TWI772501B - Multilayer reflector for direct lit backlights - Google Patents
Multilayer reflector for direct lit backlights Download PDFInfo
- Publication number
- TWI772501B TWI772501B TW107130059A TW107130059A TWI772501B TW I772501 B TWI772501 B TW I772501B TW 107130059 A TW107130059 A TW 107130059A TW 107130059 A TW107130059 A TW 107130059A TW I772501 B TWI772501 B TW I772501B
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- substrate
- backlight unit
- area
- reflector
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133615—Edge-illuminating devices, i.e. illuminating from the side
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/005—Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/005—Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
- G02B6/0055—Reflecting element, sheet or layer
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/0058—Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
- G02B6/0061—Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to provide homogeneous light output intensity
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0066—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
- G02B6/0068—Arrangements of plural sources, e.g. multi-colour light sources
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Planar Illumination Modules (AREA)
- Liquid Crystal (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
Description
此申請案依據專利法主張於2017年8月29日所提出的第62/551,491號的美國臨時專利申請案的優先權權益,該申請案的整體內容於本文中以引用方式依附及併入本文中。This application claims the benefit of priority under the patent law from US Provisional Patent Application No. 62/551,491, filed on August 29, 2017, the entire contents of which are hereby incorporated by reference herein. middle.
本揭示案大致與背光單元以及包括此類背光單元的顯示或照明設備相關,且更具體而言是與包括圖案化的玻璃光導板及圖案化的反射層的背光單元相關。The present disclosure generally relates to backlight units and display or lighting apparatus including such backlight units, and more particularly to backlight units including patterned glass light guide plates and patterned reflective layers.
液晶顯示器(LCD)常用於各種電子設備中,例如手機、膝上型電腦、電子平板、電視及電腦監視器。LCD可包括用於產生光的背光單元(BLU),該光可接著被轉換、過濾及/或偏振以產生所需的影像。BLU可為邊緣發光的(例如包括耦接到光導板(LGP)的邊緣的光源)或背部發光的(例如包括安置在LCD面板後方的光源的二維陣列)。Liquid crystal displays (LCDs) are commonly used in various electronic devices such as cell phones, laptops, electronic tablets, televisions, and computer monitors. The LCD can include a backlight unit (BLU) for generating light, which can then be converted, filtered, and/or polarized to produce the desired image. The BLU may be edge-lit (eg, including a light source coupled to the edge of a light guide plate (LGP)) or back-lit (eg, including a two-dimensional array of light sources disposed behind the LCD panel).
LCD亦可被視為基於光閥的顯示器,其中顯示面板包括使用一對偏振器及電控的液晶層的可個別定址的光閥的陣列。需要BLU從LCD產生發射影像。由於最先進的發光二極體(LED)的高效率及小尺寸,大部分的現代BLU都利用LED。BLU分成兩種變體。邊緣發光的BLU包括邊緣耦接到光導板(LGP)的線狀LED陣列,該光導板從該光導板的表面發射光。直接發光的BLU包括LCD面板正後方的2D LED陣列。直接發光BLU相較於邊緣發光的BLU而言可具有改良的動態對比的優點。例如,具有直接發光的BLU的顯示器可獨立調整各個LED的亮度以跨影像最佳化亮度的動態範圍。這常稱為局部調暗。然而,為了達成所需的光均勻性及/或為了避免直接發光BLU中的熱斑,可將光源定位在距LGP及/或漫射膜的一定距離處,因此使得整體顯示器厚度大於邊緣發光BLU的顯示器厚度。亦提出了定位在LED上方的透鏡以改良直接發光BLU中的光的側向傳播,但是在此類配置下,LED與漫射膜之間的光學距離(例如從約15-20 mm)仍然造成不合乎需要地高的整體顯示器厚度及/或該等組件在BLU厚度減少時可能產生不合乎需要的光損失。雖然邊緣發光的BLU可能是更薄的,但來自各個LED的光可能跨LGP的大區域傳播,使得關掉(turn off)個別的LED或LED群組可能在動態對比度上僅具有最小的影響。直接發光的BLU亦具有優點,因為它們可藉由採用2D局部調暗來允許改良的動態對比,在該2D局部調暗下,可將螢幕的暗區域中的LED關掉。An LCD can also be considered a light valve based display, where the display panel includes an array of individually addressable light valves using a pair of polarizers and an electrically controlled liquid crystal layer. The BLU is required to generate the emission image from the LCD. Due to the high efficiency and small size of state-of-the-art light emitting diodes (LEDs), most modern BLUs utilize LEDs. BLU is divided into two variants. An edge-lit BLU includes a linear LED array edge-coupled to a light guide plate (LGP) that emits light from the surface of the light guide plate. The direct-emitting BLU includes a 2D LED array directly behind the LCD panel. Direct-emitting BLUs may have the advantage of improved dynamic contrast compared to edge-emitting BLUs. For example, a display with a direct-emitting BLU can independently adjust the brightness of each LED to optimize the dynamic range of brightness across the image. This is often referred to as local dimming. However, to achieve the desired light uniformity and/or to avoid hot spots in direct-emitting BLUs, the light source may be positioned at a distance from the LGP and/or diffuser film, thus making the overall display thickness greater than that of edge-emitting BLUs display thickness. Lenses positioned over the LEDs have also been proposed to improve the lateral propagation of light in direct-emitting BLUs, but in such configurations, the optical distance between the LEDs and the diffuser film (eg, from about 15-20 mm) still causes The undesirably high overall display thickness and/or these components may result in undesirably light loss as the BLU thickness is reduced. While edge-lit BLUs may be thinner, light from individual LEDs may spread across large areas of the LGP, so that turning off individual LEDs or groups of LEDs may have only minimal impact on dynamic contrast. Direct-emitting BLUs are also advantageous as they can allow for improved dynamic contrast by employing 2D local dimming where LEDs in dark areas of the screen can be turned off.
因此,在不負面影響由BLU所發射的光的均勻性的情況下提供具有改良的局部調暗效率的薄BLU會是有利的。Therefore, it would be advantageous to provide a thin BLU with improved local dimming efficiency without negatively affecting the uniformity of the light emitted by the BLU.
在各種實施例中,本揭示案與一種製作包括二或更多個層的多層圖案化反射器的設計及方法相關,其中該等層中的各者被設計為使得該層具有第一區域及第二區域,該第一區域較該第二區域更具反射性,而該第二區域較該第一區域更具透射性。In various embodiments, the present disclosure is related to a design and method of making a multilayer patterned reflector comprising two or more layers, wherein each of the layers is designed such that the layer has a first region and A second area, the first area is more reflective than the second area, and the second area is more transmissive than the first area.
該多層圖案化反射器可被最佳化為用於薄的直接發光LCD背光中,其中該多層圖案化反射器用來藉由該圖案化反射器與均勻的背部平面反射器之間的多重反射在背光平面上傳播離散LED源的光,且藉此向LCD面板提供亮度均勻的照明。The multilayer patterned reflector can be optimized for use in thin direct emitting LCD backlights, where the multilayer patterned reflector is used to reflect the The light from the discrete LED sources is propagated on the backlight plane and thereby provides illumination of uniform brightness to the LCD panel.
一種製作多層圖案化反射器的方法可包括以下步驟:使用反射性的白漆或墨水,及藉由使用數位印刷技術連續印刷多個層來將該漆或墨水施用於合適的玻璃或塑膠基板。該圖案化反射器可具有若干個層,各個層被圖案化具有相對低的解析度,這可簡單地及不貴地藉由使用高度反射性墨水來印刷製造。在將此類反射器用在直接發光的背光中時,這相較於使用可變反射器的先前技術的直接發光的背光允許了更小的厚度、更佳的光利用效率及更佳的亮度均勻性。A method of making a multilayer patterned reflector may include the steps of using a reflective white paint or ink, and applying the paint or ink to a suitable glass or plastic substrate by successively printing multiple layers using digital printing techniques. The patterned reflector can have several layers, each layer being patterned with a relatively low resolution, which can be simply and inexpensively fabricated by printing using highly reflective inks. When such reflectors are used in direct-lit backlights, this allows for smaller thicknesses, better light utilization efficiency, and better brightness uniformity than prior art direct-lit backlights using variable reflectors sex.
在將圖案化反射器製造在光導板的頂面上的一個實施例中,亦可使用相同的印刷進程來製作光抽取特徵。In one embodiment where the patterned reflector is fabricated on the top surface of the light guide plate, the same printing process can also be used to create the light extraction features.
本揭示案的額外特徵及優點將闡述於隨後的詳細說明中,且本領域中的技術人員將藉由該說明輕易理解該等特徵及優點的一部分,或藉由實行如本文中所述的方法來認識該等特徵及優點的一部分,該等方法包括以下的詳細說明、請求項以及附圖。Additional features and advantages of the present disclosure will be set forth in the detailed description that follows, and some of those features and advantages will be readily understood by those skilled in the art from this description, or by practicing the methods as described herein. To appreciate some of these features and advantages, the methods include the following detailed description, claims, and drawings.
要了解到,上述的大致描述及以下的詳細說明呈現了本揭示案的各種實施例,且要用來提供用於了解請求項的本質及特性的概述或框架。附圖被包括來提供本揭示案的進一步了解,且被併入此說明書中且構成此說明書的一部分。該等繪圖繪示本揭示案的各種實施例且與說明書一起用於解釋本揭示案的原理及操作。It is to be appreciated that the foregoing general description and the following detailed description present various embodiments of the disclosure and are intended to provide an overview or framework for understanding the nature and nature of the claimed items. The accompanying drawings are included to provide a further understanding of the present disclosure, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments of the disclosure and, together with the description, serve to explain the principles and operation of the disclosure.
本文中所揭露的是背光單元,該等背光單元包括:光導板,具有發光的第一主要面、相反的第二主要面及複數個光抽取特徵;至少一個光源,光學耦接到該光導板的該第二主要面;後部反射器,定位在該光導板的該第二主要面附近;及圖案化反射層,定位在該光導板的該第一主要面附近,該圖案化反射層包括至少一個光學反射元件及至少一個光學透射元件。本文中亦揭露了包括此類背光單元的顯示及照明設備。Disclosed herein are backlight units comprising: a light guide plate having a first major face that emits light, a second opposite major face, and a plurality of light extraction features; at least one light source optically coupled to the light guide plate the second main face of the light guide plate; a rear reflector positioned near the second main face of the light guide plate; and a patterned reflective layer positioned near the first main face of the light guide plate, the patterned reflective layer comprising at least An optically reflective element and at least one optically transmissive element. Display and lighting devices including such backlight units are also disclosed herein.
本文中亦揭露了包括此類背光的設備,例如顯示、照明及電子設備,例如電視、電腦、電話、平板電腦、及其他顯示面板、照明器具、固態照明、告示板、及其他建築構件,僅舉數例。Also disclosed herein are devices that include such backlights, such as displays, lighting, and electronic devices, such as televisions, computers, phones, tablets, and other display panels, lighting fixtures, solid-state lighting, sign boards, and other building components, only To name a few.
現將參照圖 1-8B 論述本揭示案的各種實施例,該等圖式繪示了本文中所揭露的背光單元的示例性元件及態樣。以下的一般說明要用來提供所主張的設備的概述,且將在本揭示案各處參照非限制性的描繪的實施例來更具體地論述各種態樣,該等實施例可在本揭示案的背景脈絡內彼此互換。Various embodiments of the present disclosure will now be discussed with reference to FIGS. 1-8B , which illustrate exemplary elements and aspects of the backlight units disclosed herein. The following general description is intended to provide an overview of the claimed apparatus, and various aspects will be discussed in more detail throughout this disclosure with reference to non-limiting depicted embodiments, which may be used throughout this disclosure. interchangeable within the context of each other.
圖 1
繪示示例性光導板(LGP)100
及光學耦接到LGP100
的光源110
的陣列的俯視圖。為了說明的目的,可經由圖 1
中的LGP100
看見光源110
,然而在某些實施例中可能並不是這樣。亦要替代配置落在本揭示案的範圍內,包括不同的光源位置、尺寸、形狀及/或間隔。例如,雖然所描繪的實施例包括了具有相同尺寸、形狀及間隔的光源110
的週期性或規則陣列,但亦考慮陣列是不規則或非週期性的其他實施例。 FIG. 1 shows a top view of an exemplary light guide plate (LGP) 100 and an array of
LGP100
可具有任何尺度,例如長度L
及寬度W
,該等尺度可取決於顯示或照明應用而變化。在某些實施例中,長度L
的範圍可從約0.01 m到約10 m,例如從約0.1 m到約5 m、從約0.5 m到約2.5 m、或從約1 m到約2 m,包括其間的所有範圍及子範圍。類似地,寬度W
的範圍可從約0.01 m到約10 m,例如從約0.1 m到約5 m、從約0.5 m到約2.5 m、或從約1 m到約2 m,包括其間的所有範圍及子範圍。光源陣列中的各個光源110
亦可界定具有相關單元長度L0
及單元寬度W0
的單元塊(由短劃線所表示),該單元長度及單元寬度可取決於LGP100
的尺度及光源110
沿著LGP100
的數量及/或間隔而變化。在非限制性的實施例中,單元寬度W0
及/或單元長度L0
可小於或等於約150 mm,例如範圍從約1 mm到約120 mm、從約5 mm到約100 mm、從約10 mm到約80 mm、從約20 mm到約70 mm、從約30 mm到約60 mm、或從約40 mm到約50 mm,包括其間的所有範圍及子範圍。在某些實施例中,LGP的長度L
及寬度W
是實質相等的,或它們可以是不同的。類似地,單元長度L0
及單元寬度W0
可以是實質相等的,或它們可以是不同的。LGP 100 may have any dimensions, such as length L and width W , which may vary depending on the display or lighting application. In certain embodiments, the length L may range from about 0.01 m to about 10 m, such as from about 0.1 m to about 5 m, from about 0.5 m to about 2.5 m, or from about 1 m to about 2 m, All ranges and subranges in between are included. Similarly, width W may range from about 0.01 m to about 10 m, such as from about 0.1 m to about 5 m, from about 0.5 m to about 2.5 m, or from about 1 m to about 2 m, including all therebetween Ranges and subranges. Each
當然,雖然圖 1
中繪示了矩形的LGP100
,但要了解到,LGP可視情況具有任何規則或不規則的形狀以針對所選擇的應用產生所需的光分佈。LGP100
可包括如圖 1
中所繪示的四個邊緣,或可包括多於四個的邊緣,例如多邊形。在其他實施例中,LGP100
可包括小於四個的邊緣,例如三角形。藉由非限制性示例的方式,LGP可包括具有四個邊緣的矩形、方形或菱形片,然而其他的形狀及配置亦是要落在本揭示案的範圍內,包括具有一或更多個曲線部分或邊緣的彼等形狀及配置。Of course, although a
依據各種實施例,LGP可包括本領域中用於照明及顯示應用的任何透明材料。如本文中所使用的,用語「透明」是要指示LGP在可見光頻譜區域(~420-750 nm)中在500 mm的長度上具有大於約80%的光透射。例如,示例性透明材料在500 mm的長度上在可見光範圍中可具有大於約85%的透射率,例如大於約90%、大於約95%或大於約99%的透射率,包括其間的所有範圍及子範圍。在某些實施例中,示例性透明材料在500 mm的長度上在紫外線(UV)區域(~100-410 nm)中可具有大於約50%的光透射率,例如大於約55%、大於約60%、大於約65%、大於約70%、大於約75%、大於約80%、大於約85%、大於約90%、大於約95%或大於約99%的透射率,包括其間的所有範圍及子範圍。依據各種實施例,LGP對於範圍從約450 nm到約650 nm的波長而言在75 mm的路徑長度上可包括至少98%的光透射率。According to various embodiments, the LGP may include any transparent material known in the art for lighting and display applications. As used herein, the term "transparent" is intended to indicate that the LGP has a light transmission of greater than about 80% over a length of 500 mm in the visible spectral region (~420-750 nm). For example, an exemplary transparent material may have a transmittance in the visible light range of greater than about 85%, such as greater than about 90%, greater than about 95%, or greater than about 99% transmittance over a length of 500 mm, including all ranges therebetween and sub-ranges. In certain embodiments, an exemplary transparent material may have a light transmittance in the ultraviolet (UV) region (~100-410 nm) of greater than about 50% over a length of 500 mm, eg, greater than about 55%, greater than about 60%, greater than about 65%, greater than about 70%, greater than about 75%, greater than about 80%, greater than about 85%, greater than about 90%, greater than about 95%, or greater than about 99% transmittance, including all therebetween Ranges and subranges. According to various embodiments, the LGP may include at least 98% optical transmission over a path length of 75 mm for wavelengths ranging from about 450 nm to about 650 nm.
LGP的光學性質可能受透明材料的折射率影響。依據各種實施例,LGP可具有範圍從約1.3到約1.8的折射率,例如從約1.35到約1.7、從約1.4到約1.65、從約1.45到約1.6、或從約1.5到約1.55,包括其間的所有範圍及子範圍。在其他實施例中,LGP可具有相對低位準的光衰減(例如由吸收及/或散射引起)。LGP的光衰減(α)對於範圍從約420到750 nm的波長而言可例如小於約5 dB/m。例如,α可小於約4 dB/m、小於約3 dB/m、小於約2 dB/m、小於約1 dB/m、小於約0.5 dB/m、小於約0.2 dB/m、或甚至更小,包括其間的所有範圍及子範圍,例如從約0.2 dB/m到約5 dB/m。The optical properties of LGP may be affected by the refractive index of the transparent material. According to various embodiments, the LGP can have an index of refraction ranging from about 1.3 to about 1.8, such as from about 1.35 to about 1.7, from about 1.4 to about 1.65, from about 1.45 to about 1.6, or from about 1.5 to about 1.55, including All ranges and subranges in between. In other embodiments, the LGP may have relatively low levels of light attenuation (eg, due to absorption and/or scattering). The optical attenuation (α) of the LGP may be, for example, less than about 5 dB/m for wavelengths ranging from about 420 to 750 nm. For example, a may be less than about 4 dB/m, less than about 3 dB/m, less than about 2 dB/m, less than about 1 dB/m, less than about 0.5 dB/m, less than about 0.2 dB/m, or even less , including all ranges and subranges therebetween, eg, from about 0.2 dB/m to about 5 dB/m.
LGP100
可包括聚合材料,例如塑膠,例如聚甲基丙烯酸甲酯(PMMA)、甲基丙烯酸甲酯苯乙烯(MS)、聚二甲矽氧烷(PDMS)或其他類似的材料。LGP100
亦可包括玻璃材料,例如鋁矽酸鹽、鹼鋁矽酸鹽、硼矽酸鹽、鹼硼矽酸鹽、鋁硼矽酸鹽、鹼鋁硼矽酸鹽、鹼石灰或其他合適的玻璃。適於用作玻璃光導器的市售玻璃的非限制性示例例如包括來自康寧公司的EAGLE XG®
、LotusTM
、Willow®
、IrisTM
及Gorilla®
玻璃。The LGP 100 may include polymeric materials such as plastics such as polymethyl methacrylate (PMMA), methyl methacrylate styrene (MS), polydimethylsiloxane (PDMS), or other similar materials.
某些非限制性的玻璃成分可包括約50莫耳百分比到約90莫耳百分比之間的SiO2 、0莫耳百分比到約20莫耳百分比之間的Al2 O3 、0莫耳百分比到約20莫耳百分比之間的B2 O3 及0莫耳百分比到約25莫耳百分比之間的Rx O,其中R是Li、Na、K、Rb、Cs中的任一者或更多者且x為2,或R是Zn、Mg、Ca、Sr或Ba中的任一者或更多者且x為1。在某些實施例中,Rx O – Al2 O3 > 0;0 < Rx O – Al2 O3 < 15;x = 2且R2 O – Al2 O3 < 15;R2 O – Al2 O3 < 2;x=2且R2 O – Al2 O3 – MgO > -15;0 < (Rx O – Al2 O3 ) < 25、-11 < (R2 O – Al2 O3 ) < 11且-15 < (R2 O – Al2 O3 – MgO) < 11;及/或-1 < (R2 O – Al2 O3 ) < 2且-6 < (R2 O – Al2 O3 – MgO) < 1。在某些實施例中,玻璃包括小於1 ppm的Co、Ni及Cr中的各者。在某些實施例中,Fe的濃度<約50 ppm、<約20 ppm或<約10 ppm。在其他實施例中,Fe + 30Cr + 35Ni <約60 ppm、Fe + 30Cr + 35Ni <約40 ppm、Fe + 30Cr + 35Ni <約20 ppm或Fe + 30Cr + 35Ni <約10 ppm。在其他實施例中,玻璃包括約60莫耳百分比到約80莫耳百分比之間的SiO2 、約0.1莫耳百分比到約15莫耳百分比之間的Al2 O3 、0莫耳百分比到約12莫耳百分比的B2 O3 及約0.1莫耳百分比到約15莫耳百分比的Rx O,其中R是Li、Na、K、Rb、Cs中的任一者或更多者且x為2,或R是Zn、Mg、Ca、Sr或Ba中的任一者或更多者且x為1。Certain non-limiting glass compositions may include between about 50 mole percent and about 90 mole percent SiO 2 , between 0 mole percent and about 20 mole percent Al 2 O 3 , 0 mole percent to between about 20 mol percent B2O3 and between 0 mol percent and about 25 mol percent RxO, wherein R is any one or more of Li, Na, K, Rb, Cs and x is 2, or R is any one or more of Zn, Mg, Ca, Sr, or Ba and x is 1. In certain embodiments, R x O - Al 2 O 3 >0; 0 < R x O - Al 2 O 3 <15; x = 2 and R 2 O - Al 2 O 3 <15; R 2 O - Al 2 O 3 <2; x=2 and R 2 O - Al 2 O 3 - MgO >-15; 0 < (R x O - Al 2 O 3 ) < 25, -11 < (R 2 O - Al 2 O 3 ) < 11 and -15 < (R 2 O - Al 2 O 3 - MgO) <11; and/or -1 < (R 2 O - Al 2 O 3 ) < 2 and -6 < (R 2 O – Al 2 O 3 – MgO) < 1. In certain embodiments, the glass includes less than 1 ppm of each of Co, Ni, and Cr. In certain embodiments, the concentration of Fe is < about 50 ppm, < about 20 ppm, or < about 10 ppm. In other embodiments, Fe + 30Cr + 35Ni < about 60 ppm, Fe + 30Cr + 35Ni < about 40 ppm, Fe + 30Cr + 35Ni < about 20 ppm, or Fe + 30Cr + 35Ni < about 10 ppm. In other embodiments, the glass includes between about 60 mole percent and about 80 mole percent SiO 2 , between about 0.1 mole percent and about 15 mole percent Al 2 O 3 , 0 mole percent to about 12 molar percent B2O3 and about 0.1 molar percent to about 15 molar percent RxO, wherein R is any one or more of Li, Na, K, Rb, Cs and x is 2, or R is any one or more of Zn, Mg, Ca, Sr, or Ba and x is 1.
在其他實施例中,玻璃成分可包括約65.79莫耳百分比到約78.17莫耳百分比之間的SiO2 、約2.94莫耳百分比到約12.12莫耳百分比之間的Al2 O3 、約0莫耳百分比到約11.16莫耳百分比之間的B2 O3 、約0莫耳百分比到約2.06莫耳百分比之間的Li2 O、約3.52莫耳百分比到約13.25莫耳百分比之間的Na2 O、約0莫耳百分比到約4.83莫耳百分比之間的K2 O、約0莫耳百分比到約3.01莫耳百分比之間的ZnO、約0莫耳百分比到約8.72莫耳百分比之間的MgO、約0莫耳百分比到約4.24莫耳百分比之間的CaO、約0莫耳百分比到約6.17莫耳百分比之間的SrO、約0莫耳百分比到約4.3莫耳百分比之間的BaO及約0.07莫耳百分比到約0.11莫耳百分比之間的SnO2 。In other embodiments, the glass composition may include between about 65.79 mole percent and about 78.17 mole percent SiO 2 , between about 2.94 mole percent and about 12.12 mole percent Al 2 O 3 , about 0 mole percent Between about 11.16 mole percent B2O3 , between about 0 mole percent and about 2.06 mole percent Li2O , between about 3.52 mole percent and about 13.25 mole percent Na2O , K2O between about 0 mole percent and about 4.83 mole percent, ZnO between about 0 mole percent and about 3.01 mole percent, MgO between about 0 mole percent and about 8.72 mole percent , between about 0 mole percent and about 4.24 mole percent CaO, between about 0 mole percent and about 6.17 mole percent SrO, between about 0 mole percent and about 4.3 mole percent BaO, and about SnO 2 between 0.07 mole percent and about 0.11 mole percent.
在額外的實施例中,玻璃可包括0.95與3.23之間的Rx O/Al2 O3 比率,其中R是Li、Na、K、Rb、Cs中的任一者或更多者且x為2。在另外的實施例中,玻璃可包括1.18與5.68之間的Rx O/Al2 O3 比率,其中R是Li、Na、K、Rb、Cs中的任一者或更多者且x為2,或R是Zn、Mg、Ca、Sr或Ba中的任一者或更多者且x為1。在又另外的實施例中,玻璃可包括-4.25與4.0之間的Rx O – Al2 O3 – MgO,其中R是Li、Na、K、Rb、Cs中的任一者或更多者且x為2。在又另外的實施例中,玻璃可包括約66莫耳百分比到約78莫耳百分比之間的SiO2 、約4莫耳百分比到約11莫耳百分比之間的Al2 O3 、約4莫耳百分比到約11莫耳百分比之間的B2 O3 、約0莫耳百分比到約2莫耳百分比之間的Li2 O、約4莫耳百分比到約12莫耳百分比之間的Na2 O、約0莫耳百分比到約2莫耳百分比之間的K2 O、約0莫耳百分比到約2莫耳百分比之間的ZnO、約0莫耳百分比到約5莫耳百分比之間的MgO、約0莫耳百分比到約2莫耳百分比之間的CaO、約0莫耳百分比到約5莫耳百分比之間的SrO、約0莫耳百分比到約2莫耳百分比之間的BaO及約0莫耳百分比到約2莫耳百分比之間的SnO2 。In additional embodiments, the glass may include an RxO / Al2O3 ratio between 0.95 and 3.23, wherein R is any one or more of Li, Na, K, Rb, Cs and x is 2. In further embodiments, the glass can include an RxO / Al2O3 ratio between 1.18 and 5.68, wherein R is any one or more of Li, Na, K, Rb, Cs and x is 2, or R is any one or more of Zn, Mg, Ca, Sr, or Ba and x is 1. In yet other embodiments, the glass may include RxO - Al2O3 -MgO between -4.25 and 4.0, where R is any one or more of Li, Na, K, Rb, Cs and x is 2. In yet other embodiments, the glass can include between about 66 mole percent and about 78 mole percent SiO 2 , between about 4 mole percent and about 11 mole percent Al 2 O 3 , about 4 mole percent B 2 O 3 between about 1 mol % and about 11 mol %, Li 2 O between about 0 mol % and about 2 mol %, Na 2 between about 4 mol % and about 12 mol % O, K2O between about 0 mol% and about 2 mol%, ZnO between about 0 mol% and about 2 mol%, between about 0 mol% and about 5 mol% MgO, between about 0 mole percent and about 2 mole percent CaO, between about 0 mole percent and about 5 mole percent SrO, between about 0 mole percent and about 2 mole percent BaO, and SnO 2 between about 0 mole percent to about 2 mole percent.
在額外的實施例中,玻璃可包括約72莫耳百分比到約80莫耳百分比之間的SiO2 、約3莫耳百分比到約7莫耳百分比之間的Al2 O3 、約0莫耳百分比到約2莫耳百分比之間的B2 O3 、約0莫耳百分比到約2莫耳百分比之間的Li2 O、約6莫耳百分比到約15莫耳百分比之間的Na2 O、約0莫耳百分比到約2莫耳百分比之間的K2 O、約0莫耳百分比到約2莫耳百分比之間的ZnO、約2莫耳百分比到約10莫耳百分比之間的MgO、約0莫耳百分比到約2莫耳百分比之間的CaO、約0莫耳百分比到約2莫耳百分比之間的SrO、約0莫耳百分比到約2莫耳百分比之間的BaO及約0莫耳百分比到約2莫耳百分比之間的SnO2 。在某些實施例中,玻璃可包括約60莫耳百分比到約80莫耳百分比之間的SiO2 、約0莫耳百分比到約15莫耳百分比之間的Al2 O3 、0莫耳百分比到約15莫耳百分比的B2 O3 及約2莫耳百分比到約50莫耳百分比的Rx O,其中R是Li、Na、K、Rb、Cs中的任一者或更多者且x為2,或R是Zn、Mg、Ca、Sr或Ba中的任一者或更多者且x為1,且其中Fe + 30Cr + 35Ni <約60 ppm。In additional embodiments, the glass may include between about 72 mole percent and about 80 mole percent SiO 2 , between about 3 mole percent and about 7 mole percent Al 2 O 3 , about 0 mole percent between about 0 and about 2 mole percent of B 2 O 3 , between about 0 and about 2 mole percent of Li 2 O, between about 6 and about 15 mole percent of Na 2 O , K2O between about 0 mole percent and about 2 mole percent, ZnO between about 0 mole percent and about 2 mole percent, MgO between about 2 mole percent and about 10 mole percent , between about 0 mol% and about 2 mol% CaO, between about 0 mol% and about 2 mol% SrO, between about 0 mol% and about 2 mol% BaO, and about SnO 2 between 0 mole percent and about 2 mole percent. In certain embodiments, the glass may include between about 60 mole percent and about 80 mole percent SiO 2 , between about 0 mole percent and about 15 mole percent Al 2 O 3 , 0 mole percent to about 15 mole percent B2O3 and about 2 mole percent to about 50 mole percent RxO, wherein R is any one or more of Li, Na, K, Rb, Cs and x is 2, or R is any one or more of Zn, Mg, Ca, Sr, or Ba and x is 1, and wherein Fe + 30Cr + 35Ni < about 60 ppm.
在某些實施例中,LGP100
可包括小於0.015的色偏∆y,例如範圍從約0.005到約0.015(例如約0.005、0.006、0.007、0.008、0.009、0.010、0.011、0.012、0.013、0.014或0.015)。在其他實施例中,LGP可包括小於0.008的色偏。可藉由針對色彩量測使用CIE 1931標準沿著長度L量測x及y色度座標上的變化來描寫色偏的特性。對於LGP而言,可將色偏∆y報告為Δy=y(L2
)-y(L1
),其中L2
及L1
為沿著面板或基板方向遠離發射的來源的Z位置,且其中L2
-L1
=0.5米。示例性的LGP具有Δy< 0.01、Δy< 0.005、Δy < 0.003或Δy < 0.001。依據某些實施例,對於範圍從約420到750 nm的波長而言,LGP可具有小於約4 dB/m的光衰減α1
(例如由吸收及/或散射損耗引起),例如小於約3 dB/m、小於約2 dB/m、小於約1 dB/m、小於約0.5 dB/m、小於約0.2 dB/m或甚至更小,例如範圍從約0.2 dB/m到約4 dB/m。In certain embodiments,
在某些實施例中,LGP100
可包括已化學強化(例如離子交換)的玻璃。在離子交換進程期間,玻璃片表面處或附近的玻璃片內的離子可被交換為例如來自鹽浴的較大的金屬離子。將較大的離子納入玻璃可藉由在附近表面區域中產生壓縮應力來強化片體。可在玻璃片的中心區域內誘發對應的張應力以平衡壓縮應力。In certain embodiments,
可例如藉由將玻璃浸入熔融鹽浴中預定的時間段來實現離子交換。示例性鹽浴包括(但不限於)KNO3 、LiNO3 、NaNO3 、RbNO3 及其組合。熔融鹽浴的溫度及處理的時間段可變化。依據所需的應用來決定時間及溫度是在本領域中的技術人員的能力之內的。藉由非限制性示例的方式,熔融鹽浴的溫度的範圍可從約400ºC到約800ºC,例如從約400ºC到約500ºC,且預定時間段的範圍可從約4到約24小時,例如從約4小時到約10小時,然而亦設想其他的溫度及時間組合。藉由非限制性示例的方式,可例如以約450o C將玻璃浸沒在KNO3 浴中約6小時,以獲得K富集層,該K富集層賦予表面壓縮應力。Ion exchange can be accomplished, for example, by immersing the glass in a molten salt bath for a predetermined period of time. Exemplary salt baths include, but are not limited to, KNO3 , LiNO3 , NaNO3 , RbNO3 , and combinations thereof. The temperature of the molten salt bath and the time period of treatment can vary. Determining the time and temperature depending on the desired application is within the capabilities of those skilled in the art. By way of non-limiting example, the temperature of the molten salt bath can range from about 400 ºC to about 800 ºC, such as from about 400 ºC to about 500 ºC, and the predetermined time period can range from about 4 to about 24 hours, such as from about 4 hours to about 10 hours, although other temperature and time combinations are also contemplated. By way of non-limiting example, the glass can be immersed, for example, at about 450 ° C. in a KNO 3 bath for about 6 hours to obtain a K-rich layer that imparts compressive stress to the surface.
參照圖 2
(其描繪示例性圖案化反射層120
的俯視圖),反射層可具有有著不同光學性質的至少兩個區域。例如,圖案化反射層可包括光學反射元件120A
(由白點表示),該等反射元件可具有高於光學透射元件120B
(由黑點表示)的光學反射率的光學反射率,及/或透射元件120B
可具有大於反射元件120A
的光學透射率的光學透射率。再次,為了說明的目的,可經由圖 2
中的圖案化反射層120
看見兩個示例性光源110
,然而在某些實施例中可能並不是這樣。 2 , which depicts a top view of an exemplary patterned
在某些實施例中,第一區域125A
在與至少一個光源110
對應的區域中可具有更稠密的反射元件120A
,如圖 2
中所繪示。第二區域125B
在光源110
之間的區域中可類似地具有更稠密的透射元件120B
,如圖 2
中所繪示。在組裝後,就可用較高密度將具有高反射率及/或低透射率的第一區域125A
分佈在光源陣列中的各個離散的光源110
上方,且可用較高密度將具有低反射率及/或高透射率的第二區域125B
分佈在光源附近或之間的區域中。In some embodiments, the
圖案化反射層120
可包括能夠至少部分地更改從LGP100
輸出的光的任何材料。在某些實施例中,圖案化反射層120
可包括圖案化金屬膜、多層介電膜或其任何組合。在某些實例中,圖案化反射層120
的反射元件120A
及透射元件120B
及/或第一區域125A
及第二區域125B
可具有不同的漫射或鏡面反射率。在其他實施例中,圖案化反射層120
可調整由LGP100
所透射的光量。例如,圖案化反射層120
的反射元件120A
及透射元件120B
及/或第一區域125A
及第二區域125B
可具有不同的透射率。The patterned
依據各種實施例,第一區域125A
的第一反射率可約為50%或更大,而第二區域125B
的第二反射率可約為20%或更小。例如,第一反射率可為至少約50%、至少約60%、至少約70%、至少約80%、至少約90%或至少約92%,例如範圍從約50%到100%,包括其間的所有範圍及子範圍。第二反射率可約為20%或更小、約15%或更小、約10%或更小、或約5%或更小,例如範圍從0%到約20%,包括其間的所有範圍及子範圍。在某些實施例中,第一反射率可較第二反射率大至少約2.5倍,例如約大3倍、約大4倍、約大5倍、約大10倍、約大15倍或約大20倍,例如從約大2.5倍到約大20倍,包括其間的所有範圍及子範圍。可例如藉由可從Perkin Elmer公司取得的UV/可見光(UV/Vis)頻譜儀來量測圖案化反射層120
的反射率。According to various embodiments, the first reflectivity of the
在額外的非限制性實施例中,第一區域125A
的第一透射率可約為50%或更小,而第二區域125B
的第二透射率可約為80%或更大。例如,第一透射率可約為50%或更小、約40%或更小、約30%或更小、約20%或更小、或約10%或更小,例如範圍從0%到約50%,包括其間的所有範圍及子範圍。第二透射率可約為80%或更大、約85%或更大、約90%或更大、或約95%或更大,例如範圍從80%到100%,包括其間的所有範圍及子範圍。在某些實施例中,第二透射率可較第一透射率大至少約1.5倍,例如約大2倍、約大3倍、約大4倍、約大5倍、約大10倍、約大15倍或約大20倍,例如從約大1.5倍到約大20倍,包括其間的所有範圍及子範圍。可例如藉由可從Perkin Elmer公司取得的UV/可見光(UV/Vis)頻譜儀來量測圖案化反射層120
的透射率。In additional non-limiting examples, the first transmittance of the
可將反射元件120A
及/或透射元件120B
定位在反射層120
中以產生任何給定的圖案或設計,該圖案或設計可例如是隨機或經佈置的、重複或非重複的、均勻或不均勻的。如此,雖然圖 2
繪示了反射元件120A
及透射元件120B
的示例性重複圖案,但要了解到,可使用其他的圖案(規則圖案及不規則圖案兩者)且要該等其他圖案落在本揭示案的範圍之內。在某些實施例中,該等元件可形成梯度,例如從第一區域125A
向第二區域125B
減少、從光源向光源之間的區域減少、或從各個單元塊的中心向各個單元塊的邊緣及/或角落減少的反射率梯度。在額外的實施例中,反射元件及透射元件可形成從第一區域125A
向第二區域125B
增加、從光源向光源之間的區域增加、或從各個單元塊的中心向各個單元塊的邊緣及/或角落增加的透射率梯度等等。
參照圖 3
(其描繪示例性BLU的橫截面圖),LGP100
可包括發光的第一主要面100A
及相反的第二主要面100B
。在某些實施例中,主要面可以是平坦的或實質平坦的及/或平行的或實質平行的。在某些實施例中,LGP100
可具有延伸於第一主要面與第二主要面之間的厚度t
,該厚度小於或等於約3 mm,例如範圍從約0.1 mm到約2.5 mm、、從約0.3 mm到約2 mm、從約0.5 mm到約1.5 mm或從約0.7 mm到約1 mm,包括其間的所有範圍及子範圍。Referring to FIG. 3 , which depicts a cross-sectional view of an exemplary BLU,
可將圖案化反射層120
定位在LGP100
的第一主要面100A
附近。如本文中所使用的,用語「定位在...附近」及其變體是要用來指示,元件或層被定位在特定表面或列舉的元件附近,但不一定與該表面或元件直接實體接觸。例如,在圖 3
中所描繪的非限制性實施例中,圖案化反射層120
不與第一主要面100A
直接實體接觸,例如氣隙存在於該兩個元件之間。然而,在某些實施例中,可將圖案化反射層120
與LGP100
單體地整合在一起,例如設置在LGP100
的第一主要面100A
上。如本文中所使用的,用語「設置在...上」及其變體是要用來指示,元件或層與特定表面或列舉的元件直接實體接觸。在其他實施例中,在該兩個元件之間可以存在一或更多個層或膜,例如黏著層。如此,定位在元件B的表面附近的元件A可以或可以不與元件B直接實體接觸。The patterned
雖然圖 3
繪示了單個圖案化反射層120
,要了解到,反射層120
可包括多個片、膜或層。例如,圖案化反射層120
可為多層複合膜或塗料,例如介電塗料。在其他實施例中,可首先將反射層與第一區域125A
對應的部分施用於LGP100
,且可隨後將反射層與第二區域125B
對應的部分施用於LGP,反之亦然。或者,可將具有第一光學性質的第一膜或層定位在LGP100
的一或更多個部分上方,且可塗覆具有第二光學性質的第二膜或層以覆蓋LGP100
的實質所有部分,包括由第一膜所覆蓋的部分。在此類實施例中,多層反射層的第一區域125A
可具有第一膜及第二膜的綜合光學性質,而第二區域125B
可僅具有第二膜的光學性質,反之亦然。圖案化反射層120
可因此視情況包括單個膜或複合膜、單個層或多個層,以產生所需的光學效果。Although FIG. 3 depicts a single patterned
無論圖案化反射層的配置,要了解到,本文中所揭露的實施例可包括具有至少一種光學性質的圖案化反射層,該至少一種光學性質相較於第二區域125B
(例如較低的反射率及/或較高的透射率)而言在第一區域125A
中是不同的(例如較高的反射率及/或較低的透射率)。反射元件120A
及透射元件120B
的面密度可跨反射層120
而變化,使得較高密度的反射元件120A
存在於定位在光源110
上方的第一區域125A
中,而較高密度的透射元件120B
存在於定位在光源110
之間的第二區域125B
中。並且,本文中所揭露的BLU的實施例產生實質均均的光,例如從與光源對應的區域發出的光可具有實質等於從光源之間的區域發出的光的光照度的光照度。Regardless of the configuration of the patterned reflective layer, it is to be understood that the embodiments disclosed herein may include a patterned reflective layer having at least one optical property that is lower in reflection than the
如圖 3
中所示,可將該至少一個光源110
光學耦接到LGP100
的第二主要面100B
。非限制性示例性光源可包括發光二極體(LED),例如發射藍光、UV、近UV光(例如具有範圍從約100 nm到約500 nm的波長的光)的LED。如本文中所使用的,用語「光學耦接」是要用來指示,光源被定位在LGP的表面處以便將光引導到LGP中使得光由於全內反射而至少部分地傳播。光源110
可如圖 3
中所繪示地與LGP100
直接實體接觸。然而,即使光源不與LGP直接實體接觸,亦可將光源光學耦接到LGP。例如,可使用光學黏著層150
來將光源110
黏著到LGP100
的第二主要面110B
,如圖 4
中所描繪。在某些實施例中,光學黏著層可以是與LGP100
折射率匹配的,例如具有LGP的折射率10%內的折射率,例如5%內、3%內、2%內、1%內或具有與LGP相同的折射率。 As shown in FIG. 3 , the at least one
再次參照圖 3
,BLU可更包括定位在LGP100
的第二主要面100B
附近的後部反射器130
。可因此將讓光在兩個反射器之間前行的光學距離OD
界定為圖案化反射層120
與後部反射器130
之間的距離。示例性的後部反射器130
可例如包括金屬箔,例如銀、鉑、金、銅等等。如圖 4
中進一步繪示的,背光單元可包括一或更多個額外膜或元件,例如一或更多個輔助光學膜及/或結構元件。示例性的輔助光學膜170
可包括(但不限於)漫射膜、稜鏡膜,例如亮度增強薄膜(BEF),或反射偏振膜,例如雙亮度增強薄膜(DBEF),僅舉數例。在某些實施例中,可將光源110
及/或後部反射器130
設置在印刷電路板140
上。可將輔助光學元件(例如漫射膜160
、色彩轉換層170
(例如包括量子點及/或磷光體)、稜鏡膜180
及/或反射偏振膜190
)定位在圖案化反射層120
與顯示面板200
之間。雖然未繪示於圖 4
中,但本文中所揭露的BLU可包括一般存在於顯示或照明設備中的其他元件(例如薄膜電晶體(TFT)陣列、液晶(LC)層及濾色器,僅舉數個示例性元件)或可與該等其他元件結合。Referring again to FIG. 3 , the BLU may further include a
參照回圖 3
,從光源110
所發射的光線是由短劃箭頭、點劃箭頭及實心箭頭所描繪的。僅為了說明的目的,透射元件120B
被描繪為具有變化的尺度的點,該等尺度表示該等透射元件沿著光導板的密度,例如在光源110
上方具有低密度且離光源110
越遠密度越高。可藉由增加元件的數量及/或尺寸來增加或減少反射元件120A
及/或透射元件120B
的密度。並且,反射元件120A
及/或透射元件120B
可具有任何形狀或形狀組合,包括圓形、卵形、方形、矩形、三角形或任何其他規則或不規則的多邊形,包括具有直線及/或曲線邊緣的形狀。Referring back to FIG. 3 , the light rays emitted from the
注入到LGP100
中的第一光線(短劃箭頭)可直接前行通過LGP而不在LGP100
內側向傳播,且亦可穿過圖案化反射層120
的第二區域120B
而不被回向反射通過LGP,造成第一透射光線T1
。注入到LGP100
中的第二光線(點劃箭頭)可直接前行通過LGP而不在LGP100
內側向傳播,但可撞擊圖案化反射層120
中的反射元件120A
且回向前行通過LGP100
到後部反射器130
。第二光線可因此在圖案化反射層120
與後部反射器130
之間反射的同時橫過光學距離OD
一或更多次。最後,第二光線將穿過圖案化反射層120
的透射元件120B
,造成第二透射光線T2
。The first ray (dashed arrow) injected into the
第三光線(實心箭頭)可被注入到LGP 100中且可在LGP內由於全內反射(TIR)而傳播,直到該第三光線撞擊光抽取特徵或在其他情況下用小於臨界角的入射角撞擊LGP的表面且透射通過LGP為止。可因此將第三光線前行的光學距離減少到LGP 100的厚度t。雖然第三光線在TIF期間可能由於被LGP 100吸收而經歷某些光損失,此類光損失相較於前行光學距離OD的第二光線的彼等光損失而言可能是相對小的,因為該等第三光線前行較短的垂直及/或水平距離。具體而言,光線傾向在被抽取出LGP 100之前僅前行光源之間的距離(間距)的約一半。在某些實施例中,光源間距可與單元寬度W 0 (被繪示)或單元長度(未繪示)對應,該單元寬度或單元長度可小於或等於約150mm,或甚至小於約80mm,如參照圖1所論述的。最後,第三光線將亦穿過圖案化反射層的透射元件120B,造成第三透射光線T 3 。
A third ray (solid arrow) may be injected into the
全內反射(TIR)是在包括第一折射率的第一材料(例如玻璃、塑膠等等)中傳播的光可藉以在與包括低於第一折射率的第二折射率的第二材料(例如空氣等等)接合的介面處完全反射的現象。可使用司乃耳定律(Snell's law)來解釋TIR:n 1 sin(θ i )=n 2 sin(θ r )其描述了具有不同折射率的兩種材料之間的介面處的光折射。依據斯奈爾定律,n 1 是第一材料的折射率,n 2 是第二材料的折射率,θi是在介面處入射的光相對於介面法線的角度(入射角),而Θr 是折射光相對於法線的折射角。在折射角(Θr )為90o (例如sin(Θr ) = 1)時,斯奈爾定律可被表示為: Total Internal Reflection (TIR) is the means by which light propagating in a first material (eg glass, plastic, etc.) comprising a first refractive index can interact with a second material comprising a second refractive index lower than the first refractive index (eg glass, plastic, etc.) Such as air, etc.) the phenomenon of complete reflection at the interface of the joint. TIR can be explained using Snell's law: n 1 sin( θ i ) = n 2 sin( θ r ) which describes the refraction of light at the interface between two materials with different indices of refraction. According to Snell's law, n 1 is the refractive index of the first material, n 2 is the refractive index of the second material, θ i is the angle of light incident at the interface with respect to the interface normal (angle of incidence), and Θ r is the angle of refraction of the refracted light relative to the normal. When the angle of refraction (Θ r ) is 90 o (eg sin(Θ r ) = 1), Snell's law can be expressed as:
在該等條件下的入射角Θi 亦可稱為臨界角Θc 。具有大於臨界角的入射角的光(Θi > Θc )將在第一材料內全內反射,而具有等於或小於臨界角的入射角的光(Θi ≤ Θc )將被第一材料透射。The angle of incidence Θ i under these conditions may also be referred to as the critical angle Θ c . Light with an angle of incidence greater than the critical angle (Θ i > Θ c ) will be totally internally reflected within the first material, while light with an angle of incidence equal to or less than the critical angle (Θ i ≤ Θ c ) will be reflected by the first material transmission.
在空氣(n1 =1)與玻璃(n2 =1.5)之間的示例性介面的情況下,臨界角(Θc )可被計算為41o 。因此,若在玻璃中傳播的光用大於41o 的入射角撞擊空氣-玻璃介面,則所有入射光將從介面用等於入射角的角度反射。若反射光遭遇包括與第一介面相同的折射率關係的第二介面,則入射於第二介面上的光將再次用等於入射角的反射角反射。In the case of an exemplary interface between air ( n 1 =1) and glass ( n 2 =1.5), the critical angle (Θ c ) can be calculated as 41 o . Therefore, if light propagating in glass strikes an air-glass interface with an angle of incidence greater than 41 ° , all incident light will be reflected from the interface at an angle equal to the angle of incidence. If the reflected light encounters a second interface comprising the same refractive index relationship as the first interface, light incident on the second interface will again be reflected with a reflection angle equal to the angle of incidence.
依據各種實施例,LGP100
的第一主要面100A
及/或第二主要面100B
可被圖案化為具有複數個光抽取特徵。如本文中所使用的,用語「圖案化」是要用來指示,該複數個光抽取特徵存在於LGP的表面上或下而呈現任何給定圖案或設計,該圖案或設計可例如為隨機或經佈置的、重複或不重複的、均勻或不均勻的。在其他實施例中,可將光抽取特徵定位在表面附近(例如表面下方)的LGP的矩陣內。例如,光抽取特徵可跨表面而分佈(例如作為構成粗糙或凸起的表面的織構特徵),或可被分佈在LGP或LGP的部分內及各處(例如作為雷射損傷的地點或特徵)。用於產生此類光抽取特徵的合適方法可包括印刷(例如噴墨印刷、絲網印刷、微型印刷等等)、織構化、機械糙化、蝕刻、注射模塑、塗覆、雷射損傷、或其任何組合。此類方法的非限制性示例例如包括酸蝕刻表面、將表面塗以TiO2
、及藉由將雷射聚焦於表面上或基板矩陣內來雷射損傷基板。According to various embodiments, the first
可依據本領域中習知的任何方法(例如第PCT/US2013/063622號及第PCT/US2014/070771號的共同申請審理中的及共同擁有的國際專利申請案中所揭露的方法,各個申請案的整體內容以引用方式併入本文中)處理LGP以產生光抽取特徵。例如,可研磨及/或拋光LGP的表面以達成所需的厚度及/或表面品質。可接著可選地清潔表面及/或可將要蝕刻的表面經受用於除去汙染物的進程(例如將表面暴露於臭氧)。藉由非限制性實施例的方式,可將要蝕刻的表面暴露於酸浴(例如呈一定比率(例如範圍從約1:1到約9:1)的冰醋酸(GAA)與氟化氨(NH4 F)的混合物)。蝕刻時間的範圍可例如從約30秒到約15分鐘,且蝕刻行為可發生在室溫下或高溫下。例如為酸濃度/比率、溫度及/或時間的進程參數可能影響造成的抽取特徵的尺寸、形狀及分佈。變化該等參數以達成所需的表面抽取特徵是在本領域中的技術人員的能力之內的。Each application may be prepared according to any method known in the art (such as the methods disclosed in co-pending and co-owned international patent applications of PCT/US2013/063622 and PCT/US2014/070771). The entire contents of which are incorporated herein by reference) process LGP to generate light extraction features. For example, the surface of the LGP can be ground and/or polished to achieve a desired thickness and/or surface quality. The surface may then optionally be cleaned and/or the surface to be etched may be subjected to a process for removing contaminants (eg, exposing the surface to ozone). By way of non-limiting example, the surface to be etched may be exposed to an acid bath such as glacial acetic acid (GAA) and ammonium fluoride (NHF) in a ratio (eg, ranging from about 1:1 to about 9:1). 4 F) mixture). The etching time can range, for example, from about 30 seconds to about 15 minutes, and the etching action can occur at room temperature or at elevated temperature. Process parameters such as acid concentration/ratio, temperature and/or time may affect the size, shape and distribution of the resulting extraction features. Varying these parameters to achieve desired surface extraction characteristics is within the capabilities of those skilled in the art.
雖然可選擇光抽取特徵圖案以改良沿著LGP 100的長度及寬度的光抽取均勻性,但可能的情況是,,LGP與個別光源對應的區域可以發射具有較高強度的光(例如LGP的整體光輸出可以不是均勻的)。圖案化反射層120可因此被工程設計為具有有著變化的光學性質的區域以進一步均勻化光輸出。例如,圖案化反射層120可在與光源對應的第一區域125A中提供增加的反射率及/或減少的透射率及在光源之間的第二區域125B中提供增加的透射率及/或減少的反射率。此類配置可允許將漫射膜或其他光學膜安置得更靠近光源,且因此在不負面影響由BLU或設備所產生的光的均勻性的情況下允許更薄的整體BLU及造成的照明或顯示設備。
While the pattern of light extraction features may be selected to improve light extraction uniformity along the length and width of the
在傳統的直接發光組件中,隨著後部反射器與圖案化反射膜之間的光學距離變得越來越小,光反射次數越來越多,這造成了增加的光損失。然而,在本文中所揭露的BLU中,併入光學耦接到光源的LGP可相較於僅依賴反射器以供進行光的側向傳播的設備而言,允許在光損失減少的情況下沿著LGP的長度側向傳播光。 In conventional direct lighting assemblies, as the optical distance between the back reflector and the patterned reflective film becomes smaller, the number of light reflections increases, which results in increased light loss. However, in the BLUs disclosed herein, incorporating an LGP optically coupled to the light source may allow for reduced light loss along the Propagating light sideways along the length of the LGP.
在僅藉由反射器來側向傳播光的基準組件(例如不具有LGP的圖3的組件)中,具有入射角(θ)的光可藉由經歷兩個反射層之間的一或更多個反射在垂直距離(d)上前行側向距離(X)。反射的次數(N)可由N=X/d*tan(θ)表示。假設兩個反射器具有98%的反射率,則在N次反射之後,光將具有98%^N的剩餘能量。 針對入射角(θ)與比率X/d的不同組合,以下的表格1示出了反射次數,而表格2示出了光能的剩餘百分比。 In a reference device that propagates light sideways only by a reflector (eg, the device of FIG. 3 without LGP), light with an angle of incidence (θ) can pass through one or more of the reflective layers between the two reflective layers. Each reflection travels a lateral distance (X) over a vertical distance (d). The number (N) of reflections can be represented by N=X/d*tan(θ). Assuming both reflectors have 98% reflectivity, after N reflections, the light will have 98%^N remaining energy. Table 1 below shows the number of reflections and Table 2 shows the remaining percentage of light energy for different combinations of the angle of incidence (θ) and the ratio X/d.
隨著比率X/d增加,由反射器之間的多重反射引起的光損失變得引人注目地明顯。如上所述,光源之間的間距可高達150 mm。隨著垂直距離減少,比率X/d可快速增加,且在許多情況下將超過50。在X/d = 50時,具有入射角Θ = 10o 的光的剩餘能量小於1%。As the ratio X/d increases, the light loss due to multiple reflections between the reflectors becomes strikingly apparent. As mentioned above, the spacing between the light sources can be up to 150 mm. As the vertical distance decreases, the ratio X/d can increase rapidly and will exceed 50 in many cases. At X/d = 50, the residual energy of light with an angle of incidence Θ = 10 ° is less than 1%.
參照圖 5A
,光線從光源110
用發射角Θ LED
發射且傳遞到LGP100
中。光線用入射角Θ LGP
入射於LGP的發光面上,該入射角不超過臨界角Θ C
且因此在LGP100
內並不造成TIR。光的一部分前行側向距離X1
(表示為X1
= t*tan(sin-1
(sin(Θ)/n)),其中n是LGP的折射率,而t
是LGP100
的厚度),且透射成為第一透射T1
。光的較小部分前行第二側向距離X2
(表示為X2
= 3X1
),且透射成為第二透射T2
。以下的表格3針對不同的發射角ΘLED
= 20o
、41o
及60o
列舉了的第一反射R1
、第二反射R2
、第一透射T1
及第二透射T2
的光通量的百分比,假設LGP的折射率(n)是1.5。較高階的反射R3
及透射T3
(參照圖 5B
)是可忽略的,因為總通量小於1%。與發射角無關,光的大部分可僅前行側向距離X1
且透射為T1
,而小於1%的光被透射為T2
。甚至連透射為T2
的光在所描繪的配置下也僅可前行最大側向距離X2
= 3X1
。表格 3 :光通量百分比
參照圖 5B
,光線從光學耦接到LGP100
的光源110
發射,使得發射角Θ LED
實質等於入射角Θ LG
。光學耦接(例如使用折射率匹配的光學黏著劑)允許光的至少一部分由於TIR沿著LGP的長度側向前行。光的一部分前行側向距離X1
(表示為X1
= t*tan(Θ),其中t
是LGP100
的厚度),且透射為第一透射T1
。光的一部分由於之間的反射前行第二側向距離X2
(表示為X2
= 3X1
),且透射成為第二透射T2
。一旦入射角超過臨界角(例如在所描繪的配置下大於約42o
),則光線可能經歷TIR,這允許光在被抽取出之前在LGP內前行明顯較大的側向距離。如此,光的一部分可由於TIR而前行側向距離X3
,且被透射為第三透射T3
。 5B , light is emitted from the
以下的表格4針對發射角ΘLED
= 20o
及41o
列舉了第一反射R1
、第二反射R2
、第一透射T1
、第二透射T2
、第三反射R3
及第三透射T3
的光通量的百分比,假設LGP的折射率(n)是1.5。在表格3及4兩者中,對於發射角ΘLED
= 20o
,光的大部分被透射為T1
。然而,在表格3(沒有光學耦接)中,X1
= 0.23t,且在表格4(光學耦接)中,X2
= 0.36t,指示具有相同發射角(20o
)的光在光學耦接到光源的LGP中前行了較長的側向距離。對於發射角ΘLED
= 41o
,光在光學耦接的LGP(表格4)中相較於不耦接的LGP(表格3)而言前行了更長的側向距離,如表格4中較高的T2
及T3
值所暗示的。表格 4 :光通量百分比
參照圖6A-D,可藉由比較包括後部反射器、圖案化反射器、至少一個LED及定位在反射器之間的LGP的背光組件來進一步展示TIR在側向光傳播上的效果。研究了四種情況,其中: (a)底部反射器具有98%的朗伯反射率及2%的吸收率; (b)LED具有60%的朗伯反射率及40%的吸收率; (c)LGP包括具有1.5的折射率及從0.1 mm到5 mm變化的厚度的玻璃,該玻璃光學耦接到LED;及 (d)圖案化反射器具有四種不同性質中的一者: (i)情況I:98%的鏡面反射率及2%的吸收率(圖 6A ); (ii)情況II:92%的鏡面反射率及8%的吸收率(圖 6B ); (iii)情況III:98%的朗伯反射率及2%的吸收率(圖 6C );或 (iv)情況IV:92%的朗伯反射率及8%的吸收率(圖 6D )。6A-D, the effect of TIR on lateral light propagation can be further demonstrated by comparing backlight assemblies including a rear reflector, a patterned reflector, at least one LED, and an LGP positioned between the reflectors. Four cases were investigated where: (a) the bottom reflector had 98% Lambertian reflectance and 2% absorptivity; (b) the LED had 60% Lambertian reflectance and 40% absorptivity; (c) ) LGP includes glass with an index of refraction of 1.5 and a thickness varying from 0.1 mm to 5 mm, the glass optically coupled to the LED; and (d) the patterned reflector has one of four different properties: (i) Case I: 98% specular reflectance and 2% absorptivity ( Fig. 6A ); (ii) Case II: 92% specular reflectance and 8% absorptivity ( Fig. 6B ); (iii) Case III: 98 % Lambertian reflectance and 2% absorptivity ( FIG. 6C ); or (iv) Case IV: 92% Lambertian reflectance and 8% absorptivity ( FIG. 6D ).
將包括LGP的上述組件與相同的組件進行比較,該等相同的組件不具有LGP且反而包括具有與LGP的厚度對應的距離的氣隙。The above-described components including LGP were compared to identical components that did not have LGP and instead included an air gap with a distance corresponding to the thickness of the LGP.
參照圖 6A-D (其繪製為LGP/氣隙厚度的函數的光抽取效率),在所有四種情況中,包括氣隙的組件的光抽取效率隨著厚度t 減少而減少。相較之下,包括LGP的組件的光抽取效率隨著厚度t 從5 mm減少到約0.7 mm而增加。在所有情況中,對於約2 mm及更低的厚度而言,包括LGP的組件的光抽取效率明顯高於具有氣隙的組件的光抽取效率。隨著客戶對於更薄的顯示設備的需求增加,用來減少BLU的整體厚度的變體同樣地是合乎需要的。藉由將光學耦接的LGP定位在圖案化反射層與後部反射器之間,可減輕可能原本隨著反射器之間的距離減少而發生的光損失,且可有效地減少BLU的整體厚度。Referring to Figures 6A-D , which are plotted as light extraction efficiency as a function of LGP/air gap thickness, in all four cases, the light extraction efficiency of a component including an air gap decreases with decreasing thickness t . In contrast, the light extraction efficiency of components including LGP increased as the thickness t decreased from 5 mm to about 0.7 mm. In all cases, for thicknesses of about 2 mm and below, the light extraction efficiency of components comprising LGP is significantly higher than that of components with air gaps. As customer demand for thinner display devices increases, variants to reduce the overall thickness of the BLU are equally desirable. By positioning the optically coupled LGP between the patterned reflective layer and the back reflector, light losses that might otherwise occur as the distance between the reflectors decreases, and the overall thickness of the BLU can be effectively reduced.
在額外的實施例(例如圖 7
中所描繪的配置)中,在LGP100
的第一主要面100A
上包括一或更多個微結構105
可能是合乎需要的。在某些實施例中,該等微結構105
可用來朝向偏軸角重新導向正向入射光以進一步促進從光源側向傳播光及/或減少由被光源(例如LED)吸收引起的光損失。在此類實施例中,相較於不具有LGP上的微結構的配置而言,可改良光抽取效率高達5%,例如範圍從約1%到約4%,或從約2%到約3%,包括其間的所有範圍及子範圍。In additional embodiments, such as the configuration depicted in FIG. 7 , it may be desirable to include one or
在某些實施例中,微結構105
可具有角錐形狀。該角錐形狀可以是個別凸起的特徵(如所繪示的)或直線的溝槽。可例如由與LGP相同或不同的材料(例如玻璃及塑膠)構成凸起的微結構。可例如藉由在第一主要面100A
上模製或微型印刷微結構來製作凸起的微結構。在另外的實施例中,可將微結構蓋印或蝕刻到第一主要面100A
中。依據另外的實施例,微結構與第一主要面100A
構成的基本角Θ M
的範圍可從約20o
到約40o
,例如從約25o
到約35o
,或約30o
,包括其間的所有範圍及子範圍。In some embodiments, the
圖 8A-8B 繪示依據本揭示案的某些實施例的多層可變反射器的某些實施例。參照圖8A,繪示了一個非限制性實施例,實施例具有約1mm x 1mm的LED尺寸及約1 mm的LGP厚度。在此非限制性實施例中,LED的間距(中心之間的距離)是100 mm,其中個別的2D調暗區的尺寸或一個LED照明的區域的尺寸是100 mm x 100 mm。如圖 8A 中所繪示,由在逃逸錐面外面的LED所發射的相對於表面法線具有約42度或更高的角度的光線(對於1.5的LGP折射率而言)將被全內反射且藉此被LGP捕捉。若頂部反射器不存在,則錐面內的光線會逃逸。在此非限制性的實施例中,逃逸錐面與LGP頂面的交點約為3 mm x 3 mm或較調暗區的尺寸約小1000倍。同時,對於具有朗伯角度光分佈的發射器而言,約45%的總發射通量是在逃逸錐面內。因此,若如圖 8A 中所示的反射器恰好覆蓋逃逸錐面,則為了在LGP上方達成均勻的照明,會需要透射約0.1%與0.2%之間的碰撞該反射器的光(取決於反射率及決定背光效率的其他設計參數的精確值)。因此,對於3 mm x 3 mm的方形而言,若在反射器中製作了單個圖案特徵或「孔洞」,則該特徵的尺寸會在約95 µm x 95 µm與約134 µm x 134 µm之間。僅具有一個特徵將不可避免地產生該特徵上方的較亮區域(熱斑)及圍繞該特徵的較暗區域(冷斑)。實際上,為了改良超過3 mm x 3 mm的區域的亮度均勻性,在某些實施例中,製作具有對應地較小的尺寸的複數個圖案特徵可能是必要的。此類小型特徵一般會需要某種形式的光刻進程來製作。若是使用高反射性的漆或墨水來製作可變的反射器,則亦可能需要在達到高反射率之前建造100 µm或更高的厚度。 8A-8B illustrate certain embodiments of multilayer variable reflectors in accordance with certain embodiments of the present disclosure. Referring to Figure 8A, a non-limiting embodiment is depicted having an LED size of about 1 mm x 1 mm and an LGP thickness of about 1 mm. In this non-limiting example, the spacing of the LEDs (distance between centers) is 100 mm, where the size of an individual 2D dimmed area or the size of an area illuminated by one LED is 100 mm x 100 mm. As depicted in Figure 8A , light rays emitted by LEDs outside the escape cone having an angle of about 42 degrees or higher with respect to the surface normal (for an LGP index of 1.5) will be totally internally reflected And thus captured by LGP. If the top reflector is not present, the light in the cone will escape. In this non-limiting example, the intersection of the escape cone and the top surface of the LGP is about 3 mm x 3 mm or about 1000 times smaller than the size of the dimmed area. Meanwhile, for emitters with a Lambertian angle light distribution, about 45% of the total emitted flux is within the escape cone. Thus, if a reflector as shown in Figure 8A happens to cover the escape cone, in order to achieve uniform illumination over the LGP, between about 0.1% and 0.2% of the light impinging on the reflector would need to be transmitted (depending on the reflection rate and exact values of other design parameters that determine backlight efficiency). Therefore, for a 3 mm x 3 mm square, if a single pattern feature or "hole" is made in the reflector, the feature size will be between about 95 µm x 95 µm and about 134 µm x 134 µm . Having only one feature will inevitably produce brighter areas above the feature (hot spots) and darker areas around the feature (cold spots). Indeed, in order to improve brightness uniformity over an area exceeding 3 mm x 3 mm, it may be necessary in some embodiments to fabricate a plurality of pattern features with correspondingly smaller dimensions. Such small features typically require some form of photolithography process to produce. If a highly reflective paint or ink is used to make the variable reflector, it may also be necessary to build a thickness of 100 µm or more before high reflectivity is achieved.
參照圖 8B ,繪示了具有包括二或更多個層的反射器的另一非限制性實施例。在某些實施例中,示例性反射漆可透射約95%的輸入光,且若反射器的第一層僅讓5%的光出去,則第二層應透射2%與4%之間的輸入光。在第二層是完全不透明的實施例中,這會與第二層中在約0.42 mm乘0.42 mm與0.6 mm乘0.6 mm之間的圖案特徵尺寸對應。相較於圖8A中所描述的實施例,此類特徵尺寸是更容易製造的,且更容易達成更均勻的亮度。Referring to Figure 8B , another non-limiting embodiment having a reflector comprising two or more layers is shown. In certain embodiments, an exemplary reflective paint can transmit about 95% of the input light, and if the first layer of the reflector only lets 5% of the light out, the second layer should transmit between 2% and 4% input light. In embodiments where the second layer is fully opaque, this would correspond to a pattern feature size in the second layer between about 0.42 mm by 0.42 mm and 0.6 mm by 0.6 mm. Such feature sizes are easier to manufacture than the embodiment depicted in Figure 8A, and more uniform brightness is easier to achieve.
圖 8A 及8B 因此繪示的是,可在示例性的實施例中變化兩種特徵(一個特徵是圖案特徵(例如「孔洞」或「島狀物」)的尺寸,而另一特徵是反射層中的各者的透射率/反射率)以將特徵尺寸對層厚度的比率保持在可容易到達以供印刷的範圍內。取決於可用的反射墨水或漆的類型,可使用任何合適的數位印刷技術,例如噴墨印刷、絲網印刷、柔版印刷等等。在某些實施例中,在薄背光設計中使用白色漆或墨水作為反射器材料的優點是,漆一般具有漫射而不是鏡面反射率,這將協助避免太多的反射光線返回LED源,且進一步增加了背光效率。 Figures 8A and 8B thus illustrate that the size of two features (one being a pattern feature (eg "holes" or "islands") and the other being a reflective layer can be varied in an exemplary embodiment transmittance/reflectance of each of the ) to keep the ratio of feature size to layer thickness within an easily accessible range for printing. Depending on the type of reflective ink or lacquer available, any suitable digital printing technique may be used, such as ink jet printing, screen printing, flexographic printing, and the like. In some embodiments, the advantage of using white paint or ink as the reflector material in thin backlight designs is that the paint generally has diffuse rather than specular reflectivity, which will help avoid too much reflected light back to the LED source, and The backlight efficiency is further increased.
若是用在本文中所揭露的薄背光設計中,則可將示例性的可變反射器印刷在LGP的頂面上以及LGP上方的任何其他合適的表面(例如光學漫射板、漫射片或亮度增強膜(BEF)的底面)上。若將示例性的可變反射器印刷在LGP上,則提供給對應的顯示器的額外優點是,可在與可變反射器的第一層相同的操作中印刷光抽取特徵,因為白色漆在本領域中眾所周知地是用作高效的光抽取器的。If used in the thin backlight designs disclosed herein, exemplary variable reflectors can be printed on the top surface of the LGP and any other suitable surface above the LGP (eg, an optical diffuser, diffuser, or on the underside of the Brightness Enhancement Film (BEF). If the exemplary variable reflector is printed on the LGP, an additional advantage provided to the corresponding display is that the light extraction features can be printed in the same operation as the first layer of the variable reflector, since the white paint is in this It is well known in the art for use as an efficient light extractor.
在某些實施例中,若將示例性可變反射器印刷在BEF、漫射器或LGP以外的背光的其他元件的底面上,則LGP的存在可能不是必要的,但仍可提供容易製造及較高亮度均勻性的優點。In some embodiments, if the exemplary variable reflector is printed on the underside of the BEF, diffuser, or other element of the backlight other than the LGP, the presence of the LGP may not be necessary, but may still provide ease of manufacture and The advantage of higher luminance uniformity.
為了說明某些實施例,藉由在玻璃上用Mimaki UJF7151 plus印刷機印刷市售的白色墨水LH-100備製了具有不同厚度d的多個試樣。一個試樣具有d = 0,亦即沒有白色墨水;第二試樣具有d = d0 = 0.025 mm;而其他試樣具有0與6xd0之間的墨水厚度。使用用於散射體及外觀的成像球體(Imaging Sphere for Scatter and Appearance, IS-SA)偵測器(可從Radiant Imaging公司取得)以及正向入射及550 nm波長下的光源,來在各個試樣上量測餘弦校正的雙向透射分佈函數(ccBTDF)(已確定零度下的ccBTDF(0)是用於透射強度的良好度量)。亦使用相同的儀器來量測餘弦校正的雙向反射分佈函數(ccBRDF)。因為,在正向入射的情況下,反射射束及入射射束在空間上重疊,不能獲得ccBRDF(0);然而,已確定來自ccBRDF的全積散射(total integrated scattering, TIS_R)是量化反射光的良好度量。To illustrate certain examples, multiple samples with different thicknesses d were prepared by printing the commercially available white ink LH-100 on glass with a Mimaki UJF7151 plus printer. One sample had d = 0, ie no white ink; the second sample had d = d0 = 0.025 mm; and the other samples had ink thicknesses between 0 and 6xd0. Using an Imaging Sphere for Scatter and Appearance (IS-SA) detector (available from Radiant Imaging) and a light source at normal incidence and a wavelength of 550 nm, each sample was analyzed using an Imaging Sphere for Scatter and Appearance (IS-SA) detector. Measure the cosine-corrected bidirectional transmission distribution function (ccBTDF) above (ccBTDF(0) at zero degrees has been determined to be a good measure for transmitted intensity). The same instrument was also used to measure the cosine-corrected bidirectional reflectance distribution function (ccBRDF). Since, in the case of normal incidence, the reflected beam and the incident beam overlap spatially, ccBRDF(0) cannot be obtained; however, it has been determined that total integrated scattering (TIS_R) from the ccBRDF is the quantified reflected light good measure.
以下的表格5針對550 nm波長提供了零度下的TIS_R及ccBTDF(0)與相對墨水厚度d/d0的關係表。表格 5
參照表格5,可觀察到,由ccBTDF(0)所量化的正向入射的透射光強度可藉由控制白色墨水的厚度而變化大於3個數量級。應注意,在墨水厚度是2xd0或更厚時,透射光強度可能太小而不能被精確量測。反射光的全積散射可從約21%到約93%變化。因此,該等實驗結果說明了一種示例性可變反射器,該可變反射器具有不同的反射作用及透射作用且在空間上具有變化的白色墨水厚度。Referring to Table 5, it can be observed that the transmitted light intensity at normal incidence, quantified by ccBTDF(0), can be varied by more than 3 orders of magnitude by controlling the thickness of the white ink. It should be noted that when the ink thickness is 2xd0 or more, the transmitted light intensity may be too small to be accurately measured. The total product scattering of reflected light can vary from about 21% to about 93%. Thus, these experimental results illustrate an exemplary variable reflector with different reflection and transmission effects and spatially varying white ink thickness.
可將本文中所揭露的BLU用在各種顯示設備中,包括(但不限於)電視、電腦、電話、手持式設備、告示牌或其他顯示螢幕。亦可將本文中所揭露的BLU用在各種照明設備中,例如照明器具或固態照明設備。The BLUs disclosed herein may be used in a variety of display devices including, but not limited to, televisions, computers, telephones, handheld devices, billboards, or other display screens. The BLUs disclosed herein may also be used in various lighting devices, such as lighting fixtures or solid state lighting devices.
某些實施例提供了一種背光單元,該背光單元包括:基板,包括發光第一主要面及相反的第二主要面;至少一個光源,光學耦接到該基板;及反射器,定位在該基板的第一主要面或第二主要面附近,該反射器包括反射材料的二或更多個層,其中該等層中的各者具有第一區域及一第二區域,該第一區域較該第二區域更具反射性,而該第二區域較該第一區域更具透射性。在某些實施例中,該基板包括玻璃。該玻璃可包括一種成分,該成分在氧化物莫耳百分比的基礎上具有:50-90莫耳百分比的SiO2 ,0-20莫耳百分比的Al2 O3 ,0-20莫耳百分比的B2 O3 ,及0-25莫耳百分比的Rx O,其中x為2且R選自Li、Na、K、Rb、Cs及其組合,或其中x為1且R選自Zn、Mg、Ca、Sr、Ba及其組合。在某些實施例中,該基板包括小於約0.015的色偏∆y。在其他實施例中,該基板包括範圍從約0.1 mm到約2 mm的厚度。在某些實施例中,該反射材料是白色墨水,且其中來自該白色墨水的反射的全積散射(total integrated scattering)在4%與93%之間變化。在某些實施例中,該基板是一體積漫射板、表面漫射片、光導板、亮度增強膜或反射偏振器。在某些實施例中,該至少一個光源通過光學黏著層光學耦接到該光導板的該第二主要面。Certain embodiments provide a backlight unit comprising: a substrate including a light emitting first major surface and an opposing second major surface; at least one light source optically coupled to the substrate; and a reflector positioned on the substrate Near the first or second major surface of the reflector, the reflector includes two or more layers of reflective material, wherein each of the layers has a first area and a second area, the first area being larger than the The second area is more reflective and the second area is more transmissive than the first area. In certain embodiments, the substrate includes glass. The glass may include a composition having on an oxide molar percent basis: 50-90 molar percent SiO2 , 0-20 molar percent Al2O3 , 0-20 molar percent B 2O3 , and 0-25 mole percent RxO , wherein x is 2 and R is selected from Li, Na, K, Rb, Cs, and combinations thereof, or wherein x is 1 and R is selected from Zn, Mg, Ca, Sr, Ba and combinations thereof. In certain embodiments, the substrate includes a color shift Δy of less than about 0.015. In other embodiments, the substrate includes a thickness ranging from about 0.1 mm to about 2 mm. In certain embodiments, the reflective material is white ink, and wherein the total integrated scattering of reflections from the white ink varies between 4% and 93%. In certain embodiments, the substrate is a volume diffuser, surface diffuser, light guide, brightness enhancement film, or reflective polarizer. In certain embodiments, the at least one light source is optically coupled to the second major face of the light guide plate through an optical adhesive layer.
另外的實施例提供了一種背光單元,該背光單元包括:基板,包括發光第一主要面及相反的第二主要面;複數個離散的光源;反射器,定位在該第二主要面附近;及多層圖案化反射器,定位在該第一主要面附近,各個層具有第一區域及第二區域,該第一區域較該第二區域更具反射性,而該第二區域較該第一區域更具透射性。在某些實施例中,該等離散光源定位在該多層圖案化反射器下方及該底部反射器上方,且由該等光源所發射的光由於該底部反射器及該圖案化反射器的反射面處的多重反射而在該底部反射器與該圖案化反射器之間側向前行。在某些實施例中,該基板包括玻璃。該玻璃可包括一種成分,該成分在氧化物莫耳百分比的基礎上具有:50-90莫耳百分比的SiO2 ,0-20莫耳百分比的Al2 O3 ,0-20莫耳百分比的B2 O3 ,及0-25莫耳百分比的Rx O,其中x為2且R選自Li、Na、K、Rb、Cs及其組合,或其中x為1且R選自Zn、Mg、Ca、Sr、Ba及其組合。在某些實施例中,該基板包括小於約0.015的色偏∆y。在其他實施例中,該基板包括範圍從約0.1 mm到約2 mm的厚度。在某些實施例中,該基板是一體積漫射板、表面漫射片、光導板、亮度增強膜或反射偏振器。在某些實施例中,該至少一個光源通過光學黏著層光學耦接到該光導板的該第二主要面。Further embodiments provide a backlight unit comprising: a substrate including a light-emitting first major surface and an opposing second major surface; a plurality of discrete light sources; a reflector positioned adjacent the second major surface; and Multilayer patterned reflectors positioned near the first major surface, each layer having a first area and a second area, the first area being more reflective than the second area, and the second area being more reflective than the first area more transmissive. In certain embodiments, the discrete light sources are positioned below the multilayer patterned reflector and above the bottom reflector, and light emitted by the light sources is due to the bottom reflector and the reflective surfaces of the patterned reflector multiple reflections at and travel laterally between the bottom reflector and the patterned reflector. In certain embodiments, the substrate includes glass. The glass may include a composition having on an oxide molar percent basis: 50-90 molar percent SiO2 , 0-20 molar percent Al2O3 , 0-20 molar percent B 2O3 , and 0-25 mole percent RxO , wherein x is 2 and R is selected from Li, Na, K, Rb, Cs, and combinations thereof, or wherein x is 1 and R is selected from Zn, Mg, Ca, Sr, Ba and combinations thereof. In certain embodiments, the substrate includes a color shift Δy of less than about 0.015. In other embodiments, the substrate includes a thickness ranging from about 0.1 mm to about 2 mm. In certain embodiments, the substrate is a volume diffuser, surface diffuser, light guide, brightness enhancement film, or reflective polarizer. In certain embodiments, the at least one light source is optically coupled to the second major face of the light guide plate through an optical adhesive layer.
額外的實施例提供了一種背光單元,該背光單元包括:基板,包括一發光第一主要面、相反的第二主要面及該第一主要面或該第二主要面上的複數個圖案化特徵;複數個離散的光源;反射器,定位在該第二主要面附近;及多層圖案化反射器,定位在該第一主要面附近,該等層中的各者具有第一區域及第二區域,該第一區域較該第二區域更具反射性,而該第二區域較該第一區域更具透射性。在某些實施例中,該等離散光源定位在該圖案化基板正後方,且其中來自該等離散光源的光被光學耦接到該圖案化玻璃光導器,使得該光的第一部分由於全內反射而在該圖案化玻璃光導器中側向前行且被光抽取器的圖案抽取出,且該光的第二部分由於該底部反射器及該圖案化反射器的反射面處的多重反射而在該底部反射器與該圖案化反射器之間側向前行。在某些實施例中,該基板包括玻璃。該玻璃可包括一種成分,該成分在氧化物莫耳百分比的基礎上具有:50-90莫耳百分比的SiO2 ,0-20莫耳百分比的Al2 O3 ,0-20莫耳百分比的B2 O3 ,及0-25莫耳百分比的Rx O,其中x為2且R選自Li、Na、K、Rb、Cs及其組合,或其中x為1且R選自Zn、Mg、Ca、Sr、Ba及其組合。在某些實施例中,該基板包括小於約0.015的色偏∆y。在其他實施例中,該基板包括範圍從約0.1 mm到約2 mm的厚度。在某些實施例中,該基板是一體積漫射板、表面漫射片、光導板、亮度增強膜或反射偏振器。在某些實施例中,該至少一個光源通過光學黏著層光學耦接到該光導板的該第二主要面。在某些實施例中,該基板是在該第一主要面及該第二主要面兩者上具有光抽取器圖案的圖案化玻璃光導板。Additional embodiments provide a backlight unit comprising: a substrate including a light emitting first major surface, an opposing second major surface, and a plurality of patterned features on either the first major surface or the second major surface a plurality of discrete light sources; a reflector positioned adjacent the second major face; and a multilayer patterned reflector positioned adjacent the first major face, each of the layers having a first region and a second region , the first area is more reflective than the second area, and the second area is more transmissive than the first area. In certain embodiments, the discrete light sources are positioned directly behind the patterned substrate, and wherein light from the discrete light sources is optically coupled to the patterned glass light guide such that the first portion of the light is due to the full internal reflected to travel sideways in the patterned glass light guide and extracted by the pattern of light extractors, and a second portion of the light due to multiple reflections at the bottom reflector and the reflective surface of the patterned reflector Advance laterally between the bottom reflector and the patterned reflector. In certain embodiments, the substrate includes glass. The glass may include a composition having on an oxide molar percent basis: 50-90 molar percent SiO2 , 0-20 molar percent Al2O3 , 0-20 molar percent B 2O3 , and 0-25 mole percent RxO , wherein x is 2 and R is selected from Li, Na, K, Rb, Cs, and combinations thereof, or wherein x is 1 and R is selected from Zn, Mg, Ca, Sr, Ba and combinations thereof. In certain embodiments, the substrate includes a color shift Δy of less than about 0.015. In other embodiments, the substrate includes a thickness ranging from about 0.1 mm to about 2 mm. In certain embodiments, the substrate is a volume diffuser, surface diffuser, light guide, brightness enhancement film, or reflective polarizer. In certain embodiments, the at least one light source is optically coupled to the second major face of the light guide plate through an optical adhesive layer. In certain embodiments, the substrate is a patterned glass light guide plate with light extractor patterns on both the first major side and the second major side.
將理解到,各種揭露的實施例可涉及連同該特定實施例描述的特定特徵、構件或步驟。亦將理解到,雖然是與一個特定實施例關聯來描述,但可將特定的特徵、構件或步驟用各種未說明的組合或排列與替代性實施例互換或結合。It will be appreciated that various disclosed embodiments may involve specific features, components or steps described in connection with the specific embodiment. It will also be understood that although described in association with one particular embodiment, the particular features, components or steps may be interchanged or combined with alternative embodiments in various unillustrated combinations or permutations.
亦要了解到,如本文中所使用的,用語「該」、「一(a)」或「一(an)」指的是「至少一個」,且不應限於「只有一個」,除非明確地相反指示。因此,例如,對於「一個光源」的指稱包括具有二或更多個此類光源的實例,除非上下文另有清楚指示。同樣地,「複數」或「陣列」是要用來指示「多於一個」。如此,「複數個光散射特徵」包括了二或更多個此類特徵,例如三或更多個此類特徵等等,而「孔洞陣列」包括了二或更多個此類孔洞,例如三或更多個此類孔洞等等。 It is also to be understood that, as used herein, the terms "the", "one (a)" or "an (an)" refer to "at least one" and should not be limited to "only one" unless expressly Indicate the opposite. Thus, for example, reference to "a light source" includes instances with two or more such light sources, unless the context clearly dictates otherwise. Likewise, "plural" or "array" is intended to indicate "more than one". Thus, "light scattering features" includes two or more such features, such as three or more such features, etc., and "array of holes" includes two or more such holes, such as three or more such holes, etc.
在本文中可將範圍表示為從「約」一個特定值及/或到「約」另一特定值。當表示此類範圍時,實例包括了從該一個特定值及/或到另一特定值。類似地,當藉由使用先行詞「約」將值表示為近似值時,將了解到,該特定值形成了另一個態樣。將進一步了解到,範圍中的各者的端點相對於另一端點是有意義的(significant)且是與另一端點無關地有意義的。 Ranges may be expressed herein as from "about" one particular value and/or to "about" another particular value. When expressing such ranges, examples include from that one particular value and/or to another particular value. Similarly, when values are expressed as approximations, by use of the antecedent "about," it will be appreciated that the particular value forms another aspect. It will be further understood that an endpoint of each of the ranges is significant relative to and independent of the other endpoint.
如本文中所使用的用語「實質」、「實質上」及其變化要敘述的是,所述特徵相等或幾乎相等於一個值或描述。例如,「實質平坦」的表面是要指示平坦或幾乎平坦的表面。並且,「實質類似」是要指示,兩個值是相等或幾乎相等的。在某些實施例中,「實質類似」可指示在彼此約10%內的值,例如在彼此約5%內,或在彼此約2%內。 As used herein, the terms "substantially," "substantially," and variations thereof are intended to describe that the feature is equal or nearly equal to a value or description. For example, a "substantially flat" surface is intended to indicate a flat or nearly flat surface. Also, "substantially similar" is meant to indicate that two values are equal or nearly equal. In certain embodiments, "substantially similar" may indicate values within about 10% of each other, such as within about 5% of each other, or within about 2% of each other.
雖然可使用連接短語「包括」來揭露特定實施例的各種特徵、構件或步驟,但要了解到,替代性的實施例(包括可以使用傳統短語「由...組成」或「實質由...組成」來描述的彼等實施例)是被隱含的。因此,例如,對於包括A+B+C的設備所隱含的替代性實施例包括了設備由A+B+C組成的實施例及設備實質由A+B+C組成的實施例。Although the conjunctive phrase "comprising" may be used to disclose various features, components, or steps of a particular embodiment, it is to be understood that alternative embodiments (including the conventional phrase "consisting of" or "substantially consisting of" may be used ...composition" to describe those embodiments) are implied. Thus, for example, alternative embodiments implied for a device comprising A+B+C include embodiments where the device consists of A+B+C and embodiments where the device consists essentially of A+B+C.
本領域中的技術人員將理解到,可在不脫離本揭示案的精神及範圍的情況下對本揭示案作出各種更改及變化。因為本領域中的技術人員可以想到併入本揭示案的精神及本質的揭露的實施例的更改、組合、子組合及變化,本揭示案應視為包括隨附請求項及其等效物的範圍內的一切事物。Those skilled in the art will understand that various modifications and variations can be made in the present disclosure without departing from the spirit and scope of the disclosure. As modifications, combinations, sub-combinations, and variations of the disclosed embodiments that incorporate the spirit and essence of the present disclosure may occur to those skilled in the art, the present disclosure should be deemed to include the appended claims and their equivalents everything within range.
100‧‧‧光導板(LGP)100A‧‧‧第一主要面100B‧‧‧第二主要面105‧‧‧微結構110‧‧‧光源120‧‧‧圖案化反射層120A‧‧‧光學反射元件120B‧‧‧光學透射元件125A‧‧‧第一區域125B‧‧‧第二區域130‧‧‧後部反射器140‧‧‧印刷電路板150‧‧‧光學黏著層160‧‧‧漫射膜170‧‧‧輔助光學膜/色彩轉換層180‧‧‧稜鏡膜190‧‧‧反射偏振膜200‧‧‧顯示面板L‧‧‧長度L0‧‧‧單元長度OD‧‧‧光學距離R1‧‧‧第一反射R2‧‧‧
第二反射R3‧‧‧第三反射t‧‧‧厚度T1‧‧‧第一透射T2‧‧‧第二透射T3‧‧‧第三透射W‧‧‧寬度W0‧‧‧單元寬度X1‧‧‧側向距離X2‧‧‧側向距離X3‧‧‧側向距離ΘLED‧‧‧發射角ΘLGP‧‧‧入射角100‧‧‧Light Guide Plate (LGP) 100A‧‧‧
在連同以下繪圖閱讀時,可進一步了解以下的詳細說明。The following detailed description can be further understood when read in conjunction with the following drawings.
圖 1 繪示光導板及光學耦接到光導板的光源陣列; 1 illustrates a light guide plate and an array of light sources optically coupled to the light guide plate;
圖 2 繪示依據本揭示案的某些實施例的示例性圖案化反射層; 2 illustrates an exemplary patterned reflective layer in accordance with certain embodiments of the present disclosure;
圖 3-4 繪示依據本揭示案的各種實施例的示例性BLU的橫截面圖; 3-4 illustrate cross-sectional views of exemplary BLUs in accordance with various embodiments of the present disclosure;
圖 5A-B 繪示光導板內的光的側向傳播; 5A-B illustrate lateral propagation of light within a light guide;
圖 6A-D 為針對具有各種圖案化反射層的示例性BLU的光抽取效率的繪圖; 6A-D are plots of light extraction efficiency for exemplary BLUs with various patterned reflective layers;
圖 7 繪示依據本揭示案的額外實施例的圖案化為具有微結構的LGP; 7 illustrates LGP patterned with microstructures in accordance with additional embodiments of the present disclosure;
圖 8A-8B 繪示依據本揭示案的某些實施例的多層可變反射器的某些實施例。 8A-8B illustrate certain embodiments of multilayer variable reflectors in accordance with certain embodiments of the present disclosure.
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無Domestic storage information (please note in the order of storage institution, date and number) None
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無Foreign deposit information (please note in the order of deposit country, institution, date and number) None
100‧‧‧光導板(LGP) 100‧‧‧Light Guide Plate (LGP)
100A‧‧‧第一主要面 100A‧‧‧First main side
100B‧‧‧第二主要面 100B‧‧‧Second main aspect
110‧‧‧光源 110‧‧‧Light source
120‧‧‧圖案化反射層 120‧‧‧Patterned reflective layer
120A‧‧‧光學反射元件 120A‧‧‧Optical Reflector
120B‧‧‧光學透射元件 120B‧‧‧Optical transmission element
130‧‧‧後部反射器 130‧‧‧Rear reflector
OD‧‧‧光學距離 OD‧‧‧Optical distance
t‧‧‧厚度 t‧‧‧Thickness
T1‧‧‧第一透射 T 1 ‧‧‧First transmission
T2‧‧‧第二透射 T 2 ‧‧‧Second Transmission
T3‧‧‧第三透射 T 3 ‧‧‧Third transmission
W0‧‧‧單元寬度 W 0 ‧‧‧Unit width
Claims (28)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762551491P | 2017-08-29 | 2017-08-29 | |
US62/551,491 | 2017-08-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201921057A TW201921057A (en) | 2019-06-01 |
TWI772501B true TWI772501B (en) | 2022-08-01 |
Family
ID=65527924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107130059A TWI772501B (en) | 2017-08-29 | 2018-08-29 | Multilayer reflector for direct lit backlights |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7391013B2 (en) |
KR (1) | KR102637705B1 (en) |
CN (1) | CN111133249B (en) |
TW (1) | TWI772501B (en) |
WO (1) | WO2019046328A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW202036060A (en) | 2018-11-12 | 2020-10-01 | 美商康寧公司 | Backlight including patterned reflectors, diffuser plate, and method for fabricating the backlight |
US11880057B2 (en) * | 2019-06-26 | 2024-01-23 | Corning Incorporated | Display device and backlight unit therefor |
WO2021162889A1 (en) | 2020-02-10 | 2021-08-19 | Corning Incorporated | Backlights including patterned reflectors |
JP2023524045A (en) | 2020-04-29 | 2023-06-08 | コーニング インコーポレイテッド | Backlight with patterned light-scattering element and wavelength-selective reflective element |
US11422407B2 (en) | 2021-01-04 | 2022-08-23 | Samsung Electronics Co., Ltd. | Display apparatus and light source device thereof |
WO2022145575A1 (en) * | 2021-01-04 | 2022-07-07 | 삼성전자주식회사 | Display device and light source device thereof |
EP4050408A4 (en) * | 2021-01-04 | 2022-09-14 | Samsung Electronics Co., Ltd. | Display device and light source device thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080055929A1 (en) * | 2005-01-31 | 2008-03-06 | Toppan Printing Co., Ltd. | Optical Sheet, and Backlight Unit and Display Using the Same |
TW200842405A (en) * | 2007-04-20 | 2008-11-01 | Chi Lin Technology Co Ltd | Lighting device, a direct type backlight module and other related electronic devices with the same and a method for manufacturing thereof |
WO2016148141A1 (en) * | 2015-03-17 | 2016-09-22 | 東レ株式会社 | Layered film, liquid crystal display using same, touch panel, and organic el display |
WO2017106124A2 (en) * | 2015-12-16 | 2017-06-22 | Corning Incorporated | Light guide plates and display devices comprising the same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4461198B1 (en) | 2009-04-27 | 2010-05-12 | 株式会社東芝 | Planar illumination device and liquid crystal display device including the same |
JP2011096494A (en) | 2009-10-29 | 2011-05-12 | Toshiba Corp | Planar lighting device and liquid-crystal display device including the same |
JP5774942B2 (en) * | 2011-08-26 | 2015-09-09 | 日立マクセル株式会社 | Illumination unit and display device using the same |
TW201326982A (en) * | 2011-12-29 | 2013-07-01 | Ind Tech Res Inst | Display apparatus |
US9902644B2 (en) * | 2014-06-19 | 2018-02-27 | Corning Incorporated | Aluminosilicate glasses |
KR102309899B1 (en) * | 2015-04-29 | 2021-10-08 | 삼성전자 주식회사 | Display apparatus and control method thereof |
-
2018
- 2018-08-28 KR KR1020207008898A patent/KR102637705B1/en active IP Right Grant
- 2018-08-28 JP JP2020512690A patent/JP7391013B2/en active Active
- 2018-08-28 WO PCT/US2018/048386 patent/WO2019046328A1/en active Application Filing
- 2018-08-28 CN CN201880062874.6A patent/CN111133249B/en active Active
- 2018-08-29 TW TW107130059A patent/TWI772501B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080055929A1 (en) * | 2005-01-31 | 2008-03-06 | Toppan Printing Co., Ltd. | Optical Sheet, and Backlight Unit and Display Using the Same |
TW200842405A (en) * | 2007-04-20 | 2008-11-01 | Chi Lin Technology Co Ltd | Lighting device, a direct type backlight module and other related electronic devices with the same and a method for manufacturing thereof |
WO2016148141A1 (en) * | 2015-03-17 | 2016-09-22 | 東レ株式会社 | Layered film, liquid crystal display using same, touch panel, and organic el display |
WO2017106124A2 (en) * | 2015-12-16 | 2017-06-22 | Corning Incorporated | Light guide plates and display devices comprising the same |
Also Published As
Publication number | Publication date |
---|---|
KR102637705B1 (en) | 2024-02-19 |
CN111133249A (en) | 2020-05-08 |
KR20200037429A (en) | 2020-04-08 |
JP7391013B2 (en) | 2023-12-04 |
CN111133249B (en) | 2023-07-25 |
WO2019046328A1 (en) | 2019-03-07 |
JP2020532833A (en) | 2020-11-12 |
TW201921057A (en) | 2019-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7266584B2 (en) | Direct-emitting backlight unit with 2D local dimming | |
TWI772501B (en) | Multilayer reflector for direct lit backlights | |
US20190146139A1 (en) | Microstructured and patterned light guide plates and devices comprising the same | |
US11092733B2 (en) | Microstructured light guide plates and devices comprising the same | |
JP2019523970A (en) | Microstructured light guide plate and apparatus including the same | |
WO2018144509A1 (en) | Backlight unit with 2d local dimming | |
WO2017106124A2 (en) | Light guide plates and display devices comprising the same | |
WO2018144720A1 (en) | Light guide assemblies comprising optical manipulation features | |
TW201814340A (en) | Edge-lit light guide plates and devices comprising the same | |
WO2019040686A1 (en) | Backlight unit having a light guide plate | |
WO2018156547A1 (en) | Devices comprising integrated backlight unit and display panel | |
US20200301061A1 (en) | Locally dimmable light guide plates and display devices comprising the same | |
WO2019217408A1 (en) | Backlight unit with improved 2d local dimming |