WO2017211678A1 - Neue amylasen - Google Patents

Neue amylasen Download PDF

Info

Publication number
WO2017211678A1
WO2017211678A1 PCT/EP2017/063310 EP2017063310W WO2017211678A1 WO 2017211678 A1 WO2017211678 A1 WO 2017211678A1 EP 2017063310 W EP2017063310 W EP 2017063310W WO 2017211678 A1 WO2017211678 A1 WO 2017211678A1
Authority
WO
WIPO (PCT)
Prior art keywords
amylase
amino acid
acid sequence
amylases
nucleic acid
Prior art date
Application number
PCT/EP2017/063310
Other languages
English (en)
French (fr)
Inventor
Daniela HERBST
Nina Mussmann
Timothy O'connell
Claudia LINDNER
Anna Krüger
Neele Meyer
Garabed Antranikian
Anke Peters
Original Assignee
Henkel Ag & Co. Kgaa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Ag & Co. Kgaa filed Critical Henkel Ag & Co. Kgaa
Priority to EP17728806.5A priority Critical patent/EP3464577A1/de
Priority to US16/307,426 priority patent/US10662399B2/en
Publication of WO2017211678A1 publication Critical patent/WO2017211678A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • C12N9/2414Alpha-amylase (3.2.1.1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01001Alpha-amylase (3.2.1.1)

Definitions

  • the Clustal series see, for example, Chenna et al., 2003: Multiple sequence alignment with the Clustal series of programs, Nucleic Acid Research 31, 3497-3500
  • T-Coffee see, for example, Notredame et al (2000): T-Coffee: A novel method for multiple sequence alignments, J. Mol. Biol. 302, 205-217
  • programs based on these programs or algorithms are also possible.
  • alignment comparisons with the computer program Vector NTI® Suite 10.3 (Invitrogen Corporation, 1600 Faraday Avenue, Carlsbad, California, USA) with the default parameters, whose AlignX module for sequence comparisons is based on ClustalW.
  • Bottlenecks in protein biosynthesis can occur if the codons lying on the nucleic acid in the organism face a comparatively small number of loaded tRNA molecules. Although coding for the same amino acid, this results in a codon being less efficiently translated in the organism than a synonymous codon which is responsible for the same amino acid. Nucleic acid coded. Due to the presence of a higher number of tRNA molecules for the synonymous codon, it can be more efficiently translated in the organism.
  • This procedure is particularly suitable when the host cell already contains one or more constituents of a nucleic acid according to the invention or a vector according to the invention and the further constituents are then supplemented accordingly.
  • Methods of transforming cells are well established in the art and well known to those skilled in the art. In principle, all cells, that is to say prokaryotic or eukaryotic cells, are suitable as host cells. Preference is given to those host cells which can be handled genetically advantageously, for example as regards the transformation with the nucleic acid or the vector and its stable establishment, for example unicellular fungi or bacteria. Furthermore, preferred host cells are characterized by good microbiological and biotechnological handling.
  • amylases can be modified by the producing cells after their production, for example by attachment of sugar molecules, formylations, aminations, etc. Such post-translational modifications can functionally affect the amylase.
  • the present invention is in principle applicable to all microorganisms, in particular all fermentable microorganisms, and leads to the fact that can be produced by the use of such microorganisms proteins of the invention. Such microorganisms then represent host cells in the sense of the invention.
  • the host cell is characterized in that it is a bacterium, preferably one selected from the genera Escherichia, Klebsiella, Bacillus, Staphylococcus, Corynebacterium, Arthrobacter, Streptomyces, Stenotrophomonas and Pseudomonas, more preferably one selected from the group of Escherichia coli, Klebsiella planticola, Bacillus licheniformis, Bacillus lentus, Bacillus amyloliquefaciens, Bacillus subtilis, Bacillus alcalophilus, Bacillus globigii, Bacillus gibsonii, Bacillus clausa, Bacillus halodurans, Bacillus pumilus, Staphylococcus carnosus, Corynebacterium glutamicum, Arthrobacter oxidans, Streptomyces lividans, Streptomyces coelicolor and Stenotrophomon
  • eukaryotic systems perform, especially in connection with protein synthesis, include, for example, the binding of low molecular weight compounds such as membrane anchors or oligosaccharides. Such oligosaccharide modifications may be desirable, for example, to lower the allergenicity of an expressed protein. Also, coexpression with the enzymes naturally produced by such cells, such as cellulases, may be advantageous. Furthermore, for example, thermophilic fungal expression systems may be particularly suitable for expressing temperature-resistant proteins or variants.
  • the host cell is a basidiomycete cell. In further preferred embodiments, the host cell is a Bacillus cell.
  • This subject invention preferably comprises fermentation processes. Fermentation processes are known per se from the prior art and represent the actual large-scale production step, usually followed by a suitable purification method of the product produced, for example the amylase according to the invention. All fermentation processes which are based on a corresponding process for preparing an amylase according to the invention represent embodiments of this subject matter of the invention.
  • Fermentation processes which are characterized in that the fermentation is carried out via a feed strategy, come in particular into consideration.
  • the media components consumed by the ongoing cultivation are fed.
  • considerable increases can be achieved both in the cell density and in the cell mass or dry matter and / or in particular in the activity of the amylase of interest. the.
  • the fermentation can also be designed so that undesired metabolic products are filtered out or neutralized by the addition of buffer or suitable counterions.
  • Another object of the invention is an agent which is characterized in that it contains an amylase according to the invention as described above.
  • the agent is as a washing or cleaning agent.
  • This subject matter of the invention includes all conceivable types of detergents or cleaners, both concentrates and undiluted agents, for use on a commercial scale, in the washing machine or in hand washing or cleaning.
  • detergents for textiles, carpets, or natural fibers, for which the term detergent is used.
  • (d) is present as a one-component system, or
  • compositions according to the invention include all solid, powdered, liquid, gelatinous or paste-like administration forms of compositions according to the invention, which if appropriate can also consist of several phases and can be present in compressed or uncompressed form.
  • the agent can be present as a free-flowing powder, in particular with a bulk density of 300 g / l to 1200 g / l, in particular 500 g / l to 900 g / l or 600 g / l to 850 g / l.
  • the solid dosage forms of the composition also include extrudates, granules, tablets or pouches.
  • Detergents or cleaning agents according to the invention may contain exclusively an amylase. Alternatively, they may also contain other hydrolytic enzymes or other enzymes in a concentration effective for the effectiveness of the agent. A further embodiment of the invention thus represents agents which further comprise one or more further enzymes.
  • Preferred enzymes which can be used as enzymes are all enzymes which can develop a catalytic activity in the agent according to the invention, in particular a protease, lipase, cellulase, hemicellulase, mannanase, tannase, xylanase, xanthanase, xyloglucanase, ⁇ -glucosidase, pectinase, carrageenase, Perhydrolase, oxidase, oxidoreductase or other - distinguishable from the amylases of the invention - amylases, and mixtures thereof.
  • each further enzyme is in an amount of 1 x 10 7 -3 wt%, from 0.00001 to 1 wt%, from 0.00005 to 0.5 wt%, from 0.0001 to 0, 1 wt .-% and particularly preferably from 0.0001 to 0.05 wt .-% in inventive compositions, based on active protein.
  • the enzymes show synergistic cleaning performance against certain stains or stains, ie the enzymes contained in the middle composition mutually support each other in their cleaning performance.
  • the film may also contain, exclusively or in addition to the PVA, acid / acrylate copolymers, preferably methacrylic acid / ethyl acrylate copolymer, such as that available from Beiland as GBC 2580 and 2600; Styrene-maleic anhydride copolymer (SMA) (available as Scripset (trade name) from Monsanto); Ethylene-acrylic acid copolymer (EAA) or metal salt neutralized ethylene-methacrylic acid copolymer (EMAA), known as ionomer (available from du Pont), wherein the acid content of EAA or EMAA is at least about 20 mole%; Polyether block amide copolymer; Polyhydroxyvaleric acid (available as Biopol (trade name) resins from Imperial Chemical Industries). ream); polyethylene oxide; water-soluble polyester or copolyester; Polyethyloxazoline (PEOX 200 from Dow); and water-soluble polyurethane.
  • a further subject of the invention is a process for the cleaning of textiles or hard surfaces, which is characterized in that in at least one process step, an inventive agent is applied, or that in at least one process step, an amylase of the invention is catalytically active, in particular such that the amylase in an amount of 40 ⁇ g to 4g, preferably from 50 ⁇ g to 3g, more preferably from 100 ⁇ g to 2g and most preferably from 200 ⁇ g to 1g is used.
  • the method described above is characterized in that the amylase is used at a temperature of 0-100 ° C, preferably 0-60 ° C, more preferably 20-45 ° C and most preferably at 40 ° C.
  • Methods for cleaning textiles are generally distinguished by the fact that various cleaning-active substances are applied to the items to be cleaned and washed off after the contact time, or that the items to be cleaned are otherwise treated with a detergent or a solution or dilution of this product.
  • All conceivable washing or cleaning processes can be enriched in at least one of the process steps by the use of a washing or cleaning agent or an amylase according to the invention and then represent embodiments of the present invention.
  • All facts, objects and embodiments which are essential for amylases according to the invention and those containing them Means are described are also applicable to this subject invention. Therefore, reference is made at this point expressly to the disclosure in the appropriate place with the statement that this disclosure also applies to the above inventive method.
  • the present invention relates to the use of an amylase according to the invention or an amylase obtainable by a process according to the invention in a washing or cleaning agent for removing starch-containing stains. All aspects, objects and embodiments described for amylase and agents containing it are also applicable to this subject of the invention.
  • the sequence is far removed from the amylases previously used in L & HC. This opens up many possibilities for increasing genetic diversity and, if necessary, altering the range of services through mutagenesis.
  • a washing test was carried out with the purified supernatant from E. coli containing the wild-type amylase according to the invention according to SEQ ID NO: 1.
  • Enzyme concentration 0.186 TAU / ml (determination of amylase activity with benzylidene-blocked para-nitrophenol-maltoheptaoside); this corresponds to an amount of amylase commonly used in detergents.
  • amylase according to the invention performs very well on all five soils.
  • the boiled, purified supernatant from the production organism E. coli was washed (99 ° C for 30 min), which shows no washing performance (not shown).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Detergent Compositions (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Die Erfindung betrifft Amylasen umfassend eine Aminosäuresequenz, die mindestens 70 % Sequenzidentität mit der in SEQ ID NO:1 angegebenen Aminosäuresequenz über deren Gesamtlänge aufweist sowie deren Herstellung und Verwendung. Derartige Amylasen zeigen eine gute Reinigungsleistung.

Description

„Neue Amylasen"
Die Erfindung liegt auf dem Gebiet der Enzymtechnologie. Die Erfindung betrifft insbesondere Amylasen sowie deren Herstellung, deren Aminosäuresequenz, die insbesondere im Hinblick auf den Einsatz in Wasch- und Reinigungsmitteln verwendet werden können, alle hinreichend ähnlichen Amylasen mit einer entsprechend ähnlichen Sequenz gemäß SEQ ID NO: 1 und für sie codierende Nukleinsäuren. Die Erfindung betrifft ferner Verfahren und Verwendungen dieser Amylasen sowie sie enthaltende Mittel, insbesondere Wasch- und Reinigungsmittel.
Alpha-Amylasen gehören zu den technisch bedeutenden Enzymen. Ihr Einsatz für Wasch- und Reinigungsmittel ist industriell etabliert und sie können in modernen, leistungsfähigen Wasch- und Reinigungsmitteln enthalten sein. Eine alpha-Amylase ist ein Enzym, das die Hydrolyse der inneren a(1-4)-Glykosidbindungen der Amylose, nicht jedoch die Spaltung von terminalen oder a(1-6)- Glykosidbindungen, katalysiert. Alpha-Amylasen stellen daher eine Gruppe der Esterasen dar (E.C. 3.2.1.1 .). Alpha-Amylasen katalysieren die Spaltung von Stärke, Glycogen und von anderen Oligo- und Polysacchariden, die eine a(1-4)-Glykosidbindung besitzen. Insofern wirken alpha- Amylasen gegen Stärkerückstände in der Wäsche und katalysieren deren Hydrolyse (Endohydro- lyse). Alpha-Amylasen mit breiten Substratspektren werden insbesondere dort verwendet, wo inhomogene Rohstoffe oder Substratgemische umgesetzt werden müssen, also beispielsweise in Wasch- und Reinigungsmitteln, da Verschmutzungen aus unterschiedlich aufgebauten Stärkemolekülen und Oligosacchariden bestehen können. Die in den aus dem Stand der Technik bekannten Wasch- oder Reinigungsmitteln eingesetzten alpha-Amylasen sind üblicherweise mikrobiellen Ursprungs und stammen in der Regel aus Bakterien oder Pilzen, beispielsweise der Gattungen Bacillus, Pseudomonas, Acinetobacter, Micrococcus, Humicola, Trichoderma oder Trichosporon. Alpha- Amylasen werden üblicherweise nach an sich bekannten biotechnologischen Verfahren durch geeignete Mikroorganismen produziert, beispielsweise durch transgene Expressionswirte der Gattungen Bacillus oder durch filamentöse Pilze.
Eine besonders ausgiebig charakterisierte alpha-Amylase ist ein aus dem alkalophilen Bacillus sp. Stamm TS-23 gewonnenes Enzym, das mindestens fünf Arten von Stärke hydrolysiert (Lin et al., Biotechnol Appl Biochem, 28: 61-68, 1998). Die alpha-Amylase aus Bacillus sp. Stamm TS- 23 besitzt ein pH-Optimum von 9, obwohl sie über einen breiten pH -Bereich stabil ist (dh. pH 4,7 bis 10,8). Ihre optimale Temperatur beträgt 45°C, wobei das Enzym auch Aktivität bei niedrigeren Temperaturen, beispielsweise 15-20°C aufweist. Auch die amerikanischen Patentanmeldungen US 7407677 B2 und US 8852912 B2 offenbaren spezifische alpha-Amylasen und deren Fragmente zur Verwendung in Wasch- u. Reinigungsmitteln.
Nichtsdestotrotz besteht ein Bedarf an (alpha-)Amylase-Varianten, die veränderte biochemische Eigenschaften besitzen und dadurch eine verbesserte Leistung in industriellen Anwendungen bereitstellen.
Überraschenderweise wurde jetzt festgestellt, dass ein als alpha-Amylase annotiertes Enzym oder eine hierzu hinreichend ähnliche Amylase (bezogen auf die Sequenzidentität), besonders für den Einsatz in Wasch- oder Reinigungsmitteln geeignet ist, da sie ein breites Spektrum an Stärke- Substraten unter Standard-Waschbedingungen hydrolysiert.
Gegenstand der Erfindung ist daher in einem ersten Aspekt eine Amylase umfassend eine Aminosäuresequenz, die mindestens 70 % Sequenzidentität mit der in SEQ ID NO: 1 angegebenen Aminosäuresequenz über deren Gesamtlänge aufweist.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung einer Amylase umfassend das Bereitstellen einer Ausgangsamylase, die mindestens 70 % Sequenzidentität zu der in SEQ ID NO: 1 angegebenen Aminosäuresequenz über deren Gesamtlänge aufweist.
Eine Amylase im Sinne der vorliegenden Patentanmeldung umfasst daher sowohl die Amylase als solche als auch eine mit einem erfindungsgemäßen Verfahren hergestellte Amylase. Alle Ausführungen zur Amylase beziehen sich daher sowohl auf die Amylase als Stoff als auch auf die entsprechenden Verfahren, insbesondere Herstellungsverfahren der Amylase, und die damit hergestellten Amylasen.
Weitere Erfindungsgegenstände sind die die erfindungsgemäßen Amylasen kodierenden Nukleinsäuren, erfindungsgemäße Amylasen oder Nukleinsäuren, die diese kodieren, enthaltende nicht menschliche Wirtszellen sowie erfindungsgemäße Amylasen umfassende Mittel, insbesondere Wasch- und Reinigungsmittel, Wasch- und Reinigungsverfahren in denen die erfindungsgemäßen Amylasen eingesetzt werden, und Verwendungen der erfindungsgemäßen Amylasen. Eine die Aminosäuresequenz gemäß SEQ ID NO:1 kodierende Nukleotidsequenz ist in SEQ ID NO:2 angegeben.
Die vorliegende Erfindung basiert auf der überraschenden Erkenntnis, dass eine erfindungsgemäße Amylase, die eine zu der in SEQ ID NO: 1 angegebenen Aminosäuresequenz zu mindestens 70% identische Aminosäuresequenz umfasst, die Hydrolyse eines breiten Spektrums an Stärke- Substraten unter Standard-Waschbedingungen bewirkt. Das ist insbesondere insoweit überra- sehend, als dass bisher keine Amylasen mit vergleichbarer Sequenzhomologie für die Verwendung in Reinigungsmitteln beschrieben wurden.
Die erfindungsgemäßen Amylasen verfügen über eine hohe Stabilität in Wasch- oder Reinigungsmitteln, beispielsweise gegenüber Tensiden und/oder Bleichmitteln und/oder gegenüber Temperatureinflüssen, und/oder gegenüber sauren oder alkalischen Bedingungen und/oder gegenüber pH- Wert-Änderungen und/oder gegenüber denaturierenden oder oxidierenden Agentien und/oder gegenüber proteolytischem Abbau und/oder gegenüber einer Veränderung der Redox-Verhältnisse. In besonders bevorzugten Ausführungsformen der Erfindung werden folglich leistungsverbesserte Amylase-Varianten bereitgestellt. Solche vorteilhaften Ausführungsformen erfindungsgemäßer Amylasen ermöglichen folglich verbesserte Waschergebnisse an Stärke-haltigen Anschmutzungen in einem weiten Temperaturbereich.
Eine erfindungsgemäße Amylase weist eine enzymatische Aktivität auf, das heißt, sie ist zur Hydrolyse von Stärke und Oligosacchariden befähigt, insbesondere in einem Wasch- oder Reinigungsmittel. Eine erfindungsgemäße alpha-Amylase ist daher ein Enzym, welches die Hydrolyse von a(1-4)-Glykosidbindungen in Glykosid-Substraten katalysiert und dadurch in der Lage ist, Stärke oder Oligosaccharide zu spalten. Ferner handelt es sich bei einer erfindungsgemäßen Amylase vorzugsweise um eine reife (mature) alpha-Amylase, d.h. um das katalytisch aktive Molekül ohne Signal- und/oder Propeptid(e). Soweit nicht anders angegeben beziehen sich auch die angegebenen Sequenzen auf jeweils reife (prozessierte) Enzyme.
In verschiedenen Ausführungsformen der Erfindung umfasst die Amylase eine Aminosäuresequenz, die zu der in SEQ ID NO:1 angegebenen Aminosäuresequenz über deren Gesamtlänge zu mindestens 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 90,5%, 91 %, 91 ,5%, 92%, 92,5%, 93%, 93,5%, 94%, 94,5%, 95%, 95,5%, 96%, 96,5%, 97%, 97,5%, 98%, 98,5%, 98,8%, 99,0%, 99,2%, 99,4%, 99,6% oder 99,8% identisch ist.
In weiteren verschiedenen Ausführungsformen der Erfindung ist die Amylase ein frei vorliegendes Enzym. Dies bedeutet, dass die Amylase mit allen Komponenten eines Mittels direkt interagieren kann und, falls es sich bei dem Mittel um ein flüssiges Mittel handelt, dass die Amylase direkt mit dem Lösungsmittel des erfindungsgemäßen Mittel (z.B. Wasser) in Kontakt steht. In anderen Ausführungsformen kann die erfindungsgemäße Amylase in einem Mittel einen Komplex mit anderen Molekülen bilden oder eine„Umhüllung" umfassen. Hierbei kann ein einzelnes oder mehrere Amylase-Moleküle durch eine sie umgebende Struktur von den anderen Bestandteilen eines Mittels getrennt sein. Eine solche trennende Struktur schließt beispielsweise, ohne darauf beschränkt zu sein, Vesikel, wie etwa eine Micelle oder ein Liposom, ein. Die umgebende Struktur kann aber auch ein Viruspartikel, eine bakterielle Zelle oder eine eukaryotische Zelle sein. In verschiedenen Ausführungsformen kann die erfindungsgemäße Amylase in Zellen von Bacillus, die diese Amylase exprimiert, oder in Zellkulturüberständen solcher Zellen enthalten sein.
Die Bestimmung der Identität von Nukleinsäure- oder Aminosäuresequenzen erfolgt durch einen Sequenzvergleich. Dieser Sequenzvergleich basiert auf dem im Stand der Technik etablierten und üblicherweise genutzten BLAST-Algorithmus (vgl. beispielsweise Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, DJ. (1990) "Basic local alignment search tool." J. Mol. Biol. 215:403- 410, und Altschul, Stephan F., Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Hheng Zhang, Webb Miller, and David J. Lipman (1997): "Gapped BLAST and PSI-BLAST: a new genera- tion of protein database search programs"; Nucleic Acids Res., 25, S.3389-3402) und geschieht prinzipiell dadurch, dass ähnliche Abfolgen von Nukleotiden oder Aminosäuren in den Nukleinsäure- oder Aminosäuresequenzen einander zugeordnet werden. Eine tabellarische Zuordnung der betreffenden Positionen wird als Alignment bezeichnet. Ein weiterer im Stand der Technik verfügbarer Algorithmus ist der FASTA-Algorithmus. Sequenzvergleiche (Alignments), insbesondere multiple Sequenzvergleiche, werden mit Computerprogrammen erstellt. Häufig genutzt werden beispielsweise die Clustal-Serie (vgl. beispielsweise Chenna et al. (2003): Multiple sequence alignment with the Clustal series of programs. Nucleic Acid Research 31 , 3497-3500), T-Coffee (vgl. beispielsweise Notredame et al. (2000): T-Coffee: A novel method for multiple sequence alignments. J. Mol. Biol. 302, 205-217) oder Programme, die auf diesen Programmen beziehungsweise Algorithmen basieren. Ferner möglich sind Sequenzvergleiche (Alignments) mit dem Computer- Programm Vector NTI® Suite 10.3 (Invitrogen Corporation, 1600 Faraday Avenue, Carlsbad, Kalifornien, USA) mit den vorgegebenen Standardparametern, dessen AlignX-Modul für die Sequenzvergleiche auf ClustalW basiert.
Solch ein Vergleich erlaubt auch eine Aussage über die Ähnlichkeit der verglichenen Sequenzen zueinander. Sie wird üblicherweise in Prozent Identität, das heißt dem Anteil der identischen Nukleotide oder Aminosäurereste an denselben oder in einem Alignment einander entsprechenden Positionen angegeben. Der weiter gefasste Begriff der Homologie bezieht bei Aminosäuresequenzen konservierte Aminosäure-Austausche in die Betrachtung mit ein, also Aminosäuren mit ähnlicher chemischer Aktivität, da diese innerhalb des Proteins meist ähnliche chemische Aktivitäten ausüben. Daher kann die Ähnlichkeit der verglichenen Sequenzen auch Prozent Homologie oder Prozent Ähnlichkeit angegeben sein. Identitäts- und/oder Homologieangaben können über ganze Polypeptide oder Gene oder nur über einzelne Bereiche getroffen werden. Homologe oder identische Bereiche von verschiedenen Nukleinsäure- oder Aminosäuresequenzen sind daher durch Übereinstimmungen in den Sequenzen definiert. Solche Bereiche weisen oftmals identische Funktionen auf. Sie können klein sein und nur wenige Nukleotide oder Aminosäuren umfassen. Oftmals üben solche kleinen Bereiche für die Gesamtaktivität des Proteins essentielle Funktionen aus. Es kann daher sinnvoll sein, Sequenzübereinstimmungen nur auf einzelne, gegebenenfalls kleine Bereiche zu beziehen. Soweit nicht anders angegeben beziehen sich Identitäts- oder Homo- logieangaben in der vorliegenden Anmeldung aber auf die Gesamtlänge der jeweils angegebenen Nukleinsäure- oder Aminosäuresäuresequenz.
Im Zusammenhang mit der vorliegenden Erfindung bedeutet die Angabe, dass eine Aminosäureposition einer numerisch bezeichneten Position in SEQ ID NO: 1 entspricht daher, dass die entsprechende Position der numerisch bezeichneten Position in SEQ ID NO:1 in einem wie oben definierten Alignment zugeordnet ist.
In einer weiteren Ausführungsform der Erfindung ist die Amylase dadurch gekennzeichnet, dass ihre Reinigungsleistung gegenüber derjenigen einer Amylase, die eine Aminosäuresequenz um- fasst, die der in SEQ ID NO:1 angegebenen Aminosäuresequenzen entspricht, nicht signifikant verringert ist, d.h. mindestens 70%, 75 %, 80 %, 85 %, 90 %, 95 % der Referenzwaschleistung besitzt. Die Reinigungsleistung kann in einem Waschsystem bestimmt werden, das ein Waschmittel in einer Dosierung zwischen 4,5 und 7,0 Gramm pro Liter Waschflotte sowie die Amylase enthält, wobei die zu vergleichenden Amylasen konzentrationsgleich (bezogen auf aktives Protein) eingesetzt sind und die Reinigungsleistung gegenüber einer Anschmutzung auf Baumwolle bestimmt wird durch Messung des Reinigungsgrades der gewaschenen Textilien. Beispielsweise kann der Waschvorgang für 60 Minuten bei einer Temperatur von 40°C erfolgen und das Wasser eine Wasserhärte zwischen 5 und 25°, bevorzugt 10 und 20°, bevorzugter 13 und 17° und ferner bevorzugt 15,5 und 16,5° (deutsche Härte) aufweisen. Die Konzentration der Amylase in dem für dieses Waschsystem bestimmten Waschmittel beträgt von 0,001-1 Gew.-%, vorzugsweise von 0,001-0, 1 Gew.-%, und noch bevorzugter von 0,01 bis 0,005 Gew.-%, bezogen auf aktives, reines Protein.
Ein bevorzugtes flüssiges Waschmittel für ein solches Waschsystem ist wie folgt zusammengesetzt (alle Angaben in Gewichts-Prozent): 7% Alkylbenzolsulfonsäure, 9% anionische Tenside, 4% C12- C18 Na-Salze von Fettsäuren, 7% nicht-ionische Tenside, 0,7% Phosphonate, 3,2% Zitronensäure, 3,0% NaOH, 0,04% Antischaum, 5,7% 1 ,2-Propandiol, 0,1 % Konservierungsstoffe, 2% Ethanol, 0,2% Farbstoff-Transfer-Inhibitor, Rest demineralisiertes Wasser. Bevorzugt beträgt die Dosierung des flüssigen Waschmittels zwischen 4,5 und 6,0 Gramm pro Liter Waschflotte, beispielsweise 4,7, 4,9 oder 5,9 Gramm pro Liter Waschflotte. Bevorzugt wird in einem pH-Wertebereich zwischen pH 7,5 und pH 10,5, bevorzugt zwischen pH 7,5 und pH 9 gewaschen.
Im Rahmen der Erfindung kann die Bestimmung der Reinigungsleistung bei 40°C unter Verwendung eines flüssigen Waschmittels wie vorstehend angegeben erfolgen, wobei der Waschvorgang vorzugsweise für 60 Minuten erfolgt.
Der Weißheitsgrad, d.h. die Aufhellung der Anschmutzungen, als Maß für die Reinigungsleistung wird mit optischen Messverfahren bestimmt, bevorzugt photometrisch. Ein hierfür geeignetes Gerät ist beispielsweise das Spektrometer Minolta CM508d. Üblicherweise werden die für die Messung eingesetzten Geräte zuvor mit einem Weißstandard, bevorzugt einem mitgelieferten Weißstandard, kalibriert.
Durch den aktivitätsgleichen Einsatz der jeweiligen Amylase kann sichergestellt werden, dass auch bei einem etwaigen Auseinanderklaffen des Verhältnisses von Aktivsubstanz zu Gesamtprotein (die Werte der spezifischen Aktivität) die jeweiligen enzymatischen Eigenschaften, also beispielsweise die Reinigungsleistung an bestimmten Anschmutzungen, verglichen werden. Generell gilt, dass eine niedrige spezifische Aktivität durch Zugabe einer größeren Proteinmenge ausgeglichen werden kann. Ferner können die zu untersuchenden Enzyme auch in gleicher Stoffmenge oder Gewichtsmenge eingesetzt werden, falls die zu untersuchenden Enzyme in einem Aktivitätstest eine unterschiedliche Affinität an das Testsubstrat aufweisen. Der Ausdruck„gleiche Stoffmenge" bezieht sich in diesem Zusammenhang auf eine molgleiche Verwendung der zu untersuchenden Enzyme. Der Ausdruck„gleiche Gewichtsmenge" bezieht sich auf einen gewichtsgleichen Einsatz der zu untersuchenden Enzyme.
Die alpha-Amylaseaktivität wird in fachüblicher Weise bestimmt, und zwar vorzugsweise durch ein optisches Mess verfahren, bevorzugt ein photometrisches Verfahren. Der hierfür geeignete Test umfasst die alpha-Amylase-abhängige Spaltung des Substrats para-Nitrophenyl-Maltoheptaosid. Dieses wird durch die alpha-Amylase in para-Nitrophenyl-Oligosaccharid gespalten. Das para- Nitrophenyl-Oligosaccharid wird wiederum durch die Enzyme Glucoamylase und alpha- Glucosidase zu Glucose und para-Nitrophenol katalysiert. Die Anwesenheit von para-Nitrophenol kann unter Verwendung eines Photometers, z.B. des Tecan Sunrise Geräts und der XFLUOR Software, bei 405 nm ermittelt werden und ermöglicht somit einen Rückschluss auf die enzymati- sche Aktivität der alpha-Amylase.
Die Proteinkonzentration kann mit Hilfe bekannter Methoden, zum Beispiel dem BCA-Verfahren (Bicinchoninsäure; 2,2'-Bichinolyl-4,4'-dicarbonsäure) oder dem Biuret-Verfahren (A. G. Gornall, C. S. Bardawill und M.M. David, J. Biol. Chem., 177 (1948), S. 751-766) bestimmt werden. Die Bestimmung der Aktivproteinkonzentration kann diesbezüglich über eine Titration der aktiven Zentren unter Verwendung eines geeigneten irreversiblen Inhibitors und Bestimmung der Restaktivität (vgl. M. Bender et al., J. Am. Chem. Soc. 88, 24 (1966), S. 5890-5913) erfolgen.
Proteine können über die Reaktion mit einem Antiserum oder einem bestimmten Antikörper zu Gruppen immunologisch verwandter Proteine zusammengefasst werden. Die Angehörigen einer solchen Gruppe zeichnen sich dadurch aus, dass sie dieselbe, von einem Antikörper erkannte antigene Determinante aufweisen. Sie sind daher einander strukturell so ähnlich, dass sie von einem Antiserum oder bestimmten Antikörpern erkannt werden. Einen weiteren Erfindungsgegenstand bilden daher Amylasen, die dadurch gekennzeichnet sind, dass sie mindestens eine und zunehmend bevorzugt zwei, drei oder vier übereinstimmende antigene Determinanten mit einer erfindungsgemäßen Amylase aufweisen. Solche Amylasen sind auf Grund ihrer immunologischen Übereinstimmungen den erfindungsgemäßen Amylasen strukturell so ähnlich, dass auch von einer gleichartigen Funktion auszugehen ist.
Erfindungsgemäße Amylasen können im Vergleich zu der in SEQ ID NO:1 beschriebenen Amylase weitere Aminosäureveränderungen, insbesondere Aminosäure-Substitutionen, -Insertionen oder -Deletionen, aufweisen. Solche Amylasen sind beispielsweise durch gezielte genetische Veränderung, d.h. durch Mutageneseverfahren, weiterentwickelt und für bestimmte Einsatzzwecke oder hinsichtlich spezieller Eigenschaften (beispielsweise hinsichtlich ihrer katalytischen Aktivität, Stabilität, usw.) optimiert. Ferner können erfindungsgemäße Nukleinsäuren in Rekombinationsansätze eingebracht und damit zur Erzeugung völlig neuartiger Amylasen oder anderer Polypeptide genutzt werden.
Das Ziel ist es, in die bekannten Moleküle gezielte Mutationen wie Substitutionen, Insertionen oder Deletionen einzuführen, um beispielsweise die Reinigungsleistung von erfindungsgemäßen Enzymen zu verbessern. Hierzu können insbesondere die Oberflächenladungen und/oder der isoelektrische Punkt der Moleküle und dadurch ihre Wechselwirkungen mit dem Substrat verändert werden. So kann beispielsweise die Nettoladung der Enzyme verändert werden, um darüber die Substratbindung insbesondere für den Einsatz in Wasch- und Reinigungsmitteln zu beeinflussen. Alternativ oder ergänzend kann durch eine oder mehrere entsprechende Mutationen die Stabilität der Amylase noch weiter erhöht und dadurch ihre Reinigungsleistung verbessert werden. Vorteilhafte Eigenschaften einzelner Mutationen, z.B. einzelner Substitutionen, können sich ergänzen. Eine hinsichtlich bestimmter Eigenschaften bereits optimierte Amylase, zum Beispiel hinsichtlich ihrer Aktivität und/oder ihrer Toleranz in Bezug auf das Substratspektrum, kann daher im Rahmen der Erfindung zusätzlich weiterentwickelt sein.
Für die Beschreibung von Substitutionen, die genau eine Aminosäureposition betreffen (Aminosäureaustausche), wird folgende Konvention angewendet: zunächst wird die natürlicherweise vorhandene Aminosäure in Form des international gebräuchlichen Einbuchstaben-Codes bezeichnet, dann folgt die zugehörige Sequenzposition und schließlich die eingefügte Aminosäure. Mehrere Austausche innerhalb derselben Polypeptidkette werden durch Schrägstriche voneinander getrennt. Bei Insertionen sind nach der Sequenzposition zusätzliche Aminosäuren benannt. Bei Deletionen ist die fehlende Aminosäure durch ein Symbol, beispielsweise einen Stern oder einen Strich, ersetzt oder vor der entsprechenden Position ein Δ angegeben. Beispielsweise beschreibt N25Q die Substitution von Asparagin an Position 25 durch Glutamin, N25AQ die Insertion von Alanin nach der Aminosäure Asparagin an Position 25 und N25* oder ΔΝ25 die Deletion von Asparagin an Position 25. Diese Nomenklatur ist dem Fachmann auf dem Gebiet der Enzymtechnologie bekannt.
Ein weiterer Gegenstand der Erfindung ist daher eine Amylase, die dadurch gekennzeichnet ist, dass sie aus einer Amylase wie vorstehend beschrieben als Ausgangsmolekül erhältlich ist durch ein- oder mehrfache konservative Aminosäuresubstitution. Der Begriff "konservative Aminosäuresubstitution" bedeutet den Austausch (Substitution) eines Aminosäurerestes gegen einen anderen Aminosäurerest, wobei dieser Austausch nicht zu einer Änderung der Polarität oder Ladung an der Position der ausgetauschten Aminosäure führt, z. B. der Austausch eines unpolaren Aminosäurerestes gegen einen anderen unpolaren Aminosäurerest. Konservative Aminosäuresubstitutionen im Rahmen der Erfindung umfassen beispielsweise: G=A=S, l=V=L=M, D=E, N=Q, K=R, Y=F, S=T, G=A=I=V=L=M=Y=F=W=P=S=T.
Alternativ oder ergänzend ist die Amylase dadurch gekennzeichnet, dass sie aus einer erfindungsgemäßen Amylase als Ausgangsmolekül erhältlich ist durch Fragmentierung, Deletions-, Inserti- ons- oder Substitutionsmutagenese und eine Aminosäuresequenz umfasst, die über eine Länge von mindestens 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530 oder 536 zusammenhängenden Aminosäuren mit dem Ausgangsmolekül übereinstimmt.
So ist es beispielsweise möglich, an den Termini oder in den Loops des Enzyms einzelne Aminosäuren zu deletieren, ohne dass dadurch die endohydrolytische Aktivität verloren oder vermindert wird. Ferner kann durch derartige Fragmentierung, Deletions-, Insertions- oder Substitutionsmutagenese beispielsweise auch die Allergenizität betreffender Enzyme gesenkt und somit insgesamt ihre Einsetzbarkeit verbessert werden. Vorteilhafterweise behalten die Enzyme auch nach der Mu- tagenese ihre endohydrolytische Aktivität, d.h. ihre endohydrolytische Aktivität entspricht mindestens derjenigen des Ausgangsenzyms, d.h. in einer bevorzugten Ausführungsform beträgt die endohydrolytische Aktivität mindestens 80, vorzugsweise mindestens 90 % der Aktivität des Ausgangsenzyms. Auch weitere Substitutionen können vorteilhafte Wirkungen zeigen. Sowohl einzelne wie auch mehrere zusammenhängende Aminosäuren können gegen andere Aminosäuren ausgetauscht werden.
Die weiteren Aminosäurepositionen werden hierbei durch ein Alignment der Aminosäuresequenz einer erfindungsgemäßen Amylase mit der Aminosäuresequenz der Amylase, wie sie in SEQ ID NO: 1 angegeben ist, definiert. Weiterhin richtet sich die Zuordnung der Positionen nach dem reifen (maturen) Protein. Diese Zuordnung ist insbesondere auch anzuwenden, wenn die Aminosäuresequenz einer erfindungsgemäßen Amylase eine höhere Zahl von Aminosäurenresten umfasst als die Amylase gemäß SEQ ID NO:1 . Ausgehend von den genannten Positionen in der Aminosäuresequenz der Amylase sind die Veränderungspositionen in einer erfindungsgemäßen Amylase diejenigen, die eben diesen Positionen in einem Alignment zugeordnet sind.
Eine weitere Bestätigung der korrekten Zuordnung der zu verändernden Aminosäuren, d.h. insbesondere deren funktionelle Entsprechung, können Vergleichsversuche liefern, wonach die beiden auf der Basis eines Alignments einander zugeordneten Positionen in beiden miteinander verglichenen Amylasen auf die gleiche Weise verändert werden und beobachtet wird, ob bei beiden die enzymatische Aktivität auf gleiche Weise verändert wird. Geht beispielsweise ein Aminosäure- austausch in einer bestimmten Position der Amylase gemäß SEQ ID NO:1 mit einer Veränderung eines enzymatischen Parameters einher, beispielsweise mit der Erhöhung des «M-Wertes, und wird eine entsprechende Veränderung des enzymatischen Parameters, beispielsweise also ebenfalls eine Erhöhung des «M-Wertes, in einer erfindungsgemäßen Amylase-Variante beobachtet, deren Aminosäureaustausch durch dieselbe eingeführte Aminosäure erreicht wurde, so ist hierin eine Bestätigung der korrekten Zuordnung zu sehen.
Alle genannten Sachverhalte sind auch auf die erfindungsgemäßen Verfahren zur Herstellung einer Amylase anwendbar. Demnach umfasst ein erfindungsgemäßes Verfahren ferner einen oder mehrere der folgenden Verfahrensschritte: a) Einbringen einer ein- oder mehrfachen konservativen Aminosäuresubstitution in eine Ausgangs- amylase gemäß SEQ ID NO:1 ; b) Veränderung der Aminosäuresequenz durch Fragmentierung, Deletions-, Insertions- oder Sub- stitutionsmutagenese derart, dass die Amylase eine Aminosäuresequenz umfasst, die über eine Länge von mindestens 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530 oder 536 zusammenhängenden Aminosäuren mit dem Ausgangsmolekül übereinstimmt.
Sämtliche Ausführungen gelten auch für die erfindungsgemäßen Verfahren.
In weiteren Ausgestaltungen der Erfindung ist die Amylase beziehungsweise die mit einem erfindungsgemäßen Verfahren hergestellte Amylase noch mindestens zu 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 90,5%, 91 %, 91 ,5%, 92%, 92,5%, 93%, 93,5%, 94%, 94,5%, 95%, 95,5%, 96%, 96,5%, 97%, 97,5%, 98%, 98,5%, 98,8%, 99,0%, 99,2%, 99,4%, 99,6% oder 99,8% identisch zu der in SEQ ID NO: 1 angegebenen Aminosäuresequenz über deren Gesamtlänge.
Ein weiterer Gegenstand der Erfindung ist eine zuvor beschriebene Amylase, die zusätzlich stabilisiert ist, insbesondere durch eine oder mehrere Mutationen, beispielsweise Substitutionen, oder durch Kopplung an ein Polymer. Denn eine Erhöhung der Stabilität bei der Lagerung und/oder während des Einsatzes, beispielsweise beim Waschprozess, führt dazu, dass die enzymatische Aktivität länger anhält und damit die Reinigungsleistung verbessert wird. Grundsätzlich kommen alle im Stand der Technik beschriebenen und/oder zweckmäßigen Stabilisierungsmöglichkeiten in Betracht. Bevorzugt sind solche Stabilisierungen, die über Mutationen des Enzyms selbst erreicht werden, da solche Stabilisierungen im Anschluss an die Gewinnung des Enzyms keine weiteren Arbeitsschritte erfordern. Beispiele für hierfür geeignete Sequenzveränderungen sind vorstehend genannt. Weitere geeignete Sequenzveränderungen sind aus dem Stand der Technik bekannt.
Möglichkeiten der Stabilisierung sind beispielsweise: Schutz gegen den Einfluss von denaturierenden Agentien wie Tensiden durch Mutationen, die eine Veränderung der Aminosäuresequenz auf oder an der Oberfläche des Proteins bewirken;
Austausch von Aminosäuren, die nahe dem N-Terminus liegen, gegen solche, die vermutlich über nicht-kovalente Wechselwirkungen mit dem Rest des Moleküls in Kontakt treten und somit einen Beitrag zur Aufrechterhaltung der globulären Struktur leisten.
Bevorzugte Ausführungsformen sind solche, bei denen das Enzym auf mehrere Arten stabilisiert wird, da mehrere stabilisierende Mutationen additiv oder synergistisch wirken.
Ein weiterer Gegenstand der Erfindung ist eine Amylase wie vorstehend beschrieben, die dadurch gekennzeichnet ist, dass sie mindestens eine chemische Modifikation aufweist. Eine Amylase mit einer solchen Veränderung wird als Derivat bezeichnet, d.h. die Amylase ist derivatisiert.
Unter Derivaten werden im Sinne der vorliegenden Anmeldung demnach solche Proteine verstanden, deren reine Aminosäurekette chemisch modifiziert worden ist. Solche Derivatisierungen können beispielsweise in vivo durch die Wirtszelle erfolgen, die das Protein exprimiert. Diesbezüglich sind Kopplungen niedrigmolekularer Verbindungen wie von Lipiden oder Oligosacchariden besonders hervorzuheben. Derivatisierungen können aber auch in vitro durchgeführt werden, etwa durch die chemische Umwandlung einer Seitenkette einer Aminosäure oder durch kovalente Bindung einer anderen Verbindung an das Protein. Beispielsweise ist die Kopplung von Aminen an Car- boxylgruppen eines Enzyms zur Veränderung des isoelektrischen Punkts möglich. Eine solche andere Verbindung kann auch ein weiteres Protein sein, das beispielsweise über bifunktionelle chemische Verbindungen an ein erfindungsgemäßes Protein gebunden wird. Ebenso ist unter De- rivatisierung die kovalente Bindung an einen makromolekularen Träger zu verstehen, oder auch ein nichtkovalenter Einschluss in geeignete makromolekulare Käfigstrukturen. Derivatisierungen können beispielsweise die Substratspezifität oder die Bindungsstärke an das Substrat beeinflussen oder eine vorübergehende Blockierung der enzymatischen Aktivität herbeiführen, wenn es sich bei der angekoppelten Substanz um einen Inhibitor handelt. Dies kann beispielsweise für den Zeitraum der Lagerung sinnvoll sein. Derartige Modifikationen können ferner die Stabilität oder die enzymati- sche Aktivität beeinflussen. Sie können ferner auch dazu dienen, die Allergenizität und/oder Immu- nogenizität des Proteins herabzusetzen und damit beispielsweise dessen Hautverträglichkeit zu erhöhen. Beispielsweise können Kopplungen mit makromolekularen Verbindungen, beispielsweise Polyethylenglykol, das Protein hinsichtlich der Stabilität und/oder Hautverträglichkeit verbessern.
Unter Derivaten eines erfindungsgemäßen Proteins können im weitesten Sinne auch Präparationen dieser Proteine verstanden werden. Je nach Gewinnung, Aufarbeitung oder Präparation kann ein Protein mit diversen anderen Stoffen vergesellschaftet sein, beispielsweise aus der Kultur der produzierenden Mikroorganismen. Ein Protein kann auch, beispielsweise zur Erhöhung seiner Lagerstabilität, mit anderen Stoffen gezielt versetzt worden sein. Erfindungsgemäß sind deshalb auch alle Präparationen eines erfindungsgemäßen Proteins. Das ist auch unabhängig davon, ob es in einer bestimmten Präparation tatsächlich diese enzymatische Aktivität entfaltet oder nicht. Denn es kann gewünscht sein, dass es bei der Lagerung keine oder nur geringe Aktivität besitzt, und erst zum Zeitpunkt der Verwendung seine enzymatische Funktion entfaltet. Dies kann beispielsweise über entsprechende Begleitstoffe gesteuert werden. Insbesondere die gemeinsame Präparation von Amylasen mit spezifischen Inhibitoren ist diesbezüglich möglich.
Betreffend alle vorstehend beschriebenen Amylasen beziehungsweise Amylasevarianten und/oder Derivate sind im Rahmen der vorliegenden Erfindung diejenigen besonders bevorzugt, deren kata- lytische Aktivität und/oder deren Substrattoleranz derjenigen der Amylase gemäß SEQ ID NO: 1 entspricht, wobei die katalytische Aktivität und die Substrattoleranz wie vorstehend beschrieben bestimmt werden.
Ein weiterer Gegenstand der Erfindung ist eine Nukleinsäure, die für eine erfindungsgemäße Amylase codiert, sowie ein Vektor enthaltend eine solche Nukleinsäure, insbesondere ein Klonie- rungsvektor oder ein Expressionsvektor. In bevorzugten Ausführungsformen ist die Nukleinsäure eine Nukleinsäure gemäß SEQ ID NO:2. Entsprechend ist ein besonders bevorzugter erfindungsgemäßer Vektor ein Vektor, der eine Nukleinsäure gemäß SEQ ID NO:2 umfasst.
Hierbei kann es sich um DNA- oder RNA-Moleküle handeln. Sie können als Einzelstrang, als ein zu diesem Einzelstrang komplementärer Einzelstrang oder als Doppelstrang vorliegen. Insbesondere bei DNA-Molekülen sind die Sequenzen beider komplementärer Stränge in jeweils allen drei möglichen Leserastern zu berücksichtigen. Ferner ist zu berücksichtigen, dass verschiedene Codons, also Basentriplets, für die gleichen Aminosäuren codieren können, so dass eine bestimmte Aminosäuresequenz von mehreren unterschiedlichen Nukleinsäuren codiert werden kann. Auf Grund dieser Degeneriertheit des genetischen Codes sind sämtliche Nukleinsäuresequenzen in diesen Erfindungsgegenstand mit eingeschlossen, die eine der vorstehend beschriebenen Amylasen codieren können. Der Fachmann ist in der Lage, diese Nukleinsäuresequenzen zweifelsfrei zu bestimmen, da trotz der Degeneriertheit des genetischen Codes einzelnen Codons definierte Aminosäuren zuzuordnen sind. Daher kann der Fachmann ausgehend von einer Aminosäuresequenz für diese Aminosäuresequenz codierende Nukleinsäuren problemlos ermitteln. Weiterhin können bei erfindungsgemäßen Nukleinsäuren ein oder mehrere Codons durch synonyme Codons ersetzt sein. Dieser Aspekt bezieht sich insbesondere auf die heterologe Expression der erfindungsgemäßen Enzyme. So besitzt jeder Organismus, beispielsweise eine Wirtszelle eines Produktionsstammes, eine bestimmte Codon-Verwendung. Unter Codon-Verwendung wird die Übersetzung des genetischen Codes in Aminosäuren durch den jeweiligen Organismus verstanden. Es kann zu Engpässen in der Proteinbiosynthese kommen, wenn die auf der Nukleinsäure liegenden Codons in dem Organismus einer vergleichsweise geringen Zahl von beladenen tRNA-Molekülen gegenüberstehen. Obwohl für die gleiche Aminosäure codierend führt das dazu, dass in dem Organismus ein Codon weniger effizient translatiert wird als ein synonymes Codon, das für dieselbe Ami- nosäure codiert. Auf Grund des Vorliegens einer höheren Anzahl von tRNA-Molekülen für das synonyme Codon kann dieses in dem Organismus effizienter translatiert werden.
Einem Fachmann ist es über heutzutage allgemein bekannte Methoden, wie beispielsweise die chemische Synthese oder die Polymerase-Kettenreaktion (PCR) in Verbindung mit molekularbiologischen und/oder proteinchemischen Standardmethoden möglich, anhand bekannter DNA- und/oder Aminosäuresequenzen die entsprechenden Nukleinsäuren bis hin zu vollständigen Genen herzustellen. Derartige Methoden sind beispielsweise aus Sambrook, J., Fritsch, E.F. and Ma- niatis, T. 2001. Molecular cloning: a laboratory manual, 3. Edition Cold Spring Laboratory Press, bekannt.
Unter Vektoren werden im Sinne der vorliegenden Erfindung aus Nukleinsäuren bestehende Elemente verstanden, die als kennzeichnenden Nukleinsäurebereich eine erfindungsgemäße Nukleinsäure enthalten. Sie vermögen diese in einer Spezies oder einer Zellinie über mehrere Generationen oder Zellteilungen hinweg als stabiles genetisches Element zu etablieren. Vektoren sind insbesondere bei der Verwendung in Bakterien spezielle Plasmide, also zirkuläre genetische Elemente. Im Rahmen der vorliegenden Erfindung wird eine erfindungsgemäße Nukleinsäure in einen Vektor kloniert. Zu den Vektoren zählen beispielsweise solche, deren Ursprung bakterielle Plasmide, Viren oder Bacteriophagen sind, oder überwiegend synthetische Vektoren oder Plasmide mit Elementen verschiedenster Herkunft. Mit den weiteren jeweils vorhandenen genetischen Elementen vermögen Vektoren sich in den betreffenden Wirtszellen über mehrere Generationen hinweg als stabile Einheiten zu etablieren. Sie können extrachromosomal als eigene Einheiten vorliegen oder in ein Chromosom oder chromosomale DNA integrieren.
Expressionsvektoren umfassen Nukleinsäuresequenzen, die sie dazu befähigen, in den sie enthaltenden Wirtszellen, vorzugsweise Mikroorganismen, besonders bevorzugt Bakterien, zu replizieren und dort eine enthaltene Nukleinsäure zur Expression zu bringen. Die Expression wird insbesondere von dem oder den Promotoren beeinflusst, welche die Transkription regulieren. Prinzipiell kann die Expression durch den natürlichen, ursprünglich vor der zu exprimierenden Nukleinsäure lokalisierten Promotor erfolgen, aber auch durch einen auf dem Expressionsvektor bereitgestellten Promotor der Wirtszelle oder auch durch einen modifizierten oder einen völlig anderen Promotor eines anderen Organismus oder einer anderen Wirtszelle. Im vorliegenden Fall wird zumindest ein Promotor für die Expression einer erfindungsgemäßen Nukleinsäure zur Verfügung gestellt und für deren Expression genutzt. Expressionsvektoren können ferner regulierbar sein, beispielsweise durch Änderung der Kultivierungsbedingungen oder bei Erreichen einer bestimmten Zelldichte der sie enthaltenen Wirtszellen oder durch Zugabe von bestimmten Substanzen, insbesondere Aktivatoren der Genexpression. Ein Beispiel für eine solche Substanz ist das Galactose-Derivat Isopro- pyl-ß-D-thiogalactopyranosid (IPTG), welches als Aktivator des bakteriellen Lactose-Operons (lac- Operons) verwendet wird. Im Gegensatz zu Expressionsvektoren wird die enthaltene Nukleinsäure in Klonierungsvektoren nicht exprimiert. Ein weiterer Gegenstand der Erfindung ist eine nicht menschliche Wirtszelle, die eine erfindungsgemäße Nukleinsäure oder einen erfindungsgemäßen Vektor beinhaltet, oder die eine erfindungsgemäße Amylase beinhaltet, insbesondere eine, die die Amylase in das die Wirtszelle umgebende Medium sezerniert. Bevorzugt wird eine erfindungsgemäße Nukleinsäure oder ein erfindungsgemäßer Vektor in einen Mikroorganismus transformiert, der dann eine erfindungsgemäße Wirtszelle darstellt. Alternativ können auch einzelne Komponenten, d.h. Nukleinsäure-Teile oder -Fragmente einer erfindungsgemäßen Nukleinsäure derart in eine Wirtszelle eingebracht werden, dass die dann resultierende Wirtszelle eine erfindungsgemäße Nukleinsäure oder einen erfindungsgemäßen Vektor enthält. Dieses Vorgehen eignet sich besonders dann, wenn die Wirtszelle bereits einen oder mehrere Bestandteile einer erfindungsgemäßen Nukleinsäure oder eines erfindungsgemäßen Vektors enthält und die weiteren Bestandteile dann entsprechend ergänzt werden. Verfahren zur Transformation von Zellen sind im Stand der Technik etabliert und dem Fachmann hinlänglich bekannt. Als Wirtszellen eignen sich prinzipiell alle Zellen, das heißt prokaryotische oder eukaryotische Zellen. Bevorzugt sind solche Wirtszellen, die sich genetisch vorteilhaft handhaben lassen, was beispielsweise die Transformation mit der Nukleinsäure oder dem Vektor und dessen stabile Etablierung angeht, beispielsweise einzellige Pilze oder Bakterien. Ferner zeichnen sich bevorzugte Wirtszellen durch eine gute mikrobiologische und biotechnologische Handhabbarkeit aus. Das betrifft beispielsweise leichte Kultivierbarkeit, hohe Wachstumsraten, geringe Anforderungen an Fermentationsmedien und gute Produktions- und Sekretionsraten für Fremdproteine. Bevorzugte erfindungsgemäße Wirtszellen sezernieren das (transgen) exprimierte Protein in das die Wirtszellen umgebende Medium. Ferner können die Amylasen von den sie produzierenden Zellen nach deren Herstellung modifiziert werden, beispielsweise durch Anknüpfung von Zuckermolekülen, Formylierungen, Aminierungen, usw. Solche posttranslationale Modifikationen können die Amylase funktionell beeinflussen.
Weitere bevorzugte Ausführungsformen stellen solche Wirtszellen dar, die aufgrund genetischer Regulationselemente, die beispielsweise auf dem Vektor zur Verfügung gestellt werden, aber auch von vornherein in diesen Zellen vorhanden sein können, in ihrer Aktivität regulierbar sind. Beispielsweise durch kontrollierte Zugabe von chemischen Verbindungen, die als Aktivatoren dienen, durch Änderung der Kultivierungsbedingungen oder bei Erreichen einer bestimmten Zelldichte können diese zur Expression angeregt werden. Dies ermöglicht eine wirtschaftliche Produktion der erfindungsgemäßen Proteine. Ein Beispiel für eine solche Verbindung ist IPTG wie vorstehend beschrieben.
Bevorzugte Wirtszellen sind prokaryontische oder bakterielle Zellen. Bakterien zeichnen sich durch kurze Generationszeiten und geringe Ansprüche an die Kultivierungsbedingungen aus. Dadurch können kostengünstige Kultivierungsverfahren oder Herstellungsverfahren etabliert werden. Zudem verfügt der Fachmann bei Bakterien in der Fermentationstechnik über einen reichhaltigen Erfahrungsschatz. Für eine spezielle Produktion können aus verschiedensten, im Einzelfall experimen- teil zu ermittelnden Gründen wie Nährstoffquellen, Produktbildungsrate, Zeitbedarf usw., gramnegative oder grampositive Bakterien geeignet sein.
Bei gramnegativen Bakterien wie beispielsweise Escherichia coli wird eine Vielzahl von Proteinen in den periplasmatischen Raum sezerniert, also in das Kompartiment zwischen den beiden die Zellen einschließenden Membranen. Dies kann für spezielle Anwendungen vorteilhaft sein. Ferner können auch gramnegative Bakterien so ausgestaltet werden, dass sie die exprimierten Proteine nicht nur in den periplasmatischen Raum, sondern in das das Bakterium umgebende Medium ausschleusen. Grampositive Bakterien wie beispielsweise Bacilli oder Actinomyceten oder andere Vertreter der Actinomycetales besitzen demgegenüber keine äußere Membran, so dass sezernier- te Proteine sogleich in das die Bakterien umgebende Medium, in der Regel das Nährmedium, abgegeben werden, aus welchem sich die exprimierten Proteine aufreinigen lassen. Sie können aus dem Medium direkt isoliert oder weiter prozessiert werden. Zudem sind grampositive Bakterien mit den meisten Herkunftsorganismen für technisch wichtige Enzyme verwandt oder identisch und bilden meist selbst vergleichbare Enzyme, so dass sie über eine ähnliche Codon-Verwendung verfügen und ihr Protein-Syntheseapparat naturgemäß entsprechend ausgerichtet ist.
Erfindungsgemäße Wirtszellen können hinsichtlich ihrer Anforderungen an die Kulturbedingungen verändert sein, andere oder zusätzliche Selektionsmarker aufweisen oder noch andere oder zusätzliche Proteine exprimieren. Es kann sich insbesondere auch um solche Wirtszellen handeln, die mehrere Proteine oder Enzyme transgen exprimieren.
Die vorliegende Erfindung ist prinzipiell auf alle Mikroorganismen, insbesondere auf alle fermentierbaren Mikroorganismen, anwendbar und führt dazu, dass sich durch den Einsatz solcher Mikroorganismen erfindungsgemäße Proteine herstellen lassen. Solche Mikroorganismen stellen dann Wirtszellen im Sinne der Erfindung dar.
In einer weiteren Ausführungsform der Erfindung ist die Wirtszelle dadurch gekennzeichnet, dass sie ein Bakterium ist, bevorzugt eines, das ausgewählt ist aus der Gruppe der Gattungen von E- scherichia, Klebsiella, Bacillus, Staphylococcus, Corynebakterium, Arthrobacter, Streptomyces, Stenotrophomonas und Pseudomonas, weiter bevorzugt eines, das ausgewählt ist aus der Gruppe von Escherichia coli, Klebsiella planticola, Bacillus licheniformis, Bacillus lentus, Bacillus amyloli- quefaciens, Bacillus subtilis, Bacillus alcalophilus, Bacillus globigii, Bacillus gibsonii, Bacillus clausa, Bacillus halodurans, Bacillus pumilus, Staphylococcus carnosus, Corynebacterium glutamicum, Arthrobacter oxidans, Streptomyces lividans, Streptomyces coelicolor und Stenotrophomonas mal- tophilia.
Die Wirtszelle kann aber auch eine eukaryontische Zelle sein, die dadurch gekennzeichnet ist, dass sie einen Zellkern besitzt. Einen weiteren Gegenstand der Erfindung stellt daher eine Wirtszelle dar, die dadurch gekennzeichnet ist, dass sie einen Zellkern besitzt. Im Gegensatz zu proka- ryontischen Zellen sind eukaryontische Zellen in der Lage, das gebildete Protein posttranslational zu modifizieren. Beispiele dafür sind Pilze wie Actinomyceten oder Hefen wie Saccharomyces oder Kluyveromyces. Dies kann beispielsweise dann besonders vorteilhaft sein, wenn die Proteine im Zusammenhang mit ihrer Synthese spezifische Modifikationen erfahren sollen, die derartige Systeme ermöglichen. Zu den Modifikationen, die eukaryontische Systeme besonders im Zusammenhang mit der Proteinsynthese durchführen, gehören beispielsweise die Bindung niedermolekularer Verbindungen wie Membrananker oder Oligosaccharide. Derartige Oligosaccharid-Modifikationen können beispielsweise zur Senkung der Allergenizität eines exprimierten Proteins wünschenswert sein. Auch eine Coexpression mit den natürlicherweise von derartigen Zellen gebildeten Enzymen, wie beispielsweise Cellulasen, kann vorteilhaft sein. Ferner können sich beispielsweise thermophi- le pilzliche Expressionssysteme besonders zur Expression temperaturbeständiger Proteine oder Varianten eignen. In bevorzugten Ausführungsformen der Erfindung ist die Wirtszelle eine Basidi- omyceten-Zelle. In ferner bevorzugten Ausführungsformen ist die Wirtszelle eine Bacillus Zelle.
Die erfindungsgemäßen Wirtszellen werden in üblicher weise kultiviert und fermentiert, beispielsweise in diskontinuierlichen oder kontinuierlichen Systemen. Im ersten Fall wird ein geeignetes Nährmedium mit den Wirtszellen beimpft und das Produkt nach einem experimentell zu ermittelnden Zeitraum aus dem Medium geerntet. Kontinuierliche Fermentationen zeichnen sich durch Erreichen eines Fließgleichgewichts aus, in dem über einen vergleichsweise langen Zeitraum Zellen teilweise absterben aber auch nachwachsen und gleichzeitig aus dem Medium das gebildete Protein entnommen werden kann.
Erfindungsgemäße Wirtszellen werden bevorzugt verwendet, um erfindungsgemäße Amylasen herzustellen. Ein weiterer Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung einer Amylase umfassend
a) Kultivieren einer erfindungsgemäßen Wirtszelle, und
b) Isolieren der Amylase aus dem Kulturmedium oder aus der Wirtszelle.
Dieser Erfindungsgegenstand umfasst bevorzugt Fermentationsverfahren. Fermentationsverfahren sind an sich aus dem Stand der Technik bekannt und stellen den eigentlichen großtechnischen Produktionsschritt dar, in der Regel gefolgt von einer geeigneten Aufreinigungsmethode des hergestellten Produktes, beispielsweise der erfindungsgemäßen Amylase. Alle Fermentationsverfahren, die auf einem entsprechenden Verfahren zur Herstellung einer erfindungsgemäßen Amylase beruhen, stellen Ausführungsformen dieses Erfindungsgegenstandes dar.
Fermentationsverfahren, die dadurch gekennzeichnet sind, dass die Fermentation über eine Zulaufstrategie durchgeführt wird, kommen insbesondere in Betracht. Hierbei werden die Medienbestandteile, die durch die fortlaufende Kultivierung verbraucht werden, zugefüttert. Hierdurch können beträchtliche Steigerungen sowohl in der Zelldichte als auch in der Zellmasse beziehungsweise Trockenmasse und/oder insbesondere in der Aktivität der interessierenden Amylase erreicht wer- den. Ferner kann die Fermentation auch so gestaltet werden, dass unerwünschte Stoffwechselprodukte herausgefiltert oder durch Zugabe von Puffer oder jeweils passende Gegenionen neutralisiert werden.
Die hergestellte Amylase kann aus dem Fermentationsmedium geerntet werden. Ein solches Fermentationsverfahren ist gegenüber einer Isolation der Amylase aus der Wirtszelle, d.h. einer Produktaufbereitung aus der Zellmasse (Trockenmasse) bevorzugt, erfordert jedoch die Zurverfügungstellung von geeigneten Wirtszellen oder von einem oder mehreren geeigneten Sekretionsmarkern oder -mechanismen und/oder Transportsystemen, damit die Wirtszellen die Amylase in das Fermentationsmedium sezernieren. Ohne Sekretion kann alternativ die Isolation der Amylase aus der Wirtszelle, d.h. eine Aufreinigung derselben aus der Zellmasse, erfolgen, beispielsweise durch Fällung mit Ammoniumsulfat oder Ethanol, oder durch chromatographische Reinigung.
Alle vorstehend ausgeführten Sachverhalte können zu Verfahren kombiniert werden, um erfindungsgemäße Amylasen herzustellen.
Ein weiterer Gegenstand der Erfindung ist ein Mittel, das dadurch gekennzeichnet ist, dass es eine erfindungsgemäße Amylase wie vorstehend beschrieben enthält. Bevorzugt ist das Mittel als ein Wasch- oder Reinigungsmittel.
Zu diesem Erfindungsgegenstand zählen alle denkbaren Wasch- oder Reinigungsmittelarten, sowohl Konzentrate als auch unverdünnt anzuwendende Mittel, zum Einsatz im kommerziellen Maßstab, in der Waschmaschine oder bei der Handwäsche beziehungsweise -reinigung. Dazu gehören beispielsweise Waschmittel für Textilien, Teppiche, oder Naturfasern, für die die Bezeichnung Waschmittel verwendet wird. Dazu gehören beispielsweise auch Geschirrspülmittel für Geschirrspülmaschinen oder manuelle Geschirrspülmittel oder Reiniger für harte Oberflächen wie Metall, Glas, Porzellan, Keramik, Kacheln, Stein, lackierte Oberflächen, Kunststoffe, Holz oder Leder, für die die Bezeichnung Reinigungsmittel verwendet wird, also neben manuellen und maschinellen Geschirrspülmitteln beispielsweise auch Scheuermittel, Glasreiniger, WC-Duftspüler, usw. Zu den Wasch- und Reinigungsmittel im Rahmen der Erfindung zählen ferner Waschhilfsmittel, die bei der manuellen oder maschinellen Textilwäsche zum eigentlichen Waschmittel hinzudosiert werden, um eine weitere Wirkung zu erzielen. Ferner zählen zu Wasch- und Reinigungsmittel im Rahmen der Erfindung auch Textilvor- und Nachbehandlungsmittel, also solche Mittel, mit denen das Wäschestück vor der eigentlichen Wäsche in Kontakt gebracht wird, beispielsweise zum Anlösen hartnäckiger Verschmutzungen, und auch solche Mittel, die in einem der eigentlichen Textilwäsche nachgeschalteten Schritt dem Waschgut weitere wünschenswerte Eigenschaften wie angenehmen Griff, Knitterfreiheit oder geringe statische Aufladung verleihen. Zu letztgenannten Mittel werden u.a. die Weichspüler gerechnet. Die erfindungsgemäßen Wasch- oder Reinigungsmittel, die als pulverförmige Feststoffe, in nachverdichteter Teilchenform, als homogene Lösungen oder Suspensionen vorliegen können, können neben einer erfindungsgemäßen Amylase alle bekannten und in derartigen Mitteln üblichen Inhaltsstoffe enthalten, wobei bevorzugt mindestens ein weiterer Inhaltsstoff in dem Mittel vorhanden ist. Die erfindungsgemäßen Mittel können insbesondere Tenside, Builder (Gerüststoffe), Persauer- stoffverbindungen oder Bleichaktivatoren enthalten. Ferner können sie wassermischbare organische Lösungsmittel, weitere Enzyme, Sequestrierungsmittel, Elektrolyte, pH-Regulatoren und/oder weitere Hilfsstoffe wie optische Aufheller, Vergrauungsinhibitoren, Schaumregulatoren sowie Färb- und Duftstoffe sowie Kombinationen hiervon enthalten.
Insbesondere eine Kombination einer erfindungsgemäßen Amylase mit einem oder mehreren weiteren Inhaltsstoff(en) des Mittels ist vorteilhaft, da ein solches Mittel in bevorzugten erfindungsgemäßen Ausgestaltungen eine verbesserte Reinigungsleistung durch sich ergebende Synergismen aufweist. Insbesondere durch die Kombination einer erfindungsgemäßen Amylase mit einem Ten- sid und/oder einem Builder (Gerüststoff) und/oder einer Persauerstoffverbindung und/oder einem Bleichaktivator kann ein solcher Synergismus erreicht werden.
Vorteilhafte Inhaltsstoffe erfindungsgemäßer Mittel sind offenbart in der internationalen Patentanmeldung WO2009/121725, dort beginnend auf Seite 5, vorletzter Absatz, und endend auf Seite 13 nach dem zweiten Absatz. Auf diese Offenbarung wird ausdrücklich Bezug genommen und der dortige Offenbarungsgehalt in die vorliegende Patentanmeldung einbezogen.
Ein erfindungsgemäßes Mittel enthält die Amylase vorteilhafterweise in einer Menge von 2μg bis 20mg, vorzugsweise von 5μg bis 17,5mg, besonders bevorzugt von 2C^g bis 15mg und ganz besonders bevorzugt von 5C^g bis 10mg pro g des Mittels. Darüber hinaus kann das erfindungsgemäße Mittel die Amylse vorteilhafterweise in einer Menge von 0,00005-15 Gew.-% bezogen auf das aktive Enzym, vorzugsweise von 0,0001 -5 Gew.-% und besonders bevorzugt von 0,001 -1 Gew.-% enthalten. Ferner kann die in dem Mittel enthaltene Amylase, und/oder weitere Inhaltsstoffe des Mittels, mit einer bei Raumtemperatur oder bei Abwesenheit von Wasser für das Enzym undurchlässigen Substanz umhüllt sein, welche unter Anwendungsbedingungen des Mittels durchlässig für das Enzym wird. Eine solche Ausführungsform der Erfindung ist somit dadurch gekennzeichnet, dass die Amylase mit einer bei Raumtemperatur oder bei Abwesenheit von Wasser für die Amylase undurchlässigen Substanz umhüllt ist. Weiterhin kann auch das Wasch- oder Reinigungsmittel selbst in einem Behältnis, vorzugsweise einem luftdurchlässigen Behältnis, verpackt sein, aus dem es kurz vor Gebrauch oder während des Waschvorgangs freigesetzt wird.
In weiteren Ausführungsformen der Erfindung ist das Mittel dadurch gekennzeichnet, dass es
(a) in fester Form vorliegt, insbesondere als rieselfähiges Pulver mit einem Schüttgewicht von 300 g/l bis 1200 g/l, insbesondere 500 g/l bis 900 g/l, oder
(b) in pastöser oder in flüssiger Form vorliegt, und/oder (c) in gelförmiger oder dosierbeutelförmiger (Pouches) Form vorliegt, und/oder
(d) als Einkomponentensystem vorliegt, oder
(e) in mehrere Komponenten aufgeteilt ist.
Diese Ausführungsformen der vorliegenden Erfindung umfassen alle festen, pulverförmigen, flüssigen, gelförmigen oder pastösen Darreichungsformen erfindungsgemäßer Mittel, die gegebenenfalls auch aus mehreren Phasen bestehen können sowie in komprimierter oder nicht komprimierter Form vorliegen können. Das Mittel kann als rieselfähiges Pulver vorliegen, insbesondere mit einem Schüttgewicht von 300 g/l bis 1200 g/l, insbesondere 500 g/l bis 900 g/l oder 600 g/l bis 850 g/l. Zu den festen Darreichungsformen des Mittels zählen ferner Extrudate, Granulate, Tabletten oder Pouches. Alternativ kann das Mittel auch flüssig, gelförmig oder pastös sein, beispielsweise in Form eines nicht-wässrigen Flüssigwaschmittels oder einer nicht-wässrigen Paste oder in Form eines wässrigen Flüssigwaschmittels oder einer wasserhaltigen Paste. Weiterhin kann das Mittel als Einkomponentensystem vorliegen. Solche Mittel bestehen aus einer Phase. Alternativ kann ein Mittel auch aus mehreren Phasen bestehen. Ein solches Mittel ist demnach in mehrere Komponenten aufgeteilt.
Erfindungsgemäße Wasch- oder Reinigungsmittel können ausschließlich eine Amylase enthalten. Alternativ können sie auch weitere hydrolytische Enzyme oder andere Enzyme in einer für die Wirksamkeit des Mittels zweckmäßigen Konzentration enthalten. Eine weitere Ausführungsform der Erfindung stellen somit Mittel dar, die ferner eines oder mehrere weitere Enzyme umfassen. Als weitere Enzyme bevorzugt einsetzbar sind alle Enzyme, die in dem erfindungsgemäßen Mittel eine katalytische Aktivität entfalten können, insbesondere eine Protease, Lipase, Cellulase, Hemicellu- lase, Mannanase, Tannase, Xylanase, Xanthanase, Xyloglucanase, ß-Glucosidase, Pektinase, Carrageenase, Perhydrolase, Oxidase, Oxidoreduktase oder andere - von den erfindungsgemäßen Amylasen unterscheidbare - Amylasen, sowie deren Gemische. Weitere Enzyme sind in dem Mittel vorteilhafterweise jeweils in einer Menge von 1 x 10~8 bis 5 Gewichts-Prozent bezogen auf aktives Protein enthalten. Zunehmend bevorzugt ist jedes weitere Enzym in einer Menge von 1 x 10 7-3 Gew.-%, von 0,00001-1 Gew.-%, von 0,00005-0,5 Gew.-%, von 0,0001 bis 0, 1 Gew.-% und besonders bevorzugt von 0,0001 bis 0,05 Gew.-% in erfindungsgemäßen Mitteln enthalten, bezogen auf aktives Protein. Besonders bevorzugt zeigen die Enzyme synergistische Reinigungsleistungen gegenüber bestimmten Anschmutzungen oder Flecken, d.h. die in der Mittelzusammensetzung enthaltenen Enzyme unterstützen sich in ihrer Reinigungsleistung gegenseitig. Ganz besonders bevorzugt liegt ein solcher Synergismus vor zwischen der erfindungsgemäß enthaltenen Amylase und einem weiteren Enzym eines erfindungsgemäßen Mittels, darunter insbesondere zwischen der genannten Amylase und einer Lipase und/oder einer Protease und/oder einer Mannanase und/oder einer Cellulase und/oder einer Pektinase. Synergistische Effekte können nicht nur zwischen verschiedenen Enzymen, sondern auch zwischen einem oder mehreren Enzymen und weiteren Inhaltsstoffen des erfindungsgemäßen Mittels auftreten. In den hierin beschriebenen Reinigungsmitteln können die einzusetzenden Enzyme ferner zusammen mit Begleitstoffen, etwa aus der Fermentation, konfektioniert sein. In flüssigen Formulierungen werden die Enzyme bevorzugt als Enzymflüssigformulierung(en) eingesetzt.
Die Enzyme werden in der Regel nicht in Form des reinen Proteins, sondern vielmehr in Form stabilisierter, lager- und transportfähiger Zubereitungen bereitgestellt. Zu diesen vorkonfektionierten Zubereitungen zählen beispielsweise die durch Granulation, Extrusion oder Lyophilisierung erhaltenen festen Präparationen oder, insbesondere bei flüssigen oder gelförmigen Mitteln, Lösungen der Enzyme, vorteilhafterweise möglichst konzentriert, wasserarm und/oder mit Stabilisatoren oder weiteren Hilfsmitteln versetzt.
Alternativ können die Enzyme sowohl für die feste als auch für die flüssige Darreichungsform verkapselt werden, beispielsweise durch Sprühtrocknung oder Extrusion der Enzymlösung zusammen mit einem vorzugsweise natürlichen Polymer oder in Form von Kapseln, beispielsweise solchen, bei denen die Enzyme wie in einem erstarrten Gel eingeschlossen sind oder in solchen vom Kern- Schale-Typ, bei dem ein enzymhaltiger Kern mit einer Wasser-, Luft- und/oder Chemikalienundurchlässigen Schutzschicht überzogen ist. In aufgelagerten Schichten können zusätzlich weitere Wirkstoffe, beispielsweise Stabilisatoren, Emulgatoren, Pigmente, Bleich- oder Farbstoffe aufgebracht werden. Derartige Kapseln werden nach an sich bekannten Methoden, beispielsweise durch Schüttel- oder Rollgranulation oder in Fluid-bed-Prozessen aufgebracht. Vorteilhafterweise sind derartige Granulate, beispielsweise durch Aufbringen polymerer Filmbildner, staubarm und aufgrund der Beschichtung lagerstabil.
Die Enzyme können auch in wasserlösliche Filme eingebracht werden. Ein derartiger Film ermöglicht die Freisetzung der Enzyme nach Kontakt mit Wasser. Wie hier verwendet, bezieht sich„wasserlöslich" auf eine Filmstruktur, die vorzugsweise vollständig wasserlöslich ist. Jedoch sind auch Filme, die im Wesentlichen wasserlöslich sind, aber relativ kleine Mengen eines Materials in der Filmstruktur aufweisen, welches nicht wasserlöslich ist; Folien mit Materialien, die nur bei relativ hohen Wassertemperaturen oder nur unter eingeschränkten pH-Bedingungen wasserlöslich sind; und Folien, die eine relativ dünne Schicht aus wasserunlöslichem Material einschließen, alle in der Bezeichnung„wasserlöslich" mit eingeschlossen. Bevorzugt besteht ein solcher Film aus (vollständig oder teilweise hydrolysiertem) Polyvinylalkohol (PVA). Der Film kann aber auch ausschließlich oder zusätzlich zum PVA enthalten Säure/Acrylat-Copolymere, vorzugsweise Methacrylsäu- re/Ethylacrylat-Copolymer, wie das von Beiland als GBC 2580 und 2600 erhältliche; Styrol- Maleinsäureanhydrid-Copolymer (SMA) (verfügbar als Scripset (Handelsname) von Monsanto); Ethylen-Acrylsäure-Copolymer (EAA) oder durch Metallsalz neutralisiertes Ethylen-Methacrylsäure- Copolymer (EMAA), bekannt als lonomer (verfügbar von du Pont), bei welchem der Säuregehalt von EAA oder EMAA mindestens etwa 20 Mol-% beträgt; Polyether-Blockamid- Copolymer; Po- lyhydroxyvalerinsäure (verfügbar als Biopol (Handelsname)-Harze von Imperial Chemical Indust- ries); Polyethylenoxid; wasserlöslichen Polyester oder Copolyester; Polyethyloxazolin (PEOX 200 von Dow); und wasserlösliches Polyurethan ein.
Weiterhin ist es möglich, zwei oder mehrere Enzyme zusammen zu konfektionieren, so dass ein einzelnes Granulat mehrere Enzymaktivitäten aufweist.
Ein weiterer Erfindungsgegenstand ist ein Verfahren zur Reinigung von Textilien oder harten Oberflächen, das dadurch gekennzeichnet ist, dass in mindestens einem Verfahrensschritt ein erfindungsgemäßes Mittel angewendet wird, oder dass in mindestens einem Verfahrensschritt eine erfindungsgemäße Amylase katalytisch aktiv wird, insbesondere derart, dass die Amylase in einer Menge von 40μg bis 4g, vorzugsweise von 50μg bis 3g, besonders bevorzugt von 100μg bis 2g und ganz besonders bevorzugt von 200μg bis 1g eingesetzt wird.
In verschieden Ausführungsformen zeichnet sich das oben beschriebene Verfahren dadurch aus, dass die Amylase bei einer Temperatur von 0-100°C, bevorzugt 0-60°C, weiter bevorzugt 20-45°C und am meisten bevorzugt bei 40°C eingesetzt wird.
Hierunter fallen sowohl manuelle als auch maschinelle Verfahren, wobei maschinelle Verfahren bevorzugt sind. Verfahren zur Reinigung von Textilien zeichnen sich im allgemeinen dadurch aus, dass in mehreren Verfahrensschritten verschiedene reinigungsaktive Substanzen auf das Reinigungsgut aufgebracht und nach der Einwirkzeit abgewaschen werden, oder dass das Reinigungsgut in sonstiger Weise mit einem Waschmittel oder einer Lösung oder Verdünnung dieses Mittels behandelt wird. Entsprechendes gilt für Verfahren zur Reinigung von allen anderen Materialien als Textilien, insbesondere von harten Oberflächen. Alle denkbaren Wasch- oder Reinigungsverfahren können in wenigstens einem der Verfahrensschritte um die Anwendung eines erfindungsgemäßen Wasch- oder Reinigungsmittels oder einer erfindungsgemäßen Amylase bereichert werden und stellen dann Ausführungsformen der vorliegenden Erfindung dar. Alle Sachverhalte, Gegenstände und Ausführungsformen, die für erfindungsgemäße Amylasen und sie enthaltende Mittel beschrieben sind, sind auch auf diesen Erfindungsgegenstand anwendbar. Daher wird an dieser Stelle ausdrücklich auf die Offenbarung an entsprechender Stelle verwiesen mit dem Hinweis, dass diese Offenbarung auch für die vorstehenden erfindungsgemäßen Verfahren gilt.
Da erfindungsgemäße Amylasen natürlicherweise bereits eine hydrolytische Aktivität besitzen und diese auch in Medien entfalten, die sonst keine Reinigungskraft besitzen wie beispielsweise in bloßem Puffer, kann ein einzelner und/oder der einzige Schritt eines solchen Verfahrens darin bestehen, dass gewünschtenfalls als einzige reinigungsaktive Komponente eine erfindungsgemäße Amylase mit der Anschmutzung in Kontakt gebracht wird, bevorzugt in einer Pufferlösung oder in Wasser. Dies stellt eine weitere Ausführungsform dieses Erfindungsgegenstandes dar. Alternative Ausführungsformen dieses Erfindungsgegenstandes stellen auch Verfahren zur Behandlung von Textilrohstoffen oder zur Textilpflege dar, bei denen in wenigstens einem Verfahrensschritt eine erfindungsgemäße Amylase aktiv wird. Hierunter sind Verfahren für Textilrohstoffe, Fasern oder Textilien mit natürlichen Bestandteilen bevorzugt, und ganz besonders für solche mit Wolle oder Seide.
Alle Sachverhalte, Gegenstände und Ausführungsformen, die für erfindungsgemäße Amylase und sie enthaltende Mittel beschrieben sind, sind auch auf diesen Erfindungsgegenstand anwendbar. Daher wird an dieser Stelle ausdrücklich auf die Offenbarung an entsprechender Stelle verwiesen mit dem Hinweis, dass diese Offenbarung auch für die vorstehende erfindungsgemäße Verwendung gilt.
In einem weiteren Aspekt bezieht sich die vorliegende Erfindung auf die Verwendung einer erfindungsgemäßen Amylase oder einer nach einem erfindungsgemäßen Verfahren erhältliche Amylase in einem Wasch- oder Reinigungsmittel zur Entfernung von Stärke-haltigen Anschmutzungen. Alle Sachverhalte, Gegenstände und Ausführungsformen, die für erfindungsgemäße Amylase und sie enthaltende Mittel beschrieben sind, sind auch auf diesen Erfindungsgegenstand anwendbar.
Beispiele
Beispiel 1 :
Kurzzusammenfassunq des experimentellen Ablaufs
Es wurde ein aktivitätsbasiertes Screening einer metagenomdatenbank durchgeführt. Die Metagenomdatenbank wurde in diesem Fall aus einer Biogas Reaktor Probe aus Bremen erstellt. Zur Erstellung der Metagenomdatenbank wurde das„TOPO XL PCR Cloning Kit" (Invitrogen) verwendet. Dabei wurde ein Wildtyp Enzym gemäß SEQ ID NO: 1 , annotiert als alpha-Amylase, entdeckt. Das entsprechende Gen konnte isoliert, in E.coli transformiert und anschließend darin exprimiert werden. Die von E.coli produzierte Amylase zeigt auf verschiedenen stärkehaltigen Textilien eine gute Waschleistung.
Die Sequenz ist weit entfernt von den bislang in L&HC eingesetzten Amylasen. Sie eröffnet dadurch viele Möglichkeiten, die genetische Vielfalt zu erhöhen, und auch ggf. noch durch Muta- genese das Leistungsspektrum zu verändern.
Verwendete Waschmittelmatrix
Dies ist die Waschmittelmatrix (handelsüblich, ohne Enzyme, opt. Aufheller, Parfüm und Farbstoffe), die für den Waschtest verwendet wurde:
Figure imgf000023_0001
Dosierung 4,7 g/L Aktivitätsassav
Für die Bestimmung der amylolytischen Aktivität von erfindungsgemäßen Amylasen wurde ein modifiziertes para-Nitrophenyl-Maltoheptaosid verwendet, dessen terminale Glucose-Einheit durch eine Benzylidengruppe blockiert wurde. Aus diesem Molekül wird durch die Amylase para- Nitro- phenyl-Oligosaccharid freigesetzt, das wiederum mit Hilfe der Enzyme Glucoamylase und alpha- Glucosidase zu Glucose und para-Nitrophenol umgesetzt wird. Somit ist die Menge des freigesetzten para-Nitrophenol proportional zur Aktivität der Amylase. Die Messung erfolgt beispielsweise unter Zuhilfenahme des Quick-Start® Test-Kits der Firma Abbott (Abbott Park, Illinois, USA). Der Anstieg der Absorption (405 nm) im Testansatz wurde bei 37°C über 3 min gegenüber einem photometrischen Kontrollwert (Blindwert) ermittelt. Die Kalibrierung erfolgte auf einen Enzymstandard mit bekannter Aktivität (z.B. Maxamyl® / Purastar® 2900 Genencor 2900 TAU / g). Die Auswertung erfolgte durch die Ermittlung der Absorptionsdifferenz dE (405 nm) pro min gegen die Enzymkonzentration des Standards.
Waschtest und Ergebnisse
Ein Waschtest wurde durchgeführt mit dem aufgereinigten Überstand aus E. coli, der die erfindungsgemäße Wildtyp Amylase gemäß SEQ ID NO: 1 enthält.
Bedingungen: 40°C, 16°dH Wasser, 1 h;
Enzymkonzentration: 0, 186 TAU/ml (Bestimmung der Amylase Aktivität mit Benzyliden blockiertem para-Nitrophenol-Maltoheptaosid); dies entspricht einer üblicherweise in Waschmittel eingesetzten Amylase Menge.
Anschmutzungen:
1. C-S-26 Maisstärke
2. C-S-27 Kartoffelstärke
3. C-S-28 Reisstärke
4. C-S-29 Tapiokastärke
5. Wfk 10062 Stärke/Kohlenstoff
Ausgestanztes Gewebe (Durchmesser = 10 mm) in Mikrotiterplatte vorlegen, Waschlauge auf 40°C vortemperieren, Endkonzentration 4,7 g/L;
Lauge und Enzym auf die Anschmutzung geben, für 1 h bei 40°C und 600 rpm inkubieren; anschließend die Anschmutzung mehrmals mit klarem Wasser spülen, trocken lassen und mit einem Farbmessgerät die Helligkeit bestimmen.
Je heller das Gewebe wird, desto besser ist die Reinigungsleistung. Gemessen wird hier der L- Wert = Helligkeit, je höher desto heller.
Es wird mit einem gängigen Flüssigwaschmittel ohne Enzyme gewaschen. Probe 1 : Waschmittel ohne Amylase als Benchmark (Vergleichsreferenz)
Probe 2: Waschmittel plus Amylase (erfindungsgemäß)
Ergebnis (aus CL 1 13):
Figure imgf000025_0001
Es wird deutlich, dass die erfindungsgemäße Amylase auf allen fünf Anschmutzungen eine sehr gute Leistung zeigt. Von einer signifikanten Leistungsverbesserung spricht man schon ab 1 Einheit, hier wurden bis zu 1 1 ,3 Einheiten Verbesserung erzielt. Als Negativkontrolle wurde der abgekochte, aufgereinigte Überstand aus dem Produktionsorganismus E.coli mitgewaschen (99°C für 30 min), der keinerlei Waschleistung zeigt (nicht gezeigt).

Claims

Patentansprüche
1. Amylase umfassend eine Aminosäuresequenz, die mindestens 70 % Sequenzidentität mit der in SEQ ID NO:1 angegebenen Aminosäuresequenz über deren Gesamtlänge aufweist.
2. Amylase, dadurch gekennzeichnet, dass
(a) sie aus einer Amylase nach Anspruch 1 als Ausgangsmolekül erhältlich ist durch ein- oder mehrfache konservative Aminosäuresubstitution; und/oder
(b) sie aus einer Amylase nach Anspruch 1 als Ausgangsmolekül erhältlich ist durch Fragmentierung, Deletions-, Insertions- oder Substitutionsmutagenese und eine Aminosäuresequenz umfasst, die über eine Länge von mindestens 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530 oder 536 zusammenhängenden Aminosäuren mit dem Ausgangsmolekül übereinstimmt.
3. Verfahren zur Herstellung einer Amylase nach Anspruch 1 oder 2 umfassend das Bereitstellen einer Ausgangsamylase, die mindestens 70 % Sequenzidentität zu der in SEQ ID NO: 1 angegebenen Aminosäuresequenz über deren Gesamtlänge aufweist.
4. Verfahren nach Anspruch 3, ferner umfassend einen oder beide der folgenden Verfahrensschritte:
(a) Einbringen einer ein- oder mehrfachen konservativen Aminosäuresubstitution;
(b) Veränderung der Aminosäuresequenz durch Fragmentierung, Deletions-, Insertions- oder Substitutionsmutagenese derart, dass die Amylase eine Aminosäuresequenz umfasst, die über eine Länge von mindestens 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530 oder 536 zusammenhängenden Aminosäuren mit dem Ausgangsmolekül übereinstimmt.
5. Nukleinsäure codierend für eine Amylase nach einem der Ansprüche 1 oder 2 oder codierend für eine nach einem Verfahren der Ansprüche 3 oder 4 erhaltene Amylase.
6. Vektor enthaltend eine Nukleinsäure nach Anspruch 5, insbesondere ein Klonierungsvektor oder ein Expressionsvektor.
7. Nicht menschliche Wirtszelle, die eine Nukleinsäure nach Anspruch 5 oder einen Vektor nach Anspruch 6 beinhaltet, oder die eine Amylase nach einem der Ansprüche 1 oder 2 beinhaltet, oder die eine nach einem Verfahren der Ansprüche 3 oder 4 erhaltene Amylase beinhaltet, insbesondere eine, die die Amylase in das die Wirtszelle umgebende Medium sezerniert.
8. Verfahren zur Herstellung einer Amylase umfassend a) Kultivieren einer Wirtszelle gemäß Anspruch 7; und
b) Isolieren der Amylase aus dem Kulturmedium oder aus der Wirtszelle.
9. Mittel, insbesondere ein Wasch- oder Reinigungsmittel, dadurch gekennzeichnet, dass es mindestens eine Amylase nach einem der Ansprüche 1 oder 2 oder eine nach einem Verfahren der Ansprüche 3 oder 4 erhaltene Amylase enthält, insbesondere ist die Amylase in einer Menge bis zu 1 Gew.-% bezogen auf aktives Protein enthalten.
10. Verfahren zur Reinigung von Textilien oder harten Oberflächen, dadurch gekennzeichnet, dass in mindestens einem Verfahrensschritt ein Mittel nach Anspruch 9 angewendet wird, oder dass in mindestens einem Verfahrensschritt eine Amylase nach einem der Ansprüche 1 oder 2 oder eine nach einem Verfahren der Ansprüche 3 oder 4 erhaltene Amylase katalytisch aktiv wird.
1 1. Verwendung einer Amylase nach einem der Ansprüche 1 oder 2 oder einer nach einem Verfahren der Ansprüche 3 oder 4 erhältliche Amylase in einem Wasch- oder Reinigungsmittel zur Entfernung von Stärke-haltigen Anschmutzungen.
PCT/EP2017/063310 2016-06-06 2017-06-01 Neue amylasen WO2017211678A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17728806.5A EP3464577A1 (de) 2016-06-06 2017-06-01 Neue amylasen
US16/307,426 US10662399B2 (en) 2016-06-06 2017-06-01 Amylases

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016209880.2 2016-06-06
DE102016209880.2A DE102016209880A1 (de) 2016-06-06 2016-06-06 Neue Amylasen

Publications (1)

Publication Number Publication Date
WO2017211678A1 true WO2017211678A1 (de) 2017-12-14

Family

ID=59030928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/063310 WO2017211678A1 (de) 2016-06-06 2017-06-01 Neue amylasen

Country Status (4)

Country Link
US (1) US10662399B2 (de)
EP (1) EP3464577A1 (de)
DE (1) DE102016209880A1 (de)
WO (1) WO2017211678A1 (de)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014164777A1 (en) * 2013-03-11 2014-10-09 Danisco Us Inc. Alpha-amylase combinatorial variants

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7273740B2 (en) 2001-02-21 2007-09-25 Verenium Corporation Enzymes having alpha amylase activity and methods of use thereof
DK2069490T4 (en) * 2006-12-21 2018-04-23 Syngenta Participations Ag Amylases and Glucoamylases, Nucleic Acids Encoding Them, and Methods of Preparation and Use thereof
DE102008017103A1 (de) 2008-04-02 2009-10-08 Henkel Ag & Co. Kgaa Wasch- und Reinigungsmittel enthaltend Proteasen aus Xanthomonas
JP2012522875A (ja) 2009-04-01 2012-09-27 ダニスコ・ユーエス・インク アルファ‐アミラーゼ及びプロテアーゼを含む洗浄組成物及び方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014164777A1 (en) * 2013-03-11 2014-10-09 Danisco Us Inc. Alpha-amylase combinatorial variants

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE UniProt [online] 19 October 2011 (2011-10-19), "RecName: Full=Alpha-amylase {ECO:0000256|RuleBase:RU361134}; EC=3.2.1.1 {ECO:0000256|RuleBase:RU361134};", XP055392492, retrieved from EBI accession no. UNIPROT:G0GBA9 Database accession no. G0GBA9 *
LONG-LIU LIN ET AL: "Production and properties of a raw-starch-degrading amylase from the thermophilic and alkaliphilic Bacillus sp. TS-23", BIOTECHNOLOGY AND APPLIED BIOCHEMI, ACADEMIC PRESS, US, vol. 28, no. 1, 1 January 1998 (1998-01-01), pages 61 - 68, XP009111923, ISSN: 0885-4513 *

Also Published As

Publication number Publication date
DE102016209880A1 (de) 2017-12-07
US10662399B2 (en) 2020-05-26
EP3464577A1 (de) 2019-04-10
US20190153357A1 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
EP3299457A1 (de) Neue lipase
EP4114933A1 (de) Leistungsverbesserte proteasevarianten vii
WO2021175696A1 (de) Stabilitätsverbesserte proteasevarianten vi
EP3679133A1 (de) Leistungsverbesserte proteasevarianten i
WO2019048486A1 (de) Leistungsverbesserte proteasevarianten ii
WO2019048488A1 (de) Leistungsverbesserte proteasevarianten iii
EP3458583A1 (de) Leistungsverbesserte proteasen
WO2017198487A1 (de) Verbesserte waschleistung durch eine neue alpha-amylase aus rhizoctonia solani
WO2017133974A1 (de) Verbesserte waschleistung durch eine alpha-amylase aus bacillus cereus
EP3580335A1 (de) Lipasen mit erhöhter thermostabilität
DE102018208778A1 (de) Leistungsverbesserte Proteasevarianten IV
WO2017097590A1 (de) Lipasen mit erhöhter thermostabilität
WO2017162440A1 (de) Lipasen für den einsatz in wasch- und reinigungsmitteln
WO2017211678A1 (de) Neue amylasen
WO2019101417A1 (de) Amylase und eine solche enthaltendes wasch- oder reinigungsmittel
WO2019228877A1 (de) Verbesserte waschleistung durch eine neue alpha-amylase aus fomitopsis pinicola (fpi)
DE102017215628A1 (de) Leistungsverbesserte Proteasevarianten I
DE102018208446A1 (de) Verbesserte Waschleistung durch eine neue alpha-Amylase aus Fomes fomentarius (Ffo)
DE102018208443A1 (de) Verbesserte Waschleistung durch eine neue alpha-Amylase Irpex lacteus (IIa)
DE102018208444A1 (de) Verbesserte Waschleistung durch eine neue alpha-Amylase aus Trametes hirsuta (Thi)
WO2017133973A1 (de) Verbesserte waschleistung durch eine alpha-amylase aus bacillus cereus
DE102017220670A1 (de) Glucosidase und eine solche enthaltende Wasch- und Reinigungsmittel
WO2017162711A1 (de) Flüssigformulierung enthaltend eine lipase
DE102018208777A1 (de) Leistungsverbesserte Proteasevarianten V
DE102017215631A1 (de) Leistungsverbesserte Proteasevarianten II

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17728806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017728806

Country of ref document: EP

Effective date: 20190107