WO2017211150A1 - 指纹数据入库处理方法及装置 - Google Patents
指纹数据入库处理方法及装置 Download PDFInfo
- Publication number
- WO2017211150A1 WO2017211150A1 PCT/CN2017/083054 CN2017083054W WO2017211150A1 WO 2017211150 A1 WO2017211150 A1 WO 2017211150A1 CN 2017083054 W CN2017083054 W CN 2017083054W WO 2017211150 A1 WO2017211150 A1 WO 2017211150A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fingerprint data
- base station
- fingerprint
- information
- signal strength
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/50—Information retrieval; Database structures therefor; File system structures therefor of still image data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
- H04W64/006—Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
Definitions
- the present invention relates to the field of fingerprint positioning, and in particular, to a fingerprint data storage method and apparatus.
- the multipath propagation of the signal is dependent on the environment and presents a very strong speciality. For each position, the multipath structure of the channel at that location is unique, and the radio waves emitted by the terminal are reflected and refracted, resulting in A specific pattern of multipath signals that are closely related to the surrounding environment. Such a multipath feature can be considered a "fingerprint" of the location. The data characterizing these multipath features is the "fingerprint data" at that location.
- fingerprint positioning has become a common technical means for positioning due to its high positioning accuracy and no need to add additional equipment. It is favored by all walks of life. Fingerprint positioning uses the current positioning information to match the fingerprint data in the fingerprint database, and selects the fingerprint data with the highest similarity as the positioning result.
- the fingerprint data is composed of a set of wireless signal feature data, representing the unique feature information of a certain location. Therefore, it is very important to collect fingerprint data to construct a complete and effective fingerprint database, and the richer the fingerprint database, the more accurate the fingerprint positioning accuracy. High, the fingerprint library also needs to be updated in real time. As the fingerprint database data becomes more and more abundant, the amount of data also increases dramatically. At present, when constructing a fingerprint database, the raw data collected for a certain location is a simple direct storage method. The original data collected is not all valid, so this way of storing the invalid fingerprint data directly into the fingerprint database will not only increase the amount of data in the fingerprint database, but also affect the efficiency of subsequent positioning. And accuracy, such as subsequent positioning, may locate an invalid fingerprint data in the fingerprint library.
- the fingerprint data storage processing method and device provided by the embodiments of the present invention mainly solve the technical problem: solving the existing fingerprint data directly collected into the library, resulting in invalid fingerprint data in the fingerprint database, thereby increasing the data in the fingerprint database. Quantity, the problem that affects the efficiency and accuracy of positioning.
- an embodiment of the present invention provides a fingerprint data storage processing method, including:
- fingerprint data of a target location where the fingerprint data includes primary base station information
- the obtained valid fingerprint data is stored in the fingerprint database.
- the embodiment of the invention further provides a fingerprint data storage processing device, comprising:
- a data acquisition module configured to acquire fingerprint data of a target location, where the fingerprint data includes primary base station information
- a data processing module configured to delete fingerprint data of the fingerprint data that is abnormal in the primary base station to obtain valid fingerprint data
- the storage processing module is configured to store the valid fingerprint data in the fingerprint database.
- the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the foregoing fingerprint data storage processing method.
- the embodiment of the invention further provides a fingerprint data storage processing device, comprising:
- a memory for storing processor executable instructions
- processor is set to:
- fingerprint data of a target location where the fingerprint data includes primary base station information
- the obtained valid fingerprint data is stored in the fingerprint database.
- the embodiment of the present invention further provides a computer readable storage medium for storing a program, wherein when the program is executed, the fingerprint data storage device performs the steps in the foregoing method.
- the fingerprint data storage processing method and device and the computer storage medium provided by the embodiment of the present invention, when the fingerprint data is stored into the database, the fingerprint data of the target location is first acquired, and the acquired fingerprint data includes the information of the primary base station, which is obtained. Before the fingerprint data arrives, the fingerprint data of the main base station information in the fingerprint data is deleted to obtain valid fingerprint data, and then the obtained valid fingerprint data is stored in the fingerprint database.
- the collected fingerprint data is deleted before the fingerprint data is stored in the library, and only the valid fingerprint data is stored in the fingerprint database, the invalid fingerprint data is prevented from being stored in the fingerprint database, and the amount of fingerprint data in the fingerprint database is reduced. At the same time, the positioning efficiency is improved, and the invalid fingerprint data is prevented from being positioned during positioning, thereby improving the positioning accuracy.
- FIG. 1 is a schematic flowchart of processing a fingerprint data into a database according to Embodiment 1 of the present invention
- FIG. 2 is a schematic structural diagram of a fingerprint positioning system according to Embodiment 2 of the present invention.
- FIG. 3 is a schematic structural diagram of a fingerprint data storage processing device according to Embodiment 2 of the present invention.
- FIG. 4 is a schematic diagram of a flow chart for determining whether a positioning drift occurs according to Embodiment 2 of the present invention.
- FIG. 5 is a schematic structural diagram of a storage processing module according to Embodiment 2 of the present invention.
- FIG. 6 is a schematic diagram of a process for processing fingerprint data in a third embodiment of the present invention.
- Embodiment 1 is a diagrammatic representation of Embodiment 1:
- the fingerprint data is collected for each planned location (referred to as the target location in this embodiment), and for each target location, multiple fingerprint data may be collected (that is, multiple original fingerprint data are collected). And processing according to the embodiment of the present invention is processed into a fingerprint database.
- the process of processing the collected fingerprint data into the library is illustrated below. See Figure 1, including:
- S101 Acquire fingerprint data of the target location, where the acquired fingerprint data includes information of the primary base station;
- the fingerprint data of each target location can be obtained through the fingerprint data collection device.
- one fingerprint data can be collected.
- multiple fingerprint data can also be collected for subsequent processing.
- S102 Delete, in the obtained fingerprint data, those fingerprint data whose primary base station information is abnormal, to obtain remaining valid fingerprint data;
- the invalid fingerprint data is deleted first, and the invalid fingerprint data is prevented from being stored in the fingerprint database, thereby increasing the amount of fingerprint data in the fingerprint database and reducing the positioning calculation.
- the primary base station information included in the fingerprint data includes, but is not limited to, an identification code of the primary base station (that is, a primary base station ID) and a signal strength of the primary base station; for each fingerprint data, when at least the following conditions are determined to occur In one case, the primary base station information of the fingerprint data is determined to be abnormal:
- Case 2 The signal strength of the primary base station is less than the preset signal strength value.
- the preset signal strength value in this embodiment may be flexibly set according to an actual application scenario, for example, set to -110 db.
- the fingerprint data When it is determined that the information of the primary base station of a fingerprint data is abnormal, the fingerprint data is directly determined to be invalid. The data is deleted, and the storage of the fingerprint resource is avoided, and unnecessary interference is caused to the subsequent positioning process. It can reduce the amount of data storage and improve the efficiency and accuracy of subsequent positioning.
- the collected fingerprint data further includes positioning information (for example, GPS positioning information), and may further include information of neighboring base stations adjacent to the primary base station, for example, Including but not limited to each neighbor base station identification code (neighbor base station ID) and the signal strength of each neighbor base station.
- the fingerprint data in this embodiment may further include an acquisition time and a speed value.
- the speed value in this embodiment refers to a distance value obtained by dividing the distance information in the collected current fingerprint data from the position information in the fingerprint data collected last time by the acquisition time interval t.
- the following data cleaning and insertion processing may be included:
- the new positioning information is calculated according to a preset interpolation algorithm for filling.
- the positioning information in a piece of valid fingerprint data is normal, and specifically, whether the positioning information is empty, and if so, the positioning information in the piece of fingerprint data is abnormal. It is also possible to determine whether the positioning information is duplicated with the positioning information in the fingerprint data collected last time, and if so, it may be determined that the positioning information is abnormal.
- the positioning information in this embodiment includes, but is not limited to, longitude information and latitude information.
- a positioning drift determination for example, GPS drift determination
- the determination may be made by using, but not limited to, the following manners:
- Determining whether the speed value in the valid fingerprint data is greater than a preset speed threshold, if yes, indicating that the positioning information in the valid fingerprint data may have a large error, clearing the positioning information in the valid fingerprint data, and interpolating according to preset The algorithm calculates new positioning information for filling to restore the real data as much as possible.
- the positioning information in the first N (N is greater than or equal to 1) fingerprint data of the current fingerprint data may be specifically used to estimate, and the real positioning data in the current fingerprint data may be obtained and inserted into In the fingerprint data.
- the positioning correction can be performed to the greatest extent, thereby improving the accuracy of the fingerprint data itself, thereby further ensuring the subsequent positioning accuracy.
- the above process of processing fingerprint data can be regarded as a pre-processing process for fingerprint data.
- the signal strength For the signal strength, the signal strength received in the same position for a continuous period of time is not stable, and the fluctuation range of the signal strength of most base stations is greater than 10 dBm, which is disadvantageous for the improvement of the positioning accuracy.
- the following storage processing procedure may be specifically adopted.
- the optimal signal strength of the primary base station and the optimal signal strength of each neighboring base station are obtained according to a preset algorithm.
- Selecting one of the valid fingerprint data as the best fingerprint data is stored in the fingerprint database according to the optimal signal strength of the primary base station and the optimal signal strength of the neighboring base station. Specifically, a fingerprint data whose primary base station signal strength and neighbor base station signal strength are closest to the optimal signal strength of the optimal primary base station and the optimal signal strength of the neighboring base station may be selected from the valid fingerprint data as the optimal fingerprint data.
- the preset algorithm in this embodiment may specifically adopt a Gaussian filtering algorithm, and the above calculation process can effectively filter out interference and further improve the accuracy.
- the method before the best fingerprint data is stored in the fingerprint database, the method further includes:
- the longitude data and the latitude information in the best fingerprint data are encoded by a geographic hash algorithm (Geohash) encoding to obtain positioning information in a one-dimensional data format. It is also to reduce the two-dimensional latitude and longitude data in the fingerprint data to one-dimensional data, and one-dimensional data can represent a latitude and longitude information, which can further reduce the amount of data and improve the retrieval efficiency.
- Geohash geographic hash algorithm
- Geohash code can represent an area, so the update of the fingerprint database can directly update the area fingerprint data, which can reduce the overhead of maintaining the fingerprint database.
- Geohash can use a string to represent the longitude and latitude coordinates.
- Geohash does not mean a point, but a rectangular area.
- the code wx4g0ec19 which represents a rectangular area. Users can post address codes that indicate that they are located near Beihai Park without exposing their precise coordinates and contributing to privacy protection.
- the encoded prefix can represent a larger area.
- wx4g0ec1 whose prefix wx4g0e represents a larger range including the encoding wx4g0ec1.
- This feature can be used for nearby location searches. First, calculate geohash (for example, wx4g0ec1) according to the user's current coordinates and then take the prefix to query, you can query all nearby places. Therefore, Geohash is much more efficient than direct latitude and longitude.
- Geohash encoding is to convert a latitude and longitude information into a sortable, comparable string encoding.
- the following is a coding process with a latitude of 39.92324 and a longitude of 116.3906. An example description.
- the latitude code is 1011 1000 1100 0111 1001. See Table 1:
- the longitude is also subdivided by (-180, 180) using the same algorithm, and the code of 116.3906 is obtained as 1101 00101100 0100 0100. See Table 2:
- the decoding algorithm is opposite to the encoding algorithm, first performs base32 decoding, then separates the latitude and longitude, and finally subdivides the latitude and longitude range according to the binary encoding, which will not be described here.
- the latitude and longitude information in the fingerprint data can be further processed by the geographic hash coding algorithm to obtain the positioning information in the one-dimensional data format, which can further reduce the data amount and improve the retrieval efficiency.
- the Geohash code can represent an area, so the update of the fingerprint database can directly update the area fingerprint data, which can reduce the overhead of maintaining the fingerprint database.
- Embodiment 2 is a diagrammatic representation of Embodiment 1:
- the present invention includes a collection device 1, a data collection device 2, a fingerprint data storage processing device 3, a fingerprint library 4, and a positioning calculation device 5.
- the collecting device 1 is configured to collect fingerprint data of each target location;
- the data collecting device 2 is configured to collect collected data into files;
- the data storage processing device 3 is configured to acquire target location fingerprint data from the collection device 2 for storage processing, and the fingerprint database 4 is used for storing fingerprint data;
- the positioning calculation device 5 accesses the fingerprint database to query fingerprint data, and obtains position coordinates after calculation.
- the fingerprint data storage processing device 3 can be implemented by using various terminals, a PC, or a server. Referring to FIG. 3, the method includes:
- the data obtaining module 31 is configured to acquire fingerprint data of a target location, where the fingerprint data includes information of the primary base station;
- the data processing module 32 is configured to delete the fingerprint data of the abnormality of the primary base station information in the fingerprint data acquired by the data acquiring module 31 to obtain valid fingerprint data;
- the storage processing module 33 is configured to store the obtained valid fingerprint data into the fingerprint database.
- the functions of the data acquisition module 31, the data processing module 32, and the storage processing module 33 can be implemented by processors or controllers of various terminals, PCs, or servers. It can be seen that the fingerprint data storage processing device 3 of the present embodiment deletes the invalid fingerprint data before storing the collected fingerprint data, thereby preventing invalid fingerprint data from being stored in the fingerprint database, and increasing the fingerprint in the fingerprint database. The amount of data reduces the efficiency and accuracy of positioning during positioning calculations.
- the primary base station information included in the fingerprint data includes, but is not limited to, an identification code of the primary base station (ie, the primary base station ID) and a signal strength of the primary base station; for each fingerprint data, when the data processing module 32 determines the occurrence In at least one of the following cases, the primary base station information of the fingerprint data is determined to be abnormal:
- Case 2 The signal strength of the primary base station is less than the preset signal strength value.
- the preset signal strength value in this embodiment may be flexibly set according to an actual application scenario, for example, set to -110 db.
- the data processing module 32 determines that the information of the primary base station of a fingerprint data is abnormal, the fingerprint data is directly determined to be invalid fingerprint data, and is deleted to avoid storing the storage resource in the fingerprint database, and the subsequent positioning process is not caused. Necessary interference. It can reduce the amount of data storage and improve the efficiency and accuracy of subsequent positioning.
- the collected fingerprint data when the fingerprint data is collected for a certain target location, the collected fingerprint data further includes positioning information (for example, GPS positioning information), and may also include neighbors adjacent to the primary base station.
- the information of the base station includes, for example, but not limited to, each neighbor base station identification code (neighbor base station ID) and the signal strength of each neighbor base station.
- the fingerprint data in this embodiment may further include an acquisition time and a speed value.
- the speed value in this embodiment refers to a distance value obtained by dividing the distance information in the collected current fingerprint data from the position information in the fingerprint data collected last time by the acquisition time interval t.
- the data processing module 32 is further configured to determine whether the positioning information in each valid fingerprint data is abnormal. If the abnormal positioning information is cleared, the new positioning information is calculated according to a preset interpolation algorithm for filling. In this embodiment, the data processing module 32 determines whether the positioning information in a valid fingerprint data is normal, and specifically determines whether the positioning information is empty. If yes, the positioning information in the fingerprint data is abnormal. It is also possible to determine whether the positioning information is duplicated with the positioning information in the fingerprint data collected last time, and if so, it may be determined that the positioning information is abnormal.
- the positioning information in this embodiment includes, but is not limited to, longitude information and latitude information.
- the data processing module 32 is further configured to determine whether the speed value in each valid fingerprint data is greater than a preset speed threshold, and if so, clear the positioning information in the valid fingerprint data whose speed value is greater than the preset speed threshold, and press the preset interpolation algorithm. Calculate new location information for padding.
- the specific processing flow is shown in Figure 4, including:
- S402 determining whether the speed value is less than or equal to the preset speed threshold, if yes, go to S403; otherwise, go to S404;
- the storage processing module 33 is shown in FIG. 5 and includes:
- the calculating sub-module 331 is configured to calculate, according to a signal strength of the primary base station and a signal strength of each neighboring base station, a minimum signal strength of the primary base station and an optimal signal strength of each neighboring base station according to a preset algorithm; Specifically, a Gaussian filter algorithm or the like can be used.
- the storage sub-module 332 is configured to select one of the valid fingerprint data as the best fingerprint data to be stored in the fingerprint database according to the optimal signal strength of the primary base station and the optimal signal strength of the neighboring base station.
- the encoding sub-module 333 is configured to encode the longitude information and the latitude information in the optimal fingerprint data by using a geographic hash algorithm before the storage sub-module 332 stores the optimal fingerprint data into the fingerprint database to obtain a one-dimensional data format. Positioning information. The specific encoding process will not be described here.
- modules or steps of the above embodiments of the present invention can be implemented by a general computing device, which can be concentrated on a single computing device or distributed among multiple computing devices.
- they may be implemented by program code executable by the computing device, such that they may be stored in a computer storage medium (ROM/RAM, disk, optical disk) by a computing device, and at some
- the steps shown or described may be performed in an order different than that herein, or they may be separately fabricated into individual integrated circuit modules, or a plurality of modules or steps may be fabricated into a single integrated circuit module. . Therefore, the invention is not limited to any particular combination of hardware and software.
- Embodiment 3 is a diagrammatic representation of Embodiment 3
- fingerprint data includes time, gps signal (location information), primary base station ID and signal strength, neighbor base station ID and signal strength as an example, and multiple originals are respectively performed for 9 target positions.
- gps signal location information
- primary base station ID and signal strength as an example
- neighbor base station ID and signal strength as an example
- S601 formulate an acquisition plan according to user requirements, and plan a collection location and an acquisition time period;
- S602 Complete the collection task, and generate a fingerprint original file.
- the fingerprint data is deleted, and the cleaning is completed;
- the gps signal is abnormal, the abnormal gps signal is cleared to zero, and the cleaning is completed;
- S606 Select an optimal fingerprint data from the remaining valid fingerprint data by using a Gaussian algorithm
- the odd number is combined into a new binary string
- the fingerprint database in this embodiment may adopt an sql database.
- the coding information of the latitude and longitude of each target position finally obtained is shown in Table 4.
- the fingerprint cell When entering the warehouse, the fingerprint cell is used as a piece of data, and is stored into the sql database one by one. Due to the characteristics of Geohash, The encoded prefix can represent a larger rectangular area. For example, in Figure 7, the character wm7b2t represents a larger rectangular area.
- the fingerprint data is stored, a faster retrieval and warehousing operation can be implemented according to the string prefix. Geohash retrieval is much more efficient than using latitude and longitude directly. The efficiency and accuracy of subsequent positioning calculations can be further improved.
- Each of the above modules may be implemented by one or more digital signal processors (DSPs), application specific integrated circuits (ASICs), processors, microprocessors, controllers, microcontrollers, field programmable arrays (FPGAs). Implemented by a programmable logic device or other electronic unit or any combination thereof. Some of the functions or processes described in this application embodiment may also be implemented by software executing on a processor.
- DSPs digital signal processors
- ASICs application specific integrated circuits
- FPGAs field programmable arrays
- an embodiment of the present invention further provides a fingerprint data storage processing apparatus, including:
- a memory for storing processor executable instructions
- processor is configured to:
- fingerprint data of a target location where the fingerprint data includes primary base station information
- the obtained valid fingerprint data is stored in the fingerprint database.
- the processor can also be configured to further perform the various steps of the above methods.
- the methods and apparatus of the present application are applicable to the field of fingerprint positioning.
- the fingerprint data of the target location is first acquired, and the acquired fingerprint data includes the information of the primary base station.
- the fingerprint of the primary base station information is abnormal in the fingerprint data.
- the data is deleted to obtain valid fingerprint data, and the obtained valid fingerprint data is stored in the fingerprint database.
- the collected fingerprint data is deleted before the fingerprint data is stored in the library, and only the valid fingerprint data is stored in the fingerprint database, the invalid fingerprint data is prevented from being stored in the fingerprint database, and the amount of fingerprint data in the fingerprint database is reduced.
- the positioning efficiency is improved, and the invalid fingerprint data is prevented from being positioned during positioning, thereby improving the positioning accuracy.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Collating Specific Patterns (AREA)
Abstract
一种指纹数据入库处理方法及装置,在进行指纹数据入库时,先获取到目标位置的指纹数据,所获取的指纹数据包括主基站信息(S101),在将获取到的指纹数据入库之前,将这些指纹数据中,主基站信息异常的指纹数据进行删除从而得到有效指纹数据(S102),然后将得到的有效指纹数据存入指纹库(S103)。该方法在指纹数据入库之前会先将采集到的无效的指纹数据删除,仅将有效的指纹数据存入指纹库,避免无效指纹数据存入指纹库,减少指纹库中的指纹数据量,同时提升定位效率,避免定位时定位到无效指纹数据,提升定位准确率。
Description
本发明涉及指纹定位领域,尤其涉及一种指纹数据入库处理方法及装置。
信号的多径传播对环境具有依赖性,呈现出非常强的特殊性,对于每个位置而言,该位置上信道的多径结构是唯一的,终端发射的无线电波经过反射和折射,产生与周围环境密切相关的特定模式的多径信号。这样的多径特征可以认为该位置的“指纹”。而表征这些多径特征的数据则是该位置的“指纹数据”。目前,指纹定位由于其定位精度高,无需增加额外的设备,已经成为定位常用的技术手段,备受各行各业的青睐。指纹定位是用当前定位信息与指纹库中的指纹数据进行匹配,选取相似度最大的指纹数据作为定位结果。
指纹数据是由一组无线信号特征数据组成的,代表某一位置的唯一特征信息,所以采集指纹数据,构建一个完整、有效的指纹库非常重要,而且指纹库有效数据越丰富,指纹定位精度越高,指纹库也需要实时更新。伴随指纹库数据越来越丰富,数据量也急剧增加。目前在构造指纹库时,针对某一位置所采集的原始数据都是采用简单的直接入库的方式。而所采集的原始数据并非所有的都是有效的,因此这种入库方式会将无效的指纹数据也直接存入指纹库,既会增加指纹库中的数据量,又会影响后续定位的效率和准确率,例如后续定位可能会定位到指纹库中的某一无效指纹数据。
发明内容
本发明实施例提供的指纹数据入库处理方法及装置,主要解决的技术问题是:解决现有对采集的指纹数据直接入库导致指纹库中存在无效的指纹数据,进而增加指纹库中的数据量,影响定位的效率和准确率的问题。
为解决上述技术问题,本发明实施例提供一种指纹数据入库处理方法,包括:
获取目标位置的指纹数据,所述指纹数据包括主基站信息;
将所述指纹数据中,主基站信息异常的指纹数据删除得到有效指纹数据;
将得到的有效指纹数据存入指纹库。
本发明实施例还提供一种指纹数据入库处理装置,包括:
数据获取模块,用于获取目标位置的指纹数据,所述指纹数据包括主基站信息;
数据处理模块,用于将所述指纹数据中,主基站信息异常的指纹数据删除得到有效指纹数据;
存储处理模块,用于所述有效指纹数据存入指纹库。
本发明实施例还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行前述的指纹数据入库处理方法。
本发明实施例还提供一种指纹数据入库处理装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被设置为:
获取目标位置的指纹数据,所述指纹数据包括主基站信息;
将所述指纹数据中,主基站信息异常的指纹数据删除得到有效指纹数据;
将得到的有效指纹数据存入指纹库。
本发明实施例还提供一种计算机可读存储介质,用于存储程序,其中所述程序被执行时使得指纹数据入库装置执行前述方法中的步骤。
本发明的有益效果是:
根据本发明实施例提供的指纹数据入库处理方法及装置以及计算机存储介质,在进行指纹数据入库时,先获取到目标位置的指纹数据,所获取的指纹数据包括主基站信息,在将获取到的指纹数据入库之前,将这些指纹数据中,主基站信息异常的指纹数据进行删除从而得到有效指纹数据,然后将得到的有效指纹数据存入指纹库。本发明实施例在指纹数据入库之前会先将采集到的无效的指纹数据删除,仅将有效的指纹数据存入指纹库,避免无效指纹数据存入指纹库,减少指纹库中的指纹数据量,同时提升定位效率,避免定位时定位到无效指纹数据,提升定位准确率。
图1为本发明实施例一的指纹数据进行入库处理流程示意图;
图2为本发明实施例二的指纹定位系统结构示意图;
图3为本发明实施例二的指纹数据入库处理装置结构示意图;
图4为本发明实施例二的指判断是否发生定位漂移流程示意图;
图5为本发明实施例二的存储处理模块结构示意图;
图6为本发明实施例三的指纹数据进行入库处理流程示意图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例只是本发明中一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一:
在构造指纹库时,刻针对各计划的位置(本实施例称为目标位置)进行指纹数据采集,且针对每个目标位置,可以采集多条指纹数据(也即采集多条原始的指纹数据)并根据本发明实施例提供的处理方法进行处理后入指纹库。下面对采集的指纹数据进行处理入库的过程进行示例说明。参见图1所示,包括:
S101:获取目标位置的指纹数据,获取的指纹数据包括主基站信息;
该步骤中具体可以通过指纹数据采集设备获取各目标位置的指纹数据。这对每个目标位置,可以采集一条指纹数据。但为了保证获取到可靠的有效指纹数据,也可以采集多条指纹数据以备后续处理。
S102:将获取的指纹数据中,主基站信息异常的那些指纹数据删除从而得到剩下的有效指纹数据;
S103:将得到的有效指纹数据进行入指纹库处理。
可见,本实施例对于采集到的指纹数据进行入库前,会先将无效的指纹数据进行删除,避免无效的指纹数据存入指纹库,既增加指纹库中的指纹数据量,又降低定位计算时定位的效率和准确率。
本实施例中,指纹数据包含的主基站信息包括但不限于:主基站的识别码(也即主基站ID)和主基站的信号强度;针对每条指纹数据,当判断出现以下情况中的至少一种情况时,判定该指纹数据的主基站信息异常:
情况1:主基站的识别码不存在;
情况2:主基站的信号强度小于预设信号强度值。本实施例中的预设信号强度值可以根据实际应用场景灵活设定,例如设定为-110db。
当判定一条指纹数据的主基站信息异常时,则直接将该指纹数据判定为无效的指
纹数据,将其删除,避免存入指纹库占用存储资源,同时对后续定位过程造成不必要的干扰。既能较少数据存储量,又能提升后续定位的效率和准确率。
在针对某一目标位置进行指纹数据采集时,所采集的指纹数据中还包含定位信息(例如GPS定位信息),除此之外,还可包括与主基站相邻的各邻基站的信息,例如包括但不限于各邻基站识别码(邻基站ID)和各邻基站的信号强度。另外,本实施例中的指纹数据还可包括采集时间以及速度值。可选的,本实施例中的速度值是指采集的当前指纹数据中的位置信息与上一次采集到的指纹数据中位置信息相间隔的距离L除以采集时间间隔t所得到的速度值。
本实施例中,在得到有效指纹数据之后,将得到的有效指纹数据存入指纹库之前,还可包括以下数据清洗和插入处理:
判断各有效指纹数据中的定位信息是否异常,如是,将异常的定位信息清零后,按预设插值算法计算新的定位信息进行填充。
本实施例中,判断一条有效指纹数据中的定位信息是否正常,具体可以判断该定位信息是否为空,如是,则该条指纹数据中的定位信息异常。还可以判断该定位信息与上一次采集的指纹数据中的定位信息是否重复,如是,也可以判定为定位信息异常。本实施例中的定位信息包括但不限于经度信息和纬度信息。
本实施例中,为了进一步保证各条指纹数据中定位信息的准确性,还可进行定位漂移判断(例如GPS漂移判断)。本实施例中,可以采用但不限于以下方式进行判断:
判断有效指纹数据中的速度值是否大于预设速度阈值,如是,表明该有效指纹数据中的定位信息可能存在较大的误差,将该有效指纹数据中的定位信息清零,并按预设插值算法计算新的定位信息进行填充,以尽可能还原真实的数据。
本实施例中,进行差值计算时,具体可以结合当前指纹数据的前N个(N大于等于1)指纹数据中的定位信息进行估算,得到当前指纹数据中可能的真实定位数据,并插入到该指纹数据中。
通过以上数据清洗并通过插值算法得到尽可能真实的数据进行插入,可以在最大程度上进行定位校正,进而提升指纹数据自身的精度,从而进一步保证后续定位精度。
以上对指纹数据的处理过程可以看做时对指纹数据进行的预处理过程。
对信号强度来讲,同一位置连续时间内接收到的信号强度并不是稳定的,并且大部分基站信号强度的波动范围均大于10dBm,这对定位精度的提升是很不利的。然
而,在各种自然以及社会现象中,随机变量大部分都服从或近似服从正太分布。因此,本实施例中在对得到的有效指纹数据进行入库存储时,具体可以采用以下存储处理过程
根据当前各有效指纹数据中主基站的信号强度和各邻基站的信号强度按预设算法进行计算得到主基站的最佳信号强度和各邻基站的最佳信号强度;
根据主基站的最佳信号强度和邻基站的最佳信号强度从所述各有效指纹数据中选择一条作为最佳指纹数据存入所述指纹库。具体可以从各有效指纹数据中选择主基站信号强度和邻基站信号强度与最佳主基站的最佳信号强度和邻基站的最佳信号强度最接近的一条指纹数据作为最佳指纹数据。
本实施例中的预设算法具体可以采用高斯滤波算法,通过以上计算过程可以有效过滤掉干扰,进一步提升精度。
在本实施例中,将最佳指纹数据存入所述指纹库之前,还包括:
通过地理哈希算法(Geohash)编码对最佳指纹数据中的经度信息和纬度信息进行编码处理得到一维数据格式的定位信息。也即将指纹数据中的二维经纬度数据降为一维数据,通过一维数据就能表示一个经纬度信息,可以进一步减少数据量,提高检索效率。
另外,Geohash编码后可表征一个区域,因此更新指纹库时可直接实现区域指纹数据的更新,可减小维护指纹库的开销。为了更好的理解本实施例,下面对Geohash编码进行简单的介绍说明。
Geohash编码有以下几个特点:
首先,Geohash可用一个字符串表示经度和纬度两个坐标。
其次,Geohash表示的并不是一个点,而是一个矩形区域。比如编码wx4g0ec19,它表示的是一个矩形区域。使用者可以发布地址编码,既能表明自己位于北海公园附近,又不至于暴露自己的精确坐标,有助于隐私保护。
另外,编码的前缀可以表示更大的区域。例如wx4g0ec1,它的前缀wx4g0e表示包含编码wx4g0ec1在内的更大范围。这个特性可以用于附近地点搜索。首先根据用户当前坐标计算geohash(例如wx4g0ec1)然后取其前缀进行查询,即可查询附近的所有地点。因此Geohash比直接用经纬度的高效很多。
Geohash编码的最简单的解释就是:将一个经纬度信息,转换成一个可以排序,可以比较的字符串编码。下面以纬度为39.92324,经度为116.3906的编码过程进行
示例说明。
首先将纬度范围(-90,90)平分成两个区间(-90,0)、(0,90),如果目标纬度位于前一个区间,则编码为0,否则编码为1。
由于39.92324属于(0,90),所以取编码为1。
然后再将(0,90)分成(0,45),(45,90)两个区间,而39.92324位于(0,45),所以编码为0。
以此类推,直到精度符合要求为止,得到纬度编码为1011 1000 1100 0111 1001。见表1所示:
表1
经度也用同样的算法,对(-180,180)依次细分,得到116.3906的编码为1101 00101100 0100 0100。见表2所示:
表2
接下来将经度和纬度的编码合并,奇数位是纬度,偶数位是经度,得到编码1110011101 00100 01111 00000 01101 01011 00001。最后,用0-9、b-z(去掉a,i,l,o)这32个字母进行base32编码,得到(39.92324,116.3906)的编码为wx4g0ec1。见表3所示:
表3
十进制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
base32 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | b | c | d | e | f | g |
十进制 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
base32 | h | j | k | m | n | p | q | r | s | t | u | v | w | x | y | z |
解码算法与编码算法相反,先进行base32解码,然后分离出经纬度,最后根据二进制编码对经纬度范围进行细分即可,这里不再赘述。
本实施例将指纹数据入库之前还可进一步通过地理哈希编码算法对指纹数据中的经纬度信息进行编码处理处理得到一维数据格式的定位信息,可以进一步减少数据量,提高检索效率。且Geohash编码后可表征一个区域,因此更新指纹库时可直接实现区域指纹数据的更新,可减小维护指纹库的开销。
实施例二:
本实施例提供了一种指纹定位系统结构框图,参见图2所示,包括采集装置1、数据收集装置2、指纹数据入库处理装置3、指纹库4以及定位计算装置5。采集装置1用于采集各目标位置的指纹数据;数据收集装置2用于整理采集数据为文件;指
纹数据入库处理装置3用于从采集装置2获取目标位置指纹数据进行入库处理,指纹库4则用于存储指纹数据;定位计算装置5访问指纹库查询指纹数据,计算后得到位置坐标。
本实施例中,指纹数据入库处理装置3可以通过各种终端、PC或服务器实现,参见图3所示,包括:
数据获取模块31,用于获取目标位置的指纹数据,指纹数据包括主基站信息;
数据处理模块32,用于将数据获取模块31获取的指纹数据中,主基站信息异常的指纹数据删除得到有效指纹数据;
存储处理模块33,用于将得到的有效指纹数据存入指纹库。
其中,数据获取模块31、数据处理模块32以及存储处理模块33的功能可以由各种终端、PC或服务器的处理器或控制器实现。可见,本实施例指纹数据入库处理装置3对于采集到的指纹数据进行入库前,会先将无效的指纹数据进行删除,避免无效的指纹数据存入指纹库,既增加指纹库中的指纹数据量,又降低定位计算时定位的效率和准确率。
本实施例中,指纹数据包含的主基站信息包括但不限于:主基站的识别码(也即主基站ID)和主基站的信号强度;针对每条指纹数据,当数据处理模块32,判断出现以下情况中的至少一种情况时,判定该指纹数据的主基站信息异常:
情况1:主基站的识别码不存在;
情况2:主基站的信号强度小于预设信号强度值。本实施例中的预设信号强度值可以根据实际应用场景灵活设定,例如设定为-110db。
当数据处理模块32,判定一条指纹数据的主基站信息异常时,则直接将该指纹数据判定为无效的指纹数据,将其删除,避免存入指纹库占用存储资源,同时对后续定位过程造成不必要的干扰。既能较少数据存储量,又能提升后续定位的效率和准确率。
本实施例中,在针对某一目标位置进行指纹数据采集时,所采集的指纹数据中还包含定位信息(例如GPS定位信息),除此之外,还可包括与主基站相邻的各邻基站的信息,例如包括但不限于各邻基站识别码(邻基站ID)和各邻基站的信号强度。另外,本实施例中的指纹数据还可包括采集时间以及速度值。可选的,本实施例中的速度值是指采集的当前指纹数据中的位置信息与上一次采集到的指纹数据中位置信息相间隔的距离L除以采集时间间隔t所得到的速度值。
本实施例中,数据处理模块32还用于判断各有效指纹数据中的定位信息是否异常,如是,将异常的定位信息清零后,按预设插值算法计算新的定位信息进行填充。本实施例中,数据处理模块32判断一条有效指纹数据中的定位信息是否正常,具体可以判断该定位信息是否为空,如是,则该条指纹数据中的定位信息异常。还可以判断该定位信息与上一次采集的指纹数据中的定位信息是否重复,如是,也可以判定为定位信息异常。本实施例中的定位信息包括但不限于经度信息和纬度信息。
数据处理模块32还用于判断各有效指纹数据中的速度值是否大于预设速度阈值,如是,将速度值大于预设速度阈值的有效指纹数据中的定位信息清零,并按预设插值算法计算新的定位信息进行填充。具体处理流程参见图4所示,包括:
S401:提取有效指纹数据中的速度值;
S402:判断该速度值是否小于等于预设速度阈值,如是,转至S403;否则,转至S404;
S403:没有发生漂移,不需要清零;
S404:发生漂移,需要清零。
本实施例中,存储处理模块33参见图5所示,包括:
计算子模块331,用于根据当前各有效指纹数据中主基站的信号强度和各邻基站的信号强度按预设算法进行计算得到主基站的最佳信号强度和各邻基站的最佳信号强度;具体可以采用高斯滤波算法等。
存储子模块332,用于根据,主基站的最佳信号强度和邻基站的最佳信号强度从各有效指纹数据中选择一条作为最佳指纹数据存入所述指纹库。
编码子模块333,用于在存储子模块332将最佳指纹数据存入指纹库之前,采用地理哈希算法编码对最佳指纹数据中的经度信息和纬度信息进行编码处理得到一维数据格式的定位信息。具体的编码过程在此不再赘述。
显然,本领域的技术人员应该明白,上述本发明实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在计算机存储介质(ROM/RAM、磁碟、光盘)中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。所以,本发明不限制于任何特定的硬件和软件结合。
实施例三:
为了更好的理解本发明,下面以采集的指纹数据包括时间、gps信号(定位信息)、主基站ID和信号强度、邻基站ID和信号强度为例,针对9个目标位置分别进行多条原始指纹数据采集后的入库处理过程进行说明。参见图6所示,包括:
S601:根据用户需求制定采集计划,规划采集位置和采集时间段;
S602:完成采集任务,生成指纹原始文件;
S603:针对每个目标位置的指纹数据,完成以下数据清洗:
解析各条指纹数据,保存各个字段数据;
按照预先设置的条件对各个字段值做判断;
对于主基站ID不存在或主基站信号强度异常的,删除该条指纹数据,完成清洗;
对于gps信号异常的,将异常的gps信号清零,完成清洗;
S604:对剩下的每条指纹数据(也即有效指纹数据)进行gps漂移判断:
判断当前指纹数据中的速度值是否大于预设速度阈值,如是,则判定漂移,将该指纹数据中的gps信号清零;否则,转至下一步;
S605:通过分段查值法对上述清零的gps信号进行数据插值处理;
S606:通过高斯算法从剩下的有效指纹数据中选择一条最佳指纹数据;
S607:对最佳指纹数据中的gps信号进行Geohash编码处理:
对经度和经度分别进行二进制编码;
按照偶数位方经度,奇数为放纬度组合为新的二进制串;
对二进制串做BASE32编码;
S608:入库,本实施例中的指纹库可采用sql数据库。其中,最终得到的各个目标位置的经纬度的编码信息参见表4所示。
表4
入库时,以指纹单元格为一条数据,逐条存入sql数据库。由于Geohash的特点,
编码的前缀能够表示一个更大的矩形区域。例如图7中,字符wm7b2t表示一个更大的矩形区域,入库指纹数据时,可以根据字符串前缀实现更快的检索和入库操作。Geohash检索比直接使用经纬度要高效很多。可进一步提升后续定位计算的效率和准确率。
以上内容是结合具体的实施方式对本发明实施例所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
上述装置中的各个模块或单元可以通过一个或多个数字信号处理器(DSP)、专用集成电路(ASIC)、处理器、微处理器、控制器、微控制器、现场可编程阵列(FPGA)、可编程逻辑器件或其他电子单元或其任意组合来实现。在本申请实施例中描述的一些功能或处理也可以通过在处理器上执行的软件来实现。
例如,本发明的实施例还提供了一种指纹数据入库处理装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
获取目标位置的指纹数据,所述指纹数据包括主基站信息;
将所述指纹数据中,主基站信息异常的指纹数据删除得到有效指纹数据;
将得到的有效指纹数据存入指纹库。
该处理器还可以被配置为进一步执行上述方法中的各个步骤。
本申请的方法和装置可应用于指纹定位领域中。在进行指纹数据入库时,先获取到目标位置的指纹数据,所获取的指纹数据包括主基站信息,在将获取到的指纹数据入库之前,将这些指纹数据中,主基站信息异常的指纹数据进行删除从而得到有效指纹数据,然后将得到的有效指纹数据存入指纹库。本发明实施例在指纹数据入库之前会先将采集到的无效的指纹数据删除,仅将有效的指纹数据存入指纹库,避免无效指纹数据存入指纹库,减少指纹库中的指纹数据量,同时提升定位效率,避免定位时定位到无效指纹数据,提升定位准确率。
Claims (13)
- 一种指纹数据入库处理方法,包括:获取目标位置的指纹数据,所述指纹数据包括主基站信息;将所述指纹数据中,主基站信息异常的指纹数据删除得到有效指纹数据;将得到的有效指纹数据存入指纹库。
- 如权利要求1所述的指纹数据入库处理方法,其中,所述指纹数据还包括定位信息;所述将得到的有效指纹数据存入指纹库之前,还包括:判断各有效指纹数据中的定位信息是否异常,如是,将异常的定位信息清零后,按预设插值算法计算新的定位信息进行填充。
- 如权利要求1所述的指纹数据入库处理方法,其中,所述指纹数据还包括速度值;所述将得到的有效指纹数据存入指纹库之前,还包括:判断各有效指纹数据中的速度值是否大于预设速度阈值,如是,将速度值大于预设速度阈值的有效指纹数据中的定位信息清零,并按预设插值算法计算新的定位信息进行填充。
- 如权利要求1-3任一项所述的指纹数据入库处理方法,其中,所述主基站信息包括主基站的识别码和信号强度;所述主基站信息异常包括以下情况中的至少一种:主基站的识别码不存在;主基站的信号强度小于预设信号强度值。
- 如权利要求4所述的指纹数据入库处理方法,其中,所述指纹数据还包括邻基站的信号强度;所述将得到的有效指纹数据存入指纹库包括:根据当前各有效指纹数据中主基站的信号强度和各邻基站的信号强度按预设算法进行计算得到主基站的最佳信号强度和各邻基站的最佳信号强度;根据所述主基站的最佳信号强度和邻基站的最佳信号强度从所述各有效指纹数据中选择一条作为最佳指纹数据存入所述指纹库。
- 如权利要求5所述的指纹数据入库处理方法,其中,所述定位信息包含经度信息和纬度信息;将所述最佳指纹数据存入所述指纹库之前,还包括:通过地理哈希算法编码对所述最佳指纹数据中的经度信息和纬度信息进行编码处理得到一维数据格式的定位信息。
- 一种指纹数据入库处理装置,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被设置为:获取目标位置的指纹数据,所述指纹数据包括主基站信息;将所述指纹数据中,主基站信息异常的指纹数据删除得到有效指纹数据;将得到的有效指纹数据存入指纹库。
- 如权利要求7所述的指纹数据入库处理装置,其中,所述指纹数据还包括定位信息;所述处理器还设置为,将得到的有效指纹数据存入指纹库之前,判断各有效指纹数据中的定位信息是否异常,如是,将异常的定位信息清零后,按预设插值算法计算新的定位信息进行填充。
- 如权利要求7所述的指纹数据入库处理装置,其中,所述指纹数据还包括速度值;所述处理器还设置为,将得到的有效指纹数据存入指纹库之前,判断各有效指纹数据中的速度值是否大于预设速度阈值,如是,将速度值大于预设速度阈值的有效指纹数据中的定位信息清零,并按预设插值算法计算新的定位信息进行填充。
- 如权利要求7-9任一项所述的指纹数据入库处理装置,其中,所述主基站信息包括主基站的识别码和信号强度;所述主基站信息异常包括以下情况中的至少一种:主基站的识别码不存在;主基站的信号强度小于预设信号强度值。
- 如权利要求10所述的指纹数据入库处理装置,其中,所述指纹数据还包括邻基站的信号强度;所述处理器设置为根据当前各有效指纹数据中主基站的信号强度和各邻基站的信号强度按预设算法进行计算得到主基站的最佳信号强度和各邻基站的最佳信号强度;根据所述主基站的最佳信号强度和邻基站的最佳信号强度从所述各有效指纹数据中选择一条作为最佳指纹数据存入所述指纹库。
- 如权利要求11所述所述的指纹数据入库处理装置,其中,所述定位信息包含经度信息和纬度信息;所述处理器还设置为,将所述最佳指纹数据存入所述指纹库之前,采用地理哈希算法编码对所述最佳指纹数据中的经度信息和纬度信息进行编码处理得到一维数 据格式的定位信息。
- 一种计算机可读存储介质,用于存储程序,其中所述程序被执行时使得指纹数据入库装置执行如权利要求1到6中任一方法中的步骤。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610398525.4A CN107463585B (zh) | 2016-06-06 | 2016-06-06 | 指纹数据入库处理方法及装置 |
CN201610398525.4 | 2016-06-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017211150A1 true WO2017211150A1 (zh) | 2017-12-14 |
Family
ID=60544998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/083054 WO2017211150A1 (zh) | 2016-06-06 | 2017-05-04 | 指纹数据入库处理方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107463585B (zh) |
WO (1) | WO2017211150A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109946724A (zh) * | 2019-03-29 | 2019-06-28 | 江苏小牛电动科技有限公司 | 一种基于geohash算法的gps静态漂移修正方法及其装置 |
CN110703192A (zh) * | 2018-07-09 | 2020-01-17 | 中移物联网有限公司 | 一种定位的方法及装置、设备、存储介质 |
CN111193714A (zh) * | 2019-12-06 | 2020-05-22 | 武汉极意网络科技有限公司 | 一种验证码打码平台自动化追踪方法及系统 |
CN113225675A (zh) * | 2021-05-12 | 2021-08-06 | 北京红山信息科技研究院有限公司 | 一种指纹库生成方法、系统、服务器和存储介质 |
CN114157987A (zh) * | 2021-11-22 | 2022-03-08 | 浪潮通信信息系统有限公司 | 一种定位终端用户经纬度坐标的方法及装置 |
CN114423076A (zh) * | 2021-12-27 | 2022-04-29 | 深圳云天励飞技术股份有限公司 | 一种指纹数据生成方法、装置、电子设备及存储介质 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110008671B (zh) * | 2017-12-28 | 2022-04-05 | 腾讯科技(深圳)有限公司 | 数据校验方法及装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103347278A (zh) * | 2013-06-25 | 2013-10-09 | 百度在线网络技术(北京)有限公司 | 无线定位中指纹数据库的更新方法及装置 |
CN105222787A (zh) * | 2015-09-10 | 2016-01-06 | 上海市计量测试技术研究院 | 基于矩阵填充的位置指纹库构建方法 |
CN105338493A (zh) * | 2015-11-23 | 2016-02-17 | 北京百度网讯科技有限公司 | 一种提高定位准确度的方法和装置 |
CN105338619A (zh) * | 2014-08-08 | 2016-02-17 | 中兴通讯股份有限公司 | 定位方法及装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104219760B (zh) * | 2013-05-31 | 2018-02-09 | 中国电信股份有限公司 | 混合定位方法与系统 |
CN105120433B (zh) * | 2015-08-19 | 2018-09-21 | 上海交通大学 | 基于连续采样及模糊聚类处理的wlan室内定位方法 |
-
2016
- 2016-06-06 CN CN201610398525.4A patent/CN107463585B/zh active Active
-
2017
- 2017-05-04 WO PCT/CN2017/083054 patent/WO2017211150A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103347278A (zh) * | 2013-06-25 | 2013-10-09 | 百度在线网络技术(北京)有限公司 | 无线定位中指纹数据库的更新方法及装置 |
CN105338619A (zh) * | 2014-08-08 | 2016-02-17 | 中兴通讯股份有限公司 | 定位方法及装置 |
CN105222787A (zh) * | 2015-09-10 | 2016-01-06 | 上海市计量测试技术研究院 | 基于矩阵填充的位置指纹库构建方法 |
CN105338493A (zh) * | 2015-11-23 | 2016-02-17 | 北京百度网讯科技有限公司 | 一种提高定位准确度的方法和装置 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110703192A (zh) * | 2018-07-09 | 2020-01-17 | 中移物联网有限公司 | 一种定位的方法及装置、设备、存储介质 |
CN110703192B (zh) * | 2018-07-09 | 2023-04-28 | 中移物联网有限公司 | 一种定位的方法及装置、设备、存储介质 |
CN109946724A (zh) * | 2019-03-29 | 2019-06-28 | 江苏小牛电动科技有限公司 | 一种基于geohash算法的gps静态漂移修正方法及其装置 |
CN109946724B (zh) * | 2019-03-29 | 2024-01-16 | 江苏小牛电动科技有限公司 | 一种基于geohash算法的gps静态漂移修正方法及其装置 |
CN111193714A (zh) * | 2019-12-06 | 2020-05-22 | 武汉极意网络科技有限公司 | 一种验证码打码平台自动化追踪方法及系统 |
CN113225675A (zh) * | 2021-05-12 | 2021-08-06 | 北京红山信息科技研究院有限公司 | 一种指纹库生成方法、系统、服务器和存储介质 |
CN114157987A (zh) * | 2021-11-22 | 2022-03-08 | 浪潮通信信息系统有限公司 | 一种定位终端用户经纬度坐标的方法及装置 |
CN114423076A (zh) * | 2021-12-27 | 2022-04-29 | 深圳云天励飞技术股份有限公司 | 一种指纹数据生成方法、装置、电子设备及存储介质 |
CN114423076B (zh) * | 2021-12-27 | 2024-03-22 | 深圳云天励飞技术股份有限公司 | 一种指纹数据生成方法、装置、电子设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN107463585B (zh) | 2022-11-15 |
CN107463585A (zh) | 2017-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017211150A1 (zh) | 指纹数据入库处理方法及装置 | |
CN109992633B (zh) | 基于用户位置的地理围栏确定方法、装置、电子设备 | |
US11151210B2 (en) | Target location search method and apparatus | |
KR102112261B1 (ko) | 클러스터링 기술을 사용하여 무선 네트워크 액세스 포인트 모델 생성 | |
CN104424229A (zh) | 一种多维度拆分的计算方法及系统 | |
CN111090712B (zh) | 一种数据处理方法、装置、设备及计算机存储介质 | |
CN110688442B (zh) | 一种基于多层网格分块的电子地图点位聚合方法 | |
US11314830B2 (en) | Method and apparatus for automatically discovering gas station POI, storage medium and device | |
CN112818216B (zh) | 客户推荐方法、装置、电子设备及存储介质 | |
WO2020119711A1 (zh) | 一种根因定位方法、服务器和存储介质 | |
CN110501733B (zh) | 一种自适应格网vrs生成与服务方法 | |
US20150178594A1 (en) | Point cloud simplification | |
CN111651681B (zh) | 云网融合环境下基于智能信息推荐的消息推送方法及装置 | |
WO2016127880A1 (zh) | 一种确定离线定位数据质量的方法和装置 | |
CN111459723B (zh) | 终端数据处理系统 | |
CN111143639B (zh) | 用户亲密度计算方法、装置、设备及介质 | |
CN110012436B (zh) | 用户位置确定方法、装置、设备及计算机可读存储介质 | |
CN113709006B (zh) | 一种流量确定方法、装置、存储介质及电子装置 | |
CN112866992B (zh) | 一种位置隐私保护方法及系统 | |
CN112887910B (zh) | 异常覆盖区域的确定方法、装置和计算机可读存储介质 | |
CN109710633B (zh) | 中间人信息的确定方法、装置及智能终端 | |
CN110930101A (zh) | 确定订单的配送时间的方法、装置、电子设备和可读介质 | |
CN115905435A (zh) | 一种基于时空聚合中间态的信令数据分析方法及装置 | |
CN106372213A (zh) | 一种位置分析方法 | |
CN116358527A (zh) | 点云数据处理、高程确定方法、设备及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17809589 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17809589 Country of ref document: EP Kind code of ref document: A1 |