WO2017209164A1 - 端末装置、基地局装置、通信方法、および、集積回路 - Google Patents

端末装置、基地局装置、通信方法、および、集積回路 Download PDF

Info

Publication number
WO2017209164A1
WO2017209164A1 PCT/JP2017/020194 JP2017020194W WO2017209164A1 WO 2017209164 A1 WO2017209164 A1 WO 2017209164A1 JP 2017020194 W JP2017020194 W JP 2017020194W WO 2017209164 A1 WO2017209164 A1 WO 2017209164A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink grant
harq
ack
pusch
transmitted
Prior art date
Application number
PCT/JP2017/020194
Other languages
English (en)
French (fr)
Inventor
翔一 鈴木
友樹 吉村
立志 相羽
渉 大内
林 貴志
麗清 劉
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US16/305,419 priority Critical patent/US11083008B2/en
Priority to EP17806716.1A priority patent/EP3468279A4/en
Priority to CN201780026639.9A priority patent/CN109196940A/zh
Priority to EP20198187.5A priority patent/EP3780851A1/en
Publication of WO2017209164A1 publication Critical patent/WO2017209164A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1685Details of the supervisory signal the supervisory signal being transmitted in response to a specific request, e.g. to a polling signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers

Definitions

  • the present invention relates to a terminal device, a base station device, a communication method, and an integrated circuit.
  • LTE Long Term Evolution
  • EUTRA Universal “Terrestrial” Radio Access
  • 3rd Generation Generation 3rd Generation Generation
  • a base station apparatus is also called eNodeB (evolvedvolveNodeB), and a terminal device is also called UE (UserUEEquipment).
  • LTE is a cellular communication system in which a plurality of areas covered by a base station apparatus are arranged in a cell shape. A single base station apparatus may manage a plurality of cells.
  • Non-Patent Documents 1, 2, and 3 carrier aggregation, which is a technology in which a terminal device simultaneously transmits and / or receives in a plurality of serving cells (component carriers), is specified.
  • LAA license-assisted access
  • Non-Patent Document 4 the extension of license-assisted access (LAA: Licensed Assisted Access) and carrier aggregation using uplink carriers in an unlicensed ⁇ ⁇ ⁇ band are being studied (Non-Patent Document 4).
  • Non-Patent Document 5 discloses that HARQ-ACK feedback for an uplink carrier in an unlicensed band is transmitted by PUSCH based on a trigger by a base station apparatus.
  • One embodiment of the present invention is a terminal device capable of efficiently performing uplink transmission, a communication method used in the terminal device, an integrated circuit mounted in the terminal device, and efficiently receiving uplink transmission
  • a base station apparatus that can be used, a communication method used for the base station apparatus, and an integrated circuit implemented in the base station apparatus are provided.
  • the first aspect of the present invention is a terminal device, wherein a reception unit that receives an uplink grant used for scheduling PUSCH, and a HARQ-ACK request included in the uplink grant is a HARQ-ACK When set to trigger transmission, transmit the HARQ-ACK on the PUSCH corresponding to the uplink grant, and the CSI request included in the uplink grant triggers a CSI report.
  • a transmission unit that transmits RI in the PUSCH corresponding to the uplink grant, the index of the SC-FDMA symbol to which the RI is transmitted is an index of the HARQ-ACK request. Given based on value.
  • a second aspect of the present invention is a base station apparatus, wherein a transmission unit that transmits an uplink grant used for scheduling PUSCH, and a HARQ-ACK request included in the uplink grant is HARQ -If set to trigger ACK transmission, receive the HARQ-ACK on the PUSCH corresponding to the uplink grant, and a CSI request included in the uplink grant triggers a CSI report
  • the PUSCH corresponding to the uplink grant includes a receiving unit that receives an RI, and an index of an SC-FDMA symbol to which the RI is transmitted is the HARQ-ACK Given based on the value of the request.
  • a third aspect of the present invention is a communication method used for a terminal apparatus, which receives an uplink grant used for scheduling a PUSCH, and a HARQ-ACK request included in the uplink grant is received. If set to trigger HARQ-ACK transmission, transmit the HARQ-ACK on the PUSCH corresponding to the uplink grant, and a CSI request included in the uplink grant triggers a CSI report In the PUSCH corresponding to the uplink grant, the RI is transmitted, and the index of the SC-FDMA symbol to which the RI is transmitted is based on the value of the HARQ-ACK request. Given.
  • a fourth aspect of the present invention is a communication method used for a base station apparatus, which transmits an uplink grant used for scheduling a PUSCH, and a HARQ-ACK request included in the uplink grant.
  • the HASCH-ACK is received on the PUSCH corresponding to the uplink grant, and the CSI request included in the uplink grant receives a CSI report.
  • the PUSCH corresponding to the uplink grant receives the RI, and the index of the SC-FDMA symbol to which the RI is transmitted is the value of the HARQ-ACK request. Given on the basis.
  • an integrated circuit mounted on a terminal device, the receiving circuit receiving an uplink grant used for scheduling a PUSCH, and HARQ included in the uplink grant.
  • the ACK request is set to trigger HARQ-ACK transmission
  • the HASCH-ACK is transmitted on the PUSCH corresponding to the uplink grant
  • the CSI request included in the uplink grant is
  • the PUSCH corresponding to the uplink grant includes a transmission circuit that transmits RI, and an index of the SC-FDMA symbol to which the RI is transmitted is , Based on the value of the HARQ-ACK request It is.
  • a sixth aspect of the present invention is an integrated circuit implemented in a base station apparatus, and is included in a transmission circuit that transmits an uplink grant used for scheduling a PUSCH, and the uplink grant If the HARQ-ACK request is set to trigger HARQ-ACK transmission, the HASCH-ACK is received on the PUSCH corresponding to the uplink grant, and the CSI request included in the uplink grant is received. Is set to trigger a CSI report, a receiving circuit that receives RI in the PUSCH corresponding to the uplink grant, and an index of an SC-FDMA symbol to which the RI is transmitted Is based on the value of the HARQ-ACK request. Erareru.
  • the terminal device can efficiently perform uplink transmission. Also, the base station apparatus can efficiently receive uplink transmission.
  • Uplink data in this embodiment (a x), CQI / PMI (o x), RI (a x), and is a diagram showing an example of the encoding process of HARQ-ACK (a x). It is a figure which shows the 1st example of multiplexing and the interleaving of the encoding bit in this embodiment. It is a figure which shows the 2nd example of multiplexing and the interleaving of the encoding bit in this embodiment. It is a figure which shows the 3rd example of multiplexing and the interleaving of the encoding bit in this embodiment.
  • FIG. 1 is a conceptual diagram of the wireless communication system of the present embodiment.
  • the radio communication system includes terminal apparatuses 1A to 1C and a base station apparatus 3.
  • the terminal devices 1A to 1C are referred to as the terminal device 1.
  • the terminal device 1 is set with a plurality of serving cells.
  • a technique in which the terminal device 1 communicates via a plurality of serving cells is referred to as cell aggregation or carrier aggregation.
  • One aspect of the present invention may be applied to each of a plurality of serving cells set for the terminal device 1.
  • an aspect of the present invention may be applied to some of the set serving cells.
  • one aspect of the present invention may be applied to each of a plurality of set serving cell groups.
  • an aspect of the present invention may be applied to a part of the set groups of a plurality of serving cells.
  • the plurality of serving cells include at least one primary cell.
  • the plurality of serving cells may include one or a plurality of secondary cells.
  • the plurality of serving cells may include one or a plurality of LAA (Licensed Assisted Access) cells.
  • the LAA cell is also referred to as an LAA secondary cell.
  • the primary cell is a serving cell that has undergone an initial connection establishment (initial connection establishment) procedure, a serving cell that has initiated a connection ⁇ re-establishment procedure, or a cell that has been designated as a primary cell in a handover procedure.
  • a secondary cell and / or an LAA cell may be set when or after an RRC (Radio Resource Control) connection is established.
  • the primary cell may be included in a licensed band.
  • the LAA cell may be included in an unlicensed band.
  • the secondary cell may be included in either a license band or an unlicensed band.
  • the LAA cell may be referred to as an LAA secondary cell.
  • a carrier corresponding to a serving cell is referred to as a downlink component carrier.
  • a carrier corresponding to a serving cell is referred to as an uplink component carrier.
  • the downlink component carrier and the uplink component carrier are collectively referred to as a component carrier.
  • the terminal device 1 can perform transmission and / or reception on a plurality of physical channels simultaneously in a plurality of serving cells (component carriers).
  • One physical channel is transmitted in one serving cell (component carrier) among a plurality of serving cells (component carriers).
  • the following uplink physical channels are used in uplink wireless communication from the terminal device 1 to the base station device 3.
  • the uplink physical channel is used for transmitting information output from an upper layer.
  • ⁇ PUSCH Physical Uplink Shared Channel
  • PRACH Physical Random Access Channel
  • the PUSCH is used to transmit uplink data (Transport block, Uplink-Shared Channel: UL-SCH), downlink CSI (Channel State Information), and / or HARQ-ACK (Hybrid Automatic Repeat reQuest).
  • CSI and HARQ-ACK are uplink control information (UPCI).
  • the CSI includes a channel quality index (Channel Quality Indicator: CQI), RI (Rank Index), and PMI (Precoding Matrix Indicator).
  • CQI expresses a combination of a modulation scheme and a coding rate for a single transport block transmitted on the PDSCH.
  • RI indicates the number of effective layers determined by the terminal device 1.
  • PMI indicates a code book determined by the terminal device 1.
  • the codebook is related to PDSCH precoding.
  • HARQ-ACK corresponds to downlink data (Transport block, Medium Access Control Protocol Data Unit: MAC PDU, Downlink-Shared Channel: DL-SCH, Physical Downlink Shared Channel: PDSCH).
  • HARQ-ACK indicates ACK (acknowledgement) or NACK (negative-acknowledgement).
  • HARQ-ACK is also referred to as ACK / NACK, HARQ feedback, HARQ response, HARQ information, or HARQ control information.
  • PRACH is used to transmit a random access preamble.
  • uplink physical signals are used in uplink wireless communication.
  • Uplink physical signals are not used to transmit information output from higher layers, but are used by the physical layer.
  • DMRS Demodulation Reference Signal
  • DMRS is related to transmission of PUSCH.
  • DMRS is time-multiplexed with PUSCH.
  • the base station apparatus 3 may use DMRS to perform PUSCH propagation path correction.
  • the following downlink physical channels are used in downlink wireless communication from the base station apparatus 3 to the terminal apparatus 1.
  • the downlink physical channel is used for transmitting information output from an upper layer.
  • ⁇ PDCCH Physical Downlink Control Channel
  • the PDCCH is used to transmit downlink control information (Downlink Control Information: DCI).
  • DCI Downlink Control Information
  • the downlink control information is also referred to as a DCI format.
  • the downlink control information includes an uplink grant.
  • the uplink grant may be used for scheduling a single PUSCH within a single cell.
  • the uplink grant may be used for scheduling a plurality of PUSCHs in consecutive subframes within a single cell.
  • the uplink grant may be used for scheduling a single PUSCH in a subframe that is four or more times after the subframe in which the uplink grant is transmitted.
  • UL-SCH is a transport channel.
  • a channel used in a medium access control (Medium Access Control: MAC) layer is referred to as a transport channel.
  • a transport channel unit used in the MAC layer is also referred to as a transport block (transport block: TB) or a MAC PDU (Protocol Data Unit).
  • transport block transport block: TB
  • MAC PDU Protocol Data Unit
  • FIG. 2 is a diagram illustrating a schematic configuration of a radio frame according to the present embodiment.
  • the horizontal axis is a time axis.
  • Each radio frame is 10 ms long.
  • Each radio frame is composed of 10 subframes.
  • Each subframe is 1 ms long and is defined by two consecutive slots.
  • Each of the slots is 0.5 ms long.
  • the i-th subframe in the radio frame is composed of a (2 ⁇ i) th slot and a (2 ⁇ i + 1) th slot. That is, 10 subframes can be used in each 10 ms interval.
  • FIG. 3 is a diagram illustrating a schematic configuration of the uplink slot in the present embodiment.
  • FIG. 3 shows the configuration of an uplink slot in one cell.
  • the horizontal axis is a time axis
  • the vertical axis is a frequency axis.
  • l is an SC-FDMA symbol number / index
  • k is a subcarrier number / index.
  • a physical signal or physical channel transmitted in each slot is represented by a resource grid.
  • the resource grid is defined by a plurality of subcarriers and a plurality of SC-FDMA symbols.
  • Each element in the resource grid is referred to as a resource element.
  • a resource element is represented by a subcarrier number / index k and an SC-FDMA symbol number / index l.
  • N UL symb indicates the number of SC-FDMA symbols included in one uplink slot.
  • N UL symb is 7 for normal CP (normal cyclic prefix) in the uplink .
  • N UL symb is 6 for extended CP in the uplink.
  • the terminal device 1 receives the parameter UL-CyclicPrefixLength indicating the CP length in the uplink from the base station device 3.
  • the base station apparatus 3 may broadcast the system information including the parameter UL-CyclicPrefixLength corresponding to the cell in the cell.
  • N UL RB is an uplink bandwidth setting for the serving cell, expressed as a multiple of N RB sc .
  • N RB sc is a (physical) resource block size in the frequency domain expressed by the number of subcarriers.
  • the subcarrier interval ⁇ f may be 15 kHz and N RB sc may be 12. That is, N RB sc may be 180 kHz.
  • a resource block is used to represent a mapping of physical channels to resource elements.
  • a virtual resource block (VRB) and a physical resource block (PRB) are defined.
  • a physical channel is first mapped to a virtual resource block. Thereafter, the virtual resource block is mapped to the physical resource block.
  • One physical resource block is defined by N UL symb consecutive SC-FDMA symbols in the time domain and N RB sc consecutive subcarriers in the frequency domain. Therefore, one physical resource block is composed of (N UL symb ⁇ N RB sc ) resource elements.
  • One physical resource block corresponds to one slot in the time domain. In the frequency domain, physical resource blocks are numbered n PRB (0, 1,..., N UL RB ⁇ 1) in order from the lowest frequency.
  • the downlink slot in this embodiment includes a plurality of OFDM symbols.
  • the configuration of the downlink slot in this embodiment is basically the same except that the resource grid is defined by a plurality of subcarriers and a plurality of OFDM symbols, and thus description of the configuration of the downlink slot is omitted. To do.
  • FIG. 4 is a schematic block diagram showing the configuration of the terminal device 1 of the present embodiment.
  • the terminal device 1 includes a wireless transmission / reception unit 10 and an upper layer processing unit 14.
  • the wireless transmission / reception unit 10 includes an antenna unit 11, an RF (Radio Frequency) unit 12, and a baseband unit 13.
  • the upper layer processing unit 14 includes a medium access control layer processing unit 15 and a radio resource control layer processing unit 16.
  • the wireless transmission / reception unit 10 is also referred to as a transmission unit, a reception unit, or a physical layer processing unit.
  • the upper layer processing unit 14 outputs the uplink data (transport block) generated by the user operation or the like to the radio transmission / reception unit 10.
  • the upper layer processing unit 14 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, a radio resource control (Radio). Resource (Control: RRC) layer processing.
  • MAC Medium Access Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • Radio Radio Resource
  • Control Control
  • the medium access control layer processing unit 15 included in the upper layer processing unit 14 performs processing of the medium access control layer.
  • the medium access control layer processing unit 15 controls the random access procedure based on various setting information / parameters managed by the radio resource control layer processing unit 16.
  • the radio resource control layer processing unit 16 included in the upper layer processing unit 14 performs processing of the radio resource control layer.
  • the radio resource control layer processing unit 16 manages various setting information / parameters of the own device.
  • the radio resource control layer processing unit 16 sets various setting information / parameters based on the upper layer signal received from the base station apparatus 3. That is, the radio resource control layer processing unit 16 sets various setting information / parameters based on information indicating various setting information / parameters received from the base station apparatus 3.
  • the wireless transmission / reception unit 10 performs physical layer processing such as modulation, demodulation, encoding, and decoding.
  • the radio transmission / reception unit 10 separates, demodulates, and decodes the signal received from the base station apparatus 3 and outputs the decoded information to the upper layer processing unit 14.
  • the radio transmission / reception unit 10 generates a transmission signal by modulating and encoding data, and transmits the transmission signal to the base station apparatus 3.
  • the RF unit 12 converts the signal received via the antenna unit 11 into a baseband signal by orthogonal demodulation (down-conversion: down covert), and removes unnecessary frequency components.
  • the RF unit 12 outputs the processed analog signal to the baseband unit.
  • the baseband unit 13 converts the analog signal input from the RF unit 12 into a digital signal.
  • the baseband unit 13 removes a portion corresponding to CP (Cyclic Prefix) from the converted digital signal, performs fast Fourier transform (FFT) on the signal from which CP has been removed, and generates a frequency domain signal. Extract.
  • CP Cyclic Prefix
  • FFT fast Fourier transform
  • the baseband unit 13 performs inverse fast Fourier transform (Inverse Fastier Transform: IFFT) to generate an SC-FDMA symbol, adds a CP to the generated SC-FDMA symbol, and converts a baseband digital signal into Generating and converting a baseband digital signal to an analog signal.
  • IFFT inverse fast Fourier transform
  • the baseband unit 13 outputs the converted analog signal to the RF unit 12.
  • the RF unit 12 removes an extra frequency component from the analog signal input from the baseband unit 13 using a low-pass filter, up-converts the analog signal to a carrier frequency, and transmits the signal via the antenna unit 11. To do.
  • the RF unit 12 amplifies power. Further, the RF unit 12 may have a function of controlling transmission power.
  • the RF unit 12 is also referred to as a transmission power control unit.
  • FIG. 5 is a schematic block diagram showing the configuration of the base station apparatus 3 of the present embodiment.
  • the base station apparatus 3 includes a radio transmission / reception unit 30 and an upper layer processing unit 34.
  • the wireless transmission / reception unit 30 includes an antenna unit 31, an RF unit 32, and a baseband unit 33.
  • the upper layer processing unit 34 includes a medium access control layer processing unit 35 and a radio resource control layer processing unit 36.
  • the wireless transmission / reception unit 30 is also referred to as a transmission unit, a reception unit, or a physical layer processing unit.
  • the upper layer processing unit 34 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, a radio resource control (Radio). Resource (Control: RRC) layer processing.
  • MAC Medium Access Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • Radio Radio Resource Control
  • the medium access control layer processing unit 35 included in the upper layer processing unit 34 performs processing of the medium access control layer.
  • the medium access control layer processing unit 35 controls the random access procedure based on various setting information / parameters managed by the radio resource control layer processing unit 36.
  • the radio resource control layer processing unit 36 included in the upper layer processing unit 34 performs processing of the radio resource control layer.
  • the radio resource control layer processing unit 36 generates downlink data (transport block), system information, RRC message, MAC CE (Control Element), etc. arranged in the physical downlink shared channel, or acquires it from the upper node. , Output to the wireless transceiver 30.
  • the radio resource control layer processing unit 36 manages various setting information / parameters of each terminal device 1.
  • the radio resource control layer processing unit 36 may set various setting information / parameters for each terminal device 1 via an upper layer signal. That is, the radio resource control layer processing unit 36 transmits / notifies information indicating various setting information / parameters.
  • the function of the wireless transceiver 30 is the same as that of the wireless transceiver 10 and will not be described.
  • Each of the units denoted by reference numerals 10 to 16 included in the terminal device 1 may be configured as a circuit.
  • Each of the parts denoted by reference numerals 30 to 36 included in the base station device 3 may be configured as a circuit.
  • the random access procedure is described below.
  • the random access procedure may be executed in the primary cell, the secondary cell, or the LAA cell. However, only one random access procedure is executed at any point in the time domain. That is, a plurality of random access procedures are not executed simultaneously.
  • a contention-based random access procedure (contention-based random access procedure) and a non-contention-based random access procedure (non-contention-based random access procedure) may be executed in the primary cell.
  • a non-contention based random access procedure may be performed in the secondary cell and the LAA cell.
  • the random access preamble may be transmitted on the PRACH in the primary cell, secondary cell, or LAA cell.
  • the terminal device 1 receives information (RRC message) related to the random access procedure from the base station device 3.
  • Information regarding the random access procedure includes information indicating a set of PRACH resources.
  • the index of the random access preamble is randomly selected by the terminal device 1 itself.
  • the index of the random access preamble is selected by the terminal device 1 based on the information received from the base station device 3.
  • the random access response for the primary cell, secondary cell, or LAA cell is transmitted on the PDSCH in the primary cell.
  • the random access response for a certain cell corresponds to the random access preamble transmitted in the certain cell.
  • a PDCCH corresponding to a PDSCH including a random access response includes RA-RNTI (Random Access-Radio Network Identifier).
  • the PDCCH includes downlink control information (downlink grant).
  • the random access response includes an uplink grant field mapped to the uplink grant, a Temporary C-RNTI field mapped to information for indicating a Temporary C-RNTI (Cell Radio Network Temporary Identifier), and TA (Timing Advance) Contains commands.
  • the uplink grant included in the random access response is also referred to as a random access response grant.
  • the terminal device 1 adjusts the PUSCH transmission timing based on the TA command.
  • the PUSCH transmission timing may be adjusted for each group of cells.
  • the terminal device 1 When the received random access response includes a random access preamble identifier corresponding to the transmitted random access preamble and the terminal device 1 selects the random access preamble based on the information received from the base station device 3, the terminal Device 1 considers that the non-contention based random access procedure has been successfully completed and transmits a transport block on the PUSCH based on the random access response grant.
  • the Temporary C-RNTI is changed to the Temporary C-RNTI.
  • the random access message 3 (transport block) is transmitted using PUSCH based on the uplink grant included in the random access response.
  • the PUSCH corresponding to the uplink grant included in the random access response is transmitted in the serving cell in which the corresponding preamble is transmitted on the PRACH.
  • the terminal device 1 After the message 3 is transmitted, the terminal device 1 receives contention resolution. Based on the reception of the contention resolution, the terminal device 1 considers that the contention-based random access procedure has been successfully completed.
  • a group of a plurality of LAA cells is referred to as a UCI cell group.
  • HARQ-ACK for a plurality of LAA cells included in the UCI cell group is transmitted on one or more LAA cells in the UCI cell group on the PUSCH.
  • the primary cell is not always included in the UCI cell group.
  • the base station apparatus 3 may determine whether or not the LAA cell is included in the UCI cell group.
  • the base station apparatus 3 may transmit to the terminal apparatus 1 information / upper layer parameter indicating whether the LAA cell is included in the UCI group.
  • the uplink grant for the LAA cell included in the UCI cell group may include a CSI request and a HARQ-ACK request.
  • a field mapped to a CSI request bit is also referred to as a CSI request field.
  • a field mapped to the bits of the HARQ-ACK request is also referred to as a HARQ-ACK request field.
  • the terminal apparatus 1 uses the HASCH using the PUSCH in the LAA cell. -Send ACK. For example, if the 1-bit HARQ-ACK request field is set to '0', transmission of HARQ-ACK may not be triggered. For example, when the 1-bit HARQ-ACK request field is set to '1', transmission of HARQ-ACK may be triggered.
  • the terminal apparatus 1 When the CSI request field included in the uplink grant for the LAA cell included in the UCI cell group is set so as to trigger the CSI report, the terminal apparatus 1 performs CSI reporting using the PUSCH in the LAA cell. For example, when the 2-bit CSI request field is set to '00', the CSI report may not be triggered. For example, if the 2-bit CSI request field is set to a value other than '00', a CSI report may be triggered.
  • the uplink grant for the serving cell that is not included in the UCI cell group may include a CSI request.
  • the terminal device 1 uses the PUSCH in the serving cell not included in the UCI cell group. Make a CSI report.
  • the uplink grant for the serving cell that is not included in the UCI cell group does not include the HARQ-ACK request.
  • the transmission of HARQ-ACK for serving cells not included in the UCI cell group may be triggered based on detection of PDSCH transmission in the serving cell not included in the UCI cell group.
  • the terminal device 1 may transmit HARQ-ACK corresponding to PDSCH transmission in the primary cell using PUSCH in the primary cell.
  • whether the HARQ-ACK request is included in the uplink grant for the LAA cell may be given based on information indicating whether the LAA cell is included in the UCI group / upper layer parameter.
  • the CSI request may be included in the random access response grant.
  • the CSI request included in the random access response grant associated with the contention based random access procedure is reserved.
  • the terminal device 1 uses the PUSCH in the serving cell that has transmitted the random access preamble to use the CSI. Make a report.
  • the non-contention based random access procedure in the LAA cell included in the UCI cell group may be performed for uplink synchronization of the LAA cell.
  • uplink synchronization is not obtained, HARQ-ACK for PDSCH transmission in the LAA cell included in the UCI cell group cannot be transmitted using the PUSCH in the LAA cell included in the UCI cell group. That is, while performing the non-contention based random access procedure in the LAA cell included in the UCI cell group, it is not necessary to transmit the PDSCH in the LAA cell included in the UCI cell group. Therefore, in order to save the bits of the random access response and the random access response grant, the HARQ-ACK request may not be included in the random access response grant for the LAA cell included in the UCI cell group.
  • the uplink grant included in the PDCCH may instruct the retransmission of the transport block transmitted using the PUSCH scheduled by the random access response grant.
  • the uplink grant may include a CSI request and a HARQ-ACK request.
  • FIG. 6 is a diagram illustrating an example of an encoding process of uplink data (a x ), CQI / PMI (o x ), RI (a x ), and HARQ-ACK (a x ) in the present embodiment. .
  • uplink data, CQI / PMI, RI, and HARQ-ACK transmitted using PUSCH are individually encoded.
  • the uplink data coding bit (f x ), the CQI / PMI coding bit (q x ), the RI coding bit (g x ), and the HARQ-ACK coding bit ( h x ) is multiplexed and interleaved.
  • a baseband signal (PUSCH signal) is generated from the encoded bits that have been multiplexed and interleaved in 604.
  • a matrix may be used for multiplexing / interleaving the coded bits.
  • the matrix columns correspond to SC-FDMA symbols.
  • One element of the matrix corresponds to one coded modulation symbol.
  • a coded modulation symbol is a group of X coded bits.
  • X is a modulation order (modulation order Q m ) for PUSCH (uplink data).
  • One complex-valued symbol is generated from one coded modulation symbol.
  • a plurality of complex-valued symbols generated from a plurality of coded modulation symbols mapped to one column are allocated for PUSCH and mapped to subcarriers after DFT precoding.
  • FIG. 7 is a diagram illustrating a first example of multiplexing / interleaving of coded bits in the present embodiment.
  • HARQ-ACK and RI are transmitted using PUSCH
  • HARQ-ACK encoded modulation symbols are mapped to columns of indices ⁇ 2, 3, 8, 9 ⁇ , and RI encoding is performed.
  • Modulation symbols are mapped to columns with indices ⁇ 1, 4, 7, 10 ⁇ .
  • the column with index ⁇ 2, 3, 8, 9 ⁇ corresponds to the SC-FDMA symbol next to the SC-FDMA symbol in which the DMRS related to PUSCH transmission is transmitted.
  • the DMRS is transmitted in the SC-FDMA symbol between the SC-FDMA symbol corresponding to the index 2 column and the SC-FDMA symbol corresponding to the index 3 column.
  • the DMRS is transmitted in an SC-FDMA symbol corresponding to an index 8 column and an SC-FDMA symbol between an SC-FDMA symbol corresponding to an index 9 column.
  • the column with index ⁇ 1, 4, 7, 10 ⁇ corresponds to the SC-FDMA symbol next to the SC-FDMA symbol in which the DMRS related to PUSCH transmission is transmitted.
  • the HARQ-ACK is transmitted in the SC-FDMA symbol adjacent to the SC-FDMA symbol in which the DMRS is transmitted, the accuracy of demodulation in the base station apparatus 3 is increased.
  • the encoded modulation symbol of RI is a sequence of indices ⁇ 2, 3, 8, 9 ⁇ , or Maps to columns of indexes ⁇ 1, 4, 7, 10 ⁇ .
  • FIG. 8 is a diagram illustrating a second example of multiplexing / interleaving of coded bits in the present embodiment. In the second example, RI encoded modulation symbols are mapped to columns with indices ⁇ 2, 3, 8, 9 ⁇ .
  • FIG. 9 is a diagram showing a third example of multiplexing / interleaving of coded bits in the present embodiment. In the second example, the RI encoded modulation symbols are mapped to columns with indices ⁇ 1, 4, 7, 10 ⁇ .
  • the index of the column to which the encoded modulation symbol of RI is mapped may be given based at least on some or all of the following elements (1) to (4).
  • the transmission of HARQ-ACK using PUSCH in the LAA cell included in the UCI cell group may be triggered based on the HARQ-ACK request field. Good. That is, whether or not HARQ-ACK transmission using PUSCH in a serving cell not included in the UCI cell group is performed may be given based on the HARQ-ACK request field.
  • the encoded modulation symbol of RI is index ⁇ 1, 4, 7, 10 ⁇ . May be mapped to For example, when the serving cell to which PUSCH is transmitted belongs to the UCI cell group and HARQ-ACK transmission is not performed using PUSCH, the encoded modulation symbol of RI is index ⁇ 2, 3, 8, 9 ⁇ Column may be mapped.
  • RI is transmitted in the SC-FDMA symbol adjacent to the SC-FDMA symbol in which DMRS related to PUSCH transmission is transmitted. Accuracy can be improved.
  • the transmission of HARQ-ACK using PUSCH in a serving cell not included in the UCI cell group may be triggered based on detection of PDSCH transmission in the serving cell not included in the UCI cell group. That is, whether or not HARQ-ACK transmission using PUSCH in a serving cell not included in the UCI cell group is performed may be given based on whether or not PDSCH transmission in a serving cell not included in the UCI cell group is detected. Good.
  • the base station device 3 Since the base station device 3 does not know whether the terminal device 1 has correctly detected PDSCH transmission, it cannot accurately grasp whether HARQ-ACK transmission is performed using PUSCH. Therefore, if the serving cell to which the PUSCH is transmitted does not belong to the UCI cell group, the encoded modulation symbol of the RI is indexed ⁇ 1, 4, 7, regardless of whether HARQ-ACK transmission is performed using the PUSCH. 10 ⁇ may be mapped. As a result, the base station apparatus 3 can accurately grasp the SC-FDMA symbol to which the RI is transmitted.
  • Equation (1) and (2) a method for calculating the number of encoded bits of RI (G) and the number of encoded bits of HARQ-ACK (H) will be described.
  • the number of RI encoded bits (G) and the number of HARQ-ACK encoded bits (H) may be given by Equations (1) and (2) below.
  • beta RI offset a part of the following elements (1) to (5), or may be given based on at least all.
  • Element (1) Whether the serving cell to which PUSCH is transmitted belongs to the UCI cell group.
  • Element (2) Whether HARQ-ACK transmission is performed using PUSCH.
  • Element (3) HARQ-ACK request field.
  • Value / element (4) Number of SC-FDMA symbols for PUSCH / element (5): Column to which RI-coded modulation symbols are mapped (SC-FDMA symbol in which RI is transmitted)
  • the ⁇ RI offset may be given by information / parameter received from the base station apparatus 3.
  • the terminal apparatus selects one of a plurality of ⁇ RI offsets given by the information / parameter received from the base station apparatus 3 based at least on part or all of the elements (1) to (5). You may choose.
  • ⁇ HARQ-ACK offset may be given by information / parameters received from the base station apparatus 3.
  • ⁇ HARQ-ACK offset may be given regardless of the element (1).
  • a first aspect of the present embodiment is a terminal device 1, which is a receiving unit 10 that receives an uplink grant used for scheduling a PUSCH, and a HARQ-ACK request included in the uplink grant. Is configured to trigger HARQ-ACK transmission, the transmitter 10 transmits the HARQ-ACK in the PUSCH corresponding to the uplink grant, and the uplink grant is random. When included in the access response, the uplink grant does not include the HARQ-ACK request.
  • the uplink grant instructing retransmission of the transport block transmitted in the PUSCH scheduled for initial transmission by the uplink grant included in the random access response is: Including the HARQ-ACK request.
  • the uplink grant instructing retransmission of the transport block transmitted on the PUSCH scheduled for initial transmission by the uplink grant included in the random access response may be transmitted on the PDCCH.
  • the transmission unit 10 supports the uplink grant when the CSI request included in the uplink grant is set to trigger a CSI report.
  • the CSI report is transmitted, and regardless of whether the uplink grant is included in the random access response, the uplink grant includes the CSI request.
  • whether or not the HARQ-ACK request is included in an uplink grant that is not included in the random access response is determined by an upper layer parameter.
  • the upper layer parameter may be transmitted by the base station apparatus 3.
  • the uplink grant not included in the random access response is transmitted using PDCCH.
  • a second aspect of the present embodiment is a base station apparatus 3, which is a transmission unit 10 that transmits an uplink grant used for scheduling a PUSCH, and HARQ-ACK included in the uplink grant.
  • the PUSCH corresponding to the uplink grant includes a receiving unit 10 that receives the HARQ-ACK, and the uplink grant is When included in the random access response, the uplink grant does not include the HARQ-ACK request.
  • the uplink grant instructing retransmission of the transport block transmitted in the PUSCH scheduled for initial transmission by the uplink grant included in the random access response is: Including the HARQ-ACK request.
  • the uplink grant instructing retransmission of the transport block transmitted on the PUSCH scheduled for initial transmission by the uplink grant included in the random access response may be transmitted on the PDCCH.
  • the receiving unit 10 supports the uplink grant when the CSI request included in the uplink grant is set to trigger a CSI report.
  • the CSI report is received, and regardless of whether the uplink grant is included in the random access response, the uplink grant includes the CSI request.
  • whether or not the HARQ-ACK request is included in an uplink grant not included in the random access response is determined by an upper layer parameter.
  • the upper layer parameter may be transmitted by the base station apparatus 3.
  • the uplink grant not included in the random access response is transmitted using PDCCH.
  • the uplink grant corresponds to the LAA cell.
  • a third aspect of the present embodiment is a terminal device 1, which is a receiving unit 10 that receives an uplink grant used for scheduling a PUSCH, and a HARQ-ACK request included in the uplink grant.
  • the HASCH-ACK is transmitted on the PUSCH corresponding to the uplink grant, and a CSI request included in the uplink grant is transmitted.
  • the PUSCH corresponding to the uplink grant includes a transmitter 10 that transmits RI, and an index of an SC-FDMA symbol to which the RI is transmitted Is given based on the value of the HARQ-ACK request. It is.
  • a fourth aspect of the present embodiment is the base station apparatus 3, which is a transmission unit 30 that transmits an uplink grant used for scheduling a PUSCH, and HARQ-ACK included in the uplink grant. If the request is set to trigger HARQ-ACK transmission, the HASCH-ACK is received on the PUSCH corresponding to the uplink grant, and the CSI request included in the uplink grant is also received. Is set to trigger a CSI report, the receiving unit 30 receives an RI in the PUSCH corresponding to the uplink grant, and the SC-FDMA symbol of the SC-FDMA symbol to which the RI is transmitted is provided. The index is given based on the value of the HARQ-ACK request. It is.
  • the number of coded bits of the RI is given based on the index of the SC-FDMA symbol to which the RI is transmitted.
  • the terminal device 1 can efficiently perform uplink transmission.
  • the base station apparatus 3 can efficiently perform reception of uplink transmission.
  • a program that operates on the base station device 3 and the terminal device 1 according to one aspect of the present invention is a program (computer) that controls a CPU (Central Processing Unit) and the like so as to realize the functions of the above embodiments according to the present invention.
  • May be a program that allows Information handled by these devices is temporarily stored in RAM (Random Access Memory) during processing, and then stored in various ROMs such as Flash ROM (Read Only Memory) and HDD (Hard Disk Drive). Reading, correction, and writing are performed by the CPU as necessary.
  • the program for realizing the control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer system and executed.
  • the “computer system” here is a computer system built in the terminal device 1 or the base station device 3 and includes hardware such as an OS and peripheral devices.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line,
  • a volatile memory inside a computer system serving as a server or a client may be included and a program that holds a program for a certain period of time.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • the base station device 3 in the above-described embodiment can be realized as an aggregate (device group) composed of a plurality of devices.
  • Each of the devices constituting the device group may include a part or all of each function or each functional block of the base station device 3 according to the above-described embodiment.
  • the device group only needs to have one function or each function block of the base station device 3.
  • the terminal device 1 according to the above-described embodiment can also communicate with the base station device as an aggregate.
  • the base station apparatus 3 in the above-described embodiment may be EUTRAN (Evolved Universal Terrestrial Radio Access Network).
  • the base station device 3 in the above-described embodiment may have a part or all of the functions of the upper node for the eNodeB.
  • a part or all of the terminal device 1 and the base station device 3 in the above-described embodiment may be realized as an LSI that is typically an integrated circuit, or may be realized as a chip set.
  • Each functional block of the terminal device 1 and the base station device 3 may be individually chipped, or a part or all of them may be integrated into a chip.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on the technology can also be used.
  • the terminal device is described as an example of the communication device.
  • the present invention is not limited to this, and the stationary or non-movable electronic device installed indoors or outdoors,
  • the present invention can also be applied to terminal devices or communication devices such as AV equipment, kitchen equipment, cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other daily life equipment.
  • One embodiment of the present invention is used in, for example, a communication system, a communication device (for example, a mobile phone device, a base station device, a wireless LAN device, or a sensor device), an integrated circuit (for example, a communication chip), a program, or the like. be able to.
  • a communication device for example, a mobile phone device, a base station device, a wireless LAN device, or a sensor device
  • an integrated circuit for example, a communication chip
  • a program or the like.
  • Terminal device 3 Base station device 10 Wireless transmission / reception unit 11 Antenna unit 12 RF unit 13 Baseband unit 14 Upper layer processing unit 15 Medium access control layer processing unit 16 Radio resource control layer processing unit 30 Wireless transmission / reception Unit 31 antenna unit 32 RF unit 33 baseband unit 34 upper layer processing unit 35 medium access control layer processing unit 36 radio resource control layer processing unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末装置は、PUSCHをスケジュールするために用いられる上りリンクグラントを受信し、上りリンクグラントに含まれるHARQ-ACKリクエストがHARQ-ACK送信をトリガーするようにセットされている場合には、上りリンクグラントに対応するPUSCHにおいてHARQ-ACKを送信し、上りリンクグラントに含まれるCSIリクエストがCSI報告をトリガーするようにセットされている場合には上りリンクグラントに対応するPUSCHにおいてRIを送信し、RIが送信されるSC-FDMAシンボルのインデックスはHARQ-ACKリクエストの値に基づいて与えられる。

Description

端末装置、基地局装置、通信方法、および、集積回路
 本発明は、端末装置、基地局装置、通信方法、および、集積回路に関する。
 本願は、2016年6月3日に日本に出願された特願2016-111855号について優先権を主張し、その内容をここに援用する。
 セルラー移動通信の無線アクセス方式および無線ネットワーク(以下、「Long Term Evolution (LTE: 登録商標)」、または、「Evolved Universal Terrestrial Radio Access : EUTRA」と称する。)が、第三世代パートナーシッププロジェクト(3rd Generation Partnership Project: 3GPP)において検討されている。LTEでは、基地局装置をeNodeB(evolved NodeB)、端末装置をUE(User Equipment)とも称する。LTEは、基地局装置がカバーするエリアをセル状に複数配置するセルラー通信システムである。単一の基地局装置は複数のセルを管理してもよい。
 LTEリリース13において、端末装置が複数のサービングセル(コンポーネントキャリア)において同時に送信、および/または、受信を行う技術であるキャリアアグリゲーションが仕様化されている(非特許文献1、2、3)。LTEリリース14において、ライセンス補助アクセス(LAA: Licensed Assisted Access)の機能拡張、および、アンライセンスバンド(unlicensed band)における上りリンクキャリアを用いたキャリアアグリゲーションが検討されている(非特許文献4)。非特許文献5において、基地局装置によるトリガーに基づいて、アンライセンスバンド(unlicensed band)における上りリンクキャリアに対するHARQ-ACKフィードバックを、PUSCHで送信することが開示されている。
"3GPP TS 36.211 V13.1.0 (2016-03)", 29th March, 2016. "3GPP TS 36.212 V13.1.0 (2016-03)", 29th March, 2016. "3GPP TS 36.213 V13.1.1 (2016-03)", 31th March, 2016. "New Work Item on enhanced LAA for LTE", RP-152272, Ericsson, Huawei, 3GPP TSG RAN Meeting#70, Sitges, Spain, 7th - 10th December 2015. "UCI transmission on LAA carrier", R1-164994, Sharp, 3GPP TSG RAN1 Meeting#85, Nanjing, China, 23rd - 27th May 2016.
 本発明の一態様は、効率的に上りリンク送信を行うことができる端末装置、該端末装置に用いられる通信方法、該端末装置に実装される集積回路、効率的に上りリンク送信の受信を行うことができる基地局装置、該基地局装置に用いられる通信方法、および、該基地局装置に実装される集積回路を提供する。
 (1)本発明の態様は、以下のような手段を講じた。すなわち、本発明の第1の態様は、端末装置であって、PUSCHをスケジュールするために用いられる上りリンクグラントを受信する受信部と、前記上りリンクグラントに含まれるHARQ-ACKリクエストがHARQ-ACK送信をトリガーするようにセットされている場合には、前記上りリンクグラントに対応する前記PUSCHにおいて、前記HARQ-ACKを送信し、前記上りリンクグラントに含まれるCSIリクエストがCSI報告をトリガーするようにセットされている場合には、前記上りリンクグラントに対応する前記PUSCHにおいて、RIを送信する送信部と、を備え、前記RIが送信されるSC-FDMAシンボルのインデックスは、前記HARQ-ACKリクエストの値に基づいて与えられる。
 (2)本発明の第2の態様は、基地局装置であって、PUSCHをスケジュールするために用いられる上りリンクグラントを送信する送信部と、前記上りリンクグラントに含まれるHARQ-ACKリクエストがHARQ-ACK送信をトリガーするようにセットされている場合には、前記上りリンクグラントに対応する前記PUSCHにおいて、前記HARQ-ACKを受信し、前記上りリンクグラントに含まれるCSIリクエストがCSI報告をトリガーするようにセットされている場合には、前記上りリンクグラントに対応する前記PUSCHにおいて、RIを受信する受信部と、を備え、前記RIが送信されるSC-FDMAシンボルのインデックスは、前記HARQ-ACKリクエストの値に基づいて与えられる。
 (3)本発明の第3の態様は、端末装置に用いられる通信方法であって、PUSCHをスケジュールするために用いられる上りリンクグラントを受信し、前記上りリンクグラントに含まれるHARQ-ACKリクエストがHARQ-ACK送信をトリガーするようにセットされている場合には、前記上りリンクグラントに対応する前記PUSCHにおいて、前記HARQ-ACKを送信し、前記上りリンクグラントに含まれるCSIリクエストがCSI報告をトリガーするようにセットされている場合には、前記上りリンクグラントに対応する前記PUSCHにおいて、RIを送信し、前記RIが送信されるSC-FDMAシンボルのインデックスは、前記HARQ-ACKリクエストの値に基づいて与えられる。
 (4)本発明の第4の態様は、基地局装置に用いられる通信方法であって、PUSCHをスケジュールするために用いられる上りリンクグラントを送信し、前記上りリンクグラントに含まれるHARQ-ACKリクエストがHARQ-ACK送信をトリガーするようにセットされている場合には、前記上りリンクグラントに対応する前記PUSCHにおいて、前記HARQ-ACKを受信し、前記上りリンクグラントに含まれるCSIリクエストがCSI報告をトリガーするようにセットされている場合には、前記上りリンクグラントに対応する前記PUSCHにおいて、RIを受信し、前記RIが送信されるSC-FDMAシンボルのインデックスは、前記HARQ-ACKリクエストの値に基づいて与えられる。
 (5)本発明の第5の態様は、端末装置に実装される集積回路であって、PUSCHをスケジュールするために用いられる上りリンクグラントを受信する受信回路と、前記上りリンクグラントに含まれるHARQ-ACKリクエストがHARQ-ACK送信をトリガーするようにセットされている場合には、前記上りリンクグラントに対応する前記PUSCHにおいて、前記HARQ-ACKを送信し、前記上りリンクグラントに含まれるCSIリクエストがCSI報告をトリガーするようにセットされている場合には、前記上りリンクグラントに対応する前記PUSCHにおいて、RIを送信する送信回路と、を備え、前記RIが送信されるSC-FDMAシンボルのインデックスは、前記HARQ-ACKリクエストの値に基づいて与えられる。
 (6)本発明の第6の態様は、基地局装置に実装される集積回路であって、PUSCHをスケジュールするために用いられる上りリンクグラントを送信する送信回路と、前記上りリンクグラントに含まれるHARQ-ACKリクエストがHARQ-ACK送信をトリガーするようにセットされている場合には、前記上りリンクグラントに対応する前記PUSCHにおいて、前記HARQ-ACKを受信し、前記上りリンクグラントに含まれるCSIリクエストがCSI報告をトリガーするようにセットされている場合には、前記上りリンクグラントに対応する前記PUSCHにおいて、RIを受信する受信回路と、を備え、前記RIが送信されるSC-FDMAシンボルのインデックスは、前記HARQ-ACKリクエストの値に基づいて与えられる。
 この発明の一態様によれば、端末装置は効率的に上りリンク送信を行うことができる。また、基地局装置は効率的に上りリンク送信の受信を行うことができる。
本実施形態の無線通信システムの概念図である。 本実施形態の無線フレームの概略構成を示す図である。 本実施形態における上りリンクスロットの概略構成を示す図である。 本実施形態の端末装置1の構成を示す概略ブロック図である。 本実施形態の基地局装置3の構成を示す概略ブロック図である。 本実施形態における上りリンクデータ(a)、CQI/PMI(o)、RI(a)、および、HARQ-ACK(a)の符号化処理の一例を示す図である。 本実施形態における符号化ビットの多重・インタリーブの第1の例を示す図である。 本実施形態における符号化ビットの多重・インタリーブの第2の例を示す図である。 本実施形態における符号化ビットの多重・インタリーブの第3の例を示す図である。
 以下、本発明の実施形態について説明する。
 図1は、本実施形態の無線通信システムの概念図である。図1において、無線通信システムは、端末装置1A~1C、および基地局装置3を具備する。以下、端末装置1A~1Cを端末装置1という。
 以下、キャリアアグリゲーションについて説明する。
 本実施形態では、端末装置1は、複数のサービングセルが設定される。端末装置1が複数のサービングセルを介して通信する技術をセルアグリゲーション、またはキャリアアグリゲーションと称する。端末装置1に対して設定される複数のサービングセルのそれぞれにおいて、本発明の一態様が適用されてもよい。また、設定された複数のサービングセルの一部において、本発明の一態様が適用されてもよい。また、設定された複数のサービングセルのグループのそれぞれにおいて、本発明の一態様が適用されてもよい。また、設定された複数のサービングセルのグループの一部において、本発明の一態様が適用されてもよい。複数のサービングセルは、少なくとも1つのプライマリセルを含む。複数のサービングセルは、1つ、または、複数のセカンダリセルを含んでもよい。複数のサービングセルは、1つ、または、複数のLAA(Licensed Assisted Access)セルを含んでもよい。LAAセルを、LAAセカンダリセルとも称する。
 プライマリセルは、初期コネクション確立(initial connection establishment)手順が行なわれたサービングセル、コネクション再確立(connection re-establishment)手順を開始したサービングセル、または、ハンドオーバ手順においてプライマリセルと指示されたセルである。RRC(Radio Resource Control)コネクションが確立された時点、または、後に、セカンダリセル、および/または、LAAセルが設定されてもよい。プライマリセルは、ライセンスバンド(licensed band)に含まれてもよい。LAAセルは、アンライセンスバンド(unlicensed band)に含まれてもよい。セカンダリセルは、ライセンスバンド、および、アンライセンスバンドの何れに含まれてもよい。LAAセルを、LAAセカンダリセルと称してもよい。
 下りリンクにおいて、サービングセルに対応するキャリアを下りリンクコンポーネントキャリアと称する。上りリンクにおいて、サービングセルに対応するキャリアを上りリンクコンポーネントキャリアと称する。下りリンクコンポーネントキャリア、および、上りリンクコンポーネントキャリアを総称して、コンポーネントキャリアと称する。
 端末装置1は、複数のサービングセル(コンポーネントキャリア)において同時に複数の物理チャネルでの送信、および/または受信を行うことができる。1つの物理チャネルは、複数のサービングセル(コンポーネントキャリア)のうち1つのサービングセル(コンポーネントキャリア)において送信される。
 本実施形態の物理チャネルおよび物理信号について説明する。
 図1において、端末装置1から基地局装置3への上りリンクの無線通信では、以下の上りリンク物理チャネルが用いられる。上りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・PUSCH(Physical Uplink Shared Channel)
・PRACH(Physical Random Access Channel)
 PUSCHは、上りリンクデータ(Transport block, Uplink-Shared Channel: UL-SCH)、下りリンクのCSI(Channel State Information)、および/または、HARQ-ACK(Hybrid Automatic Repeat reQuest)を送信するために用いられる。CSI、および、HARQ-ACKは、上りリンク制御情報(Uplink Control Information: UCI)である。
 CSIは、チャネル品質指標(Channel Quality Indicator: CQI)、RI(Rank Indicator)、および、PMI(Precoding Matrix Indicator)を含む。CQIは、PDSCHで送信される単一のトランスポートブロックに対する、変調方式と符号化率の組合せを表現する。RIは、端末装置1によって決定される有効なレイヤーの数を示す。PMIは、端末装置1によって決定されるコードブックを示す。該コードブックは、PDSCHのプリコーディングに関連する。
 HARQ-ACKは、下りリンクデータ(Transport block, Medium Access Control Protocol Data Unit: MAC PDU, Downlink-Shared Channel: DL-SCH, Physical Downlink Shared Channel: PDSCH)に対応する。HARQ-ACKは、ACK(acknowledgement)またはNACK(negative-acknowledgement)を示す。HARQ-ACKを、ACK/NACK、HARQフィードバック、HARQ応答、HARQ情報、または、HARQ制御情報とも称する。
 PRACHは、ランダムアクセスプリアンブルを送信するために用いられる。
 図1において、上りリンクの無線通信では、以下の上りリンク物理シグナルが用いられる。上りリンク物理シグナルは、上位層から出力された情報を送信するために使用されないが、物理層によって使用される。
・DMRS(Demodulation Reference Signal)
 DMRSは、PUSCHの送信に関連する。DMRSは、PUSCHと時間多重される。基地局装置3は、PUSCHの伝搬路補正を行なうためにDMRSを使用してもよい。
 図1において、基地局装置3から端末装置1への下りリンクの無線通信では、以下の下りリンク物理チャネルが用いられる。下りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・PDCCH(Physical Downlink Control Channel)
 PDCCHは、下りリンク制御情報(Downlink Control Information: DCI)を送信するために用いられる。下りリンク制御情報を、DCIフォーマットとも称する。下りリンク制御情報は、上りリンクグラント(uplink grant)を含む。上りリンクグラントは、単一のセル内の単一のPUSCHのスケジューリングに用いられてもよい。上りリンクグラントは、単一のセル内の連続するサブフレームにおける複数のPUSCHのスケジューリングに用いられてもよい。上りリンクグラントは、該上りリンクグラントが送信されたサブフレームより4つ以上後のサブフレーム内の単一のPUSCHのスケジューリングに用いられてもよい。
 UL-SCHは、トランスポートチャネルである。媒体アクセス制御(Medium Access Control: MAC)層で用いられるチャネルをトランスポートチャネルと称する。MAC層で用いられるトランスポートチャネルの単位を、トランスポートブロック(transport block: TB)またはMAC PDU(Protocol Data Unit)とも称する。
 以下、本実施形態の無線フレーム(radio frame)の構成について説明する。
 図2は、本実施形態の無線フレームの概略構成を示す図である。図2において、横軸は時間軸である。無線フレームのそれぞれは、10ms長である。また、無線フレームのそれぞれは10のサブフレームから構成される。サブフレームのそれぞれは、1ms長であり、2つの連続するスロットによって定義される。スロットのそれぞれは、0.5ms長である。無線フレーム内のi番目のサブフレームは、(2×i)番目のスロットと(2×i+1)番目のスロットとから構成される。つまり、10ms間隔のそれぞれにおいて、10個のサブフレームが利用できる。
 以下、本実施形態のスロットの構成の一例について説明する。図3は、本実施形態における上りリンクスロットの概略構成を示す図である。図3において、1つのセルにおける上りリンクスロットの構成を示す。図3において、横軸は時間軸であり、縦軸は周波数軸である。図3において、lはSC-FDMAシンボル番号/インデックスであり、kはサブキャリア番号/インデックスである。
 スロットのそれぞれにおいて送信される物理シグナルまたは物理チャネルは、リソースグリッドによって表現される。上りリンクにおいて、リソースグリッドは複数のサブキャリアと複数のSC-FDMAシンボルによって定義される。リソースグリッド内のエレメントのそれぞれをリソースエレメントと称する。リソースエレメントは、サブキャリア番号/インデックスk、および、SC-FDMAシンボル番号/インデックスlによって表される。
 上りリンクスロットは、時間領域において、複数のSC-FDMAシンボルl(l=0,1,…,NUL symb)を含む。NUL symbは、1つの上りリンクスロットに含まれるSC-FDMAシンボルの数を示す。上りリンクにおけるノーマルCP(normal Cyclic Prefix)に対して、NUL symbは7である。上りリンクにおける拡張CP(extended CP)に対して、NUL symbは6である。
 端末装置1は、上りリンクにおけるCP長を示すパラメータUL-CyclicPrefixLengthを基地局装置3から受信する。基地局装置3は、セルに対応する該パラメータUL-CyclicPrefixLengthを含むシステムインフォメーションを、該セルにおいて報知してもよい。
 上りリンクスロットは、周波数領域において、複数のサブキャリアk(k=0,1,…,NUL RB×NRB sc)を含む。NUL RBは、NRB scの倍数によって表現される、サービングセルに対する上りリンク帯域幅設定である。NRB scは、サブキャリアの数によって表現される、周波数領域における(物理)リソースブロックサイズである。サブキャリア間隔Δfは15kHzであり、NRB scは12であってもよい。すなわち、NRB scは、180kHzであってもよい。
 リソースブロック(RB)は、物理チャネルのリソースエレメントへのマッピングを表すために用いられる。リソースブロックは、仮想リソースブロック(VRB)と物理リソースブロック(PRB)が定義される。物理チャネルは、まず仮想リソースブロックにマップされる。その後、仮想リソースブロックは、物理リソースブロックにマップされる。1つの物理リソースブロックは、時間領域においてNUL symbの連続するSC-FDMAシンボルと周波数領域においてNRB scの連続するサブキャリアとから定義される。ゆえに、1つの物理リソースブロックは(NUL symb×NRB sc)のリソースエレメントから構成される。1つの物理リソースブロックは、時間領域において1つのスロットに対応する。物理リソースブロックは周波数領域において、周波数の低いほうから順に番号nPRB(0,1,…, NUL RB-1)が付けられる。
 本実施形態における下りリンクのスロットは、複数のOFDMシンボルを含む。本実施形態における下りリンクのスロットの構成は、リソースグリッドが複数のサブキャリアと複数のOFDMシンボルによって定義される点を除いて基本的に同じであるため、下りリンクのスロットの構成の説明は省略する。
 以下、本実施形態における装置の構成について説明する。
 図4は、本実施形態の端末装置1の構成を示す概略ブロック図である。図示するように、端末装置1は、無線送受信部10、および、上位層処理部14を含んで構成される。無線送受信部10は、アンテナ部11、RF(Radio Frequency)部12、および、ベースバンド部13を含んで構成される。上位層処理部14は、媒体アクセス制御層処理部15、および、無線リソース制御層処理部16を含んで構成される。無線送受信部10を送信部、受信部、または、物理層処理部とも称する。
 上位層処理部14は、ユーザの操作等により生成された上りリンクデータ(トランスポートブロック)を、無線送受信部10に出力する。上位層処理部14は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。
 上位層処理部14が備える媒体アクセス制御層処理部15は、媒体アクセス制御層の処理を行う。媒体アクセス制御層処理部15は、無線リソース制御層処理部16によって管理されている各種設定情報/パラメータに基づいて、ランダムアクセス手順の制御を行う。
 上位層処理部14が備える無線リソース制御層処理部16は、無線リソース制御層の処理を行う。無線リソース制御層処理部16は、自装置の各種設定情報/パラメータの管理をする。無線リソース制御層処理部16は、基地局装置3から受信した上位層の信号に基づいて各種設定情報/パラメータをセットする。すなわち、無線リソース制御層処理部16は、基地局装置3から受信した各種設定情報/パラメータを示す情報に基づいて各種設定情報/パラメータをセットする。
 無線送受信部10は、変調、復調、符号化、復号化などの物理層の処理を行う。無線送受信部10は、基地局装置3から受信した信号を、分離、復調、復号し、復号した情報を上位層処理部14に出力する。無線送受信部10は、データを変調、符号化することによって送信信号を生成し、基地局装置3に送信する。
 RF部12は、アンテナ部11を介して受信した信号を、直交復調によりベースバンド信号に変換し(ダウンコンバート: down covert)、不要な周波数成分を除去する。RF部12は、処理をしたアナログ信号をベースバンド部に出力する。
 ベースバンド部13は、RF部12から入力されたアナログ信号を、アナログ信号をディジタル信号に変換する。ベースバンド部13は、変換したディジタル信号からCP(Cyclic Prefix)に相当する部分を除去し、CPを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行い、周波数領域の信号を抽出する。
 ベースバンド部13は、データを逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)して、SC-FDMAシンボルを生成し、生成されたSC-FDMAシンボルにCPを付加し、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換する。ベースバンド部13は、変換したアナログ信号をRF部12に出力する。
 RF部12は、ローパスフィルタを用いてベースバンド部13から入力されたアナログ信号から余分な周波数成分を除去し、アナログ信号を搬送波周波数にアップコンバート(up convert)し、アンテナ部11を介して送信する。また、RF部12は、電力を増幅する。また、RF部12は送信電力を制御する機能を備えてもよい。RF部12を送信電力制御部とも称する。
 図5は、本実施形態の基地局装置3の構成を示す概略ブロック図である。図示するように、基地局装置3は、無線送受信部30、および、上位層処理部34を含んで構成される。無線送受信部30は、アンテナ部31、RF部32、および、ベースバンド部33を含んで構成される。上位層処理部34は、媒体アクセス制御層処理部35、および、無線リソース制御層処理部36を含んで構成される。無線送受信部30を送信部、受信部、または、物理層処理部とも称する。
 上位層処理部34は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。
 上位層処理部34が備える媒体アクセス制御層処理部35は、媒体アクセス制御層の処理を行う。媒体アクセス制御層処理部35は、無線リソース制御層処理部36によって管理されている各種設定情報/パラメータに基づいて、ランダムアクセス手順の制御を行う。
 上位層処理部34が備える無線リソース制御層処理部36は、無線リソース制御層の処理を行う。無線リソース制御層処理部36は、物理下りリンク共用チャネルに配置される下りリンクデータ(トランスポートブロック)、システムインフォメーション、RRCメッセージ、MAC CE(Control Element)などを生成し、又は上位ノードから取得し、無線送受信部30に出力する。また、無線リソース制御層処理部36は、端末装置1各々の各種設定情報/パラメータの管理をする。無線リソース制御層処理部36は、上位層の信号を介して端末装置1各々に対して各種設定情報/パラメータをセットしてもよい。すなわち、無線リソース制御層処理部36は、各種設定情報/パラメータを示す情報を送信/報知する。
 無線送受信部30の機能は、無線送受信部10と同様であるため説明を省略する。
 端末装置1が備える符号10から符号16が付された部のそれぞれは、回路として構成されてもよい。基地局装置3が備える符号30から符号36が付された部のそれぞれは、回路として構成されてもよい。
 以下、ランダムアクセス手順について説明する。
 本実施形態において、プライマリセル、セカンダリセル、または、LAAセルにおいてランダムアクセス手順が実行されてもよい。ただし、時間領域における何れのポイントにおいても1つのランダムアクセス手順のみが実行される。すなわち、複数のランダムアクセス手順は同時に実行されない。
 本実施形態において、プライマリセルにおいてコンテンションベースランダムアクセス手順(contention based random access procedure)、および、非コンテンションベースランダムアクセス手順(non-contention based random access procedure)が実行されてもよい。セカンダリセル、および、LAAセルにおいて、非コンテンションベースランダムアクセス手順が実行されてもよい。
 プライマリセル、セカンダリセル、または、LAAセルにおけるPRACHでランダムアクセスプリアンブルが送信されてもよい。端末装置1は、ランダムアクセス手順に関する情報(RRCメッセージ)を、基地局装置3から受信する。ランダムアクセス手順に関する情報は、PRACHリソースのセットを示す情報を含む。
 コンテンションベースランダムアクセス手順の場合、端末装置1自身によってランダムアクセスプリアンブルのインデックスがランダムに選択される。非コンテンションベースランダムアクセス手順の場合、基地局装置3から受信した情報に基づいて端末装置1によってランダムアクセスプリアンブルのインデックスが選択される。
 プライマリセル、セカンダリセル、または、LAAセルに対するランダムアクセスレスポンスは、プライマリセルにおけるPDSCHで送信される。あるセルに対するランダムアクセスレスポンスは、当該あるセルにおいて送信されたランダムアクセスプリアンブルに対応している。ランダムアクセスレスポンス(DL-SCH、トランスポートブロック)を含むPDSCHに対応するPDCCHは、RA-RNTI(Random Access-Radio Network Identifier)を含む。当該PDCCHは下りリンク制御情報(下りリンクグラント)を含む。
 ランダムアクセスレスポンスは、上りリンクグラントにマップされる上りリンクグラントフィールド、Temporary C-RNTI(Cell Radio Network Temporary Identifier)を示すための情報にマップされるTemporary C-RNTIフィールド、および、TA(Timing Advance)コマンドを含む。ランダムアクセスレスポンスに含まれる上りリンクグラントを、ランダムアクセスレスポンスグラントとも称する。端末装置1は、TAコマンドに基づいて、PUSCH送信のタイミングを調整する。セルのグループ毎にPUSCH送信のタイミングが調整されてもよい。
 受信したランダムアクセスレスポンスに、送信したランダムアクセスプリアンブルに対応するランダムアクセスプリアンブル識別子が含まれており、基地局装置3から受信した情報に基づいて端末装置1によってランダムアクセスプリアンブルが選択された場合、端末装置1は非コンテンションベースランダムアクセス手順が成功裏に完了したとみなし、ランダムアクセスレスポンスグラントに基づいてPUSCHでトランスポートブロックを送信する。
 受信したランダムアクセスレスポンスに、送信したランダムアクセスプリアンブルに対応するランダムアクセスプリアンブル識別子が含まれており、端末装置1自身によってランダムアクセスプリアンブルがランダムに選択された場合、Temporary C-RNTIをTemporary C-RNTIフィールドの値にセットし、ランダムアクセスレスポンスに含まれている上りリンクグラントに基づいてPUSCHでランダムアクセスメッセージ3(トランスポートブロック)を送信する。
 ランダムアクセスレスポンスに含まれている上りリンクグラントに対応するPUSCHは、対応するプリアンブルがPRACHで送信されたサービングセルにおいて送信される。
 メッセージ3を送信した後に、端末装置1は、コンテンションリゾリューション(contention resolution)を受信する。コンテンションリゾリューションの受信に基づいて、端末装置1はコンテンションベースランダムアクセス手順が成功裏に完了したとみなす。
 本実施形態において、複数のLAAセルのグループをUCIセルグループと称する。UCIセルグループに含まれる複数のLAAセルに対するHARQ-ACKは、UCIセルグループ内の1つ、または、複数のLAAセルにおけるPUSCHで送信される。
 プライマリセルは、常にUCIセルグループに含まれない。基地局装置3は、LAAセルがUCIセルグループに含まれるかどうかを決定してもよい。基地局装置3は、LAAセルがUCIグループに含まれるかどうかを示す情報/上位層パラメータを、端末装置1に送信してもよい。
 UCIセルグループに含まれるLAAセルに対する上りリンクグラントには、CSIリクエスト、および、HARQ-ACKリクエストが含まれてもよい。CSIリクエストのビットにマップされるフィールドを、CSIリクエストフィールドとも称する。HARQ-ACKリクエストのビットにマップされるフィールドを、HARQ-ACKリクエストフィールドとも称する。
 UCIセルグループに含まれるLAAセルに対する上りリンクグラントに含まれるHARQ-ACKリクエストフィールドがHARQ-ACK送信をトリガーするようにセットされている場合、端末装置1は、当該LAAセルにおけるPUSCHを用いてHARQ-ACKを送信する。例えば、1ビットのHARQ-ACKリクエストフィールドが‘0’にセットされている場合、HARQ-ACKの送信がトリガーされなくてもよい。例えば、1ビットのHARQ-ACKリクエストフィールドが‘1’にセットされている場合、HARQ-ACKの送信がトリガーされてもよい。
 UCIセルグループに含まれるLAAセルに対する上りリンクグラントに含まれるCSIリクエストフィールドがCSI報告をトリガーするようにセットされている場合、端末装置1は、当該LAAセルにおけるPUSCHを用いCSI報告を行う。例えば、2ビットのCSIリクエストフィールドが‘00’にセットされている場合、CSI報告がトリガーされなくてもよい。例えば、2ビットのCSIリクエストフィールドが‘00’以外の値にセットされている場合、CSI報告がトリガーされてもよい。
 UCIセルグループに含まれないサービングセルに対する上りリンクグラントには、CSIリクエストが含まれてもよい。UCIセルグループに含まれないサービングセルに対する上りリンクグラントに含まれるCSIリクエストフィールドがCSI報告をトリガーするようにセットされている場合、端末装置1は、当該UCIセルグループに含まれないサービングセルにおけるPUSCHを用いCSI報告を行う。
 UCIセルグループに含まれないサービングセルに対する上りリンクグラントには、HARQ-ACKリクエストが含まれない。UCIセルグループに含まれないサービングセルに対するHARQ-ACKの送信は、UCIセルグループに含まれないサービングセルにおけるPDSCH送信の検出に基づいてトリガーされてもよい。端末装置1は、プライマリセルにおけるPUSCHを用いて、プライマリセルにおけるPDSCH送信に対応するHARQ-ACKを送信してもよい。
 すなわち、LAAセルに対する上りリンクグラントにHARQ-ACKリクエストが含まれるかどうかは、当該LAAセルがUCIグループに含まれるかどうかを示す情報/上位層パラメータに基づいて与えられてもよい。
 ランダムアクセスレスポンスグラントには、CSIリクエストが含まれてもよい。コンテンションベースランダムアクセス手順に関連するランダムアクセスレスポンスグラントに含まれるCSIリクエストはリザーブされる。ランダムアクセスレスポンスグラントに含まれるCSIリクエストフィールドがリザーブされておらず、尚且つ、CSI報告をトリガーするようにセットされている場合、端末装置1は、ランダムアクセスプリアンブルを送信したサービングセルにおけるPUSCHを用いCSI報告を行う。
 UCIセルグループに含まれるLAAセルにおける非コンテンションベースランダムアクセス手順は、LAAセルの上りリンク同期のために実行されてもよい。上りリンク同期が得られていない場合、UCIセルグループに含まれるLAAセルにおけるPUSCHを用いて、UCIセルグループに含まれるLAAセルにおけるPDSCH送信に対するHARQ-ACKを送信することはできない。すなわち、UCIセルグループに含まれるLAAセルにおける非コンテンションベースランダムアクセス手順を行っている間は、UCIセルグループに含まれるLAAセルにおけるPDSCHの送信を行わなくてもよい。そこで、ランダムアクセスレスポンス、および、ランダムアクセスレスポンスグラントのビットを節約するために、UCIセルグループに含まれるLAAセルに対するランダムアクセスレスポンスグラントにHARQ-ACKリクエストを含めなくてもよい。
 PDCCHに含まれる上りリンクグラントは、ランダムアクセスレスポンスグラントによってスケジュールされたPUSCHを用いて送信されたトランスポートブロックの再送信を指示してもよい。ここで、当該上りリンクグラントには、CSIリクエスト、および、HARQ-ACKリクエストを含んでもよい。
 以下、PUSCHを用いて送信される、上りリンクデータ、CQI/PMI、RI、および、HARQ-ACKの符号化処理について説明する。
 図6は、本実施形態における上りリンクデータ(a)、CQI/PMI(o)、RI(a)、および、HARQ-ACK(a)の符号化処理の一例を示す図である。図6の600から603において、PUSCHを用いて送信される、上りリンクデータ、CQI/PMI、RI、および、HARQ-ACKは個別に符号化される。図6の604において、上りリンクデータの符号化ビット(f)、CQI/PMIの符号化ビット(q)、RIの符号化ビット(g)、および、HARQ-ACKの符号化ビット(h)は、多重、および、インタリーブされる。図6の605において、604において多重、および、インタリーブされた符号化ビットから、ベースバンド信号(PUSCHの信号)を生成する。
 符号化ビットの多重・インタリーブには、行列(matrix)が用いられてもよい。行列の列はSC-FDMAシンボルに対応している。行列の1つのエレメントは、1つの符号化変調シンボルに対応している。符号化変調シンボルはX個の符号化ビットのグループである。Xは、PUSCH(上りリンクデータ)に対する変調次数(modulation order Qm)である。1つの符号化変調シンボルから、1つの複素数値シンボルが生成される。1つの列にマップされる複数の符号化変調シンボルから生成される複数の複素数値シンボルは、DFTプリコーディングの後に、PUSCHのために割り当てられてサブキャリアにマップされる。
 図7は、本実施形態における符号化ビットの多重・インタリーブの第1の例を示す図である。PUSCHを用いて、HARQ-ACK、および、RIが送信される場合、HARQ-ACKの符号化変調シンボルはインデックス{2、3、8、9}の列にマップされ、尚且つ、RIの符号化変調シンボルはインデックス{1、4、7、10}の列にマップされる。
 インデックス{2、3、8、9}の列は、PUSCH送信に関連するDMRSが送信されるSC-FDMAシンボルの隣のSC-FDMAシンボルに対応する。インデックス2の列に対応するSC-FDMAシンボル、および、インデックス3の列に対応するSC-FDMAシンボルの間のSC-FDMAシンボルにおいてDMRSが送信される。インデックス8の列に対応するSC-FDMAシンボル、および、インデックス9の列に対応するSC-FDMAシンボルの間のSC-FDMAシンボルにおいてDMRSが送信される。インデックス{1、4、7、10}の列は、PUSCH送信に関連するDMRSが送信されるSC-FDMAシンボルの2つ隣のSC-FDMAシンボルに対応する。
 これにより、HARQ-ACKは、DMRSが送信されるSC-FDMAシンボルの隣のSC-FDMAシンボルにおいて送信されるため、基地局装置3における復調の精度が高くなる。
 PUSCHを用いてHARQ-ACKが送信されず、尚且つ、当該PUSCHを用いてRIが送信される場合、RIの符号化変調シンボルは、インデックス{2、3、8、9}の列、または、インデックス{1、4、7、10}の列にマップされる。図8は、本実施形態における符号化ビットの多重・インタリーブの第2の例を示す図である。第2の例において、RIの符号化変調シンボルは、インデックス{2、3、8、9}の列にマップされる。図9は、本実施形態における符号化ビットの多重・インタリーブの第3の例を示す図である。第2の例において、RIの符号化変調シンボルは、インデックス{1、4、7、10}の列にマップされる。
 RIの符号化変調シンボルがマップされる列のインデックスは、以下の要素(1)から(4)の一部、または、全部に少なくとも基づいて与えられてもよい。
・要素(1):PUSCHが送信されるサービングセルがUCIセルグループに属するかどうか
・要素(2):PUSCHを用いてHARQ-ACK送信が行われるかどうか
・要素(3):HARQ-ACKリクエストフィールドの値
・要素(4):PUSCHのためのSC-FDMAシンボルの数
 UCIセルグループに含まれるLAAセルにおけるPUSCHを用いたHARQ-ACKの送信は、HARQ-ACKリクエストフィールドに基づいてトリガーされてもよい。すなわち、UCIセルグループに含まれないサービングセルにおけるPUSCHを用いたHARQ-ACKの送信が行われるかどうかは、HARQ-ACKリクエストフィールドに基づいて与えられてもよい。
 例えば、PUSCHが送信されるサービングセルがUCIセルグループに属しており、尚且つ、PUSCHを用いてHARQ-ACK送信が行われる場合、RIの符号化変調シンボルはインデックス{1、4、7、10}の列にマップされてもよい。例えば、PUSCHが送信されるサービングセルがUCIセルグループに属しており、尚且つ、PUSCHを用いてHARQ-ACK送信が行われない場合、RIの符号化変調シンボルはインデックス{2、3、8、9}の列にマップされてもよい。
 これにより、PUSCHを用いてHARQ-ACK送信が行われない場合、PUSCH送信に関連するDMRSが送信されるSC-FDMAシンボルの隣のSC-FDMAシンボルにおいてRIが送信されるため、RIの復調の精度を向上させることができる。
 UCIセルグループに含まれないサービングセルにおけるPUSCHを用いたHARQ-ACKの送信は、UCIセルグループに含まれないサービングセルにおけるPDSCH送信の検出に基づいてトリガーされてもよい。すなわち、UCIセルグループに含まれないサービングセルにおけるPUSCHを用いたHARQ-ACKの送信が行われるかどうかは、UCIセルグループに含まれないサービングセルにおけるPDSCH送信を検出したかどうかに基づいて与えられてもよい。
 基地局装置3は、端末装置1が正しくPDSCH送信を検出できたかどうかを知らないので、PUSCHを用いてHARQ-ACK送信が行われるかどうかを正確に把握できない。そこで、PUSCHが送信されるサービングセルがUCIセルグループに属していない場合、PUSCHを用いてHARQ-ACK送信が行われるかどうかに関わらず、RIの符号化変調シンボルはインデックス{1、4、7、10}の列にマップされてもよい。これにより、基地局装置3は、RIが送信されるSC-FDMAシンボルを正確に把握することができる。
 以下、RIの符号化ビットの数(G)、および、HARQ-ACKの符号化ビットの数(H)の算出方法について説明する。RIの符号化ビットの数(G)、および、HARQ-ACKの符号化ビットの数(H)は、以下の数式(1)、および、数式(2)によって与えられてもよい。
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000002
 
 βRI offsetは、以下の要素(1)から(5)の一部、または、全部に少なくとも基づいて与えられてもよい。
・要素(1):PUSCHが送信されるサービングセルがUCIセルグループに属するかどうか
・要素(2):PUSCHを用いてHARQ-ACK送信が行われるかどうか
・要素(3):HARQ-ACKリクエストフィールドの値
・要素(4):PUSCHのためのSC-FDMAシンボルの数
・要素(5):RIの符号化変調シンボルがマップされる列(RIが送信されるSC-FDMAシンボル)
 βRI offsetは、基地局装置3から受信した情報/パラメータによって与えられてもよい。端末装置は、上記の要素(1)から(5)の一部、または、全部に少なくとも基づいて、基地局装置3から受信した情報/パラメータによって与えられる複数のβRI offsetの中から1つを選択してもよい。
 βHARQ-ACK offsetは、基地局装置3から受信した情報/パラメータによって与えられてもよい。βHARQ-ACK offsetは、上記の要素(1)とは関係なく与えられてもよい。
 以下、本実施形態における、端末装置1および基地局装置3の種々の態様について説明する。
 (1)本実施形態の第1の態様は、端末装置1であって、PUSCHをスケジュールするために用いられる上りリンクグラントを受信する受信部10と、前記上りリンクグラントに含まれるHARQ-ACKリクエストがHARQ-ACK送信をトリガーするようにセットされている場合には、前記上りリンクグラントに対応する前記PUSCHにおいて、前記HARQ-ACKを送信する送信部10と、を備え、前記上りリンクグラントがランダムアクセスレスポンスに含まれる場合、前記上りリンクグラントは前記HARQ-ACKリクエストを含まない。
 (2)本実施形態の第1の態様において、前記ランダムアクセスレスポンスに含まれる前記上りリンクグラントによって初期送信がスケジュールされたPUSCHにおいて送信されたトランスポートブロックの再送信を指示する上りリンクグラントは、前記HARQ-ACKリクエストを含む。前記ランダムアクセスレスポンスに含まれる前記上りリンクグラントによって初期送信がスケジュールされたPUSCHにおいて送信されたトランスポートブロックの再送信を指示する上りリンクグラントは、PDCCHで送信されてもよい。
 (3)本実施形態の第1の態様において、前記送信部10は、前記上りリンクグラントに含まれるCSIリクエストがCSI報告をトリガーするようにセットされている場合には、前記上りリンクグラントに対応する前記PUSCHにおいて、前記CSI報告を送信し、前記上りリンクグラントが前記ランダムアクセスレスポンスに含まれるかどうかに関わらず、前記上りリンクグラントは前記CSIリクエストを含む。
 (4)本実施形態の第1の態様において、前記ランダムアクセスレスポンスに含まれない上りリンクグラントに、前記HARQ-ACKリクエストが含まれるかどうかは、上位層のパラメータによって決定される。前記上位層のパラメータは、基地局装置3によって送信されてもよい。前記ランダムアクセスレスポンスに含まれない上りリンクグラントは、PDCCHを用いて送信される。
 (5)本実施形態の第2の態様は、基地局装置3であって、PUSCHをスケジュールするために用いられる上りリンクグラントを送信する送信部10と、前記上りリンクグラントに含まれるHARQ-ACKリクエストがHARQ-ACK送信をトリガーするようにセットされている場合には、前記上りリンクグラントに対応する前記PUSCHにおいて、前記HARQ-ACKを受信する受信部10と、を備え、前記上りリンクグラントがランダムアクセスレスポンスに含まれる場合、前記上りリンクグラントは前記HARQ-ACKリクエストを含まない。
 (6)本実施形態の第2の態様において、前記ランダムアクセスレスポンスに含まれる前記上りリンクグラントによって初期送信がスケジュールされたPUSCHにおいて送信されたトランスポートブロックの再送信を指示する上りリンクグラントは、前記HARQ-ACKリクエストを含む。前記ランダムアクセスレスポンスに含まれる前記上りリンクグラントによって初期送信がスケジュールされたPUSCHにおいて送信されたトランスポートブロックの再送信を指示する上りリンクグラントは、PDCCHで送信されてもよい。
 (7)本実施形態の第2の態様において、前記受信部10は、前記上りリンクグラントに含まれるCSIリクエストがCSI報告をトリガーするようにセットされている場合には、前記上りリンクグラントに対応する前記PUSCHにおいて、前記CSI報告を受信し、前記上りリンクグラントが前記ランダムアクセスレスポンスに含まれるかどうかに関わらず、前記上りリンクグラントは前記CSIリクエストを含む。
 (8)本実施形態の第2の態様において、前記ランダムアクセスレスポンスに含まれない上りリンクグラントに、前記HARQ-ACKリクエストが含まれるかどうかは、上位層のパラメータによって決定される。前記上位層のパラメータは、基地局装置3によって送信されてもよい。前記ランダムアクセスレスポンスに含まれない上りリンクグラントは、PDCCHを用いて送信される。
 (9)本実施形態の第1および第2の態様において、上りリンクグラントは、LAAセルに対応している。
 (10)本実施形態の第3の態様は、端末装置1であって、PUSCHをスケジュールするために用いられる上りリンクグラントを受信する受信部10と、前記上りリンクグラントに含まれるHARQ-ACKリクエストがHARQ-ACK送信をトリガーするようにセットされている場合には、前記上りリンクグラントに対応する前記PUSCHにおいて、前記HARQ-ACKを送信し、尚且つ、前記上りリンクグラントに含まれるCSIリクエストがCSI報告をトリガーするようにセットされている場合には、前記上りリンクグラントに対応する前記PUSCHにおいて、RIを送信する送信部10と、を備え、前記RIが送信されるSC-FDMAシンボルのインデックスは、前記HARQ-ACKリクエストの値に基づいて与えられる。
 (5)本実施形態の第4の態様は、基地局装置3であって、PUSCHをスケジュールするために用いられる上りリンクグラントを送信する送信部30と、前記上りリンクグラントに含まれるHARQ-ACKリクエストがHARQ-ACK送信をトリガーするようにセットされている場合には、前記上りリンクグラントに対応する前記PUSCHにおいて、前記HARQ-ACKを受信し、尚且つ、前記上りリンクグラントに含まれるCSIリクエストがCSI報告をトリガーするようにセットされている場合には、前記上りリンクグラントに対応する前記PUSCHにおいて、RIを受信する受信部30と、を備え、前記RIが送信されるSC-FDMAシンボルのインデックスは、前記HARQ-ACKリクエストの値に基づいて与えられる。
 (5)本実施形態の第3および第4の態様において前記RIの符号化ビットの数は、前記RIが送信されるSC-FDMAシンボルのインデックスに基づいて与えられる。
 これにより、端末装置1は効率的に上りリンク送信を実行することができる。また、基地局装置3は効率的に上りリンク送信の受信を実行することができる。
 本発明の一態様に関わる基地局装置3、および端末装置1で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU(Central Processing Unit)等を制御するプログラム(コンピュータを機能させるプログラム)であっても良い。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAM(Random Access Memory)に蓄積され、その後、Flash ROM(Read Only Memory)などの各種ROMやHDD(Hard Disk Drive)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行われる。
 尚、上述した実施形態における端末装置1、基地局装置3の一部、をコンピュータで実現するようにしても良い。その場合、この制御機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。
 尚、ここでいう「コンピュータシステム」とは、端末装置1、又は基地局装置3に内蔵されたコンピュータシステムであって、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
 さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
 また、上述した実施形態における基地局装置3は、複数の装置から構成される集合体(装置グループ)として実現することもできる。装置グループを構成する装置の各々は、上述した実施形態に関わる基地局装置3の各機能または各機能ブロックの一部、または、全部を備えてもよい。装置グループとして、基地局装置3の一通りの各機能または各機能ブロックを有していればよい。また、上述した実施形態に関わる端末装置1は、集合体としての基地局装置と通信することも可能である。
 また、上述した実施形態における基地局装置3は、EUTRAN(Evolved Universal Terrestrial Radio Access Network)であってもよい。また、上述した実施形態における基地局装置3は、eNodeBに対する上位ノードの機能の一部または全部を有してもよい。
 また、上述した実施形態における端末装置1、基地局装置3の一部、又は全部を典型的には集積回路であるLSIとして実現してもよいし、チップセットとして実現してもよい。端末装置1、基地局装置3の各機能ブロックは個別にチップ化してもよいし、一部、又は全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、又は汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 また、上述した実施形態では、通信装置の一例として端末装置を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置にも適用出来る。
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明の一態様は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。
 本発明の一態様は、例えば、通信システム、通信機器(例えば、携帯電話装置、基地局装置、無線LAN装置、或いはセンサーデバイス)、集積回路(例えば、通信チップ)、又はプログラム等において、利用することができる。
1(1A、1B、1C) 端末装置
3 基地局装置
10 無線送受信部
11 アンテナ部
12 RF部
13 ベースバンド部
14 上位層処理部
15 媒体アクセス制御層処理部
16 無線リソース制御層処理部
30 無線送受信部
31 アンテナ部
32 RF部
33 ベースバンド部
34 上位層処理部
35 媒体アクセス制御層処理部
36 無線リソース制御層処理部

Claims (9)

  1.  PUSCHをスケジュールするために用いられる上りリンクグラントを受信する受信部と、
     前記PUSCHにおいてトランスポートブロックとCSIを送信する送信部と、を備え、
     前記上りリンクグラントに含まれるフィールドの値に基づいて複数のβRI offsetから1つのβRI offsetが選択され、
     前記CSIの符号化ビットの数は前記βRI offsetに基づいて与えられ、
     端末装置。
  2.  PUSCHをスケジュールするために用いられる上りリンクグラントを受信する受信部と、
     前記上りリンクグラントに含まれるHARQ-ACKリクエストがHARQ-ACK送信をトリガーするようにセットされている場合には、前記上りリンクグラントに対応する前記PUSCHにおいて、前記HARQ-ACKを送信し、
     前記上りリンクグラントに含まれるCSIリクエストがCSI報告をトリガーするようにセットされている場合には、前記上りリンクグラントに対応する前記PUSCHにおいて、RIを送信する送信部と、を備え、
     前記RIが送信されるSC-FDMAシンボルのインデックスは、前記HARQ-ACKリクエストの値に基づいて与えられる
     端末装置。
  3.  前記RIの符号化ビットの数は、前記RIが送信されるSC-FDMAシンボルのインデックスに基づいて与えられる
     請求項2の端末装置。
  4.  PUSCHをスケジュールするために用いられる上りリンクグラントを送信する送信部と、
     前記上りリンクグラントに含まれるHARQ-ACKリクエストがHARQ-ACK送信をトリガーするようにセットされている場合には、前記上りリンクグラントに対応する前記PUSCHにおいて、前記HARQ-ACKを受信し、
     前記上りリンクグラントに含まれるCSIリクエストがCSI報告をトリガーするようにセットされている場合には、前記上りリンクグラントに対応する前記PUSCHにおいて、RIを受信する受信部と、を備え、
     前記RIが送信されるSC-FDMAシンボルのインデックスは、前記HARQ-ACKリクエストの値に基づいて与えられる
     基地局装置。
  5.  前記RIの符号化ビットの数は、前記RIが送信されるSC-FDMAシンボルのインデックスに基づいて与えられる
     請求項4の基地局装置。
  6.  端末装置に用いられる通信方法であって、
     PUSCHをスケジュールするために用いられる上りリンクグラントを受信し、
     前記上りリンクグラントに含まれるHARQ-ACKリクエストがHARQ-ACK送信をトリガーするようにセットされている場合には、前記上りリンクグラントに対応する前記PUSCHにおいて、前記HARQ-ACKを送信し、
     前記上りリンクグラントに含まれるCSIリクエストがCSI報告をトリガーするようにセットされている場合には、前記上りリンクグラントに対応する前記PUSCHにおいて、RIを送信し、
     前記RIが送信されるSC-FDMAシンボルのインデックスは、前記HARQ-ACKリクエストの値に基づいて与えられる
     通信方法。
  7.  前記RIの符号化ビットの数は、前記RIが送信されるSC-FDMAシンボルのインデックスに基づいて与えられる
     請求項6の通信方法。
  8.  基地局装置に用いられる通信方法であって、
     PUSCHをスケジュールするために用いられる上りリンクグラントを送信し、
     前記上りリンクグラントに含まれるHARQ-ACKリクエストがHARQ-ACK送信をトリガーするようにセットされている場合には、前記上りリンクグラントに対応する前記PUSCHにおいて、前記HARQ-ACKを受信し、
     前記上りリンクグラントに含まれるCSIリクエストがCSI報告をトリガーするようにセットされている場合には、前記上りリンクグラントに対応する前記PUSCHにおいて、RIを受信し、
     前記RIが送信されるSC-FDMAシンボルのインデックスは、前記HARQ-ACKリクエストの値に基づいて与えられる
     通信方法。
  9.  前記RIの符号化ビットの数は、前記RIが送信されるSC-FDMAシンボルのインデックスに基づいて与えられる
     請求項8の通信方法。
PCT/JP2017/020194 2016-06-03 2017-05-31 端末装置、基地局装置、通信方法、および、集積回路 WO2017209164A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/305,419 US11083008B2 (en) 2016-06-03 2017-05-31 Terminal apparatus, base station apparatus, communication method, and integrated circuit
EP17806716.1A EP3468279A4 (en) 2016-06-03 2017-05-31 TERMINAL DEVICE, BASE STATION DEVICE, COMMUNICATION METHOD AND INTEGRATED CIRCUIT
CN201780026639.9A CN109196940A (zh) 2016-06-03 2017-05-31 终端装置、基站装置、通信方法以及集成电路
EP20198187.5A EP3780851A1 (en) 2016-06-03 2017-05-31 Terminal apparatus, base station apparatus, communication method, and integrated circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016111855A JP2019134199A (ja) 2016-06-03 2016-06-03 端末装置、基地局装置、通信方法、および、集積回路
JP2016-111855 2016-06-03

Publications (1)

Publication Number Publication Date
WO2017209164A1 true WO2017209164A1 (ja) 2017-12-07

Family

ID=60477552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020194 WO2017209164A1 (ja) 2016-06-03 2017-05-31 端末装置、基地局装置、通信方法、および、集積回路

Country Status (5)

Country Link
US (1) US11083008B2 (ja)
EP (2) EP3468279A4 (ja)
JP (1) JP2019134199A (ja)
CN (1) CN109196940A (ja)
WO (1) WO2017209164A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164623A2 (en) * 2016-03-22 2017-09-28 Samsung Electronics Co., Ltd. Method and apparatus for transmitting uplink control information in wireless communication system
EP3925120A4 (en) * 2019-02-15 2022-07-27 ZTE Corporation RESOURCE INDICATION SCHEME FOR REPEATED TRANSMISSIONS

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008830A1 (ja) * 2013-07-19 2015-01-22 シャープ株式会社 端末装置、基地局装置、集積回路、および無線通信方法
JP2015092716A (ja) * 2010-01-08 2015-05-14 インターデイジタル パテント ホールディングス インコーポレイテッド 複数キャリアのチャネル状態情報の伝送

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7990919B2 (en) * 2008-03-20 2011-08-02 Apple Inc. Techniques for reducing communication errors in a wireless communication system
KR101949729B1 (ko) * 2009-03-03 2019-02-19 엘지전자 주식회사 다중 안테나 무선 통신 시스템에서 상향 링크 신호 송신 방법 및 이를 위한 장치
JP5610861B2 (ja) * 2010-06-10 2014-10-22 シャープ株式会社 移動局装置、基地局装置、無線通信システム、無線通信方法および集積回路
JP4927209B1 (ja) * 2010-11-05 2012-05-09 シャープ株式会社 無線通信システム、移動局装置、基地局装置、無線通信方法および集積回路
CN103650393B (zh) * 2011-05-12 2016-10-12 Lg电子株式会社 发送控制信息的方法及其设备
US9843430B2 (en) * 2011-11-01 2017-12-12 Lg Electronics Inc. Method and apparatus for receiving ACK/NACK in wireless communication system
CN103686858B (zh) * 2012-08-31 2018-02-06 华为技术有限公司 上行控制信息的反馈方法、基站及用户设备
US9516606B2 (en) 2013-07-19 2016-12-06 Sharp Kabushiki Kaisha Terminal apparatus, method, and integrated circuit
KR102023671B1 (ko) * 2013-11-01 2019-09-20 이노스카이 주식회사 주기적 채널상태정보 보고 방법 및 장치
KR20150089714A (ko) * 2014-01-28 2015-08-05 주식회사 아이티엘 무선 통신 시스템에서 uci 맵핑 방법 및 그 장치
KR102120497B1 (ko) * 2014-01-29 2020-06-08 이노스카이 주식회사 Harq ack/nack 전송방법 및 장치
JP2016111855A (ja) 2014-12-09 2016-06-20 株式会社明電舎 電気部品を収容する電気機器
CN106257856B (zh) * 2015-06-19 2021-02-02 北京三星通信技术研究有限公司 一种传输上行控制信息的方法
WO2017150925A1 (ko) * 2016-03-02 2017-09-08 삼성전자 주식회사 통신 시스템에서 단말의 상향링크 제어 정보 전송 방법 및 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015092716A (ja) * 2010-01-08 2015-05-14 インターデイジタル パテント ホールディングス インコーポレイテッド 複数キャリアのチャネル状態情報の伝送
WO2015008830A1 (ja) * 2013-07-19 2015-01-22 シャープ株式会社 端末装置、基地局装置、集積回路、および無線通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3468279A4 *

Also Published As

Publication number Publication date
JP2019134199A (ja) 2019-08-08
US11083008B2 (en) 2021-08-03
US20200329490A1 (en) 2020-10-15
EP3468279A4 (en) 2020-04-08
EP3468279A1 (en) 2019-04-10
EP3780851A1 (en) 2021-02-17
CN109196940A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
WO2018070087A1 (ja) 端末装置、通信方法、および、集積回路
KR102408269B1 (ko) 단말 장치, 기지국 장치, 통신 방법, 및 집적 회로
JP6800981B2 (ja) 端末装置、基地局装置および通信方法
JP7058087B2 (ja) 端末装置、基地局装置、および、通信方法
EP3451776B1 (en) Terminal device, base station device, and communication method
CN109156002B (zh) 终端装置、基站装置以及通信方法
EP3451769B1 (en) Terminal apparatus, base station apparatus, communication method, and integrated circuit
WO2017209164A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2017217397A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2017195623A1 (ja) 端末装置、通信方法、および、集積回路
WO2017208768A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
CN111699741B (zh) 终端装置、基站装置以及通信方法
WO2020218415A1 (ja) 端末装置、基地局装置、および、通信方法
WO2017217400A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
CN114424492A (zh) 终端装置、基站装置以及通信方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806716

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017806716

Country of ref document: EP

Effective date: 20190103

NENP Non-entry into the national phase

Ref country code: JP