WO2017209403A1 - 무선 통신 시스템에서 단말의 초기 접속을 위한 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 단말의 초기 접속을 위한 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2017209403A1
WO2017209403A1 PCT/KR2017/004827 KR2017004827W WO2017209403A1 WO 2017209403 A1 WO2017209403 A1 WO 2017209403A1 KR 2017004827 W KR2017004827 W KR 2017004827W WO 2017209403 A1 WO2017209403 A1 WO 2017209403A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
pbch
symbol
rrm
signal
Prior art date
Application number
PCT/KR2017/004827
Other languages
English (en)
French (fr)
Inventor
이상림
김기준
이호재
신석민
정재훈
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2017209403A1 publication Critical patent/WO2017209403A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method for receiving or transmitting a signal for initial access of a terminal and an apparatus therefor.
  • next-generation communication systems e.g., 5G or New RAT
  • Scenarios under discussion include Enhanced Mobile BroadBand (eMBB), Ultra-reliable Machine-Type Communications (uMTC) and Massive Machine-Type Communications (mMTC).
  • eMBB is a next generation mobile communication scenario having characteristics such as high spectrum efficiency, high user experience data rate, and high peak data rate.
  • uMTC is a next-generation mobile communication scenario with characteristics such as Ultra Reliable, Ultra Low Latency, and Ultra High Availability. For example, V2X, Emergency Service, Remote Remote Control and the like.
  • the mMTC is a next generation mobile communication scenario having characteristics of low cost, low energy and short packet, massive connectivity, and the like, and may include, for example, IoT.
  • the uMTC service has very limited OTA Latency Requirement, high mobility and high reliability (eg, OTA Latency ⁇ 1 ms, Mobility> 500 km / h, BLER ⁇ 10 -6 ).
  • New RAT new radio access technology
  • An object of the present invention is to provide a method and apparatus for performing the initial connection more efficiently and accurately in a wireless communication system.
  • a method for initial access by a terminal comprising: synchronizing to a cell of a base station based on a synchronization signal received through a first subframe; Detecting a physical broadcast channel (PBCH) mapped to a symbol before the synchronization signal in the first subframe based on the synchronization result; And obtaining system information by performing demodulation on the PBCH, wherein the terminal demodulates the PBCH using a wideband reference signal for radio resource measurement (RRM).
  • RRM radio resource measurement
  • the wideband reference signal for the RRM may be provided only on a symbol located within a certain range from the symbol for the PBCH.
  • a terminal for performing initial access in a wireless communication system includes a receiver for receiving a synchronization signal through a first subframe; Synchronize to a cell of a base station based on the synchronization signal, detect a physical broadcast channel (PBCH) mapped to a symbol before the synchronization signal in the first subframe based on the synchronization result, and demodulate the PBCH and a processor configured to obtain system information by performing demodulation, wherein the processor performs demodulation on the PBCH using a wideband reference signal for radio resource measurement (RRM), and performs demodulation on the PBCH.
  • the wideband reference signal may be provided only on symbols located within a certain range from the symbol for the PBCH.
  • a method for transmitting a signal for initial access to a terminal by a base station carrying a synchronization signal and system information for synchronization with the cell of the base station Mapping a physical broadcast channel (PBCH) to symbols of a first subframe; And transmitting the synchronization signal and the PBCH on the first subframe, wherein the base station transmits a wideband reference signal for radio resource measurement (RRM) within a range from a symbol for the PBCH.
  • RRM radio resource measurement
  • a base station for performing the above-described method may be provided.
  • the wideband reference signal for the RRM may be received only in at least one of the first subframe in which the PBCH and the synchronization signal are received and a second subframe located after the first subframe.
  • the terminal may correct a carrier frequency offset by using a wideband reference signal for the RRM received through the second subframe.
  • the first subframe may be a self-contained subframe having both a downlink control region, a data region, a GP (guard period) for transmitting and receiving switching, and an uplink control region.
  • the wideband reference signal for the RRM may be mapped to a symbol of the downlink control region, and a symbol for the PBCH and at least one symbol for the synchronization signal may be located in the data region.
  • the terminal may correct the carrier frequency offset using a cell-specific demodulation reference signal (cell-specific DMRS) received on the symbol for the PBCH.
  • cell-specific DMRS cell-specific demodulation reference signal
  • the sync signal may include a main sync signal PSS and a sub sync signal SSS.
  • the terminal may receive a reference signal for carrier frequency offset correction through a guard tone set at both ends of the sequence of the PSS and the sequence of the SSS.
  • the PSS and the SSS are frequency multiplexed on the same symbol, and the sum of the bandwidth of the frequency multiplexed PSS and the bandwidth of the SSS may coincide with the bandwidth of the PBCH.
  • the wideband RS for RRM is transmitted only on symbols located within a certain range from the PBCH symbol, RS overhead is reduced, and scheduling flexibility is improved because the PBCH and synchronization signals are transmitted on one subframe.
  • the UE demodulates the PBCH using RS for RRM, the UE can more accurately and efficiently initialize even in a wireless communication environment in which there is no always-on reference signal transmitted every subframe. The connection can be made.
  • 1 illustrates a 5G service scenario and performance requirements.
  • FIG. 2 illustrates physical channels used in a 3GPP LTE / LTE-A system and a general signal transmission method using the same.
  • 3 illustrates a structure of a radio frame of the 3GPP LTE / LTE-A system.
  • FIG. 4 shows an FDD scheme and a TDD scheme of a 3GPP LTE / LTE-A system.
  • FIG. 5 illustrates the structure of a self-contained subframe in accordance with an embodiment of the present invention.
  • 6 is an example of one frame configuration for NR according to an embodiment of the present invention.
  • FIG. 7 to 10 illustrate a synchronization signal and xPBCH mapping for NR according to an embodiment of the present invention, respectively.
  • FIG 11 illustrates additional RRM-RS transmission for CFO correction according to an embodiment of the present invention.
  • FIG. 12 illustrates a guard tone of a synchronization signal for CFO correction according to an embodiment of the present invention.
  • FIG. 13 illustrates a DM-RS set on an xPBCH for CFO correction according to an embodiment of the present invention.
  • FIG. 14 is a flowchart illustrating a signal transmission and reception method for initial access according to an embodiment of the present invention.
  • FIG. 15 illustrates a terminal and a base station according to an embodiment of the present invention.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) employs OFDMA in downlink and SC-FDMA in uplink as part of Evolved UMTS (E-UMTS) using E-UTRA.
  • LTE-A Advanced is an evolution of 3GPP LTE.
  • New RAT Before discussing New RAT, let's take a quick look at the 3GPP LTE / LTE-A system.
  • the following description of 3GPP LTE / LTE-A may be referred to to help understand New RAT, and some LTE / LTE-A operations and settings that do not conflict with the design of New RAT may be applied to New RAT.
  • New RAT may be referred to as 5G mobile communication for convenience.
  • FIG. 2 is a diagram for describing physical channels used in a 3GPP LTE / LTE-A system and a general signal transmission method using the same.
  • the terminal which is powered on again or enters a new cell while the power is turned off performs an initial cell search operation such as synchronizing with the base station in step S101.
  • the UE receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station, synchronizes with the base station, and acquires information such as a cell ID. do.
  • the terminal may receive a physical broadcast channel (PBCH) from the base station to obtain broadcast information in a cell.
  • PBCH physical broadcast channel
  • the terminal may check a downlink channel state by receiving a downlink reference signal (DL RS) in an initial cell search step.
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE receives a physical downlink control channel (PDSCH) according to the physical downlink control channel (PDCCH) and the physical downlink control channel information in step S102.
  • PDSCH physical downlink control channel
  • PDCCH physical downlink control channel
  • System information can be obtained.
  • the terminal may perform a random access procedure such as steps S103 to S106 to complete the access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S103), a response message to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel. Can be received (S104).
  • PRACH physical random access channel
  • S105 additional physical random access channel
  • S106 reception of a physical downlink control channel and a corresponding physical downlink shared channel
  • the UE After performing the above-described procedure, the UE performs a physical downlink control channel / physical downlink shared channel reception (S107) and a physical uplink shared channel (PUSCH) / as a general uplink / downlink signal transmission procedure.
  • the physical uplink control channel (PUCCH) transmission (S108) may be performed.
  • the control information transmitted from the terminal to the base station is collectively referred to as uplink control information (UCI).
  • UCI includes Hybrid Automatic Repeat ReQuest Acknowledgment / Negative-ACK (HARQ ACK / NACK), Scheduling Request (SR), Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), Rank Indication (RI), and the like.
  • HARQ ACK / NACK is simply referred to as HARQ-ACK or ACK / NACK (A / N).
  • HARQ-ACK includes at least one of positive ACK (simply ACK), negative ACK (NACK), DTX, and NACK / DTX.
  • UCI is generally transmitted through PUCCH, but may be transmitted through PUSCH when control information and traffic data should be transmitted at the same time. In addition, the UCI may be aperiodically transmitted through the PUSCH by the request / instruction of the network.
  • 3 illustrates a structure of a radio frame in a 3GPP LTE / LTE-A system.
  • uplink / downlink data packet transmission is performed in subframe units, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols.
  • the 3GPP LTE standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • One frame consists of 10 subframes, and the subframe consists of two slots in the time domain.
  • the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms
  • one slot may have a length of 0.5 ms.
  • One slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • RBs resource blocks
  • an OFDM symbol represents one symbol period.
  • An OFDM symbol may also be referred to as an SC-FDMA symbol or symbol period.
  • the RB may include a plurality of consecutive subcarriers in one slot.
  • the number of OFDM symbols included in the slot may vary according to a cyclic prefix (CP) configuration.
  • CP has an extended CP (normal CP) and a normal CP (normal CP).
  • normal CP when an OFDM symbol is configured by a normal CP, the number of OFDM symbols included in one slot may be seven.
  • the OFDM symbol is configured by the extended CP, since the length of one OFDM symbol is increased, the number of OFDM symbols included in one slot is smaller than that of the normal CP.
  • the number of OFDM symbols included in one slot may be six.
  • an extended CP may be used to further reduce intersymbol interference.
  • one subframe When a normal CP is used, since one slot includes 7 OFDM symbols, one subframe includes 14 OFDM symbols. In this case, the first up to three OFDM symbols of each subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH). That is, when a normal CP is used, one RB is defined as 12 subcarriers and 7 OFDM symbols at intervals of 15 kHz.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • the center frequency 6 RB is a primary synchronization signal (PSS) for synchronization, a secondary synchronization signal (SSS), and a physical broadcast channel (PBCH) for transmitting system information.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • FIG. 4 illustrates FDD and TDD in an LTE / LTE-A system.
  • FDD frequency bands of downlink and uplink are divided.
  • TDD time division duplexing
  • subframes need to be newly designed to satisfy the low latency requirements.
  • a self-contained subframe may be referred to simply as a subframe.
  • resource sections eg, a downlink control channel and an uplink control channel
  • downlink control channel e.g., a downlink control channel and an uplink control channel
  • subframes are configured in the order of DL control region-data region-UL control region, but the present invention is not limited thereto.
  • subframes may be configured in the order of a DL control region-UL control region-data region.
  • Self-contained subframes may be divided into DL self-contained subframes and UL self-contained subframes according to the direction of data transmitted in the corresponding subframe.
  • a time gap is required for a base station and a UE to switch from a transmission mode to a reception mode or a process of switching from a reception mode to a transmission mode.
  • at least one OFDM symbol corresponding to a time point of switching from DL to UL in a self-contained subframe structure is set to a guard period (GP).
  • the GP is located at the time of transition from DL to UL. For example, in a DL subframe, the GP is located between the DL data area and the UL control area, and in the UL subframe, the GP is located between the DL control area and the UL data area.
  • NewRAT via 4G mobile communication system (e.g., LTE / LTE-A)
  • LTE Long Term Evolution
  • LTE-A 4G mobile communication system
  • the stand-alone NR described below may operate at 6 GHz below.
  • the initial access may include a process of synchronizing and transmitting a RACH by a terminal acquiring system information.
  • NR synchronization signals e.g., PSS / SSS
  • NR system information e.g., xPBCH
  • NR system information transmitted through an x Physical Broadcasting Channel may be referred to as a master information block (MIB) to be distinguished from system information that is broadcasted by a base station and transmitted (or broadcasted) through a data channel.
  • MIB master information block
  • SIB system information block
  • the MIB and the at least one SIB may be transmitted together through the xPBCH.
  • Short TTI may be considered in order to support ultra-reliable low latency communication (URLLC), which is one use case of NR.
  • URLLC ultra-reliable low latency communication
  • a subframe consisting of 7 symbols may be used instead of 1 subframe of the existing 14 symbols.
  • the normal TTI may consist of 14 symbols and the short TTI may consist of half of the normal TTI.
  • one subframe may be defined as a certain length of time.
  • the duration of one subframe in NR may be fixed to 1 ms.
  • the number of symbols included in one subframe may be determined according to the subcarrier spacing.
  • the subcarrier interval is 15 kHz
  • 14 symbols may be included in one subframe.
  • the subcarrier interval is doubled to 30 kHz
  • the duration of one symbol is reduced by half, so that a total of 28 symbols may be included in one subframe.
  • the subcarrier interval may be 15 kHz * 2 n
  • the number of symbols included in one subframe may be 14 * 2 n .
  • n is an integer such as 0, 1, 2., and the like, and is not necessarily limited to a positive integer. For example, if n is a negative integer ⁇ 1, one subframe may include a total of seven symbols.
  • a cell specific reference signal (CRS) transmitted on a full band of all subframes is not used. This is to reduce the flexibility loss and overhead as the CRS of the existing LTE is allocated to all subframes and the entire band.
  • RSs to replace functions previously performed through the CRS of LTE must be newly designed.
  • One of the functions that the existing LTE has performed through the CRS is RRM (radio resource management) measurement, and the RS used for RRM measurement in NR is called RRM-RS (radio resource management-reference signal).
  • RRM-RS can be transmitted over wideband (WB).
  • the RRM measurement may include at least one of RSRP, RSSI, and RSRQ, and the RRM measurement result / report may be used for cell (re) selection and terminal mobility (e.g., handover, etc.), but is not limited thereto.
  • the WB through which the RRM-RS is transmitted does not necessarily mean the entire system band, but may mean a band in which a corresponding service is provided. Therefore, if several services are provided in the system-wide band, the WB through which the RRM-RS for the service is transmitted may be in the form of subbands that are part of the entire system band.
  • a synchronization signal of NR and xPBCH (e.g., MIB system information).
  • WideBand RRM-RS may be referred to simply as WB RRM-RS or RRM-RS.
  • 6 is an example of one frame configuration for NR. For convenience, it is assumed that one frame has a length of 10 ms and includes a total of 80 subframes.
  • the synchronization signal is located in subframes # 0 and # 40. It is assumed that xPBCH is located only in subframe # 0. However, the position of the synchronization signal and / or xPBCH may be changed according to the setting of the transmission period. It is assumed that the RRM-RS is also located in subframes # 0 and # 40 to which the synchronization signal is mapped. Basically, RRM-RS assumes a 2 port RRM-RS transmitted through two antenna ports.
  • the UE may demodulate control channels (e.g., xPDCCH) and xPBCH of subfame # 0 and # 40 using the RRM-RS.
  • SFBC spatial frequency block coding
  • the UE may perform channel estimation using the DM-RS mapped in the control channel region for demodulation of the control channel. This is because in NR, not only data channels but also control channels can be precoded. Unlike other subframes, in case of a subframe in which WB RRM-RS is transmitted, channel estimation can be performed using WB RRM-RS for demodulating control channels, and thus, there is an advantage in that performance can be enhanced. For example, in the subframe in which the WB RRM-RS is transmitted, the UE does not perform demodulation using only the DM-RS but additionally uses the WB RRM-RS so that demodulation can be performed based on a more accurate channel estimation result. There is an advantage.
  • FIG. 7 illustrates a synchronization signal and xPBCH mapping for NR according to an embodiment of the present invention. For convenience, a self-contained subframe corresponding to a short TTI is shown, but the present invention is not limited thereto.
  • 7 (a) shows two-port RRM-RS transmission
  • FIG. 7 (b) shows one-port RRM-RS transmission.
  • a DL control channel (e.g. xPDCCH) is mapped to the beginning of a self-contained subframe, 4 symbols are allocated for xPBCH, and SSS / PSS is sequentially allocated.
  • xPBCH / SSS / PSS may be located in the center N RB (s) of the NR system band.
  • xPBCH / SSS / PSS may occupy center 6RBs.
  • RRM-RS is mapped to the first symbol.
  • the method of FIG. 7 has the advantage of detecting xPBCH using the RRM-RS in the first symbol. That is, the terminal may utilize RRM-RS for xPBCH demodulation.
  • the terminal since there is not enough space to arrange a symbol for transmitting a guard period (GP) and a UL control channel (eg, assuming 7 symbols per subframe), the corresponding self-contained subframe It becomes a DL only subframe without an opportunity to send a UL control channel (ie, a UL control region). Therefore, DL ACK allocation considering such DL only subframe may be considered in the HARQ process.
  • GP guard period
  • a UL control channel eg, assuming 7 symbols per subframe
  • an ACK for DL data received in a DL subframe is the last of the same DL subframe. It can be transmitted through the UL control region located in.
  • a DL only subframe having no UL control region as shown in FIG. 7 an ACK for DL data received through the DL only subframe cannot be transmitted through the same DL only subframe. Therefore, resources for ACK transmission need to be allocated on another subframe, and resources for ACK transmission can be scheduled through the HARQ process.
  • FIG. 8 to 10 illustrate a synchronization signal and xPBCH mapping for NR according to another embodiment of the present invention.
  • a method of maintaining the GP and UL control regions, which are characteristics of self-contained subframes, is considered differently from FIG. 7. Since the UL control region is maintained even in the subframe to which the synchronization signal and the xPBCH are mapped, the DL ACK transmission scheme in the HARQ process applied to another subframe may be maintained in the corresponding subframe. For example, since it is not necessary to set an exception of the HARQ process for DL ACK transmission related to the subframe to which the synchronization signal and the xPBCH are mapped, the complexity of processing and scheduling can be reduced.
  • the xPBCH is mapped to 2 symbols & 12 RBs rather than to 4 symbols & 6 RBs in the time-frequency domain.
  • the PSS and the SSS may be frequency multiplexed (FDM) and set as one symbol.
  • FIG. 8 (a) shows a two port RRS-RS
  • FIG. 8 (b) shows a one port RRS-RS.
  • the xPBCH can be demodulated through the RRM-RS.
  • the fifth symbol may be used for data transmission.
  • the fourth symbol may be set to GP and the UL control region may be set to 2 symbols.
  • the minimum system bandwidth or the minimum transmission bandwidth of the NR may be set to 12 RBs.
  • the sequence of the PSS and the SSS sequence are each defined as 12 RBs long in the frequency domain, and are set to 1 symbol each in the time domain.
  • the length of the PSS / SSS sequence is increased from 6 RBs to 12 RBs, thereby improving performance gain.
  • the accuracy of the synchronization estimation and the frequency offset correction performance of the terminal can be improved.
  • the multiplexing capacity of the cell ID may be increased.
  • 9 (a) shows two-port RRM-RS transmission
  • FIG. 9 (b) shows one-port RRM-RS transmission.
  • the sequence length of SSS / PSS is maintained at 6 RBs.
  • the sequence of the SSS / PSS may be repeated in the TDM scheme, and the accuracy of the synchronization estimation of the terminal may be improved as the synchronization signal is repeatedly transmitted.
  • 10 (a) shows two-port RRM-RS transmission
  • FIG. 10 (b) shows one-port RRM-RS transmission.
  • FIG. 10 exemplifies two repeated transmissions for convenience
  • the PSS / SSS sequence may be repeatedly transmitted in two or more symbols within one subframe.
  • the positions of symbols repeatedly transmitted in the time domain need not necessarily be consecutive.
  • a sequence of PSS / SSS in one subframe may be repeatedly transmitted every n symbols (n is an integer of 1 or more).
  • the position of the PSS / SSS sequence repeatedly transmitted may be changed in the frequency domain.
  • the PSS / SSS sequence may be repeatedly transmitted based on frequency hopping.
  • the frequency at which the PSS sequence is transmitted and the frequency at which the SSS sequence is transmitted may be alternated or switched with each other or every m repetitions.
  • m may be determined based on a preset or monitored frequency band, or may be a subframe specific value.
  • the sequence of PSS is mapped to lower 6 RBs and the sequence of SSS is mapped to upper 6 RBs
  • the sequence of PSS is mapped to upper 6 RBs and the sequence of SSS is mapped to lower 6 RBs. It may be mapped.
  • 6 RBs to which a sequence of PSS is mapped and 6 RBs to which a sequence of SSS is mapped may be alternated or switched in units of subframes. For example, assuming that a synchronization signal is transmitted in subframe # 0 and subframe # 40, in subframe # 0, the sequence of PSS is mapped to lower 6 RBs and the sequence of SSS is mapped to upper 6 RBs, but In frame # 40, a sequence of PSS may be mapped to upper 6 RBs and a sequence of SSS may be mapped to lower 6 RBs. As such, when the positions of the PSS and the SSS to be FDM are changed, the UE may early detect whether the currently monitored subframe is # 0 or # 40.
  • mapping positions of the PSSs and the SSSs illustrated in FIGS. 7 to 10 are exemplary for convenience of description, and the positions of the PSSs and the SSSs may be switched with each other.
  • RSs are required to correct (or compensate) an initial carrier frequency offset (CFO).
  • CFO carrier frequency offset
  • RS is required for fine CFO correction after coarse CFO correction is performed through PSS / SSS in the initial access process.
  • the following method can be considered.
  • the range of the CFO that the UE can track based on the RRM-RS is + -100 Hz. Can be.
  • more CFOs may occur in the case of an initial access mode or depending on the performance of the device.
  • FIG. 11 illustrates additional RRM-RS transmission for CFO correction according to an embodiment of the present invention.
  • the RRM-RS is transmitted not only in subframe 0 # in which a synchronization signal and xPBCH are transmitted, but in addition, an additional RRM-RS is transmitted in subframe # 1.
  • FIG. 11A illustrates 2-port RRM-RS transmission and
  • FIG. 11B illustrates 1-port RRM-RS transmission.
  • the RRM in this embodiment of additional RRM-RS transmission, the RRM in consecutive TTIs (eg, two consecutive subframes) Since the -RSs are transmitted, the interval between the two RRM-RSs is reduced.
  • a method of transmitting an additional RRM-RS is proposed only in a subframe located immediately after the subframe in which the synchronization signal and the xPBCH are transmitted, not all subframes.
  • a method of transmitting an additional RRM-RS may be considered only in a subframe located immediately before the subframe in which the signal and the xPBCH are transmitted.
  • a method of transmitting an additional RRM-RS may be considered only in a subframe located in a range from a subframe in which a signal and an xPBCH are transmitted.
  • subframes # 0 and # 1 are illustrated for convenience, but additional RRM-RSs may also be transmitted in subframe # 41.
  • the guard tone may be located in at least one of the PSS and the SSS.
  • guard tones may be located at both ends of a sequence of PSS / SSS.
  • the last five subcarriers are zero padding at both ends of the sequence of the PSS / SSS.
  • RS is not transmitted to both ends of the sequence of the PSS / SSS, but the CFO correction may be transmitted.
  • guard tones exist at both ends of the sequence of PSS / SSS to protect the PSS / SSS from the data signal.
  • PSS / SSS is mapped to 6 RBs, and the length of the guard tone at either end corresponds to a 5-subcarrier in the frequency domain.
  • RS for CFO correction may be mapped to 5 subcarriers at both ends of the 6 RBs, that is, a total of 10 REs.
  • guard tone length or the number of REs to which the RS for CFO correction is mapped may be changed.
  • FIG. 12A illustrates two-port RRM-RS transmission and FIG. 12B illustrates one-port RRM-RS transmission.
  • RS for CFO correction is located at a total of four subcarriers (i.e., two subcarriers per one end) at each end of each PSS / SSS sequence.
  • the position and density of the RS for CFO correction should be determined in consideration of the effect on the performance of the PSS / SSS.
  • mapping RS for CFO correction to the guard tone may be applied to the above-described embodiments, for example, FIGS. 7 to 11.
  • RS for CFO correction may be continuously mapped to guard tones at both ends of 12RBs to which PSS / SSS is mapped.
  • the UE may correct the CFO by using a correlation between the RS for the CFO correction and the RRM-RS of the first symbol.
  • FIG. 13 illustrates a DM-RS set on an xPBCH for CFO correction according to an embodiment of the present invention.
  • the DM-RS shown in FIG. 13 has cell-specific attributes, it should be distinguished from the CRS used in the existing LTE system. For example, parameters such as sequence generation, sequence mapping (resource), modulation, precoding, transmission period, and scrambling ID of the DM-RS of FIG. It is determined by the values common to all (ie, cell-specific values). In this sense, since the DM-RS of FIG. 13 is a cell-specific RS in a general sense, it needs to be distinguished from the negotiated CRS defined in the LTE standard. For example, the DM-RS of FIG. 13 is not transmitted in every band of every subframe, but is a cell-specific xPBCH DM-RS transmitted with the xPBCH for demodulation of the xPBCH.
  • FIG. 13A illustrates 2-port RRM-RS transmission
  • FIG. 13B illustrates 1-port RRM-RS transmission
  • cell-specific xPBCH DM-RS is transmitted on 2 ports. For example, even if the RRM-RS is transmitted to one port in FIG. 13 (b), the cell-specific xPBCH DM-RS may be transmitted to two ports.
  • the terminal can demodulate the xPBCH using a cell-specific xPBCH DM-RS of 2 ports.
  • the xPBCH according to an embodiment of the present invention may be transmitted through the same two ports as the cell-specific xPBCH DM-RS.
  • the number of symbols to which the cell-specific xPBCH DM-RS of port # 0 is mapped may be the same as the number of symbols to which the cell-specific xPBCH DM-RS of port # 1 is mapped.
  • the number of symbols to which the cell-specific xPBCH DM-RS of port # 0 is mapped may be set differently from the number of symbols to which the cell-specific xPBCH DM-RS of port # 1 is mapped.
  • the number of symbols to which the cell-specific xPBCH DM-RS of port # 0 is mapped may be larger than the number of symbols to which the cell-specific xPBCH DM-RS of port # 1 is mapped.
  • the cell-specific xPBCH DM-RS of port # 0 may be additionally mapped to the third xPBCH symbol.
  • Increasing the density of the cell-specific xPBCH DM-RS is expected to improve the CFO correction performance and demodulation performance on average, but there is a disadvantage that the overhead of the RS increases.
  • the density of the cell-specific xPBCH DM-RS may be changed depending on the performance requirements.
  • 14 is a flowchart illustrating a signal transmission / reception method for NR initial access according to an embodiment of the present invention. 14 is an example of implementation of the above-described embodiments, and the present invention is not limited thereto. Descriptions overlapping with the above-described embodiments may be omitted.
  • the NR initial access procedure may include a synchronization process (i.e., PSS / SSS signal transmission and reception) and a system information acquisition (i.e., xPBCH) process.
  • a synchronization process i.e., PSS / SSS signal transmission and reception
  • a system information acquisition i.e., xPBCH
  • the DL synchronization process and the UL synchronization process may be performed separately.
  • the DL synchronization process may be performed using PSS / SSS
  • the UL synchronization process may be performed through a random access process.
  • the base station generates a synchronization signal for synchronization, a physical broadcast channel (PBCH) carrying system information, and a wideband RS for RRM, and maps the symbols to symbols of the first subframe (1405).
  • the sync signal may include a main sync signal PSS and a sub sync signal SSS. PSS and SSS may be frequency multiplexed on the same symbol. The sum of the bandwidth of the frequency multiplexed PSS and the bandwidth of the SSS may match the bandwidth of the PBCH.
  • the base station transmits the wideband RS for the synchronization signal, the PBCH, and the RRM on the first subframe (1410).
  • the terminal synchronizes with the cell of the base station based on the synchronization signal received through the first subframe (1415).
  • the UE detects the PBCH mapped to the symbol before the synchronization signal in the first subframe based on the synchronization result, and performs system demodulation and decoding on the PBCH (1420).
  • the UE may read all past signals corresponding to the PBCH from the buffer by buffering all the signals received on the first subframe and determining the PBCH timing after synchronization.
  • the UE may perform synchronization only in the first subframe and detect a PBCH received through a subsequent Nth subframe after synchronization.
  • the terminal may perform demodulation on the PBCH using a wideband reference signal for radio resource measurement (RRM).
  • RRM radio resource measurement
  • the wideband reference signal for the RRM may be provided only on symbols located within a certain range from the symbol for the PBCH.
  • the wideband reference signal for the RRM may be received only in at least one of a PBCH and a first subframe in which a synchronization signal is received, and a second subframe located after the first subframe.
  • the terminal may correct the carrier frequency offset by using the wideband reference signal for the RRM received through the second subframe.
  • the first subframe may be a self-contained subframe having both a downlink control region, a data region, a GP (guard period) for transmitting and receiving switching, and an uplink control region.
  • the wideband reference signal for the RRM is mapped to a symbol of the downlink control region, and at least one symbol for the synchronization signal and the symbol for the PBCH may be located in the data region.
  • the terminal may correct the carrier frequency offset by using a cell-specific demodulation reference signal (cell-specific DMRS) received on a symbol for the PBCH.
  • cell-specific DMRS cell-specific demodulation reference signal
  • the terminal may receive a reference signal for carrier frequency offset correction through guard tones set at both ends of the sequence of the PSS and the sequence of the SSS.
  • 15 is a block diagram showing the configuration of the base station 105 and the terminal 110 in the wireless communication system 100 according to an embodiment of the present invention.
  • the wireless communication system 100 may include one or more base stations and / or one or more terminals. .
  • Base station 105 is a transmit (Tx) data processor 115, symbol modulator 120, transmitter 125, transmit and receive antenna 130, processor 180, memory 185, receiver 190, symbol demodulator ( 195, receive data processor 197.
  • the terminal 110 transmits (Tx) the data processor 165, the symbol modulator 170, the transmitter 175, the transmit / receive antenna 135, the processor 155, the memory 160, the receiver 140, and the symbol. It may include a demodulator 155 and a receive data processor 150.
  • the transmit and receive antennas 130 and 135 are shown as one in the base station 105 and the terminal 110, respectively, the base station 105 and the terminal 110 are provided with a plurality of transmit and receive antennas.
  • the base station 105 and the terminal 110 according to the present invention support a multiple input multiple output (MIMO) system.
  • MIMO multiple input multiple output
  • the base station 105 according to the present invention may support both a single user-MIMO (SU-MIMO) and a multi-user-MIMO (MU-MIMO) scheme.
  • SU-MIMO single user-MIMO
  • MU-MIMO multi-user-MIMO
  • the transmit data processor 115 receives the traffic data, formats the received traffic data, codes it, interleaves and modulates (or symbol maps) the coded traffic data, and modulates the symbols ("data"). Symbols ").
  • the symbol modulator 120 receives and processes these data symbols and pilot symbols to provide a stream of symbols.
  • the symbol modulator 120 multiplexes the data and pilot symbols and sends it to the transmitter 125.
  • each transmission symbol may be a data symbol, a pilot symbol, or a signal value of zero.
  • pilot symbols may be sent continuously.
  • the pilot symbols may be frequency division multiplexed (FDM), orthogonal frequency division multiplexed (OFDM), time division multiplexed (TDM), or code division multiplexed (CDM) symbols.
  • Transmitter 125 receives the stream of symbols and converts it into one or more analog signals, and further adjusts (eg, amplifies, filters, and frequency upconverts) the analog signals to provide a wireless channel. Generates a downlink signal suitable for transmission via the transmission antenna 130, the transmission antenna 130 transmits the generated downlink signal to the terminal.
  • the receiving antenna 135 receives the downlink signal from the base station and provides the received signal to the receiver 140.
  • Receiver 140 adjusts the received signal (eg, filtering, amplifying, and frequency downconverting), and digitizes the adjusted signal to obtain samples.
  • the symbol demodulator 145 demodulates the received pilot symbols and provides them to the processor 155 for channel estimation.
  • the symbol demodulator 145 also receives a frequency response estimate for the downlink from the processor 155 and performs data demodulation on the received data symbols to obtain a data symbol estimate (which is an estimate of the transmitted data symbols). Obtain and provide data symbol estimates to a receive (Rx) data processor 150. Receive data processor 150 demodulates (ie, symbol de-maps), deinterleaves, and decodes the data symbol estimates to recover the transmitted traffic data.
  • the processing by symbol demodulator 145 and receiving data processor 150 is complementary to the processing by symbol modulator 120 and transmitting data processor 115 at base station 105, respectively.
  • the terminal 110 is on the uplink, and the transmit data processor 165 processes the traffic data to provide data symbols.
  • the symbol modulator 170 may receive and multiplex data symbols, perform modulation, and provide a stream of symbols to the transmitter 175.
  • the transmitter 175 receives and processes a stream of symbols to generate an uplink signal.
  • the transmit antenna 135 transmits the generated uplink signal to the base station 105.
  • the transmitter and the receiver in the terminal and the base station may be configured as one radio frequency (RF) unit.
  • RF radio frequency
  • an uplink signal is received from the terminal 110 through the reception antenna 130, and the receiver 190 processes the received uplink signal to obtain samples.
  • the symbol demodulator 195 then processes these samples to provide received pilot symbols and data symbol estimates for the uplink.
  • the received data processor 197 processes the data symbol estimates to recover the traffic data transmitted from the terminal 110.
  • Processors 155 and 180 of the terminal 110 and the base station 105 respectively instruct (eg, control, coordinate, manage, etc.) operations at the terminal 110 and the base station 105, respectively.
  • Respective processors 155 and 180 may be connected to memory units 160 and 185 that store program codes and data.
  • the memory 160, 185 is coupled to the processor 180 to store the operating system, applications, and general files.
  • the processors 155 and 180 may also be referred to as controllers, microcontrollers, microprocessors, microcomputers, or the like.
  • the processors 155 and 180 may be implemented by hardware or firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • the firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and to perform the present invention.
  • the firmware or software configured to be may be provided in the processors 155 and 180 or stored in the memory 160 and 185 to be driven by the processors 155 and 180.
  • the layers of the air interface protocol between the terminal and the base station between the wireless communication system (network) are based on the lower three layers of the open system interconnection (OSI) model, which is well known in the communication system. ), And the third layer L3.
  • the physical layer belongs to the first layer and provides an information transmission service through a physical channel.
  • a Radio Resource Control (RRC) layer belongs to the third layer and provides control radio resources between the UE and the network.
  • the terminal and the base station may exchange RRC messages through the wireless communication network and the RRC layer.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • the present invention can be applied to various wireless communication systems.

Abstract

본 발명의 일 실시예에 따른 무선 통신 시스템에서 단말이 초기 접속을 수행하는 방법은, 제1 서브프레임을 통해 수신된 동기 신호에 기반하여 기지국의 셀에 동기화하는 단계; 상기 동기화 결과에 기반하여, 상기 제1 서브프레임 내에서 상기 동기 신호 이전의 심볼에 맵핑되는 물리 방송 채널(PBCH)을 검출하는 단계; 및 상기 PBCH에 대한 복조(demodulation)를 수행하여 시스템 정보를 획득하는 단계를 포함하되, 상기 단말은, 무선 자원 측정(RRM)을 위한 광대역(wideband) 참조 신호를 이용하여 상기 PBCH에 대한 복조를 수행하고, 상기 RRM을 위한 광대역 참조 신호는, 상기 PBCH를 위한 심볼로부터 일정 범위 이내에 위치한 심볼 상에서만 제공된다.

Description

무선 통신 시스템에서 단말의 초기 접속을 위한 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 구체적으로 단말의 초기 접속을 위하여 신호를 수신 또는 송신하기 위한 방법 및 이를 위한 장치에 관한 것이다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 최근 차세대 통신 시스템(e.g., 5G 또는 New RAT)의 시나리오들이 논의되고 있다. 논의 중인 시나리오들은 eMBB(Enhanced Mobile BroadBand), uMTC(Ultra-reliable Machine-Type Communications) 및 mMTC(Massive Machine-Type Communications)를 포함한다. eMBB는 높은 스펙트럼 효율성(High Spectrum Efficiency), 높은 사용자 경험 데이터 전송률(High User Experienced Data Rate), 높은 피크 데이터 전송률(High Peak Data Rate) 등의 특성을 갖는 차세대 이동 통신 시나리오이다. uMTC는 매우 높은 신뢰성(Ultra Reliable), 매우 낮은 지연(Ultra Low Latency) 및 매우 높은 사용성(Ultra High Availability) 등의 특성을 갖는 차세대 이동통신 시나리오로서, 예컨대, V2X, 긴급 서비스(Emergency Service), 원격 제어(Remote Control) 등을 포함한다. mMTC는 저 비용(Low Cost), 저 전력(Low Energy) 및 작은 패킷(Short Packet), 대규모 연결(Massive Connectivity) 등의 특성을 갖는 차세대 이동통신 시나리오로서, 예컨대 IoT를 포함 할 수 있다.
도 1은 5G를 위한 IMT 2020에서 제시된 핵심 성능 요구 사항과 서비스 시나리오 별 5G 성능 요구사항과의 연관성을 나타낸다. 특히, uMTC 서비스는 OTA 지연 요구 사항 (Over The Air Latency Requirement)이 매우 제한적이고, 높은 이동성과 높은 신뢰성이 요구된다 (e.g., OTA Latency < 1ms, Mobility > 500km/h, BLER < 10-6).
이와 같이 eMBB, mMTC 및 URLCC 등을 고려한 새로운 무선 접속 기술(New RAT)이 차세대 무선 통신을 위하여 논의되고 있다.
본 발명이 이루고자 하는 기술적 과제는, 무선 통신 시스템에서 보다 효율적이고 정확하게 초기 접속을 수행하기 위한 방법 및 이를 위한 장치를 제공하는데 있다.
본 발명의 기술적 과제는 상술된 기술적 과제에 제한되지 않으며, 다른 기술적 과제들이 본 발명의 실시예로부터 유추될 수 있다.
상술된 기술적 과제를 이루기 위한 본 발명의 일 측면에 따른 무선 통신 시스템에서 단말이 초기 접속을 수행하는 방법은, 제1 서브프레임을 통해 수신된 동기 신호에 기반하여 기지국의 셀에 동기화하는 단계; 상기 동기화 결과에 기반하여, 상기 제1 서브프레임 내에서 상기 동기 신호 이전의 심볼에 맵핑되는 물리 방송 채널(PBCH)을 검출하는 단계; 및 상기 PBCH에 대한 복조(demodulation)를 수행하여 시스템 정보를 획득하는 단계를 포함하되, 상기 단말은, 무선 자원 측정(RRM)을 위한 광대역(wideband) 참조 신호를 이용하여 상기 PBCH에 대한 복조를 수행하고, 상기 RRM을 위한 광대역 참조 신호는, 상기 PBCH를 위한 심볼로부터 일정 범위 이내에 위치한 심볼 상에서만 제공될 수 있다.
상술된 기술적 과제를 이루기 위한 본 발명의 다른 일 측면에 따른 무선 통신 시스템에서 초기 접속을 수행하는 단말은, 제1 서브프레임을 통해 동기 신호를 수신하는 수신기; 상기 동기 신호에 기반하여 기지국의 셀에 동기화하고, 상기 동기화 결과에 기반하여 상기 제1 서브프레임 내에서 상기 동기 신호 이전의 심볼에 맵핑되는 물리 방송 채널(PBCH)을 검출하고, 상기 PBCH에 대한 복조(demodulation)를 수행하여 시스템 정보를 획득하는 프로세서를 포함하되, 상기 프로세서는, 무선 자원 측정(RRM)을 위한 광대역(wideband) 참조 신호를 이용하여 상기 PBCH에 대한 복조를 수행하고, 상기 RRM을 위한 광대역 참조 신호는, 상기 PBCH를 위한 심볼로부터 일정 범위 이내에 위치한 심볼 상에서만 제공될 수 있다.
상술된 기술적 과제를 이루기 위한 본 발명의 또 다른 일 측면에 따른 무선 통신 시스템에서 기지국이 초기 접속을 위한 신호를 단말에 송신하는 방법은, 상기 기지국의 셀과 동기화를 위한 동기 신호 및 시스템 정보를 나르는 물리 방송 채널(PBCH)을 제1 서브프레임의 심볼들에 맵핑하는 단계; 및 상기 제1 서브프레임을 통해 상기 동기 신호 및 상기 PBCH를 송신하는 단계를 포함하고, 상기 기지국은, 무선 자원 측정(RRM)을 위한 광대역(wideband) 참조 신호를 상기 PBCH를 위한 심볼로부터 일정 범위 이내에 위치한 심볼 상에서만 제공하고, 상기 RRM을 위한 광대역 참조 신호는, 상기 PBCH의 복조(demodulation)에 사용될 수 있다.
본 발명의 또 다른 일 측면에 따라 상술된 방법을 수행하기 위한 기지국이 제공될 수 있다.
상기 RRM을 위한 광대역 참조 신호는, 상기 PBCH 및 상기 동기 신호가 수신되는 상기 제1 서브프레임 및 상기 제1 서브프레임 다음에 위치한 제2 서브프레임 중 적어도 하나에서만 수신될 수 있다.
상기 단말은 상기 제2 서브프레임을 통해 수신된 상기 RRM을 위한 광대역 참조 신호를 이용하여, 반송파 주파수 오프셋을 보정할 수 있다.
상기 제1 서브프레임은, 하향링크 제어 영역, 데이터 영역, 송수신 스위칭을 위한 GP(guard period) 및 상향링크 제어 영역을 모두 갖는 자체-포함 서브프레임(self-contained subframe)일 수 있다.
상기 RRM을 위한 광대역 참조 신호는 상기 하향링크 제어 영역의 심볼에 맵핑되고, 상기 PBCH를 위한 심볼 및 상기 동기 신호를 위한 적어도 하나의 심볼은 상기 데이터 영역에 위치할 수 있다.
상기 단말은, 상기 PBCH를 위한 심볼 상에서 수신되는 셀-특정한 복조 참조 신호(cell-specific DMRS)를 이용하여 반송파 주파수 오프셋을 보정할 수 있다.
상기 동기 신호는, 주 동기 신호(PSS) 및 부 동기 신호(SSS)를 포함할 수 있다.
상기 단말은, 상기 PSS의 시퀀스 및 상기 SSS의 시퀀스 각각의 양끝 단에 설정된 가드 톤(guard tone)을 통해 반송파 주파수 오프셋 보정을 위한 참조 신호를 수신할 수 있다.
상기 PSS와 상기 SSS는 동일한 심볼 상에서 주파수 다중화되고, 상기 주파수 다중화된 상기 PSS의 대역폭 및 상기 SSS의 대역폭의 합은, 상기 PBCH의 대역폭과 일치할 수 있다.
본 발명의 일 실시예에 따르면, RRM을 위한 광대역 RS가 PBCH 심볼로부터 일정 범위 이내에 이내에 위치한 심볼 상에서만 전송되므로 RS 오버헤드가 저감되고, PBCH 및 동기 신호가 1 서브프레임 상에서 전송되므로 스케줄 유연성이 향상 될 수 있을 뿐 아니라, 단말은 RRM을 위한 RS를 이용하여 PBCH를 복조하므로 매 서브프레임 마다 송신되는 얼웨이즈-온(always-on) 참조 신호가 없는 무선 통신 환경에서도 단말이 보다 정확하고 효율적으로 초기 접속을 수행할 수 있다.
본 발명의 기술적 효과는 상술된 기술적 효과에 제한되지 않으며, 다른 기술적 효과들이 본 발명의 실시예로부터 유추될 수 있다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 5G 서비스 시나리오와 성능 요구사항을 나타낸다.
도 2는 3GPP LTE/LTE-A 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.
도 3은 3GPP LTE/LTE-A 시스템의 무선 프레임(radio frame)의 구조를 예시한다.
도 4는 3GPP LTE/LTE-A 시스템의 FDD 방식과 TDD 방식을 나타낸다.
도 5는 본 발명의 일 실시예에 따른 자체-포함(self-contained) 서브프레임의 구조를 예시한다.
도 6은 본 발명의 일 실시예에 따른 NR을 위한 1 프레임 구성의 일 예이다.
도 7 내지 도 10은 각각 본 발명의 일 실시예에 따른 NR을 위한 동기 신호 및 xPBCH 맵핑을 도시한다.
도 11은 본 발명의 일 실시예에 따른 CFO 보정을 위한 추가적인 RRM-RS 전송을 도시한다.
도 12는 본 발명의 일 실시예에 따른 CFO 보정을 위한 동기 신호의 가드 톤을 도시한다.
도 13은 본 발명의 일 실시예에 따라 CFO 보정을 위하여 xPBCH 상에 설정된 DM-RS를 도시한다.
도 14는 본 발명의 일 실시예에 따른 초기 접속을 위한 신호 송수신 방법이 흐름을 도시한다.
도 15는 본 발명의 일 실시예에 따른 단말과 기지국을 도시한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로서 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다.
설명을 명확하게 하기 위해, 3GPP 기반의 이동 통신 시스템을 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. 또한, 이하의 설명에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
New RAT을 논의 하기에 앞서, 3GPP LTE/LTE-A 시스템에 대해서 간략히 살펴본다. 후술하는 3GPP LTE/LTE-A에 대한 설명은 New RAT의 이해를 돕기 위해 참조 될 수 있으며, New RAT의 설계와 상충되지 않는 몇몇의 LTE/LTE-A 동작과 설정들은 New RAT에도 적용될 수도 있다. New RAT은 편의상 5G 이동 통신으로 지칭될 수도 있다.
3GPP LTE / LTE -A 시스템
도 2는 3GPP LTE/LTE-A 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 단계 S101에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 주동기 채널(Primary Synchronization Channel, P-SCH) 및 부동기 채널(Secondary Synchronization Channel, S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID(Identity) 등의 정보를 획득한다. 그 후, 단말은 기지국으로부터 물리방송채널(Physical Broadcast Channel, PBCH)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 단계 S102에서 물리 하향링크제어채널(Physical Downlink Control Channel, PDCCH) 및 물리하향링크제어채널 정보에 따른 물리하향링크공유 채널(Physical Downlink Control Channel, PDSCH)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 이후 단계 S103 내지 단계 S106과 같은 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리임의접속채널(Physical Random Access Channel, PRACH)을 통해 프리앰블(preamble)을 전송하고(S103), 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S104). 경쟁 기반 임의 접속의 경우 추가적인 물리임의접속채널의 전송(S105) 및 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널 수신(S106)과 같은 충돌해결절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 물리하향링크제어채널/물리하향링크공유채널 수신(S107) 및 물리상향링크공유채널(Physical Uplink Shared Channel, PUSCH)/물리상향링크제어채널(Physical Uplink Control Channel, PUCCH) 전송(S108)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보(Uplink Control Information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. 본 명세서에서, HARQ ACK/NACK은 간단히 HARQ-ACK 혹은 ACK/NACK(A/N)으로 지칭된다. HARQ-ACK은 포지티브 ACK(간단히, ACK), 네거티브 ACK(NACK), DTX 및 NACK/DTX 중 적어도 하나를 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 3은 3GPP LTE/LTE-A 시스템에 무선 프레임의 구조를 예시한다. 셀룰라 OFDM 무선 패킷 통신 시스템에서, 상향링크/하향링크 데이터 패킷 전송은 서브프레임(subframe) 단위로 이루어지며, 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPP LTE 표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
하나의 프레임(frame)은 10개의 서브프레임(subframe)으로 구성되고, 서브프레임은 시간 영역(time domain)에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)라 한다. 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(Resource Block, RB)을 포함한다. 3GPP LTE 시스템에서는 하향링크에서 OFDMA 를 사용하므로, OFDM 심볼이 하나의 심볼 구간을 나타낸다. OFDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 칭하여질 수도 있다. RB는 하나의 슬롯에서 복수의 연속적인 부반송파(subcarrier)를 포함할 수 있다.
슬롯에 포함되는 OFDM 심볼의 수는 CP(Cyclic Prefix) 구성(configuration)에 따라 달라질 수 있다. CP는 확장 CP(extended CP)와 노멀 CP(normal CP)가 있다. 예를 들어, OFDM 심볼이 노멀 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장 CP에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심볼의 수는 노멀 CP인 경우보다 적다. 확장 CP의 경우에, 예를 들어, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널 상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장 CP가 사용될 수 있다. 노멀 CP가 사용되는 경우 하나의 슬롯은 7개의 OFDM 심볼을 포함하므로, 하나의 서브프레임은 14개의 OFDM 심볼을 포함한다. 이때, 각 서브프레임의 처음 최대 3 개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다. 즉, 노멀 CP가 사용되는 경우 15 kHz 간격의 부반송파 12개와 7개의 OFDM Symbol로 하나의 RB가 정의된다.
중심 주파수 6 RB(Center Frequency 6RB)는 동기화를 위한 주 동기 신호(Primary Synchronization Signal, PSS), 부 동기 신호(Secondary Synchronization Signal, SSS) 및 시스템 정보 전송을 위한 물리 방송 신호(Physical Broadcast Channel, PBCH)를 전달한다. 상술된 프레임 구조, 신호 및 채널들의 위치는 노멀/확장 CP, TDD/FDD에 따라서 변경될 수 있다.
도 4는 LTE/LTE-A 시스템에서의 FDD 및 TDD를 예시한다. 도 4를 참조하면, FDD 의 경우, 하향링크와 상향링크의 주파수 대역이 구분되어 있다. TDD의 경우 동일 밴드 내에서 서브프레임 단위로 하향링크 영역과 상향링크 영역이 구분된다.
● New RAT
New RAT 성능 요구 사항 중, 저지연 요구조건을 만족시키기 위하여 서브프레임이 새롭게 설계될 필요가 있다.
[Self-contained Subframe]
도 5는 New RAT을 위해서 새롭게 제안되는 Self-contained Subframe 을 예시한다. 이하에서, self-contained subframe은 간략히 서브프레임으로 지칭될 수도 있다.
TDD 기반의 Self-contained Subframe 구조에 따르면 하나의 서브프레임 내에 하향링크와 상향링크를 위한 자원구간(예를 들어, 하향링크 제어 채널 및 상향링크 제어 채널)이 존재한다.
도 5에 도시된 self-contained subframe 구조에서는 DL 제어 영역-데이터 영역-UL 제어 영역 순서로 서브프레임이 구성되는 것을 예시하였지만, 본 발명은 이에 한정되지 않는다. 예컨대, 다른 Self-contained Subframe 구조로서, DL 제어 영역-UL 제어 영역-데이터 영역의 순서로 서브프레임이 구성될 수도 있다.
Self-contained subframe은 해당 서브프레임에서 전송되는 데이터의 방향에 따라서 DL Self-contained subframe과 UL Self-contained subframe으로 구분될 수 있다.
이러한 self-contained subframe 구조에서 기지국과 UE가 송신 모드에서 수신모드로 전환 과정 또는 수신모드에서 송신모드로 전환 과정을 위한 시간 갭(time gap)이 필요하다. 이를 위하여 self-contained subframe 구조에서 DL에서 UL로 전환되는 시점에 해당하는 적어도 하나의 OFDM symbol이 GP(guard period)로 설정된다. GP는 DL에서 UL로 전환되는 시점에 위치한다. 예컨대, DL 서브프레임에서 GP는 DL 데이터 영역과 UL 제어 영역 사이에 위치하고, UL 서브프레임에서 GP는 DL 제어 영역과 UL 데이터 영역 사이에 위치한다.
[Initial Access for Stand-alone New RAT]
4G 이동통신시스템(e.g., LTE/LTE-A)을 매개로 하여 NewRAT(NR)에 접속하는 방안이 먼저 적용될 것으로 논의되고 있으나, 향후 NR의 Stand-alone이 지원되어야 한다. 특히, below 6GHz의 경우는 above 6GHz에 비해 넓은 커버리지를 가지므로, NR의 stand-alone이 지원될 필요가 있다.
상술된 논의를 바탕으로 이하에서는, NR의 stand-alone을 위한 초기 접속(initial access) 방법이 제안된다. 후술하는 stand-alone NR은 below 6GHz에서동작할 수 있다.
기본적으로 초기 접속은 동기화 과정 및 시스템 정보를 획득한 단말이 RACH를 전송하는 과정을 포함할 수 있다. 따라서, NR의 동기 신호 (e.g., PSS/SSS) 과 NR 시스템 정보 (e.g., xPBCH)를 위한 신호 및 채널 설계가 필요하다. xPBCH(x Physical Broadcasting Channel)를 통해서 전송되는 NR 시스템 정보는 기지국에 의해 브로드캐스팅되는 것으로서 데이터 채널을 통해서 전송(또는 브로드캐스팅)되는 시스템 정보와 구분하기 위하여 MIB(master information block)로 지칭될 수 있다. 데이터 채널을 통해서 전송(또는 브로드캐스팅)되는 시스템 정보는 SIB(system information block)으로 지칭될 수 있다. 또 다른 예로, MIB와 적어도 하나의 SIB가 함께 xPBCH를 통해서 전송될 수도 있다.
NR의 사용 예(use case) 중 하나인 URLLC(Ultra-reliable low latency communication)을 지원하기 위해서 short TTI가 고려될 수 있다. short TTI를 위하여, 기존 14 symbol의 1 서브프레임이 아닌 7 symbol로 구성된 서브프레임이 사용될 수 있다. 예컨대, normal TTI는 14 symbol로 구성되고 short TTI는 normal TTI의 반으로 구성될 수 있다.
한편, 1 서브프레임은 일정한 시간 길이로 정의될 수도 있다. 예를 들어, NR에서 1 서브프레임의 시간 길이(duration)은 1 ms로 고정될 수도 있다. 이 때, 1 심볼 길이는 서브캐리어 간격(subcarrier spacing)에 따라서 결정되므로, 1 서브프레임에 포함되는 심볼의 개수는 서브캐리어 간격에 따라서 결정될 수 있다. 예를 들어, 서브캐리어 간격이 15 kHz일 경우, 1 서브프레임에는 14개의 심볼들이 포함될 수 있다. 하지만, 서브캐리어 간격이 2배로 증가하여 30 kHz 가 되면, 1 심볼의 길이(duration)은 반으로 줄어들기 대문에 1 서브프레임에 총 28개의 심볼들이 포함될 수 있다. 서브캐리어 간격은 15 kHz * 2n이 될 수 있고, 1 서브프레임에 포함되는 심볼들의 개수는 14 * 2n이 될 수 있다. n은 0, 1, 2.. 등의 정수로서, 반드시 양의 정수에 한정되지 않는다. 예를 들어, n이 음의 정수 -1 이라면, 1 서브프레임에는 총 7개의 심볼들이 포함될 수 있다.
또한, NR 에서는 모든 서브프레임의 전 대역(full band) 상에 전송되는 CRS(cell specific reference signal)가 사용되지 않는다. 이는 기존 LTE의 CRS가 모든 서브프레임과 전체 대역에 할당됨에 따른 유연성(flexibility) 손실과 오버헤드를 줄이기 위함이다. 하지만, NR에서도 기존 LTE의 CRS를 통해 수행되었던 기능을 대체할 RS들이 새롭게 설계되어야 한다. 기존 LTE이 CRS를 통해 수행되던 기능 중 하나로서 RRM (radio resource management) 측정이 있으며, NR에서 RRM 측정을 위하여 사용되는 RS를 RRM-RS(radio resource management-reference signal)라 명명한다. RRM-RS는 광대역(wideband, WB)으로 전송이 될 수 있다. RRM 측정은 RSRP, RSSI, RSRQ 중 적어도 하나를 포함할 수 있으며, RRM 측정 결과/보고는 셀 (재)선택 및 단말 이동성(e.g., 핸드오버 등)을 위해 사용될 수 있으며, 이에 한정되지 않는다.
NR에서는 대역(band) 마다 다른 서비스가 제공될 수 있고 하나의 대역에서 여러 서비스들이 제공될 수도 있다. 예를 들어, 하나의 대역에서도 eMBB와 URLLC같은 서비스가 mixed될 수 있다. 따라서, RRM-RS가 전송되는 WB는 반드시 시스템 전 대역을 의미하는 것은 아니며, 해당 서비스 제공되는 대역을 의미할 수 있다. 따라서, 시스템 전체 대역에서 여러 서비스들이 제공된다면, 해당 서비스에 대한 RRM-RS가 전송되는 WB는 전체 시스템 대역의 일부 분인 서브밴드(subband)형태 일 수 있다.
이와 같은 논의를 바탕으로 NR의 동기 신호와 xPBCH(e.g., MIB 등 시스템 정보)를 제안한다.
Synchronization Signal & xPBCH for New RAT
먼저, WideBand RRM-RS가 사용되는 경우에 동기 신호 및/또는 xPBCH의 자원 맵핑에 대하여 살펴본다. WideBand RRM-RS는 간략히, WB RRM-RS 또는 RRM-RS로 지칭될 수 있다.
도 6은 NR을 위한 1 프레임 구성의 일 예이다. 편의상, 1 프레임의 길이는 10 ms 이고 총 80개의 서브프레임들을 포함한다고 가정한다.
또한, 동기 신호는 서브프레임 #0과 #40에 위치한다고 가정한다. xPBCH는 서브프레임 #0에만 위치한다고 가정한다. 다만, 동기 신호 및/또는 xPBCH의 위치는 전송 주기의 설정에 따라 변경될 수도 있다. RRM-RS도 동기 신호가 맵핑되는 서브프레임 #0, #40에 위치한다고 가정한다. 기본적으로 RRM-RS는 2개의 안테나 포트를 통해서 전송되는 2 port RRM-RS를 가정한다. 단말은 RRM-RS를 이용하여 subfame #0, #40의 제어 채널(e.g., xPDCCH)와 xPBCH를 복조(demodulation) 할 수 있다. 해당 서브프레임 #0, #40에는 MIMO 전송 모드로서 다이버시티 이득을 얻기 위해 SFBC(spatial frequency block coding)가 사용될 수 있다. 나머지 서브프레임에서는 다수의 DM-RS port에 기반한 MIMO 전송 모드가 사용될 수 있다. 이와 달리, RRM-RS가 1 port로 전송될 수도 있으며, 이때는 단일 포트 전송 기법이 적용될 수 있다.
RRM-RS가 전송되지 않는 서브프레임에서 단말은 제어 채널의 복조(demodulation)를 위해서 제어 채널 영역 내에 맵핑된 DM-RS를 사용하여 채널 추정을 수행할 수 있다. 이는 NR에서는 데이터 채널뿐 아니라 제어 채널도 프리코딩 될 수 있기 때문이다. 다른 서브프레임과 달리, WB RRM-RS가 전송되는 서브프레임의 경우 제어 채널 복조를 위해 WB RRM-RS를 이용하여 채널 추정을 할 수 있고, 따라서 성능 강화를 가져올 수 있는 이점이 있다. 예컨대, WB RRM-RS가 전송되는 서브프레임에서는 단말이 DM-RS 만을 이용하여 복조를 수행하는 것이 아니라, 추가적으로 WB RRM-RS를 더 이용할 수 있으므로 보다 정확한 채널 추정 결과에 근거하여 복조를 수행할 수 있는 장점이 있다.
도 6과 같이 하향링크 관련 동기 신호, 시스템 정보 및 RS 모두를 한 서브프레임 안에 위치시키는 경우, 다른 서브프레임들의 DL/UL 유연성이 향상될 수 있는 장점이 있다. 즉, 동기 신호, 시스템 정보 및 RRM-RS는 고정된 위치에 주기적으로 전송되어야 하므로 스케줄링의 유연성에 대한 제약이 있지만, 이들 신호를 1 서브프레임에 모두 맵핑하는 경우 나머지 서브프레임들은 스케줄링에 대한 제약 없이 보다 유연하게 사용될 수 있다.
도 7은 본 발명의 일 실시예에 따른 NR을 위한 동기 신호 및 xPBCH 맵핑을 나타낸다. 편의상 short TTI에 해당하는 self-contained subframe이 도시되었으나, 본 발명은 이에 한정되지 않는다. 도 7 (a)는 2 port RRM-RS 전송을 나타내고, 도 7 (b)는 1 port RRM-RS 전송을 나타낸다.
도 7을 참조하면 self-contained subframe의 시작 부분에 DL 제어 채널 (e.g. xPDCCH)이 맵핑되고, 이후 xPBCH를 위해 4 심볼이 할당되고, SSS/PSS가 순차적으로 할당된다. xPBCH/SSS/PSS는 NR 시스템 대역의 중심 N개 RB(s)에 위치할 수 있다. 예컨대, xPBCH/SSS/PSS는 중심 6RBs를 차지할 수 있다. RRM-RS는 첫 번째 심볼에 맵핑된다.
도 7의 방식은 첫 번째 심볼에 있는 RRM-RS를 이용하여 xPBCH를 검출 할 수 있는 장점이 존재한다. 즉, 단말은 xPBCH 복조를 위하여 RRM-RS를 활용할 수 있다. 반면에 도 7의 방식에 따르면 GP(Guard period)와 UL 제어 채널을 전송하기 위한 심볼을 배치할 공간이 부족하므로(e.g., 1서브프레임 당 7 심볼을 가정한 경우), 해당 self-contained subframe은 UL 제어 채널을 보낼 수 있는 기회(i.e., UL 제어 영역)가 없는 DL only subframe이 된다. 따라서, HARQ 프로세스에서 이와 같은 DL only subframe을 고려한 DL ACK 할당이 고려될 수도 있다. 예컨대, UL 제어 영역 (또는 UL 제어 채널을 위한 심볼)을 포함하는 일반적인 DL self-contained subframe의 경우, DL 서브프레임에서 수신된 DL 데이터에 대한 ACK(이하, DL ACK)이 동일 DL 서브프레임의 마지막에 위치한 UL 제어 영역을 통해서 전송될 수 있다. 하지만, 도 7과 같이 UL 제어 영역이 없는 DL only subframe의 경우, DL only subframe를 통해 수신된 DL 데이터에 대한 ACK이 동일 DL only subframe을 통해서는 전송될 수 없다. 따라서, ACK 전송을 위한 자원이 다른 서브프레임 상에 할당될 필요가 있으며, ACK 전송을 위한 자원은 HARQ 프로세스를 통해서 스케줄 될 수 있다.
도 8 내지 도 10은 본 발명의 다른 실시예에 따른 NR을 위한 동기 신호 및 xPBCH 맵핑을 나타낸다. 도 8 내지 도 10에서는, 도 7과는 달리 self-contained subframe의 특성인 GP와 UL 제어 영역이 유지하는 방안이 고려된다. 동기 신호 및 xPBCH가 맵핑되는 서브프레임에서도 UL 제어 영역이 유지되므로, 다른 서브프레임에 적용되는 HARQ 프로세스에서의 DL ACK 전송 방식이 해당 서브프레임에서도 유지될 수 있다. 예컨대, 동기 신호 및 xPBCH가 맵핑되는 서브프레임에 관련한 DL ACK 전송을 위하여 HARQ 프로세스의 예외를 설정할 필요가 없으므로, 프로세싱과 스케줄링의 복잡성이 저감될 수 있다.
도 8을 참조하면, xPBCH가 시간-주파수 도메인에서 4 심볼 & 6 RBs에 맵핑되는 것이 아니라 2 심볼 & 12 RBs에 맵핑된다. 이 때, PSS와 SSS는 주파수 다중화(FDM)되어, 하나의 심볼로 설정될 수 있다. 도 8(a)는 2 port RRS-RS를 나타내고, 도 8(b)는 1 port RRS-RS를 나타낸다. xPBCH는 RRM-RS를 통해서 복조 될 수 있다.
한편 시간 도메인 상에서 서브프레임을 살펴보면, 5번째 심볼은 Data 전송에 사용될 수 있다. 또는, 4번째 심볼을 GP 로 설정하고, UL 제어 영역을 2 심볼로 설정하는 방안이 사용될 수도 있다. 주파수 도메인 상에서 서브프레임을 살펴보면, 단말이 xPBCH와 PSS/SSS를 검출하기 위해서는 최소 12 RBs를 모니터링 해야 하므로, NR의 최소 시스템 대역폭 또는 최소 송신 대역폭은 12 RBs로 설정될 수도 있다.
도 9를 참조하면, PSS의 시퀀스와 SSS 시퀀스는 주파수 도메인 상에서 각각 12 RBs 길이로 정의되고, 시간 도메인 상에서 각각 1 심볼로 설정된다. 이와 같이 PSS/SSS 시퀀스의 길이가 6 RBs에서 12 RBs로 증가됨으로써 성능 이득(gain)이 향상될 수 있다. 예컨대, 단말의 동기 추정의 정확도 및 주파수 옵셋 보정 성능이 향상될 수 있다. 또한, 네트워크 관점에서는 셀 ID의 다중화 용량도 증가될 수 있다. 도 9 (a)는 2 port RRM-RS 전송을 나타내고, 도 9 (b)는 1 port RRM-RS 전송을 나타낸다.
도 10을 참조하면, SSS/PSS의 시퀀스 길이는 6 RBs로 유지된다. 이 때, SSS/PSS의 시퀀스는 TDM 방식으로 반복(repetition)될 수 있으며, 동기 신호가 반복 전송에 따라서 단말의 동기 추정의 정확도가 향상될 수 있다. 도 10 (a)는 2 port RRM-RS 전송을 나타내고, 도 10 (b)는 1 port RRM-RS 전송을 나타낸다.
도 10에서는 편의상 2회 반복 전송을 예시하였으나, 1 서브프레임 내에서 PSS/SSS 시퀀스는 2개 이상의 심볼들에서 반복 전송될 수도 있다. 아울러, 시간 도메인에서 반복 전송되는 심볼들의 위치는 반드시 연속적일 필요는 없다. 예컨대, 1 서브프레임 내에서 PSS/SSS의 시퀀스는 n 심볼 마다(n은 1 이상의 정수) 반복 전송 될 수도 있다.
또한, 반복 전송되는 PSS/SSS 시퀀스의 위치는 주파수 도메인 상에서 변경될 수 있다. 예컨대, PSS/SSS 시퀀스는 주파수 호핑에 기반하여 반복 전송 될 수 있다. 또는, PSS 시퀀스가 전송되는 주파수와 SSS 시퀀스가 전송되는 주파수는 매 전송시마다 또는 m회 반복을 주기로 서로 교번(alternate) 또는 스위칭 될 수 있다. m은 사전 설정되거나 또는 모니터링 하는 주파수 대역에 기반하여 결정되거나, 또는 서브프레임 특정한 값일 수 있다. 구체적인 예로, 제1 심볼에서는 PSS의 시퀀스가 lower 6 RBs에 맵핑되고 SSS의 시퀀스가 upper 6 RBs에 맵핑되지만, 제2 심볼에서는 PSS의 시퀀스가 upper 6 RBs에 맵핑되고 SSS의 시퀀스가 lower 6 RBs에 맵핑될 수도 있다.
또는, PSS의 시퀀스가 맵핑되는 6 RBs와 SSS의 시퀀스가 맵핑되는 6 RBs는 서브프레임 단위로 교번(alternate) 또는 스위칭될 수 도 있다. 예를 들어, 서브프레임 #0과 서브프레임 #40에서 동기 신호가 전송된다고 가정할 때, 서브프레임 #0에서는 PSS의 시퀀스가 lower 6 RBs에 맵핑되고 SSS의 시퀀스가 upper 6 RBs에 맵핑되지만, 서브프레임 #40에서는 PSS의 시퀀스가 upper 6 RBs에 맵핑되고 SSS의 시퀀스가 lower 6 RBs에 맵핑 될 수도 있다. 이와 같이, FDM되는 PSS와 SSS의 위치가 변경되면, 단말은 현재 모니터링하는 서브프레임이 #0인지 아니면 #40인지를 조기 검출 할 수 있다.
한편, 도 7 내지 도 10에서 도시된 PSS 및 SSS의 맵핑 위치는 설명의 편의를 위한 예시적인 것으로서, PSS와 SSS의 위치는 서로 스위칭 될 수도 있다.
CFO Compensation RS for Initial Access
앞서 언급한 바와 같이, LTE와 달리 매 서브프레임 마다 전송되는 CRS가 없는 NR 시스템에서는 초기 CFO(initial carrier frequency offset)를 보정(또는 보상)하기 위한 RS들이 필요하다. 예컨대, 초기 접속 과정에서 PSS/SSS를 통해 개략적(coarse) CFO 보정이 수행된 이후에 미세한(fine) CFO 보정을 위해서 RS가 필요하다. 이와 같은 fine CFO 보정을 위해 다음과 같은 방식이 고려될 수 있다.
(i) 추가적인 RRM-RS 전송을 통한 CFO 보정
(ii) PSS/SSS의 가드 톤(guard tone)을 통한 CFO 보정
(iii) xPBCH 상 DM-RS를 통한 CFO 보정
앞서 설명된 RRM-RS가 한 프레임에 2회 전송(e.g., 2개 서브프레임들)된다고 가정하면, 단말이 해당 RRM-RS를 기반으로 트래킹(tracking) 할 수 있는 CFO의 범위는 +-100Hz가 될 수 있다. 또한, 초기 접속 모드의 경우 또는 기기의 성능에 따라서는 더 많은 CFO가 발생할 수도 있다.
상술된 (i)~(iii)의 방식들은 단독으로 사용될 수도 있으나, CFO 보정 성능을 향상시키기 위하여 (i)~(iii) 중 적어도 2개가 조합된 방안이 사용될 수도 있다.
도 11은 본 발명의 일 실시예에 따른 CFO 보정을 위한 추가적인 RRM-RS 전송을 나타낸다. 도 11을 참조하면, RRM-RS는 동기 신호 및 xPBCH가 전송되는 서브프레임 0#에서 전송될 뿐만 아니라, 서브프레임 #1에서 추가적인 RRM-RS가 전송된다. 도 11 (a)는 2 port RRM-RS 전송을 나타내고, 도 11 (b)는 1 port RRM-RS 전송을 나타낸다.
동기 신호 및 xPBCH가 서브프레임 #0 및 #40에서만 RRM-RS가 전송되는 방식과 비교할 때, 추가적인 RRM-RS 전송하는 본 실시예에서는 연속된 TTI(e.g., 2개의 연속된 서브프레임들)에서 RRM-RS들이 전송되므로 두 RRM-RS들 간의 간격이 줄어들게 된다.
단말은 초기 접속 모드에서 RRM-RS를 사용할 수 있기 때문에, RRM-RS를 바탕으로 CFO를 보정할 수 있다. 하지만, 앞서 언급했던 것처럼 전체 대역으로 CRS가 매 서브프레임 전송되면, 동기 신호 및 xPBCH가 전송되는 대역 외에 다른 대역에 새로운 서비스를 지원하기 위한 방법이 복잡해 지는 단점이 있다. 따라서, 모든 서브프레임이 아니라, 동기 신호 및 xPBCH가 전송되는 서브프레임 바로 다음에 위치한 서브프레임에서만 추가적인 RRM-RS를 전송하는 방법이 제안된다. 다른 일 예로는, 신호 및 xPBCH가 전송되는 서브프레임 바로 이전에 위치한 서브프레임에서만 추가적인 RRM-RS를 전송하는 방법이 고려될 수도 있다. 또 다른 일 예로는, 신호 및 xPBCH가 전송되는 서브프레임으로부터 일정 범위에 위치한 서브프레임에서만 추가적인 RRM-RS를 전송하는 방법이 고려될 수도 있다.
도 11의 경우 편의상 서브프레임 #0, #1을 도시하였으나, 서브프레임 #41에도 추가적인 RRM-RS가 전송될 수도 있다.
도 12는 본 발명의 일 실시예에 따른 CFO 보정을 위한 동기 신호의 가드 톤을 나타낸다. 가드 톤은, PSS 및 SSS 중 적어도 하나에 위치할 수 있다. 예컨대, 가드 톤은 PSS/SSS의 시퀀스의 양쪽 끝에 위치할 수 있다.
기존 LTE 시스템에 따르면, PSS/SSS의 시퀀스의 양쪽 끝에 마지막 5개 서브캐리어들은 0가 부착된다(zero padding).
하지만, 본 발명의 일 실시예에 따르면, PSS/SSS의 시퀀스의 양쪽 끝에 0 가 부착되는 것이 아니라, CFO 보정을 위한 RS가 전송될 수 있다. 예를 들어, 데이터 신호로부터 PSS/SSS를 보호하기 위하여 PSS/SSS의 시퀀스의 양쪽 끝에 가드 톤이 존재한다고 가정한다. 편의상, PSS/SSS는 6 RBs에 맵핑되고, 어느 한쪽 끝의 가드 톤의 길이는 주파수 도메인 상에서 5-서브캐리어에 해당한다고 가정한다. 이때, 6 RBs 중에서 양쪽 끝의 5 서브캐리어들, 즉, 총 10개의 RE들에 CFO 보정을 위한 RS가 맵핑될 수 있다.
다만, 가드 톤의 길이 또는 CFO 보정을 위한 RS가 맵핑되는 RE들의 개수는 변경될 수 있다.
도 12를 참조하면, 도 12 (a)는 2 port RRM-RS 전송을 나타내고, 도 12 (b)는 1 port RRM-RS 전송을 나타낸다. 도 12에 따르면, PSS/SSS 시퀀스 각각의 양쪽 끝에 총 4개의 서브캐리어들(i.e., 한쪽 끝 당 2개 서브캐리어들)에 CFO 보정을 위한 RS가 위치한다.
이와 같은 CFO 보정을 위한 RS의 위치와 밀도(density)는 PSS/SSS의 성능에 미치는 영향을 고려하여 결정되어야 한다.
한편, 가드 톤에 CFO 보정을 위한 RS를 맵핑하는 방식은, 앞서 기술된 실시예들, 예를 들어 도 7 내지 도 11에도 적용될 수 있다. 구체적으로, 도 9 또는 도 10의 경우, PSS/SSS가 맵핑되는 12RBs의 양쪽 끝의 가드 톤에 연속적으로 CFO 보정을 위한 RS가 맵핑될 수 있다. 도 8과 같이 한 심볼에 PSS/SSS가 주파수 다중화된 경우, 단말은 CFO 보정을 위한 RS와 첫 번째 심볼의 RRM-RS 간의 상관(correlation)을 이용하여 CFO를 보정할 수 있다.
도 13은 본 발명의 일 실시예에 따라 CFO 보정을 위하여 xPBCH 상에 설정된 DM-RS를 나타낸다.
도 13에 도시된 DM-RS는 셀-특정한 속성을 갖지만, 기존 LTE 시스템에서 사용되는 CRS와는 구분되어야 한다. 예를 들어, 도 13의 DM-RS의 시퀀스 생성, 시퀀스 맵핑(자원), 변조, 프리코딩, 전송 주기, 스크램블링 ID 등의 파라미터들이 개별 단말에 특정한 값으로 결정되는 것이 아니라, 셀 내에 위치한 단말들 모두에 공통적인 값(i.e., 셀-특정한 값)으로 결정된다. 이와 같은 의미에서 도 13의 DM-RS는 일반적인 의미의 셀-특정한(Cell-Specific) RS이므로, LTE 표준에 규정된 협의의 CRS와는 구분될 필요가 있다. 예컨대, 도 13의 DM-RS는 매 서브프레임 모든 대역으로 전송되는 것이 아니며, xPBCH의 복조를 위하여 xPBCH와 함께 전송되는 셀-특정한 xPBCH DM-RS이다.
도 13 (a)는 2 port RRM-RS 전송을 나타내고, 도 13 (b)는 1 port RRM-RS 전송을 나타낸다. 셀-특정한 xPBCH DM-RS는 2 port로 전송된다고 가정한다. 예컨대, 도 13(b)에서 RRM-RS가 1 port로 전송되더라도, 셀-특정한 xPBCH DM-RS는 2 port로 전송될 수 있다.
따라서, 단말은 2 port의 셀-특정한 xPBCH DM-RS를 이용하여 xPBCH를 복조할 수 있다. 본 발명의 일 실시예에 따른 xPBCH는 셀-특정한 xPBCH DM-RS와 동일한 2 Port를 통해서 전송될 수 있다.
한편, port #0의 셀-특정한 xPBCH DM-RS 가 맵핑되는 심볼의 개수와 port #1의 셀-특정한 xPBCH DM-RS 가 맵핑되는 심볼의 개수는 동일할 수도 있다.
또는, 도 13과 같이 port #0의 셀-특정한 xPBCH DM-RS 가 맵핑되는 심볼의 개수와 port #1의 셀-특정한 xPBCH DM-RS 가 맵핑되는 심볼의 개수가 서로 다르게 설정될 수도 있다. 예컨대, port #0의 셀-특정한 xPBCH DM-RS 가 맵핑되는 심볼의 개수는 port #1의 셀-특정한 xPBCH DM-RS 가 맵핑되는 심볼의 개수 보다 클 수 있다. port #0의 셀-특정한 xPBCH DM-RS가 3번째 xPBCH 심볼에 추가적으로 맵핑될 수 있다.
셀-특정한 xPBCH DM-RS의 밀도(density)를 증가시키는 경우 평균적으로 CFO 보정 성능 및 복조 성능의 향상이 기대되지만, RS의 오버헤드가 증가하는 단점이 있다. 셀-특정한 xPBCH DM-RS의 밀도는 성능 요구 사항에 따라서 변경될 수도 있다.
도 14는 본 발명의 일 실시예에 따른 NR 초기 접속을 위한 신호 송수신 방법의 흐름을 도시한다. 도 14는 상술된 실시예들에 대한 일 구현 예로, 본 발명은 이에 한정되지 않는다. 상술된 실시예들과 중복하는 설명은 생략될 수 있다.
NR 초기 접속 과정에는, 동기화 과정(i.e., PSS/SSS 신호 송수신) 및 시스템 정보 획득(i.e., xPBCH) 과정을 포함할 수 있다. 일 예로, DL 동기화 과정과 UL 동기화 과정이 개별적으로 수행될 수 있으며, 이 경우 DL 동기화 과정은 PSS/SSS 를 이용하여 수행되고, UL 동기화 과정은 랜덤 엑세스 과정을 통해서 수행될 수 있다.
도 14를 참조하면, 기지국은 동기화를 위한 동기 신호, 시스템 정보를 나르는 물리 방송 채널(PBCH) 및 RRM을 위한 광대역 RS를 생성하여, 제1 서브프레임의 심볼들에 맵핑한다(1405). 동기 신호는, 주 동기 신호(PSS) 및 부 동기 신호(SSS)를 포함할 수 있다. PSS와 SSS는 동일한 심볼 상에서 주파수 다중화될 수 있다. 주파수 다중화된 PSS의 대역폭 및 SSS의 대역폭의 합은, PBCH의 대역폭과 일치할 수 있다.
기지국은 제1 서브프레임을 통해 동기 신호, PBCH 및 RRM을 위한 광대역 RS를 송신한다(1410).
이하에서는, 단말의 관점에서 설명하기로 한다.
단말은 제1 서브프레임을 통해 수신된 동기 신호에 기반하여 기지국의 셀에 동기화한다(1415).
단말은 동기화 결과에 기반하여, 제1 서브프레임 내에서 동기 신호 이전의 심볼에 맵핑되는 PBCH를 검출하고, PBCH에 대한 복조(demodulation) 및 디코딩을 수행하여 시스템 정보를 획득한다(1420).
일 예로, 단말은 제1 서브프레임 상에서 수신된 신호들을 모두 버퍼링한 뒤, 동기화 이후 PBCH 타이밍을 결정함으로써 버퍼로부터 PBCH에 해당하는 과거 신호를 읽어 올 수 있다. 또 다른 예로, 단말은 제1 서브프레임에서는 동기화만 수행하고, 동기화 이후 후속하는 N번째 서브프레임을 통해서 수신되는 PBCH를 검출 할 수도 있다.
단말은, 무선 자원 측정(RRM)을 위한 광대역(wideband) 참조 신호를 이용하여 PBCH에 대한 복조를 수행할 수 있다. RRM을 위한 광대역 참조 신호는, PBCH를 위한 심볼로부터 일정 범위 이내에 위치한 심볼 상에서만 제공될 수 있다.
일 예로, RRM을 위한 광대역 참조 신호는, PBCH 및 동기 신호가 수신되는 제1 서브프레임 및 제1 서브프레임 다음에 위치한 제2 서브프레임 중 적어도 하나에서만 수신될 수 있다. 단말은 제2 서브프레임을 통해 수신된 RRM을 위한 광대역 참조 신호를 이용하여, 반송파 주파수 오프셋을 보정할 수 있다.
제1 서브프레임은, 하향링크 제어 영역, 데이터 영역, 송수신 스위칭을 위한 GP(guard period) 및 상향링크 제어 영역을 모두 갖는 자체-포함 서브프레임(self-contained subframe)일 수 있다. RRM을 위한 광대역 참조 신호는 하향링크 제어 영역의 심볼에 맵핑되고, PBCH를 위한 심볼 및 동기 신호를 위한 적어도 하나의 심볼은 상기 데이터 영역에 위치할 수 있다.
단말은, PBCH를 위한 심볼 상에서 수신되는 셀-특정한 복조 참조 신호(cell-specific DMRS)를 이용하여 반송파 주파수 오프셋을 보정할 수 있다.
단말은, PSS의 시퀀스 및 SSS의 시퀀스 각각의 양끝 단에 설정된 가드 톤(guard tone)을 통해 반송파 주파수 오프셋 보정을 위한 참조 신호를 수신할 수 있다.
도 15는 본 발명의 일 실시예에 따른 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.
무선 통신 시스템(100)을 간략화하여 나타내기 위해 하나의 기지국(105)과 하나의 단말(110)을 도시하였지만, 무선 통신 시스템(100)은 하나 이상의 기지국 및/또는 하나 이상의 단말을 포함할 수 있다.
기지국(105)은 송신(Tx) 데이터 프로세서(115), 심볼 변조기(120), 송신기(125), 송수신 안테나(130), 프로세서(180), 메모리(185), 수신기(190), 심볼 복조기(195), 수신 데이터 프로세서(197)를 포함할 수 있다. 그리고, 단말(110)은 송신(Tx) 데이터 프로세서(165), 심볼 변조기(170), 송신기(175), 송수신 안테나(135), 프로세서(155), 메모리(160), 수신기(140), 심볼 복조기(155), 수신 데이터 프로세서(150)를 포함할 수 있다. 송수신 안테나(130, 135)가 각각 기지국(105) 및 단말(110)에서 하나로 도시되어 있지만, 기지국(105) 및 단말(110)은 복수 개의 송수신 안테나를 구비하고 있다. 따라서, 본 발명에 따른 기지국(105) 및 단말(110)은 MIMO(Multiple Input Multiple Output) 시스템을 지원한다. 또한, 본 발명에 따른 기지국(105)은 SU-MIMO(Single User-MIMO) MU-MIMO(Multi User-MIMO) 방식 모두를 지원할 수 있다.
하향링크 상에서, 송신 데이터 프로세서(115)는 트래픽 데이터를 수신하고, 수신한 트래픽 데이터를 포맷하여, 코딩하고, 코딩된 트래픽 데이터를 인터리빙하고 변조하여(또는 심볼 매핑하여), 변조 심볼들("데이터 심볼들")을 제공한다. 심볼 변조기(120)는 이 데이터 심볼들과 파일럿 심볼들을 수신 및 처리하여, 심볼들의 스트림을 제공한다.
심볼 변조기(120)는, 데이터 및 파일럿 심볼들을 다중화하여 이를 송신기 (125)로 전송한다. 이때, 각각의 송신 심볼은 데이터 심볼, 파일럿 심볼, 또는 제로의 신호 값일 수도 있다. 각각의 심볼 주기에서, 파일럿 심볼들이 연속적으로 송신될 수도 있다. 파일럿 심볼들은 주파수 분할 다중화(FDM), 직교 주파수 분할 다중화(OFDM), 시분할 다중화(TDM), 또는 코드 분할 다중화(CDM) 심볼일 수 있다.
송신기(125)는 심볼들의 스트림을 수신하여 이를 하나 이상의 아날로그 신호들로 변환하고, 또한, 이 아날로그 신호들을 추가적으로 조절하여(예를 들어, 증폭, 필터링, 및 주파수 업 컨버팅(upconverting) 하여, 무선 채널을 통한 송신에 적합한 하향링크 신호를 발생시킨다. 그러면, 송신 안테나(130)는 발생된 하향링크 신호를 단말로 전송한다.
단말(110)의 구성에서, 수신 안테나(135)는 기지국으로부터의 하향링크 신호를 수신하여 수신된 신호를 수신기(140)로 제공한다. 수신기(140)는 수신된 신호를 조정하고(예를 들어, 필터링, 증폭, 및 주파수 다운컨버팅(downconverting)), 조정된 신호를 디지털화하여 샘플들을 획득한다. 심볼 복조기(145)는 수신된 파일럿 심볼들을 복조하여 채널 추정을 위해 이를 프로세서(155)로 제공한다.
또한, 심볼 복조기(145)는 프로세서(155)로부터 하향링크에 대한 주파수 응답 추정치를 수신하고, 수신된 데이터 심볼들에 대해 데이터 복조를 수행하여, (송신된 데이터 심볼들의 추정치들인) 데이터 심볼 추정치를 획득하고, 데이터 심볼 추정치들을 수신(Rx) 데이터 프로세서(150)로 제공한다. 수신 데이터 프로세서(150)는 데이터 심볼 추정치들을 복조(즉, 심볼 디-매핑(demapping))하고, 디인터리빙(deinterleaving)하고, 디코딩하여, 전송된 트래픽 데이터를 복구한다.
심볼 복조기(145) 및 수신 데이터 프로세서(150)에 의한 처리는 각각 기지국(105)에서의 심볼 변조기(120) 및 송신 데이터 프로세서(115)에 의한 처리에 대해 상보적이다.
단말(110)은 상향링크 상에서, 송신 데이터 프로세서(165)는 트래픽 데이터를 처리하여, 데이터 심볼들을 제공한다. 심볼 변조기(170)는 데이터 심볼들을 수신하여 다중화하고, 변조를 수행하여, 심볼들의 스트림을 송신기(175)로 제공할 수 있다. 송신기(175)는 심볼들의 스트림을 수신 및 처리하여, 상향링크 신호를 발생시킨다. 그리고 송신 안테나(135)는 발생된 상향링크 신호를 기지국(105)으로 전송한다. 단말 및 기지국에서의 송신기 및 수신기는 하나의 RF(Radio Frequency) 유닛으로 구성될 수도 있다.
기지국(105)에서, 단말(110)로부터 상향링크 신호가 수신 안테나(130)를 통해 수신되고, 수신기(190)는 수신한 상향링크 신호를 처리되어 샘플들을 획득한다. 이어서, 심볼 복조기(195)는 이 샘플들을 처리하여, 상향링크에 대해 수신된 파일럿 심볼들 및 데이터 심볼 추정치를 제공한다. 수신 데이터 프로세서(197)는 데이터 심볼 추정치를 처리하여, 단말(110)로부터 전송된 트래픽 데이터를 복구한다.
단말(110) 및 기지국(105) 각각의 프로세서(155, 180)는 각각 단말(110) 및 기지국(105)에서의 동작을 지시(예를 들어, 제어, 조정, 관리 등)한다. 각각의 프로세서들(155, 180)은 프로그램 코드들 및 데이터를 저장하는 메모리 유닛(160, 185)들과 연결될 수 있다. 메모리(160, 185)는 프로세서(180)에 연결되어 오퍼레이팅 시스템, 어플리케이션, 및 일반 파일(general files)들을 저장한다.
프로세서(155, 180)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 호칭될 수 있다. 한편, 프로세서(155, 180)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명의 실시예를 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(155, 180)에 구비될 수 있다.
한편, 펌웨어나 소프트웨어를 이용하여 본 발명의 실시예들을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(155, 180) 내에 구비되거나 메모리(160, 185)에 저장되어 프로세서(155, 180)에 의해 구동될 수 있다.
단말과 기지국이 무선 통신 시스템(네트워크) 사이의 무선 인터페이스 프로토콜의 레이어들은 통신 시스템에서 잘 알려진 OSI(open system interconnection) 모델의 하위 3개 레이어를 기초로 제 1 레이어(L1), 제 2 레이어(L2), 및 제 3 레이어(L3)로 분류될 수 있다. 물리 레이어는 상기 제 1 레이어에 속하며, 물리 채널을 통해 정보 전송 서비스를 제공한다. RRC(Radio Resource Control) 레이어는 상기 제 3 레이어에 속하며 UE와 네트워크 사이의 제어 무선 자원들을 제공한다. 단말, 기지국은 무선 통신 네트워크와 RRC 레이어를 통해 RRC 메시지들을 교환할 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술된 바와 같이 본 발명은 다양한 무선 통신 시스템에 적용될 수 있다.

Claims (15)

  1. 무선 통신 시스템에서 단말이 초기 접속을 수행하는 방법에 있어서,
    제1 서브프레임을 통해 수신된 동기 신호에 기반하여 기지국의 셀에 동기화하는 단계;
    상기 동기화 결과에 기반하여, 상기 제1 서브프레임 내에서 상기 동기 신호 이전의 심볼에 맵핑되는 물리 방송 채널(PBCH)을 검출하는 단계; 및
    상기 PBCH에 대한 복조(demodulation)를 수행하여 시스템 정보를 획득하는 단계를 포함하되,
    상기 단말은, 무선 자원 측정(RRM)을 위한 광대역(wideband) 참조 신호를 이용하여 상기 PBCH에 대한 복조를 수행하고,
    상기 RRM을 위한 광대역 참조 신호는, 상기 PBCH를 위한 심볼로부터 일정 범위 이내에 위치한 심볼 상에서만 제공되는, 초기 접속 방법.
  2. 제 1 항에 있어서, 상기 RRM을 위한 광대역 참조 신호는,
    상기 PBCH 및 상기 동기 신호가 수신되는 상기 제1 서브프레임 및 상기 제1 서브프레임 다음에 위치한 제2 서브프레임 중 적어도 하나에서만 수신되는, 초기 접속 방법.
  3. 제 2 항에 있어서, 상기 단말은 상기 제2 서브프레임을 통해 수신된 상기 RRM을 위한 광대역 참조 신호를 이용하여, 반송파 주파수 오프셋을 보정하는, 초기 접속 방법.
  4. 제 1 항에 있어서, 상기 제1 서브프레임은,
    하향링크 제어 영역, 데이터 영역, 송수신 스위칭을 위한 GP(guard period) 및 상향링크 제어 영역을 모두 갖는 자체-포함 서브프레임(self-contained subframe)인, 초기 접속 방법.
  5. 제 4 항에 있어서,
    상기 RRM을 위한 광대역 참조 신호는 상기 하향링크 제어 영역의 심볼에 맵핑되고,
    상기 PBCH를 위한 심볼 및 상기 동기 신호를 위한 적어도 하나의 심볼은 상기 데이터 영역에 위치하는, 초기 접속 방법.
  6. 제 1 항에 있어서,
    상기 단말은, 상기 PBCH를 위한 심볼 상에서 수신되는 셀-특정한 복조 참조 신호(cell-specific DMRS)를 이용하여 반송파 주파수 오프셋을 보정하는, 초기 접속 방법.
  7. 제 1 항에 있어서,
    상기 동기 신호는, 주 동기 신호(PSS) 및 부 동기 신호(SSS)를 포함하고,
    상기 단말은, 상기 PSS의 시퀀스 및 상기 SSS의 시퀀스 각각의 양끝 단에 설정된 가드 톤(guard tone)을 통해 반송파 주파수 오프셋 보정을 위한 참조 신호를 수신하는, 초기 접속 방법.
  8. 제 7 항에 있어서,
    상기 PSS와 상기 SSS는 동일한 심볼 상에서 주파수 다중화되고,
    상기 주파수 다중화된 상기 PSS의 대역폭 및 상기 SSS의 대역폭의 합은, 상기 PBCH의 대역폭과 일치하는, 초기 접속 방법.
  9. 무선 통신 시스템에서 초기 접속을 수행하는 단말에 있어서,
    제1 서브프레임을 통해 동기 신호를 수신하는 수신기;
    상기 동기 신호에 기반하여 기지국의 셀에 동기화하고, 상기 동기화 결과에 기반하여 상기 제1 서브프레임 내에서 상기 동기 신호 이전의 심볼에 맵핑되는 물리 방송 채널(PBCH)을 검출하고, 상기 PBCH에 대한 복조(demodulation)를 수행하여 시스템 정보를 획득하는 프로세서를 포함하되,
    상기 프로세서는, 무선 자원 측정(RRM)을 위한 광대역(wideband) 참조 신호를 이용하여 상기 PBCH에 대한 복조를 수행하고,
    상기 RRM을 위한 광대역 참조 신호는, 상기 PBCH를 위한 심볼로부터 일정 범위 이내에 위치한 심볼 상에서만 제공되는, 단말.
  10. 무선 통신 시스템에서 기지국이 초기 접속을 위한 신호를 단말에 송신하는 방법에 있어서,
    상기 기지국의 셀과 동기화를 위한 동기 신호 및 시스템 정보를 나르는 물리 방송 채널(PBCH)을 제1 서브프레임의 심볼들에 맵핑하는 단계; 및
    상기 제1 서브프레임을 통해 상기 동기 신호 및 상기 PBCH를 송신하는 단계를 포함하고,
    상기 기지국은, 무선 자원 측정(RRM)을 위한 광대역(wideband) 참조 신호를 상기 PBCH를 위한 심볼로부터 일정 범위 이내에 위치한 심볼 상에서만 제공하고,
    상기 RRM을 위한 광대역 참조 신호는, 상기 PBCH의 복조(demodulation)에 사용되는, 신호 송신 방법.
  11. 제 10 항에 있어서, 상기 RRM을 위한 광대역 참조 신호는,
    상기 PBCH 및 상기 동기 신호가 송신되는 상기 제1 서브프레임 및 상기 제1 서브프레임 다음에 위치한 제2 서브프레임 중 적어도 하나에서만 송신되는, 신호 송신 방법.
  12. 제 10 항에 있어서, 상기 제1 서브프레임은,
    하향링크 제어 영역, 데이터 영역, 송수신 스위칭을 위한 GP(guard period) 및 상향링크 제어 영역을 모두 갖는 자체-포함 서브프레임(self-contained subframe)인, 신호 송신 방법.
  13. 제 12 항에 있어서,
    상기 RRM을 위한 광대역 참조 신호는 상기 하향링크 제어 영역의 심볼에 맵핑되고,
    상기 PBCH를 위한 심볼 및 상기 동기 신호를 위한 적어도 하나의 심볼은 상기 데이터 영역에 위치하는, 신호 송신 방법.
  14. 제 10 항에 있어서,
    상기 동기 신호는, 주 동기 신호(PSS) 및 부 동기 신호(SSS)를 포함하고,
    상기 기지국은, 상기 PSS의 시퀀스 및 상기 SSS의 시퀀스 각각의 양끝 단에 설정된 가드 톤(guard tone)을 통해 반송파 주파수 오프셋 보정을 위한 참조 신호를 송신하는, 신호 송신 방법.
  15. 제 14 항에 있어서,
    상기 PSS와 상기 SSS는 동일한 심볼 상에서 주파수 다중화되고,
    상기 주파수 다중화된 상기 PSS의 대역폭 및 상기 SSS의 대역폭의 합은, 상기 PBCH의 대역폭과 일치하는, 신호 송신 방법.
PCT/KR2017/004827 2016-05-30 2017-05-10 무선 통신 시스템에서 단말의 초기 접속을 위한 방법 및 이를 위한 장치 WO2017209403A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662343114P 2016-05-30 2016-05-30
US62/343,114 2016-05-30

Publications (1)

Publication Number Publication Date
WO2017209403A1 true WO2017209403A1 (ko) 2017-12-07

Family

ID=60478672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004827 WO2017209403A1 (ko) 2016-05-30 2017-05-10 무선 통신 시스템에서 단말의 초기 접속을 위한 방법 및 이를 위한 장치

Country Status (1)

Country Link
WO (1) WO2017209403A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019132511A1 (ko) * 2017-12-26 2019-07-04 삼성전자주식회사 무선 통신 시스템의 초기 접속 방법 및 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130114587A1 (en) * 2011-11-04 2013-05-09 Alexey Khoryaev Narrow bandwidth device in a broadband network
KR20140130681A (ko) * 2012-01-30 2014-11-11 퀄컴 인코포레이티드 무선 네트워크들에 대한 플렉시블 라디오 자원 관리(rrm) 측정들
KR20140142706A (ko) * 2012-02-21 2014-12-12 엘지전자 주식회사 무선 통신 시스템에서 초기 접속 방법 및 장치
KR20150105289A (ko) * 2013-01-09 2015-09-16 엘지전자 주식회사 신호 수신 방법 및 사용자기기와 신호 전송 방법 및 기지국
US20160056924A1 (en) * 2008-06-23 2016-02-25 Panasonic Intellectual Property Corporation Of America Communication apparatus and communication method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160056924A1 (en) * 2008-06-23 2016-02-25 Panasonic Intellectual Property Corporation Of America Communication apparatus and communication method
US20130114587A1 (en) * 2011-11-04 2013-05-09 Alexey Khoryaev Narrow bandwidth device in a broadband network
KR20140130681A (ko) * 2012-01-30 2014-11-11 퀄컴 인코포레이티드 무선 네트워크들에 대한 플렉시블 라디오 자원 관리(rrm) 측정들
KR20140142706A (ko) * 2012-02-21 2014-12-12 엘지전자 주식회사 무선 통신 시스템에서 초기 접속 방법 및 장치
KR20150105289A (ko) * 2013-01-09 2015-09-16 엘지전자 주식회사 신호 수신 방법 및 사용자기기와 신호 전송 방법 및 기지국

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019132511A1 (ko) * 2017-12-26 2019-07-04 삼성전자주식회사 무선 통신 시스템의 초기 접속 방법 및 장치
US11317448B2 (en) 2017-12-26 2022-04-26 Samsung Electronics Co., Ltd Method and apparatus for initial connection of wireless communication system

Similar Documents

Publication Publication Date Title
WO2018062717A1 (ko) 무선 통신 시스템에서 신호를 송신 또는 수신하기 위한 방법 및 이를 위한 장치
WO2014137170A1 (ko) 무선 통신 시스템에서 장치 대 장치 통신에 관련된 신호 송수신방법 및 장치
WO2017196129A1 (ko) 무선 통신 시스템에서 ue의 사이드링크 신호 송수신 방법
WO2013109036A1 (ko) 무선 통신 시스템에서 복조참조신호 전송 방법 및 장치
WO2013162321A2 (ko) 신호 송수신 방법 및 이를 위한 장치
WO2013191367A1 (ko) 신호 송수신 방법 및 이를 위한 장치
WO2014107091A1 (ko) 무선 통신 시스템에서 장치 대 장치 통신 수행 방법 및 장치
WO2012150836A2 (ko) 무선 통신 시스템에서 제어 정보의 전송 방법 및 이를 위한 장치
WO2014116039A1 (ko) 무선 통신 시스템에서 기지국 간 채널 측정 방법 및 장치
WO2014142623A1 (ko) 무선 통신 시스템에서 디스커버리 신호 송수신 방법 및 장치
WO2018151434A1 (ko) 무선 통신 시스템에서 신호를 송신 또는 수신하기 위한 방법 및 이를 위한 장치
WO2018084570A1 (ko) 무선 통신 시스템에서 오프셋을 적용한 d2d 신호 전송 방법 및 장치
WO2017034265A1 (ko) 무선 통신 시스템에서 v2x 단말의 신호 송수신 방법 및 장치
WO2016159738A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2013169003A1 (ko) 제어 신호 송수신 방법 및 이를 위한 장치
WO2016085310A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2015163748A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2018212526A1 (ko) 무선 통신 시스템에서 사이드링크 신호를 송신하는 방법 및 장치
WO2016117983A1 (ko) 무선 통신 시스템에서 장치 대 장치 통신 단말의 신호 송수신 방법 및 장치
WO2018160036A1 (ko) 무선 통신 시스템에서 사이드링크 신호를 전송하는 방법 및 장치
WO2013133678A1 (ko) 신호 송수신 방법 및 이를 위한 장치
WO2017191999A1 (ko) 무선 통신 시스템에서 ue의 사이드링크 신호 송수신 방법
WO2018066924A1 (ko) 무선 통신 시스템에서 하향링크 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2018135911A1 (ko) 무선 통신 시스템에서 서브프레임 타입과 관련된 송수신을 수행하는 방법 및 장치
WO2017171327A2 (ko) 무선 통신 시스템에서 제어 정보를 송수신 하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806896

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17806896

Country of ref document: EP

Kind code of ref document: A1