンカプシュレーション構造が得られたが、副材はやや端部側に形成された。これはノズル11から流出した副材が主材の流動の影響を受け、マニホールド4端部へ押されたためと推察される。ノズル11をマニホールド4の中心からダイ1出口側へ3mm偏心させた実施例4(ノズル径10mm)では、良好なエンカプシュレーションが得られるとともに、副材がほぼ所望の位置に形成された。これはマニホールド4の端部まで主材の流路が十分に確保でき、主材がマニホールド4の端部まで行き渡ったこと、及び副材が主材の流動による影響を比較的受けにくかったためと推察される。 In Example 1 (nozzle diameter 16 mm), it was confirmed that the main material was laminated around the secondary material. At this time, the ratio of the cross-sectional area in the surface orthogonal to the z direction of the nozzle 11 to the cross-sectional area in the surface orthogonal to the z direction of the manifold 4 was 64%. In Example 2 (nozzle diameter 13 mm), the main material spread to the end of the manifold 4 and a relatively good encapsulation structure was obtained. In Example 3 (nozzle diameter 10 mm), a relatively good encapsulation structure was obtained as in Example 2, but the secondary material was slightly formed on the end side. This is presumably because the secondary material flowing out from the nozzle 11 was influenced by the flow of the main material and was pushed to the end of the manifold 4. In Example 4 (nozzle diameter 10 mm) in which the nozzle 11 was eccentric 3 mm from the center of the manifold 4 to the die 1 outlet side, good encapsulation was obtained and the secondary material was formed at a substantially desired position. This is presumably because the flow of the main material can be sufficiently secured to the end of the manifold 4, the main material has spread to the end of the manifold 4, and the secondary material is relatively unaffected by the flow of the main material. Is done.
 一般に、Tダイによるシート成形では、ネックイン等のダイ1からの樹脂吐出後に生じるシートの変形挙動のため、副材の形成位置がノズル11の流出口18の位置と一致することは少なく、副材の長さがノズル11の流出口18の長さと一致することも少ない。しかし、この実験結果が示すように、ノズル11の断面積とマニホールド4の断面積の比率やノズル11の設置位置は予め適正化が可能であり、また、シートの変形挙動についても解析等で予め予測可能である。従って、副材の形状や位置の精度が工業的に利用可能なレベルで得られるシートを作成するのに適したプラグ部材3を予め設計することができる。 In general, in the sheet forming by the T-die, the formation position of the secondary material rarely coincides with the position of the outlet 18 of the nozzle 11 because of the deformation behavior of the sheet that occurs after resin discharge from the die 1 such as neck-in. The length of the material rarely matches the length of the outlet 18 of the nozzle 11. However, as shown in the experimental results, the ratio of the cross-sectional area of the nozzle 11 to the cross-sectional area of the manifold 4 and the installation position of the nozzle 11 can be optimized in advance, and the deformation behavior of the sheet can also be analyzed beforehand. Predictable. Therefore, it is possible to design in advance the plug member 3 suitable for producing a sheet that can be obtained at a level where the accuracy of the shape and position of the secondary material can be used industrially.
 上述の実施例1~4と比較例は、プラグ部材3を交換することで実施している。すなわち、一つの実施例ないし比較例の実験が終了した後に、樹脂圧力がほぼ0Paに低下するまでTダイ内の樹脂を排出し、樹脂配管をプラグ部材3から取外し、プラグ部材3をダイ1から取り外し、新たなプラグ部材3をダイ1に装着し、新たに装着したプラグ部材3に樹脂配管を接続している。これらの工程を含めたプラグ部材3の交換に要する時間は約15分であった。プラグ部材3の交換が容易に行えるため、実施例1~4と比較例を1日間で終了することができた。すなわち、本発明のダイ1では短時間でプラグ部材3を交換することができるため、シートの成形条件の最適化が容易かつ迅速に行える。 The above-described Examples 1 to 4 and the comparative example are implemented by replacing the plug member 3. That is, after the experiment of one embodiment or comparative example is completed, the resin in the T die is discharged until the resin pressure drops to approximately 0 Pa, the resin pipe is removed from the plug member 3, and the plug member 3 is removed from the die 1. A new plug member 3 is removed and attached to the die 1, and a resin pipe is connected to the newly attached plug member 3. The time required for replacing the plug member 3 including these steps was about 15 minutes. Since the plug member 3 can be easily replaced, Examples 1 to 4 and the comparative example can be completed in one day. That is, since the plug member 3 can be replaced in a short time in the die 1 of the present invention, the sheet forming conditions can be optimized easily and quickly.
 表2は図8Aに示す半円形状のノズル111を用いた実施例5を示している。ノズル径は20mmとした。本実施例ではマニホールド4での主材の流れが片側に制限されるため、副材と主材の2層の積層形状を形成することができた。 Table 2 shows Example 5 using the semicircular nozzle 111 shown in FIG. 8A. The nozzle diameter was 20 mm. In the present embodiment, the flow of the main material in the manifold 4 is restricted to one side, so that a two-layer laminated shape of the secondary material and the main material could be formed.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
  実施例1~5と比較例より、良好なエンカプシュレーションを形成するために、マニホールド4の断面積に対するノズル11の断面積の占有率は64%以下であることが好ましい。ノズル11の中心軸をマニホールド4の断面中央よりもスリット5との接続部7に近接させることがさらに好ましく、副材が主材の流動の影響を受けにくくなり、より高い位置精度で副材を形成することができる。 よ り From Examples 1 to 5 and the comparative example, in order to form a good encapsulation, it is preferable that the occupation ratio of the cross-sectional area of the nozzle 11 with respect to the cross-sectional area of the manifold 4 is 64% or less. It is more preferable that the central axis of the nozzle 11 be closer to the connecting portion 7 with the slit 5 than the center of the cross section of the manifold 4, and the secondary material becomes less susceptible to the flow of the main material, and the secondary material is more accurately positioned. Can be formed.
 前述のようにノズル11の外径がマニホールド4の内径より小さいため、ノズル11はその周囲を流動する主材の流動圧力による影響を受ける。ノズル11自体が弓なりに変形することは生じにくいが、プラグ本体12に接続されるノズル11の付け根部分に応力が集中する可能性がある。そこで、実施例4のプラグを対象にノズル11に生じる応力を解析で求めた。まず、Tダイ内に比較的高粘度(MFR=1.9)のポリプロピレンを220℃の一定温度で流動させた条件で流動解析を行った。次に、流動解析で得られた内部樹脂圧力分布をTダイ流路の壁面の圧力境界条件に設定し、構造解析を実施し、各部品に生じる応力を求めた。対象とした270mm幅のTダイは一般的に1時間あたり数kg~25kgの樹脂を吐出するが、本解析では安全側に1時間あたり100kgの吐出量を仮定した。構造解析の結果、最大応力はノズル11の付け根部分で発生し、その値は63.2MPaであった。一般的な炭素鋼材の降伏応力は350MPa程度、圧延鋼材は200MPaであり、通常Tダイ部材として採用されるクロムモリブデン鋼の降伏応力は835MPa程度である。解析によって得られた最大応力は降伏応力よりも十分に低く、支持脚などの支持構造物を設けなくても十分なノズル11の強度が確保できることが確認された。 Since the outer diameter of the nozzle 11 is smaller than the inner diameter of the manifold 4 as described above, the nozzle 11 is affected by the flow pressure of the main material flowing around it. Although it is unlikely that the nozzle 11 itself is deformed like a bow, stress may concentrate on the base portion of the nozzle 11 connected to the plug body 12. Therefore, the stress generated in the nozzle 11 for the plug of Example 4 was obtained by analysis. First, a flow analysis was performed under the condition that a relatively high viscosity (MFR = 1.9) polypropylene was flowed at a constant temperature of 220 ° C. in a T die. Next, the internal resin pressure distribution obtained by the flow analysis was set as the pressure boundary condition of the wall surface of the T-die channel, and the structural analysis was performed to determine the stress generated in each part. The target 270 mm wide T-die generally discharges several kg to 25 kg of resin per hour, but in this analysis, a discharge amount of 100 kg per hour was assumed on the safe side. As a result of structural analysis, the maximum stress was generated at the base portion of the nozzle 11 and the value was 63.2 MPa. The yield stress of a general carbon steel material is about 350 MPa, the rolled steel material is about 200 MPa, and the yield stress of chromium molybdenum steel usually employed as a T-die member is about 835 MPa. The maximum stress obtained by the analysis was sufficiently lower than the yield stress, and it was confirmed that sufficient strength of the nozzle 11 could be secured without providing a support structure such as a support leg.

Claims (9)

  1.  主材の一部に副材が積層されたシートを成形するためのシート成形用ダイであって、
     主材が導入され、少なくとも一方の軸方向端部に開口端が形成されたマニホールドと、
     前記マニホールドの前記少なくとも一方の軸方向端部に位置し、前記開口端と連通する貫通孔を備えたサイドプレートと、
     前記マニホールドの内部に位置し、前記副材が供給される流入口と前記副材を前記マニホールドに排出する流出口とを備え、前記マニホールドより断面積が小さいノズルと、少なくとも一部が前記貫通孔に収容され、前記ノズルを支持し、前記サイドプレートに着脱可能に支持されるプラグ本体と、を有するプラグ部材と、
     前記マニホールドに接続され、前記マニホールドから排出された前記主材及び前記副材の流出口を備えるスリットと、を有する、シート成形用ダイ。
    A sheet forming die for forming a sheet in which a subsidiary material is laminated on a part of a main material,
    A manifold in which a main material is introduced and an open end is formed in at least one axial end;
    A side plate provided with a through hole located at the at least one axial end of the manifold and communicating with the open end;
    A nozzle located inside the manifold, provided with an inlet for supplying the secondary material, and an outlet for discharging the secondary material to the manifold, a nozzle having a smaller cross-sectional area than the manifold, and at least a part of the through hole A plug member that is housed in, supports the nozzle, and is detachably supported by the side plate;
    A sheet forming die, comprising: a slit connected to the manifold and provided with an outlet for the main material and the secondary material discharged from the manifold.
  2.  前記ノズルの断面積が前記マニホールドの断面積の64%以下である、請求項1に記載のシート成形用ダイ。 The sheet forming die according to claim 1, wherein a cross-sectional area of the nozzle is 64% or less of a cross-sectional area of the manifold.
  3.  前記ノズルは前記プラグ本体だけに支持されている、請求項1または2に記載のシート成形用ダイ。 The sheet forming die according to claim 1 or 2, wherein the nozzle is supported only by the plug body.
  4.  前記プラグ本体は、前記マニホールドの前記少なくとも一方の軸方向端部の端面を形成する端部を有し、前記ノズルは前記端部から延びている、請求項1から3のいずれか1項に記載のシート成形用ダイ。 4. The plug body according to claim 1, wherein the plug body has an end portion that forms an end face of the at least one axial end portion of the manifold, and the nozzle extends from the end portion. 5. Die for sheet forming.
  5.  前記プラグ本体は、前記ノズルの断面積よりも大きな面積を有し、前記側壁に密着して保持される支持面を有している、請求項1から4のいずれか1項に記載のシート成形用ダイ。 The sheet molding according to any one of claims 1 to 4, wherein the plug body has a support surface that has an area larger than a cross-sectional area of the nozzle and is held in close contact with the side wall. Die for.
  6.  前記ノズルの中心軸は前記マニホールドの中心軸よりも、前記マニホールドと前記スリットとの接続部に近接している、請求項1から5のいずれか1項に記載のシート成形用ダイ。 The sheet forming die according to any one of claims 1 to 5, wherein a central axis of the nozzle is closer to a connection portion between the manifold and the slit than a central axis of the manifold.
  7.  前記ノズルは、前記スリットと前記マニホールドとの接続部の、前記スリットの流路高さ方向における一端から流路高さの途中までの部分を覆い、前記ノズルの前記流出口は前記接続部の前記部分と対向している、請求項1から6のいずれか1項に記載のシート成形用ダイ。 The nozzle covers a portion of the connection portion between the slit and the manifold from one end in the flow channel height direction of the slit to the middle of the flow channel height, and the outlet of the nozzle is connected to the connection portion. The sheet forming die according to any one of claims 1 to 6, which faces the portion.
  8.  少なくとも一方の軸方向端部に開口端が形成されたマニホールドと、前記マニホールドの前記少なくとも一方の軸方向端部に位置し、前記開口端と連通する貫通孔を備えたサイドプレートと、前記マニホールドに接続され、前記主材と前記副材の流出口を備えるスリットと、を有するシート成形用ダイによって、主材の一部に副材が積層されたシートを成形する方法であって、
     前記マニホールドより断面積が小さいノズルと、前記ノズルを支持するプラグ本体とを有するプラグ部材を、前記ノズルが前記マニホールドの内部に位置し、前記プラグ部材の少なくとも一部が前記サイドプレートの前記貫通孔に収容され、前記プラグ部材が前記サイドプレートに支持されるように装着することと、
     前記主材を前記マニホールドに導入することと、
     前記副材を前記プラグ部材に導入し、前記ノズルの流出口から排出させることと、
     前記マニホールドに導入された前記主材と、前記ノズルの前記流出口から前記マニホールドに排出された前記副材を、前記スリットの前記流出口から排出させることと、を有する方法。
    A manifold having an open end at at least one axial end, a side plate having a through hole located at the at least one axial end of the manifold and communicating with the open end; and the manifold A method of forming a sheet in which a secondary material is laminated on a part of a primary material by a die for forming a sheet that is connected and has a slit provided with an outlet of the primary material and the secondary material,
    A plug member having a nozzle having a smaller cross-sectional area than the manifold and a plug main body that supports the nozzle, the nozzle is located inside the manifold, and at least a part of the plug member is the through hole of the side plate. Mounted so that the plug member is supported by the side plate;
    Introducing the main material into the manifold;
    Introducing the secondary material into the plug member and discharging from the outlet of the nozzle;
    Discharging the main material introduced into the manifold and the sub-material discharged from the outlet of the nozzle to the manifold from the outlet of the slit.
  9.  請求項1から7のいずれか1項に記載のシート成形用ダイで形成された、主材の一部に副材が積層されたシート。 A sheet in which a secondary material is laminated on a part of a main material, which is formed by the sheet forming die according to any one of claims 1 to 7.
PCT/JP2016/066864 2016-06-07 2016-06-07 Sheet molding die, sheet molding method, and sheet WO2017212538A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018522197A JP6711912B2 (en) 2016-06-07 2016-06-07 Sheet forming die, sheet forming method and sheet
PCT/JP2016/066864 WO2017212538A1 (en) 2016-06-07 2016-06-07 Sheet molding die, sheet molding method, and sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/066864 WO2017212538A1 (en) 2016-06-07 2016-06-07 Sheet molding die, sheet molding method, and sheet

Publications (1)

Publication Number Publication Date
WO2017212538A1 true WO2017212538A1 (en) 2017-12-14

Family

ID=60578486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066864 WO2017212538A1 (en) 2016-06-07 2016-06-07 Sheet molding die, sheet molding method, and sheet

Country Status (2)

Country Link
JP (1) JP6711912B2 (en)
WO (1) WO2017212538A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57109615A (en) * 1980-11-17 1982-07-08 Monsanto Co Method and apparatus for extruding colored thermoplastic resin sheet
JPH04312829A (en) * 1991-04-12 1992-11-04 Sekisui Chem Co Ltd Manufacture of thermoplastic resin sheet and device thereof
JPH0524093A (en) * 1991-07-18 1993-02-02 Sekisui Chem Co Ltd Manufacture of thermoplastic resin sheet and apparatus for the same
JPH0524092A (en) * 1991-07-18 1993-02-02 Sekisui Chem Co Ltd Manufacture of thermoplastic resin sheet and apparatus for the same
JPH0584803A (en) * 1991-09-25 1993-04-06 Sekisui Chem Co Ltd Production equipment of thermoplastic resin sheet
JPH05329913A (en) * 1992-06-04 1993-12-14 Sekisui Chem Co Ltd Manufacture of thermoplastic resin sheet with double-layered structure and device thereof
JPH08230012A (en) * 1995-02-27 1996-09-10 Sekisui Chem Co Ltd Manufacture of thermoplastic resin sheet
JPH0952271A (en) * 1995-06-09 1997-02-25 Sekisui Chem Co Ltd Manufacture of thermoplastic resin sheet and manufacture using the same
JPH10193429A (en) * 1997-01-13 1998-07-28 Sekisui Chem Co Ltd Device and method for manufacturing thermoplastic resin sheet
JP2002240126A (en) * 2001-02-16 2002-08-28 Fuji Photo Film Co Ltd Method for forming resin film
JP2009297945A (en) * 2008-06-11 2009-12-24 Japan Steel Works Ltd:The Flat die and method for manufacturing sheet

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57109615A (en) * 1980-11-17 1982-07-08 Monsanto Co Method and apparatus for extruding colored thermoplastic resin sheet
JPH04312829A (en) * 1991-04-12 1992-11-04 Sekisui Chem Co Ltd Manufacture of thermoplastic resin sheet and device thereof
JPH0524093A (en) * 1991-07-18 1993-02-02 Sekisui Chem Co Ltd Manufacture of thermoplastic resin sheet and apparatus for the same
JPH0524092A (en) * 1991-07-18 1993-02-02 Sekisui Chem Co Ltd Manufacture of thermoplastic resin sheet and apparatus for the same
JPH0584803A (en) * 1991-09-25 1993-04-06 Sekisui Chem Co Ltd Production equipment of thermoplastic resin sheet
JPH05329913A (en) * 1992-06-04 1993-12-14 Sekisui Chem Co Ltd Manufacture of thermoplastic resin sheet with double-layered structure and device thereof
JPH08230012A (en) * 1995-02-27 1996-09-10 Sekisui Chem Co Ltd Manufacture of thermoplastic resin sheet
JPH0952271A (en) * 1995-06-09 1997-02-25 Sekisui Chem Co Ltd Manufacture of thermoplastic resin sheet and manufacture using the same
JPH10193429A (en) * 1997-01-13 1998-07-28 Sekisui Chem Co Ltd Device and method for manufacturing thermoplastic resin sheet
JP2002240126A (en) * 2001-02-16 2002-08-28 Fuji Photo Film Co Ltd Method for forming resin film
JP2009297945A (en) * 2008-06-11 2009-12-24 Japan Steel Works Ltd:The Flat die and method for manufacturing sheet

Also Published As

Publication number Publication date
JP6711912B2 (en) 2020-06-17
JPWO2017212538A1 (en) 2019-04-04

Similar Documents

Publication Publication Date Title
US9623514B2 (en) Powder supply method in cladding
JP4527776B2 (en) Film blow mold for producing tubular film
TW201440890A (en) Slot die with improved chamber structure and coating apparatus having the same
JP5571479B2 (en) Extrusion dies
JP6215098B2 (en) Battery plate manufacturing equipment
WO2017212538A1 (en) Sheet molding die, sheet molding method, and sheet
US7748975B2 (en) Molding die
US10882239B2 (en) Extrusion head for pipes
US11084199B2 (en) Honeycomb structure forming die
JP2020168592A (en) Coating head
KR101240500B1 (en) Extrusion die enable to minimize thickness deviation and welding lines
US20130036596A1 (en) Method of mounting a sleeve in a print press
JP5492385B2 (en) Sheet forming die and sheet forming method
JP2021126875A (en) Mouthpiece for extrusion molding machine and extrusion molding machine
JP5657272B2 (en) Extrusion head structure
KR101410399B1 (en) Dual nozzle for Polymer hollow fiber membrane
JP2020104296A (en) Liquid distribution mold
JP2006142247A (en) Die head
JP2016078012A (en) Coating tool
US11607832B2 (en) Feed block and sheet manufacturing apparatus provided with the same, and method of manufacturing sheet
CN103963144B (en) Mould for producing atomizer, set of molds, former and method for producing atomizer
JP7105712B2 (en) Extrusion dies and extrusion equipment
JP6094145B2 (en) Application tool
JP2003211521A (en) Mold for extrusion molding of hollow pipe
JP2022013274A (en) Liquid distribution mold

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018522197

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16904573

Country of ref document: EP

Kind code of ref document: A1