WO2017211264A1 - 一种吸附塔、吸附净化系统以及净化方法 - Google Patents
一种吸附塔、吸附净化系统以及净化方法 Download PDFInfo
- Publication number
- WO2017211264A1 WO2017211264A1 PCT/CN2017/087293 CN2017087293W WO2017211264A1 WO 2017211264 A1 WO2017211264 A1 WO 2017211264A1 CN 2017087293 W CN2017087293 W CN 2017087293W WO 2017211264 A1 WO2017211264 A1 WO 2017211264A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat exchange
- adsorption
- adsorption tower
- regeneration gas
- heat
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/10—Working-up natural gas or synthetic natural gas
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/10—Working-up natural gas or synthetic natural gas
- C10L3/101—Removal of contaminants
- C10L3/102—Removal of contaminants of acid contaminants
- C10L3/104—Carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/10—Working-up natural gas or synthetic natural gas
- C10L3/101—Removal of contaminants
- C10L3/106—Removal of contaminants of water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/40083—Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
- B01D2259/40086—Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by using a purge gas
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/12—Regeneration of a solvent, catalyst, adsorbent or any other component used to treat or prepare a fuel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/54—Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
- C10L2290/542—Adsorption of impurities during preparation or upgrading of a fuel
Definitions
- the invention relates to the technical field of gas purification, and in particular to an adsorption tower, an adsorption purification system and a purification method.
- an adsorbent is often used to remove impurities such as CO 2 and moisture in the raw material gas, including but not limited to natural gas.
- a step of regeneration of the adsorbent is involved: the raw material gas is adsorbed and purified by the adsorbent, and then sent out of the boundary, and then the adsorbent saturated with water passes through the regeneration step to separate the water from the adsorbent.
- the regeneration step of the adsorbent is divided into hot blowing and cold blowing: when hot blowing, the regeneration gas is heated by the heater and directly enters the adsorption tower to heat the adsorbent.
- the adsorbent After the adsorbent is heated, the water in the adsorbent evaporates and is carried away by the regeneration gas. When it is blown out, the cooled regeneration gas directly enters the adsorption tower to cool the adsorbent, and the adsorbent after hot and cold blowing can be reused.
- the disadvantage of this process is that the regeneration gas is expensive and the regeneration is not complete.
- One of the objects of the present invention is to provide an adsorption tower which can heat or cool the adsorbent disposed in the adsorption tower, and has the advantages of less regeneration gas consumption and more complete regeneration of the adsorbent.
- Another object of the present invention is to provide an adsorption purification system which has the advantages of requiring less regeneration gas and more thorough regeneration of the adsorbent.
- the present invention provides the following technical solutions:
- An adsorption tower comprises an adsorption tower body and a heat exchange device, wherein the adsorption tower is provided with a raw material gas inlet nozzle and a purification gas outlet nozzle, and the heat exchange device comprises a plurality of heat exchange tubes disposed in the adsorption tower, and the heat exchange tubes have A void used to fill the adsorbent.
- the heat exchange tubes are configured to be selectively in communication with a heat source or a source of heat.
- the adsorption column further comprises a heat exchange jacket disposed on the outer wall of the adsorption tower body.
- the heat exchange jacket is configured to be selectively in communication with a heat source or a source of heat.
- the inner wall of the adsorption tower body is provided with a thermal insulation lining.
- a composite bed composed of an adsorbent is disposed within the adsorption column body.
- the adsorbent is at least one selected from the group consisting of molecular sieves, silica gels, aluminas, and activated carbon adsorbents.
- An adsorption purification system comprises a raw material gas pipeline, a purified gas pipeline, a regeneration gas pipeline, an outer heat exchange medium pipeline, a matched instrument control valve, and at least two adsorption towers mentioned above.
- the number of adsorption columns is from 2 to 12.
- the regeneration gas line includes a regeneration gas inlet line and a regeneration gas outlet line;
- the regeneration gas inlet pipe has a regeneration gas inlet end and a plurality of regeneration gas outlet ends connected in one-to-one correspondence with the adsorption tower, and a regeneration valve outlet end of each regeneration gas inlet pipe is provided with a valve;
- the regeneration gas outlet line has a regeneration gas outlet end and a plurality of regeneration gas inlet ends connected in one-to-one correspondence with the adsorption tower, and a regeneration valve inlet end of each regeneration gas outlet line is provided with a valve.
- the adsorption purification system further comprises a heating system for conveying the heat medium to the heat exchange device and a cooling system for conveying the cold medium to the heat exchange device, the outer heat exchange medium line
- the utility model comprises a heat medium conveying pipe and a cold medium conveying pipe, wherein the heat medium conveying pipe connects the heating system and the heat exchange device, and the cold medium conveying pipe connects the cooling system and the heat exchange device.
- the heat medium delivery tube includes a first heat medium delivery tube and a second heat medium delivery tube;
- the first heat medium delivery tube has a heat medium inlet end connected to the heating system and a plurality of heat medium outlet ends connected to the heat exchange device of the adsorption tower;
- the heat medium outlet end of the first heat medium delivery pipe is provided with a valve;
- the second heat medium delivery pipe has a heat medium outlet connected to the heating system And a plurality of heat medium inlet ends connected in one-to-one correspondence with the heat exchange device of the adsorption tower, the heat medium inlet end is connected with the heat exchange device of the corresponding adsorption tower; and the second heat medium transport pipe is corresponding to the heat of the adsorption tower a valve is respectively arranged at the inlet end of the medium;
- the cold medium conveying pipe comprises a first cold medium conveying pipe and a second cold medium conveying pipe;
- the first cold medium conveying pipe has a cold medium inlet end connected to the cooling system and a one-to-one connection with the heat exchange device of the adsorption tower a cold medium outlet end;
- a refrigerant outlet end of the first cold medium conveying pipe is provided with a valve;
- the second cold medium conveying pipe has a cold medium outlet end connected to the cooling system and a one-to-one connection with the heat exchange device of the adsorption tower a plurality of cold medium inlet ends;
- a second cold medium delivery pipe is provided with a valve at a cold medium inlet end.
- the heat medium is any one of a raw material gas, a purified gas, a steam, an external gas, and a heat conductive oil
- the cold medium is a raw material gas, a purified gas, an external gas, water, and heat conduction. Any of the oils.
- the chemical composition of the heat medium and the cold medium are the same.
- the adsorptive purification system further includes a regeneration gas heat exchanger and a regeneration gas heat exchange conduit for heating the regeneration gas.
- the regeneration gas heat exchange line selectively connects any two adsorption towers, and the regeneration gas heat exchanger is configured to carry out the flow medium in the regeneration gas heat exchange line. heating.
- the regeneration gas heat exchange pipeline includes a first regeneration gas heat exchange pipeline and a second regeneration gas heat exchange pipeline;
- the first regeneration gas heat exchange pipeline has a regeneration The inlet of the gas heat exchanger is connected to the outlet end of the regeneration gas and a plurality of regeneration gas inlet ends connected one by one to the adsorption tower;
- the inlet end of the regeneration gas of the first regeneration gas heat exchange pipeline is provided with a valve;
- the second regeneration gas heat exchange The pipeline has a regeneration gas outlet end connected to the outlet of the regeneration gas heat exchanger and a plurality of regeneration gas inlet ends connected to the adsorption tower in one-to-one correspondence; and a regeneration valve outlet end of the second regeneration gas heat exchange pipeline is provided with a valve.
- the regeneration gas of the adsorption purification system is at least one selected from the group consisting of a raw material gas, a purified gas, and a foreign gas.
- the raw material gas refers to the gas to be purified
- the purified gas refers to the purified gas
- the external gas refers to other gases other than the raw material gas and the purified gas.
- the foreign gas is any one of hydrogen, syngas, air, and nitrogen.
- the adsorption tower and the adsorption purification system of the invention can be used for the adsorption purification treatment of gas, and is especially suitable for the processes of decarbonization, dehydration, de-heavy hydrocarbons, desulfurization and the like of gases.
- Feed gases include, but are not limited to, natural gas.
- a purification method comprising an adsorption step and an adsorbent regeneration step; the adsorbent regeneration step is: hot blowing a hot regeneration gas into the adsorption tower, and introducing a heat medium into the heat exchange device The adsorbent in the adsorption tower is simultaneously heated; then a cold regeneration gas is introduced into the adsorption tower for cold blowing, and a cooling medium is introduced into the heat exchange device, and the adsorbent in the adsorption tower is simultaneously cooled and regenerated.
- the invention has the beneficial effects that the adsorption tower obtained by the above design can use the heat exchange device and the regeneration gas in combination, which is beneficial to reduce the amount of regeneration gas.
- the adsorption purification system of the present invention obtained by the above design comprises at least two adsorption towers provided by the present invention, and the adsorption purification system requires less regeneration gas than in the prior art during use.
- FIG. 1 is a schematic view of an adsorption tower provided by an embodiment of the present invention.
- FIG. 2 is a schematic cross-sectional view of an adsorption tower provided by an embodiment of the present invention
- FIG. 3 is a schematic view of an adsorption purification system provided by an embodiment of the present invention.
- Figure 4 is a schematic view of the raw material gas line and the purified gas line removed in Figure 3;
- Figure 5 is a schematic view of Figure 4 after removal of the regeneration gas related pipeline
- Figure 6 is a schematic view of Figure 4 with the heat exchange tubes removed.
- first”, “second”, and the like are used for the purpose of description only, and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
- features defining “first”, “second”, etc. may include one or more of the features, either explicitly or implicitly.
- the meaning of "a plurality" is two or more unless specifically and specifically defined otherwise.
- the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. Or integrated; can be directly connected, or indirectly connected through an intermediate medium, which can be the internal communication of two elements or the interaction of two elements.
- an intermediate medium which can be the internal communication of two elements or the interaction of two elements.
- the first feature "on” or “under” the second feature may include direct contact of the first and second features, and may also include first and second features, unless otherwise specifically defined and defined. It is not in direct contact but through additional features between them.
- the first feature "above”, “above” and “above” the second feature includes the first feature directly above and above the second feature, or merely indicating that the first feature level is higher than the second feature.
- the first Features “below”, “below” and “below” the second feature includes the first feature directly below and below the second feature, or simply that the first feature is less than the second feature.
- an adsorption tower 100 mainly comprises an adsorption tower body 101 and a heat exchange device.
- the upper part of the adsorption tower body 101 is substantially columnar, and the upper and lower ends of the adsorption tower body 101 are respectively provided with an upper head 102 and a lower head 103.
- the upper head 102 is provided with a manhole 104 and a raw material gas inlet nozzle 105.
- a purge gas outlet connection 106 is provided at the head 103.
- the raw material gas refers to the gas to be treated
- the purified gas refers to the gas after the adsorption purification treatment.
- the shape of the tower body 101 may also be other shapes that are columnar accidental. If the purge gas is not further processed, the purge gas may also be referred to as product gas. In other embodiments of the present invention, the raw material gas inlet nozzle 105 may be disposed at the lower header 103, and the purge gas outlet nozzle 106 may be disposed at the upper header 102.
- a gas distributor 107 is disposed in the adsorption tower body 101 to communicate with the raw material gas inlet connection 105.
- the gas distributor 107 facilitates the radial movement of the raw material gas into the adsorption tower body 101 and along the adsorption tower body 101, which is favorable for uniform distribution of the raw material gas.
- the gas distributor 107 is a hollow cylinder having one end connected to the raw material gas inlet nozzle 105 and the other end being a closed structure; the side wall of the gas distributor 107 is provided with a plurality of distribution holes.
- the distribution holes are circular holes having a diameter of 16 to 32 mm, and the distribution holes are arranged in an equilateral triangle.
- the outer side wall of the gas distributor 107 is fixed with a mesh structure layer, which is preferably a two-layer stainless steel wire mesh.
- a gas collector 108 communicating with the purge gas outlet nozzle 106 is disposed in the adsorption tower body 101, and the gas collector 108 facilitates the discharge of the purge gas in the adsorption tower body 101.
- the heat exchange device in this embodiment includes a plurality of heat exchange tubes 109, which are disposed at intervals in the adsorption tower body 101, and are disposed between adjacent heat exchange tubes 109.
- the voids 110 of the adsorbent are filled. When the adsorption tower 100 is in use, these voids 110 will be filled with a large amount of adsorbent to form a composite bed composed of adsorbents, and the specific types of these adsorbents can be selected according to the process requirements.
- the adsorbent is at least one selected from the group consisting of molecular sieves, silica gels, aluminas, and activated carbon adsorbents.
- the adsorbent may be selected from only molecular sieves, or a combination of molecular sieves and aluminas. A single type of adsorbent is preferred. Referring to FIG. 1, the longitudinal direction of the heat exchange tube 109 is disposed in parallel with the axial line of the adsorption tower body 101. The lumen of the heat exchange tube 109 is not in communication with the inner chamber of the adsorption tower body 101 for purifying the gas or the flow of the raw material.
- the medium in the heat exchange tube 109 is isolated from the raw material gas or the purified gas, and no direct contact occurs.
- the heat exchange tube 109 is made of a heat conductive material (for example, metal), and The medium in the heat exchange tube 109 is heat-exchanged with other substances (raw material gas, purified gas, adsorbent, etc.) outside the heat exchange tubes 109.
- the heat exchange tubes 109 are uniformly disposed in the adsorption tower body 101 at substantially intervals, and the advantages include facilitating efficient heat exchange between the heat exchange tubes 109 and the adsorbent. Since the heat exchange between the adsorbents is usually slow, it is preferable to use the heat exchange tubes 109 having a smaller diameter while increasing the number of the heat exchange tubes 109.
- the heat exchange device further includes a heat exchange jacket 111.
- the heat exchange jacket 111 is disposed on the outer wall of the adsorption tower body 101, and the heat exchange jacket 111 is connected with the jacket outlet nozzle 112 and the jacket inlet.
- the nozzle 113 is disposed at the top of the adsorption tower body 101, and the jacket outlet nozzle 112 is disposed at the bottom of the adsorption tower body 101.
- the heat exchange medium can be continuously introduced into the heat exchange jacket 111, and the heat exchange medium exchanges heat with the adsorption tower body 101 and the adsorbent inside thereof.
- the adsorption tower body 101 is further provided with an upper fluid reservoir 114 and a lower fluid reservoir 115.
- the upper fluid reservoir 114 has a heat exchange medium inlet 116
- the lower fluid reservoir 115 has a heat exchange medium outlet 117.
- the heat exchange medium includes a heat medium for heating the adsorbent and a cold medium for cooling the adsorbent.
- the upper header tank 114 is adjacent to the upper header 102
- the lower header tank 115 is adjacent to the lower header 103. Both ends of each heat exchange tube 109 extend adjacent to the upper header 102 and the lower header 103, respectively. Both ends of each heat exchange tube 109 are in communication with the upper header tank 114 and the lower header tank 115, respectively.
- the heat exchange medium is input from the upper liquid storage tank 114 and dispersed to the respective heat exchange tubes 109, and is collected and outputted by the lower liquid storage tank 115.
- the functions of the upper liquid storage tank 114 and the lower liquid storage tank 115 can also be replaced with each other.
- a steel frame 118 for fixing the heat exchange tubes 109, the upper header tank 114, and the lower header tank 115 is disposed in the adsorption tower body 101, and the steel frame 118 is connected to the adsorption tower body 101.
- the upper header tank 114 and the lower header tank 115 have a similar structure.
- the upper liquid storage tank 114 includes a main liquid collecting pipe and a plurality of secondary liquid collecting pipes.
- the heat exchange medium inlet 116 is disposed in the main liquid collecting pipe, and the main liquid collecting pipe is connected to each secondary liquid collecting pipe.
- the plurality of secondary liquid collecting pipes are arranged along the longitudinal direction of the main liquid collecting pipe, and the distance between the two adjacent liquid collecting tanks is 20 to 500 mm.
- the diameters of the main effusion tube and the secondary effusion tube are substantially the same.
- the heat exchange medium inlet 116 is connected with an inlet tube, and the diameter of the main effusion tube is 0.6 to 1.5 times the diameter of the inlet tube.
- only the heat exchange tubes 109 or only the heat exchange jackets 111 may be provided.
- This embodiment also provides an adsorption purification system mainly comprising at least two adsorption towers 100 as described above in parallel. Enter In one step, in the preferred embodiment of the present invention, the number of adsorption towers 100 is 2 to 12, which greatly increases the flexibility of operation of the apparatus.
- An adsorption purification system includes a first adsorption tower 201, a second adsorption tower 202, a third adsorption tower 203, a regeneration gas heat exchanger 204, a raw material gas pipeline 310, a purification gas pipeline 320, a regeneration gas pipeline, and an outer heat exchange medium pipe. Road and matching instrument control valves.
- the first adsorption tower 201, the second adsorption tower 202 and the third adsorption tower 203 are connected in parallel.
- the raw material gas pipeline 310 has a raw material gas inlet end 311 and three raw material gas outlet ends, and the raw material gas inlet end 311 is used.
- the pipeline for conveying the raw material gas is connected, and the three raw material gas outlet ends are respectively connected to the raw material gas inlet nozzles 105 corresponding to the first adsorption tower 201, the second adsorption tower 202, and the third adsorption tower 203.
- the purifying gas line 320 has a purifying gas outlet end 321 and three purifying gas inlet ends, and the purifying gas outlet end 321 is connected to the pipeline for conveying the purifying gas, and the three purifying gas inlet ends are respectively connected with the first adsorbing tower 201,
- the two adsorption towers 202 are connected to the purge gas outlet nozzles 106 corresponding to the third adsorption towers 203.
- the raw material gas outlet ends corresponding to the first adsorption tower 201, the second adsorption tower 202, and the third adsorption tower 203 are respectively provided with a valve 220, a valve 230, and a valve 240.
- the inlet ports of the purge gas corresponding to the second adsorption tower 202 and the third adsorption tower 203 of the first adsorption tower 201 are respectively provided with a valve 219, a valve 229 and a valve 239.
- first adsorption tower 201, the second adsorption tower 202, and the third adsorption tower 203 have not only a parallel relationship but also a series relationship, which mainly depends on the opening and closing of the relevant valves. For example, the following is the case of parallel connection.
- the valve 219, the valve 220, the valve 229, the valve 230, the valve 239 and the valve 240 are simultaneously opened, and the other valves are closed, the raw material gas enters the first adsorption tower 201 from the raw material gas line 310.
- the second adsorption tower 202 and the third adsorption tower 203 perform adsorption treatment and are then discharged from the purification gas pipeline 320.
- the first adsorption tower 201, the second adsorption tower 202, and the third adsorption tower 203 are not adsorbed at the same time, and one adsorption tower can be adsorbed, and the other two adsorbed separately. Cold and hot blowing of the agent.
- the regeneration gas heat exchanger 204 can be a shell and tube heat exchanger. In other embodiments of the invention, the regeneration gas heat exchanger 204 can also be an electric heater or the like.
- the regeneration gas pipeline includes a regeneration gas inlet conduit 330, a regeneration gas outlet conduit 340, and a regeneration gas heat exchange conduit.
- the regeneration gas inlet line 330 has a regeneration gas inlet end and a plurality of regeneration gas outlet ends, and the number of regeneration gas outlet ends
- the quantity and the number of adsorption towers are the same and one-to-one correspondence, and the outlet end of the regeneration gas is connected with the purified gas outlet of the corresponding adsorption tower.
- the regeneration gas outlet line has a regeneration gas outlet end and a plurality of regeneration gas inlet ends, the number of regeneration gas inlet ends is the same as the number of adsorption towers, and the regeneration gas inlet end is connected to the raw material gas inlet connection of the corresponding adsorption tower.
- a valve is disposed on the regeneration gas inlet line 330 and at the outlet end of the regeneration gas corresponding to the adsorption tower.
- a valve is disposed at the inlet end of the regeneration gas corresponding to the adsorption tower on the regeneration gas outlet line. Further, the number of valves at the outlet end of the regeneration gas of the regeneration gas inlet line 330 is the same as that of the outlet end of the regeneration gas, and each valve independently controls the opening and closing of the outlet end of the corresponding regeneration gas. Similarly, the number of valves at the inlet end of the regeneration gas corresponding to the adsorption tower and the inlet end of the regeneration gas are the same and one-to-one correspondence, and each valve independently controls the opening and closing of the corresponding regeneration gas inlet end.
- the regeneration gas inlet pipeline 330 has one regeneration gas inlet end 331 and three regeneration gas outlet ends, and three regeneration gas outlet ends are respectively connected to the first adsorption tower 201.
- the second adsorption tower 202 and the purified gas outlet nozzle 106 corresponding to the third adsorption tower 203 are connected.
- the regeneration gas outlet line 340 has a regeneration gas outlet end 341 and three regeneration gas inlet ends, and the three regeneration gas inlet ends respectively correspond to the first adsorption tower 201, the second adsorption tower 202, and the third adsorption tower 203.
- the inlet nozzle 105 is connected.
- a regeneration valve outlet end corresponding to the first adsorption tower 201, the second adsorption tower 202, and the third adsorption tower 203 is provided with a valve 223, a valve 233, and a valve 243.
- the regeneration gas outlet line 340 is provided with a valve 222, a valve 232 and a valve 242 corresponding to the inlet end of the regeneration gas corresponding to the second adsorption tower 202 and the third adsorption tower 203 of the first adsorption tower 201.
- the regeneration gas enters the first adsorption tower 201, the second adsorption tower 202 and the first from the regeneration gas inlet line 330.
- the third adsorption column 203 is then discharged from the regeneration gas outlet line 340.
- the regeneration gas heat exchange line includes a first regeneration gas heat exchange line 350 and a second regeneration gas heat exchange line 360.
- the first regeneration gas heat exchange line 350 has a regeneration gas outlet end and a plurality of regeneration gas inlet ends, and the regeneration gas outlet end is connected to the inlet of the regeneration gas heat exchanger 204, and the regeneration gas inlet end is the same as the adsorption tower.
- the inlet end of the regeneration gas is connected to the feed gas inlet of the corresponding adsorption column.
- the second regeneration gas heat exchange line 360 has a regeneration gas outlet end and a plurality of regeneration gas inlet ends, and the regeneration gas outlet end is connected to the outlet of the regeneration gas heat exchanger 204, and the regeneration gas inlet end is the same as the adsorption tower.
- the inlet end of the regeneration gas is connected to the purified gas outlet of the corresponding adsorption tower.
- the first regeneration gas heat exchange line 350 is provided with a valve corresponding to the inlet end of the regeneration gas corresponding to the adsorption tower.
- the second regeneration gas heat exchange line 360 is provided with a valve corresponding to the regeneration gas outlet end corresponding to the adsorption tower.
- the regeneration gas heat exchange line includes a first regeneration gas heat exchange line 350 and a second regeneration gas heat exchange line 360.
- the first regeneration gas heat exchange line 350 has a regeneration gas outlet end and three regeneration gas inlet ends, and the regeneration gas outlet end exchanges heat with the regeneration gas.
- the inlets of the separators 204 are connected, and the three regeneration gas inlet ends are connected to the raw material gas inlet nozzles 105 corresponding to the first adsorption tower 201, the second adsorption tower 202, and the third adsorption tower 203, respectively.
- the second regeneration gas heat exchange line 360 has a regeneration gas outlet end and three regeneration gas inlet ends, and the regeneration gas outlet end is connected to the outlet of the regeneration gas heat exchanger 204, and the three regeneration gas inlet ends and the first adsorption
- the tower 201, the second adsorption tower 202, and the purge gas outlet connection 106 corresponding to the third adsorption tower 203 are connected.
- the regeneration gas inlet ends corresponding to the first adsorption tower 201, the second adsorption tower 202, and the third adsorption tower 203 are respectively provided with a valve 224, a valve 234, and a valve 244.
- the second regeneration gas heat exchange line 360 is provided with a valve 221, a valve 231 and a valve 241 respectively corresponding to the regeneration gas outlet ends of the first adsorption tower 201, the second adsorption tower 202 and the third adsorption tower 203.
- the regeneration gas When the valve 223, the valve 224, the valve 231 and the valve 232 are opened, and the other valves are closed, the regeneration gas first enters the first adsorption tower 201 for cold blowing, and then the regeneration gas enters the regeneration gas heat exchanger 204 for heating, and then is heated. The regeneration gas enters the second adsorption tower 202 for hot blowing, and finally the regeneration gas is discharged from the regeneration gas outlet line 340.
- the adsorption purification system further includes a heating system for conveying the heat medium to the heat exchange device and a cooling system for conveying the cold medium to the heat exchange device, and the outer heat exchange medium line
- the utility model comprises a heat medium conveying pipe and a cold medium conveying pipe, wherein the heat medium conveying pipe connects the heating system and the heat exchange device, and the cold medium conveying pipe connects the cooling system and the heat exchange device.
- the heat medium delivery pipe includes a first heat medium delivery pipe 370 and a second heat medium delivery pipe 380.
- the first heat medium delivery pipe 370 has a heat medium inlet end and a plurality of heat medium outlet ends.
- the heat medium inlet end is connected to the heating system, and the number of the heat medium outlet ends is the same as the number of the adsorption towers, and the heat medium outlet end is one-to-one.
- Connected to the heat exchange device of the corresponding adsorption tower; the first heat medium delivery pipe 370 and the heat medium outlet end corresponding to the adsorption tower are respectively provided with valves.
- the second heat medium delivery pipe 380 has a heat medium outlet end and a plurality of heat medium inlet ends, and the heat medium outlet end is connected to the heating system.
- the number of the heat medium inlet ends is the same as the number of the adsorption towers, and the heat medium inlet end is one-to-one.
- the second heat medium delivery pipe 380 is provided with a valve respectively at the inlet end of the heat medium corresponding to the adsorption tower.
- the heat medium delivery pipe includes a first heat medium delivery pipe 370 and a second heat medium delivery pipe 380.
- the first heat medium delivery pipe 370 has a heat medium inlet end 371 and three heat medium outlet ends.
- the heat medium inlet end 371 is connected to the heating system, and the three heat medium outlet ends are respectively connected to the first adsorption tower 201 and the second adsorption tower.
- 202 is connected to the heat exchange device corresponding to the third adsorption tower 203.
- the second heat medium delivery pipe 380 has a heat medium outlet end 381 and three heat medium inlets At the mouth end, the heat medium outlet end 381 is connected to the heating system, and the three heat medium inlet ends are respectively connected to the heat exchange devices corresponding to the first adsorption tower 201, the second adsorption tower 202 and the third adsorption tower 203.
- the second heat medium delivery pipe 380 is provided with a valve 218, a valve 228 and a valve 238 respectively at the inlets of the heat medium corresponding to the first adsorption tower 201, the second adsorption tower 202 and the third adsorption tower 203.
- the first heat medium delivery pipe 370 is connected to the lower header tank 115 of the three adsorption towers and the heat exchange jacket, and the second heat medium delivery pipe 380 and the upper liquid of the three adsorption towers are connected.
- the tank 114 and the heat exchange jacket are connected.
- the regeneration gas heat exchanger 204 can be an electric heater or a shell-and-tube heat exchanger.
- the regeneration gas heat exchanger 204 may be connected to the first heat medium delivery pipe 370 and the second heat medium delivery pipe 380, or may be supplied to the regeneration gas through other heating systems.
- the heat exchanger 204 is heated.
- the cold medium delivery tube includes a first cold medium delivery tube 390 and a second cold medium delivery tube 410.
- the first cold medium conveying pipe 390 has a cold medium inlet end and a plurality of cold medium outlet ends, and the cold medium inlet end is connected to the cooling system, and the number of the cold medium outlet ends is the same as the number of the adsorption towers, and the cold medium outlet end is one-to-one. It is connected to the re-cooling device of the corresponding adsorption tower.
- a valve is disposed on the first cold medium conveying pipe 390 and the cold medium outlet end corresponding to the adsorption tower, respectively.
- the second cold medium conveying pipe 410 has a cold medium outlet end and a plurality of cold medium inlet ends, and the cold medium outlet end is connected with the cooling system.
- the number of the cold medium inlet ends is the same as the number of the adsorption towers, and the ones are corresponding to each other. It is connected to the re-cooling device of the corresponding adsorption tower.
- the second cold medium conveying pipe 410 is provided with a valve respectively at the inlet end of the cooling medium corresponding to the adsorption tower.
- the cold medium delivery pipe includes a first cold medium delivery pipe 390 and a second cold medium delivery pipe 410.
- the first cold medium delivery pipe 390 has a cold medium inlet end 391 and three cold medium outlet ends, the cold medium inlet end 391 is connected to the cooling system, and the three cold medium outlet ends are respectively connected to the first adsorption tower 201 and the second adsorption tower.
- 202 is connected to the heat exchange device corresponding to the third adsorption tower 203.
- the first cold medium conveying pipe 390 is provided with a valve 215, a valve 225 and a valve 235 respectively at the outlet end of the cold medium corresponding to the first adsorption tower 201, the second adsorption tower 202 and the third adsorption tower 203.
- the second cold medium delivery pipe 410 has a cold medium outlet end 411 and three cold medium inlet ends, the cold medium outlet end 411 is connected to the cooling system, and the three cold medium inlet ends are respectively connected to the first adsorption tower 201 and the second adsorption tower.
- 202 is connected to the heat exchange device corresponding to the third adsorption tower 203.
- the second cold medium conveying pipe 410 is provided with a valve 216, a valve 226 and a valve 236 respectively at the cold medium inlet end corresponding to the first adsorption tower 201, the second adsorption tower 202 and the third adsorption tower 203.
- the first cold medium delivery pipe 390 is connected to the lower header tank 115 of the three adsorption towers and the heat exchange jacket, and the second cold medium delivery pipe 410 and the upper three liquids of the adsorption tower are connected.
- the tank 114 and the heat exchange jacket are connected.
- the heat medium includes, but is not limited to, hydrogen, natural gas, syngas, Air, nitrogen, steam, purge gas or heat transfer oil, including but not limited to hydrogen, natural gas, syngas, air, nitrogen, water, purge gas or heat transfer oil.
- the heat medium and the cold medium may be the same medium or different, wherein the heat medium and the cold medium are relative concepts, not the temperature limit of the medium, and the specific temperature may be adjusted according to the process conditions.
- the temperature of the cold medium is from 0 to 60 ° C and the temperature of the heat medium is from 120 to 300 ° C. It should be noted that usually the freezing point of water is 0 ° C, so when the cold medium is water, the temperature of the cold medium is preferably higher than 0 ° C.
- the valve in this embodiment preferably adopts a program-controlled valve, and the valve body may be a shut-off valve, a gate valve or a butterfly valve.
- the heating system and the cooling system can be selectively controlled to deliver a heat medium or a cold medium to the adsorption tower. For example, when the adsorbent needs to be heated, the pipeline associated with the heating system is connected to the heat exchange device and the adsorbent is heated. When the adsorbent needs to be cooled, the pipeline and the heat exchange device associated with the cooling system are connected and The adsorbent is cooled.
- the embodiment further provides a purification method according to the above adsorption purification system, comprising an adsorption step and a sorbent regeneration step; the sorbent regeneration step is: hot blowing a hot regeneration gas into the adsorption tower, and heat exchange The heat medium is introduced into the device and the adsorbent in the adsorption tower is simultaneously heated; then the cold regeneration gas is introduced into the adsorption tower for cold blowing, and the cold medium is introduced into the heat exchange device and adsorbed in the adsorption tower. The agent is simultaneously cooled and regenerated.
- the adsorption purification system can be continuously operated. For example, the raw material gas is passed into the adsorption tower from the top of the adsorption tower, and the purified gas is sent out from the bottom of the adsorption tower to the adsorption tower.
- the adsorption tower of the adsorption step is completed, the introduction of the feed gas is stopped, the regeneration is switched, and the feed gas is introduced to another adsorption tower that completes the regeneration of the adsorbent.
- the adsorbent is regenerated, the heat medium enters the heat exchange tube and/or the heat exchange jacket and the temperature inside the adsorption tower is increased, and part of the purified gas after the adsorption is used as the regeneration gas, and after the temperature is raised by the regeneration gas heat exchanger, the adsorption step is reversed.
- the direction in which the raw material gas flows enters the adsorption tower, and the impurities on the surface of the adsorbent and the moisture of the adsorbent are taken out.
- the cold medium enters the adsorption tower to lower the internal temperature, and the adsorption tower that completes the regeneration heating step is cooled, thereby realizing regeneration of the adsorption tower.
- the adsorption step is just performed in the first adsorption column 201, the second adsorption column 202 just completes the hot blowing step and enters the cold blowing step, and the third adsorption column 203 just completes the adsorption step and enters the hot blowing step.
- valve opening and closing conditions associated with the three adsorption towers are: for the first adsorption tower 201, the valve 215, the valve 217, the valve 221, the valve 223, the valve 216, the valve 218, the valve 222, and the valve 224 are all closed.
- the valve 220 and the valve 219 are both in an open state, and the raw material gas enters the first adsorption tower 201 for adsorption purification; for the second adsorption tower 202, the valve 229, the valve 227, the valve 231, the valve 228, the valve 230, and the valve 232 are all closed.
- valve 225, the valve 233, the valve 226 and the valve 234 are all in an open state, and the feed gas into the third adsorption tower 203 is stopped, and the regeneration gas enters the second adsorption tower 202 to cool the adsorbent, and the cooling system is cooled.
- the cold medium flows through the heat exchange device of the second adsorption tower 202 for heat exchange to cool the adsorbent.
- the valve 235, the valve 239, the valve 243, the valve 236, the valve 240, and the valve 244 are all in a closed state, and the valve 241, the valve 242, the valve 237, and the valve 238 are all in an open state, and are stopped to the third.
- the raw material gas is introduced into the adsorption tower 203, and the cold regeneration gas is discharged from the second adsorption tower 202 to the regeneration gas heat exchanger 204 for heating.
- the heated regeneration gas enters the third adsorption tower 203 to heat the adsorbent.
- the heat medium of the heating system flows through the heat exchange device of the third adsorption column 203 and heats the adsorbent.
- the adsorption step is completed in the first adsorption tower 201 and enters the hot blowing step.
- the second adsorption tower 202 completes the cold blowing step and enters the adsorption step.
- the third adsorption tower 203 The hot blow is completed and the cold blow step is entered.
- the three adsorption towers continuously carry out the adsorption step, the hot blowing step and the cold blowing step.
- one adsorption tower is in the adsorption step at any time, and the other two adsorption towers are respectively Perform cold and hot blowing.
- the adsorption tower and the adsorption purification system obtained by the above design can use the heat exchange device and the regeneration gas in combination, which is beneficial to reducing the amount of regeneration gas, and is suitable for industrial use.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Separation Of Gases By Adsorption (AREA)
Abstract
一种吸附塔(100)、吸附净化系统以及净化方法。吸附塔(100)包括吸附塔本体(101)和换热装置,吸附塔(100)设置有原料气入口接管(105)和净化气出口接管(106),换热装置包括多根设置在吸附塔(100)内的换热管(109),换热管(109)之间具有用于填充吸附剂的空隙(110)。吸附净化系统包括至少两个并联的吸附塔(100),部分吸附塔(100)处于吸附状态,部分处于吸附阶段,部分处于吸附剂再生阶段。净化方法包括吸附步骤和吸附剂再生步骤;吸附剂再生步骤中,先采用换热装置和热的再生气一起对吸附剂进行加热,然后采用换热装置和冷的再生气一起对吸附剂进行冷却,可以减少再生气的用量。
Description
相关申请的交叉引用
本申请要求于2016年06月06日提交中国专利局的申请号为CN201610396971.1、名称为“一种吸附塔、吸附净化系统以及净化方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及气体净化技术领域,具体而言,涉及一种吸附塔、吸附净化系统以及净化方法。
目前天然气净化工艺中,常采用吸附剂除去原料气中的CO2和水分等杂质,原料气包括但不限于天然气。在现有净化工艺流程中会涉及到吸附剂再生的步骤:原料气经吸附剂吸附净化后送出界外,然后被水分饱和的吸附剂通过再生步骤,将水从吸附剂上分离出来。吸附剂的再生步骤分为热吹和冷吹:热吹时,再生气通过加热器加热后直接进入吸附塔加热吸附剂,吸附剂受热后,吸附剂内的水蒸发并被再生气带走并送出界外;冷吹时,被冷却的再生气直接进入吸附塔冷却吸附剂,经过热吹和冷吹后的吸附剂可以再次被利用。该工艺的缺点是:再生气消耗大,且再生不彻底。
发明内容
本发明的目的之一在于提供一种吸附塔,该吸附塔可以对设置吸附塔内的吸附剂进行加热或冷却,具有再生气消耗量少、吸附剂再生更彻底等优点。
本发明的另一目的在于提供一种吸附净化系统,该吸附净化系统具有需要更少的再生气、对吸附剂的再生更彻底等优点。
本发明的再一目的在于提供一种基于本发明的吸附净化系统的净化方法,该方法具有需要更少的再生气、对吸附剂的再生更彻底等优点。
为了解决以上技术问题中的至少一个,本发明提供了以下技术方案:
一种吸附塔,包括吸附塔本体和换热装置,吸附塔设置有原料气入口接管和净化气出口接管,换热装置包括多根设置在吸附塔内的换热管,换热管之间具有用于填充吸附剂的空隙。
进一步地,在本发明的可选实施例中,换热管被配置成可选择地与热源或者冷源连通。
进一步地,在本发明的可选实施例中,吸附塔还包括设置在吸附塔本体的外壁的换热夹套。
进一步地,在本发明的可选实施例中,换热夹套被配置成可选择地与热源或者冷源连通。
进一步地,在本发明的可选实施例中,吸附塔本体的内壁设置有保温绝热衬里。
进一步地,在本发明的可选实施例中,吸附塔本体内设置有由吸附剂组成的复合床。
进一步地,在本发明的可选实施例中,吸附剂为选自由分子筛类、硅胶类、氧化铝类和活性炭类吸附剂组成的组中的至少一种。
一种吸附净化系统,包括原料气管路、净化气管路、再生气管路、外换热介质管路、配套的仪控阀门,以及至少两个上述的吸附塔。
进一步地,在本发明的可选实施例中,吸附塔的数量为2~12个。
进一步地,在本发明的可选实施例中,再生气管路包括再生气进口管路和再生气出口管路;
再生气进口管路具有一个再生气入口端以及与吸附塔一一对应连接的多个再生气出口端,每个再生气进口管路的再生气出口端设置有阀门;
再生气出口管路具有一个再生气出口端以及与吸附塔一一对应连接的多个再生气入口端,每个再生气出口管路的再生气入口端设置有阀门。
进一步地,在本发明的可选实施例中,吸附净化系统还包括用于向换热装置输送热介质的加热系统和用于向换热装置输送冷介质的冷却系统,外换热介质管路包括热介质输送管和冷介质输送管,热介质输送管将加热系统和换热装置连通,冷介质输送管将冷却系统和换热装置连通。
进一步地,在本发明的可选实施例中,热介质输送管包括第一热介质输送管和第二热介质输送管;第一热介质输送管具有一个与加热系统连接的热介质入口端以及与吸附塔的换热装置一一对应连接的多个热介质出口端;第一热介质输送管的热介质出口端设置有阀门;第二热介质输送管具有一个与加热系统连接的热介质出口端以及与吸附塔的换热装置一一对应连接的多个热介质入口端,热介质入口端与对应的吸附塔的换热装置连接;第二热介质输送管上,和吸附塔对应的热介质入口端分别设置有阀门;
冷介质输送管包括第一冷介质输送管和第二冷介质输送管;第一冷介质输送管具有一个与冷却系统连接的冷介质入口端以及与吸附塔的换热装置一一对应连接的多个冷介质出口端;第一冷介质输送管的冷介质出口端设置有阀门;第二冷介质输送管具有一个与冷却系统连接的冷介质出口端以及与吸附塔的换热装置一一对应连接的多个冷介质入口端;第二冷介质输送管的冷介质入口端设置有阀门。
进一步地,在本发明的可选实施例中,热介质为原料气、净化气、蒸汽、外来气和导热油中的任一种,冷介质为原料气、净化气、外来气、水和导热油中的任一种。
进一步地,在本发明的可选实施例中,热介质和冷介质的化学成分相同。
进一步地,在本发明的可选实施例中,吸附净化系统还包括加热再生气的再生气换热器和再生气换热管路。
进一步地,在本发明的可选实施例中,再生气换热管路可选择地将任意两个吸附塔连通,再生气换热器被配置成对再生气换热管路内的流动介质进行加热。
进一步地,在本发明的可选实施例中,再生气换热管路包括第一再生气换热管路和第二再生气换热管路;第一再生气换热管路具有一个与再生气换热器的入口连接再生气出口端以及与吸附塔一一对应连接的多个再生气入口端;第一再生气换热管路的再生气入口端设置有阀门;第二再生气换热管路具有一个与再生气换热器的出口连接再生气出口端以及与吸附塔一一对应连接的多个再生气入口端;第二再生气换热管路的再生气出口端设置有阀门。
进一步地,在本发明的可选实施例中,吸附净化系统的再生气为选自由原料气、净化气和外来气组成的组中的至少一种。
原料气是指待净化处理的气体,净化气是指净化后的气体,外来气是指除原料气和净化气外的其他气体。优选地,外来气为氢气、合成气、空气和氮气中任一种。本发明的吸附塔及吸附净化系统可以用于气体的吸附净化处理,尤其适用于气体的脱碳、脱水、脱重烃、脱硫等工艺。原料气包括但不限于天然气。
一种根据上述吸附净化系统的净化方法,包括吸附步骤和吸附剂再生步骤;吸附剂再生步骤为:向吸附塔内通入热的再生气进行热吹,并向换热装置内通入热介质并对吸附塔内的吸附剂同时进行加热;然后向吸附塔内通入冷的再生气进行冷吹,并向换热装置内通入冷介质并对吸附塔内的吸附剂同时进行冷却再生。
本发明的有益效果是:本发明通过上述设计得到的吸附塔,使用时,可以将换热装置和再生气配合使用,有利于减少再生气的用量。本发明通过上述设计得到的吸附净化系统,包括了至少两个由本发明提供的吸附塔,吸附净化系统在使用的过程中,相比于现有技术需要更少的再生气。
为了更清楚地说明本发明实施方式的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是本发明实施方式提供的吸附塔的示意图;
图2是本发明实施方式提供的吸附塔的横截面示意图;
图3是本发明实施方式提供的吸附净化系统的示意图;
图4是图3中去除了原料气管路和净化气管路后的示意图;
图5是图4中去除了再生气相关管路后的示意图;
图6是图4中去除了换热管路后的示意图。
图中标记分别为:
吸附塔100;吸附塔本体101;上封头102;下封头103;人孔104;原料气入口接管105;净化气出口接管106;气体分布器107;气体收集器108;换热管109;空隙110;换
热夹套111;夹套出料口接管112;夹套进料口接管113;上积液箱114;下积液箱115;换热介质入口116;换热介质出口117;钢架118;第一吸附塔201;第二吸附塔202;第三吸附塔203;再生气换热器204;原料气管路310;原料气入口端311;净化气管路320;净化气出口端321;再生气进口管路330;再生气入口端331;再生气出口管路340;再生气出口端341;第一再生气换热管路350;第二再生气换热管路360;第一热介质输送管370;热介质入口端371;第二热介质输送管380;热介质出口端381;第一冷介质输送管390;冷介质入口端391;第二冷介质输送管410;冷介质出口端411;阀门215~244。
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一
特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
如图1所示,本实施例提供的一种吸附塔100主要包括吸附塔本体101和换热装置。其中吸附塔本体101的外形基本呈柱状,吸附塔本体101的上下两端分别设置有上封头102和下封头103,上封头102处设置有人孔104和原料气入口接管105,下封头103处设置有净化气出口接管106。需要说明的是原料气是指待处理的气体,净化气是指经过吸附净化处理后的气体。在本发明的其他实施例中,附塔本体101的外形也可以是柱状意外的其他形状。若净化气不做进一步处理,净化气也可以称为产品气。在本发明的其他实施例中,也可以将原料气入口接管105设置于下封头103处,将净化气出口接管106设置于上封头102处。
吸附塔本体101内设置有与原料气入口接管105连通的气体分布器107,气体分布器107有利于原料气进入吸附塔本体101后沿吸附塔本体101的径向运动,有利于原料气均匀分布于吸附塔本体101内,进而有利于更彻底地对原料气进行净化。作为优选,气体分布器107为中空的柱体,该柱体的一端与原料气入口接管105连接,另一端为封闭结构;气体分布器107的侧壁开有多个分布孔。进一步地,分布孔为直径为16~32mm的圆形孔,分布孔呈正三角形排布。更进一步地,气体分布器107的外侧壁固定有网状结构层,该网状结构层优选为两层不锈钢丝网。
吸附塔本体101内设置有与净化气出口接管106连通的气体收集器108,气体收集器108有助于吸附塔本体101内的净化气排出。
如图1和图2所示,本实施例中换热装置包括多根换热管109,这些换热管109间隔地设置在吸附塔本体101内,相邻换热管109之间具有用于填充吸附剂的空隙110。吸附塔100在使用时,这些空隙110会填充大量的吸附剂形成由吸附剂组成的复合床,这些吸附剂的具体种类可以根据工艺需求选择。在本发明的优选实施例中,吸附剂为选自由分子筛类、硅胶类、氧化铝类和活性炭类吸附剂组成的组中的至少一种。例如,吸附剂可以只选择分子筛类,也可以选择分子筛类和氧化铝类的组合。优选单一种类的吸附剂。请参阅图1,换热管109的长度方向和吸附塔本体101的轴心线平行设置。换热管109的管腔与吸附塔本体101内用于供净化气或者原料气流过的内腔不连通。换句话说,换热管109内的介质与原料气或者净化气是相互隔离的,不会发生直接接触,换热管109采用导热材料(例如金属),进而可
以换热管109内的介质与换热管109外的其他物质(原料气、净化气和吸附剂等)进行热交换。
请参阅图2,换热管109基本间隔均匀地设置在吸附塔本体101内,优点包括有利于换热管109和吸附剂之间能够有效地进行热交换。由于通常吸附剂之间的热交换进行缓慢,优选采用直径较小的换热管109,同时增加换热管109的数量。本实施例中,换热装置还包括换热夹套111,换热夹套111设置于吸附塔本体101的外壁,换热夹套111连接有夹套出料口接管112和夹套进料口接管113,夹套进料口接管113设置于吸附塔本体101的顶部,夹套出料口接管112设置于吸附塔本体101的底部。可以向换热夹套111内连续地通入换热介质,换热介质与吸附塔本体101及其内部的吸附剂等进行热交换。
请再次参阅图1,吸附塔本体101内还设置有上积液箱114和下积液箱115,上积液箱114具有换热介质入口116,下积液箱115具有换热介质出口117。换热介质包括用于加热吸附剂的热介质和用于冷却吸附剂的冷介质。上积液箱114靠近上封头102处,下积液箱115靠近下封头103处,每根换热管109的两端分别延伸至靠近上封头102和下封头103处。每根换热管109的两端分别与上积液箱114和下积液箱115连通。换热介质由上积液箱114输入并分散到各个换热管109,再由下积液箱115汇流收集并输出,当然上积液箱114和下积液箱115的作用功能也可以相互替换。吸附塔本体101内设置有用于固定换热管109、上积液箱114和下积液箱115的钢架118,钢架118与吸附塔本体101连接。进一步地,上积液箱114和下积液箱115具有相似的结构。以上积液箱114为例,上积液箱114包括一个主积液管和多个次积液管,换热介质入口116设置于主积液管,主积液管与各个次积液管连通,多个次积液管沿主积液管的长度方向间隔设置,两相邻积液箱之间的距离为20~500mm。主积液管和次积液管的直径基本相同,进一步地,换热介质入口116连接有进口管,主积液管的直径为进口管的直径的0.6~1.5倍。
需要说明的是本发明的其他实施例中也可以仅设置换热管109或仅设置换热夹套111。仅设置换热管109时,还可以进一步地在吸附塔本体101的内壁设置保温绝热衬里或者在吸附塔本体101的外壁设置保温层,有利于减少吸附塔本体101内的热量损失。
本实施例还提供了一种吸附净化系统主要包括并联的至少两个上述的吸附塔100。进
一步地,在本发明较佳的实施例中,吸附塔100的数量为2~12个,大大增加了装置操作的灵活性。
下面以具有三个吸附塔100的吸附净化系统为例做进一步介绍,参见图3-图6。
一种吸附净化系统包括第一吸附塔201、第二吸附塔202、第三吸附塔203、再生气换热器204、原料气管路310、净化气管路320、再生气管路、外换热介质管路和配套的仪控阀门。
其中,第一吸附塔201、第二吸附塔202和第三吸附塔203并联,具体地,原料气管路310具有一个原料气入口端311和三个原料气出口端,原料气入口端311用于连接输送原料气的管路,三个原料气出口端分别与第一吸附塔201、第二吸附塔202和第三吸附塔203对应的原料气入口接管105连接。净化气管路320具有一个净化气出口端321和三个净化气入口端,净化气出口端321用于与输送净化气的管路连接,三个净化气入口端分别与第一吸附塔201、第二吸附塔202和第三吸附塔203对应的净化气出口接管106连接。原料气管路310上,和第一吸附塔201、第二吸附塔202和第三吸附塔203对应的原料气出口端分别对应设置有阀门220、阀门230和阀门240。净化气管路320上,和第一吸附塔201的、第二吸附塔202和第三吸附塔203对应的净化气入口端分别对应设置有阀门219、阀门229和阀门239。
需要说明的是,第一吸附塔201、第二吸附塔202和第三吸附塔203不仅存在并联关系,也存在串联关系,主要取决于相关阀门的开闭情况。例如下面这种就属于并联的情况,当阀门219、阀门220、阀门229、阀门230、阀门239和阀门240同时打开,且其他阀门关闭时,原料气从原料气管路310进入第一吸附塔201、第二吸附塔202和第三吸附塔203进行吸附处理,然后从净化气管路320排出。为了使吸附净化系统整体上呈现连续吸附的状态,第一吸附塔201、第二吸附塔202和第三吸附塔203不同时进行吸附,可以让其中一个吸附塔进行吸附,另外两个分别进行吸附剂的冷吹和热吹。
再生气换热器204可以为管壳式换热器,在本发明的其他实施例中,再生气换热器204也可以是电加热器等。再生气管路包括再生气进口管路330、再生气出口管路340和再生气换热管路。
再生气进口管路330具有一个再生气入口端和多个再生气出口端,再生气出口端的数
量与吸附塔的数量相同且一一对应,再生气出口端与对应的吸附塔的净化气出口接管连接。再生气出口管路具有一个再生气出口端和多个再生气入口端,再生气入口端的数量与吸附塔的数量相同,再生气入口端与对应的吸附塔的原料气入口接管连接。再生气进口管路330上,和吸附塔对应的再生气出口端设置有阀门。再生气出口管路上,和吸附塔对应的再生气入口端设置有阀门。进一步地,再生气进口管路330的再生气出口端的阀门数量和再生气出口端的数量相同且一一对应,每一个阀门独立地控制相应的再生气出口端开闭。同理,吸附塔对应的再生气入口端的阀门和再生气入口端数量相同且一一对应,而且每一个阀门独立地控制相应的再生气入口端开闭。
参照图3,以3个吸附塔的吸附净化系统为例,再生气进口管路330具有一个再生气入口端331和三个再生气出口端,三个再生气出口端分别与第一吸附塔201、第二吸附塔202和第三吸附塔203对应的净化气出口接管106连接。再生气出口管路340具有一个再生气出口端341和三个再生气入口端,三个再生气入口端分别与第一吸附塔201、第二吸附塔202和第三吸附塔203对应的原料气入口接管105连接。再生气进口管路330上,和第一吸附塔201、第二吸附塔202和第三吸附塔203对应的再生气出口端对应设置有阀门223、阀门233和阀门243。再生气出口管路340上,和第一吸附塔201的、第二吸附塔202和第三吸附塔203对应的再生气入口端对应设置有阀门222、阀门232和阀门242。
当阀门222、阀门223、阀门232、阀门233、阀门242和阀门243同时打开,且其他阀门关闭时,再生气从再生气进口管路330进入第一吸附塔201、第二吸附塔202和第三吸附塔203,然后再生气从再生气出口管路340排出。
再生气换热管路包括第一再生气换热管路350和第二再生气换热管路360。第一再生气换热管路350具有一个再生气出口端和多个再生气入口端,再生气出口端与再生气换热器204的入口连接,再生气入口端与吸附塔的数量相同且一一对应,再生气入口端与对应的吸附塔的原料气入口接管连接。第二再生气换热管路360具有一个再生气出口端和多个再生气入口端,再生气出口端用于与再生气换热器204的出口连接,再生气入口端与吸附塔的数量相同且一一对应,再生气入口端与对应的吸附塔的净化气出口接管连接。第一再生气换热管路350上,和吸附塔对应的再生气入口端分别对应设置有阀门。第二再生气换热管路360上,和吸附塔对应的再生气出口端分别对应设置有阀门。
再生气换热管路包括第一再生气换热管路350和第二再生气换热管路360。第一再生气换热管路350具有一个再生气出口端和三个再生气入口端,再生气出口端与再生气换热
器204的入口连接,三个再生气入口端分别与第一吸附塔201、第二吸附塔202和第三吸附塔203对应的原料气入口接管105连接。第二再生气换热管路360具有一个再生气出口端和三个再生气入口端,再生气出口端用于与再生气换热器204的出口连接,三个再生气入口端与第一吸附塔201、第二吸附塔202和第三吸附塔203对应的净化气出口接管106连接。第一再生气换热管路350上,和第一吸附塔201、第二吸附塔202和第三吸附塔203对应的再生气入口端分别对应设置有阀门224、阀门234和阀门244。第二再生气换热管路360上,和第一吸附塔201的、第二吸附塔202和第三吸附塔203对应的再生气出口端分别对应设置有阀门221、阀门231和阀门241。
当打开阀门223、阀门224、阀门231和阀门232,且关闭其他阀门时,再生气先进入第一吸附塔201进行冷吹,然后再生气进入再生气换热器204进行加热,然后被加热的再生气进入第二吸附塔202进行热吹,最后再生气从再生气出口管路340排出。
进一步地,在本发明较佳的实施例中,吸附净化系统还包括用于向换热装置输送热介质的加热系统和用于向换热装置输送冷介质的冷却系统,外换热介质管路包括热介质输送管和冷介质输送管,热介质输送管将加热系统和换热装置连通,冷介质输送管将冷却系统和换热装置连通。
进一步地,热介质输送管包括第一热介质输送管370和第二热介质输送管380。第一热介质输送管370具有一个热介质入口端和多个热介质出口端,热介质入口端与加热系统连接,热介质出口端的数量与吸附塔的数量相同且一一对应,热介质出口端与对应的吸附塔的换热装置连接;第一热介质输送管370上和吸附塔对应的热介质出口端分别设置有阀门。第二热介质输送管380具有一个热介质出口端和多个热介质入口端,热介质出口端与加热系统连接,热介质入口端的数量与吸附塔的数量相同且一一对应,热介质入口端与对应的吸附塔的换热装置连接。第二热介质输送管380上,和吸附塔对应的热介质入口端分别设置有阀门。
参照图3,以3个吸附塔的吸附净化系统为例,热介质输送管包括第一热介质输送管370和第二热介质输送管380。第一热介质输送管370具有一个热介质入口端371和三个热介质出口端,热介质入口端371与加热系统连接,三个热介质出口端分别与第一吸附塔201、第二吸附塔202和第三吸附塔203对应的换热装置连接。第一热介质输送管370上,和第一吸附塔201、第二吸附塔202和第三吸附塔203对应的热介质出口端分别设置有阀门217、阀门227和阀门237。第二热介质输送管380具有一个热介质出口端381和三个热介质入
口端,热介质出口端381与加热系统连接,三个热介质入口端分别与第一吸附塔201、第二吸附塔202和第三吸附塔203对应的换热装置连接。第二热介质输送管380上,和第一吸附塔201、第二吸附塔202和第三吸附塔203对应的热介质入口端分别设置有阀门218、阀门228和阀门238。具体地,在本实施例中,第一热介质输送管370与三个吸附塔的下积液箱115及换热夹套连接,第二热介质输送管380与三个吸附塔的上积液箱114及换热夹套连接。再生气换热器204可以是电加热器也可以管壳式换热器。再生气换热器204是管壳式换热器时,再生气换热器204可以和第一热介质输送管370和第二热介质输送管380连接,也可以通过其他的加热系统给再生气换热器204加热。
冷介质输送管包括第一冷介质输送管390和第二冷介质输送管410。第一冷介质输送管390具有一个冷介质入口端和多个冷介质出口端,冷介质入口端与冷却系统连接,冷介质出口端的数量与吸附塔的数量相同且一一对应,冷介质出口端与对应的吸附塔的换冷装置连接。第一冷介质输送管390上和吸附塔对应的冷介质出口端分别设置有阀门。第二冷介质输送管410具有一个冷介质出口端和多个冷介质入口端,冷介质出口端与冷却系统连接,冷介质入口端的数量与吸附塔的数量相同且一一对应,冷介质入口端与对应的吸附塔的换冷装置连接。第二冷介质输送管410上,和吸附塔对应的冷介质入口端分别设置有阀门。
参照图3,以3个吸附塔的吸附净化系统为例,冷介质输送管包括第一冷介质输送管390和第二冷介质输送管410。第一冷介质输送管390具有一个冷介质入口端391和三个冷介质出口端,冷介质入口端391与冷却系统连接,三个冷介质出口端分别与第一吸附塔201、第二吸附塔202和第三吸附塔203对应的换热装置连接。第一冷介质输送管390上,和第一吸附塔201、第二吸附塔202和第三吸附塔203对应的冷介质出口端分别设置有阀门215、阀门225和阀门235。第二冷介质输送管410具有一个冷介质出口端411和三个冷介质入口端,冷介质出口端411与冷却系统连接,三个冷介质入口端分别与第一吸附塔201、第二吸附塔202和第三吸附塔203对应的换热装置连接。第二冷介质输送管410上,和第一吸附塔201、第二吸附塔202和第三吸附塔203对应的冷介质入口端分别设置有阀门216、阀门226和阀门236。具体地,在本实施例中,第一冷介质输送管390与三个吸附塔的下积液箱115及换热夹套连接,第二冷介质输送管410与三个吸附塔的上积液箱114及换热夹套连接。
进一步地,在本发明较佳的实施例中,热介质包括但不限于氢气、天然气、合成气、
空气、氮气、蒸汽、净化气或导热油,冷介质包括但不限于氢气、天然气、合成气、空气、氮气、水、净化气或导热油。热介质和冷介质可以采用相同的介质,也可以是不同,其中热介质和冷介质是相对的概念,而不是对介质的温度的限定,具体温度可以根据工艺条件调整。在本发明的优选实施例中,冷介质的温度为0-60℃,热介质的温度为120~300℃。需要说明的是,通常水的凝固点为0℃,所以当冷介质是水时,冷介质的温度最好高于0℃。
本实施例中的阀门优选采用程控阀门,阀体形式可以为截止阀、闸阀或者蝶阀等。此外,加热系统和冷却系统可以通过阀门控制,选择性地向吸附塔输送热介质或者冷介质。例如需要对吸附剂进行加热时,和加热系统相关的管路和换热装置连通并对吸附剂进行加热,当需要对吸附剂进行冷却时,和冷却系统相关的管路和换热装置连通并对吸附剂进行冷却。
本实施例还提供了一种根据上述吸附净化系统的净化方法,包括吸附步骤和吸附剂再生步骤;吸附剂再生步骤为:向吸附塔内通入热的再生气进行热吹,并向换热装置内通入热介质并对吸附塔内的吸附剂同时进行加热;然后向吸附塔内通入冷的再生气进行冷吹,并向换热装置内通入冷介质并对吸附塔内的吸附剂同时进行冷却再生。
进一步地,多个吸附塔中,部分吸附塔同时进行着吸附步骤,部分吸附塔进行着热吹步骤,部分吸附塔进行着冷吹步骤。利用多个吸附塔的配合,可以使得吸附净化系统连续工作。例如:原料气由吸附塔顶部通入吸附塔,净化气从塔底出吸附塔,送往后工序。完成吸附步骤的吸附塔,停止引入原料气,切换到再生状态,原料气引入到另一台完成吸附剂再生的吸附塔。吸附剂再生时,热介质进入换热管和/或换热夹套并使吸附塔内部的温度提高,吸附过后的部分净化气作为再生气,通过再生气换热器升温后,逆着吸附步骤中原料气流动的方向进入吸附塔,吸附剂表面的杂质以及吸附剂的水分被带出。冷却时,冷介质随着换热管进入吸附塔降低内部温度,对完成再生加热步骤的吸附塔进行冷却,从而实现了吸附塔的再生。
下面以图3对应的吸附净化系统的其中一个工作过程为例,对本实施例的方法做进一步说明。
如图3所示,假设吸附时间为4小时,吸附剂再生时间为8小时,其中,热吹时间为4小时,冷吹时间为4小时。
在某一个时刻,第一吸附塔201内刚好进行吸附步骤,第二吸附塔202刚好完成热吹步骤并进入冷吹步骤,第三吸附塔203刚好完成吸附步骤并进入热吹步骤。
此时和三个吸附塔相关的阀门开闭情况为:对于第一吸附塔201,阀门215、阀门217、阀门221、阀门223、阀门216、阀门218、阀门222和阀门224均处于关闭状态,阀门220和阀门219均处于打开状态,原料气进入第一吸附塔201进行吸附净化;对于第二吸附塔202,阀门229、阀门227、阀门231、阀门228、阀门230和阀门232均处于关闭状态,阀门225、阀门233、阀门226和阀门234均处于打开状态,停止了向第三吸附塔203内通入原料气,再生气进入第二吸附塔202内对吸附剂进行降温,同时冷却系统的冷介质流经第二吸附塔202的换热装置内进行热交换对吸附剂进行降温。对于第三吸附塔203,阀门235、阀门239、阀门243、阀门236、阀门240和阀门244均处于关闭状态,阀门241、阀门242、阀门237和阀门238均处于打开状态,停止了向第三吸附塔203内通入原料气,冷的再生气从第二吸附塔202内排到再生气换热器204处进行加热,加热后的再生气进入第三吸附塔203对吸附剂进行热吹,同时加热系统的热介质流经第三吸附塔203的换热装置并对吸附剂进行加热。
4小时后,三个吸附塔的工作状态均发生转变,第一吸附塔201内完成吸附步骤并进入热吹步骤,第二吸附塔202内完成冷吹步骤并进入吸附步骤,第三吸附塔203内完成热吹并进入冷吹步骤。以此类推,三个吸附塔不断地进行吸附步骤、热吹步骤和冷吹步骤,为了使吸附净化系统能够连续工作,任意时刻均有一个吸附塔在进行吸附步骤,其余两个吸附塔分别在进行冷吹和热吹。
工业实用性:本发明通过上述设计得到的吸附塔及吸附净化系统,使用时,可以将换热装置和再生气配合使用,有利于减少再生气的用量,适合在工业上推广使用。
以上所述仅为本发明的优选实施方式而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (19)
- 一种吸附塔,其特征在于,包括吸附塔本体和换热装置,所述吸附塔设置有原料气入口接管和净化气出口接管,所述换热装置包括多根设置在所述吸附塔内的换热管,所述换热管之间具有用于填充吸附剂的空隙。
- 根据权利要求1所述的吸附塔,其特征在于,所述换热管被配置成可选择地与用于向所述换热装置输送热介质的加热系统或者用于向所述换热装置输送冷介质的冷却系统连通。
- 根据权利要求1或2所述的吸附塔,其特征在于,所述吸附塔还包括设置在所述吸附塔本体的外壁的换热夹套。
- 根据权利要求3所述的吸附塔,其特征在于,所述换热夹套被配置成可选择地与用于向所述换热装置输送热介质的加热系统或者用于向所述换热装置输送冷介质的冷却系统连通。
- 根据权利要求1-4任一项所述的吸附塔,其特征在于,所述吸附塔本体的内壁设置有保温绝热衬里。
- 根据权利要求1-5任一项所述的吸附塔,其特征在于,所述吸附塔本体内设置有由吸附剂组成的复合床。
- 根据权利要求6所述的吸附塔,其特征在于,所述吸附剂为选自由分子筛类、硅胶类、氧化铝类和活性炭类吸附剂组成的组中的至少一种。
- 一种吸附净化系统,其特征在于,包括原料气管路、净化气管路、再生气管路、外换热介质管路、配套的仪控阀门,以及至少两个根据权利要求1~7任一项所述的吸附塔。
- 根据权利要求8所述的吸附净化系统,其特征在于,所述吸附塔的数量为2~12个。
- 根据权利要求8或9所述的吸附净化系统,其特征在于,所述再生气管路包括再生气进口管路和再生气出口管路;所述再生气进口管路具有一个再生气入口端以及与所述吸附塔一一对应连接的多个再 生气出口端,每个所述再生气进口管路的所述再生气出口端设置有阀门;所述再生气出口管路具有一个再生气出口端以及与所述吸附塔一一对应连接的多个再生气入口端,每个所述再生气出口管路的所述再生气入口端设置有阀门。
- 根据权利要求8-10任一项所述的吸附净化系统,其特征在于,所述吸附净化系统还包括用于向所述换热装置输送热介质的加热系统和用于向所述换热装置输送冷介质的冷却系统,所述外换热介质管路包括热介质输送管和冷介质输送管,所述热介质输送管将所述加热系统和所述换热装置连通,所述冷介质输送管将所述冷却系统和所述换热装置连通。
- 根据权利要求11所述的吸附净化系统,其特征在于,所述热介质输送管包括第一热介质输送管和第二热介质输送管;所述第一热介质输送管具有一个与所述加热系统连接的热介质入口端以及与所述吸附塔的换热装置一一对应连接的多个热介质出口端;所述第一热介质输送管的所述热介质出口端设置有阀门;所述第二热介质输送管具有一个与所述加热系统连接的热介质出口端以及与所述吸附塔的换热装置一一对应连接的多个热介质入口端;所述第二热介质输送管的所述热介质入口端设置有阀门;所述冷介质输送管包括第一冷介质输送管和第二冷介质输送管;所述第一冷介质输送管具有一个与所述冷却系统连接的冷介质入口端以及与所述吸附塔的换热装置一一对应连接的多个冷介质出口端,所述第一冷介质输送管的所述冷介质出口端设置有阀门;所述第二冷介质输送管具有一个与所述冷却系统连接的冷介质出口端以及与所述吸附塔的换热装置一一对应连接的多个冷介质入口端;所述第二冷介质输送管的所述冷介质入口端设置有阀门。
- 根据权利要求11或12所述的吸附净化系统,其特征在于,所述热介质为原料气、净化气、外来气、蒸汽和导热油中的任一种,所述冷介质为原料气、净化气、外来气、水和导热油组成的组中的任一种。
- 根据权利要求8-13任一项所述的吸附净化系统,其特征在于,热介质和冷介质的化学成分相同。
- 根据权利要求8-14任一项所述的吸附净化系统,其特征在于,所述吸附净化系统还包括加热再生气的再生气换热器和再生气换热管路。
- 根据权利要求8-15任一项所述的吸附净化系统,其特征在于,所述再生气换热管路可选择地将任意两个所述吸附塔连通,所述再生气换热器被配置成对所述再生气换热管路内的流动介质进行加热。
- 根据权利要求8-16任一项所述的吸附净化系统,其特征在于,再生气换热管路包括第一再生气换热管路和第二再生气换热管路;所述第一再生气换热管路具有一个与所述再生气换热器的入口连接的再生气出口端以及与所述吸附塔一一对应连接的多个再生气入口端;所述第一再生气换热管路的再生气入口端设置有阀门;第二再生气换热管路具有一个与所述再生气换热器的出口连接的再生气出口端以及与所述吸附塔一一对应连接的多个再生气入口端;所述第二再生气换热管路的再生气入口端设置有阀门。
- 根据权利要求8-17任一项所述的吸附净化系统,其特征在于,所述吸附净化系统的再生气为选自由原料气、净化气和外来气组成的组中的至少一种。
- 一种根据权利要求6-18任一项所述的吸附净化系统的净化方法,其特征在于,包括吸附步骤和吸附剂再生步骤;所述吸附剂再生步骤为:向所述吸附塔内通入热的再生气进行热吹,并向所述换热装置内通入热介质对所述吸附塔内的吸附剂进行加热;然后向所述吸附塔内通入冷的再生气进行冷吹,并向所述换热装置内通入冷介质对所述吸附塔内的吸附剂进行冷却再生。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610396971.1 | 2016-06-06 | ||
CN201610396971.1A CN105879567B (zh) | 2016-06-06 | 2016-06-06 | 一种吸附塔、吸附净化系统以及净化方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017211264A1 true WO2017211264A1 (zh) | 2017-12-14 |
Family
ID=56711595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/087293 WO2017211264A1 (zh) | 2016-06-06 | 2017-06-06 | 一种吸附塔、吸附净化系统以及净化方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105879567B (zh) |
WO (1) | WO2017211264A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110527571A (zh) * | 2019-09-11 | 2019-12-03 | 张家港富瑞特种装备股份有限公司 | 一种天然气过滤计量脱水脱汞模块 |
CN110711459A (zh) * | 2019-10-28 | 2020-01-21 | 海湾环境科技(北京)股份有限公司 | 油气回收系统 |
CN112827317A (zh) * | 2021-02-09 | 2021-05-25 | 成都华西化工科技股份有限公司 | 一种无净化气损失的变温吸附系统及净化气回收方法 |
CN113019068A (zh) * | 2021-05-24 | 2021-06-25 | 中国恩菲工程技术有限公司 | 制氧吸附塔 |
CN113244738A (zh) * | 2021-05-08 | 2021-08-13 | 洛阳中硅高科技有限公司 | 吸附装置 |
CN114231326A (zh) * | 2021-12-16 | 2022-03-25 | 中国石油天然气股份有限公司 | 一种降低耗能的天然气中轻烃分离系统及工艺 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105879567B (zh) * | 2016-06-06 | 2019-04-12 | 成都赛普瑞兴科技有限公司 | 一种吸附塔、吸附净化系统以及净化方法 |
CN106582202B (zh) * | 2017-01-25 | 2022-07-29 | 天津大学 | 中间补水管束式二氧化碳吸附捕集塔 |
CN107216923A (zh) * | 2017-06-27 | 2017-09-29 | 成都深冷液化设备股份有限公司 | 天然气预处理的复合床层吸附装置 |
CN109207206A (zh) * | 2018-09-10 | 2019-01-15 | 哈尔滨锅炉厂有限责任公司 | 合成气净化装置 |
CN109289438B (zh) * | 2018-11-16 | 2024-04-02 | 中国恩菲工程技术有限公司 | 活性炭吸附器 |
CN115025598A (zh) * | 2022-07-22 | 2022-09-09 | 阳光氢能科技有限公司 | 一种电解水制氢吸附剂再生系统及再生方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201240837Y (zh) * | 2008-07-15 | 2009-05-20 | 中国石化集团南京设计院 | 碳吸附净化氢气装置 |
CN102039083A (zh) * | 2010-08-23 | 2011-05-04 | 杭州普菲科空分设备有限公司 | 无再生气损失等压纯化干燥系统及其工艺流程 |
CN102335541A (zh) * | 2011-08-24 | 2012-02-01 | 中国寰球工程公司 | 吸附塔 |
CN204311038U (zh) * | 2014-09-27 | 2015-05-06 | 杭州聚科空分设备制造有限公司 | 一种节能型天然气脱水装置 |
CN105087094A (zh) * | 2015-08-10 | 2015-11-25 | 新奥气化采煤有限公司 | 天然气净化装置、净化系统、处理系统及吸附剂再生方法 |
CN105879567A (zh) * | 2016-06-06 | 2016-08-24 | 成都赛普瑞兴科技有限公司 | 一种吸附塔、吸附净化系统以及净化方法 |
CN205730777U (zh) * | 2016-06-06 | 2016-11-30 | 成都赛普瑞兴科技有限公司 | 一种吸附塔和吸附净化系统 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101648102B (zh) * | 2009-08-31 | 2012-01-25 | 青岛华世洁环保科技有限公司 | 一种冷热式吸脱附装置及其吸脱附方法 |
CN103463926A (zh) * | 2013-07-04 | 2013-12-25 | 中国科学院理化技术研究所 | 一种具有换热介质通道的分子筛吸附塔 |
-
2016
- 2016-06-06 CN CN201610396971.1A patent/CN105879567B/zh active Active
-
2017
- 2017-06-06 WO PCT/CN2017/087293 patent/WO2017211264A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201240837Y (zh) * | 2008-07-15 | 2009-05-20 | 中国石化集团南京设计院 | 碳吸附净化氢气装置 |
CN102039083A (zh) * | 2010-08-23 | 2011-05-04 | 杭州普菲科空分设备有限公司 | 无再生气损失等压纯化干燥系统及其工艺流程 |
CN102335541A (zh) * | 2011-08-24 | 2012-02-01 | 中国寰球工程公司 | 吸附塔 |
CN204311038U (zh) * | 2014-09-27 | 2015-05-06 | 杭州聚科空分设备制造有限公司 | 一种节能型天然气脱水装置 |
CN105087094A (zh) * | 2015-08-10 | 2015-11-25 | 新奥气化采煤有限公司 | 天然气净化装置、净化系统、处理系统及吸附剂再生方法 |
CN105879567A (zh) * | 2016-06-06 | 2016-08-24 | 成都赛普瑞兴科技有限公司 | 一种吸附塔、吸附净化系统以及净化方法 |
CN205730777U (zh) * | 2016-06-06 | 2016-11-30 | 成都赛普瑞兴科技有限公司 | 一种吸附塔和吸附净化系统 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110527571A (zh) * | 2019-09-11 | 2019-12-03 | 张家港富瑞特种装备股份有限公司 | 一种天然气过滤计量脱水脱汞模块 |
CN110711459A (zh) * | 2019-10-28 | 2020-01-21 | 海湾环境科技(北京)股份有限公司 | 油气回收系统 |
CN112827317A (zh) * | 2021-02-09 | 2021-05-25 | 成都华西化工科技股份有限公司 | 一种无净化气损失的变温吸附系统及净化气回收方法 |
CN112827317B (zh) * | 2021-02-09 | 2024-04-12 | 成都华西化工科技股份有限公司 | 一种无净化气损失的变温吸附系统及净化气回收方法 |
CN113244738A (zh) * | 2021-05-08 | 2021-08-13 | 洛阳中硅高科技有限公司 | 吸附装置 |
CN113244738B (zh) * | 2021-05-08 | 2024-03-19 | 洛阳中硅高科技有限公司 | 吸附装置 |
CN113019068A (zh) * | 2021-05-24 | 2021-06-25 | 中国恩菲工程技术有限公司 | 制氧吸附塔 |
CN114231326A (zh) * | 2021-12-16 | 2022-03-25 | 中国石油天然气股份有限公司 | 一种降低耗能的天然气中轻烃分离系统及工艺 |
Also Published As
Publication number | Publication date |
---|---|
CN105879567B (zh) | 2019-04-12 |
CN105879567A (zh) | 2016-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017211264A1 (zh) | 一种吸附塔、吸附净化系统以及净化方法 | |
CN205730777U (zh) | 一种吸附塔和吸附净化系统 | |
KR101660349B1 (ko) | 열교환기 구조 | |
TWI634936B (zh) | 用於tepsa系統的加熱器配置 | |
CN110585855A (zh) | 移动式废气处理装置 | |
CN204588705U (zh) | 一种氦气低温纯化装置 | |
JP4754358B2 (ja) | ガス精製用の吸着塔および吸着塔内の吸着剤の再生処理方法 | |
CN109289438B (zh) | 活性炭吸附器 | |
CN107228580A (zh) | 一种高效率热交换器 | |
CN106582202B (zh) | 中间补水管束式二氧化碳吸附捕集塔 | |
CN116445196B (zh) | 一种耦合热泵的胺液高效再生的方法及其装置 | |
CN202967188U (zh) | 液体储罐 | |
CN110903872B (zh) | 天然气脱水装置 | |
CN206429866U (zh) | 一种空温式组合型lng气化系统 | |
CN209464829U (zh) | 活性炭吸附器 | |
CN207970657U (zh) | 一种回收低浓度有机废气用加热真空解吸装置 | |
CN113069878A (zh) | 侧向流动的VOCs吸附再生单元、装置及系统 | |
CN102003845B (zh) | 空调器空气热交换器的流体分配器 | |
CN209934403U (zh) | 一种基于VOCs气体处理用的三塔变压吸附装置 | |
CN201386026Y (zh) | 氮气碳载纯化设备 | |
CN209340885U (zh) | 一种天然气输配调压加热装置 | |
CN204824980U (zh) | 一种用液化天然气做钢材淬火和深冷处理的系统 | |
CN204757757U (zh) | 吸附塔换热单元及具有其的吸附塔 | |
CN208711351U (zh) | 一种用于脱除产品中有害气体成分的装置 | |
CN204625182U (zh) | 一种提高分子筛纯化器再生性能的装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17809703 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17809703 Country of ref document: EP Kind code of ref document: A1 |