WO2017208402A1 - Shape detection device - Google Patents

Shape detection device Download PDF

Info

Publication number
WO2017208402A1
WO2017208402A1 PCT/JP2016/066266 JP2016066266W WO2017208402A1 WO 2017208402 A1 WO2017208402 A1 WO 2017208402A1 JP 2016066266 W JP2016066266 W JP 2016066266W WO 2017208402 A1 WO2017208402 A1 WO 2017208402A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
light
shape
shape detection
flexible resin
Prior art date
Application number
PCT/JP2016/066266
Other languages
French (fr)
Japanese (ja)
Inventor
久保井 徹
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2018520289A priority Critical patent/JPWO2017208402A1/en
Priority to PCT/JP2016/066266 priority patent/WO2017208402A1/en
Publication of WO2017208402A1 publication Critical patent/WO2017208402A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes

Definitions

  • the present invention relates to a shape detection device for detecting a curved shape, comprising a plurality of optical fibers for detection light having at least one detected portion.
  • a curved shape of the insertion portion is formed by incorporating a shape detection sensor. It is known to detect.
  • the shape detection sensor has a light source unit that emits detection light, a detection light optical fiber that guides the detection light emitted from the light source unit, and a detection light characteristic according to the curvature of the detection light optical fiber. It has at least one detected part provided in the optical fiber for detection light that gives a change, and a light detection part that detects the detection light guided through the optical fiber for detection light.
  • the detected portions are formed by, for example, light loss portions that lose light of different wavelengths, and are respectively disposed in predetermined directions at predetermined positions of the optical fiber for detection light.
  • the amount of light transmitted through the optical fiber for detection light varies depending on the curvature and direction of the curvature of each detected portion. Based on the light transmission amount for each wavelength of the optical fiber for detection light, the curved shape of the insertion portion, that is, the curvature and direction of the curvature, in the portion where each detected portion is located is obtained.
  • the shape detection sensor disclosed in Patent Document 1 has a structure in which a plurality of optical fibers for detection light are bonded and bundled in a sheath.
  • the optical fiber for detection light arranged on the outside of the bend needs to be stretched, and the detection arranged on the inside of the bend
  • the optical fiber for light needs to be shrunk. Therefore, it is preferable to use a material that can be expanded and contracted as the material of each optical fiber for detection light.
  • many common optical fibers are difficult to expand and contract because the core or clad is made of quartz glass.
  • An object of the present invention is to provide a shape detection device whose reliability is not easily lowered even when a plurality of optical fibers for detection light are used.
  • a shape detection device includes a light source unit that emits detection light, an optical fiber for shape detection that guides detection light emitted from the light source unit, and a detection light according to the curvature of the optical fiber.
  • a plurality of shape detection sensors each having at least one detected portion provided in the optical fiber that changes characteristics, and a light detecting portion that detects detection light guided through the optical fiber;
  • a shape calculating device that calculates a curved shape of the detected portion based on a change in characteristics of detection light detected by a plurality of light detection units of the plurality of shape detection sensors, and a plurality of the plurality of shape detection sensors
  • a shape detection device in which reliability is not easily lowered even when a plurality of optical fibers for detection light are used.
  • FIG. 1 is a schematic diagram for explaining the principle of a shape detection sensor incorporated in the shape detection apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view in the radial direction of the optical fiber for detection light of the shape detection sensor.
  • FIG. 3 is a schematic diagram illustrating a configuration of an endoscope apparatus in which a shape detection sensor is incorporated.
  • FIG. 4 is a schematic diagram for explaining a form of incorporation of the shape detection device probe included in the shape detection device according to the first embodiment into the endoscope apparatus insertion portion.
  • FIG. 5 is an external perspective view of the shape detection device probe according to the first embodiment.
  • FIG. 1 is a schematic diagram for explaining the principle of a shape detection sensor incorporated in the shape detection apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view in the radial direction of the optical fiber for detection light of the shape detection sensor.
  • FIG. 3 is a schematic diagram illustrating a configuration of an endo
  • FIG. 6 is a cross-sectional view in the longitudinal direction for explaining the configuration for incorporating the optical fiber for detection light into the shape detection apparatus probe in the first embodiment.
  • FIG. 7A is a schematic diagram for explaining an example of a rigidity reinforcing member in the outer cylindrical member of the shape detection device probe.
  • FIG. 7B is a schematic diagram for explaining another example of the rigidity reinforcing member in the outer tubular member of the shape detection device probe.
  • FIG. 8 is a schematic diagram for explaining the action of the flexible resin in the shape detection apparatus probe according to the first embodiment.
  • FIG. 9 is an external perspective view of the shape detection device probe in the shape detection device according to the second embodiment of the present invention.
  • FIG. 10 is a cross-sectional view in the longitudinal direction for explaining the configuration for incorporating the optical fiber for detection light into the shape detection apparatus probe in the second embodiment.
  • FIG. 11 is a longitudinal cross-sectional view for explaining a configuration in which the optical fiber for detection light is incorporated into the shape detection device probe in the shape detection device according to the third embodiment of the present invention.
  • FIG. 12 is a longitudinal cross-sectional view for explaining a configuration in which the optical fiber for detection light is incorporated into the shape detection device probe in the shape detection device according to the fourth embodiment of the present invention.
  • the shape detection apparatus incorporates a plurality of shape detection sensors. First, the configuration and operation of the shape detection sensor will be described.
  • FIG. 1 is a schematic diagram for explaining the principle of the shape detection sensor 10.
  • the shape detection sensor 10 includes a light source unit 12, an optical fiber 14, and a light detection unit 16.
  • the optical fiber 14 is connected to the light source unit 12 and the light detection unit 16.
  • the light source unit 12 is, for example, an LED light source or a laser light source, and emits detection light having a desired wavelength characteristic.
  • the optical fiber 14 is an optical fiber for measuring a curved shape that propagates detection light emitted from the light source unit 12.
  • the light detection unit 16 detects the detection light propagated through the optical fiber 14.
  • the optical fiber 14 includes a detection light optical fiber 14 a, a light supply optical fiber 14 b, and a light receiving optical fiber 14 c that are branched in three directions by a coupling portion (optical coupler) 18. That is, the optical fiber 14 is formed by connecting the light supply optical fiber 14 b and the light receiving optical fiber 14 c to the detection light optical fiber 14 a by the coupling portion 18. The proximal end of the light supply optical fiber 14 b is connected to the light source unit 12. In addition, a reflection portion 20 that reflects the propagated light is provided at the tip of the detection light optical fiber 14a. The reflection unit 20 is, for example, a mirror. The proximal end of the light receiving optical fiber 14 c is connected to the light detection unit 16.
  • the light supply optical fiber 14 b propagates the detection light emitted from the light source unit 12 and guides it to the coupling unit 18.
  • the coupling unit 18 directs most of the detection light incident from the light supply optical fiber 14b to the detection light optical fiber 14a.
  • the detection light optical fiber 14 a guides the detection light from the coupling unit 18 to the reflection unit 20, and guides the detection light reflected by the reflection unit 20 to the coupling unit 18.
  • the coupling unit 18 directs at least a part of the detection light from the detection light optical fiber 14a to the light reception optical fiber 14c.
  • the light receiving optical fiber 14 c guides the light from the coupling unit 18 to the light detection unit 16.
  • the light detection unit 16 photoelectrically converts the detection light received from the light receiving optical fiber 14c and outputs an electric signal indicating the amount of received light.
  • the optical fiber 14a for detection light has at least one detected part 22.
  • FIG. 2 is a radial cross-sectional view of the detection light optical fiber 14a at the detected portion 22 position.
  • the optical fiber for detection light 14 a has a core 24, a clad 26 covering the outer peripheral surface of the core 24, and a coating 28 covering the outer peripheral surface of the clad 26.
  • the core 24 and the clad 26 are made of quartz glass having different refractive indexes.
  • At least one detected portion 22 is provided on the side surface of the detection light optical fiber 14a.
  • the detected portion 22 is provided only at a part of the outer periphery of the detection light optical fiber 14a, and the characteristics of the detection light passing through the detected portion 22 are changed in the curved shape of the detection light optical fiber 14a, that is, the curvature and direction of the curve. It changes according to.
  • the detected portion 22 has a light opening 30 from which the core 24 is exposed by removing a part of the coating 28 and the clad 26, and a light characteristic conversion member 32 formed in the light opening 30. .
  • the core 24 does not necessarily have to be exposed as the light opening 30, and the core 24 may not be exposed as long as the light passing through the detection light optical fiber 14 a reaches the light opening 30.
  • the light characteristic conversion member 32 is a member that converts the characteristics (light quantity, wavelength, etc.) of the light guided through the detection light optical fiber 14a.
  • a light guide loss member light absorber
  • Phosphor wavelength conversion member
  • the light supplied from the light source unit 12 guides the detection light optical fiber 14a as described above.
  • the detection light propagating through the detection light optical fiber 14 a enters the light characteristic conversion member 32 of the detected portion 22, a part of the detection light is absorbed by the light characteristic conversion member 32. For this reason, a loss of detection light guided by the detection light optical fiber 14a occurs.
  • the light guide loss amount varies depending on the bending amount of the detection light optical fiber 14a.
  • the optical characteristic conversion member 32 For example, even if the optical fiber 14a for detection light is in a straight line state, a certain amount of detection light is lost by the optical characteristic conversion member 32 according to the width, length, etc. of the light aperture 30. If the optical characteristic conversion member 32 is arranged outside the relatively large curvature radius in the curved state of the optical fiber for detection light 14a based on the light loss amount in the straight line state, the light guide loss amount as a reference More light guide loss occurs. In addition, if the optical property conversion member 32 is disposed on the inner side having a relatively small radius of curvature in the curved state of the detection light optical fiber 14a, a light guide loss amount smaller than the reference light guide loss amount is generated.
  • the change in the light guide loss amount is reflected in the detected light amount received by the light detection unit 16, that is, the output signal of the light detection unit 16. Therefore, based on the output signal of the light detection unit 16, the curved shape of the detection light optical fiber 14 a at the position of the detected part 22 of the shape detection sensor 10, that is, the position where the optical characteristic conversion member 32 is provided. Is possible.
  • FIGS. 1 and 2 only one detected portion 22 is shown, but a plurality of detected portions 22 are arranged on the axis of the detection light optical fiber 14a. It may be provided at intervals along. As a result, it is possible to detect bending at a plurality of positions along the axis of the optical fiber for detection light 14a.
  • the two detection target portions 22 may be provided at substantially the same position along the axis of the single detection light optical fiber 14a and at different positions along the circumference (for example, positions orthogonal to each other). This makes it possible to obtain not only a curve in one direction but also a curve in two directions orthogonal to each other.
  • the plurality of detected portions 22 change the characteristics of light having different wavelengths, and the light source portion 12 includes the detected portions.
  • the detection light including a plurality of wavelength components corresponding to 22 is emitted or the detection light subjected to wavelength sweeping is emitted, and the light detection unit 16 detects the detection light for each wavelength component corresponding to the detected portion 22. Configured.
  • FIG. 3 is a diagram schematically showing the endoscope apparatus 34.
  • the endoscope apparatus 34 includes a scope portion 36 in which at least the detection light optical fiber 14 a of the shape detection sensor 10 is incorporated, and a main body portion 38.
  • the main body 38 includes a control device 40, a shape calculation device 42, a video processor 44, and a display device 46.
  • the control device 40 controls predetermined functions of the peripheral device connected to the scope unit 36, the shape calculation device 42, the video processor 44 and the like.
  • the scope section 36 includes an insertion section 48 that is a cylindrical flexible body that is inserted into the subject, and an operation section 50 that is provided on the proximal end side of the insertion section 48.
  • a cord portion 52 extends from the operation portion 50.
  • the scope section 36 is detachably connected to the main body section 38 via the cord section 52 and communicates with the main body section 38.
  • the operation unit 50 is provided with an operation dial 54 for inputting an operation for bending the bending portion 48a of the insertion portion 48 in at least two specific directions (for example, the vertical direction) with a desired curvature.
  • the cord portion 52 houses a light guide fiber 62a, a camera cable 64c, and the like which will be described later.
  • a channel tube which is a cylindrical tube for passing a treatment instrument such as an ultrasonic probe or forceps, is disposed in the insertion portion 48 from the distal end portion to the proximal end side. Is provided with an opening 56 of the channel tube.
  • the shape detection sensor 10 is not shown in FIG. 3, but the endoscope apparatus 34 includes the shape detection sensor 10 shown in FIG.
  • the optical fiber 14a for detection light of the shape detection sensor 10 is mounted along a long cylindrical flexible body that is an object to be detected, which is the insertion portion 48 in the present embodiment.
  • the detected portion 22 of the detection light optical fiber 14 a is aligned with the desired detection position of the insertion portion 48, and the detection light optical fiber 14 a is mounted at an appropriate position of the insertion portion 48.
  • the optical fiber 14a for detection light is bent following the bending operation of the bending portion 48a of the insertion portion 48.
  • the detection light detected by the light detection unit 16 through the detection unit 22 changes in characteristics, for example, the amount of light according to the change in the curvature of the detection light optical fiber 14 a in the peripheral portion of the detection unit 22.
  • the light detection unit 16 outputs a received light amount signal.
  • the output signal of the light detection unit 16 includes information on the curvature of the detected portion 22.
  • the shape calculation device 42 is connected to the light detection unit 16.
  • the shape calculation device 42 receives the output signal from the light detection unit 16 and calculates the curved shape of the detected portion 22 based on this output signal.
  • the shape calculation device 42 calculates the curved shape of the bending portion 48 a of the insertion portion 48 based on the change in the characteristics of the detection light detected by the light detection portion 16.
  • the calculated curved shape is transmitted from the shape calculation device 42 to the display device 46 and displayed on the display device 46.
  • the video processor 44 performs image processing on the electrical signal acquired from the imaging device at the tip of the scope unit via the camera cable and the control device 40.
  • the display device 46 displays the image in the subject processed by the video processor 44.
  • the probe 1 of the shape detection device according to the first embodiment is mounted along the insertion portion 48 in the insertion portion 48 that is the object to be detected.
  • a plurality of optical fibers for detection light 14 a by a plurality of shape detection sensors 10 are collected and accommodated in an outer cylindrical member 58.
  • a rigid insertion portion distal end member 48 b is provided at the distal end portion of the insertion portion 48, and a proximal end of the insertion portion 48 is a rigid insertion portion rear end member 48 c connected to the operation portion 50.
  • the outer tubular member 58 of the probe 1 is disposed at least between the insertion portion front end member 48b and the insertion portion rear end member 48c.
  • the outer tubular member 58 of the probe 1 is held and fixed to the insertion portion distal end member 48b or the insertion portion rear end member 48c.
  • the exterior cylindrical member 58 is fixed to the insertion portion distal end member 48 b by a distal end fixing portion 60 such as an adhesive.
  • the tip fixing portion 60 may be an epoxy adhesive that can be expected to have high adhesive strength.
  • the plurality of detection light optical fibers 14 a are accommodated in the cord portion 52 without the outer cylindrical member 58. That is, only a part of the plurality of optical fibers for detection light 14 a in the longitudinal axis direction is accommodated in the exterior cylindrical member 58.
  • the insertion portion 48 further includes a light guide fiber 62a, an illumination portion 62b, an imaging optical system 64a, an imaging element 64b, a camera cable 64c, a channel tube 56a, and an operation wire (not shown).
  • the light guide fiber 62a is connected to an illumination unit 62b disposed in the insertion unit distal end member 48b and a light source (not shown) in the control device 40, and guides illumination light from the light source to the illumination unit 62b. It is a member.
  • the camera cable 64c is connected to the imaging device 64b and the control device 40 disposed in the insertion portion distal end member 48b, and is an electrical wiring that transmits an electrical signal.
  • the channel tube 56a is a cylindrical tube for passing a treatment instrument such as an ultrasonic probe or forceps.
  • An operation wire (not shown) is provided along the axis in the insertion portion 48 in order to perform an operation of bending the bending portion 48a of the insertion portion 48 in a desired direction with a desired curvature, and an operation dial 54 of the operation portion 50 is provided. This operation is transmitted to the bending portion 48a. When the operator operates the operation dial 54 to move the operation wire, the bending portion 48a of the insertion portion 48 is bent.
  • the probe 1 of the shape detection device includes a plurality of, four in the present embodiment, penetrating the exterior cylindrical member 58 along the probe longitudinal axis O 1 . It has a lumen 66. Each lumen 66 has an inner diameter slightly larger than the outer diameter of the detection light optical fiber 14a so that the single detection light optical fiber 14a can be inserted. The optical fiber for detection light 14a inserted into the lumen 66 and having the reflecting portion 20 attached to the tip thereof is held by the full length of the inserted optical fiber 14a via the flexible resin 68 filled in the lumen 66. Yes. The flexible resin 68 filled in the lumen 66 can be bent with a desired curvature.
  • the exterior cylindrical member 58 is formed of a resin such as a flexible fluororesin tube such as PTFE, a polyamide tube, or a PEEK tube.
  • the inner wall of the outer tubular member 58 that is, the inner wall of the lumen 66 and the flexible resin 68 are held and fixed by bonding at the fixing portion 70 at the tip of the probe 1.
  • the exterior cylindrical member 58 is made of a fluororesin such as PTFE, the adhesiveness is not good. In such a case, it is desirable that the exterior cylindrical member 58, that is, the inner wall of the lumen 66, be subjected to a surface treatment that improves adhesion, such as Na etching or plasma treatment.
  • PA polyamide
  • ETFE polyamide
  • the coating 28 of the optical fiber 14a for detection light is used for the coating 28 of the optical fiber 14a for detection light.
  • the coating 28 is formed of a fluororesin such as ETFE
  • the surface is subjected to a surface treatment that improves adhesion such as Na etching or plasma treatment, so that the flexible resin 68 is applied.
  • the coating 28 can be firmly bonded. That is, the flexible resin 68 and the coating 28 do not slide in the optical fiber longitudinal axis O 2 direction.
  • the outer cylinder With respect to the interface 72a where the inner wall of the outer tubular member 58 and the outer surface of the flexible resin 68 are in contact with each other, except for a part of the tip of the probe 1 held and fixed by the fixing portion 70, the outer cylinder.
  • the surface treatment for improving the adhesiveness between the inner wall of the cylindrical member 58, that is, the inner wall of the lumen 66 is not performed, and at the interface 72a in the portion where the surface treatment is not performed, 68 and is in slidable in the direction of the optical fiber longitudinal axis O 2 to each other. That is, in the surface 72a, a flexible resin 68 is in slidable in the direction of the optical fiber longitudinal axis O 2 relative to the outer tubular member 58 (lumen 66).
  • the sliding of the flexible resin 68 with respect to the exterior cylindrical member 58 (lumen 66) is the exterior.
  • axis interface 72a in the entire length direction of the O 1 functions as a sliding portion for slidable detection-light optical fiber 14a with respect to the outer tubular member 58 to the optical fiber longitudinal axis O 2 direction.
  • the interface 72 a between the inner wall of the outer tubular member 58 (lumen 66) and the flexible resin 68 is shown with a thickness, but this has two layers. It is a contact part, Comprising: It does not have substantial thickness.
  • the fixing portion 70 between the inner wall of the outer tubular member 58 (lumen 66) and the flexible resin 68 is also shown with a thickness, but in practice it is very thick such as 50 to 200 ⁇ m. A thin layer of adhesive.
  • the cross-sectional shape of the lumen 66 is not limited to a circle, and may be an ellipse, a triangle, a quadrangle, a polygon, or the like.
  • the lumen 66 is not limited to the through-hole, and may be a multi-lumen tube molded integrally with the outer cylindrical member 58 (or the same material), or the outer cylindrical member 58 May have a structure in which a single tube molded separately is bundled with an outer cylindrical member 58.
  • the detection light optical fiber 14a is held and fixed to the distal end portion of the outer tubular member 58 by the fixing portion 70.
  • the outer cylindrical member 58 may be a rear end portion or an intermediate portion.
  • the number of optical fibers for detection light 14a is not limited to four, and may be at least two.
  • a rigid reinforcing member 58a such as a braid (blade) capable of reducing buckling and twisting of the outer tubular member 58 is embedded in the outer peripheral portion of the outer tubular member 58.
  • the rigidity reinforcing member 58a is not limited to such a mesh-structured blade, and may be a coil as shown in FIG. 7B, for example.
  • the shape detection apparatus includes at least one light source unit 12 and / or light detection unit 16 of at least one shape detection sensor 10 among the plurality of shape detection sensors 10 included in the shape detection device.
  • the light source unit 12 and / or the light detection unit 16 of one shape detection sensor 10 may also be used. That is, a configuration in which the detection light emitted from one light source unit 12 is incident on the detection light optical fibers 14a of the plurality of shape detection sensors 10 and guided, or the detection light optical fibers of the plurality of shape detection sensors 10 are guided. It is possible to adopt a configuration in which the detection light whose characteristics are changed according to the curvature from 14a is incident on one light detection unit 16 and detected. That is, the shape detection device only needs to include at least one light source unit 12, a plurality of detection light optical fibers 14a, and at least one light detection unit 16.
  • a compressive bending stress is generated in the lumen 66 arranged inside the bending, and the lumen 66 is shortened according to the offset amount from the bending center.
  • the interface 72a is sliding portion, since the flexible resin 68 is in slidable relative outer tubular member 58 to the optical fiber longitudinal axis O 2 direction, significant for flexible resin 68 The force is not applied, and the flexible resin 68 jumps out of the outer cylindrical member 58, and the outer cylindrical member 58 and the detection light optical fiber 14a firmly bonded thereto can be bent. .
  • the detection Hikari Mitsumochi fiber 14a is the entire outer periphery (over 360 ° full length) because it is covered with a flexible resin 68, twisted around the optical fiber longitudinal axis O 2 is flexible resin The detection light optical fiber 14a is hardly twisted.
  • the shape detection device is a light source unit 12 that emits detection light, and a detection light optical fiber that is a shape detection optical fiber that guides detection light emitted from the light source unit 12.
  • a detection light optical fiber that is a shape detection optical fiber that guides detection light emitted from the light source unit 12.
  • the optical fiber 14a Through the optical fiber 14a, at least one detected portion 22 provided in the detection light optical fiber 14a that changes the characteristics of the detection light according to the curvature of the detection light optical fiber 14a, and the detection light optical fiber 14a
  • a plurality of shape detection sensors 10 each having a light detection unit 16 for detecting the guided detection light, and characteristics of detection light detected by the plurality of light detection units 16 of the plurality of shape detection sensors 10
  • the detection light optical fiber 14a can be bent without impairing reliability. It is possible to provide a shape detection device that does not have a possibility of lowering reliability even if it is used.
  • the sliding portion is an interface 72 a where the inner wall of the exterior cylindrical member 58 and the outer surface of the flexible resin 68 are adjacent to each other.
  • a part of the interface 72a where the inner wall of the outer cylindrical member 58 and the outer surface of the flexible resin 68 are adjacent is fixed within a desired range, and the probe longitudinal axis O of the other outer cylindrical member 58 is fixed.
  • the interface 72a is a sliding part over the entire length in the direction of 1 . Therefore, the sliding of the detected portion 22 in the direction of the optical fiber longitudinal axis O 2 exceeding the proper range can be restricted.
  • the inner wall of the outer tubular member 58 is an inner wall of a plurality of lumens 66 provided on the outer tubular member 58, and one of the plurality of optical fibers for detection light 14a is disposed in each of the plurality of lumens 66.
  • the flexible resin 68 is filled in each of the plurality of lumens 66. Therefore, each of the plurality of optical fibers for detection light 14a can be independently slid.
  • the inner walls of the plurality of lumens 66 are formed of a fluororesin (for example, PTFE) that can reduce the sliding resistance of the interface 72a between the inner walls of the plurality of lumens 66 and the flexible resin 68. Therefore, the sliding of the interface 72a can be made easier.
  • a fluororesin for example, PTFE
  • each of the plurality of optical fibers for detection light 14 a is subjected to surface modification that improves adhesion to the flexible resin 68. Therefore, the detection optical fiber 14a can be reliably slid following the sliding of the interface 72a.
  • the shape detection apparatus further includes a rigidity reinforcing member 58a that can reduce buckling or twisting of the exterior cylindrical member 58. Thereby, more accurate shape detection becomes possible.
  • the rigidity reinforcing member 58a is a braid in which a wire is knitted.
  • the rigidity reinforcing member 58a is a coil in which a wire is formed in a spiral shape.
  • At least one of the plurality of shape detection sensors 10 may share the light source unit 12 and / or the light detection unit 16 with at least one other of the plurality of shape detection sensors 10. Thereby, the number of parts can be reduced and an inexpensive apparatus can be provided.
  • Each of the plurality of optical fibers for detection light 14a is disposed along the longitudinal axis direction of the insertion portion 48 of the endoscope device 34, and the shape calculating device 42 is based on the calculated curved shape of each detected portion 22.
  • the curved shape of the insertion portion 48 is calculated. Therefore, it is possible to know the curved shape of the insertion portion 48 by incorporating the shape detection device according to the first embodiment into the endoscope.
  • the outer cylindrical member 58 has a tube shape having an inner diameter capable of incorporating at least a plurality of optical fibers for detection light 14a. I am doing. Then, a plurality, four in the present embodiment, of the tube-shaped exterior cylindrical member 58 are inserted with the detection-light optical fibers 14a with the reflecting portions 20 attached to their tips, and the detection-light optical fibers 14a. Is held via a flexible resin 68 filled in the hollow portion of the tube.
  • the inner wall of the exterior cylindrical member 58 is fixed and held by bonding with the flexible resin 68.
  • the exterior cylindrical member 58 is formed of a fluororesin or the like having a low bondability such as PTFE
  • the inner wall is subjected to a surface treatment for improving the adhesiveness such as an Na etching process, so that the flexible resin 68 and It is desirable to have a structure in which the outer cylindrical member 58 is firmly bonded and held.
  • the coating 28 of the detection light optical fiber 14a and the flexible resin 68 are held and fixed by bonding at a fixing portion 70 at the tip of the probe 1.
  • the coating 28 is made of, for example, a fluorine resin such as ETFE or the like, and has poor adhesion. Therefore, it is desirable that the outer surface of the coating 28 at a position corresponding to the fixing portion 70 is subjected to a surface treatment that improves adhesion, such as Na etching or plasma treatment. For the portion that has not been subjected to such surface treatment, the bondability between the coating 28 and the flexible resin 68 remains low.
  • the coating 28 can slide in the direction of the optical fiber longitudinal axis O 2 with respect to the flexible resin 68. It has become. In this manner, a part of the interface 72b where the outer surface of the coating 28 of the optical fiber for detection light 14a and the inner surface of the flexible resin 68 are adjacent is fixed within a desired range, and the other outer cylindrical member 58 is fixed.
  • interface 72b in the entire length direction of the probe longitudinal axis O 1 functions as a sliding part to be slidable in the optical fiber longitudinal axis O 2 direction detection-light optical fiber 14a with respect to the outer tubular member 58.
  • the interface 72b between the coating 28 and the flexible resin 68 is shown with a thickness, but this is a contact portion between two layers, There is no thickness.
  • the fixing portion 70 between the coating 28 and the flexible resin 68 is shown with a thickness, but it is actually a very thin layer of adhesive such as a thickness of 50 to 200 ⁇ m.
  • the interface 72b that is the contact surface between the flexible resin 68 and the coating 28 is two in the same manner as the interface 72a in the first embodiment. Since the two layers are slidable with respect to each other, the outer tubular member 58 can be curved with a desired curvature even if the optical fiber for detection light 14a cannot be expanded and contracted.
  • the sliding portion is the interface 72b where the flexible resin 68 and each of the plurality of optical fibers for detection light 14a are adjacent to each other.
  • a part of the interface 72b where the flexible resin 68 and each of the plurality of optical fibers for detection light 14a are adjacent is fixed within a desired range, and the length of the other exterior cylindrical member 58 in the longitudinal axis direction is fixed.
  • the interface 72b is a sliding part. Accordingly, the sliding of the detected portion 22 in the direction of the optical fiber longitudinal axis O 2 exceeding the proper range can be restricted, and the sliding of each of the plurality of optical fibers for detection light 14a can be independently performed. Can be done.
  • the shape detection device according to the second embodiment compared with the first embodiment, since the resistance when filling the exterior cylindrical member 58 with the flexible resin 68 is small, the filling speed can be increased. Therefore, it is possible to provide a cheaper shape detection device.
  • the surface of the coating 28 which is the outer surface of each of the plurality of optical fibers for detection light 14a is the sliding resistance of the interface 72b between the outer surface of each of the plurality of optical fibers for detection light 14a and the flexible resin 68. It is formed of a fluororesin (for example, ETFE) that can reduce the above. Therefore, the sliding of the interface 72a can be made easier.
  • a fluororesin for example, ETFE
  • the surface of the inner wall of the exterior tubular member 58 is subjected to surface modification that improves the adhesion to the flexible resin 68. Therefore, sliding at the interface between the outer tubular member 58 and the flexible resin 68 can be eliminated, and there is no possibility that the flexible resin 68 slides and hinders the sliding of the optical fiber for detection light 14a. be able to.
  • the coating 28 of the detection light optical fiber 14 a is formed so as to cover the outer peripheral surface of the clad 26 with a fluororesin such as ETFE.
  • the interface which is the contact surface between the coating 28 and the clad 26 is not physically or chemically bonded. That is, in the interface between the coating 28 and the cladding 26, and is slidable in the direction of the two layers the optical fiber longitudinal axis O 2 to each other.
  • the optical fiber 14a for detection light having such a configuration
  • it is incorporated into the outer cylindrical member 58 as shown in FIG. That is, the cladding 28 of the detection light optical fiber 14a with the reflection portion 20 attached to the tip of the detection light optical fiber 14a and the flexible resin 68 are removed from the tip of the probe 1.
  • the fixing portion 70 is held and fixed by adhesion.
  • the inner wall of the outer tubular member 58 and the coating 28 of the optical fiber for detection light 14 a are firmly bonded and held via the flexible resin 68.
  • the inner wall of the exterior cylindrical member 58 and the outer surface of the coating 28 are for example, it is desirable that a surface treatment that improves adhesion to the flexible resin 68 such as Na etching or plasma treatment is performed.
  • interface 72c in the entire length direction of the O 1 functions as a sliding part to be slidable in the optical fiber longitudinal axis O 2 direction detection-light optical fiber 14a with respect to the outer tubular member 58.
  • the interface 72c between the clad 26 and the coating 28 is shown as having a thickness, but this is a contact portion between two layers and has a substantial thickness. No.
  • the interface 72c between the clad 26 and the coating 28 is slidable with each other, like the interfaces 72a and 72b in the first and second embodiments. Since the optical fiber for detection light 14a cannot be expanded and contracted, the exterior cylindrical member 58 can be curved with a desired curvature.
  • each of the plurality of detection light optical fibers 14a covers the core 24, the clad 26 covering the outer peripheral surface of the core 24, and the outer peripheral surface of the clad.
  • the sliding portion is an interface 72c where the coating 28 and the clad 26 in each of the plurality of optical fibers for detection light 14a are adjacent to each other.
  • a part of the interface 72c where the coating 28 and the clad 26 are adjacent to each other in each of the plurality of detection light optical fibers 14a is fixed within a desired range, and the other longitudinal directions of the plurality of detection light optical fibers 14a are fixed.
  • interface 72c is a sliding portion in the entire length direction of the optical fiber longitudinal axis O 2 is. Accordingly, the sliding of the detected portion 22 in the direction of the optical fiber longitudinal axis O 2 exceeding the proper range can be restricted, and the sliding of each of the plurality of optical fibers for detection light 14a can be independently performed. Can be done.
  • At least one of the surface of the inner wall of the outer cylindrical member 58 and the surface of the coating 28 of each of the plurality of optical fibers for detection light 14 a is subjected to surface modification that improves adhesion to the flexible resin 68. Yes. Therefore, sliding at the interface between the outer cylindrical member 58 and the flexible resin 68 or the interface between the coating 28 and the flexible resin 68 can be eliminated, and the flexible resin 68 is slid to detect light. The possibility of hindering the sliding of the optical fiber 14a can be eliminated.
  • the flexible resin 68 is lumen 66, which had been filled over substantially the entire length of the direction of the probe longitudinal axis O 1 of the outer tubular member 58, in the fourth embodiment, As shown in FIG. 12, only a part of the outer cylindrical member 58 in the direction of the probe longitudinal axis O 1 , preferably in the vicinity of the detected portion 22, is filled.
  • the exterior cylindrical member 58 is placed at a desired position, for example, in the vicinity of the detected portion 22, inside the exterior cylindrical member 58.
  • a hole (or notch) 74 through which the flexible resin 68 can be supplied is provided. After filling with the flexible resin 68, the hole 74 is closed by attaching a protective tube 76 at least outside the hole 74 (part in the longitudinal axis direction).
  • detection-light optical fiber 14a of the reflective portion 20 is attached at its distal end is held fixed to the outer tubular member 58 of the fixing portion 70, the interface 72d is the direction of the probe longitudinal axis O 1 of the outer tubular member 58 Is slidable over the entire length.
  • the interface 72d is not limited to the contact surface between the exterior cylindrical member 58 (lumen 66) and the flexible resin 68, and may be the contact surface between the flexible resin 68 and the coating 28.
  • the flexible resin 68 is filled only in the vicinity of at least one detected portion 22 provided for each of the plurality of shape detection sensors 10, and the sliding portion. Is the total length in the longitudinal axis direction of the exterior tubular member 58 at the interface 72d where the inner wall of the exterior tubular member 58 and the outer surface of the flexible resin 68 are adjacent to each other.
  • the outer cylindrical member 58 is fixed to a portion other than the flexible resin 68. Accordingly, the sliding of the detected portion 22 in the direction of the optical fiber longitudinal axis O 2 exceeding the proper range can be restricted, and the sliding of each of the plurality of optical fibers for detection light 14a can be independently performed. Can be done. Furthermore, since the interface 72d is shorter than the interfaces 72a to 72c in the first to third embodiments, the resistance of the sliding surface at the time of bending can be suppressed, and a more reliable shape detection device. Can be provided.
  • the shape detection apparatus further includes at least one hole 74 that is provided in a part of the exterior cylindrical member 58 and can fill the exterior cylindrical member 58 with the flexible resin 68. Prepare. Thereby, the flexible resin 68 can be filled easily.

Abstract

Each of a plurality of shape detection sensors (10) has: a light source section (12) that outputs detection light; an optical fiber (14a) for shape detection, said optical fiber guiding the detection light outputted from the light source section; at least one section (22) to be detected, said section changing the characteristics of the detection light corresponding to the curvature of the optical fiber, and being provided in the optical fiber; and an optical detection section (16) that detects the detection light guided through the optical fiber. At least a part of each optical fiber is disposed in an exterior cylindrical member (58), and a flexible resin (68) is applied between each optical fiber and at least an exterior cylindrical member part in the longitudinal axis direction (O1) of the exterior cylindrical member. A sliding section is, for instance, an interface (72a) where the inner wall of the exterior cylindrical member, and the outer surface of the flexible resin are adjacent to each other, said sliding section making it possible to independently slide each optical fiber in the longitudinal axis direction (O2) of the optical fiber.

Description

形状検出装置Shape detection device
 本発明は、少なくとも一つの被検出部を有する検出光用光ファイバを複数本備えた、湾曲形状を検出する形状検出装置に関する。 The present invention relates to a shape detection device for detecting a curved shape, comprising a plurality of optical fibers for detection light having at least one detected portion.
 筒状可撓体を備えた筒状可撓体装置、例えば、被検体に挿入される可撓性の挿入部を備えた内視鏡装置において、形状検出センサを組み込んで挿入部の湾曲形状を検出することが知られている。形状検出センサは、検出光を出射する光源部と、この光源部から出射された検出光を導光する検出光用光ファイバと、この検出光用光ファイバの曲率に応じて検出光の特性に変化を与える、検出光用光ファイバに設けられた少なくとも一つの被検出部と、この検出光用光ファイバを通して導光された検出光を検出する光検出部と、を有している。被検出部は、例えば互いに異なる波長の光を損失する光損失部により形成され、それぞれ、検出光用光ファイバの所定の位置に所定の方向で配置されている。検出光用光ファイバの光伝達量は、各被検出部の湾曲の曲率と方向に依存して変化する。検出光用光ファイバの波長毎の光伝達量に基づいて、各被検出部が位置する部分における挿入部の湾曲形状すなわち湾曲の曲率と方向が求められる。 In a cylindrical flexible device provided with a cylindrical flexible body, for example, an endoscope device provided with a flexible insertion portion to be inserted into a subject, a curved shape of the insertion portion is formed by incorporating a shape detection sensor. It is known to detect. The shape detection sensor has a light source unit that emits detection light, a detection light optical fiber that guides the detection light emitted from the light source unit, and a detection light characteristic according to the curvature of the detection light optical fiber. It has at least one detected part provided in the optical fiber for detection light that gives a change, and a light detection part that detects the detection light guided through the optical fiber for detection light. The detected portions are formed by, for example, light loss portions that lose light of different wavelengths, and are respectively disposed in predetermined directions at predetermined positions of the optical fiber for detection light. The amount of light transmitted through the optical fiber for detection light varies depending on the curvature and direction of the curvature of each detected portion. Based on the light transmission amount for each wavelength of the optical fiber for detection light, the curved shape of the insertion portion, that is, the curvature and direction of the curvature, in the portion where each detected portion is located is obtained.
 そして、多数の被検出部が必要な場合には、例えば、特開2007-143600号公報に開示されているように、検出光用光ファイバの本数を増やして検出光用光ファイバを束ねたファイババンドルが用いられる。 When a large number of detection target parts are required, for example, as disclosed in Japanese Patent Application Laid-Open No. 2007-143600, a fiber in which the number of optical fibers for detection light is increased and the optical fibers for detection light are bundled A bundle is used.
特開2007-143600号公報JP 2007-143600 A
 特許文献1に開示されている形状検出センサは、複数本の検出光用光ファイバをシース内で接着して束ねる構造となっている。 The shape detection sensor disclosed in Patent Document 1 has a structure in which a plurality of optical fibers for detection light are bonded and bundled in a sheath.
 このように複数本の検出光用光ファイバを束ねたファイババンドルを湾曲させる為には、曲げの外側に配置される検出光用光ファイバは伸びる必要があり、また曲げの内側に配置される検出光用光ファイバは縮む必要がある。したがって、各検出光用光ファイバの素材としては、伸縮可能なものを用いることが好ましい。しかしながら、一般的な光ファイバは、コアもしくはクラッドが石英ガラスで形成されているために、伸縮し難いものが多い。 In order to bend a fiber bundle in which a plurality of optical fibers for detection light are bent in this way, the optical fiber for detection light arranged on the outside of the bend needs to be stretched, and the detection arranged on the inside of the bend The optical fiber for light needs to be shrunk. Therefore, it is preferable to use a material that can be expanded and contracted as the material of each optical fiber for detection light. However, many common optical fibers are difficult to expand and contract because the core or clad is made of quartz glass.
 したがって、特許文献1に開示されているようなファイババンドルにおいて、各検出光用光ファイバに、コアもしくはクラッドが石英ガラスである伸縮し難い光ファイバを用いた場合、伸縮できずにファイババンドルが内視鏡と同様の曲率で湾曲できなくなる可能性がある。もしくは、むりに湾曲させることによって、曲げ応力が発生して検出光用光ファイバを破損させる等、形状検出センサの信頼性が低下する虞がある。 Therefore, in the fiber bundle as disclosed in Patent Document 1, when an optical fiber that is hard to expand and contract whose core or clad is quartz glass is used for each optical fiber for detection light, the fiber bundle cannot be expanded and contracted. There is a possibility that it cannot bend with the same curvature as the endoscope. Alternatively, the reliability of the shape detection sensor may be lowered, for example, by bending it to cause bending stress to break the optical fiber for detection light.
 本発明の目的は、複数本の検出光用光ファイバを用いても信頼性が低下しにくい形状検出装置を提供することである。 An object of the present invention is to provide a shape detection device whose reliability is not easily lowered even when a plurality of optical fibers for detection light are used.
 本発明の一態様による形状検出装置は、検出光を出射する光源部、前記光源部から出射された検出光を導光する形状検出用の光ファイバ、前記光ファイバの曲率に応じて検出光の特性に変化を与える前記光ファイバに設けられた少なくとも一つの被検出部、及び、前記光ファイバを通して導光された検出光を検出する光検出部、をそれぞれ有している複数の形状検出センサと、前記複数の形状検出センサの複数の光検出部によって検出される検出光の特性の変化に基づいて前記被検出部の湾曲形状を算出する形状算出装置と、前記複数の形状検出センサの複数の光ファイバそれぞれの少なくとも一部がその内部に設置される外装筒状部材と、前記外装筒状部材の長手軸方向の少なくとも一部の、前記外装筒状部材と前記複数の光ファイバとの間に充填された可撓性樹脂と、前記複数の光ファイバをそれぞれ独立に当該光ファイバの長手軸方向に摺動可能とする摺動部と、を備えている。 A shape detection device according to an aspect of the present invention includes a light source unit that emits detection light, an optical fiber for shape detection that guides detection light emitted from the light source unit, and a detection light according to the curvature of the optical fiber. A plurality of shape detection sensors each having at least one detected portion provided in the optical fiber that changes characteristics, and a light detecting portion that detects detection light guided through the optical fiber; A shape calculating device that calculates a curved shape of the detected portion based on a change in characteristics of detection light detected by a plurality of light detection units of the plurality of shape detection sensors, and a plurality of the plurality of shape detection sensors An exterior cylindrical member in which at least a part of each of the optical fibers is installed; and at least a part of the exterior cylindrical member in the longitudinal axis direction of the exterior cylindrical member and the plurality of optical fibers; Comprises a filled flexible resin, and a sliding portion which can slide said plurality of optical fibers in the longitudinal direction of the independently on the optical fiber between.
 本発明によれば、複数本の検出光用光ファイバを用いても信頼性が低下しにくい形状検出装置が提供される。 According to the present invention, there is provided a shape detection device in which reliability is not easily lowered even when a plurality of optical fibers for detection light are used.
図1は、本発明の第1実施形態による形状検出装置に組み込まれる形状検出センサの原理を説明するための概略図である。FIG. 1 is a schematic diagram for explaining the principle of a shape detection sensor incorporated in the shape detection apparatus according to the first embodiment of the present invention. 図2は、形状検出センサの検出光用光ファイバの径方向の断面図である。FIG. 2 is a cross-sectional view in the radial direction of the optical fiber for detection light of the shape detection sensor. 図3は、形状検出センサが組み込まれた内視鏡装置の構成を示す概略図である。FIG. 3 is a schematic diagram illustrating a configuration of an endoscope apparatus in which a shape detection sensor is incorporated. 図4は、第1実施形態による形状検出装置が備える形状検出装置プローブの内視鏡装置挿入部への組み込み形態を説明するための概略図である。FIG. 4 is a schematic diagram for explaining a form of incorporation of the shape detection device probe included in the shape detection device according to the first embodiment into the endoscope apparatus insertion portion. 図5は、第1実施形態における形状検出装置プローブの外観斜視図である。FIG. 5 is an external perspective view of the shape detection device probe according to the first embodiment. 図6は、第1実施形態における形状検出装置プローブへの検出光用光ファイバの組み込み構成を説明するための長手方向の断面図である。FIG. 6 is a cross-sectional view in the longitudinal direction for explaining the configuration for incorporating the optical fiber for detection light into the shape detection apparatus probe in the first embodiment. 図7Aは、形状検出装置プローブの外装筒状部材における剛性補強部材の一例を説明するための概略図である。FIG. 7A is a schematic diagram for explaining an example of a rigidity reinforcing member in the outer cylindrical member of the shape detection device probe. 図7Bは、形状検出装置プローブの外装筒状部材における剛性補強部材の別の例を説明するための概略図である。FIG. 7B is a schematic diagram for explaining another example of the rigidity reinforcing member in the outer tubular member of the shape detection device probe. 図8は、第1実施形態における形状検出装置プローブにおける可撓性樹脂の作用を説明するための模式図である。FIG. 8 is a schematic diagram for explaining the action of the flexible resin in the shape detection apparatus probe according to the first embodiment. 図9は、本発明の第2実施形態による形状検出装置における形状検出装置プローブの外観斜視図である。FIG. 9 is an external perspective view of the shape detection device probe in the shape detection device according to the second embodiment of the present invention. 図10は、第2実施形態における形状検出装置プローブへの検出光用光ファイバの組み込み構成を説明するための長手方向の断面図である。FIG. 10 is a cross-sectional view in the longitudinal direction for explaining the configuration for incorporating the optical fiber for detection light into the shape detection apparatus probe in the second embodiment. 図11は、本発明の第3実施形態による形状検出装置における形状検出装置プローブへの検出光用光ファイバの組み込み構成を説明するための長手方向の断面図である。FIG. 11 is a longitudinal cross-sectional view for explaining a configuration in which the optical fiber for detection light is incorporated into the shape detection device probe in the shape detection device according to the third embodiment of the present invention. 図12は、本発明の第4実施形態による形状検出装置における形状検出装置プローブへの検出光用光ファイバの組み込み構成を説明するための長手方向の断面図である。FIG. 12 is a longitudinal cross-sectional view for explaining a configuration in which the optical fiber for detection light is incorporated into the shape detection device probe in the shape detection device according to the fourth embodiment of the present invention.
 [第1実施形態]
 本発明の第1実施形態による形状検出装置には、複数の形状検出センサが組み込まれている。まず、形状検出センサの構成と動作について説明する。
[First Embodiment]
The shape detection apparatus according to the first embodiment of the present invention incorporates a plurality of shape detection sensors. First, the configuration and operation of the shape detection sensor will be described.
 図1は、形状検出センサ10の原理を説明するための概略図である。形状検出センサ10は、光源部12と、光ファイバ14と、光検出部16と、を有している。光ファイバ14は、光源部12及び光検出部16に接続されている。光源部12は、例えばLED光源又はレーザ光源であり、所望の波長特性を有する検出光を出射する。光ファイバ14は、光源部12から出射された検出光を伝搬する湾曲形状測定用の光ファイバである。光検出部16は、光ファイバ14を通して伝搬された検出光を検出する。 FIG. 1 is a schematic diagram for explaining the principle of the shape detection sensor 10. The shape detection sensor 10 includes a light source unit 12, an optical fiber 14, and a light detection unit 16. The optical fiber 14 is connected to the light source unit 12 and the light detection unit 16. The light source unit 12 is, for example, an LED light source or a laser light source, and emits detection light having a desired wavelength characteristic. The optical fiber 14 is an optical fiber for measuring a curved shape that propagates detection light emitted from the light source unit 12. The light detection unit 16 detects the detection light propagated through the optical fiber 14.
 光ファイバ14は、結合部(光カプラ)18で3方に分岐された、検出光用光ファイバ14aと、光供給用光ファイバ14bと、受光用光ファイバ14cとにより構成されている。つまり、光ファイバ14は、結合部18によって光供給用光ファイバ14b及び受光用光ファイバ14cを検出光用光ファイバ14aに接続することにより形成されている。光供給用光ファイバ14bの基端は、光源部12に接続されている。また、検出光用光ファイバ14aの先端には、伝搬された光を反射する反射部20が設けられている。反射部20は、例えば鏡である。受光用光ファイバ14cの基端は、光検出部16に接続されている。 The optical fiber 14 includes a detection light optical fiber 14 a, a light supply optical fiber 14 b, and a light receiving optical fiber 14 c that are branched in three directions by a coupling portion (optical coupler) 18. That is, the optical fiber 14 is formed by connecting the light supply optical fiber 14 b and the light receiving optical fiber 14 c to the detection light optical fiber 14 a by the coupling portion 18. The proximal end of the light supply optical fiber 14 b is connected to the light source unit 12. In addition, a reflection portion 20 that reflects the propagated light is provided at the tip of the detection light optical fiber 14a. The reflection unit 20 is, for example, a mirror. The proximal end of the light receiving optical fiber 14 c is connected to the light detection unit 16.
 光供給用光ファイバ14bは、光源部12から出射された検出光を伝搬して結合部18に導光する。結合部18は、光供給用光ファイバ14bから入射した検出光の大部分を検出光用光ファイバ14aに向かわせる。検出光用光ファイバ14aは、結合部18からの検出光を反射部20に導光し、また反射部20によって反射された検出光を結合部18に導光する。結合部18は、検出光用光ファイバ14aからの検出光の少なくとも一部を受光用光ファイバ14cに向かわせる。受光用光ファイバ14cは、結合部18からの光を光検出部16に導光する。光検出部16は、受光用光ファイバ14cから受光した検出光を光電変換し、受光光量を示す電気信号を出力する。 The light supply optical fiber 14 b propagates the detection light emitted from the light source unit 12 and guides it to the coupling unit 18. The coupling unit 18 directs most of the detection light incident from the light supply optical fiber 14b to the detection light optical fiber 14a. The detection light optical fiber 14 a guides the detection light from the coupling unit 18 to the reflection unit 20, and guides the detection light reflected by the reflection unit 20 to the coupling unit 18. The coupling unit 18 directs at least a part of the detection light from the detection light optical fiber 14a to the light reception optical fiber 14c. The light receiving optical fiber 14 c guides the light from the coupling unit 18 to the light detection unit 16. The light detection unit 16 photoelectrically converts the detection light received from the light receiving optical fiber 14c and outputs an electric signal indicating the amount of received light.
 検出光用光ファイバ14aは、少なくとも一つの被検出部22を有する。図2は、検出光用光ファイバ14aの、この被検出部22位置における径方向の断面図である。 The optical fiber 14a for detection light has at least one detected part 22. FIG. 2 is a radial cross-sectional view of the detection light optical fiber 14a at the detected portion 22 position.
 検出光用光ファイバ14aは、コア24と、コア24の外周面を覆っているクラッド26と、クラッド26の外周面を覆っている被覆28と、を有している。コア24及びクラッド26は、互いに屈折率の異なる石英ガラスで形成されている。検出光用光ファイバ14aの側面には、少なくとも1つの被検出部22が設けられている。被検出部22は、検出光用光ファイバ14aの外周の一部にのみ設けられており、これを通過する検出光の特性を検出光用光ファイバ14aの湾曲形状すなわち湾曲の曲率と方向の変化に応じて変化させる。 The optical fiber for detection light 14 a has a core 24, a clad 26 covering the outer peripheral surface of the core 24, and a coating 28 covering the outer peripheral surface of the clad 26. The core 24 and the clad 26 are made of quartz glass having different refractive indexes. At least one detected portion 22 is provided on the side surface of the detection light optical fiber 14a. The detected portion 22 is provided only at a part of the outer periphery of the detection light optical fiber 14a, and the characteristics of the detection light passing through the detected portion 22 are changed in the curved shape of the detection light optical fiber 14a, that is, the curvature and direction of the curve. It changes according to.
 被検出部22は、被覆28とクラッド26の一部を除去してコア24が露出された光開口部30と、光開口部30に形成された光特性変換部材32と、を有している。なお、光開口部30として必ずしもコア24を露出させる必要はなく、検出光用光ファイバ14aを通る光が光開口部30に到達しさえすればコア24を露出させなくてもよい。光特性変換部材32は、検出光用光ファイバ14aを導光された光の特性(光量、波長など)を変換させる部材であり、例えば、導光損失部材(光吸収体)又は波長変換部材(蛍光体)などである。以下の説明では、光特性変換部材は、導光損失部材であるとする。 The detected portion 22 has a light opening 30 from which the core 24 is exposed by removing a part of the coating 28 and the clad 26, and a light characteristic conversion member 32 formed in the light opening 30. . The core 24 does not necessarily have to be exposed as the light opening 30, and the core 24 may not be exposed as long as the light passing through the detection light optical fiber 14 a reaches the light opening 30. The light characteristic conversion member 32 is a member that converts the characteristics (light quantity, wavelength, etc.) of the light guided through the detection light optical fiber 14a. For example, a light guide loss member (light absorber) or a wavelength conversion member ( Phosphor). In the following description, it is assumed that the light characteristic conversion member is a light guide loss member.
 形状検出センサ10において、光源部12から供給された光は上述のようにして検出光用光ファイバ14aを導光する。この検出光用光ファイバ14a内を伝搬する検出光は、被検出部22の光特性変換部材32に入射すると、その一部が光特性変換部材32に吸収される。このため、検出光用光ファイバ14aによって導光される検出光の損失が生じる。この導光損失量は、検出光用光ファイバ14aの湾曲量によって変化する。 In the shape detection sensor 10, the light supplied from the light source unit 12 guides the detection light optical fiber 14a as described above. When the detection light propagating through the detection light optical fiber 14 a enters the light characteristic conversion member 32 of the detected portion 22, a part of the detection light is absorbed by the light characteristic conversion member 32. For this reason, a loss of detection light guided by the detection light optical fiber 14a occurs. The light guide loss amount varies depending on the bending amount of the detection light optical fiber 14a.
 例えば、検出光用光ファイバ14aが直線状態であっても、光開口部30の幅、長さなどに従い、ある程度の光量の検出光が光特性変換部材32で損失される。この直線状態での光の損失量を基準として、検出光用光ファイバ14aの湾曲状態において光特性変換部材32が曲率半径の比較的大きい外側に配置されていれば、基準とした導光損失量よりも多い導光損失量が生じる。また、検出光用光ファイバ14aの湾曲状態において光特性変換部材32が曲率半径の比較的小さい内側に配置されていれば、基準とした導光損失量よりも少ない導光損失量が生じる。 For example, even if the optical fiber 14a for detection light is in a straight line state, a certain amount of detection light is lost by the optical characteristic conversion member 32 according to the width, length, etc. of the light aperture 30. If the optical characteristic conversion member 32 is arranged outside the relatively large curvature radius in the curved state of the optical fiber for detection light 14a based on the light loss amount in the straight line state, the light guide loss amount as a reference More light guide loss occurs. In addition, if the optical property conversion member 32 is disposed on the inner side having a relatively small radius of curvature in the curved state of the detection light optical fiber 14a, a light guide loss amount smaller than the reference light guide loss amount is generated.
 この導光損失量の変化は、光検出部16で受光される検出光量、すなわち光検出部16の出力信号に反映される。したがって、光検出部16の出力信号に基づいて、形状検出センサ10の被検出部22の位置、すなわち光特性変換部材32が設けられた位置における検出光用光ファイバ14aの湾曲形状を求めることが可能である。 The change in the light guide loss amount is reflected in the detected light amount received by the light detection unit 16, that is, the output signal of the light detection unit 16. Therefore, based on the output signal of the light detection unit 16, the curved shape of the detection light optical fiber 14 a at the position of the detected part 22 of the shape detection sensor 10, that is, the position where the optical characteristic conversion member 32 is provided. Is possible.
 なお、図1並びに図2には、ただ一つの被検出部22が示されているが、一本の検出光用光ファイバ14aに複数の被検出部22が検出光用光ファイバ14aの軸に沿って間隔を置いて設けられてもよい。これにより、検出光用光ファイバ14aの軸に沿った複数の位置において湾曲を検出することが可能になる。あるいは、一本の検出光用光ファイバ14aの軸に沿った実質同一の位置であって周に沿った異なる位置(例えば互いに直交する位置)に二つの被検出部22が設けられてもよい。これにより、一方向における湾曲だけでなく、互いに直交する二方向における湾曲を求めることが可能になる。一本の検出光用光ファイバ14aに複数の被検出部22が設けられる場合、例えば、複数の被検出部22は、互いに異なる波長の光の特性を変化させ、光源部12は、被検出部22に対応する複数の波長成分を含む検出光を出射するか、波長掃引される検出光を出射し、光検出部16は、検出光を被検出部22に対応する波長成分毎に検出するように構成される。 In FIGS. 1 and 2, only one detected portion 22 is shown, but a plurality of detected portions 22 are arranged on the axis of the detection light optical fiber 14a. It may be provided at intervals along. As a result, it is possible to detect bending at a plurality of positions along the axis of the optical fiber for detection light 14a. Alternatively, the two detection target portions 22 may be provided at substantially the same position along the axis of the single detection light optical fiber 14a and at different positions along the circumference (for example, positions orthogonal to each other). This makes it possible to obtain not only a curve in one direction but also a curve in two directions orthogonal to each other. When a plurality of detected portions 22 are provided in one detection light optical fiber 14a, for example, the plurality of detected portions 22 change the characteristics of light having different wavelengths, and the light source portion 12 includes the detected portions. The detection light including a plurality of wavelength components corresponding to 22 is emitted or the detection light subjected to wavelength sweeping is emitted, and the light detection unit 16 detects the detection light for each wavelength component corresponding to the detected portion 22. Configured.
 次に、本第1実施形態による形状検出装置が組み込まれる内視鏡装置の構成について説明する。図3は、内視鏡装置34を概略的に示す図である。 Next, the configuration of the endoscope apparatus in which the shape detection apparatus according to the first embodiment is incorporated will be described. FIG. 3 is a diagram schematically showing the endoscope apparatus 34.
 内視鏡装置34は、形状検出センサ10の少なくとも検出光用光ファイバ14aが内部に組み込まれたスコープ部36と、本体部38と、を有している。本体部38は、制御装置40と、形状算出装置42と、ビデオプロセッサ44と、表示装置46と、を有している。 The endoscope apparatus 34 includes a scope portion 36 in which at least the detection light optical fiber 14 a of the shape detection sensor 10 is incorporated, and a main body portion 38. The main body 38 includes a control device 40, a shape calculation device 42, a video processor 44, and a display device 46.
 制御装置40は、スコープ部36、形状算出装置42、ビデオプロセッサ44を始めとしてこれに接続される周辺装置の所定の機能を制御する。 The control device 40 controls predetermined functions of the peripheral device connected to the scope unit 36, the shape calculation device 42, the video processor 44 and the like.
 スコープ部36は、被検体に挿入される筒状可撓体である挿入部48と、挿入部48の基端側に設けられた操作部50と、を有している。操作部50からは、コード部52が延びている。スコープ部36は、コード部52を介して本体部38に着脱可能に接続され、本体部38と通信する。操作部50には、挿入部48の湾曲部48aを少なくとも特定の二方向(例えば上下方向)に所望の曲率で湾曲させるための操作を入力する操作ダイヤル54が設けられている。コード部52は、後述するライトガイドファイバ62a、カメラケーブル64c等を収容している。 The scope section 36 includes an insertion section 48 that is a cylindrical flexible body that is inserted into the subject, and an operation section 50 that is provided on the proximal end side of the insertion section 48. A cord portion 52 extends from the operation portion 50. The scope section 36 is detachably connected to the main body section 38 via the cord section 52 and communicates with the main body section 38. The operation unit 50 is provided with an operation dial 54 for inputting an operation for bending the bending portion 48a of the insertion portion 48 in at least two specific directions (for example, the vertical direction) with a desired curvature. The cord portion 52 houses a light guide fiber 62a, a camera cable 64c, and the like which will be described later.
 また、挿入部48内には、その先端部から基端側まで、例えば超音波プローブまたは鉗子等の処置具を通すための円筒状のチューブであるチャンネルチューブが配置されており、操作部50には、そのチャンネルチューブの開口部56が設けられている。 In addition, a channel tube, which is a cylindrical tube for passing a treatment instrument such as an ultrasonic probe or forceps, is disposed in the insertion portion 48 from the distal end portion to the proximal end side. Is provided with an opening 56 of the channel tube.
 なお、図3には、形状検出センサ10は示されていないが、内視鏡装置34は、図1に示された形状検出センサ10を含んでいる。 Note that the shape detection sensor 10 is not shown in FIG. 3, but the endoscope apparatus 34 includes the shape detection sensor 10 shown in FIG.
 具体的には、形状検出センサ10の検出光用光ファイバ14aは、被検出物である長尺な筒状可撓体、本実施形態では挿入部48、に沿わせて装着される。装着する際には、検出光用光ファイバ14aの被検出部22が挿入部48の所望の検出位置と位置合わせされて、検出光用光ファイバ14aが挿入部48の適正な位置に装着される。検出光用光ファイバ14aは、挿入部48の湾曲部48aの湾曲動作に追従して湾曲する。被検出部22を経て光検出部16によって検出される検出光は、被検出部22の周辺部分における検出光用光ファイバ14aの曲率の変化に応じて、特性たとえば光量が変化する。光検出部16は、受光した光量の信号を出力する。光検出部16の出力信号は、被検出部22の湾曲の情報を含んでいる。 Specifically, the optical fiber 14a for detection light of the shape detection sensor 10 is mounted along a long cylindrical flexible body that is an object to be detected, which is the insertion portion 48 in the present embodiment. When mounting, the detected portion 22 of the detection light optical fiber 14 a is aligned with the desired detection position of the insertion portion 48, and the detection light optical fiber 14 a is mounted at an appropriate position of the insertion portion 48. . The optical fiber 14a for detection light is bent following the bending operation of the bending portion 48a of the insertion portion 48. The detection light detected by the light detection unit 16 through the detection unit 22 changes in characteristics, for example, the amount of light according to the change in the curvature of the detection light optical fiber 14 a in the peripheral portion of the detection unit 22. The light detection unit 16 outputs a received light amount signal. The output signal of the light detection unit 16 includes information on the curvature of the detected portion 22.
 形状算出装置42は、光検出部16に接続されている。形状算出装置42は、光検出部16からの出力信号を受信し、この出力信号に基づいて被検出部22の湾曲形状を算出する。被検出部22の湾曲形状と、当該被検出部22が配された位置における挿入部48の湾曲部48aの湾曲形状との間には、相関がある。従って、形状算出装置42は、算出した被検出部22の湾曲形状に基づいて、その被検出部22が配された位置における挿入部48の湾曲部48aの湾曲形状を算出する。言い換えれば、形状算出装置42は、光検出部16によって検出される検出光の特性の変化に基づいて挿入部48の湾曲部48aの湾曲形状を算出する。算出された湾曲形状は、形状算出装置42から表示装置46に送信されて、表示装置46に表示される。 The shape calculation device 42 is connected to the light detection unit 16. The shape calculation device 42 receives the output signal from the light detection unit 16 and calculates the curved shape of the detected portion 22 based on this output signal. There is a correlation between the curved shape of the detected portion 22 and the curved shape of the curved portion 48a of the insertion portion 48 at the position where the detected portion 22 is disposed. Therefore, the shape calculating device 42 calculates the curved shape of the bending portion 48a of the insertion portion 48 at the position where the detected portion 22 is arranged based on the calculated curved shape of the detected portion 22. In other words, the shape calculation device 42 calculates the curved shape of the bending portion 48 a of the insertion portion 48 based on the change in the characteristics of the detection light detected by the light detection portion 16. The calculated curved shape is transmitted from the shape calculation device 42 to the display device 46 and displayed on the display device 46.
 ビデオプロセッサ44は、スコープ部先端の撮像素子からカメラケーブル、制御装置40を介して取得される電気信号を画像処理する。表示装置46は、ビデオプロセッサ44により処理された被検体内の画像を表示する。 The video processor 44 performs image processing on the electrical signal acquired from the imaging device at the tip of the scope unit via the camera cable and the control device 40. The display device 46 displays the image in the subject processed by the video processor 44.
 以下に、本第1実施形態による形状検出装置の詳細について説明する。 
 図4に示すように、被検出物である挿入部48には、本第1実施形態による形状検出装置のプローブ1が、挿入部48に沿わせて装着されている。このプローブ1は、複数の形状検出センサ10による複数の検出光用光ファイバ14aを纏めて外装筒状部材58に収容したものである。挿入部48の先端部には硬質な挿入部先端部材48bが設けられ、また、挿入部48の基端は操作部50と連接した硬質な挿入部後端部材48cとなっている。プローブ1の外装筒状部材58は、少なくとも、これら挿入部先端部材48bと挿入部後端部材48cとの間に配置されている。プローブ1の外装筒状部材58は、挿入部先端部材48bもしくは挿入部後端部材48cに保持固定されている。図4の例では、外装筒状部材58は、接着剤などの先端固定部60によって、挿入部先端部材48bに固定されている。先端固定部60は、高い接着強度が期待できるエポキシ系接着剤等であってよい。なお、複数の検出光用光ファイバ14aは、コード部52内では、外装筒状部材58無しに、収容されている。すなわち、複数の検出光用光ファイバ14aは、その長手軸方向における一部のみが、外装筒状部材58内に収容されている。
Details of the shape detection apparatus according to the first embodiment will be described below.
As shown in FIG. 4, the probe 1 of the shape detection device according to the first embodiment is mounted along the insertion portion 48 in the insertion portion 48 that is the object to be detected. In this probe 1, a plurality of optical fibers for detection light 14 a by a plurality of shape detection sensors 10 are collected and accommodated in an outer cylindrical member 58. A rigid insertion portion distal end member 48 b is provided at the distal end portion of the insertion portion 48, and a proximal end of the insertion portion 48 is a rigid insertion portion rear end member 48 c connected to the operation portion 50. The outer tubular member 58 of the probe 1 is disposed at least between the insertion portion front end member 48b and the insertion portion rear end member 48c. The outer tubular member 58 of the probe 1 is held and fixed to the insertion portion distal end member 48b or the insertion portion rear end member 48c. In the example of FIG. 4, the exterior cylindrical member 58 is fixed to the insertion portion distal end member 48 b by a distal end fixing portion 60 such as an adhesive. The tip fixing portion 60 may be an epoxy adhesive that can be expected to have high adhesive strength. The plurality of detection light optical fibers 14 a are accommodated in the cord portion 52 without the outer cylindrical member 58. That is, only a part of the plurality of optical fibers for detection light 14 a in the longitudinal axis direction is accommodated in the exterior cylindrical member 58.
 挿入部48には更に、ライトガイドファイバ62aと、照明部62bと、撮像光学系64aと、撮像素子64bと、カメラケーブル64cと、チャンネルチューブ56aと、図示しない操作ワイヤと、が内蔵されている。ライトガイドファイバ62aは、挿入部先端部材48b内に配置された照明部62bと制御装置40内の不図示の光源とに接続されており、光源から照明部62bに照明光を導光する導光部材である。カメラケーブル64cは、挿入部先端部材48b内に配置された撮像素子64bと制御装置40とに接続されており、電気信号を伝達する電気配線である。チャンネルチューブ56aは、例えば超音波プローブまたは鉗子等の処置具を通すための円筒状のチューブである。 The insertion portion 48 further includes a light guide fiber 62a, an illumination portion 62b, an imaging optical system 64a, an imaging element 64b, a camera cable 64c, a channel tube 56a, and an operation wire (not shown). . The light guide fiber 62a is connected to an illumination unit 62b disposed in the insertion unit distal end member 48b and a light source (not shown) in the control device 40, and guides illumination light from the light source to the illumination unit 62b. It is a member. The camera cable 64c is connected to the imaging device 64b and the control device 40 disposed in the insertion portion distal end member 48b, and is an electrical wiring that transmits an electrical signal. The channel tube 56a is a cylindrical tube for passing a treatment instrument such as an ultrasonic probe or forceps.
 図示しない操作ワイヤは、挿入部48の湾曲部48aを所望の方向に所望の曲率で湾曲させる操作を行うために挿入部48内に軸に沿って設けられており、操作部50の操作ダイヤル54の操作が湾曲部48aに伝達されるようになっている。操作者が操作ダイヤル54を操作して操作ワイヤが動かされると、挿入部48の湾曲部48aが湾曲される。 An operation wire (not shown) is provided along the axis in the insertion portion 48 in order to perform an operation of bending the bending portion 48a of the insertion portion 48 in a desired direction with a desired curvature, and an operation dial 54 of the operation portion 50 is provided. This operation is transmitted to the bending portion 48a. When the operator operates the operation dial 54 to move the operation wire, the bending portion 48a of the insertion portion 48 is bent.
 本第1実施形態による形状検出装置のプローブ1は、図5及び図6に示すように、プローブ長手軸Oに沿って外装筒状部材58を貫通する複数、本実施形態では四つ、のルーメン(管腔)66を有している。各ルーメン66は、一本の検出光用光ファイバ14aが挿通され得るように、検出光用光ファイバ14aの外径よりも若干太い内径を有している。ルーメン66に挿通された、その先端に反射部20が取り付けられた検出光用光ファイバ14aは、ルーメン66内に充填された可撓性樹脂68を介して、その挿通された全長を保持されている。このルーメン66内に充填された可撓性樹脂68は、所望の曲率で湾曲可能となっている。 As shown in FIGS. 5 and 6, the probe 1 of the shape detection device according to the first embodiment includes a plurality of, four in the present embodiment, penetrating the exterior cylindrical member 58 along the probe longitudinal axis O 1 . It has a lumen 66. Each lumen 66 has an inner diameter slightly larger than the outer diameter of the detection light optical fiber 14a so that the single detection light optical fiber 14a can be inserted. The optical fiber for detection light 14a inserted into the lumen 66 and having the reflecting portion 20 attached to the tip thereof is held by the full length of the inserted optical fiber 14a via the flexible resin 68 filled in the lumen 66. Yes. The flexible resin 68 filled in the lumen 66 can be bent with a desired curvature.
 外装筒状部材58は、PTFE等の可撓性を有するフッ素樹脂チューブ、ポリアミドチューブ、PEEKチューブ等の樹脂で形成されている。 The exterior cylindrical member 58 is formed of a resin such as a flexible fluororesin tube such as PTFE, a polyamide tube, or a PEEK tube.
 外装筒状部材58の内壁すなわちルーメン66の内壁と可撓性樹脂68とは、プローブ1の先端の固定部70で、接着により保持固定されている。外装筒状部材58がPTFE等のフッ素樹脂を材質として形成されている場合、接着性が良好ではない。このような場合には、外装筒状部材58すなわちルーメン66の内壁には、例えばNaエッチィングやプラズマ処理のような接着性を向上させる表面処理が施されていることが望ましい。 The inner wall of the outer tubular member 58, that is, the inner wall of the lumen 66 and the flexible resin 68 are held and fixed by bonding at the fixing portion 70 at the tip of the probe 1. When the exterior cylindrical member 58 is made of a fluororesin such as PTFE, the adhesiveness is not good. In such a case, it is desirable that the exterior cylindrical member 58, that is, the inner wall of the lumen 66, be subjected to a surface treatment that improves adhesion, such as Na etching or plasma treatment.
 また、検出光用光ファイバ14aの被覆28は、例えばPA(ポリアミド)やETFE等が用いられている。被覆28がETFEのようなフッ素樹脂で形成されている場合には、その表面に対し、例えばNaエッチィングやプラズマ処理のような接着性を向上させる表面処理を施すことで、可撓性樹脂68と被覆28とが強固に接合されることができる。つまり、可撓性樹脂68と被覆28とは互いに、光ファイバ長手軸O方向に摺動することはない。 Moreover, for example, PA (polyamide), ETFE or the like is used for the coating 28 of the optical fiber 14a for detection light. When the coating 28 is formed of a fluororesin such as ETFE, the surface is subjected to a surface treatment that improves adhesion such as Na etching or plasma treatment, so that the flexible resin 68 is applied. And the coating 28 can be firmly bonded. That is, the flexible resin 68 and the coating 28 do not slide in the optical fiber longitudinal axis O 2 direction.
 外装筒状部材58の内壁と可撓性樹脂68の外表面とが隣接して接触する界面72aに関しては、固定部70により保持固定されているプローブ1の先端の一部を除いて、外装筒状部材58の内壁すなわちルーメン66の内壁との接着性を向上させる表面処理が施されておらず、この表面処理が施されていない部分における界面72aでは、外装筒状部材58と可撓性部材68とが互いに光ファイバ長手軸Oの方向に摺動可能になっている。すなわち、界面72aでは、外装筒状部材58(ルーメン66)に対して可撓性樹脂68が光ファイバ長手軸Oの方向に摺動可能になっている。ここで、可撓性樹脂68と検出光用光ファイバ14aの被覆28とが強固に接合されているので、外装筒状部材58(ルーメン66)に対する可撓性樹脂68の摺動とは、外装筒状部材58(ルーメン66)に対する検出光用光ファイバ14aの摺動を意味する。よって、外装筒状部材58(ルーメン66)の内壁と可撓性樹脂68の外表面とが隣接する界面72aの一部が所望の範囲で固定され、それ以外の外装筒状部材58のプローブ長手軸Oの方向の全長における界面72aは、検出光用光ファイバ14aを外装筒状部材58に対して光ファイバ長手軸O方向に摺動可能とする摺動部として機能する。 With respect to the interface 72a where the inner wall of the outer tubular member 58 and the outer surface of the flexible resin 68 are in contact with each other, except for a part of the tip of the probe 1 held and fixed by the fixing portion 70, the outer cylinder. The surface treatment for improving the adhesiveness between the inner wall of the cylindrical member 58, that is, the inner wall of the lumen 66 is not performed, and at the interface 72a in the portion where the surface treatment is not performed, 68 and is in slidable in the direction of the optical fiber longitudinal axis O 2 to each other. That is, in the surface 72a, a flexible resin 68 is in slidable in the direction of the optical fiber longitudinal axis O 2 relative to the outer tubular member 58 (lumen 66). Here, since the flexible resin 68 and the coating 28 of the optical fiber for detection light 14a are firmly joined, the sliding of the flexible resin 68 with respect to the exterior cylindrical member 58 (lumen 66) is the exterior. This means sliding of the optical fiber 14a for detection light with respect to the tubular member 58 (lumen 66). Therefore, a part of the interface 72a where the inner wall of the outer tubular member 58 (lumen 66) and the outer surface of the flexible resin 68 are adjacent is fixed within a desired range, and the probe length of the other outer tubular member 58 is fixed. axis interface 72a in the entire length direction of the O 1 functions as a sliding portion for slidable detection-light optical fiber 14a with respect to the outer tubular member 58 to the optical fiber longitudinal axis O 2 direction.
 なお、図6では、図示の都合上、外装筒状部材58(ルーメン66)の内壁と可撓性樹脂68との界面72aは、厚みを持って示されているが、これは二つの層の接触部であって、実質的な厚みは有さない。また、外装筒状部材58(ルーメン66)の内壁と可撓性樹脂68との間の固定部70についても、厚みを持って示されているが、実際には50~200μm厚などの非常に薄い接着剤の層である。 In FIG. 6, for convenience of illustration, the interface 72 a between the inner wall of the outer tubular member 58 (lumen 66) and the flexible resin 68 is shown with a thickness, but this has two layers. It is a contact part, Comprising: It does not have substantial thickness. In addition, the fixing portion 70 between the inner wall of the outer tubular member 58 (lumen 66) and the flexible resin 68 is also shown with a thickness, but in practice it is very thick such as 50 to 200 μm. A thin layer of adhesive.
 なお、ルーメン66の断面形状は、円に限定されるものではなく、例えば楕円や三角形、四角形、多角形等であっても構わない。 The cross-sectional shape of the lumen 66 is not limited to a circle, and may be an ellipse, a triangle, a quadrangle, a polygon, or the like.
 また、ルーメン66は、貫通孔に限定されるものではなく、外装筒状部材58と一体で(もしくは同一の材料で)成型されたマルチルーメンチューブであっても良いし、外装筒状部材58とは別体で成型されたシングルチューブを外装筒状部材58で束ねた構造であっても構わない。ただし、ルーメン66の少なくとも内壁は、例えばPTFEの様な接着性が良好ではない(ぬれ性が悪く摺動性が良い)フッ素樹脂であることが望ましい。 Further, the lumen 66 is not limited to the through-hole, and may be a multi-lumen tube molded integrally with the outer cylindrical member 58 (or the same material), or the outer cylindrical member 58 May have a structure in which a single tube molded separately is bundled with an outer cylindrical member 58. However, it is desirable that at least the inner wall of the lumen 66 is made of a fluororesin that does not have good adhesion, such as PTFE (poor wettability and good slidability).
 また、本第1実施形態では、検出光用光ファイバ14aは、外装筒状部材58の先端部に固定部70にて保持固定しているが、どこか一箇所のみを固定保持するのであれば、外装筒状部材58の後端部や中間部分であっても構わない。 Further, in the first embodiment, the detection light optical fiber 14a is held and fixed to the distal end portion of the outer tubular member 58 by the fixing portion 70. However, if only one place is fixed and held, The outer cylindrical member 58 may be a rear end portion or an intermediate portion.
 また、検出光用光ファイバ14aの本数も、四本に限定されるものではなく、少なくとも二本以上であれば良い。 Also, the number of optical fibers for detection light 14a is not limited to four, and may be at least two.
 なお、外装筒状部材58の外周部分には、図7Aに示すように、外装筒状部材58の座屈やねじれを低減可能な編組(ブレード)等の剛性補強部材58aが埋設されている。また、剛性補強部材58aは、このような網目構造のブレードに限定するものではなく、例えば図7Bに示すようなコイル等であっても構わない。 Note that, as shown in FIG. 7A, a rigid reinforcing member 58a such as a braid (blade) capable of reducing buckling and twisting of the outer tubular member 58 is embedded in the outer peripheral portion of the outer tubular member 58. Further, the rigidity reinforcing member 58a is not limited to such a mesh-structured blade, and may be a coil as shown in FIG. 7B, for example.
 また、特に図示はしていないが、形状検出装置は、それが備える複数の形状検出センサ10の内、少なくとも一つの形状検出センサ10の光源部12及び/又は光検出部16を、他の少なくとも一つの形状検出センサ10の光源部12及び/又は光検出部16と兼用するようにしても構わない。すなわち、一つの光源部12から出射された検出光を、複数の形状検出センサ10の検出光用光ファイバ14aに入射させて導光させる構成や、複数の形状検出センサ10の検出光用光ファイバ14aからの曲率に応じて特性に変化を与えられた検出光を、一つの光検出部16に入射させて検出させる構成を採り得る。つまり、形状検出装置は、少なくとも一つの光源部12と、複数の検出光用光ファイバ14aと、少なくとも一つの光検出部16を備えていれば良い。 In addition, although not particularly illustrated, the shape detection apparatus includes at least one light source unit 12 and / or light detection unit 16 of at least one shape detection sensor 10 among the plurality of shape detection sensors 10 included in the shape detection device. The light source unit 12 and / or the light detection unit 16 of one shape detection sensor 10 may also be used. That is, a configuration in which the detection light emitted from one light source unit 12 is incident on the detection light optical fibers 14a of the plurality of shape detection sensors 10 and guided, or the detection light optical fibers of the plurality of shape detection sensors 10 are guided. It is possible to adopt a configuration in which the detection light whose characteristics are changed according to the curvature from 14a is incident on one light detection unit 16 and detected. That is, the shape detection device only needs to include at least one light source unit 12, a plurality of detection light optical fibers 14a, and at least one light detection unit 16.
 以上のような構成の形状検出装置のプローブ1では、図8に示すように、湾曲させた際、曲げの外側に配置されているルーメン66には引張の曲げ応力が発生し、曲げの中心(外装筒状部材58の中心)からのオフセット量に応じて伸張する。しかしながら、摺動部である界面72aでは、可撓性樹脂68は外装筒状部材58に対して光ファイバ長手軸O方向に摺動可能になっているので、可撓性樹脂68には大きな力は加わらず、可撓性樹脂68は外装筒状部材58内に引っ込んだ状態になり、外装筒状部材58及びそれに強固に接合されている検出光用光ファイバ14aは、湾曲可能になる。 In the probe 1 of the shape detecting device having the above-described configuration, as shown in FIG. 8, when bending, a tensile bending stress is generated in the lumen 66 disposed outside the bending, and the bending center ( It extends according to the amount of offset from the center of the outer cylindrical member 58). However, the surface 72a is sliding portion, since the flexible resin 68 is made slidable relative to the outer tubular member 58 to the optical fiber longitudinal axis O 2 direction, significant for flexible resin 68 The force is not applied, and the flexible resin 68 is retracted into the outer tubular member 58, and the outer tubular member 58 and the detection light optical fiber 14a firmly bonded thereto can be bent.
 また、曲げの内側に配置されているルーメン66には圧縮の曲げ応力が発生し、曲げの中心からのオフセット量に応じて短くなる。しかしながら、摺動部である界面72aは、可撓性樹脂68が外装筒状部材58に対して光ファイバ長手軸O方向に摺動可能になっているので、可撓性樹脂68には大きな力は加わらず、可撓性樹脂68は外装筒状部材58の外に飛び出した状態になり、外装筒状部材58及びそれに強固に接合されている検出光用光ファイバ14aは、湾曲可能になる。 Further, a compressive bending stress is generated in the lumen 66 arranged inside the bending, and the lumen 66 is shortened according to the offset amount from the bending center. However, the interface 72a is sliding portion, since the flexible resin 68 is in slidable relative outer tubular member 58 to the optical fiber longitudinal axis O 2 direction, significant for flexible resin 68 The force is not applied, and the flexible resin 68 jumps out of the outer cylindrical member 58, and the outer cylindrical member 58 and the detection light optical fiber 14a firmly bonded thereto can be bent. .
 なお、検出光用光ファイバ14aは、その外周全体を(360°全長に渡って)可撓性樹脂68に覆われているため、光ファイバ長手軸Oを中心としたねじれが可撓性樹脂68によって抑制され、検出光用光ファイバ14aはねじれ難くなっている。 The detection Hikari Mitsumochi fiber 14a is the entire outer periphery (over 360 ° full length) because it is covered with a flexible resin 68, twisted around the optical fiber longitudinal axis O 2 is flexible resin The detection light optical fiber 14a is hardly twisted.
 以上説明したように、本第1実施形態による形状検出装置は、検出光を出射する光源部12、光源部12から出射された検出光を導光する形状検出用の光ファイバである検出光用光ファイバ14a、検出光用光ファイバ14aの曲率に応じて検出光の特性に変化を与える検出光用光ファイバ14aに設けられた少なくとも一つの被検出部22、及び、検出光用光ファイバ14aを通して導光された検出光を検出する光検出部16、をそれぞれ有している複数の形状検出センサ10と、複数の形状検出センサ10の複数の光検出部16によって検出される検出光の特性の変化に基づいて被検出部22の湾曲形状を算出する形状算出装置42と、複数の形状検出センサ10の複数の検出光用光ファイバ14aそれぞれの少なくとも一部がその内部に設置される外装筒状部材58と、外装筒状部材58の長手軸方向であるプローブ長手軸Oの方向の少なくとも一部の、外装筒状部材58と複数の検出光用光ファイバ14aとの間に充填された可撓性樹脂68と、複数の検出光用光ファイバ14aをそれぞれ独立に当該検出光用光ファイバ14aの長手軸方向である光ファイバ長手軸Oの方向に摺動可能とする摺動部と、を備えている。 
 したがって、検出光用光ファイバ14aが伸縮不可能であり且つ曲げの中心からオフセット配置された場合であっても、信頼性を損なうこと無く湾曲可能となるので、複数本の検出光用光ファイバを用いても信頼性が低下する虞のない形状検出装置を提供することができる。
As described above, the shape detection device according to the first embodiment is a light source unit 12 that emits detection light, and a detection light optical fiber that is a shape detection optical fiber that guides detection light emitted from the light source unit 12. Through the optical fiber 14a, at least one detected portion 22 provided in the detection light optical fiber 14a that changes the characteristics of the detection light according to the curvature of the detection light optical fiber 14a, and the detection light optical fiber 14a A plurality of shape detection sensors 10 each having a light detection unit 16 for detecting the guided detection light, and characteristics of detection light detected by the plurality of light detection units 16 of the plurality of shape detection sensors 10 At least a part of each of the plurality of detection light optical fibers 14a of the plurality of shape detection sensors 10 and the shape calculation device 42 that calculates the curved shape of the detected portion 22 based on the change An exterior tubular member 58 to be installed, in the direction of the probe longitudinal axis O 1 is a longitudinal axis of the outer tubular member 58 at least part of the exterior tubular member 58 and a plurality of detection-light optical fiber 14a a flexible resin 68 filled between a slidable plurality of detection-light optical fiber 14a to the direction of the optical fiber longitudinal axis O 2 is the longitudinal axis of the independently to the detection-light optical fiber 14a And a sliding portion.
Therefore, even when the detection light optical fiber 14a is not stretchable and is offset from the center of bending, the detection light optical fiber 14a can be bent without impairing reliability. It is possible to provide a shape detection device that does not have a possibility of lowering reliability even if it is used.
 なお、本第1実施形態においては、摺動部は、外装筒状部材58の内壁と可撓性樹脂68の外表面とが隣接する界面72aである。 
 この場合、外装筒状部材58の内壁と可撓性樹脂68の外表面とが隣接する界面72aの一部が所望の範囲で固定され、それ以外の前記外装筒状部材58のプローブ長手軸Oの方向の全長において界面72aが摺動部となっている。 
 従って、適正な範囲を超えた光ファイバ長手軸Oの方向への被検出部22の摺動を規制することができる。
In the first embodiment, the sliding portion is an interface 72 a where the inner wall of the exterior cylindrical member 58 and the outer surface of the flexible resin 68 are adjacent to each other.
In this case, a part of the interface 72a where the inner wall of the outer cylindrical member 58 and the outer surface of the flexible resin 68 are adjacent is fixed within a desired range, and the probe longitudinal axis O of the other outer cylindrical member 58 is fixed. The interface 72a is a sliding part over the entire length in the direction of 1 .
Therefore, the sliding of the detected portion 22 in the direction of the optical fiber longitudinal axis O 2 exceeding the proper range can be restricted.
 なお、外装筒状部材58の内壁は、外装筒状部材58に設けられた複数のルーメン66の内壁であり、複数のルーメン66それぞれに複数の検出光用光ファイバ14aの内の一本が配置され、可撓性樹脂68が複数のルーメン66のそれぞれに充填されている。 
 従って、複数の検出光用光ファイバ14aそれぞれの摺動を独立して行わせることができる。
The inner wall of the outer tubular member 58 is an inner wall of a plurality of lumens 66 provided on the outer tubular member 58, and one of the plurality of optical fibers for detection light 14a is disposed in each of the plurality of lumens 66. The flexible resin 68 is filled in each of the plurality of lumens 66.
Therefore, each of the plurality of optical fibers for detection light 14a can be independently slid.
 ここで、複数のルーメン66の内壁は、複数のルーメン66の内壁と可撓性樹脂68との界面72aの摺動抵抗を低減可能なフッ素樹脂(例えば、PTFE)で形成されている。 
 よって、界面72aの摺動をより容易にすることができる。
Here, the inner walls of the plurality of lumens 66 are formed of a fluororesin (for example, PTFE) that can reduce the sliding resistance of the interface 72a between the inner walls of the plurality of lumens 66 and the flexible resin 68.
Therefore, the sliding of the interface 72a can be made easier.
 また、複数の検出光用光ファイバ14aそれぞれの外表面は、可撓性樹脂68に対する接着性を向上する表面改質が施されている。 
 よって、界面72aの摺動に倣った検出光用光ファイバ14aの摺動を確実にすることができる。
In addition, the outer surface of each of the plurality of optical fibers for detection light 14 a is subjected to surface modification that improves adhesion to the flexible resin 68.
Therefore, the detection optical fiber 14a can be reliably slid following the sliding of the interface 72a.
 また、本第1実施形態による形状検出装置は、外装筒状部材58の座屈もしくはねじれを低減可能な剛性補強部材58aをさらに備える。 
 これにより、より正確な形状検出が可能になる。
The shape detection apparatus according to the first embodiment further includes a rigidity reinforcing member 58a that can reduce buckling or twisting of the exterior cylindrical member 58.
Thereby, more accurate shape detection becomes possible.
 ここで、剛性補強部材58aは、線材を編み込んだ編組である。 
 あるいは、剛性補強部材58aは、線材を螺旋状に形成したコイルである。
Here, the rigidity reinforcing member 58a is a braid in which a wire is knitted.
Alternatively, the rigidity reinforcing member 58a is a coil in which a wire is formed in a spiral shape.
 なお、複数の形状検出センサ10の内の少なくとも一つは、光源部12及び/又は光検出部16を、複数の形状検出センサ10の内の別の少なくとも一つと共用するようにしても良い。 
 これにより、部品点数を削減し、安価な装置を提供することができる。
At least one of the plurality of shape detection sensors 10 may share the light source unit 12 and / or the light detection unit 16 with at least one other of the plurality of shape detection sensors 10.
Thereby, the number of parts can be reduced and an inexpensive apparatus can be provided.
 また、複数の検出光用光ファイバ14aはそれぞれ、内視鏡装置34の挿入部48の長手軸方向に沿って配置され、形状算出装置42は、算出した被検出部22それぞれの湾曲形状に基づいて挿入部48の湾曲形状を算出する。 
 よって、本第1実施形態による形状検出装置を内視鏡に組み込むことで、挿入部48の湾曲形状を知ることが可能になる。
Each of the plurality of optical fibers for detection light 14a is disposed along the longitudinal axis direction of the insertion portion 48 of the endoscope device 34, and the shape calculating device 42 is based on the calculated curved shape of each detected portion 22. Thus, the curved shape of the insertion portion 48 is calculated.
Therefore, it is possible to know the curved shape of the insertion portion 48 by incorporating the shape detection device according to the first embodiment into the endoscope.
 [第2実施形態]
 次に、本発明の第2実施形態について説明する。以下では、第1実施形態と同様の構成部材には同様の参照符号を付してその説明は省略し、第1実施形態と異なる部分のみを説明する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. Below, the same reference numerals are given to the same components as those in the first embodiment, and the description thereof will be omitted, and only the parts different from the first embodiment will be described.
 図9及び図10に示すように、本第2実施形態による形状検出装置のプローブ1においては、外装筒状部材58は、少なくとも複数の検出光用光ファイバ14aを内蔵可能な内径を有するチューブ形状をしている。そして、このチューブ形状の外装筒状部材58内に複数、本実施形態では四本、のその先端に反射部20が取り付けられた検出光用光ファイバ14aが挿入され、それら検出光用光ファイバ14aがチューブの中空部に充填された可撓性樹脂68を介して保持されている。 As shown in FIGS. 9 and 10, in the probe 1 of the shape detection apparatus according to the second embodiment, the outer cylindrical member 58 has a tube shape having an inner diameter capable of incorporating at least a plurality of optical fibers for detection light 14a. I am doing. Then, a plurality, four in the present embodiment, of the tube-shaped exterior cylindrical member 58 are inserted with the detection-light optical fibers 14a with the reflecting portions 20 attached to their tips, and the detection-light optical fibers 14a. Is held via a flexible resin 68 filled in the hollow portion of the tube.
 ここで、外装筒状部材58の内壁は、可撓性樹脂68と接着によって固定保持されている。外装筒状部材58をPTFEのような接合性の低いフッ素樹脂等で形成した場合には、その内壁にNaエッチング処理等の接着性を向上させる表面処理を施すことで、可撓性樹脂68と外装筒状部材58とが強固に接合保持される構造とすることが望ましい。 Here, the inner wall of the exterior cylindrical member 58 is fixed and held by bonding with the flexible resin 68. When the exterior cylindrical member 58 is formed of a fluororesin or the like having a low bondability such as PTFE, the inner wall is subjected to a surface treatment for improving the adhesiveness such as an Na etching process, so that the flexible resin 68 and It is desirable to have a structure in which the outer cylindrical member 58 is firmly bonded and held.
 一方、検出光用光ファイバ14aの被覆28と可撓性樹脂68とは、プローブ1の先端の固定部70で、接着により保持固定されている。被覆28は、例えばETFE等のフッ素樹脂等を材質として形成されており、接着性が良好でない。そこで、この固定部70に対応する位置の被覆28の外表面には、例えばNaエッチィングやプラズマ処理のような接着性を向上させる表面処理が施されていることが望ましい。このような表面処理が施されていない部分については、被覆28と可撓性樹脂68との接合性は低いままである。よって、本第2実施形態では、被覆28と可撓性樹脂68との接触面である界面72bでは、被覆28は可撓性樹脂68に対して光ファイバ長手軸Oの方向に摺動可能になっている。このように、検出光用光ファイバ14aの被覆28の外表面と可撓性樹脂68の内面とが隣接する界面72bの一部が所望の範囲で固定され、それ以外の外装筒状部材58のプローブ長手軸Oの方向の全長における界面72bは、検出光用光ファイバ14aを外装筒状部材58に対して光ファイバ長手軸O方向に摺動可能とする摺動部として機能する。 On the other hand, the coating 28 of the detection light optical fiber 14a and the flexible resin 68 are held and fixed by bonding at a fixing portion 70 at the tip of the probe 1. The coating 28 is made of, for example, a fluorine resin such as ETFE or the like, and has poor adhesion. Therefore, it is desirable that the outer surface of the coating 28 at a position corresponding to the fixing portion 70 is subjected to a surface treatment that improves adhesion, such as Na etching or plasma treatment. For the portion that has not been subjected to such surface treatment, the bondability between the coating 28 and the flexible resin 68 remains low. Therefore, in the second embodiment, at the interface 72b that is the contact surface between the coating 28 and the flexible resin 68, the coating 28 can slide in the direction of the optical fiber longitudinal axis O 2 with respect to the flexible resin 68. It has become. In this manner, a part of the interface 72b where the outer surface of the coating 28 of the optical fiber for detection light 14a and the inner surface of the flexible resin 68 are adjacent is fixed within a desired range, and the other outer cylindrical member 58 is fixed. interface 72b in the entire length direction of the probe longitudinal axis O 1 functions as a sliding part to be slidable in the optical fiber longitudinal axis O 2 direction detection-light optical fiber 14a with respect to the outer tubular member 58.
 なお、図10では、図示の都合上、被覆28と可撓性樹脂68との界面72bは、厚みを持って示されているが、これは二つの層の接触部であって、実質的な厚みは有さない。また、被覆28と可撓性樹脂68との間の固定部70についても、厚みを持って示されているが、実際には50~200μm厚などの非常に薄い接着剤の層である。 In FIG. 10, for convenience of illustration, the interface 72b between the coating 28 and the flexible resin 68 is shown with a thickness, but this is a contact portion between two layers, There is no thickness. Also, the fixing portion 70 between the coating 28 and the flexible resin 68 is shown with a thickness, but it is actually a very thin layer of adhesive such as a thickness of 50 to 200 μm.
 以上のような構成の本第2実施形態による形状検出装置のプローブ1においても、上記第1実施形態における界面72aと同様に、可撓性樹脂68と被覆28の接触面である界面72bでは二つの層が互いに摺動可能になっているため、検出光用光ファイバ14aが伸縮不可能であっても、外装筒状部材58を所望の曲率で湾曲させることが可能になる。 Also in the probe 1 of the shape detection apparatus according to the second embodiment having the above-described configuration, the interface 72b that is the contact surface between the flexible resin 68 and the coating 28 is two in the same manner as the interface 72a in the first embodiment. Since the two layers are slidable with respect to each other, the outer tubular member 58 can be curved with a desired curvature even if the optical fiber for detection light 14a cannot be expanded and contracted.
 以上のように、本第2実施形態による形状検出装置では、摺動部は、可撓性樹脂68と複数の検出光用光ファイバ14aそれぞれとが隣接する界面72bである。 
 この場合、可撓性樹脂68と複数の検出光用光ファイバ14aそれぞれとが隣接する界面72bの一部が所望の範囲で固定され、それ以外の外装筒状部材58の長手軸方向の全長において界面72bが摺動部となっている。 
 従って、適正な範囲を超えた光ファイバ長手軸Oの方向への被検出部22の摺動を規制することができ、また、複数の検出光用光ファイバ14aそれぞれの摺動を独立して行わせることができる。 
 さらに、本第2実施形態による形状検出装置では、第1実施形態と比較して、外装筒状部材58に可撓性樹脂68を充填する際の抵抗が小さいため、充填速度を早めることが可能になり、より安価な形状検出装置を提供可能になる。
As described above, in the shape detection device according to the second embodiment, the sliding portion is the interface 72b where the flexible resin 68 and each of the plurality of optical fibers for detection light 14a are adjacent to each other.
In this case, a part of the interface 72b where the flexible resin 68 and each of the plurality of optical fibers for detection light 14a are adjacent is fixed within a desired range, and the length of the other exterior cylindrical member 58 in the longitudinal axis direction is fixed. The interface 72b is a sliding part.
Accordingly, the sliding of the detected portion 22 in the direction of the optical fiber longitudinal axis O 2 exceeding the proper range can be restricted, and the sliding of each of the plurality of optical fibers for detection light 14a can be independently performed. Can be done.
Furthermore, in the shape detection device according to the second embodiment, compared with the first embodiment, since the resistance when filling the exterior cylindrical member 58 with the flexible resin 68 is small, the filling speed can be increased. Therefore, it is possible to provide a cheaper shape detection device.
 なおここで、複数の検出光用光ファイバ14aそれぞれの外表面である被覆28の表面は、複数の検出光用光ファイバ14aそれぞれの外表面と可撓性樹脂68との界面72bの摺動抵抗を低減可能なフッ素樹脂(例えば、ETFE)で形成されている。 
 よって、界面72aの摺動をより容易にすることができる。
Here, the surface of the coating 28 which is the outer surface of each of the plurality of optical fibers for detection light 14a is the sliding resistance of the interface 72b between the outer surface of each of the plurality of optical fibers for detection light 14a and the flexible resin 68. It is formed of a fluororesin (for example, ETFE) that can reduce the above.
Therefore, the sliding of the interface 72a can be made easier.
 また、外装筒状部材58の内壁の表面は、可撓性樹脂68に対する接着性を向上する表面改質が施されている。 
 よって、外装筒状部材58と可撓性樹脂68との界面の摺動を無くすことができ、可撓性樹脂68が摺動して検出光用光ファイバ14aの摺動を阻害する虞を無くすことができる。
In addition, the surface of the inner wall of the exterior tubular member 58 is subjected to surface modification that improves the adhesion to the flexible resin 68.
Therefore, sliding at the interface between the outer tubular member 58 and the flexible resin 68 can be eliminated, and there is no possibility that the flexible resin 68 slides and hinders the sliding of the optical fiber for detection light 14a. be able to.
 [第3実施形態]
 次に、本発明の第3実施形態について説明する。以下では、第2実施形態と同様の構成部材には同様の参照符号を付してその説明は省略し、第2実施形態と異なる部分のみを説明する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. Below, the same reference numerals are assigned to the same components as those in the second embodiment, and the description thereof is omitted, and only the parts different from those in the second embodiment will be described.
 本第3実施形態では、複数の検出光用光ファイバ14aとして、次のようなものを採用する。すなわち、検出光用光ファイバ14aの被覆28は、例えばETFEのようなフッ素樹脂をクラッド26の外周面を覆うように成形される。但し、この被覆28とクラッド26との接触面である界面は、物理的もしくは化学的に接合されていない。つまり、被覆28とクラッド26との界面では、二つの層が互いに光ファイバ長手軸Oの方向に摺動可能になっている。 In the third embodiment, the following are employed as the plurality of optical fibers for detection light 14a. That is, the coating 28 of the detection light optical fiber 14 a is formed so as to cover the outer peripheral surface of the clad 26 with a fluororesin such as ETFE. However, the interface which is the contact surface between the coating 28 and the clad 26 is not physically or chemically bonded. That is, in the interface between the coating 28 and the cladding 26, and is slidable in the direction of the two layers the optical fiber longitudinal axis O 2 to each other.
 このような構成の検出光用光ファイバ14aを用いる場合、図11に示すように、外装筒状部材58内に組み込む。すなわち、各検出光用光ファイバ14aの先端部における被覆28を除去し、その先端に反射部20が取り付けられた検出光用光ファイバ14aのクラッドと可撓性樹脂68とが、プローブ1の先端の固定部70で、接着により保持固定される。ここで、外装筒状部材58の内壁及び検出光用光ファイバ14aの被覆28は、可撓性樹脂68を介して強固に接着保持される。なお、外装筒状部材58を例えばPTFE等、被覆28を例えばETFE等、の接合性の低いフッ素樹脂等で形成した場合には、外装筒状部材58の内壁及び被覆28の外表面には、例えばNaエッチィングやプラズマ処理のような可撓性樹脂68に対する接着性を向上する表面処理が施されていることが望ましい。 When the optical fiber 14a for detection light having such a configuration is used, it is incorporated into the outer cylindrical member 58 as shown in FIG. That is, the cladding 28 of the detection light optical fiber 14a with the reflection portion 20 attached to the tip of the detection light optical fiber 14a and the flexible resin 68 are removed from the tip of the probe 1. The fixing portion 70 is held and fixed by adhesion. Here, the inner wall of the outer tubular member 58 and the coating 28 of the optical fiber for detection light 14 a are firmly bonded and held via the flexible resin 68. When the exterior cylindrical member 58 is formed of, for example, PTFE or the like, and the coating 28 is formed of a fluororesin or the like having a low bondability such as ETFE, the inner wall of the exterior cylindrical member 58 and the outer surface of the coating 28 are For example, it is desirable that a surface treatment that improves adhesion to the flexible resin 68 such as Na etching or plasma treatment is performed.
 このような構成とすることにより、検出光用光ファイバ14aのクラッド26と被覆28とが隣接する界面72cの一部が所望の範囲で固定され、それ以外の外装筒状部材58のプローブ長手軸Oの方向の全長における界面72cが、検出光用光ファイバ14aを外装筒状部材58に対して光ファイバ長手軸O方向に摺動可能とする摺動部として機能する。 With this configuration, a part of the interface 72c where the clad 26 and the coating 28 of the optical fiber for detection light 14a are adjacent is fixed within a desired range, and the probe longitudinal axis of the other outer cylindrical member 58 is fixed. interface 72c in the entire length direction of the O 1 functions as a sliding part to be slidable in the optical fiber longitudinal axis O 2 direction detection-light optical fiber 14a with respect to the outer tubular member 58.
 なお、図11では、図示の都合上、クラッド26と被覆28との界面72cは、厚みを持って示されているが、これは二つの層の接触部であって、実質的な厚みは有さない。 In FIG. 11, for convenience of illustration, the interface 72c between the clad 26 and the coating 28 is shown as having a thickness, but this is a contact portion between two layers and has a substantial thickness. No.
 以上のような構成の本第3実施形態による形状検出装置のプローブ1においても、上記第1及び第2実施形態における界面72a,72bと同様に、クラッド26と被覆28との界面72cは互いに摺動可能になっているため、検出光用光ファイバ14aが伸縮不可能な場合でも、外装筒状部材58を所望の曲率で湾曲させることが可能になる。 Also in the probe 1 of the shape detection device according to the third embodiment having the above-described configuration, the interface 72c between the clad 26 and the coating 28 is slidable with each other, like the interfaces 72a and 72b in the first and second embodiments. Since the optical fiber for detection light 14a cannot be expanded and contracted, the exterior cylindrical member 58 can be curved with a desired curvature.
 以上のように、本第3実施形態による形状検出装置では、複数の検出光用光ファイバ14aはそれぞれ、コア24と、コア24の外周面を覆っているクラッド26と、クラッドの外周面を覆っている被覆28と、を有し、摺動部は、複数の検出光用光ファイバ14aそれぞれにおける被覆28とクラッド26とが隣接する界面72cである。 
 この場合、複数の検出光用光ファイバ14aそれぞれにおける被覆28とクラッド26とが隣接する界面72cの一部が所望の範囲で固定され、それ以外の複数の検出光用光ファイバ14aの長手軸方向である光ファイバ長手軸Oの方向の全長において界面72cが摺動部となっている。 
 従って、適正な範囲を超えた光ファイバ長手軸Oの方向への被検出部22の摺動を規制することができ、また、複数の検出光用光ファイバ14aそれぞれの摺動を独立して行わせることができる。
As described above, in the shape detection apparatus according to the third embodiment, each of the plurality of detection light optical fibers 14a covers the core 24, the clad 26 covering the outer peripheral surface of the core 24, and the outer peripheral surface of the clad. The sliding portion is an interface 72c where the coating 28 and the clad 26 in each of the plurality of optical fibers for detection light 14a are adjacent to each other.
In this case, a part of the interface 72c where the coating 28 and the clad 26 are adjacent to each other in each of the plurality of detection light optical fibers 14a is fixed within a desired range, and the other longitudinal directions of the plurality of detection light optical fibers 14a are fixed. interface 72c is a sliding portion in the entire length direction of the optical fiber longitudinal axis O 2 is.
Accordingly, the sliding of the detected portion 22 in the direction of the optical fiber longitudinal axis O 2 exceeding the proper range can be restricted, and the sliding of each of the plurality of optical fibers for detection light 14a can be independently performed. Can be done.
 ここで、外装筒状部材58の内壁の表面及び複数の検出光用光ファイバ14aそれぞれの被覆28の表面の少なくとも一方は、可撓性樹脂68に対する接着性を向上する表面改質が施されている。 
 よって、外装筒状部材58と可撓性樹脂68との界面あるいは被覆28と可撓性樹脂68との界面の摺動を無くすことができ、可撓性樹脂68が摺動して検出光用光ファイバ14aの摺動を阻害する虞を無くすことができる。
Here, at least one of the surface of the inner wall of the outer cylindrical member 58 and the surface of the coating 28 of each of the plurality of optical fibers for detection light 14 a is subjected to surface modification that improves adhesion to the flexible resin 68. Yes.
Therefore, sliding at the interface between the outer cylindrical member 58 and the flexible resin 68 or the interface between the coating 28 and the flexible resin 68 can be eliminated, and the flexible resin 68 is slid to detect light. The possibility of hindering the sliding of the optical fiber 14a can be eliminated.
 [第4実施形態]
 以下、本発明の第4実施形態について説明する。以下では、第1実施形態と同様の構成部材には同様の参照符号を付してその説明は省略し、第1実施形態と異なる部分のみを説明する。
[Fourth Embodiment]
The fourth embodiment of the present invention will be described below. Below, the same reference numerals are given to the same components as those in the first embodiment, and the description thereof will be omitted, and only the parts different from the first embodiment will be described.
 上記第1実施形態では、可撓性樹脂68がルーメン66に、外装筒状部材58のプローブ長手軸Oの方向のほぼ全長に亘って充填されていたが、本第4実施形態においては、図12に示すように、外装筒状部材58のプローブ長手軸Oの方向において一部の範囲、望ましくは被検出部22の近傍、にのみ充填されている。このような部分的な可撓性樹脂68の充填を可能とするために、外装筒状部材58には、例えば被検出部22の近傍等の所望の位置に、外装筒状部材58の内側に可撓性樹脂68を供給可能な孔(もしくは切欠き)74が設けられている。可撓性樹脂68を充填した後は、少なくとも孔74の外側(長手軸方向の一部)に保護チューブ76を取り付けることで、この孔74が塞がれている。 In the first embodiment, the flexible resin 68 is lumen 66, which had been filled over substantially the entire length of the direction of the probe longitudinal axis O 1 of the outer tubular member 58, in the fourth embodiment, As shown in FIG. 12, only a part of the outer cylindrical member 58 in the direction of the probe longitudinal axis O 1 , preferably in the vicinity of the detected portion 22, is filled. In order to allow such partial filling of the flexible resin 68, the exterior cylindrical member 58 is placed at a desired position, for example, in the vicinity of the detected portion 22, inside the exterior cylindrical member 58. A hole (or notch) 74 through which the flexible resin 68 can be supplied is provided. After filling with the flexible resin 68, the hole 74 is closed by attaching a protective tube 76 at least outside the hole 74 (part in the longitudinal axis direction).
 また、その先端に反射部20が取り付けられた検出光用光ファイバ14aは、固定部70において外装筒状部材58と保持固定され、界面72dは外装筒状部材58のプローブ長手軸Oの方向の全長に亘って摺動可能になっている。 Further, detection-light optical fiber 14a of the reflective portion 20 is attached at its distal end is held fixed to the outer tubular member 58 of the fixing portion 70, the interface 72d is the direction of the probe longitudinal axis O 1 of the outer tubular member 58 Is slidable over the entire length.
 なお、界面72dは、外装筒状部材58(ルーメン66)と可撓性樹脂68との接触面に限定するものではなく、可撓性樹脂68と被覆28との接触面であっても良い。 The interface 72d is not limited to the contact surface between the exterior cylindrical member 58 (lumen 66) and the flexible resin 68, and may be the contact surface between the flexible resin 68 and the coating 28.
 以上のように、本第4実施形態による形状検出装置では、可撓性樹脂68は、複数の形状検出センサ10それぞれ設けられた少なくとも一つの被検出部22の近傍のみに充填され、摺動部は、外装筒状部材58の内壁と可撓性樹脂68の外表面とが隣接する界面72dの、外装筒状部材58の長手軸方向の全長であり、複数の検出光用光ファイバ14aはそれぞれ、可撓性樹脂68以外の部位で外装筒状部材58に固定されている。 
 従って、適正な範囲を超えた光ファイバ長手軸Oの方向への被検出部22の摺動を規制することができ、また、複数の検出光用光ファイバ14aそれぞれの摺動を独立して行わせることができる。 
 さらに、界面72dは、第1乃至第3実施形態における界面72a~72cと比較して短いため、湾曲時の摺動面の抵抗を小さく抑えることが可能になり、より信頼性の高い形状検出装置を提供可能になる。
As described above, in the shape detection device according to the fourth embodiment, the flexible resin 68 is filled only in the vicinity of at least one detected portion 22 provided for each of the plurality of shape detection sensors 10, and the sliding portion. Is the total length in the longitudinal axis direction of the exterior tubular member 58 at the interface 72d where the inner wall of the exterior tubular member 58 and the outer surface of the flexible resin 68 are adjacent to each other. The outer cylindrical member 58 is fixed to a portion other than the flexible resin 68.
Accordingly, the sliding of the detected portion 22 in the direction of the optical fiber longitudinal axis O 2 exceeding the proper range can be restricted, and the sliding of each of the plurality of optical fibers for detection light 14a can be independently performed. Can be done.
Furthermore, since the interface 72d is shorter than the interfaces 72a to 72c in the first to third embodiments, the resistance of the sliding surface at the time of bending can be suppressed, and a more reliable shape detection device. Can be provided.
 ここで、本第4実施形態による形状検出装置は、外装筒状部材58の一部に設けられ、外装筒状部材58内に可撓性樹脂68を充填可能な、少なくとも一つの孔74をさらに備える。 
 これにより、容易に可撓性樹脂68を充填することができる。
Here, the shape detection apparatus according to the fourth embodiment further includes at least one hole 74 that is provided in a part of the exterior cylindrical member 58 and can fill the exterior cylindrical member 58 with the flexible resin 68. Prepare.
Thereby, the flexible resin 68 can be filled easily.
 以上、本発明のさまざまな実施形態について説明してきたが、本発明は、上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内でさまざまな改良及び変更が可能である。例えば、当業者は、各実施形態を組み合わせた形状検出装置を想到することができる。 Although various embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various improvements and modifications can be made without departing from the scope of the present invention. . For example, those skilled in the art can conceive a shape detection device that combines the embodiments.

Claims (20)

  1.  検出光を出射する光源部、前記光源部から出射された検出光を導光する形状検出用の光ファイバ、前記光ファイバの曲率に応じて検出光の特性に変化を与える前記光ファイバに設けられた少なくとも一つの被検出部、及び、前記光ファイバを通して導光された検出光を検出する光検出部、をそれぞれ有している複数の形状検出センサと、
     前記複数の形状検出センサの複数の光検出部によって検出される検出光の特性の変化に基づいて前記被検出部の湾曲形状を算出する形状算出装置と、
     前記複数の形状検出センサの複数の光ファイバそれぞれの少なくとも一部がその内部に設置される外装筒状部材と、
     前記外装筒状部材の長手軸方向の少なくとも一部の、前記外装筒状部材と前記複数の光ファイバとの間に充填された可撓性樹脂と、
     前記複数の光ファイバをそれぞれ独立に当該光ファイバの長手軸方向に摺動可能とする摺動部と、
     を備えている、形状検出装置。
    A light source unit that emits detection light, an optical fiber for shape detection that guides the detection light emitted from the light source unit, and the optical fiber that changes the characteristics of the detection light according to the curvature of the optical fiber. A plurality of shape detection sensors each having at least one detected portion and a light detection portion for detecting detection light guided through the optical fiber;
    A shape calculation device for calculating a curved shape of the detected portion based on a change in characteristics of detection light detected by a plurality of light detection portions of the plurality of shape detection sensors;
    An exterior cylindrical member in which at least a part of each of the plurality of optical fibers of the plurality of shape detection sensors is installed;
    A flexible resin filled between the outer cylindrical member and the plurality of optical fibers, at least a portion of the outer cylindrical member in the longitudinal axis direction;
    A sliding portion that allows the plurality of optical fibers to slide independently in the longitudinal direction of the optical fiber;
    A shape detection apparatus.
  2.  前記摺動部は、前記外装筒状部材の内壁と前記可撓性樹脂の外表面とが隣接する界面である、請求項1に記載の形状検出装置。 The shape detection device according to claim 1, wherein the sliding portion is an interface where an inner wall of the exterior tubular member and an outer surface of the flexible resin are adjacent to each other.
  3.  前記外装筒状部材の内壁と前記可撓性樹脂の外表面とが隣接する前記界面の一部が所望の範囲で固定され、それ以外の前記外装筒状部材の前記長手軸方向の全長において前記界面が前記摺動部となっている、請求項2に記載の形状検出装置。 A part of the interface where the inner wall of the exterior cylindrical member and the outer surface of the flexible resin are adjacent is fixed within a desired range, and the other length of the exterior cylindrical member in the entire length in the longitudinal axis direction is fixed. The shape detection device according to claim 2, wherein an interface is the sliding portion.
  4.  前記外装筒状部材の内壁は、前記外装筒状部材に設けられた複数のルーメンの内壁であり、
     前記複数のルーメンそれぞれに前記複数の光ファイバの内の一本が配置され、
     前記可撓性樹脂が前記複数のルーメンのそれぞれに充填されている、請求項3に記載の形状検出装置。
    The inner wall of the outer tubular member is an inner wall of a plurality of lumens provided in the outer tubular member,
    One of the plurality of optical fibers is disposed in each of the plurality of lumens,
    The shape detection device according to claim 3, wherein each of the plurality of lumens is filled with the flexible resin.
  5.  前記複数のルーメンの内壁は、前記複数のルーメンの内壁と前記可撓性樹脂との前記界面の摺動抵抗を低減可能なフッ素樹脂で形成されている、請求項4に記載の形状検出装置。 The shape detection device according to claim 4, wherein inner walls of the plurality of lumens are formed of a fluororesin capable of reducing sliding resistance of the interface between the inner walls of the plurality of lumens and the flexible resin.
  6.  前記複数の光ファイバそれぞれの外表面は、前記可撓性樹脂に対する接着性を向上する表面改質が施されている、請求項4に記載の形状検出装置。 The shape detection device according to claim 4, wherein an outer surface of each of the plurality of optical fibers is subjected to surface modification that improves adhesion to the flexible resin.
  7.  前記摺動部は、前記可撓性樹脂と前記複数の光ファイバそれぞれとが隣接する界面である、請求項1に記載の形状検出装置。 The shape detection device according to claim 1, wherein the sliding portion is an interface where the flexible resin and each of the plurality of optical fibers are adjacent to each other.
  8.  前記可撓性樹脂と前記複数の光ファイバそれぞれとが隣接する前記界面の一部が所望の範囲で固定され、それ以外の前記外装筒状部材の前記長手軸方向の全長において前記界面が前記摺動部となっている、請求項7に記載の形状検出装置。 A part of the interface where the flexible resin and each of the plurality of optical fibers are adjacent is fixed within a desired range, and the interface is slid over the entire length of the exterior cylindrical member in the longitudinal axis direction. The shape detection apparatus according to claim 7, which is a moving part.
  9.  前記複数の光ファイバそれぞれの外表面は、前記複数の光ファイバそれぞれの外表面と前記可撓性樹脂との前記界面の摺動抵抗を低減可能なフッ素樹脂で形成されている、請求項8に記載の形状検出装置。 The outer surface of each of the plurality of optical fibers is formed of a fluororesin that can reduce sliding resistance at the interface between the outer surface of each of the plurality of optical fibers and the flexible resin. The shape detection apparatus described.
  10.  前記外装筒状部材の内壁の表面は、前記可撓性樹脂に対する接着性を向上する表面改質が施されている、請求項8に記載の形状検出装置。 The shape detection device according to claim 8, wherein the surface of the inner wall of the exterior tubular member is subjected to surface modification that improves adhesion to the flexible resin.
  11.  前記複数の光ファイバはそれぞれ、コアと、前記コアの外周面を覆っているクラッドと、前記クラッドの外周面を覆っている被覆と、を有し、
     前記摺動部は、前記複数の光ファイバそれぞれにおける前記被覆と前記クラッドとが隣接する界面である、請求項1に記載の形状検出装置。
    Each of the plurality of optical fibers has a core, a clad covering the outer peripheral surface of the core, and a coating covering the outer peripheral surface of the clad,
    The shape detection device according to claim 1, wherein the sliding portion is an interface where the coating and the cladding in each of the plurality of optical fibers are adjacent to each other.
  12.  前記複数の光ファイバそれぞれにおける前記被覆と前記クラッドとが隣接する前記界面の一部が所望の範囲で固定され、それ以外の前記光ファイバの前記長手軸方向の全長において前記界面が前記摺動部となっている、請求項11に記載の形状検出装置。 A part of the interface where the coating and the clad are adjacent to each other in the plurality of optical fibers is fixed within a desired range, and the interface is the sliding part in the entire length in the longitudinal axis direction of the other optical fibers. The shape detection device according to claim 11.
  13.  前記外装筒状部材の内壁の表面及び前記複数の光ファイバそれぞれの前記被覆の表面の少なくとも一方は、前記可撓性樹脂に対する接着性を向上する表面改質が施されている、請求項12に記載の形状検出装置。 The surface modification which improves the adhesiveness with respect to the said flexible resin is given to at least one of the surface of the inner wall of the said exterior cylindrical member, and the surface of the said coating | cover of each of these optical fiber. The shape detection apparatus described.
  14.  前記可撓性樹脂は、前記複数の形状検出センサそれぞれ設けられた前記少なくとも一つの被検出部の近傍のみに充填され、
     前記摺動部は、前記外装筒状部材の内壁と前記可撓性樹脂の外表面とが隣接する界面の、前記外装筒状部材の前記長手軸方向の全長であり、
     前記複数の光ファイバはそれぞれ、前記可撓性樹脂以外の部位で前記外装筒状部材に固定されている、請求項1に記載の形状検出装置。
    The flexible resin is filled only in the vicinity of the at least one detected portion provided in each of the plurality of shape detection sensors,
    The sliding portion is the entire length in the longitudinal axis direction of the exterior tubular member at the interface where the inner wall of the exterior tubular member and the outer surface of the flexible resin are adjacent to each other.
    The shape detection device according to claim 1, wherein each of the plurality of optical fibers is fixed to the exterior tubular member at a portion other than the flexible resin.
  15.  前記外装筒状部材の一部に設けられ、前記外装筒状部材内に前記可撓性樹脂を充填可能な、少なくとも一つの孔をさらに備える、請求項14に記載の形状検出装置。 The shape detection device according to claim 14, further comprising at least one hole provided in a part of the outer tubular member and capable of filling the flexible resin in the outer tubular member.
  16.  前記外装筒状部材の座屈もしくはねじれを低減可能な剛性補強部材をさらに備える、請求項1に記載の形状検出装置。 The shape detection device according to claim 1, further comprising a rigidity reinforcing member capable of reducing buckling or twisting of the outer tubular member.
  17.  前記剛性補強部材は、線材を編み込んだ編組である、請求項16に記載の形状検出装置。 The shape detection device according to claim 16, wherein the rigidity reinforcing member is a braid in which a wire is knitted.
  18.  前記剛性補強部材は、線材を螺旋状に形成したコイルである、請求項16に記載の形状検出装置。 The shape detection apparatus according to claim 16, wherein the rigidity reinforcing member is a coil in which a wire is formed in a spiral shape.
  19.  前記複数の形状検出センサの内の少なくとも一つは、前記光源部及び/又は前記光検出部を、前記複数の形状検出センサの内の別の少なくとも一つと共用する、請求項1に記載の形状検出装置。 The shape according to claim 1, wherein at least one of the plurality of shape detection sensors shares the light source unit and / or the light detection unit with at least one other of the plurality of shape detection sensors. Detection device.
  20.  前記複数の光ファイバはそれぞれ、内視鏡装置の挿入部の長手軸方向に沿って配置され、
     前記形状算出装置は、算出した前記被検出部それぞれの湾曲形状に基づいて前記挿入部の湾曲形状を算出する、請求項1乃至19の何れか一つに記載の形状検出装置。
    Each of the plurality of optical fibers is disposed along the longitudinal axis direction of the insertion portion of the endoscope apparatus,
    The shape detection device according to claim 1, wherein the shape calculation device calculates a curved shape of the insertion portion based on the calculated curved shape of each detected portion.
PCT/JP2016/066266 2016-06-01 2016-06-01 Shape detection device WO2017208402A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018520289A JPWO2017208402A1 (en) 2016-06-01 2016-06-01 Shape detection device
PCT/JP2016/066266 WO2017208402A1 (en) 2016-06-01 2016-06-01 Shape detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/066266 WO2017208402A1 (en) 2016-06-01 2016-06-01 Shape detection device

Publications (1)

Publication Number Publication Date
WO2017208402A1 true WO2017208402A1 (en) 2017-12-07

Family

ID=60478241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066266 WO2017208402A1 (en) 2016-06-01 2016-06-01 Shape detection device

Country Status (2)

Country Link
JP (1) JPWO2017208402A1 (en)
WO (1) WO2017208402A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105798A (en) * 1992-09-30 1994-04-19 Terumo Corp Catheter tube
JPH07204159A (en) * 1993-10-05 1995-08-08 Asahi Optical Co Ltd Bend part of endoscope
JP2007296141A (en) * 2006-04-28 2007-11-15 Olympus Corp Method of manufacturing flexible tube for endoscope and flexible tube for endoscope
WO2009099434A1 (en) * 2008-02-04 2009-08-13 University Of Washington Flexible endoscope tip bending mechanism using optical fibers as tension members
JP2012161591A (en) * 2011-01-19 2012-08-30 Fujifilm Corp Endoscope
JP2013250209A (en) * 2012-06-01 2013-12-12 Olympus Corp Bundle type fiber sensor
JP2014226319A (en) * 2013-05-22 2014-12-08 オリンパス株式会社 Curved sensor
JP2015116390A (en) * 2013-12-19 2015-06-25 オリンパス株式会社 Insertion device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105798A (en) * 1992-09-30 1994-04-19 Terumo Corp Catheter tube
JPH07204159A (en) * 1993-10-05 1995-08-08 Asahi Optical Co Ltd Bend part of endoscope
JP2007296141A (en) * 2006-04-28 2007-11-15 Olympus Corp Method of manufacturing flexible tube for endoscope and flexible tube for endoscope
WO2009099434A1 (en) * 2008-02-04 2009-08-13 University Of Washington Flexible endoscope tip bending mechanism using optical fibers as tension members
JP2012161591A (en) * 2011-01-19 2012-08-30 Fujifilm Corp Endoscope
JP2013250209A (en) * 2012-06-01 2013-12-12 Olympus Corp Bundle type fiber sensor
JP2014226319A (en) * 2013-05-22 2014-12-08 オリンパス株式会社 Curved sensor
JP2015116390A (en) * 2013-12-19 2015-06-25 オリンパス株式会社 Insertion device

Also Published As

Publication number Publication date
JPWO2017208402A1 (en) 2019-03-28

Similar Documents

Publication Publication Date Title
US10436578B2 (en) Endoscope apparatus
WO2015163210A1 (en) Endoscope device
WO2014188885A1 (en) Curved sensor
JP2007044412A (en) Endoscope insertion shape detecting probe
US10178945B2 (en) Shape sensor and tubular insertion system
US10064542B2 (en) Bending apparatus with bending direction restriction mechanism
JP5963563B2 (en) Curve sensor
WO2017191685A1 (en) Shape sensor system
US9435639B2 (en) Optical sensor
US10302933B2 (en) Insertion apparatus
US10813537B2 (en) Shape detection device
WO2017208402A1 (en) Shape detection device
WO2017122330A1 (en) Tubular flexible shape measurement device
JP6424270B2 (en) Fiber sensor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018520289

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16904027

Country of ref document: EP

Kind code of ref document: A1