WO2017209254A1 - Light diffusing plate, surface light-emitting device, and liquid crystal display device - Google Patents

Light diffusing plate, surface light-emitting device, and liquid crystal display device Download PDF

Info

Publication number
WO2017209254A1
WO2017209254A1 PCT/JP2017/020481 JP2017020481W WO2017209254A1 WO 2017209254 A1 WO2017209254 A1 WO 2017209254A1 JP 2017020481 W JP2017020481 W JP 2017020481W WO 2017209254 A1 WO2017209254 A1 WO 2017209254A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
less
glass
diffusion plate
phase
Prior art date
Application number
PCT/JP2017/020481
Other languages
French (fr)
Japanese (ja)
Inventor
順子 宮坂
小池 章夫
雄介 荒井
怡珊 賀
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2017209254A1 publication Critical patent/WO2017209254A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a light diffusion plate, a surface light emitting device, and a liquid crystal display device.
  • the direct type backlight of the liquid crystal display device has a plurality of light sources on the back side of the liquid crystal panel, and has a light diffusion plate between the liquid crystal panel and the light source.
  • the plurality of light sources are arranged on the same plane, and the light diffusion plate diffuses and transmits the light from the plurality of light sources.
  • the light diffusion plate of Patent Document 1 is formed by dispersing a light diffusion agent in a polycarbonate resin in order to suppress luminance unevenness caused by a plurality of light sources.
  • a light diffusion agent one having a difference in refractive index with the polycarbonate resin of 0.02 to 0.20 in absolute value is used, and inorganic particles or organic particles are used.
  • a large area and a thin structure of a surface light emitting device such as a backlight are required, and a large area and a thin structure of a light diffusion plate are required. Therefore, the light diffusion plate is easily bent by an external force such as gravity.
  • the inventors of the present invention have found that the distance between the light diffusion plate and the light source varies from light source to light source, resulting in uneven brightness on the light emitting surface of the light diffusion plate.
  • the uneven brightness is more remarkable as the distance between the light diffusion plate and the light source is narrower for thinning the surface light emitting device.
  • This invention is made in view of the said subject, Comprising: It aims mainly at provision of the light-diffusion plate which reduced the brightness nonuniformity resulting from using a several light source.
  • a light diffusing plate that diffuses and transmits light from a plurality of light sources from one of two main surfaces facing each other to the other,
  • the total light transmittance is T t when the light having a wavelength of 550 nm is perpendicularly incident on the one main surface, the intensity of the transmitted light having an exit direction in the same direction as the exit direction is I 0 , and the exit direction is incident.
  • the specific modulus is 26.0 GPa ⁇ cm 3 / g or more, and it is 1 to 16% of MgO, 0 to 5% of P 2 O 5, and 1 to 5% of Al 2 O 3 in terms of mol% on an oxide basis.
  • a light diffusing plate is provided which is made of glass containing 9%.
  • a light diffusion plate in which unevenness in brightness caused by using a plurality of light sources is reduced.
  • FIG. 1 is a cross-sectional view of a liquid crystal display according to one embodiment. It is a top view of the surface emitting apparatus of FIG. 1, Comprising: It is a top view which fractures
  • FIG. 1 is a cross-sectional view of a liquid crystal display according to one embodiment.
  • FIG. 2 is a plan view of the surface light emitting device of FIG. 1 and is a plan view showing a part of the light diffusion plate in a cutaway state.
  • the surface light emitting device 10 is used, for example, as a direct type backlight of a liquid crystal display device, is disposed on the back side of the liquid crystal panel 12, and emits light to the liquid crystal panel 12.
  • the liquid crystal panel 12 has, for example, an array substrate, a liquid crystal layer, and a color filter substrate in this order.
  • the array substrate has an active element such as a TFT and a transparent pixel electrode on the liquid crystal layer side.
  • the color filter substrate has a color filter and a transparent counter electrode on the liquid crystal layer side.
  • the surface light emitting device 10, the liquid crystal panel 12, and the like constitute a liquid crystal display device.
  • the surface light emitting device 10 may have any light emitting surface as long as it intersects with the user's line of sight or its extended line, and the application is not particularly limited.
  • the surface emitting device 10 may be used as a lighting device that illuminates the inside of a room.
  • the surface light emitting device 10 includes, for example, a frame 20, a plurality of light sources 30 supported by the frame 20, a light diffusion plate 40 which diffuses and transmits light from the plurality of light sources 30, and light from the plurality of light sources 30. And a light reflection plate 50 that reflects toward the diffusion plate 40.
  • the frame 20 supports the plurality of light sources 30, the light diffusion plate 40, and the light reflection plate 50.
  • the frame 20 supports the light reflecting plate 50 to support the plurality of light sources 30.
  • the plurality of light sources 30 may be fixed to a dedicated fixing plate, and the frame 20 may support the plurality of light sources 30 by supporting the fixing plate.
  • the plurality of light sources 30 may be arranged in a matrix on the same plane as shown in FIG.
  • Each light source 30 is, for example, a light emitting diode (LED). Although LED in particular is not limited, it is white LED, for example.
  • Each light source 30 may be a cold cathode tube or the like.
  • the light diffusion plate 40 diffuses and transmits the light from the plurality of light sources 30 from one of the two main surfaces 41, 42 facing each other to the other.
  • the main surface 41 on the light source 30 side is also referred to as a light irradiation surface 41
  • the main surface 42 on the opposite side to the light source 30 is also referred to as a light emitting surface 42.
  • a light diffusion sheet made of a resin may be adhered to the light emitting surface 42 in order to suppress unevenness in brightness caused by using the plurality of light sources 30.
  • the light reflection plate 50 is provided on the opposite side of the light diffusion plate 40 with respect to the light source 30 in order to increase the luminance of the light emitting surface 42 of the light diffusion plate 40, and light from the plurality of light sources 30 is diffused to the light diffusion plate 40. Reflect towards. Reflection of light by the light reflecting plate 50 may be either regular reflection or diffuse reflection.
  • FIG. 3 is a drawing showing transmitted light diffused and transmitted through the light diffusion plate of FIG.
  • L0 indicates the irradiation light vertically incident on the light irradiation surface 41
  • L1 indicates the transmitted light whose emission direction is the same as the incident direction (hereinafter referred to as “linear transmission light”)
  • L2 indicates the same.
  • the transmitted light (hereinafter, referred to as “diffuse transmitted light”) in which the emission direction is a direction inclined by 30 ° with respect to the incident direction is respectively shown.
  • the angle ⁇ between the ray of the linearly transmitted light L1 and the ray of the diffused transmitted light L2 is 30 °.
  • the light diffusion plate 40 diffuses the total light transmittance T t , the intensity of the linear transmitted light L 1 I 0 , and diffuses the light having a wavelength of 550 nm perpendicularly to the light irradiation surface 41 as shown in FIG.
  • T t is 10 percent or more
  • I 30 / I 0 is 0.6 or more.
  • the total light transmittance T t is measured using an integrating sphere unit of a spectrophotometer (not shown).
  • the “total light transmittance” is the remaining one main surface (for example, the light diffusion plate 40) with respect to incident light that is incident at an incident angle of 0 ° to one main surface (for example, the light irradiation surface 41) of the light diffusion plate 40. It means the percentage of the total transmitted light transmitted to the light emitting surface 42).
  • the total light transmittance is measured by the method described in JIS K7361: 1997 (ISO 13468-1: 1996) using the d-line (wavelength 589 nm) of a sodium lamp as incident light.
  • the total light transmittance T t is 10% or more, preferably 15% or more, more preferably 15% or more, and further preferably 30% or more, in order to improve the light extraction efficiency.
  • the total light transmittance T t is 70% or less, more preferably 50% or less, more preferably 50% or less, from the viewpoint of further enhancing the diffusion performance by utilizing the diffuse reflection toward the light source 30 inside the light diffusion plate 40. 40% or less.
  • the intensity I 0 of the linear transmission light L 1 and the intensity I 30 of the diffuse transmission light L 2 are measured by the photometer 60.
  • the photometer 60 is pivoted between a position at which the intensity I 0 of the linear transmitted light L 1 is measured and a position at which the intensity I 30 of the diffuse transmitted light L 2 is measured.
  • Intensity I 30 of the diffuse transmitted light L2 may employ an average of measured values at a plurality of positions, but may employ a value measured at any one location.
  • the ratio I 30 / I 0 of the intensity I 30 of the diffuse transmission light L 2 to the intensity I 0 of the linear transmission light L 1 does not show through the shape of the light source In order to scatter light uniformly and to suppress unevenness in luminance on the light emitting surface 42, it is 0.6 or more, preferably 0.7 or more, and more preferably 0.8 or more.
  • FIG. 4 is a figure which exaggerates and shows the change of the space
  • the solid line exaggerates the self-weight deflection of the light diffusion plate 40 horizontally placed on the frame 20, and the two-dot chain line indicates a state in which no external force such as gravity acts (hereinafter referred to as “natural state
  • the light diffusion plate 40 is only mounted on the frame 20 and not fixed, but may be fixed.
  • the distance D between the light diffusion plate 40 and the light source 30 varies from one light source 30 to another.
  • the light reflection plate 50 to which the light source 30 is fixed is placed on a table or the like, it hardly bends due to gravity or the like.
  • the specific elastic modulus of the light diffusing plate 40 is expressed by E / d obtained by dividing the Young's modulus E by the density d, and is 26.0 GPa ⁇ cm 3 / g or more.
  • the specific elastic modulus E / d of the light diffusion plate 40 is preferably 26.5 GPa ⁇ cm 3 / g or more, more preferably 27.0 GPa ⁇ cm 3 / g or more, still more preferably 27.5 GPa ⁇ cm 3 / g or more , particularly preferably 28.0GPa ⁇ cm 3 / g or more, particularly more preferably 29. 0GPa ⁇ cm 3 / g or more, and most preferably 30GPa ⁇ cm 3 / g or more.
  • the density d of the light diffusion plate 40 is preferably 3.0 g / cm 3 or less, more preferably 2.8 g / cm 3 or less, and further preferably 2. to increase the specific elastic modulus E / d of the light diffusion plate 40. It is 6 g / cm 3 or less, particularly preferably 2.5 g / cm 3 or less.
  • the diagonal lengths of the light irradiation surface 41 and the light emitting surface 42 of the light diffusion plate 40 are preferably 1200 mm or more in order to increase the area of the surface light emitting device 10.
  • the plate thickness t (see FIG. 3) of the light diffusion plate 40 is preferably 2.0 mm or less, more preferably 1.8 mm or less, still more preferably 1.6 mm or less, particularly for thinning the surface light emitting device 10 Is 1.4 mm or less.
  • the thickness t of the light diffusion plate 40 is preferably 0.5 mm or more.
  • the amount of height displacement (also referred to as flatness) in any 300 mm square area in the plane of the light irradiation surface 41 or the light emitting surface 42 of the light diffusion plate 40 is measured in a state where the influence of the self weight deflection can be ignored. In this case, it is preferably 0.5 mm or less, more preferably 0.3 mm or less, still more preferably 0.1 mm or less, and most preferably 0.05 mm or less.
  • the light diffusion plate 40 is placed on a plane to measure the amount of height displacement (flatness). In order to reduce the in-plane height displacement, it is preferable to use the float method or the fusion method as a method of forming the light diffusion plate 40.
  • the distance D between the light diffusion plate 40 and each light source 30 in a natural state is preferably 15 mm or less, more preferably 10 mm or less, for thinning the surface light emitting device 10. More preferably, it is 8 mm or less, and particularly preferably 6 mm or less.
  • the distance D between the light diffusion plate 40 in the natural state and each light source 30 is preferably 1 mm or more, more preferably 3 mm or more, so that the light from each light source 30 is not concentrated in a narrow range of the light irradiation surface 41.
  • the light diffusion plate 40 is made of glass containing 1 to 16% of MgO, 0 to 5% of P 2 O 5 , and 1 to 9% of Al 2 O 3 in terms of mol% on an oxide basis.
  • the glass may be a crystallized glass, but in the present embodiment it is a phase separated glass.
  • the phase-separated glass is a phase separated into plural types of glass phases. The multiple glass phases have different refractive indices and scatter light.
  • Phase-separated glass may have a glass phase of a matrix and a glass phase dispersed in the matrix.
  • the phase-separated glass can be obtained, for example, by heat-treating a glass having the following composition.
  • the phase-separated glass contains, for example, 55 to 70% of SiO 2 , 1 to 7% of Al 2 O 3 , and 1 to 20% of B 2 O 3 in terms of mol% on an oxide basis.
  • the phase-separated glass contains, in addition to the above three components, one or more components selected from eight components of MgO, CaO, SrO, BaO, Na 2 O, K 2 O, P 2 O 5 , and TiO 2 You may The Na 2 O content may be 17% or less, and the TiO 2 content may be 3% or less.
  • phase-separated glass in mol% based on oxides, SiO 2 55 - 70% of Al 2 O 3 1 ⁇ 7% , B 2 O 3 1-20% ⁇ 1 MgO 15 %, the CaO 1 ⁇ 15%, the SrO 1 ⁇ 15%, 1 ⁇ 15% of BaO, Na 2 O 17% or less, the K 2 O 5% or less, P 2 O 5 to 1 ⁇ 8%, TiO 2 contains 3% or less. Assuming that the total content of these 11 components is 100 mol%, the F content is 2 mol% or less in external ratio.
  • phase-separated glass is in mol% based on oxides, SiO 2 58 - 68%, the Al 2 O 3 2 ⁇ 7% , B 2 O 3 and 3 - 18%, MgO 4 to 10%, 3-10% of CaO, SrO and 3-10%, BaO of 3-10%, Na 2 O 15% or less, the K 2 O 5% or less, P 2 O 5 2-7% It contains 3% or less of TiO 2 . Assuming that the total content of these 11 components is 100 mol%, the F content is 1 mol% or less in external ratio.
  • phase-separated glass is in mol% based on oxides, SiO 2 60 - 65%, the Al 2 O 3 2 ⁇ 7% , a B 2 O 3 5 ⁇ 15% , MgO 4 to 10%, the CaO 3 ⁇ 10%, the SrO 3 ⁇ 10%, a BaO 3 ⁇ 10%, Na 2 O 10% or less, the K 2 O 5% or less, P 2 O 5 3-6% It contains 3% or less of TiO 2 . Assuming that the total content of these 11 components is 100 mol%, the F content is 1 mol% or less in external ratio.
  • the SiO 2 content is 55% or more, preferably 58% or more, more preferably 60% or more, in order to improve the specific modulus of phase-separated glass.
  • the SiO 2 content is 70% or less, preferably 68% or less, more preferably 65% or less, in order to maintain the solubility of the glass raw material and hence the homogeneity of the phase-separated glass.
  • the Al 2 O 3 content is 1% or more, preferably 2% or more, more preferably 3% or more, and still more preferably 4% or more, in order to improve the specific modulus of phase-separated glass.
  • the Al 2 O 3 content is 9% or less, preferably 8% or less, and more preferably 7% or less, in order to maintain the solubility of the glass material and thus the homogeneity of the phase-separated glass.
  • the B 2 O 3 content is 1% or more, preferably 3% or more, more preferably 5% or more, in order to improve the solubility of the glass raw material and thus the homogeneity of the phase-separated glass. Further, B 2 O 3 content, in order to suppress deterioration of the homogeneity of the molten glass due to volatilization of B 2 O 3 component from the liquid surface of the molten glass, 20% or less, preferably 18% or less, more preferably 15% or less.
  • the content of MgO is 1% or more, preferably 3% or more, more preferably 4% or more, in order to improve the specific modulus of phase-separated glass.
  • the MgO content is 16% or less, more preferably 15% or less, still more preferably 12% or less, and most preferably 10% or less, in order to suppress the devitrification of the molten glass during cooling.
  • the CaO content is preferably 1% or more, more preferably 3% or more, in order to improve the specific elastic modulus of the phase-separated glass. Further, the CaO content is preferably 15% or less, more preferably 10% or less, in order to suppress devitrification at the time of cooling of the molten glass. In particular, when it is desired to increase the diffuse transmittance to increase the luminance of the light emitting surface 42 of the light diffusing plate 40, it is preferably 4% or less, more preferably 2% or less, and still more preferably 1% or less.
  • the SrO content is preferably 1% or more, more preferably 3% or more, in order to reduce the proportion of linear transmittance in the total light transmittance of the phase-separated glass and to improve the diffuse transmittance of the phase-separated glass. .
  • the SrO content is preferably 15% or less, more preferably 10% or less, in order to suppress devitrification at the time of cooling of the molten glass.
  • it is preferably 4% or less, more preferably 2% or less, and still more preferably 1% or less.
  • the content of BaO may be 0%, it is preferably 1% or more, more preferably, in order to reduce the ratio of linear transmittance to the total light transmittance of the phase separated glass and to improve the diffuse transmittance of the phase separated glass. Is 3% or more.
  • the BaO content is preferably 15% or less, more preferably 10% or less, in order to reduce the thermal expansion coefficient of the phase-separated glass.
  • BaO increases the density d and lowers the specific elastic modulus E / d, so it is preferably 4% or less, more preferably 3% or less, still more preferably 2%. Below, most preferably it is 1% or less.
  • Na 2 O improves the solubility of the glass material and thus the homogeneity of phase-separated glass.
  • the Na 2 O content is preferably 17% or less, more preferably 15% or less, and more preferably, in order to suppress deterioration of the homogeneity of the molten glass due to volatilization of the Na 2 O component from the liquid surface of the molten glass. Is less than 10%.
  • the Na 2 O content may be substantially zero.
  • K 2 O improves the solubility of the glass material and thus the homogeneity of phase-separated glass.
  • the K 2 O content is preferably 5% or less.
  • the K 2 O content may be substantially zero percent.
  • the P 2 O 5 content may be 0%, it is preferably 1% or more in order to reduce the ratio of the linear transmittance to the total light transmittance of the phase separated glass and to improve the diffusion transmittance of the phase separated glass More preferably, it is 2% or more, further preferably 3% or more. Further, the P 2 O 5 content is preferably 8% or less, more preferably 7% or less, in order to suppress deterioration of the homogeneity of the molten glass due to volatilization of the P 2 O 5 component from the liquid surface of the molten glass. More preferably, it is at most 6%, particularly preferably at most 5%, most preferably at most 4.5%, most preferably at most 4%.
  • TiO 2 reduces the ratio of the linear transmittance to the total light transmittance of the phase separated glass, and improves the diffuse transmittance of the phase separated glass.
  • TiO 2 content is preferably 3% or less.
  • the TiO 2 content may be substantially zero.
  • the F improves the clarity of the molten glass.
  • the F content is % Or less.
  • the F content may be substantially zero.
  • the ZrO 2 improves the Young's modulus and specific modulus of phase-separated glass.
  • the ZrO 2 content is preferably 3% or less, more preferably 2% or less, and still more preferably 1% or less.
  • the ZrO 2 content may be substantially zero percent.
  • a light scattering layer may be provided on both sides or one side of the main surface of the light diffusion plate of the present invention to further improve the light diffusion property.
  • the surface of the main surface of the light scattering plate of the present invention is subjected to surface treatment to give an uneven structure having a center line average roughness of 50 ⁇ m or less and an average interval of the uneven portions of 5 mm or less It may be improved.
  • no light scattering layer was provided, and no surface treatment was applied to give a structure such as unevenness.
  • Test Examples 1 to 12 phase-divided glasses of the glass compositions described in Tables 1 to 3 were prepared, and density d, Young's modulus E, specific elastic modulus E / d, total light transmittance T t , and intensity ratio I 30 / I 0 was measured.
  • Phase-separated glass was produced by the following method. First, a glass material prepared in advance was melted, homogenized, and degassed at 1650 ° C. to produce a molten glass. The molten glass is cooled to the phase separation temperature described in Tables 1 to 3 at a cooling rate of 50 ° C. per minute, held at the phase separation temperature for 30 minutes, poured into a mold, and 30 ° C. from the glass transition temperature. After holding at high temperature for 1 hour, the glass was cooled to room temperature at a cooling rate of 1 ° C./min to prepare phase-separated glass. It was observed by a scanning electron microscope that the glass was phase separated and divided into two phases.
  • the intensity I 0 of linear transmission light, the intensity I 30 of diffuse transmission light, etc. those having a plate thickness t of 1.0 mm with both main surfaces mirror-polished Using.
  • the total light transmittance T t was measured using an integrating sphere unit of a Perkin Elmer spectrophotometer (trade name: Lamda 950).
  • the angular distribution of the transmitted light intensity was measured by an ultraviolet visible infrared spectrophotometer (manufactured by JASCO Corporation: V-670 DS) and an automatic absolute reflectance measurement unit (manufactured by JASCO Corporation: ARMN-735). Applying light from the normal direction with respect to one side of the main surface of the measurement sample, by measuring the intensity of the light of wavelength 550nm which angle is transmitted in the direction of 0 ° and 30 ° with the normal direction, I 0 and was I 30. From these values was calculated I 30 / I 0.
  • phase-divided glasses of the glass compositions of Test Examples 1 to 11 had T t of 10 to 70%, I 30 / I 0 of 0.6 or more, and E / d of 26.0 GPa ⁇ It was cm 3 / g or more.
  • the phase-differentiated glass of the glass composition of Test Example 12 had a T t of 10 to 70% and an I 30 / I 0 of 0.6 or more, but an E / d of less than 26.0 GPa ⁇ cm 3 / g Met.
  • the flatness was measured by a laser displacement meter according to JIS B 0621 1984.
  • a laser displacement meter according to JIS B 0621 1984.
  • five plate-like light diffusion plates with a thickness t of 1.0 mm and 300 ⁇ 300 mm with mirror-polished on both main surfaces are prepared, and one main surface of each light diffusion plate is determined. It was installed on a board, and the remaining one main surface (upper surface) of the light diffusion plate was scanned with a laser displacement meter to measure the flatness of each main surface.
  • the flatness of the ten major surfaces had a maximum value of 0.4 mm and a minimum value of 0.05 mm.
  • Test Examples 13 to 18 In Test Examples 13 to 18, the relationship between the specific elastic modulus E / d of the light diffusing plate and the luminance distribution of the light emitting surface of the light diffusing plate was examined by simulation. LightTools (manufactured by Synopsys) was used for the simulation. Test Examples 13 to 14 are Examples, and Test Examples 15 to 18 are Comparative Examples.
  • the light diffusing plate had a rectangular shape with a light emitting surface and a light emitting surface, a vertical dimension (short side length) of 622 mm, a horizontal dimension (long side length) of 1105 mm, and a diagonal length of 1270 mm.
  • the light diffusion plate was placed on a rectangular frame-like horizontal frame having the same outer shape as the light diffusion plate but was not fixed but was bent by its own weight as shown in FIG.
  • the amount of deflection of the light diffusion plate was a maximum value ⁇ D max at the center of the light diffusion plate.
  • the light diffusion plate was composed of a matrix and spherical particles dispersed in the matrix.
  • the particle diameter, the volume fraction of particles, the refractive index of particles, the refractive index of the matrix, and the total light transmittance T t and the intensity ratio I 30 / I 0 agree with the results of Test Example 5 , And decided the thickness t.
  • the particle diameter is 268 nm
  • the volume fraction of particles is 9%
  • the refractive index of the particles is 1.51
  • the plate thickness t is 1.0 mm.
  • the light diffusion plate is composed of polystyrene resin and particles dispersed in polystyrene resin
  • the particle diameter is 1000 nm
  • the volume fraction of particles is 22%
  • the refractive index of the matrix is 1.59
  • the plate thickness t is 2.2 mm.
  • Each LED was a cube of 2 mm on a side, and light is emitted only from the upper surface of the cube.
  • the number of rays from each LED was one million, and the relationship between the direction of the rays and the density of the rays was approximated by a Lambert distribution.
  • the lower surface of each LED was fixed to the upper surface of the light reflection plate. The light reflectance of the upper surface of the light reflection plate was 100%.
  • the plurality of LEDs were arranged in a matrix on the top surface of the light reflection plate.
  • an LED group is constituted by 10 LEDs arranged in the lateral direction at a pitch of 100 mm, and five LED groups are arranged in the longitudinal direction at a pitch of 100 mm.
  • Test Examples 13 to 17 the distance D between the light diffusion plate in the natural state and each LED was constant at 10 mm.
  • Test Example 18 the distance D between the light diffusion plate in the natural state and each LED was constant at 30 mm.
  • the luminance of the light emitting surface (upper surface) of the light diffusing plate was measured in a state where the light diffusing plate was bent by its own weight.
  • the measurement position is on the optical axis of each of the 10 LEDs belonging to the longitudinally central LED group, and in Test Examples 13 to 17, the position is 13 mm above the upper surface of each LED, and in Test Example 18, each LED is The position was 33 mm above the top surface.
  • the measurement area was a rectangular shape having a horizontal dimension of 2.2 mm and a vertical dimension of 1.0 mm.
  • Table 4 The results are summarized in Table 4.
  • the numbers of the LEDs represent the order in which the LEDs are arranged, and were set to increase from one lateral end to the other lateral end.
  • the relative luminance is the luminance when the maximum luminance is 1 in each test example.
  • the deflection of the light diffusion plate 40 is the self weight deflection in the above embodiment, it is not limited to the self weight deflection, and may be a deflection caused by being restrained by the frame 20, for example. Therefore, the light diffusion plate 40 is arranged horizontally in FIG. 4 but may be arranged vertically. The light diffusion plate 40 may be disposed obliquely with respect to the horizontal plane.
  • liquid crystal panel 20 frame 30 light source 40 light diffusion plate 41 main surface (light irradiation surface) 42 Main surface (emitting surface) 50 light reflector

Abstract

Provided is a light diffusing plate that diffuses and transmits light from a plurality of light sources from one to the other of two main surfaces facing each other, wherein: letting, when light with a wavelength of 550 nm is made orthogonally incident to the one main surface, Tt be total light ray transmittance, I0 be the intensity of transmitted light when the output direction is identical to the direction of incidence, and I30 be the intensity of transmitted light for an output direction that is a direction at an inclination of 30° to the direction of incidence, Tt is 10 - 70% and I30/I0 is 0.6 or greater; and the light diffusion plate is formed from glass such that the specific elastic modulus is at least 26.0 GPa∙cm3/g, and in the mol% content for the oxide basis, MgO is 1 - 16%, P2O5 0 - 5%, and Al2O3 1 - 9%.

Description

光拡散板、面発光装置、および液晶表示装置Light diffusing plate, surface emitting device, and liquid crystal display device
 本発明は、光拡散板、面発光装置、および液晶表示装置に関する。 The present invention relates to a light diffusion plate, a surface light emitting device, and a liquid crystal display device.
 液晶表示装置の直下型のバックライトは、液晶パネルの背面側に複数の光源を有し、液晶パネルと光源との間に光拡散板を有する。複数の光源は同一平面上に並べられ、光拡散板は複数の光源からの光を拡散透過する。 The direct type backlight of the liquid crystal display device has a plurality of light sources on the back side of the liquid crystal panel, and has a light diffusion plate between the liquid crystal panel and the light source. The plurality of light sources are arranged on the same plane, and the light diffusion plate diffuses and transmits the light from the plurality of light sources.
 特許文献1の光拡散板は、複数の光源に起因する輝度ムラを抑制するため、ポリカーボネート樹脂に光拡散剤を分散させてなる。光拡散剤としては、ポリカーボネート樹脂との屈折率の差が絶対値で0.02~0.20であるものが用いられ、無機粒子や有機粒子が用いられる。 The light diffusion plate of Patent Document 1 is formed by dispersing a light diffusion agent in a polycarbonate resin in order to suppress luminance unevenness caused by a plurality of light sources. As the light diffusing agent, one having a difference in refractive index with the polycarbonate resin of 0.02 to 0.20 in absolute value is used, and inorganic particles or organic particles are used.
日本国特開2006-98912号公報Japanese Patent Laid-Open Publication No. 2006-98912
 バックライトなどの面発光装置の大面積化および薄型化が求められており、光拡散板の大面積化および薄型化が求められている。そのため、光拡散板が重力などの外力によって撓みやすくなっている。 A large area and a thin structure of a surface light emitting device such as a backlight are required, and a large area and a thin structure of a light diffusion plate are required. Therefore, the light diffusion plate is easily bent by an external force such as gravity.
 本発明者は、光拡散板が撓むことで、光拡散板と光源との間隔が光源毎にばらつき、光拡散板の発光面の輝度ムラが生じることを見出した。その輝度ムラは、面発光装置の薄型化のため、光拡散板と光源との間隔が狭いほど顕著である。 The inventors of the present invention have found that the distance between the light diffusion plate and the light source varies from light source to light source, resulting in uneven brightness on the light emitting surface of the light diffusion plate. The uneven brightness is more remarkable as the distance between the light diffusion plate and the light source is narrower for thinning the surface light emitting device.
 本発明は、上記課題に鑑みてなされたものであって、複数の光源を用いることに起因する輝度ムラを低減した、光拡散板の提供を主な目的とする。 This invention is made in view of the said subject, Comprising: It aims mainly at provision of the light-diffusion plate which reduced the brightness nonuniformity resulting from using a several light source.
 上記課題を解決するため、本発明の一態様によれば、
 複数の光源からの光を、互いに対向する2つの主表面の一方から他方に拡散透過させる、光拡散板であって、
 波長550nmの光を前記一方の主表面に対し垂直に入射させたときの、全光線透過率をT、出射方向が入射方向と同一方向である透過光の強度をI、出射方向が入射方向に対し30°傾いた方向である透過光の強度をI30とすると、Tが10~70%、I30/Iが0.6以上であり、
 比弾性率が26.0GPa・cm/g以上であって、酸化物基準のmol%表示で、MgOを1~16%、Pを0~5%、Alを1~9%含むガラスからなる、光拡散板が提供される。
According to one aspect of the present invention, in order to solve the above problems,
A light diffusing plate that diffuses and transmits light from a plurality of light sources from one of two main surfaces facing each other to the other,
The total light transmittance is T t when the light having a wavelength of 550 nm is perpendicularly incident on the one main surface, the intensity of the transmitted light having an exit direction in the same direction as the exit direction is I 0 , and the exit direction is incident. Assuming that the intensity of transmitted light, which is a direction inclined by 30 ° with respect to the direction, is I 30 , T t is 10 to 70%, and I 30 / I 0 is 0.6 or more,
The specific modulus is 26.0 GPa · cm 3 / g or more, and it is 1 to 16% of MgO, 0 to 5% of P 2 O 5, and 1 to 5% of Al 2 O 3 in terms of mol% on an oxide basis. A light diffusing plate is provided which is made of glass containing 9%.
 本発明の一態様によれば、複数の光源を用いることに起因する輝度ムラを低減した、光拡散板が提供される。 According to one aspect of the present invention, there is provided a light diffusion plate in which unevenness in brightness caused by using a plurality of light sources is reduced.
一実施形態による液晶表示装置の断面図である。FIG. 1 is a cross-sectional view of a liquid crystal display according to one embodiment. 図1の面発光装置の平面図であって、光拡散板の一部を破断して示す平面図である。It is a top view of the surface emitting apparatus of FIG. 1, Comprising: It is a top view which fractures | ruptures and shows a part of light diffusing plate. 図1の光拡散板を拡散透過する透過光を示す図面である。It is drawing which shows the transmitted light diffused and transmitted through the light diffusing plate of FIG. 図1の光拡散板の自重撓みに起因する光拡散板と光源との間隔の変化を誇張して示す図である。It is a figure which exaggerates and shows the change of the space | interval of the light-diffusion plate and the light source resulting from self-weight bending of the light-diffusion plate of FIG.
 以下、本発明を実施するための形態について図面を参照して説明する。各図面において、同一の又は対応する構成には、同一の又は対応する符号を付して説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding components are denoted by the same or corresponding reference numerals, and the description thereof will be omitted.
 図1は、一実施形態による液晶表示装置の断面図である。図2は、図1の面発光装置の平面図であって、光拡散板の一部を破断して示す平面図である。 FIG. 1 is a cross-sectional view of a liquid crystal display according to one embodiment. FIG. 2 is a plan view of the surface light emitting device of FIG. 1 and is a plan view showing a part of the light diffusion plate in a cutaway state.
 面発光装置10は、例えば、液晶表示装置の直下型のバックライトとして用いられ、液晶パネル12の背面側に配設され、液晶パネル12に光を照射する。液晶パネル12は、例えばアレイ基板と、液晶層と、カラーフィルタ基板とをこの順で有する。アレイ基板は、液晶層側に、TFTなどのアクティブ素子と、透明な画素電極とを有する。カラーフィルタ基板は、液晶層側に、カラーフィルタと、透明な対向電極とを有する。面発光装置10および液晶パネル12などで、液晶表示装置が構成される。 The surface light emitting device 10 is used, for example, as a direct type backlight of a liquid crystal display device, is disposed on the back side of the liquid crystal panel 12, and emits light to the liquid crystal panel 12. The liquid crystal panel 12 has, for example, an array substrate, a liquid crystal layer, and a color filter substrate in this order. The array substrate has an active element such as a TFT and a transparent pixel electrode on the liquid crystal layer side. The color filter substrate has a color filter and a transparent counter electrode on the liquid crystal layer side. The surface light emitting device 10, the liquid crystal panel 12, and the like constitute a liquid crystal display device.
 尚、面発光装置10は、その発光面がユーザの視線またはその延長線と交わるものであればよく、その用途は特に限定されない。例えば、面発光装置10は、部屋の室内を照らす照明装置として用いられてもよい。 The surface light emitting device 10 may have any light emitting surface as long as it intersects with the user's line of sight or its extended line, and the application is not particularly limited. For example, the surface emitting device 10 may be used as a lighting device that illuminates the inside of a room.
 面発光装置10は、例えば、フレーム20と、フレーム20に支持される複数の光源30と、複数の光源30からの光を拡散透過させる光拡散板40と、複数の光源30からの光を光拡散板40に向けて反射する光反射板50とを有する。 The surface light emitting device 10 includes, for example, a frame 20, a plurality of light sources 30 supported by the frame 20, a light diffusion plate 40 which diffuses and transmits light from the plurality of light sources 30, and light from the plurality of light sources 30. And a light reflection plate 50 that reflects toward the diffusion plate 40.
 フレーム20は、複数の光源30と、光拡散板40と、光反射板50とを支持する。図1に示すように複数の光源30が光反射板50に固定される場合、フレーム20は光反射板50を支持することで複数の光源30を支持する。尚、複数の光源30は専用の固定板に固定されてもよく、フレーム20は固定板を支持することで複数の光源30を支持してよい。 The frame 20 supports the plurality of light sources 30, the light diffusion plate 40, and the light reflection plate 50. When the plurality of light sources 30 are fixed to the light reflecting plate 50 as shown in FIG. 1, the frame 20 supports the light reflecting plate 50 to support the plurality of light sources 30. The plurality of light sources 30 may be fixed to a dedicated fixing plate, and the frame 20 may support the plurality of light sources 30 by supporting the fixing plate.
 複数の光源30は、図2に示すように同一平面上に行列状に並べられてよい。各光源30は、例えば発光ダイオード(LED)である。LEDは、特に限定されないが、例えば白色LEDである。尚、各光源30は、冷陰極管などであってもよい。 The plurality of light sources 30 may be arranged in a matrix on the same plane as shown in FIG. Each light source 30 is, for example, a light emitting diode (LED). Although LED in particular is not limited, it is white LED, for example. Each light source 30 may be a cold cathode tube or the like.
 光拡散板40は、複数の光源30からの光を、互いに対向する2つの主表面41、42の一方から他方に拡散透過させる。以下、2つの主表面41、42のうち、光源30側の主表面41を光照射面41、光源30とは反対側の主表面42を発光面42とも呼ぶ。発光面42には、複数の光源30を用いることに起因する輝度ムラを抑制するため、樹脂製の光拡散シートが接着されていてもよい。 The light diffusion plate 40 diffuses and transmits the light from the plurality of light sources 30 from one of the two main surfaces 41, 42 facing each other to the other. Hereinafter, among the two main surfaces 41 and 42, the main surface 41 on the light source 30 side is also referred to as a light irradiation surface 41, and the main surface 42 on the opposite side to the light source 30 is also referred to as a light emitting surface 42. A light diffusion sheet made of a resin may be adhered to the light emitting surface 42 in order to suppress unevenness in brightness caused by using the plurality of light sources 30.
 光反射板50は、光拡散板40の発光面42の輝度を高めるために、光源30を基準として光拡散板40とは反対側に設けられ、複数の光源30からの光を光拡散板40に向けて反射する。光反射板50による光の反射は、正反射、拡散反射のいずれでもよい。 The light reflection plate 50 is provided on the opposite side of the light diffusion plate 40 with respect to the light source 30 in order to increase the luminance of the light emitting surface 42 of the light diffusion plate 40, and light from the plurality of light sources 30 is diffused to the light diffusion plate 40. Reflect towards. Reflection of light by the light reflecting plate 50 may be either regular reflection or diffuse reflection.
 図3は、図1の光拡散板を拡散透過する透過光を示す図面である。図3において、L0は、光照射面41に対し垂直に入射する照射光を、L1は出射方向が入射方向と同一方向である透過光(以下、「直線透過光」と呼ぶ)を、L2は出射方向が入射方向に対し30°傾いた方向である透過光(以下、「拡散透過光」と呼ぶ)をそれぞれ表す。直線透過光L1の光線と、拡散透過光L2の光線とのなす角θが30°である。 FIG. 3 is a drawing showing transmitted light diffused and transmitted through the light diffusion plate of FIG. In FIG. 3, L0 indicates the irradiation light vertically incident on the light irradiation surface 41, L1 indicates the transmitted light whose emission direction is the same as the incident direction (hereinafter referred to as “linear transmission light”), and L2 indicates the same. The transmitted light (hereinafter, referred to as “diffuse transmitted light”) in which the emission direction is a direction inclined by 30 ° with respect to the incident direction is respectively shown. The angle θ between the ray of the linearly transmitted light L1 and the ray of the diffused transmitted light L2 is 30 °.
 光拡散板40は、波長550nmの光を図3に示すように光照射面41に対し垂直に入射させたときの、全光線透過率をT、直線透過光L1の強度をI、拡散透過光L2の強度をI30とすると、Tが10%以上、I30/Iが0.6以上である。 The light diffusion plate 40 diffuses the total light transmittance T t , the intensity of the linear transmitted light L 1 I 0 , and diffuses the light having a wavelength of 550 nm perpendicularly to the light irradiation surface 41 as shown in FIG. When the intensity of the transmitted light L2 and I 30, T t is 10 percent or more, I 30 / I 0 is 0.6 or more.
 全光線透過率Tは、不図示の分光光度計の積分球ユニットを用いて測定する。「全光線透過率」は、光拡散板40の一の主表面(例えば光照射面41)に対し入射角0゜で入射した入射光に対する、光拡散板40の残りの一の主表面(例えば発光面42)に透過した全透過光の割合(百分率)を意味する。全光線透過率は、入射光としてナトリウムランプのd線(波長589nm)を用いて、JIS K7361:1997(ISO 13468-1:1996)に記載された方法によって測定される。 The total light transmittance T t is measured using an integrating sphere unit of a spectrophotometer (not shown). The “total light transmittance” is the remaining one main surface (for example, the light diffusion plate 40) with respect to incident light that is incident at an incident angle of 0 ° to one main surface (for example, the light irradiation surface 41) of the light diffusion plate 40. It means the percentage of the total transmitted light transmitted to the light emitting surface 42). The total light transmittance is measured by the method described in JIS K7361: 1997 (ISO 13468-1: 1996) using the d-line (wavelength 589 nm) of a sodium lamp as incident light.
 全光線透過率Tは、光の取り出し効率を向上させるため、10%以上、好ましくは15%以上、より好ましくは15%以上、さらに好ましくは30%以上である。全光線透過率Tは、光拡散板40内部での光源30側への拡散反射を利用して拡散性能をより高くする観点から70%以下であり、より好ましくは50%以下、さらに好ましくは40%以下である。 The total light transmittance T t is 10% or more, preferably 15% or more, more preferably 15% or more, and further preferably 30% or more, in order to improve the light extraction efficiency. The total light transmittance T t is 70% or less, more preferably 50% or less, more preferably 50% or less, from the viewpoint of further enhancing the diffusion performance by utilizing the diffuse reflection toward the light source 30 inside the light diffusion plate 40. 40% or less.
 直線透過光L1の強度Iや拡散透過光L2の強度I30は、光度計60によって測定する。光度計60は、直線透過光L1の強度Iを測定する位置と、拡散透過光L2の強度I30を測定する位置との間で旋回される。拡散透過光L2の強度I30は、複数箇所での測定値の平均値を採用してもよいが、いずれか1箇所での測定値を採用してよい。 The intensity I 0 of the linear transmission light L 1 and the intensity I 30 of the diffuse transmission light L 2 are measured by the photometer 60. The photometer 60 is pivoted between a position at which the intensity I 0 of the linear transmitted light L 1 is measured and a position at which the intensity I 30 of the diffuse transmitted light L 2 is measured. Intensity I 30 of the diffuse transmitted light L2 may employ an average of measured values at a plurality of positions, but may employ a value measured at any one location.
 直線透過光L1の強度Iに対する拡散透過光L2の強度I30の比I30/I(以下、単に「強度比I30/I」とも呼ぶ)は、光源の形状を透けて見えないようにし、かつ光を均一に散乱させ発光面42上の輝度ムラを抑制するためには、0.6以上、好ましくは0.7以上、より好ましくは0.8以上である。 The ratio I 30 / I 0 of the intensity I 30 of the diffuse transmission light L 2 to the intensity I 0 of the linear transmission light L 1 (hereinafter also simply referred to as “intensity ratio I 30 / I 0 ”) does not show through the shape of the light source In order to scatter light uniformly and to suppress unevenness in luminance on the light emitting surface 42, it is 0.6 or more, preferably 0.7 or more, and more preferably 0.8 or more.
 図4は、図1の光拡散板の自重撓みに起因する光拡散板と光源との間隔の変化を誇張して示す図である。図4において、実線はフレーム20の上に水平に載置された光拡散板40の自重撓みを誇張して示し、二点鎖線は重力などの外力が作用していない状態(以下、「自然状態」と呼ぶ)の光拡散板40を示す。尚、図4では、光拡散板40はフレーム20に載置されているだけで固定されていないが、固定されていてもよい。 FIG. 4: is a figure which exaggerates and shows the change of the space | interval of the light-diffusion plate and the light source resulting from self-weight bending of the light-diffusion plate of FIG. In FIG. 4, the solid line exaggerates the self-weight deflection of the light diffusion plate 40 horizontally placed on the frame 20, and the two-dot chain line indicates a state in which no external force such as gravity acts (hereinafter referred to as “natural state And the light diffusion plate 40 of FIG. In FIG. 4, the light diffusion plate 40 is only mounted on the frame 20 and not fixed, but may be fixed.
 光拡散板40が重力などで撓むと、光拡散板40と光源30との間隔Dが光源30毎にばらつく。尚、光源30が固定される光反射板50は、台などの上に載置されるので、重力などによってほとんど撓まない。 When the light diffusion plate 40 is bent due to gravity or the like, the distance D between the light diffusion plate 40 and the light source 30 varies from one light source 30 to another. In addition, since the light reflection plate 50 to which the light source 30 is fixed is placed on a table or the like, it hardly bends due to gravity or the like.
 光拡散板40の比弾性率はヤング率Eを密度dで除したE/dであらわされ、26.0GPa・cm/g以上である。これによって、光拡散板40の撓みを低減でき、光拡散板40と光源30との間隔Dのばらつきを抑制できる。その結果、複数の光源30を用いることに起因する輝度ムラを抑制できる。 The specific elastic modulus of the light diffusing plate 40 is expressed by E / d obtained by dividing the Young's modulus E by the density d, and is 26.0 GPa · cm 3 / g or more. By this, the bending of the light diffusion plate 40 can be reduced, and the variation of the distance D between the light diffusion plate 40 and the light source 30 can be suppressed. As a result, it is possible to suppress luminance unevenness caused by using the plurality of light sources 30.
 光拡散板40の比弾性率E/dは、好ましくは26.5GPa・cm/g以上、より好ましくは27.0GPa・cm/g以上、さらに好ましくは27.5GPa・cm/g以上、特に好ましくは28.0GPa・cm/g以上、特により好ましくは29. 0GPa・cm/g以上、最も好ましくは30GPa・cm/g以上である。 The specific elastic modulus E / d of the light diffusion plate 40 is preferably 26.5 GPa · cm 3 / g or more, more preferably 27.0 GPa · cm 3 / g or more, still more preferably 27.5 GPa · cm 3 / g or more , particularly preferably 28.0GPa · cm 3 / g or more, particularly more preferably 29. 0GPa · cm 3 / g or more, and most preferably 30GPa · cm 3 / g or more.
 光拡散板40の密度dは、光拡散板40の比弾性率E/dを高めるため、好ましくは3.0g/cm以下、より好ましくは2.8g/cm以下、さらに好ましくは2.6g/cm以下、特に好ましくは2.5g/cm以下である。 The density d of the light diffusion plate 40 is preferably 3.0 g / cm 3 or less, more preferably 2.8 g / cm 3 or less, and further preferably 2. to increase the specific elastic modulus E / d of the light diffusion plate 40. It is 6 g / cm 3 or less, particularly preferably 2.5 g / cm 3 or less.
 光拡散板40の光照射面41や発光面42の対角線長さは、面発光装置10の大面積化のため、好ましくは1200mm以上である。 The diagonal lengths of the light irradiation surface 41 and the light emitting surface 42 of the light diffusion plate 40 are preferably 1200 mm or more in order to increase the area of the surface light emitting device 10.
 光拡散板40の板厚t(図3参照)は、面発光装置10の薄型化のため、好ましくは2.0mm以下、より好ましくは1.8mm以下、さらに好ましくは1.6mm以下、特に好ましくは1.4mm以下である。光拡散板40の板厚tは、好ましくは0.5mm以上である。 The plate thickness t (see FIG. 3) of the light diffusion plate 40 is preferably 2.0 mm or less, more preferably 1.8 mm or less, still more preferably 1.6 mm or less, particularly for thinning the surface light emitting device 10 Is 1.4 mm or less. The thickness t of the light diffusion plate 40 is preferably 0.5 mm or more.
 光拡散板40の光照射面41や発光面42の面内の、任意の300mm角の正方形領域での、高さ変位量(平面度ともいう)は、自重撓みの影響を無視できる状態で測定した場合において、好ましくは0.5mm以下、より好ましくは0.3mm以下、さらに好ましくは0.1mm以下、最も好ましくは0.05mm以下である。高さ変位量を0.5mm以下とすることで、光拡散板40の使用形態、特に光拡散板40をフレーム上に載置した状態における輝度分布を、より均一にすることができる。自重撓みを無視できる状態にするために、平面上に光拡散板40を設置して高さ変位量(平面度)を測定する。面内の高さ変位量を低減するためには、光拡散板40の成形方法として、フロート法、またはフュージョン法を用いることが好ましい。 The amount of height displacement (also referred to as flatness) in any 300 mm square area in the plane of the light irradiation surface 41 or the light emitting surface 42 of the light diffusion plate 40 is measured in a state where the influence of the self weight deflection can be ignored. In this case, it is preferably 0.5 mm or less, more preferably 0.3 mm or less, still more preferably 0.1 mm or less, and most preferably 0.05 mm or less. By setting the height displacement amount to 0.5 mm or less, the usage pattern of the light diffusion plate 40, in particular, the luminance distribution in the state where the light diffusion plate 40 is mounted on the frame can be made more uniform. In order to make the self-weight deflection negligible, the light diffusion plate 40 is placed on a plane to measure the amount of height displacement (flatness). In order to reduce the in-plane height displacement, it is preferable to use the float method or the fusion method as a method of forming the light diffusion plate 40.
 自然状態(例えば図4に二点鎖線で示す状態)の光拡散板40と各光源30との間隔Dは、面発光装置10の薄型化のため、好ましくは15mm以下、より好ましくは10mm以下、さらに好ましくは8mm以下、特に好ましくは6mm以下である。自然状態の光拡散板40と各光源30との間隔Dは、各光源30からの光が光照射面41の狭い範囲に集中しないように、好ましくは1mm以上、より好ましくは3mm以上である。 The distance D between the light diffusion plate 40 and each light source 30 in a natural state (for example, a state shown by a two-dot chain line in FIG. 4) is preferably 15 mm or less, more preferably 10 mm or less, for thinning the surface light emitting device 10. More preferably, it is 8 mm or less, and particularly preferably 6 mm or less. The distance D between the light diffusion plate 40 in the natural state and each light source 30 is preferably 1 mm or more, more preferably 3 mm or more, so that the light from each light source 30 is not concentrated in a narrow range of the light irradiation surface 41.
 光拡散板40は、酸化物基準のmol%表示で、MgOを1~16%、Pを0~5%、Alを1~9%含むガラスからなる。そのガラスは、結晶化ガラスでもよいが、本実施形態では分相ガラスである。分相ガラスは、複数種類のガラス相に分相したものである。複数種類のガラス相は、異なる屈折率を有し、光を散乱させる。分相ガラスは、マトリックスのガラス相と、マトリックス中に分散するガラス相とを有してよい。分相ガラスは、例えば下記組成のガラスを熱処理することで得られる。 The light diffusion plate 40 is made of glass containing 1 to 16% of MgO, 0 to 5% of P 2 O 5 , and 1 to 9% of Al 2 O 3 in terms of mol% on an oxide basis. The glass may be a crystallized glass, but in the present embodiment it is a phase separated glass. The phase-separated glass is a phase separated into plural types of glass phases. The multiple glass phases have different refractive indices and scatter light. Phase-separated glass may have a glass phase of a matrix and a glass phase dispersed in the matrix. The phase-separated glass can be obtained, for example, by heat-treating a glass having the following composition.
 分相ガラスは、酸化物基準のmol%表示で、例えば、SiOを55~70%、Alを1~7%、Bを1~20%含有する。分相ガラスは、上記3成分に加えて、MgO、CaO、SrO、BaO、NaO、KO、P、およびTiOの8つの成分から選ばれる1つ以上の成分を含有してもよい。NaO含有量は17%以下、且つTiO含有量は3%以下であってよい。 The phase-separated glass contains, for example, 55 to 70% of SiO 2 , 1 to 7% of Al 2 O 3 , and 1 to 20% of B 2 O 3 in terms of mol% on an oxide basis. The phase-separated glass contains, in addition to the above three components, one or more components selected from eight components of MgO, CaO, SrO, BaO, Na 2 O, K 2 O, P 2 O 5 , and TiO 2 You may The Na 2 O content may be 17% or less, and the TiO 2 content may be 3% or less.
 好ましくは、分相ガラスは、酸化物基準のmol%表示で、SiOを55~70%、Alを1~7%、Bを1~20%、MgOを1~15%、CaOを1~15%、SrOを1~15%、BaOを1~15%、NaOを17%以下、KOを5%以下、Pを1~8%、TiOを3%以下含有する。これらの11成分の合計の含有量を100mol%とすると、F含有量は外割で2mol%以下である。 Preferably, phase-separated glass, in mol% based on oxides, SiO 2 55 - 70% of Al 2 O 3 1 ~ 7% , B 2 O 3 1-20% ~ 1 MgO 15 %, the CaO 1 ~ 15%, the SrO 1 ~ 15%, 1 ~ 15% of BaO, Na 2 O 17% or less, the K 2 O 5% or less, P 2 O 5 to 1 ~ 8%, TiO 2 contains 3% or less. Assuming that the total content of these 11 components is 100 mol%, the F content is 2 mol% or less in external ratio.
 より好ましくは、分相ガラスは、酸化物基準のmol%表示で、SiOを58~68%、Alを2~7%、Bを3~18%、MgOを4~10%、CaOを3~10%、SrOを3~10%、BaOを3~10%、NaOを15%以下、KOを5%以下、Pを2~7%、TiOを3%以下含有する。これら11成分の合計の含有量を100mol%とすると、F含有量は外割で1mol%以下である。 More preferably, phase-separated glass is in mol% based on oxides, SiO 2 58 - 68%, the Al 2 O 3 2 ~ 7% , B 2 O 3 and 3 - 18%, MgO 4 to 10%, 3-10% of CaO, SrO and 3-10%, BaO of 3-10%, Na 2 O 15% or less, the K 2 O 5% or less, P 2 O 5 2-7% It contains 3% or less of TiO 2 . Assuming that the total content of these 11 components is 100 mol%, the F content is 1 mol% or less in external ratio.
 さらに好ましくは、分相ガラスは、酸化物基準のmol%表示で、SiOを60~65%、Alを2~7%、Bを5~15%、MgOを4~10%、CaOを3~10%、SrOを3~10%、BaOを3~10%、NaOを10%以下、KOを5%以下、Pを3~6%、TiOを3%以下含有する。これら11成分の合計の含有量を100mol%とすると、F含有量は外割で1mol%以下である。 More preferably, phase-separated glass is in mol% based on oxides, SiO 2 60 - 65%, the Al 2 O 3 2 ~ 7% , a B 2 O 3 5 ~ 15% , MgO 4 to 10%, the CaO 3 ~ 10%, the SrO 3 ~ 10%, a BaO 3 ~ 10%, Na 2 O 10% or less, the K 2 O 5% or less, P 2 O 5 3-6% It contains 3% or less of TiO 2 . Assuming that the total content of these 11 components is 100 mol%, the F content is 1 mol% or less in external ratio.
 以下、分相ガラスの各成分について説明する。各成分の説明において、「%」はmol%を意味する。 Hereinafter, each component of phase-separated glass is demonstrated. In the description of each component, "%" means mol%.
 SiO含有量は、分相ガラスの比弾性率を向上するため、55%以上、好ましくは58%以上、より好ましくは60%以上である。また、SiO含有量は、ガラス原料の溶解性ひいては分相ガラスの均質性を保つため、70%以下、好ましくは68%以下、より好ましくは65%以下である。 The SiO 2 content is 55% or more, preferably 58% or more, more preferably 60% or more, in order to improve the specific modulus of phase-separated glass. In addition, the SiO 2 content is 70% or less, preferably 68% or less, more preferably 65% or less, in order to maintain the solubility of the glass raw material and hence the homogeneity of the phase-separated glass.
 Al含有量は、分相ガラスの比弾性率を向上するため、1%以上、好ましくは2%以上、より好ましくは3%以上、さらに好ましくは4%以上である。また、Al含有量は、ガラス原料の溶解性ひいては分相ガラスの均質性を保つため、9%以下であり、8%以下が好ましく、7%以下がより好ましい。 The Al 2 O 3 content is 1% or more, preferably 2% or more, more preferably 3% or more, and still more preferably 4% or more, in order to improve the specific modulus of phase-separated glass. The Al 2 O 3 content is 9% or less, preferably 8% or less, and more preferably 7% or less, in order to maintain the solubility of the glass material and thus the homogeneity of the phase-separated glass.
 B含有量は、ガラス原料の溶解性ひいては分相ガラスの均質性を向上させるため、1%以上、好ましくは3%以上、より好ましくは5%以上である。また、B含有量は、溶融ガラスの液面からのB成分の揮散による溶融ガラスの均質性の悪化を抑制するため、20%以下、好ましくは18%以下、より好ましくは15%以下である。 The B 2 O 3 content is 1% or more, preferably 3% or more, more preferably 5% or more, in order to improve the solubility of the glass raw material and thus the homogeneity of the phase-separated glass. Further, B 2 O 3 content, in order to suppress deterioration of the homogeneity of the molten glass due to volatilization of B 2 O 3 component from the liquid surface of the molten glass, 20% or less, preferably 18% or less, more preferably 15% or less.
 MgO含有量は、分相ガラスの比弾性率を向上するため、1%以上、好ましくは3%以上、より好ましくは4%以上である。また、MgO含有量は、溶融ガラスの冷却時の失透を抑制するため、16%以下、より好ましくは15%以下、さらに好ましくは12%以下、最も好ましくは10%以下である。 The content of MgO is 1% or more, preferably 3% or more, more preferably 4% or more, in order to improve the specific modulus of phase-separated glass. The MgO content is 16% or less, more preferably 15% or less, still more preferably 12% or less, and most preferably 10% or less, in order to suppress the devitrification of the molten glass during cooling.
 CaO含有量は、分相ガラスの比弾性率を向上するため、好ましくは1%以上、より好ましくは3%以上である。また、CaO含有量は、溶融ガラスの冷却時の失透を抑制するため、好ましくは15%以下、より好ましくは10%以下である。特に拡散透過率を上げて、光拡散板40の発光面42の輝度を高めたい場合は、好ましくは4%以下、より好ましくは2%以下であり、さらに好ましくは1%以下である。 The CaO content is preferably 1% or more, more preferably 3% or more, in order to improve the specific elastic modulus of the phase-separated glass. Further, the CaO content is preferably 15% or less, more preferably 10% or less, in order to suppress devitrification at the time of cooling of the molten glass. In particular, when it is desired to increase the diffuse transmittance to increase the luminance of the light emitting surface 42 of the light diffusing plate 40, it is preferably 4% or less, more preferably 2% or less, and still more preferably 1% or less.
 SrO含有量は、分相ガラスの全光線透過率に占める直線透過率の割合を低下させ、分相ガラスの拡散透過率を向上させるため、好ましくは1%以上、より好ましくは3%以上である。また、SrO含有量は、溶融ガラスの冷却時の失透を抑制するため、好ましくは15%以下、より好ましくは10%以下である。特に拡散透過率を上げて、光拡散板40の発光面42の輝度を高めたい場合は、好ましくは4%以下、より好ましくは2%以下であり、さらに好ましくは1%以下である。 The SrO content is preferably 1% or more, more preferably 3% or more, in order to reduce the proportion of linear transmittance in the total light transmittance of the phase-separated glass and to improve the diffuse transmittance of the phase-separated glass. . The SrO content is preferably 15% or less, more preferably 10% or less, in order to suppress devitrification at the time of cooling of the molten glass. In particular, when it is desired to increase the diffuse transmittance to increase the luminance of the light emitting surface 42 of the light diffusing plate 40, it is preferably 4% or less, more preferably 2% or less, and still more preferably 1% or less.
 BaO含有量は、0%でもよいが、分相ガラスの全光線透過率に占める直線透過率の割合を低下させ、分相ガラスの拡散透過率を向上させるため、好ましくは1%以上、より好ましくは3%以上である。また、BaO含有量は、分相ガラスの熱膨張係数を小さくするため、好ましくは15%以下、より好ましくは10%以下である。特に光拡散板40の撓みを低減したい場合には、BaOは密度dを上げて比弾性率E/dを低下させるため、好ましくは4%以下、より好ましくは3%以下、さらに好ましくは2%以下、最も好ましくは1%以下である。 Although the content of BaO may be 0%, it is preferably 1% or more, more preferably, in order to reduce the ratio of linear transmittance to the total light transmittance of the phase separated glass and to improve the diffuse transmittance of the phase separated glass. Is 3% or more. The BaO content is preferably 15% or less, more preferably 10% or less, in order to reduce the thermal expansion coefficient of the phase-separated glass. In particular, when it is desired to reduce the deflection of the light diffusion plate 40, BaO increases the density d and lowers the specific elastic modulus E / d, so it is preferably 4% or less, more preferably 3% or less, still more preferably 2%. Below, most preferably it is 1% or less.
 NaOは、ガラス原料の溶解性ひいては分相ガラスの均質性を向上させる。但し、溶融ガラスの液面からのNaO成分の揮散による溶融ガラスの均質性の悪化を抑制するため、NaO含有量は、好ましくは17%以下、より好ましくは15%以下、さらに好ましくは10%以下である。NaO含有量は、実質的にゼロ%でもよい。 Na 2 O improves the solubility of the glass material and thus the homogeneity of phase-separated glass. However, the Na 2 O content is preferably 17% or less, more preferably 15% or less, and more preferably, in order to suppress deterioration of the homogeneity of the molten glass due to volatilization of the Na 2 O component from the liquid surface of the molten glass. Is less than 10%. The Na 2 O content may be substantially zero.
 KOは、ガラス原料の溶解性ひいては分相ガラスの均質性を向上させる。但し、分相ガラスの熱膨張係数を小さくするため、KO含有量は、好ましくは5%以下である。KO含有量は、実質的にゼロ%でもよい。 K 2 O improves the solubility of the glass material and thus the homogeneity of phase-separated glass. However, in order to reduce the thermal expansion coefficient of phase-separated glass, the K 2 O content is preferably 5% or less. The K 2 O content may be substantially zero percent.
 P含有量は、0%でもよいが、分相ガラスの全光線透過率に占める直線透過率の割合を低下させ、分相ガラスの拡散透過率を向上させるため、好ましくは1%以上、より好ましくは2%以上、さらに好ましくは3%以上である。また、P含有量は、溶融ガラスの液面からのP成分の揮散による溶融ガラスの均質性の悪化を抑制するため、好ましくは8%以下、より好ましくは7%以下、さらに好ましくは6%以下、特に好ましくは5%以下、最も好ましくは4.5%以下、さらに最も好ましくは4%以下である。 Although the P 2 O 5 content may be 0%, it is preferably 1% or more in order to reduce the ratio of the linear transmittance to the total light transmittance of the phase separated glass and to improve the diffusion transmittance of the phase separated glass More preferably, it is 2% or more, further preferably 3% or more. Further, the P 2 O 5 content is preferably 8% or less, more preferably 7% or less, in order to suppress deterioration of the homogeneity of the molten glass due to volatilization of the P 2 O 5 component from the liquid surface of the molten glass. More preferably, it is at most 6%, particularly preferably at most 5%, most preferably at most 4.5%, most preferably at most 4%.
 TiOは、分相ガラスの全光線透過率に占める直線透過率の割合を低下させ、分相ガラスの拡散透過率を向上させる。但し、溶融ガラスの冷却時の失透を抑制するため、TiO含有量は、好ましくは3%以下である。TiO含有量は、実質的にゼロ%でもよい。 TiO 2 reduces the ratio of the linear transmittance to the total light transmittance of the phase separated glass, and improves the diffuse transmittance of the phase separated glass. However, in order to suppress devitrification during cooling of the molten glass, TiO 2 content is preferably 3% or less. The TiO 2 content may be substantially zero.
 Fは、溶融ガラスの清澄性を向上させる。但し、溶融ガラスの冷却時の失透を抑制するため、また、溶融ガラスの液面からのF成分の揮散による溶融ガラスの均質性の悪化を抑制するため、F含有量は、外割で2%以下である。F含有量は、実質的にゼロ%でもよい。 F improves the clarity of the molten glass. However, in order to suppress the devitrification at the time of cooling of the molten glass and also to suppress the deterioration of the homogeneity of the molten glass due to the volatilization of the F component from the liquid surface of the molten glass, the F content is % Or less. The F content may be substantially zero.
 ZrOは、分相ガラスのヤング率および比弾性率を向上させる。但し、溶融ガラスの冷却時の失透を抑制するため、ZrO含有量は、好ましくは3%以下であり、より好ましくは2%以下、さらに好ましくは1%以下である。ZrO含有量は、実質的にゼロ%でもよい。 ZrO 2 improves the Young's modulus and specific modulus of phase-separated glass. However, in order to suppress devitrification at the time of cooling of the molten glass, the ZrO 2 content is preferably 3% or less, more preferably 2% or less, and still more preferably 1% or less. The ZrO 2 content may be substantially zero percent.
 本発明の光拡散板の主表面の両面または片面に光散乱層を設けて、さらに光拡散性を向上させてもよい。また、本発明の光散乱板の主表面の両面または片面に中心線平均粗さが50μm以下、凹凸部の平均間隔が5mm以下の凹凸の構造をつける表面処理を行って、さらに光拡散性を向上させてもよい。尚、後述の試験例1~18では、光散乱層は設けておらず、凹凸などの構造をつける表面処理も行っていない。 A light scattering layer may be provided on both sides or one side of the main surface of the light diffusion plate of the present invention to further improve the light diffusion property. In addition, the surface of the main surface of the light scattering plate of the present invention is subjected to surface treatment to give an uneven structure having a center line average roughness of 50 μm or less and an average interval of the uneven portions of 5 mm or less It may be improved. In Test Examples 1 to 18 described later, no light scattering layer was provided, and no surface treatment was applied to give a structure such as unevenness.
 [試験例1~12]
 試験例1~12では、表1~3に記載のガラス組成の分相ガラスを作製し、密度d、ヤング率E、比弾性率E/d、全光線透過率T、および強度比I30/Iを測定した。
[Test Examples 1 to 12]
In Test Examples 1 to 12, phase-divided glasses of the glass compositions described in Tables 1 to 3 were prepared, and density d, Young's modulus E, specific elastic modulus E / d, total light transmittance T t , and intensity ratio I 30 / I 0 was measured.
分相ガラスは以下の方法で作製した。先ず、予め調製したガラス原料を1650℃で溶解、均質化、脱泡し、溶融ガラスを作製した。その溶融ガラスを、毎分50℃の冷却速度にて表1~3に記載の分相処理温度まで冷却した後、分相処理温度で30分保持し、型材に流し込み、ガラス転移温度から30℃高い温度にて1時間保持後、毎分1℃の冷却速度にて室温まで冷却し、分相ガラスを作製した。ガラスが分相し、2相に分かれていることを走査型顕微鏡により観察した。 Phase-separated glass was produced by the following method. First, a glass material prepared in advance was melted, homogenized, and degassed at 1650 ° C. to produce a molten glass. The molten glass is cooled to the phase separation temperature described in Tables 1 to 3 at a cooling rate of 50 ° C. per minute, held at the phase separation temperature for 30 minutes, poured into a mold, and 30 ° C. from the glass transition temperature. After holding at high temperature for 1 hour, the glass was cooled to room temperature at a cooling rate of 1 ° C./min to prepare phase-separated glass. It was observed by a scanning electron microscope that the glass was phase separated and divided into two phases.
 全光線透過率Tや、直線透過光の強度I、拡散透過光の強度I30などを測定する測定サンプルとしては、両主表面が鏡面研磨された板厚tが1.0mmのものを用いた。 As a measurement sample for measuring the total light transmittance T t , the intensity I 0 of linear transmission light, the intensity I 30 of diffuse transmission light, etc., those having a plate thickness t of 1.0 mm with both main surfaces mirror-polished Using.
 全光線透過率Tは、パーキンエルマー社製分光光度計(商品名:Lamda950)の積分球ユニットを用いて測定した。 The total light transmittance T t was measured using an integrating sphere unit of a Perkin Elmer spectrophotometer (trade name: Lamda 950).
 透過光強度の角度分布は、紫外可視赤外分光光度計(日本分光社製:V-670DS)、および自動絶対反射率測定ユニット(日本分光社製:ARMN-735)により測定した。測定サンプルの片側の主面に対して法線方向から光を入射させ、前記法線方向とのなす角度が0°と30°の方向に透過した波長550nmの光の強度を測定し、IおよびI30とした。それらの値よりI30/Iを算出した。 The angular distribution of the transmitted light intensity was measured by an ultraviolet visible infrared spectrophotometer (manufactured by JASCO Corporation: V-670 DS) and an automatic absolute reflectance measurement unit (manufactured by JASCO Corporation: ARMN-735). Applying light from the normal direction with respect to one side of the main surface of the measurement sample, by measuring the intensity of the light of wavelength 550nm which angle is transmitted in the direction of 0 ° and 30 ° with the normal direction, I 0 and was I 30. From these values was calculated I 30 / I 0.
 測定結果を、ガラス組成と合わせて表1~3に示す。尚、表1~3において、F含有量は、F以外の11成分の含有量の合計を100mol%としたときの外割で表す。 The measurement results are shown in Tables 1 to 3 together with the glass composition. In Tables 1 to 3, the F content is expressed by an external division when the total content of the 11 components other than F is 100 mol%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~3に示すように、試験例1~11のガラス組成の分相ガラスは、Tが10~70%、I30/Iが0.6以上、E/dが26.0GPa・cm/g以上であった。一方、試験例12のガラス組成の分相ガラスは、Tが10~70%、I30/Iが0.6以上であったが、E/dが26.0GPa・cm/g未満であった。
Figure JPOXMLDOC01-appb-T000003
As shown in Tables 1 to 3, phase-divided glasses of the glass compositions of Test Examples 1 to 11 had T t of 10 to 70%, I 30 / I 0 of 0.6 or more, and E / d of 26.0 GPa · It was cm 3 / g or more. On the other hand, the phase-differentiated glass of the glass composition of Test Example 12 had a T t of 10 to 70% and an I 30 / I 0 of 0.6 or more, but an E / d of less than 26.0 GPa · cm 3 / g Met.
 平面度は、JIS B 0621 1984に従い、レーザー変位計により測定した。実施例5のガラスで、両主表面が鏡面研磨された板厚tが1.0mmで300×300mmの板状の光拡散板を5枚作製し、各光拡散板の一の主表面を定盤上に設置し、その光拡散板の残りの一の主表面(上面)をレーザー変位計で走査し、各主表面の平面度を測定した。10個の主表面の平面度は、最大値が0.4mmであり、最小値が0.05mmであった。 The flatness was measured by a laser displacement meter according to JIS B 0621 1984. Using the glass of Example 5, five plate-like light diffusion plates with a thickness t of 1.0 mm and 300 × 300 mm with mirror-polished on both main surfaces are prepared, and one main surface of each light diffusion plate is determined. It was installed on a board, and the remaining one main surface (upper surface) of the light diffusion plate was scanned with a laser displacement meter to measure the flatness of each main surface. The flatness of the ten major surfaces had a maximum value of 0.4 mm and a minimum value of 0.05 mm.
 [試験例13~18]
 試験例13~18では、光拡散板の比弾性率E/dと、光拡散板の発光面の輝度分布との関係をシミュレーションで調べた。シミュレーションには、LightTools(Synopsys社製)を用いた。試験例13~14が実施例、試験例15~18が比較例である。
[Test Examples 13 to 18]
In Test Examples 13 to 18, the relationship between the specific elastic modulus E / d of the light diffusing plate and the luminance distribution of the light emitting surface of the light diffusing plate was examined by simulation. LightTools (manufactured by Synopsys) was used for the simulation. Test Examples 13 to 14 are Examples, and Test Examples 15 to 18 are Comparative Examples.
 光拡散板は、光照射面および発光面の形状が矩形状、縦寸法(短辺の長さ)が622mm、横寸法(長辺の長さ)が1105mm、対角線長さが1270mmとした。光拡散板は、光拡散板と同じ外形を有する四角枠状の水平なフレームに載置しただけで固定せず、図4に示すように自重で撓ませた。光拡散板の撓み量は、光拡散板の中心部で最大値ΔDmaxであった。 The light diffusing plate had a rectangular shape with a light emitting surface and a light emitting surface, a vertical dimension (short side length) of 622 mm, a horizontal dimension (long side length) of 1105 mm, and a diagonal length of 1270 mm. The light diffusion plate was placed on a rectangular frame-like horizontal frame having the same outer shape as the light diffusion plate but was not fixed but was bent by its own weight as shown in FIG. The amount of deflection of the light diffusion plate was a maximum value ΔD max at the center of the light diffusion plate.
 光拡散板は、マトリックスと、マトリックス中に分散する球体の粒子とで構成した。試験例13~18では、全光線透過率Tおよび強度比I30/Iが試験例5の結果と一致するように、粒子径や粒子の体積割合、粒子の屈折率、マトリックスの屈折率、および板厚tを決めた。 The light diffusion plate was composed of a matrix and spherical particles dispersed in the matrix. In Test Examples 13 to 18, the particle diameter, the volume fraction of particles, the refractive index of particles, the refractive index of the matrix, and the total light transmittance T t and the intensity ratio I 30 / I 0 agree with the results of Test Example 5 , And decided the thickness t.
 具体的には、試験例13~16では、光拡散板が試験例5の分相ガラスで形成されていることを想定し、粒子径が268nm、粒子の体積割合が9%、粒子の屈折率が1.64、マトリックスの屈折率が1.51、板厚tが1.0mmとした。 Specifically, in Test Examples 13 to 16, assuming that the light diffusion plate is formed of the phase-separated glass of Test Example 5, the particle diameter is 268 nm, the volume fraction of particles is 9%, and the refractive index of the particles The refractive index of the matrix is 1.51, and the plate thickness t is 1.0 mm.
 一方、試験例17~18では、光拡散板がポリスチレン樹脂とポリスチレン樹脂中に分散する粒子とで構成されることを想定し、粒子径が1000nm、粒子の体積割合が22%、粒子の屈折率が1.49、マトリックスの屈折率が1.59、板厚tが2.2mmとした。 On the other hand, in Test Examples 17 to 18, assuming that the light diffusion plate is composed of polystyrene resin and particles dispersed in polystyrene resin, the particle diameter is 1000 nm, the volume fraction of particles is 22%, and the refractive index of particles Is 1.49, the refractive index of the matrix is 1.59, and the plate thickness t is 2.2 mm.
 複数の光源には、それぞれLEDを用いた。各LEDは一辺が2mmの立方体とし、立方体の上面のみから光が出射するとした。各LEDからの光線の本数は100万本とし、光線の方向と光線の密度との関係はランバート分布で近似した。各LEDの下面は、光反射板の上面に固定した。光反射板の上面の光反射率は100%とした。 An LED was used for each of the plurality of light sources. Each LED is a cube of 2 mm on a side, and light is emitted only from the upper surface of the cube. The number of rays from each LED was one million, and the relationship between the direction of the rays and the density of the rays was approximated by a Lambert distribution. The lower surface of each LED was fixed to the upper surface of the light reflection plate. The light reflectance of the upper surface of the light reflection plate was 100%.
 複数のLEDは、光反射板の上面に、行列状に配置した。具体的には、図2に示すように横方向に100mmピッチで並ぶ10個のLEDでLED群を構成し、そのLED群を縦方向に100mmピッチで5個並べた。 The plurality of LEDs were arranged in a matrix on the top surface of the light reflection plate. Specifically, as shown in FIG. 2, an LED group is constituted by 10 LEDs arranged in the lateral direction at a pitch of 100 mm, and five LED groups are arranged in the longitudinal direction at a pitch of 100 mm.
 試験例13~17では、自然状態の光拡散板と各LEDとの間隔Dは、10mmで一定とした。一方、試験例18では、自然状態の光拡散板と各LEDとの間隔Dは、30mmで一定とした。 In Test Examples 13 to 17, the distance D between the light diffusion plate in the natural state and each LED was constant at 10 mm. On the other hand, in Test Example 18, the distance D between the light diffusion plate in the natural state and each LED was constant at 30 mm.
 光拡散板の発光面(上面)の輝度は、光拡散板が自重で撓んだ状態で測定した。測定位置は、縦方向中央のLED群に属する10個のLEDのそれぞれの光軸上であって、試験例13~17では各LEDの上面から13mm上方の位置とし、試験例18では各LEDの上面から33mm上方の位置とした。測定エリアは、横寸法が2.2mm、縦寸法が1.0mmの矩形状とした。 The luminance of the light emitting surface (upper surface) of the light diffusing plate was measured in a state where the light diffusing plate was bent by its own weight. The measurement position is on the optical axis of each of the 10 LEDs belonging to the longitudinally central LED group, and in Test Examples 13 to 17, the position is 13 mm above the upper surface of each LED, and in Test Example 18, each LED is The position was 33 mm above the top surface. The measurement area was a rectangular shape having a horizontal dimension of 2.2 mm and a vertical dimension of 1.0 mm.
 結果を表4にまとめる。表4において、LEDの番号は、LEDの並ぶ順番を表し、横方向一端側から横方向他端側に向けて大きくなるように設定した。表4において、相対輝度とは、各試験例において最大輝度を1としたときの輝度のことである。 The results are summarized in Table 4. In Table 4, the numbers of the LEDs represent the order in which the LEDs are arranged, and were set to increase from one lateral end to the other lateral end. In Table 4, the relative luminance is the luminance when the maximum luminance is 1 in each test example.
 表4から明らかなように、試験例13~14では、比弾性率E/dが26.0GPa・cm/g以上であったため、撓み量の最大値ΔDmaxが小さく、相対輝度の最大値と最小値との差が小さかった。一方、試験例15~17では、比弾性率E/dが26.0GPa・cm/g未満であったため、撓み量の最大値ΔDmaxが大きく、相対輝度の最大値と最小値との差が大きかった。撓み量の最大値ΔDmaxが大きい場合、横方向中央部では、撓みによって光拡散板とLEDの距離が近づきすぎたため、LEDの形が透けて見えるようになり、LED直上の輝度が大きくなった。そのため、横方向中央部と横方向端部とで相対輝度の差が大きくなった。さらに試験例17~18では、自然状態での十分な光拡散性をもたせるためには、厚さが2.2mm必要となるため、バックライトユニットとしてそもそも薄型化することが難しい。 As apparent from Table 4, in the test examples 13 to 14, since the specific elastic modulus E / d was 26.0 GPa · cm 3 / g or more, the maximum value ΔD max of the deflection amount is small, and the maximum value of the relative luminance is The difference between the and the minimum value was small. On the other hand, in the test examples 15 to 17, since the specific elastic modulus E / d was less than 26.0 GPa · cm 3 / g, the maximum value ΔD max of the deflection amount is large, and the difference between the maximum value and the minimum value of the relative luminance Was great. When the maximum value ΔD max of the amount of deflection is large, the distance between the light diffusion plate and the LED is too close due to the deflection at the lateral center, so that the shape of the LED can be seen through and the brightness directly above the LED is increased . Therefore, the difference in relative luminance between the lateral center and the lateral end became large. Further, in Test Examples 17 to 18, in order to obtain sufficient light diffusion in a natural state, a thickness of 2.2 mm is required, and it is difficult to reduce the thickness as a backlight unit.
 以上、光拡散板の実施形態などについて説明したが、本発明は上記実施形態などに限定されず、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、改良が可能である。 As mentioned above, although embodiment of a light-diffusion plate etc. was described, this invention is not limited to the said embodiment etc., A various deformation | transformation and improvement are possible within the range of the summary of this invention described in the claim. It is.
 光拡散板40の撓みは、上記実施形態では自重撓みであるが、自重撓みには限定されず、例えばフレーム20に拘束されることで生じる撓みなどでもよい。従って、光拡散板40は、図4では水平に配置されているが、鉛直に配置されてもよい。尚、光拡散板40は、水平面に対し斜めに配置されてもよい。 Although the deflection of the light diffusion plate 40 is the self weight deflection in the above embodiment, it is not limited to the self weight deflection, and may be a deflection caused by being restrained by the frame 20, for example. Therefore, the light diffusion plate 40 is arranged horizontally in FIG. 4 but may be arranged vertically. The light diffusion plate 40 may be disposed obliquely with respect to the horizontal plane.
 本出願は、2016年6月2日に日本国特許庁に出願した特願2016-110849号および2016年8月17日に日本国特許庁に出願した特願2016-160187号に基づく優先権を主張するものであり、特願2016-110849号および特願2016-160187号の全内容を本出願に援用する。 Priority is claimed on Japanese Patent Application No. 2016-110849 filed with the Japanese Patent Office on June 2, 2016, and Japanese Patent Application No. 2016-160187 filed on the Japanese Patent Office on August 17, 2016. The entire contents of Japanese Patent Application Nos. 2016-110849 and 2016-160187 are incorporated into the present application.
10 面発光装置
12 液晶パネル
20 フレーム
30 光源
40 光拡散板
41 主表面(光照射面)
42 主表面(発光面)
50 光反射板
10 surface emitting device 12 liquid crystal panel 20 frame 30 light source 40 light diffusion plate 41 main surface (light irradiation surface)
42 Main surface (emitting surface)
50 light reflector

Claims (9)

  1.  複数の光源からの光を、互いに対向する2つの主表面の一方から他方に拡散透過させる、光拡散板であって、
     波長550nmの光を前記一方の主表面に対し垂直に入射させたときの、全光線透過率をT、出射方向が入射方向と同一方向である透過光の強度をI、出射方向が入射方向に対し30°傾いた方向である透過光の強度をI30とすると、Tが10~70%、I30/Iが0.6以上であり、
     比弾性率が26.0GPa・cm/g以上であって、酸化物基準のmol%表示で、MgOを1~16%、Pを0~5%、Alを1~9%含むガラスからなる、光拡散板。
    A light diffusing plate that diffuses and transmits light from a plurality of light sources from one of two main surfaces facing each other to the other,
    The total light transmittance is T t when the light having a wavelength of 550 nm is perpendicularly incident on the one main surface, the intensity of the transmitted light having an exit direction in the same direction as the exit direction is I 0 , and the exit direction is incident. Assuming that the intensity of transmitted light, which is a direction inclined by 30 ° with respect to the direction, is I 30 , T t is 10 to 70%, and I 30 / I 0 is 0.6 or more,
    The specific modulus is 26.0 GPa · cm 3 / g or more, and it is 1 to 16% of MgO, 0 to 5% of P 2 O 5, and 1 to 5% of Al 2 O 3 in terms of mol% on an oxide basis. A light diffuser made of glass containing 9%.
  2.  前記ガラスが、酸化物基準のmol%表示で、BaOを0~2%、ZrOを0~2%含む、請求項1に記載の光拡散板。 The light diffusing plate according to claim 1, wherein the glass contains 0 to 2% of BaO and 0 to 2% of ZrO 2 in terms of mol% on an oxide basis.
  3.  各前記主表面の対角線長さが、1200mm以上であり、
     板厚が2.0mm以下である、請求項1または2に記載の光拡散板。
    The diagonal length of each of the main surfaces is at least 1200 mm,
    The light diffusing plate of Claim 1 or 2 whose board thickness is 2.0 mm or less.
  4.  前記ガラスは分相ガラスである、請求項1~3のいずれか1項に記載の光拡散板。 The light diffusion plate according to any one of claims 1 to 3, wherein the glass is a phase separated glass.
  5.  前記分相ガラスは、酸化物基準のmol%表示で、SiOを55~70%、Alを1~7%、Bを1~20%含む、請求項4に記載の光拡散板。 The partial phase glass is in mol% based on oxides, SiO 2 55 ~ 70%, the Al 2 O 3 1 ~ 7% , including B 2 O 3 1 ~ 20% , according to claim 4 Light diffuser.
  6.  前記分相ガラスは、酸化物基準のmol%表示で、NaO含有量が17%以下であり、且つ、TiO含有量が3%以下である請求項4または5に記載の光拡散板。 The light diffusing plate according to claim 4 or 5, wherein the phase-separated glass has a Na 2 O content of 17% or less and a TiO 2 content of 3% or less in terms of mol% on an oxide basis. .
  7.  各前記主表面の面内の、任意の300mm角の正方形領域での、高さ変位量が0.5mm以下である、請求項1~6のいずれか1項に記載の光拡散板。 The light diffusion plate according to any one of claims 1 to 6, wherein the height displacement amount in an arbitrary 300 mm square area in the plane of each of the main surfaces is 0.5 mm or less.
  8.  請求項1~7のいずれか1項に記載の光拡散板と、複数の前記光源とを含む、面発光装置であって、
     外力が作用していない状態での前記光拡散板と各前記光源との間隔が15mm以下である、面発光装置。
    A surface light emitting device comprising the light diffusion plate according to any one of claims 1 to 7 and a plurality of the light sources,
    The surface emitting apparatus whose space | interval of the said light-diffusion board and each said light source in the state which is not acting external force is 15 mm or less.
  9.  請求項8に記載の面発光装置と、前記面発光装置が光を照射する液晶パネルとを備える、液晶表示装置。 A liquid crystal display device comprising: the surface light emitting device according to claim 8; and a liquid crystal panel to which the surface light emitting device emits light.
PCT/JP2017/020481 2016-06-02 2017-06-01 Light diffusing plate, surface light-emitting device, and liquid crystal display device WO2017209254A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-110849 2016-06-02
JP2016110849 2016-06-02
JP2016-160187 2016-08-17
JP2016160187 2016-08-17

Publications (1)

Publication Number Publication Date
WO2017209254A1 true WO2017209254A1 (en) 2017-12-07

Family

ID=60478661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020481 WO2017209254A1 (en) 2016-06-02 2017-06-01 Light diffusing plate, surface light-emitting device, and liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2017209254A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219365A (en) * 2005-01-17 2006-08-24 Ohara Inc Glass
JP2006232661A (en) * 2005-01-31 2006-09-07 Ohara Inc Crystallized glass and its manufacturing method
JP2013035745A (en) * 2011-07-14 2013-02-21 Omg Co Ltd Light diffusion glass member
JP2014144907A (en) * 2013-01-04 2014-08-14 Nippon Electric Glass Co Ltd Glass plate
WO2016195015A1 (en) * 2015-06-02 2016-12-08 旭硝子株式会社 Light diffusion plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219365A (en) * 2005-01-17 2006-08-24 Ohara Inc Glass
JP2006232661A (en) * 2005-01-31 2006-09-07 Ohara Inc Crystallized glass and its manufacturing method
JP2013035745A (en) * 2011-07-14 2013-02-21 Omg Co Ltd Light diffusion glass member
JP2014144907A (en) * 2013-01-04 2014-08-14 Nippon Electric Glass Co Ltd Glass plate
WO2016195015A1 (en) * 2015-06-02 2016-12-08 旭硝子株式会社 Light diffusion plate

Similar Documents

Publication Publication Date Title
US7309143B2 (en) Optical material, optical element, illuminator and display device
CN101371074B (en) Planar illumination device
JP2021038141A (en) Light guide plate and optical display with backlighting
TW201921009A (en) Direct-lit backlight unit with 2D local dimming
TWI739952B (en) Microstructured light guide plates and devices comprising the same
JP2011099899A (en) Light scattering member and method for producing the same
TWI772501B (en) Multilayer reflector for direct lit backlights
TW201629588A (en) Contrast enhancement sheet and display device comprising the same
TW201835655A (en) Backlight unit with 2d local dimming
JP2006201642A (en) Diffusion lens array sheet and surface light source device
JP3437185B2 (en) Fluorescent lamp with spacer and locally thin phosphor layer thickness
KR20200127064A (en) Diffusion plate and backlight unit having light guide function
CN102853343A (en) Direct-lit backlight and display
TW201921008A (en) Backlight unit having a light guide plate
US20190064595A1 (en) Display system
JP2020506525A (en) Light guide plate assembly including optical manipulation features
WO2017209254A1 (en) Light diffusing plate, surface light-emitting device, and liquid crystal display device
JP2019529316A (en) High permeability glass containing alkaline earth oxide as modifier
TWI358004B (en) Backlight module
KR20020028045A (en) A light guidance sheet for back light unit
TW200844566A (en) Backlight module and liquid crystal display
JP2014145824A (en) Light source module and display device including the same
CN218917868U (en) Light diffusion plate and backlight module
US20230223493A1 (en) Substrate for led element and image display device
JP2013004408A (en) Direct-type point light source backlight device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17806804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP