WO2017207830A1 - Method and system for detecting and identifying rail vehicles on railways and warning system - Google Patents

Method and system for detecting and identifying rail vehicles on railways and warning system Download PDF

Info

Publication number
WO2017207830A1
WO2017207830A1 PCT/ES2016/070420 ES2016070420W WO2017207830A1 WO 2017207830 A1 WO2017207830 A1 WO 2017207830A1 ES 2016070420 W ES2016070420 W ES 2016070420W WO 2017207830 A1 WO2017207830 A1 WO 2017207830A1
Authority
WO
WIPO (PCT)
Prior art keywords
railway
type
railway vehicle
signal
track
Prior art date
Application number
PCT/ES2016/070420
Other languages
Spanish (es)
French (fr)
Inventor
Enrique VALVERDE AGUILAR
Eduardo BERTRÁN ALBERTI
Original Assignee
Agrupación Guinovart Obras Y Servicios Hispania, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agrupación Guinovart Obras Y Servicios Hispania, S.A. filed Critical Agrupación Guinovart Obras Y Servicios Hispania, S.A.
Priority to ES201890074A priority Critical patent/ES2712661B1/en
Priority to PCT/ES2016/070420 priority patent/WO2017207830A1/en
Publication of WO2017207830A1 publication Critical patent/WO2017207830A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L29/00Safety means for rail/road crossing traffic
    • B61L29/24Means for warning road traffic that a gate is closed or closing, or that rail traffic is approaching, e.g. for visible or audible warning
    • B61L29/28Means for warning road traffic that a gate is closed or closing, or that rail traffic is approaching, e.g. for visible or audible warning electrically operated

Definitions

  • the object of the present invention relates to a method and a system for detecting and identifying railway vehicles on railway tracks and a warning system.
  • the method in addition to identifying the type of railway vehicle (ave train, alvia train, freight train, commuter train, construction machine, locomotive, etc.) that is circulating on the tracks, also informs whether the route by which This railway vehicle is circulating is the main road (in which the triaxial sensors that capture the vibratory signal at the passage of the rail vehicle are placed) or the adjacent tracks. This helps prevent situations that may pose a risk to people when maintenance work or works are being carried out on the roads through which the rail vehicle is traveling.
  • Patent document US 20150251674 A1 presents a method of detection by an acoustic generator placed in a mobile device (train), which can be adjusted with respect to its frequency spectrum for the identification of the mobile device by detecting the backscattered light between A small and finite group of frequencies. It is an active identification method, since it is the train itself that transmits a "signature" (discrete set of frequencies), which are detected as the vehicle passes, recognizing and identifying it.
  • a spectral analysis is not properly done in a frequency range as in the present invention, but is only detected if the discrete set of frequencies received is one or the other to recognize the type of vehicle. Obviously this requires good coordination between the infrastructure manager (tracks) and the rail operator.
  • the method of detecting and identifying railway vehicles on railway tracks of the present invention employs at least one triaxial sensor (accelerometric or microphonic type) that continuously captures the generated vibration signal by a railway vehicle circulating on any type of railway track, to detect the approach of railway vehicles on the way to work areas, and identify both the type of railway vehicle that is circulating, and the route through which it is traveling, with option to generate different actions (types of reports, warnings or alarms) in accordance with the type of railway vehicle detected.
  • a triaxial sensor acceleration or microphonic type
  • the method takes advantage of a redundancy between two different technologies, an analog subsystem and another digital subsystem to increase security in the detection of the rail vehicle.
  • a first object of the invention relates to a method of detecting and identifying railway vehicles on railway tracks, a railway vehicle being understood as any type of rolling stock (vehicle equipped with wheels capable of driving on a railway track).
  • This method in a first scenario, where there is only one main road and there are no adjacent roads, comprises the following steps: generating an experimental database comprising a plurality of discrete spectra A corresponding to vibratory signals generated by a type of railway vehicle circulating on any type of railway track when the type of railway vehicle circulates on the main track on which at least one sensor (of triaxial or microphone accelerometric type) configured to pick up a vibratory signal from the passage of a railway vehicle is placed; continuously capture the signal corresponding to the vibration generated by the railway vehicle circulating on any type of railway track by means of the sensor disposed in said track, where the railway tracks can be formed by at least two rails, a set of fixings, and a type of support or a combination of a type of support and a type of sleeper; digitize the captured vibr
  • the method is also able to analyze a second scenario, in which in addition to the main road, adjacent roads are also taken into account.
  • it is necessary to add additional steps to the previous stages, so that it comprises expanding the experimental database with a plurality of discrete spectra B (B1, B2, ...) corresponding to a vibration generated by a type of railway vehicle traveling on any type of railway track when the type of railway vehicle is traveling on an adjacent track; make a second correlation of the discrete spectrum of the signal with each of the discrete spectra B (B1, B2, ...) of the database and obtain a correlation index for each correlation made; and select from the database the discrete spectrum B that has a higher correlation index from those correlation rates that are greater than a predefined threshold, when at least one of the correlation indexes exceeds the predefined threshold, where said discrete spectrum B indicates the type of railway vehicle and the route on which it is traveling.
  • the method activates different alarm levels that indicate the type of railway vehicle detected and whether the route on which it is traveling is the main road or an adjacent road.
  • first digital detection a basic first level of digital detection
  • second digital detection a second level of digital detection
  • a second digital detection of the railway vehicle is also performed, by means of an analysis of a set of pre-established frequency subbands of the digitized signal, so that if all the samples of the set of frequency subbands exceed a threshold u2 predefined for a preset time t2 then a second digital alarm level is activated indicating that said second detection has been performed.
  • the following steps have to be carried out: experimentally measure the vibratory signal generated by each type of railway vehicle circulating on any type of railway track when the railway vehicle circulates on the main road in which it has been placed the sensor and when the railway vehicle circulates on at least one adjacent track; digitize the vibratory signal; and calculate a discrete Fourier transform of the digitized vibratory signal, generating the discrete spectrum for each type of railway vehicle circulating on any type of railway track.
  • an analog detection is also carried out, which seeks the speed and safety in the detection (only the presence or absence of the railway vehicle is reported), so that if the analog signal has a longer duration or equal to a preset time t3 and an amplitude greater than or equal to a predefined threshold u3 then an analog alarm level is activated indicating that said analog detection has been performed and the signal is monitored again; otherwise the signal is also monitored again.
  • the method additionally transmits pilot tones to a receiving unit to report the status of the sensor, connections and links.
  • the method stores the data corresponding to said unknown railway vehicle for further learning and recognition of new railway vehicles.
  • a second object of the invention relates to a system for detecting and identifying railway vehicles on railway tracks such that it comprises: at least one sensor arranged in the track configured to continuously capture a signal corresponding to a vibration generated by a railway vehicle circulating on any type of railway track; computational means configured to: store an experimental database comprising a plurality of signals and their corresponding discrete spectra, where each signal corresponds to a vibration generated by a railway vehicle circulating on any type of railway track; digitize the captured vibratory signal; calculate a discrete Fourier transform of said signal to obtain a discrete signal spectrum; correlate the discrete spectrum of the signal with each of the discrete spectra of the database that correspond to the same type of route through which the railway vehicle circulates, and obtain a correlation index for each correlation made; and select the discrete spectrum of the database that has a higher correlation index from those correlation indexes that are greater than a predefined threshold, when at least one of the correlation indexes exceeds the predefined threshold.
  • the railway vehicle detection and identification system on railway tracks comprises an alarm level activation system when the railway vehicle is detected and / or identified.
  • a third object of the invention relates to a warning system comprising the detection and identification system of railway vehicles on railway tracks.
  • the method of the present invention has the following advantages over current detection methods:
  • the rail vehicle does not actively participate in its own identification as ID, RFID codes, or the transmission of other identifiers from the train are not used. Nor does it require installing generators in rail vehicles, this is a passive detection method. This achieves greater operational autonomy between infrastructure management, vehicle operation and supervision or maintenance tasks.
  • Figure 1 Shows a flow chart of the method of the present invention for the case in which only the main road exists (there are no adjacent roads). It is observed how the digital subsystem comprises the first correlation of the third level of digital detection.
  • Figure 2. Shows a flow chart of the method of the present invention for the case in which in addition to the existence of the main route, there are also adjacent routes. It is observed how the digital subsystem then comprises the first and the second correlation of the third level of digital detection.
  • Figures 3a and 3b.- show a flow chart of the method of the present invention for the most complete case, in which in addition to the main road, there are also adjacent roads. It is observed how the digital subsystem comprises the three levels of digital detection, first level, second level and third level of digital detection (first and second correlation).
  • Figure 3b is the continuation of Figure 3a.
  • Figure 4. Shows an example of an experimental database, which contains parameters such as the type of railway vehicle, type of support and type of sleeper and pre-memorized patterns (discrete spectra) corresponding to different types of railway vehicles circulating through different ways.
  • Figure 5. Shows the system devices that allow this method and the warning system to be carried out.
  • a first object of the present invention describes a method of detecting and identifying railway vehicles on railway tracks comprising the following steps:
  • a signal (continuous measurements on the x, y, z axes) corresponding to a vibration generated by a railway vehicle traveling on any type of railway via sensors arranged at one or more points of interest at along the way.
  • the sensors can be accelerometric or microphone type, preferably triaxial accelerometric sensors.
  • Amplify (with operational amplifiers or low frequency transistors) and filter the vibratory signal captured by the sensor to eliminate noise caused by other sources outside the approach of a railway vehicle on the track.
  • This first filtering is carried out with low-pass filters of cut-off frequency of the order of a few kHz (not more than 5 kHz, and typically of the order of kHz or 500 Hz, according to the accelerometric sensor used), preserving in the frequency band of interest, the information in amplitude and frequency.
  • the vibrating signal captured is sent, in parallel, to two subsystems, an analog subsystem, which seeks the speed and safety in the detection of the rail vehicle (only the presence or absence of the rail vehicle is reported) and another digital subsystem, which, in addition to confirming said detection at different levels, identifies the type of railway vehicle and informs of the route through which said railway vehicle is traveling.
  • an analog subsystem which seeks the speed and safety in the detection of the rail vehicle (only the presence or absence of the rail vehicle is reported)
  • another digital subsystem which, in addition to confirming said detection at different levels, identifies the type of railway vehicle and informs of the route through which said railway vehicle is traveling.
  • the analog subsystem is responsible for checking whether the vibrating signal has a duration greater than or equal to a preset time t3 and an amplitude greater than or equal to a predefined threshold u3, thus preventing short pulses and other noise (interference, non-ideal mechanical contacts, discontinuities, road bumps, work / maintenance machinery ...) can generate false alarms for the detection of a railway vehicle. If the analog vibrating signal has a duration greater than or equal to t3 and an amplitude greater than or equal to the threshold u3, then a first analog alarm level is activated, indicative of the presence of a railway vehicle. Subsequently, whether or not the rail vehicle has been detected, the signal is monitored again.
  • the processing is totally analog, so it does not depend on digital aspects, such as program counters, which in the face of strong electromagnetic interference (for example, construction machinery) could deceive the iterative execution of the algorithms (erroneous program counter jumps, partial erasure or destruction of memories, etc).
  • This analog subsystem comprises the following elements:
  • a low pass filter (can be RC type, and does not necessarily have to be active), with low thermal variation and environmental robustness, with low cutoff frequency, of the order of a few Hz (at most hundreds of Hz, although usually tens of Hz ).
  • This filter acts as an integrator, since it needs a minimum of continuity in the vibrations. It is important to adjust the time constant of this filter: a slow adjustment may not fire on short vehicles or, simply, locomotives without wagons, while a quick adjustment may trigger for the mentioned false alarms. As indicative, they are considered time constants of the order of 2 to 15 seconds.
  • An envelope detector (preferably formed with a circuit consisting of diodes, resistors and capacitors) whose output will be to detect the envelope (amplitude) of the vibratory signals.
  • a level detector (comparator circuit type) connected to the output of the envelope detector, which activates the detection when its output exceeds a predefined trigger threshold.
  • the detector is implemented as an analog comparator, whether based on transistors or operational amplifiers.
  • the level detector In the most basic case, the level detector only warns of the presence or absence of a railway vehicle. While in a more complete case, the level detector (with a window comparator) reports said detection with three levels of reliability (confidence): safe presence of railway vehicle, safe absence and uncertainty. To adjust the sensitivity of this level detector depending on the type of track, a precalibration is made between selectable values with a resistive divider and a switch (which can be mechanical or a resistance network adjustable by keyboard using CMOS technology switches).
  • the digital subsystem acts independently of the analog subsystem, complementing it, since in addition to corroborating the presence of the railway vehicle, it also identifies the type of railway vehicle that is circulating and informs whether the route through which said railway vehicle is traveling is the main route (in which the sensor (s) are placed) or adjacent tracks.
  • the digital subsystem comprises an analog / digital (A / D) converter of not less than 8 bits, for the digitalization of the captured vibratory signal and which follows a previous level conditioner (amplification to condition the output level of the sensors to the dynamic range of the A / D converters, to take advantage of their benefits, and pre-filtered to prevent the inevitable environmental noise or causes beyond the passage of a railway vehicle could mask future decisions), all with or without a sampling and maintenance device (S&H sample-and-hold subsystem, responsible for maintaining constant the signal of the sensors while the process of translating the analog domain into a digital word intelligible by the subsequent microprocessors), depending on the A / D converter technology used .
  • a / D converter of not less than 8 bits
  • the sampling rate must be a theoretical minimum of 10 kHz, preferably a minimum of 50 kHz, although this value is susceptible to a wide range of variation between Hz and kHz, depending on the accelerometric sensor used, of the resolution ( in "g", a unit that takes as a reference the acceleration of the desired gravity) and sensitivity, as some sensors offer different benefits by varying the sampling frequency (speed at which the processor acquires the samples (digital words) of the accelerometers).
  • This digital subsystem comprises three levels of detection of railway vehicles: a first level of basic and very fast digital detection, a second level of digital detection of a higher and more reliable level than the first level of detection and a third level of digital detection which is the one that in addition to detecting the railway vehicle, identifies the type of a railway vehicle and provides information on whether the passage of said railway vehicle is produced by the main road (in which the triaxial sensors are placed) or by the adjacent tracks. Knowing whether the rail vehicle is passing through the main road or adjacent roads is decisive, since in this way, in the case that the rail vehicle is passing through the adjacent tracks and not the main track, It is not necessary that people who are carrying out maintenance work on this road withdraw work equipment (machinery), beyond respecting the gauge, and can continue with their work.
  • machineinery work equipment
  • a first level of digital detection which comprises performing a first digital detection of the railway vehicle, so that if the digitized signal has a duration greater than or equal to a predetermined time t1 and an amplitude greater than or equal to a predefined threshold u1 then it is activated a first digital alarm level indicating that said first detection (presence of railway vehicle) has been performed. Subsequently, whether the first digital alarm level has been activated or not, a second level of digital detection would be evaluated.
  • this first level of detection is activated by recording activity maintained in the sensor for a period of time. If there is an output of amplitude greater than a predefined threshold of "g" in the sensor during a whole temporary window of long enough length (about 10 seconds) so that the passage of a railway vehicle is not confused with a vibration for other reasons , like tapping on the track.
  • This level also informs the direction of the approach of the railway vehicle (due to relative amplitudes between different temporary bursts of sampling, since the amplitude of vibration increases when the railway vehicle approaches the sensor, and decreases when moving away; of the degree of proximity of the railway vehicle and of the passing speed of the railway vehicle.
  • a second level of digital detection which comprises performing a second digital detection of the railway vehicle, by means of an analysis of the presence of energy (of vibrations) at the exit of a bank of digital filters each adjusted to a different frequency band within a set of preset frequency subbands of the digitized signal, so that if all frequency subbands exceed a predefined threshold u2 for a preset time t2 then a second digital alarm level is activated indicating that said second detection has been made (presence of railway vehicle). Subsequently, whether the second digital alarm level has been activated or not, a third level of digital detection would be evaluated.
  • this second level of detection detects vibrations around a minimum and predefined set of between 2 and 5 frequency subbands, allowing a certain degree of tolerances, to identify the vibrations corresponding to the approximation of railway vehicles of other types of vibrations. For this, it is monitored whether the outputs of digital filters type FIR (finite impulse response, more stable) or MR (infinite impulse response, shorter calculation time), pass-band type and adjusted to the frequencies that contain higher Information (of the order of 1 to 10 Hz) exceeds a predefined threshold u2 for a preset time t2 (approximately of the order of 2 to 15 seconds). If all the outputs of the digital filters exceed said predefined threshold u2 during the preset time t2, the corresponding alarm is activated.
  • FIR finite impulse response, more stable
  • MR infinite impulse response, shorter calculation time
  • the approaching railway vehicle alarm is activated.
  • vibratory energy is detected in the 5 bands but does not exceed the threshold u2 during time t2 or vibrational energy is detected that exceeds the threshold u2 during time t2 in one, two, three or four of the bands (se understand that if there is no vibratory energy in any of the 5 frequency bands, no railway vehicle is approached), then the filtering is repeated for a new frame of acceleration measurements.
  • the database has been generated experimentally and comprises a plurality of discrete spectral patterns, where each discrete spectrum corresponds to a vibration generated by a particular type of railway vehicle circulating on any type of railway track, where the railway tracks are formed by a type of support (as is the case of the plate track) or a combination of a type of support and a type of crossbeam (as is the case of ballast with wooden or concrete sleepers).
  • the following steps have been carried out: on the one hand, experimentally measure the vibratory signal generated by each type of railway vehicle traveling on any type of track when the railway vehicle travels on the same track (main track ) on which the sensors have been placed, and on the other hand, experimentally measure the vibratory signal generated by each type of railway vehicle circulating on any type of track when the railway vehicle circulates along adjacent tracks (usually there will only be one adjacent track, however, there may be more than one adjacent track); digitize the vibratory signals; and calculate the discrete Fourier transform of said digitized vibratory signals, generating, on the one hand, the discrete spectra for each type of railway vehicle circulating on any type of track when the railway vehicle circulates on the same track in which they have been placed the sensors (discrete spectra A) and on the other hand, the discrete spectra for each type of railway vehicle circulating on any type of track when the railway vehicle is traveling on an adjacent track (discrete spectra B1 (adjacent track), B2 (adjacent track
  • the discrete spectra B (B1, B2, 7) differ from the discrete spectra A mainly in two aspects: its lower amplitude (the sensor measures the vibratory signal that comes from the adjacent paths and not from the main path in which the sensor is placed) and a greater attenuation of the high frequencies with respect to the low frequencies, given the low-pass behavior of the propagation of mechanical vibration waves on the ground.
  • This third level of digital detection calculates a discrete Fourier transform of the vibratory signal captured by the sensor (s) to obtain the discrete spectrum of said signal.
  • the discrete spectrum A that has a higher correlation index is selected from the database from those correlation indexes that are greater than a predefined threshold (for example, correlation index threshold> 0.7), in this case, if this correlation index is found, an alarm level is activated which, in addition to identifying the type of railway vehicle being circulated, also identifies that the route through the one that circulates is the main route (where the sensors are installed) and the signal would be captured and monitored again.
  • a predefined threshold for example, correlation index threshold> 0.7
  • the discrete spectrum B (B1, B2, 7) that has a higher correlation index is selected from the database among those correlation rates that are greater than a predefined threshold (for example, index threshold of correlation> 0.7), in this case, if said correlation index is found, an alarm level is activated which, in addition to identifying the type of railway vehicle that is traveling, also identifies the adjacent route through which it circulates, of such so it is not necessary for people who are carrying out maintenance work on the main road (in which the sensors are placed) to remove the work equipment placed on said main road, and the signal would be captured and monitored again.
  • a predefined threshold for example, index threshold of correlation> 0.7
  • the signal would be re-monitored and a presence information of the unidentified railway vehicle type would be stored (if there is a railway vehicle ), for the management of a database that can be used, for example, for the subsequent learning and recognition of new railway vehicles.
  • the stored information may contain data such as the hour and minute and / or the discrete spectrum of vibrations produced, or only its main parameters to reduce storage requirements.
  • the correlation operation involves comparing the sequences of samples corresponding to a vibratory burst with other sequences corresponding to type bursts that identify different situations, depending on whether the identification of the type of railway vehicle or the identification of the type of passageway is sought.
  • the term correlate is emphasized because mathematically it allows comparison to be made regardless of the start time of each sequence, only by its form.
  • the term correlate refers to the correlation of spectral samples: this means making a fast Fourier transform (FFT type), which generates a sequence of discrete samples, each corresponding to a certain frequency (hence the name of spectral samples), and this is the sequence that is correlated with discrete spectrum patterns.
  • FFT type fast Fourier transform
  • Figure 4 shows a database (table) containing the discrete spectra of pre-memorized patterns in which there are 3 tracks (the main track and two adjacent tracks) where X, Y, Z, ... they represent different types of railway vehicles (for example Alvia, AVE, locomotive, goods, commuter trains, ). Each railway vehicle generates a spectrum of vibrations depending on the type of track on which it is traveling, so there are several spectrum patterns (frequencies that are activated and amplitudes at the most significant frequencies) for each type of railway vehicle.
  • Table 4 shows a database (table) containing the discrete spectra of pre-memorized patterns in which there are 3 tracks (the main track and two adjacent tracks) where X, Y, Z, ... they represent different types of railway vehicles (for example Alvia, AVE, locomotive, goods, commuter trains, ).
  • Each railway vehicle generates a spectrum of vibrations depending on the type of track on which it is traveling, so there are several spectrum patterns (frequencies that are activated and amplitude
  • the column relating to the discrete spectra A refers to the pre-memorized patterns corresponding to the discrete spectrum of different types of railway vehicles traveling on one type of track, when the passageway is the main track, on which the / the sensors
  • Columns related to discrete spectra B (column B1 and B2) refer to the pre-memorized patterns corresponding to the discrete spectrum of the different types of railway vehicles circulating along the adjacent tracks, where the discrete spectra B1 correspond to the adjacent track and the discrete spectra B2 correspond to the adjacent track2.
  • the data that is obtained as each stage of the method is executed (presence of railway vehicles on track, types of railway vehicles, etc.) are stored locally (on a measurement basis) and transmitted by cable or radio to a receiving unit ( alarm center, centralized control rooms, maintenance brigades that are working on the affected roads, etc) that manages them.
  • a receiving unit alarm center, centralized control rooms, maintenance brigades that are working on the affected roads, etc.
  • the different connections and links between the system elements can be made by cable or by wireless technology.
  • the method comprises transmitting, continuously or discontinuously, pilot tones (fixed frequencies) or digital codes, to a receiving unit to inform (in fault tolerant applications) of the state of attention of the sensors and the reliability of the connections and of the links (radio or wired).
  • Figure 1 shows the method of the present invention represented by a flow chart for the case in which only the main road exists (there are no adjacent roads).
  • the analog subsystem is observed, and on the other hand, and running in parallel, the digital subsystem comprising the first correlation of the third level of digital detection, where said first correlation allows to identify the type of railway vehicle and provides information on if the passage of said railway vehicle occurs through the main road (in which the triaxial sensors are placed) or not. Therefore, in this figure 1 neither the first level of digital detection nor the second level of digital detection is shown.
  • step 100 the method continuously captures and monitors the vibratory signal.
  • step 101 the method performs noise filtering and level conditioning.
  • step 102 analog subsystem
  • step 1 10 digital subsystem
  • step 104 the method determines if a predefined threshold has been exceeded for a while. If this threshold is exceeded an alarm is activated indicative of the presence of a vehicle, step 105, and the method continues in step 100. If the predefined threshold is not exceeded for a period of time no railway vehicle presence detection alarm is activated and the method continues in step 100.
  • step 1 10 the method digitizes the captured vibratory signal (step 1 11) and then, in step 112, the discrete Fourier transform of said signal is calculated to obtain a discrete spectrum of the signal.
  • step 113 a first correlation of the discrete spectrum of the signal is made with each of the discrete spectra A of the database obtaining a correlation index for each correlation made, and it is verified (step 1 14) if the discrete spectrum of the signal coincides with some discrete spectrum A. If it coincides, the method activates an alarm (step 1 15) informing of the type of railway vehicle and that the route through which it circulates is the main route and returns to the stage 100; otherwise (if none match) it also returns to stage 100.
  • Figure 2 shows the method of the present invention represented by a flow chart for the case in which in addition to the main path, there are also adjacent paths.
  • the digital subsystem comprises the first correlation and a second correlation of the third level of digital detection. Therefore, this figure 2 comprises the flowchart of figure 1, where in the event that no discrete spectrum A coincides with the discrete spectrum of the signal, instead of returning to step 100, a second one would be carried out correlation of the discrete spectrum of the signal with each of the discrete spectra B (B1, B2, ...) of the database (step 1 16) obtaining a correlation index for each correlation made, and is verified (step 1 17) if the discrete spectrum of the signal coincides with some discrete spectrum B (B1, B2, ).
  • step 1 18 the method activates an alarm (step 1 18) informing of the type of railway vehicle and the route through which it circulates and returns to stage 100; otherwise (if none match), the data corresponding to the unknown railway vehicle (if any) is saved (stage 1 19) and returns to stage 100.
  • Figure 3 shows the method of the present invention represented by another flow chart, where you can see, on the one hand, the analog subsystem (which is the same as in Figure 1 and 2) and on the other hand, and operating in parallel, the digital subsystem which in this case comprises the first level of digital detection, the second level of digital detection and the third level of digital detection, where the third level of detection comprises the first and the second correlation.
  • the stages of the digital subsystem 210 of this figure 3 are listed below.
  • the method digitizes the captured vibratory signal and then, in step 212 is performed the first level of digital detection, where it is evaluated whether or not there is a railway vehicle detection (step 213).
  • step 214 the method activates a first digital alarm level (step 214) and goes to step 215, while if there has been no rail vehicle detection, it would go directly to step 215.
  • step 215 the second level of digital detection is performed, where it is also evaluated whether there is a detection or not of a railway vehicle (step 216). If there has been a railway vehicle detection, the method activates a second digital alarm level (step 217) and goes to step 218, while if there has been no railway vehicle detection it would go directly to step 218.
  • the method would execute the third level of digital detection (first and second correlation) and therefore, the same steps as the method of Figure 2, that is, in step 218, the discrete Fourier transform of said signal is calculated for Obtain a discrete signal spectrum.
  • step 219 a first correlation of the discrete spectrum of the signal is made with each of the discrete spectra A of the database obtaining a correlation index for each correlation made, and it is verified (step 220) if the discrete spectrum of the signal coincides with some discrete spectrum A.
  • the method activates an alarm (step 221) informing of the type of railway vehicle and that the route through which it circulates is the main route and returns to stage 100 ; otherwise (if none match) a second correlation of the discrete spectrum of the signal is made with each of the discrete spectra B (B1, B2, ...) of the database (step 222) obtaining an index of correlation for each correlation made, and it is verified (step 223) if the discrete spectrum of the signal coincides with some discrete spectrum B (B1, B2, ).
  • the method activates an alarm (step 224) informing of the type of railway vehicle and the route through which it circulates and returns to stage 100; otherwise (if none match), the data corresponding to the unknown railway vehicle (if any) is saved (step 225) and returns to step 100.
  • a second object of the invention describes a system comprising the sensors and computational means (computer with processor) configured to carry out the above method.
  • said system therefore comprises at least one sensor (3) arranged in the path configured to continuously capture and monitor a signal corresponding to a vibration generated by a railway vehicle traveling on any type of track; computational means (4) configured to: store an experimental database comprising a plurality of signals and their corresponding discrete spectra, where each signal corresponds to a vibration generated by a railway vehicle circulating in any way, digitize the captured vibratory signal , calculate a discrete Fourier transform of said signal to obtain a discrete spectrum of the signal, correlate the discrete spectrum of the signal with each of the discrete spectra of the database that correspond to the same type of path through which it circulates the railway vehicle, and obtain a correlation index for each correlation made, and select the discrete spectrum of the database that has a higher correlation index from those correlation indexes that are greater than a predefined threshold, when at least one of the correlation indexes exceeds the predefined threshold.
  • the system additionally comprises an alarm level activation system when the railway vehicle is detected and identified.
  • a third object of the invention describes a warning system (6), represented in Figure 5, which comprises the system for detecting and identifying railway vehicles on railway tracks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

The invention relates to a method that uses at least one triaxial sensor disposed on a railway, which continuously captures a signal corresponding to a vibration generated by a rail vehicle travelling along any type of railway. Subsequently, the discrete Fourier transform is applied to the captured signal and the discrete spectrum is obtained. Following this, the discrete spectrum is correlated with a database that allows the type of rail vehicle travelling along the railways to be identified and the railway along which same travels to be reported, with the option of generating different actions (types of reports, generation of warnings and alarms) according to the type of railway vehicle detected. The method also uses a redundancy between two different technologies, an analogue subsystem and a digital subsystem, increasing certainty in the detection of the railway vehicle.

Description

MÉTODO Y SISTEMA DE DETECCIÓN E IDENTIFICACIÓN DE VEHÍCULOS FERROVIARIOS EN VÍAS FERROVIARIAS Y SISTEMA DE AVISO  METHOD AND SYSTEM FOR DETECTION AND IDENTIFICATION OF RAILWAY VEHICLES ON RAILWAYS AND WARNING SYSTEM
DESCRIPCIÓN DESCRIPTION
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
El objeto de la presente invención se refiere a un método y un sistema de detección e identificación de vehículos ferroviarios en vías ferroviarias y a un sistema de aviso. El método, además de identificar el tipo de vehículo ferroviario (tren ave, tren alvia, tren de mercancías, tren de cercanías, máquina en obras, locomotora, etc) que está circulando por las vías, informa también de si la vía por la que está circulando dicho vehículo ferroviario es la vía principal (en la que están colocados el/los sensores triaxiales que capturan la señal vibratoria al paso del vehículo ferroviario) o las vías adyacentes. De este modo se ayuda a prevenir situaciones que puedan suponer un riesgo para las personas cuando se están realizando trabajos de mantenimiento u obras en las vías por las que está circulando el vehículo ferroviario.  The object of the present invention relates to a method and a system for detecting and identifying railway vehicles on railway tracks and a warning system. The method, in addition to identifying the type of railway vehicle (ave train, alvia train, freight train, commuter train, construction machine, locomotive, etc.) that is circulating on the tracks, also informs whether the route by which This railway vehicle is circulating is the main road (in which the triaxial sensors that capture the vibratory signal at the passage of the rail vehicle are placed) or the adjacent tracks. This helps prevent situations that may pose a risk to people when maintenance work or works are being carried out on the roads through which the rail vehicle is traveling.
Encuentra especial aplicación en el ámbito del sector ferroviario. Find special application in the field of railway sector.
PROBLEMA TÉCNICO A RESOLVER Y ANTECEDENTES DE LA INVENCIÓN TECHNICAL PROBLEM TO BE RESOLVED AND BACKGROUND OF THE INVENTION
El documento de patente US 20150251674 A1 presenta un método de detección mediante un generador acústico colocado en un dispositivo móvil (tren), que puede ser ajustado respecto a su espectro de frecuencias para la identificación del dispositivo móvil mediante la detección de la luz retrodispersada de entre un grupo pequeño y finito de frecuencias. Es un método de identificación activo, ya que es el propio tren el que transmite una "firma" (conjunto discreto de frecuencias), que son detectadas al paso del vehículo, reconociéndola e identificándola. Sin embargo, no se hace propiamente un análisis espectral en un intervalo de frecuencias como en la presente invención, sino que sólo se detecta si el conjunto discreto de frecuencias recibido es uno u otro para reconocer el tipo de vehículo. Obviamente ello requiere una buena coordinación entre el gestor de las infraestructuras (vías) y el operador ferroviario.  Patent document US 20150251674 A1 presents a method of detection by an acoustic generator placed in a mobile device (train), which can be adjusted with respect to its frequency spectrum for the identification of the mobile device by detecting the backscattered light between A small and finite group of frequencies. It is an active identification method, since it is the train itself that transmits a "signature" (discrete set of frequencies), which are detected as the vehicle passes, recognizing and identifying it. However, a spectral analysis is not properly done in a frequency range as in the present invention, but is only detected if the discrete set of frequencies received is one or the other to recognize the type of vehicle. Obviously this requires good coordination between the infrastructure manager (tracks) and the rail operator.
Sin embargo, el método de detección e identificación de vehículos ferroviarios en vías ferroviarias de la presente invención emplea al menos un sensor triaxial (tipo acelerómetrico o microfónico) que captura continuamente la señal de vibración generada por un vehículo ferroviario circulando por un tipo cualquiera de vía ferroviaria, para detectar la aproximación de vehículos ferroviarios en vía hacia zonas de trabajo, e identificar tanto el tipo de vehículo ferroviario que está circulando, como la vía por la que está circulando, con opción de generar acciones distintas (tipos de informes, avisos o alarmas) en concordancia al tipo de vehículo ferroviario detectado. However, the method of detecting and identifying railway vehicles on railway tracks of the present invention employs at least one triaxial sensor (accelerometric or microphonic type) that continuously captures the generated vibration signal by a railway vehicle circulating on any type of railway track, to detect the approach of railway vehicles on the way to work areas, and identify both the type of railway vehicle that is circulating, and the route through which it is traveling, with option to generate different actions (types of reports, warnings or alarms) in accordance with the type of railway vehicle detected.
Adicionalmente, el método aprovecha una redundancia entre dos tecnologías diferentes, un subsistema analógico y otro subsistema digital para aumentar la seguridad en la detección del vehículo ferroviario. Additionally, the method takes advantage of a redundancy between two different technologies, an analog subsystem and another digital subsystem to increase security in the detection of the rail vehicle.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
Un primer objeto de la invención se refiere a un método de detección e identificación de vehículos ferroviarios en vías ferroviarias, entendiéndose por vehículo ferroviario cualquier tipo de material rodante (vehículo dotado de ruedas capaz de circular sobre una vía ferroviaria). Este método, en un primer escenario, donde únicamente existe una vía principal y no existen vías adyacentes, comprende las siguientes etapas: generar una base de datos experimental que comprende una pluralidad de espectros discretos A correspondientes a señales vibratorias generadas por un tipo de vehículo ferroviario circulando por cualquier tipo de vía ferroviaria cuando el tipo de vehículo ferroviario circula por la vía principal en la que está colocado al menos un sensor (de tipo acelerométrico triaxial o microfónico) configurado para captar una señal vibratoria del paso de un vehículo ferroviario; capturar continuamente la señal correspondiente a la vibración generada por el vehículo ferroviario circulando por cualquier tipo de vía ferroviaria mediante el sensor dispuesto en dicha vía, donde las vías ferroviarias pueden estar formadas por al menos dos carriles, un conjunto de fijaciones, y un tipo de soporte o una combinación de un tipo de soporte y un tipo de traviesa; digitalizar la señal vibratoria capturada; calcular una transformada discreta de Fourier de dicha señal para obtener un espectro discreto de la señal; realizar una primera correlación del espectro discreto de la señal con cada uno de los espectros discretos A de la base de datos y obtener un índice de correlación para cada correlación efectuada; seleccionar de la base de datos el espectro discreto A que presente un mayor índice de correlación de entre aquellos índices de correlación que sean mayores de un umbral predefinido, cuando al menos uno de los índices de correlación supera el umbral predefinido, donde dicho espectro discreto A indica el tipo de vehículo ferroviario y que la vía por la que circula es la vía principal; y se vuelve a monitorizar la señal. Adicionalmente, el método también es capaz de analizar un segundo escenario, en el que además de la vía principal se tiene también en cuenta las vías adyacentes. En este caso, es necesario añadir unas etapas adicionales a las etapas anteriores, de modo que comprende ampliar la base de datos experimental con una pluralidad de espectros discretos B (B1 ,B2, ... ) correspondientes a una vibración generada por un tipo de vehículo ferroviario circulando por cualquier tipo de vía ferroviaria cuando el tipo de vehículo ferroviario circula por una vía adyacente; realizar una segunda correlación del espectro discreto de la señal con cada uno de los espectros discretos B (B1 ,B2, ... ) de la base de datos y obtener un índice de correlación para cada correlación efectuada; y seleccionar de la base de datos el espectro discreto B que presente un mayor índice de correlación de entre aquellos índices de correlación que sean mayores de un umbral predefinido, cuando al menos uno de los índices de correlación supera el umbral predefinido, donde dicho espectro discreto B indica el tipo de vehículo ferroviario y la vía por la que circula. A first object of the invention relates to a method of detecting and identifying railway vehicles on railway tracks, a railway vehicle being understood as any type of rolling stock (vehicle equipped with wheels capable of driving on a railway track). This method, in a first scenario, where there is only one main road and there are no adjacent roads, comprises the following steps: generating an experimental database comprising a plurality of discrete spectra A corresponding to vibratory signals generated by a type of railway vehicle circulating on any type of railway track when the type of railway vehicle circulates on the main track on which at least one sensor (of triaxial or microphone accelerometric type) configured to pick up a vibratory signal from the passage of a railway vehicle is placed; continuously capture the signal corresponding to the vibration generated by the railway vehicle circulating on any type of railway track by means of the sensor disposed in said track, where the railway tracks can be formed by at least two rails, a set of fixings, and a type of support or a combination of a type of support and a type of sleeper; digitize the captured vibratory signal; calculating a discrete Fourier transform of said signal to obtain a discrete spectrum of the signal; make a first correlation of the discrete spectrum of the signal with each of the discrete spectra A of the database and obtain a correlation index for each correlation made; select from the database the discrete spectrum A that has a higher correlation index from among those correlation rates that are greater than a predefined threshold, when at least one of the correlation rates exceeds the predefined threshold, where said discrete spectrum A It indicates the type of railway vehicle and that the route on which it circulates is the main route; and the signal is monitored again. Additionally, the method is also able to analyze a second scenario, in which in addition to the main road, adjacent roads are also taken into account. In this case, it is necessary to add additional steps to the previous stages, so that it comprises expanding the experimental database with a plurality of discrete spectra B (B1, B2, ...) corresponding to a vibration generated by a type of railway vehicle traveling on any type of railway track when the type of railway vehicle is traveling on an adjacent track; make a second correlation of the discrete spectrum of the signal with each of the discrete spectra B (B1, B2, ...) of the database and obtain a correlation index for each correlation made; and select from the database the discrete spectrum B that has a higher correlation index from those correlation rates that are greater than a predefined threshold, when at least one of the correlation indexes exceeds the predefined threshold, where said discrete spectrum B indicates the type of railway vehicle and the route on which it is traveling.
Asimismo, el método activa diferentes niveles de alarma que indican el tipo de vehículo ferroviario detectado y de si la vía por la que está circulando es la vía principal o una vía adyacente. Likewise, the method activates different alarm levels that indicate the type of railway vehicle detected and whether the route on which it is traveling is the main road or an adjacent road.
Para obtener un método de detección aun más completo, es posible añadir dos niveles de detección digital adicionales, que únicamente avisan de la presencia o ausencia de un vehículo ferroviario, y que son, un primer nivel de detección digital (primera detección digital) básico y muy rápido y un segundo nivel de detección digital (segunda detección digital) de un nivel superior y más fiable que este primer nivel de detección. De modo, que se realiza una primera detección digital del vehículo ferroviario, de manera que si la señal digitalizada tiene una duración mayor o igual a un tiempo t1 preestablecido y una amplitud mayor o igual a un umbral u1 predefinido entonces se activa un primer nivel digital de alarma que indica que se ha realizado dicha primera detección. A continuación, se realiza también una segunda detección digital del vehículo ferroviario, mediante un análisis de un conjunto de sub-bandas frecuenciales preestablecidas de la señal digitalizada, de manera que si todas las muestras del conjunto de las sub-bandas frecuenciales superan un umbral u2 predefinido durante un tiempo t2 preestablecido entonces se activa un segundo nivel digital de alarma que indica que se ha realizado dicha segunda detección. Para la generación de la base de datos se han tenido que realizar los siguientes pasos: medir experimentalmente la señal vibratoria generada por cada tipo de vehículo ferroviario circulando por cualquier tipo de vía ferroviaria cuando el vehículo ferroviario circula por la vía principal en la que se ha colocado el sensor y cuando el vehículo ferroviario circula por al menos una vía adyacente; digitalizar la señal vibratoria; y calcular una transformada discreta de Fourier de la señal vibratoria digitalizada, generando el espectro discreto para cada tipo de vehículo ferroviario circulando por cualquier tipo de vía ferroviaria. To obtain an even more complete detection method, it is possible to add two additional digital detection levels, which only warn of the presence or absence of a railway vehicle, and which are, a basic first level of digital detection (first digital detection) and very fast and a second level of digital detection (second digital detection) of a higher and more reliable level than this first level of detection. Thus, a first digital detection of the railway vehicle is performed, so that if the digitized signal has a duration greater than or equal to a predetermined time t1 and an amplitude greater than or equal to a predefined threshold u1 then a first digital level is activated alarm indicating that said first detection has been performed. Next, a second digital detection of the railway vehicle is also performed, by means of an analysis of a set of pre-established frequency subbands of the digitized signal, so that if all the samples of the set of frequency subbands exceed a threshold u2 predefined for a preset time t2 then a second digital alarm level is activated indicating that said second detection has been performed. For the generation of the database, the following steps have to be carried out: experimentally measure the vibratory signal generated by each type of railway vehicle circulating on any type of railway track when the railway vehicle circulates on the main road in which it has been placed the sensor and when the railway vehicle circulates on at least one adjacent track; digitize the vibratory signal; and calculate a discrete Fourier transform of the digitized vibratory signal, generating the discrete spectrum for each type of railway vehicle circulating on any type of railway track.
Paralelamente a la detección digital del vehículo ferroviario, se realiza también una detección analógica, que busca la rapidez y seguridad en la detección (únicamente se informa de la presencia o ausencia del vehículo ferroviario), de manera que si la señal analógica tiene una duración mayor o igual a un tiempo t3 preestablecido y una amplitud mayor o igual a un umbral u3 predefinido entonces se activa un nivel analógico de alarma que indica que se ha realizado dicha detección analógica y se vuelve a monitorizar la señal; en caso contrario también se vuelve a monitorizar la señal. Parallel to the digital detection of the railway vehicle, an analog detection is also carried out, which seeks the speed and safety in the detection (only the presence or absence of the railway vehicle is reported), so that if the analog signal has a longer duration or equal to a preset time t3 and an amplitude greater than or equal to a predefined threshold u3 then an analog alarm level is activated indicating that said analog detection has been performed and the signal is monitored again; otherwise the signal is also monitored again.
Para asegurar un correcto funcionamiento, el método transmite adicionalmente unos tonos piloto a una unidad receptora para informar del estado del sensor, de las conexiones y de los enlaces. To ensure proper operation, the method additionally transmits pilot tones to a receiving unit to report the status of the sensor, connections and links.
En el caso de no haberse seleccionado ningún espectro discreto de la base de datos por no encontrar coincidencias, el método almacena los datos correspondientes a dicho vehículo ferroviario desconocido para un posterior aprendizaje y reconocimiento de nuevos vehículos ferroviarios. In the event that no discrete spectrum has been selected from the database due to not finding matches, the method stores the data corresponding to said unknown railway vehicle for further learning and recognition of new railway vehicles.
Un segundo objeto de la invención se refiere a un sistema de detección e identificación de vehículos ferroviarios en vías ferroviarias tal que comprende: al menos un sensor dispuesto en la vía configurado para capturar continuamente una señal correspondiente a una vibración generada por un vehículo ferroviario circulando por cualquier tipo de vía ferroviaria; unos medios computacionales configurados para: almacenar una base de datos experimental que comprende una pluralidad de señales y sus espectros discretos correspondientes, donde cada señal corresponde a una vibración generada por un vehículo ferroviario circulando por cualquier tipo de vía ferroviaria; digitalizar la señal vibratoria capturada; calcular una transformada discreta de Fourier de dicha señal para obtener un espectro discreto de la señal; correlar el espectro discreto de la señal con cada uno de los espectros discretos de la base de datos que se corresponden al mismo tipo de vía por la que circula el vehículo ferroviario, y obtener un índice de correlación para cada correlación efectuada; y seleccionar el espectro discreto de la base de datos que presente un mayor índice de correlación de entre aquellos índices de correlación que sean mayores de un umbral predefinido, cuando al menos uno de los índices de correlación supera el umbral predefinido. A second object of the invention relates to a system for detecting and identifying railway vehicles on railway tracks such that it comprises: at least one sensor arranged in the track configured to continuously capture a signal corresponding to a vibration generated by a railway vehicle circulating on any type of railway track; computational means configured to: store an experimental database comprising a plurality of signals and their corresponding discrete spectra, where each signal corresponds to a vibration generated by a railway vehicle circulating on any type of railway track; digitize the captured vibratory signal; calculate a discrete Fourier transform of said signal to obtain a discrete signal spectrum; correlate the discrete spectrum of the signal with each of the discrete spectra of the database that correspond to the same type of route through which the railway vehicle circulates, and obtain a correlation index for each correlation made; and select the discrete spectrum of the database that has a higher correlation index from those correlation indexes that are greater than a predefined threshold, when at least one of the correlation indexes exceeds the predefined threshold.
Adicionalmente, el sistema de detección e identificación de vehículos ferroviarios en vías ferroviarias comprende un sistema de activación de niveles de alarma cuando se detecta y/o identifica el vehículo ferroviario. Additionally, the railway vehicle detection and identification system on railway tracks comprises an alarm level activation system when the railway vehicle is detected and / or identified.
Un tercer objeto de la invención se refiere a un sistema de aviso que comprende el sistema de detección e identificación de vehículos ferroviarios en vías ferroviarias. A third object of the invention relates to a warning system comprising the detection and identification system of railway vehicles on railway tracks.
Por tanto, el método de la presente invención presenta las siguientes ventajas respecto a los métodos de detección actuales: Therefore, the method of the present invention has the following advantages over current detection methods:
- Identifica el tipo de vehículo ferroviario en cualquier escenario (diferentes tipos de vías) generando avisos o alarmas en concordancia.  - Identify the type of railway vehicle in any scenario (different types of tracks) generating warnings or alarms accordingly.
- Reconoce mediante técnicas de correlación y análisis espectral, el tipo de vehículo ferroviario e identifica si éste se aproxima por la vía principal donde están instalados los sensores que captan la señal vibratoria que genera el paso del vehículo ferroviario o por las vías adyacentes.  - Recognizes by means of correlation techniques and spectral analysis, the type of railway vehicle and identifies whether it is approached by the main road where the sensors that capture the vibratory signal generated by the passage of the railway vehicle or by adjacent tracks are installed.
- El vehículo ferroviario no participa activamente en su propia identificación ya que no se usan códigos ID, RFID, o la transmisión de otros identificadores desde el tren. Tampoco requiere instalar generadores en los vehículos ferroviarios, éste es un método de detección pasivo. Con ello se logra una mayor autonomía operativa entre la gestión de la infraestructura, la operación de los vehículos y las tareas de supervisión o mantenimiento.  - The rail vehicle does not actively participate in its own identification as ID, RFID codes, or the transmission of other identifiers from the train are not used. Nor does it require installing generators in rail vehicles, this is a passive detection method. This achieves greater operational autonomy between infrastructure management, vehicle operation and supervision or maintenance tasks.
- Detecta anticipadamente el vehículo ferroviario sin requerir tener el vehículo ferroviario frente al sensor.  - Early detection of the rail vehicle without requiring the rail vehicle in front of the sensor.
- Redundancia entre subsistemas analógicos y digitales para combinar la seguridad con la capacidad de cálculo y para mejor activación de estados fail-safe. Esta redundancia, que cubre desde la detección del paso de un vehículo ferroviario hasta la generación de avisos, aumenta la fiabilidad del sistema de aviso. - Buena independencia operativa entre el ente gestor de las infraestructuras, el operador ferroviario y las empresas de mantenimiento. - Redundancy between analog and digital subsystems to combine security with computing capacity and for better activation of fail-safe states. This redundancy, which covers from the detection of the passage of a railway vehicle to the generation of warnings, increases the reliability of the warning system. - Good operational independence between the infrastructure management entity, the railway operator and the maintenance companies.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Para completar la descripción y con objeto de ayudar a una mejor comprensión de las características de la invención, se acompaña a esta memoria descriptiva, como parte integrante de la misma, un conjunto de dibujos en dónde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:  In order to complete the description and in order to help a better understanding of the features of the invention, this descriptive report is attached, as an integral part thereof, a set of drawings where, for illustrative and non-limiting purposes, it has been represented the next:
Figura 1.- Muestra un diagrama de flujo del método de la presente invención para el caso en el que únicamente existe la vía principal (no hay vías adyacentes). Se observa como el subsistema digital comprende la primera correlación del tercer nivel de detección digital. Figure 1.- Shows a flow chart of the method of the present invention for the case in which only the main road exists (there are no adjacent roads). It is observed how the digital subsystem comprises the first correlation of the third level of digital detection.
Figura 2.- Muestra un diagrama de flujo del método de la presente invención para el caso en el que además de existir la vía principal, también existen vías adyacentes. Se observa como el subsistema digital comprende entonces la primera y la segunda correlación del tercer nivel de detección digital.  Figure 2.- Shows a flow chart of the method of the present invention for the case in which in addition to the existence of the main route, there are also adjacent routes. It is observed how the digital subsystem then comprises the first and the second correlation of the third level of digital detection.
Figuras 3a y 3b.- Muestran un diagrama de flujo del método de la presente invención para el caso más completo, en el que además de existir la vía principal, también existen vías adyacentes. Se observa como el subsistema digital comprende los tres niveles de detección digital, primer nivel, segundo nivel y tercer nivel de detección digital (primera y segunda correlación). La figura 3b es la continuación de la figura 3a.  Figures 3a and 3b.- They show a flow chart of the method of the present invention for the most complete case, in which in addition to the main road, there are also adjacent roads. It is observed how the digital subsystem comprises the three levels of digital detection, first level, second level and third level of digital detection (first and second correlation). Figure 3b is the continuation of Figure 3a.
Figura 4.- Muestra un ejemplo de una base de datos experimental, que contiene parámetros como el tipo de vehículo ferroviario, tipo de soporte y tipo de traviesa y unos patrones pre-memorizados (espectros discretos) correspondientes a diferentes tipos de vehículo ferroviarios circulando por distintas vías. Figure 4.- Shows an example of an experimental database, which contains parameters such as the type of railway vehicle, type of support and type of sleeper and pre-memorized patterns (discrete spectra) corresponding to different types of railway vehicles circulating through different ways.
Figura 5.- Muestra los dispositivos del sistema que permiten llevar a cabo este método y el sistema de aviso.  Figure 5.- Shows the system devices that allow this method and the warning system to be carried out.
A continuación se facilita un listado de las referencias empleadas en las figuras: The following is a list of the references used in the figures:
1. Vía principal.  1. Main way.
2. Vía adyacente.  2. Adjacent way.
3. Sensor.  3. Sensor.
4. Medios computacionales.  4. Computational media.
5. Unidad receptora. 6. Sistema de aviso. REALIZACION PREFERENTE DE LA INVENCION 5. Receiving unit. 6. Warning system. PREFERRED EMBODIMENT OF THE INVENTION
Un primer objeto de la presente invención describe un método de detección e identificación de vehículos ferroviarios en vías ferroviarias que comprende las siguientes etapas:  A first object of the present invention describes a method of detecting and identifying railway vehicles on railway tracks comprising the following steps:
1. Capturar y monitorizar continuamente una señal (toma continua de medidas en los ejes x,y,z) correspondiente a una vibración generada por un vehículo ferroviario circulando por un tipo cualquiera de vía ferroviaria mediante sensores dispuestos en uno o varios puntos de interés a lo largo de la vía. Los sensores pueden ser de tipo acelerométrico o microfónico, preferentemente sensores acelerométricos triaxiales. 1. Continuously capture and monitor a signal (continuous measurements on the x, y, z axes) corresponding to a vibration generated by a railway vehicle traveling on any type of railway via sensors arranged at one or more points of interest at along the way. The sensors can be accelerometric or microphone type, preferably triaxial accelerometric sensors.
2. Amplificar (con amplificadores operacionales o transistores de baja frecuencia) y filtrar la señal vibratoria capturada por el sensor para eliminar ruidos causados por otras fuentes ajenas a la aproximación de un vehículo ferroviario en la vía. 2. Amplify (with operational amplifiers or low frequency transistors) and filter the vibratory signal captured by the sensor to eliminate noise caused by other sources outside the approach of a railway vehicle on the track.
Este primer filtrado se realiza con filtros paso bajo de frecuencia de corte del orden de pocos kHz (no más de 5 kHz, y típicamente del orden del kHz o 500 Hz, según el sensor acelerométrico empleado), preservando en la banda frecuencial de interés, la información en amplitud y frecuencia. This first filtering is carried out with low-pass filters of cut-off frequency of the order of a few kHz (not more than 5 kHz, and typically of the order of kHz or 500 Hz, according to the accelerometric sensor used), preserving in the frequency band of interest, the information in amplitude and frequency.
3. Tras este primer filtrado la señal vibratoria captada es enviada, de forma paralela, a dos subsistemas, un subsistema analógico, que busca la rapidez y seguridad en la detección del vehículo ferroviario (únicamente se informa de la presencia o ausencia del vehículo ferroviario) y otro subsistema digital, que además de confirmar dicha detección a diferentes niveles, identifica el tipo de vehículo ferroviario e informa de la vía por la que está circulando dicho vehículo ferroviario. 3. After this first filtering, the vibrating signal captured is sent, in parallel, to two subsystems, an analog subsystem, which seeks the speed and safety in the detection of the rail vehicle (only the presence or absence of the rail vehicle is reported) and another digital subsystem, which, in addition to confirming said detection at different levels, identifies the type of railway vehicle and informs of the route through which said railway vehicle is traveling.
3.1 El subsistema analógico se encarga de comprobar si la señal vibratoria tiene una duración mayor o igual a un tiempo t3 preestablecido y una amplitud mayor o igual a un umbral u3 predefinido, de este modo, se evita que impulsos cortos y otros ruidos (interferencias, contactos mecánicos no ideales, discontinuidades, golpes en la vía, maquinaria de trabajo/mantenimiento... ) puedan generar falsas alarmas de detección de un vehículo ferroviario. Si la señal vibratoria analógica tiene una duración mayor o igual a t3 y una amplitud mayor o igual al umbral u3, entonces se activa un primer nivel analógico de alarma, indicativo de la presencia de un vehículo ferroviario. Posteriormente, tanto si se ha detectado el vehículo ferroviario como si no, se vuelve a monitorizar la señal. 3.1 The analog subsystem is responsible for checking whether the vibrating signal has a duration greater than or equal to a preset time t3 and an amplitude greater than or equal to a predefined threshold u3, thus preventing short pulses and other noise (interference, non-ideal mechanical contacts, discontinuities, road bumps, work / maintenance machinery ...) can generate false alarms for the detection of a railway vehicle. If the analog vibrating signal has a duration greater than or equal to t3 and an amplitude greater than or equal to the threshold u3, then a first analog alarm level is activated, indicative of the presence of a railway vehicle. Subsequently, whether or not the rail vehicle has been detected, the signal is monitored again.
El procesado es totalmente analógico por lo que no depende de aspectos digitales, como los contadores de programa, que frente a interferencias electromagnéticas fuertes (por ejemplo, maquinaria de obras) podría engañar la ejecución iterativa de los algoritmos (saltos erróneos de contador de programa, borrado parcial o destrucción de memorias, etc). The processing is totally analog, so it does not depend on digital aspects, such as program counters, which in the face of strong electromagnetic interference (for example, construction machinery) could deceive the iterative execution of the algorithms (erroneous program counter jumps, partial erasure or destruction of memories, etc).
Este subsistema analógico comprende los siguientes elementos:  This analog subsystem comprises the following elements:
Un filtro paso bajo (puede ser tipo RC, y no necesariamente ha de ser activo), con baja variación térmica y robustez ambiental, con frecuencia de corte baja, del orden de pocos Hz (como mucho centenares de Hz, aunque normalmente decenas de Hz). Este filtro actúa como un integrador, ya que necesita un mínimo de continuidad en las vibraciones. Es importante el ajuste de la constante de tiempo de este filtro: un ajuste lento podría no disparar ante vehículos cortos o, simplemente, locomotoras sin vagones, mientras que un ajuste rápido podría disparar por las mencionadas falsas alarmas. Como indicativo, se consideran constantes de tiempo del orden de 2 a 15 segundos. A low pass filter (can be RC type, and does not necessarily have to be active), with low thermal variation and environmental robustness, with low cutoff frequency, of the order of a few Hz (at most hundreds of Hz, although usually tens of Hz ). This filter acts as an integrator, since it needs a minimum of continuity in the vibrations. It is important to adjust the time constant of this filter: a slow adjustment may not fire on short vehicles or, simply, locomotives without wagons, while a quick adjustment may trigger for the mentioned false alarms. As indicative, they are considered time constants of the order of 2 to 15 seconds.
Un detector de envolvente (preferentemente formado con un circuito constituido por diodos, resistencias y condensadores) cuya salida será detectar la envolvente (amplitud) de las señales vibratorias. An envelope detector (preferably formed with a circuit consisting of diodes, resistors and capacitors) whose output will be to detect the envelope (amplitude) of the vibratory signals.
Un detector de nivel (tipo circuito comparador) conectado a la salida del detector de envolvente, que activa la detección cuando su salida supera un umbral de disparo predefinido. El detector está implementado como un comparador analógico, sea basado en transistores o en amplificadores operacionales. A level detector (comparator circuit type) connected to the output of the envelope detector, which activates the detection when its output exceeds a predefined trigger threshold. The detector is implemented as an analog comparator, whether based on transistors or operational amplifiers.
En el caso más básico, el detector de nivel únicamente avisa de la presencia o ausencia de un vehículo ferroviario. Mientras que en un caso más completo, el detector de nivel (con un comparador de ventana) informa de dicha detección con tres niveles de fiabilidad (confianza): presencia segura de vehículo ferroviario, ausencia segura e incertidumbre. Para ajusfar la sensibilidad de este detector de nivel en función del tipo de vía se hace una precalibración entre valores seleccionares con un divisor resistivo y un conmutador (que puede ser mecánico o una red de resistencias ajustable por teclado mediante interruptores de tecnología CMOS). In the most basic case, the level detector only warns of the presence or absence of a railway vehicle. While in a more complete case, the level detector (with a window comparator) reports said detection with three levels of reliability (confidence): safe presence of railway vehicle, safe absence and uncertainty. To adjust the sensitivity of this level detector depending on the type of track, a precalibration is made between selectable values with a resistive divider and a switch (which can be mechanical or a resistance network adjustable by keyboard using CMOS technology switches).
Un modulador PCM a la salida del detector de nivel para la trasmisión, modulada o en banda base (señal transmitida en la misma banda frecuencial en que se ha captado, sin modular), cableada o por transmitida por radiofrecuencias, hacia el receptor de la información sobre la detección de trenes (centro de control, brigadas de mantenimiento, etc.) A PCM modulator at the output of the level detector for transmission, modulated or in baseband (signal transmitted in the same frequency band in which it has been captured, without modulation), wired or transmitted by radio frequencies, to the information receiver on train detection (control center, maintenance brigades, etc.)
3.2 El subsistema digital (basado en microcomputador, procesador digital de señal, FPGA o dispositivo similar), actúa con independencia del subsistema analógico, complementándolo, ya que además de corroborar la presencia del vehículo ferroviario, también identifica el tipo de vehículo ferroviario que está circulando e informa de si la vía por la que está circulando dicho vehículo ferroviario es la vía principal (en la que están colocados el/los sensores) o las vías adyacentes. 3.2 The digital subsystem (based on microcomputer, digital signal processor, FPGA or similar device), acts independently of the analog subsystem, complementing it, since in addition to corroborating the presence of the railway vehicle, it also identifies the type of railway vehicle that is circulating and informs whether the route through which said railway vehicle is traveling is the main route (in which the sensor (s) are placed) or adjacent tracks.
El subsistema digital comprende un conversor analógico/digital (A/D) de no menos de 8 bits, para la digitalización de la señal vibratoria capturada y que sigue a un previo acondicionador de nivel (amplificación para acondicionar el nivel de salida de los sensores al margen dinámico de los conversores A/D, para aprovechar sus prestaciones, y prefiltrado para evitar que los inevitables ruidos ambientales o de causas ajenas al paso de un vehículo ferroviario pudieran enmascarar futuras decisiones), todo ello con o sin un dispositivo de muestreo y mantenimiento (subsistema de sample-and-hold S&H, encargado de mantener constante la señal de los sensores mientras se efectúa el proceso de traducción del dominio analógico a un palabra digital inteligible por los posteriores microprocesadores), dependiendo de la tecnología de conversores A/D empleada. La velocidad de muestreo debe ser de un mínimo teórico de 10 kHz, preferentemente de un mínimo de 50 kHz, aunque este valor es susceptible de un amplio margen de variación entre los Hz y los kHz, dependiendo del sensor acelerométrico empleado, de la resolución (en "g", unidad que toma como referencia la aceleración de la gravedad) y de la sensibilidad deseadas, pues algunos sensores ofrecen prestaciones diferentes al variar la frecuencia de muestreo (velocidad a la cual el procesador adquiere las muestras (palabras digitales) de los acelerómetros). The digital subsystem comprises an analog / digital (A / D) converter of not less than 8 bits, for the digitalization of the captured vibratory signal and which follows a previous level conditioner (amplification to condition the output level of the sensors to the dynamic range of the A / D converters, to take advantage of their benefits, and pre-filtered to prevent the inevitable environmental noise or causes beyond the passage of a railway vehicle could mask future decisions), all with or without a sampling and maintenance device (S&H sample-and-hold subsystem, responsible for maintaining constant the signal of the sensors while the process of translating the analog domain into a digital word intelligible by the subsequent microprocessors), depending on the A / D converter technology used . The sampling rate must be a theoretical minimum of 10 kHz, preferably a minimum of 50 kHz, although this value is susceptible to a wide range of variation between Hz and kHz, depending on the accelerometric sensor used, of the resolution ( in "g", a unit that takes as a reference the acceleration of the desired gravity) and sensitivity, as some sensors offer different benefits by varying the sampling frequency (speed at which the processor acquires the samples (digital words) of the accelerometers).
Este subsistema digital comprende tres niveles de detección de vehículos ferroviarios: un primer nivel de detección digital básico y muy rápido, un segundo nivel de detección digital de un nivel superior y más fiable que el primer nivel de detección y un tercer nivel de detección digital que es el que además de detectar el vehículo ferroviario, identifica el tipo de vehículo ferroviario y aporta información sobre si el paso de dicho vehículo ferroviario se produce por la vía principal (en la que están colocados el/los sensores triaxiales) o por las vías adyacentes. El hecho de saber si el vehículo ferroviario está pasando por la vía principal o por las vías adyacentes, es decisivo, ya que de este modo, en el caso de que el vehículo ferroviario este pasando por las vías adyacentes y no por la vía principal, no es necesario que las personas que están realizando trabajos de mantenimiento en dicha vía retiren los equipos de trabajo (maquinaria), más allá de respetar el gálibo, y puedan continuar con su trabajo. This digital subsystem comprises three levels of detection of railway vehicles: a first level of basic and very fast digital detection, a second level of digital detection of a higher and more reliable level than the first level of detection and a third level of digital detection which is the one that in addition to detecting the railway vehicle, identifies the type of a railway vehicle and provides information on whether the passage of said railway vehicle is produced by the main road (in which the triaxial sensors are placed) or by the adjacent tracks. Knowing whether the rail vehicle is passing through the main road or adjacent roads is decisive, since in this way, in the case that the rail vehicle is passing through the adjacent tracks and not the main track, It is not necessary that people who are carrying out maintenance work on this road withdraw work equipment (machinery), beyond respecting the gauge, and can continue with their work.
Un primer nivel de detección digital, que comprende realizar una primera detección digital del vehículo ferroviario, de manera que si la señal digitalizada tiene una duración mayor o igual a un tiempo t1 preestablecido y una amplitud mayor o igual a un umbral u1 predefinido entonces se activa un primer nivel digital de alarma que indica que se ha realizado dicha primera detección (presencia de vehículo ferroviario). Posteriormente, tanto si se ha activado el primer nivel digital de alarma como si no, se pasaría a evaluar un segundo nivel de detección digital. A first level of digital detection, which comprises performing a first digital detection of the railway vehicle, so that if the digitized signal has a duration greater than or equal to a predetermined time t1 and an amplitude greater than or equal to a predefined threshold u1 then it is activated a first digital alarm level indicating that said first detection (presence of railway vehicle) has been performed. Subsequently, whether the first digital alarm level has been activated or not, a second level of digital detection would be evaluated.
Dicho en otras palabras, este primer nivel de detección se activa por registro de actividad mantenida en el sensor durante un intervalo de tiempo. Si hay salida de amplitud superior a un umbral predefinido de "g" en el sensor durante toda una ventana temporal de longitud lo suficientemente larga (alrededor de 10 segundos) para que el paso de un vehículo ferroviario no se confunda con una vibración por otros motivos, como golpeteos en la vía. In other words, this first level of detection is activated by recording activity maintained in the sensor for a period of time. If there is an output of amplitude greater than a predefined threshold of "g" in the sensor during a whole temporary window of long enough length (about 10 seconds) so that the passage of a railway vehicle is not confused with a vibration for other reasons , like tapping on the track.
Este nivel también informa del sentido de la aproximación del vehículo ferroviario (por amplitudes relativas entre diferentes ráfagas temporales de muestreo, ya que la amplitud vibración aumenta al acercarse el vehículo ferroviario al sensor, y disminuye al alejarse; del grado de proximidad del vehículo ferroviario y de la velocidad de paso del vehículo ferroviario.  This level also informs the direction of the approach of the railway vehicle (due to relative amplitudes between different temporary bursts of sampling, since the amplitude of vibration increases when the railway vehicle approaches the sensor, and decreases when moving away; of the degree of proximity of the railway vehicle and of the passing speed of the railway vehicle.
Un segundo nivel de detección digital, que comprende realizar una segunda detección digital del vehículo ferroviario, mediante un análisis de presencia de energía (de vibraciones) a la salida de un banco de filtros digitales cada uno ajustado a una banda frecuencial diferente dentro de un conjunto de sub-bandas frecuenciales preestablecidas de la señal digitalizada, de manera que si todas las sub-bandas frecuenciales superan un umbral u2 predefinido durante un tiempo t2 preestablecido entonces se activa un segundo nivel digital de alarma que indica que se ha realizado dicha segunda detección (presencia de vehículo ferroviario). Posteriormente, tanto si se ha activado el segundo nivel digital de alarma como si no, se pasaría a evaluar un tercer nivel de detección digital. A second level of digital detection, which comprises performing a second digital detection of the railway vehicle, by means of an analysis of the presence of energy (of vibrations) at the exit of a bank of digital filters each adjusted to a different frequency band within a set of preset frequency subbands of the digitized signal, so that if all frequency subbands exceed a predefined threshold u2 for a preset time t2 then a second digital alarm level is activated indicating that said second detection has been made (presence of railway vehicle). Subsequently, whether the second digital alarm level has been activated or not, a third level of digital detection would be evaluated.
Es decir, este segundo nivel de detección detecta vibraciones alrededor de un conjunto mínimo y predefinido de entre 2 y 5 sub-bandas frecuenciales, permitiendo cierto grado de tolerancias, para identificar las vibraciones correspondientes a la aproximación de vehículos ferroviarios de otro tipo de vibraciones. Para ello, se monitoriza si las salidas de unos filtros digitales tipo FIR (de respuesta impulsional finita, más estables) o MR (de respuesta impulsional infinita, de menor tiempo de cálculo), tipo paso-banda y ajustados a las frecuencias que contienen mayor información (del orden de 1 a 10 Hz) superan un umbral u2 predefinido durante un tiempo t2 preestablecido (aproximadamente del orden de 2 a 15 segundos). En caso de que todas las salidas de los filtros digitales superen dicho umbral u2 predefinido durante el tiempo t2 preestablecido se activa la alarma correspondiente. That is, this second level of detection detects vibrations around a minimum and predefined set of between 2 and 5 frequency subbands, allowing a certain degree of tolerances, to identify the vibrations corresponding to the approximation of railway vehicles of other types of vibrations. For this, it is monitored whether the outputs of digital filters type FIR (finite impulse response, more stable) or MR (infinite impulse response, shorter calculation time), pass-band type and adjusted to the frequencies that contain higher Information (of the order of 1 to 10 Hz) exceeds a predefined threshold u2 for a preset time t2 (approximately of the order of 2 to 15 seconds). If all the outputs of the digital filters exceed said predefined threshold u2 during the preset time t2, the corresponding alarm is activated.
Por ejemplo, en el caso de tener un máximo de 5 bandas frecuenciales, si se detecta energía vibratoria que supera el umbral u2 durante el tiempo t2 en las 5 bandas (bandas activadas), entonces se activa la alarma de vehículo ferroviario acercándose. Sin embargo, si se detecta energía vibratoria en las 5 bandas pero que no supere el umbral u2 durante el tiempo t2 o se detecta energía vibratoria que supere el umbral u2 durante el tiempo t2 en una, dos, tres o cuatro de las bandas (se entiende que si no hay energía vibratoria en ninguna de las 5 bandas frecuenciales no se aproxima ningún vehículo ferroviario), entonces se repite el filtrado para una nueva trama de medidas de aceleraciones. For example, in the case of having a maximum of 5 frequency bands, if vibratory energy is detected that exceeds the threshold u2 during the time t2 in the 5 bands (bands activated), then the approaching railway vehicle alarm is activated. However, if vibratory energy is detected in the 5 bands but does not exceed the threshold u2 during time t2 or vibrational energy is detected that exceeds the threshold u2 during time t2 in one, two, three or four of the bands (se understand that if there is no vibratory energy in any of the 5 frequency bands, no railway vehicle is approached), then the filtering is repeated for a new frame of acceleration measurements.
Un tercer nivel de detección digital, más lento que los anteriores pero con mayor información, el cual es el objeto principal de la invención, que comprende correlar las muestras espectrales del espectro discreto de la señal que se va obteniendo en tiempo real al paso del vehículo ferroviario con cada uno de los espectros discretos de unos patrones pre-memorizados en una base de datos para identificar el tipo de vehículo ferroviario, e identificar también la vía por la que está circulando, pudiendo ser, la vía principal (en la que están colocados el/los sensores triaxiales) o por las adyacentes. Adicionalmente se activa un nivel de alarma correspondiente que indica el tipo de vehículo ferroviario detectado y la vía por la que circula. A third level of digital detection, slower than the previous ones but with more information, which is the main object of the invention, which comprises correlating the spectral samples of the discrete spectrum of the signal that is obtained in real time as the vehicle passes railway with each of the discrete spectra of pre-memorized patterns in a database to identify the type of vehicle railway, and also identify the route along which it is circulating, and may be the main route (in which the triaxial sensors are placed) or adjacent ones. Additionally, a corresponding alarm level is activated indicating the type of railway vehicle detected and the route through which it circulates.
La base de datos se ha generado de forma experimental y comprende una pluralidad de patrones de espectros discretos, donde cada espectro discreto corresponde a una vibración generada por un tipo concreto de vehículo ferroviario circulando por un tipo cualquiera de vía ferroviaria, donde las vías ferroviarias están formadas por un tipo de soporte (como es el caso de la vía en placa) o una combinación de un tipo de soporte y un tipo de traviesa (como es el caso del balasto con traviesas de madera u hormigón). The database has been generated experimentally and comprises a plurality of discrete spectral patterns, where each discrete spectrum corresponds to a vibration generated by a particular type of railway vehicle circulating on any type of railway track, where the railway tracks are formed by a type of support (as is the case of the plate track) or a combination of a type of support and a type of crossbeam (as is the case of ballast with wooden or concrete sleepers).
Para la generación de la base de datos se han realizado los siguientes pasos: por un lado, medir experimentalmente la señal vibratoria generada por cada tipo de vehículo ferroviario circulando por un tipo cualquiera de vía cuando el vehículo ferroviario circula por la misma vía (vía principal) en la que se han colocado los sensores, y por otro lado, medir experimentalmente la señal vibratoria generada por cada tipo de vehículo ferroviario circulando por un tipo cualquiera de vía cuando el vehículo ferroviario circula por las vías adyacentes (por lo general solo habrá una vía adyacente, sin embargo puede darse el caso de haber más de una vía adyacente); digitalizar las señales vibratorias; y calcular la transformada discreta de Fourier de dichas señales vibratorias digitalizadas, generando, por un lado, los espectros discretos para cada tipo de vehículo ferroviario circulando por un tipo cualquiera de vía cuando el vehículo ferroviario circula por la misma vía en la que se han colocado los sensores (espectros discretos A) y por otro lado, los espectros discretos para cada tipo de vehículo ferroviario circulando por un tipo cualquiera de vía cuando el vehículo ferroviario circula por una vía adyacente (espectros discretos B1 (vía adyacentel), B2 (vía adyacente2), B3 (vía adyacente3), etc). For the generation of the database, the following steps have been carried out: on the one hand, experimentally measure the vibratory signal generated by each type of railway vehicle traveling on any type of track when the railway vehicle travels on the same track (main track ) on which the sensors have been placed, and on the other hand, experimentally measure the vibratory signal generated by each type of railway vehicle circulating on any type of track when the railway vehicle circulates along adjacent tracks (usually there will only be one adjacent track, however, there may be more than one adjacent track); digitize the vibratory signals; and calculate the discrete Fourier transform of said digitized vibratory signals, generating, on the one hand, the discrete spectra for each type of railway vehicle circulating on any type of track when the railway vehicle circulates on the same track in which they have been placed the sensors (discrete spectra A) and on the other hand, the discrete spectra for each type of railway vehicle circulating on any type of track when the railway vehicle is traveling on an adjacent track (discrete spectra B1 (adjacent track), B2 (adjacent track2) ), B3 (adjacent track3), etc).
Los espectros discretos B (B1 ,B2, ... ) se distinguen de los espectros discretos A principalmente en dos aspectos: su menor amplitud (el sensor mide la señal vibratoria que proviene de las vías adyacentes y no de la vía principal en la que está colocado el sensor) y una mayor atenuación de las altas frecuencias respecto a las bajas, dado el comportamiento paso-bajo de la propagación de ondas de vibraciones mecánicas por el suelo. Este tercer nivel de detección digital calcula una transformada discreta de Fourier de la señal vibratoria capturada por el/los sensores para obtener el espectro discreto de dicha señal. Posteriormente, se realiza una primera correlación del espectro discreto de la señal obtenido con cada uno de los patrones de espectros discretos A de la base de datos que se corresponden a diferentes patrones de espectros discretos de diferentes vehículos ferroviarios circulando por el mismo tipo de vía, habiendo sido evaluados dichos patrones sobre la vía principal, en la que se han colocado los sensores, de modo que se obtiene así un índice de correlación para cada primera correlación efectuada. A continuación, se selecciona de la base de datos el espectro discreto A que presente un mayor índice de correlación (se entiende que no puede haber índices de correlación con el mismo valor) de entre aquellos índices de correlación que sean mayores de un umbral predefinido (por ejemplo, umbral de índice de correlación> 0,7), en este caso, si se encuentra dicho índice de correlación se activa un nivel de alarma que además de identificar el tipo de vehículo ferroviario que está circulando, identifica también que la vía por la que circula es la vía principal (donde están instalados los sensores) y se volvería a capturar y monitorizar la señal. Obviamente, el umbral de índice de correlación se puede modificar de acuerdo a diferentes criterios. The discrete spectra B (B1, B2, ...) differ from the discrete spectra A mainly in two aspects: its lower amplitude (the sensor measures the vibratory signal that comes from the adjacent paths and not from the main path in which the sensor is placed) and a greater attenuation of the high frequencies with respect to the low frequencies, given the low-pass behavior of the propagation of mechanical vibration waves on the ground. This third level of digital detection calculates a discrete Fourier transform of the vibratory signal captured by the sensor (s) to obtain the discrete spectrum of said signal. Subsequently, a first correlation of the discrete spectrum of the signal obtained with each of the discrete spectra patterns A of the database that correspond to different discrete spectral patterns of different railway vehicles circulating on the same type of track is made, said patterns having been evaluated on the main path, in which the sensors have been placed, so that a correlation index is obtained for each first correlation made. Next, the discrete spectrum A that has a higher correlation index (it is understood that there can be no correlation indexes with the same value) is selected from the database from those correlation indexes that are greater than a predefined threshold ( for example, correlation index threshold> 0.7), in this case, if this correlation index is found, an alarm level is activated which, in addition to identifying the type of railway vehicle being circulated, also identifies that the route through the one that circulates is the main route (where the sensors are installed) and the signal would be captured and monitored again. Obviously, the correlation index threshold can be modified according to different criteria.
Sin embargo, en el caso de que ninguno de los índices de correlación supere el umbral predefinido se pasa a realizar una segunda correlación del espectro discreto de la señal obtenido con cada uno de los patrones de espectros discretos B (B1 ,B2, ... ) de la base de datos que se corresponden a diferentes patrones de espectros discretos de diferentes vehículos ferroviarios circulando por el mismo tipo de vía, habiendo sido evaluados dichos patrones sobre las vías adyacentes, de modo que se obtiene así un índice de correlación para cada segunda correlación efectuada. A continuación, se selecciona de la base de datos el espectro discreto B (B1 ,B2, ... ) que presente un mayor índice de correlación de entre aquellos índices de correlación que sean mayores de un umbral predefinido (por ejemplo, umbral de índice de correlación> 0,7), en este caso, si se encuentra dicho índice de correlación se activa un nivel de alarma que además de identificar el tipo de vehículo ferroviario que está circulando, identifica también la vía adyacente por la que circula, de tal manera que no es necesario que las personas que están realizando trabajos de mantenimiento en la vía principal (en la que están colocados los sensores) retiren los equipos de trabajo colocados sobre dicha vía principal, y se volvería a capturar y monitorizar la señal. En el caso de que ninguno de los índices de correlación (de la primera correlación y la segunda correlación) supere el umbral predefinido se volvería a monitorizar la señal y se almacenaría una información de presencia de tipo de vehículo ferroviario no identificado (si hay vehículo ferroviario), para la gestión de una base de datos que podrá usarse, por ejemplo, para el posterior aprendizaje y reconocimiento de nuevos vehículos ferroviarios. La información almacenada puede contener datos como la hora y minuto y/o el espectro discreto de vibraciones producido, o sólo sus principales parámetros para reducir requisitos de almacenamiento. However, in the event that none of the correlation indexes exceed the predefined threshold, a second correlation of the discrete spectrum of the signal obtained with each of the discrete spectra patterns B (B1, B2, ...) is made. ) of the database that correspond to different patterns of discrete spectra of different railway vehicles traveling on the same type of track, said patterns having been evaluated on adjacent tracks, so that a correlation index is obtained for each second correlation made. Next, the discrete spectrum B (B1, B2, ...) that has a higher correlation index is selected from the database among those correlation rates that are greater than a predefined threshold (for example, index threshold of correlation> 0.7), in this case, if said correlation index is found, an alarm level is activated which, in addition to identifying the type of railway vehicle that is traveling, also identifies the adjacent route through which it circulates, of such so it is not necessary for people who are carrying out maintenance work on the main road (in which the sensors are placed) to remove the work equipment placed on said main road, and the signal would be captured and monitored again. In the event that none of the correlation indices (of the first correlation and the second correlation) exceeds the predefined threshold, the signal would be re-monitored and a presence information of the unidentified railway vehicle type would be stored (if there is a railway vehicle ), for the management of a database that can be used, for example, for the subsequent learning and recognition of new railway vehicles. The stored information may contain data such as the hour and minute and / or the discrete spectrum of vibrations produced, or only its main parameters to reduce storage requirements.
La operación de correlación conlleva comparar las secuencias de muestras correspondientes a una ráfaga vibratoria con otras secuencias correspondientes a ráfagas tipo que identifican diferentes situaciones, según se busque la identificación del tipo de vehículo ferroviario o la identificación del tipo de vía de paso. Se enfatiza el término correlar pues matemáticamente permite hacer la comparación independientemente del tiempo de inicio de cada secuencia, sólo por la forma de ésta. Sin embargo, en la presente invención, aunque se podrían correlar la muestras temporales (las captadas directamente de los sensores), el término correlar se refiere a la correlación de muestras espectrales: ello significa hacer una transformada rápida de Fourier (tipo FFT), que genera una secuencia de muestras discretas, cada una de ellas correspondiente a un determinada frecuencia (de ahí el nombre de muestras espectrales), y es ésta la secuencia que se córrela con los patrones de espectros discretos. The correlation operation involves comparing the sequences of samples corresponding to a vibratory burst with other sequences corresponding to type bursts that identify different situations, depending on whether the identification of the type of railway vehicle or the identification of the type of passageway is sought. The term correlate is emphasized because mathematically it allows comparison to be made regardless of the start time of each sequence, only by its form. However, in the present invention, although the temporary samples (those taken directly from the sensors) could be correlated, the term correlate refers to the correlation of spectral samples: this means making a fast Fourier transform (FFT type), which generates a sequence of discrete samples, each corresponding to a certain frequency (hence the name of spectral samples), and this is the sequence that is correlated with discrete spectrum patterns.
Se describe a continuación un ejemplo particular para entender mejor la invención. En la figura 4 se muestra una base de datos (tabla) que contiene los espectros discretos de unos patrones pre-memorizados en el que se tienen 3 vías (la vía principal y dos vías adyacentes) donde X, Y, Z,... representan diferentes tipos de vehículos ferroviarios (por ejemplo Alvia, AVE, locomotora, mercancías, cercanías,... ). Cada vehículo ferroviario genera un espectro de vibraciones en función del tipo de vía sobre el que está circulando, con lo que hay varios patrones de espectros (frecuencias que se activan y amplitudes a las frecuencias más significativas) para cada tipo de vehículo ferroviario. La columna relativa a los espectros discretos A se refiere a los patrones pre-memorizados correspondientes al espectro discreto de diferentes tipos de vehículos ferroviarios circulando por un tipo de vía, cuando la vía de paso es la vía principal, en la que están colocado el/los sensores. Las columnas relativas a los espectros discretos B (columna B1 y B2) se refieren a los patrones pre-memorizados correspondientes al espectro discreto de los diferentes tipos de vehículos ferroviarios circulando por las vías adyacentes, donde los espectros discretos B1 corresponden a la vía adyacentel y los espectros discretos B2 corresponden a la vía adyacente2. A particular example to better understand the invention is described below. Figure 4 shows a database (table) containing the discrete spectra of pre-memorized patterns in which there are 3 tracks (the main track and two adjacent tracks) where X, Y, Z, ... they represent different types of railway vehicles (for example Alvia, AVE, locomotive, goods, commuter trains, ...). Each railway vehicle generates a spectrum of vibrations depending on the type of track on which it is traveling, so there are several spectrum patterns (frequencies that are activated and amplitudes at the most significant frequencies) for each type of railway vehicle. The column relating to the discrete spectra A refers to the pre-memorized patterns corresponding to the discrete spectrum of different types of railway vehicles traveling on one type of track, when the passageway is the main track, on which the / the sensors Columns related to discrete spectra B (column B1 and B2) refer to the pre-memorized patterns corresponding to the discrete spectrum of the different types of railway vehicles circulating along the adjacent tracks, where the discrete spectra B1 correspond to the adjacent track and the discrete spectra B2 correspond to the adjacent track2.
Los datos que se van obteniendo conforme se va ejecutando cada etapa del método (presencia de vehículos ferroviarios en vía, tipos de vehículos ferroviarios, etc) son almacenados localmente (en una base de mediciones) y transmitidos por cable o radio a una unidad receptora (central de alarmas, salas de control centralizado, brigadas de mantenimiento que están trabajando en las vías afectadas, etc) que los gestiona. Las diferentes conexiones y enlaces entre los elementos del sistema pueden realizarse por cable o mediante tecnología inalámbrica. The data that is obtained as each stage of the method is executed (presence of railway vehicles on track, types of railway vehicles, etc.) are stored locally (on a measurement basis) and transmitted by cable or radio to a receiving unit ( alarm center, centralized control rooms, maintenance brigades that are working on the affected roads, etc) that manages them. The different connections and links between the system elements can be made by cable or by wireless technology.
Adicionalmente, el método comprende transmitir, continua o discontinuamente, unos tonos piloto (frecuencias fijas) o unos códigos digitales, a una unidad receptora para informar (en aplicaciones tolerantes a fallos) del estado de atención de los sensores y de la fiabilidad de las conexiones y de los enlaces (radio o cableados). Additionally, the method comprises transmitting, continuously or discontinuously, pilot tones (fixed frequencies) or digital codes, to a receiving unit to inform (in fault tolerant applications) of the state of attention of the sensors and the reliability of the connections and of the links (radio or wired).
En la figura 1 se observa el método de la presente invención representado mediante un diagrama de flujo para el caso en el que únicamente existe la vía principal (no hay vías adyacentes). Se observa, por un lado, el subsistema analógico y por otro lado, y funcionando en paralelo, el subsistema digital que comprende la primera correlación del tercer nivel de detección digital, donde dicha primera correlación permite identificar el tipo de vehículo ferroviario y aporta información sobre si el paso de dicho vehículo ferroviario se produce por la vía principal (en la que están colocados el/los sensores triaxiales) o no. Por tanto, en esta figura 1 no se muestra ni el primer nivel de detección digital ni el segundo nivel de detección digital. Figure 1 shows the method of the present invention represented by a flow chart for the case in which only the main road exists (there are no adjacent roads). On the one hand, the analog subsystem is observed, and on the other hand, and running in parallel, the digital subsystem comprising the first correlation of the third level of digital detection, where said first correlation allows to identify the type of railway vehicle and provides information on if the passage of said railway vehicle occurs through the main road (in which the triaxial sensors are placed) or not. Therefore, in this figure 1 neither the first level of digital detection nor the second level of digital detection is shown.
Como se muestra en la figura 1 , en la etapa 100, el método captura y monitoriza de manera continua la señal vibratoria. En la etapa 101 , el método realiza un filtrado de ruidos y acondicionamiento de nivel. La etapa 102 (subsistema analógico) realiza una detección analógica del vehículo ferroviario y paralelamente, la etapa 1 10 (subsistema digital) realiza una detección digital del vehículo ferroviario.  As shown in Figure 1, in step 100, the method continuously captures and monitors the vibratory signal. In step 101, the method performs noise filtering and level conditioning. Step 102 (analog subsystem) performs an analog detection of the railway vehicle and in parallel, step 1 10 (digital subsystem) performs a digital detection of the railway vehicle.
Tras la etapa 102, el método realiza una detección de envolvente, un filtrado y una comparación (etapa 103). En la etapa 104 el método determina si se ha superado un umbral predefinido durante un tiempo. Si se supera dicho umbral se activa una alarma indicativa de presencia de vehículo, etapa 105, y el método continúa en la etapa 100. Si no se supera el umbral predefinido durante un tiempo no se activa ninguna alarma de detección de presencia de vehículo ferroviario y el método continúa en la etapa 100. Tras la etapa 1 10, el método digitaliza la señal vibratoria capturada (etapa 1 11) y a continuación, en la etapa 112, se calcula la transformada discreta de Fourier de dicha señal para obtener un espectro discreto de la señal. En la etapa 113 se realiza una primera correlación del espectro discreto de la señal con cada uno de los espectros discretos A de la base de datos obteniéndose un índice de correlación para cada correlación efectuada, y se verifica (etapa 1 14) si el espectro discreto de la señal coincide con algún espectro discreto A. En el caso de que coincida, el método activa una alarma (etapa 1 15) informando del tipo de vehículo ferroviario y que la vía por la que circula es la vía principal y se vuelve a la etapa 100; en caso contrario (de que ninguno coincida) también se vuelve a la etapa 100. After step 102, the method performs envelope detection, filtering and comparison (step 103). In step 104 the method determines if a predefined threshold has been exceeded for a while. If this threshold is exceeded an alarm is activated indicative of the presence of a vehicle, step 105, and the method continues in step 100. If the predefined threshold is not exceeded for a period of time no railway vehicle presence detection alarm is activated and the method continues in step 100. After step 1 10, the method digitizes the captured vibratory signal (step 1 11) and then, in step 112, the discrete Fourier transform of said signal is calculated to obtain a discrete spectrum of the signal. In step 113 a first correlation of the discrete spectrum of the signal is made with each of the discrete spectra A of the database obtaining a correlation index for each correlation made, and it is verified (step 1 14) if the discrete spectrum of the signal coincides with some discrete spectrum A. If it coincides, the method activates an alarm (step 1 15) informing of the type of railway vehicle and that the route through which it circulates is the main route and returns to the stage 100; otherwise (if none match) it also returns to stage 100.
La figura 2 muestra el método de la presente invención representado mediante un diagrama de flujo para el caso en el que además de existir la vía principal, también existen vías adyacentes. En este caso, el subsistema digital comprende la primera correlación y una segunda correlación del tercer nivel de detección digital. Por tanto, esta figura 2 comprende el diagrama de flujo de la figura 1 , donde en el caso de que ningún espectro discreto A coincida con el espectro discreto de la señal, en lugar de volver a la etapa 100, se pasaría a realizar una segunda correlación del espectro discreto de la señal con cada uno de los espectros discretos B (B1 ,B2, ... ) de la base de datos (etapa 1 16) obteniéndose un índice de correlación para cada correlación efectuada, y se verifica (etapa 1 17) si el espectro discreto de la señal coincide con algún espectro discreto B (B1 ,B2, ... ). En el caso de que coincida, el método activa una alarma (etapa 1 18) informando del tipo de vehículo ferroviario y la vía por la que circula y se vuelve a la etapa 100; en caso contrario (de que ninguno coincida) se guardan los datos correspondientes al vehículo ferroviario desconocido (si hay) (etapa 1 19) y se vuelve a la etapa 100. Figure 2 shows the method of the present invention represented by a flow chart for the case in which in addition to the main path, there are also adjacent paths. In this case, the digital subsystem comprises the first correlation and a second correlation of the third level of digital detection. Therefore, this figure 2 comprises the flowchart of figure 1, where in the event that no discrete spectrum A coincides with the discrete spectrum of the signal, instead of returning to step 100, a second one would be carried out correlation of the discrete spectrum of the signal with each of the discrete spectra B (B1, B2, ...) of the database (step 1 16) obtaining a correlation index for each correlation made, and is verified (step 1 17) if the discrete spectrum of the signal coincides with some discrete spectrum B (B1, B2, ...). If it coincides, the method activates an alarm (step 1 18) informing of the type of railway vehicle and the route through which it circulates and returns to stage 100; otherwise (if none match), the data corresponding to the unknown railway vehicle (if any) is saved (stage 1 19) and returns to stage 100.
En la figura 3 se observa el método de la presente invención representado mediante otro diagrama de flujo, donde se puede observar, por un lado, el subsistema analógico (que es el mismo que el de la figura 1 y 2) y por otro lado, y funcionando en paralelo, el subsistema digital que en este caso comprende el primer nivel de detección digital, el segundo nivel de detección digital y el tercer nivel de detección digital, donde el tercer nivel de detección comprende la primera y la segunda correlación. Se enumeran a continuación las etapas del subsistema digital 210 de esta figura 3. En la etapa 211 el método digitaliza la señal vibratoria capturada y a continuación, en la etapa 212 se realiza el primer nivel de detección digital, donde se evalúa si hay detección o no de vehículo ferroviario (etapa 213). Si ha habido detección de vehículo ferroviario, el método activa un primer nivel digital de alarma (etapa 214) y pasa a la etapa 215, mientras que si no ha habido detección de vehículo ferroviario se pasaría directamente a la etapa 215. En la etapa 215 se realiza el segundo nivel de detección digital, donde también se evalúa si hay detección o no de vehículo ferroviario (etapa 216). Si ha habido detección de vehículo ferroviario, el método activa un segundo nivel digital de alarma (etapa 217) y pasa a la etapa 218, mientras que si no ha habido detección de vehículo ferroviario se pasaría directamente a la etapa 218. A partir de aquí, el método ejecutaría el tercer nivel de detección digital (primera y segunda correlación) y por tanto, las mismas etapas que el método de la figura 2, es decir, en la etapa 218, se calcula la transformada discreta de Fourier de dicha señal para obtener un espectro discreto de la señal. En la etapa 219 se realiza una primera correlación del espectro discreto de la señal con cada uno de los espectros discretos A de la base de datos obteniéndose un índice de correlación para cada correlación efectuada, y se verifica (etapa 220) si el espectro discreto de la señal coincide con algún espectro discreto A. En el caso de que coincida, el método activa una alarma (etapa 221) informando del tipo de vehículo ferroviario y que la vía por la que circula es la vía principal y se vuelve a la etapa 100; en caso contrario (de que ninguno coincida) se realiza una segunda correlación del espectro discreto de la señal con cada uno de los espectros discretos B (B1 ,B2, ... ) de la base de datos (etapa 222) obteniéndose un índice de correlación para cada correlación efectuada, y se verifica (etapa 223) si el espectro discreto de la señal coincide con algún espectro discreto B (B1 ,B2, ... ). En el caso de que coincida, el método activa una alarma (etapa 224) informando del tipo de vehículo ferroviario y la vía por la que circula y se vuelve a la etapa 100; en caso contrario (de que ninguno coincida) se guardan los datos correspondientes al vehículo ferroviario desconocido (si hay) (etapa 225) y se vuelve a la etapa 100. Figure 3 shows the method of the present invention represented by another flow chart, where you can see, on the one hand, the analog subsystem (which is the same as in Figure 1 and 2) and on the other hand, and operating in parallel, the digital subsystem which in this case comprises the first level of digital detection, the second level of digital detection and the third level of digital detection, where the third level of detection comprises the first and the second correlation. The stages of the digital subsystem 210 of this figure 3 are listed below. In step 211 the method digitizes the captured vibratory signal and then, in step 212 is performed the first level of digital detection, where it is evaluated whether or not there is a railway vehicle detection (step 213). If there was a rail vehicle detection, the method activates a first digital alarm level (step 214) and goes to step 215, while if there has been no rail vehicle detection, it would go directly to step 215. In step 215 the second level of digital detection is performed, where it is also evaluated whether there is a detection or not of a railway vehicle (step 216). If there has been a railway vehicle detection, the method activates a second digital alarm level (step 217) and goes to step 218, while if there has been no railway vehicle detection it would go directly to step 218. From here , the method would execute the third level of digital detection (first and second correlation) and therefore, the same steps as the method of Figure 2, that is, in step 218, the discrete Fourier transform of said signal is calculated for Obtain a discrete signal spectrum. In step 219 a first correlation of the discrete spectrum of the signal is made with each of the discrete spectra A of the database obtaining a correlation index for each correlation made, and it is verified (step 220) if the discrete spectrum of the signal coincides with some discrete spectrum A. If it coincides, the method activates an alarm (step 221) informing of the type of railway vehicle and that the route through which it circulates is the main route and returns to stage 100 ; otherwise (if none match) a second correlation of the discrete spectrum of the signal is made with each of the discrete spectra B (B1, B2, ...) of the database (step 222) obtaining an index of correlation for each correlation made, and it is verified (step 223) if the discrete spectrum of the signal coincides with some discrete spectrum B (B1, B2, ...). If it coincides, the method activates an alarm (step 224) informing of the type of railway vehicle and the route through which it circulates and returns to stage 100; otherwise (if none match), the data corresponding to the unknown railway vehicle (if any) is saved (step 225) and returns to step 100.
En la figura 4 se muestra un ejemplo de una base de datos experimental. An example of an experimental database is shown in Figure 4.
Un segundo objeto de la invención describe un sistema que comprende el/los sensores y los medios computacionales (computador con procesador) configurados para llevar a cabo el método anterior. A second object of the invention describes a system comprising the sensors and computational means (computer with processor) configured to carry out the above method.
Tal y como se muestra en la figura 5, dicho sistema comprende por tanto al menos un sensor (3) dispuesto en la vía configurado para capturar y monitorizar continuamente una señal correspondiente a una vibración generada por un vehículo ferroviario circulando por un tipo de vía cualquiera; unos medios computacionales (4) configurados para: almacenar una base de datos experimental que comprende una pluralidad de señales y sus espectros discretos correspondientes, donde cada señal corresponde a una vibración generada por un vehículo ferroviario circulando por una vía cualquiera, digitalizar la señal vibratoria capturada, calcular una transformada discreta de Fourier de dicha señal para obtener un espectro discreto de la señal, correlar el espectro discreto de la señal con cada uno de los espectros discretos de la base de datos que se corresponden al mismo tipo de vía por la que circula el vehículo ferroviario, y obtener un índice de correlación para cada correlación efectuada, y seleccionar el espectro discreto de la base de datos que presente un mayor índice de correlación de entre aquellos índices de correlación que sean mayores de un umbral predefinido, cuando al menos uno de los índices de correlación supera el umbral predefinido. El sistema adicionalmente comprende un sistema de activación de niveles de alarma cuando se detecta e identifica el vehículo ferroviario. As shown in Figure 5, said system therefore comprises at least one sensor (3) arranged in the path configured to continuously capture and monitor a signal corresponding to a vibration generated by a railway vehicle traveling on any type of track; computational means (4) configured to: store an experimental database comprising a plurality of signals and their corresponding discrete spectra, where each signal corresponds to a vibration generated by a railway vehicle circulating in any way, digitize the captured vibratory signal , calculate a discrete Fourier transform of said signal to obtain a discrete spectrum of the signal, correlate the discrete spectrum of the signal with each of the discrete spectra of the database that correspond to the same type of path through which it circulates the railway vehicle, and obtain a correlation index for each correlation made, and select the discrete spectrum of the database that has a higher correlation index from those correlation indexes that are greater than a predefined threshold, when at least one of the correlation indexes exceeds the predefined threshold. The system additionally comprises an alarm level activation system when the railway vehicle is detected and identified.
Un tercer objeto de la invención describe un sistema de aviso (6), representado en la figura 5, que comprende el sistema de detección e identificación de vehículos ferroviarios en vías ferroviarias. A third object of the invention describes a warning system (6), represented in Figure 5, which comprises the system for detecting and identifying railway vehicles on railway tracks.
La presente invención no debe verse limitada a la forma de realización aquí descrita. Otras configuraciones pueden ser realizadas por los expertos en la materia a la vista de la presente descripción. En consecuencia, el ámbito de la invención queda definido por las siguientes reivindicaciones. The present invention should not be limited to the embodiment described herein. Other configurations can be made by those skilled in the art in view of the present description. Accordingly, the scope of the invention is defined by the following claims.

Claims

REIVINDICACIONES
1. Método de detección e identificación de vehículos ferroviarios en vías ferroviarias caracterizado por que comprende las siguientes etapas: 1. Method for detecting and identifying railway vehicles on railway tracks characterized by the following stages:
a. generar una base de datos experimental que comprende una pluralidad de espectros discretos A correspondientes a señales vibratorias generadas por un tipo de vehículo ferroviario circulando por cualquier tipo de vía ferroviaria cuando el tipo de vehículo ferroviario circula por una vía principal en la que está colocado al menos un sensor configurado para captar una señal vibratoria del paso de un vehículo ferroviario; to. generate an experimental database comprising a plurality of discrete spectra A corresponding to vibration signals generated by a type of railway vehicle circulating on any type of railway track when the type of railway vehicle circulates on a main track on which it is placed at least a sensor configured to capture a vibrating signal from the passage of a railway vehicle;
b. capturar continuamente la señal correspondiente a la vibración generada por el vehículo ferroviario circulando por cualquier tipo de vía ferroviaria mediante el sensor dispuesto en dicha vía, donde las vías ferroviarias están formadas por un tipo de soporte o una combinación de un tipo de soporte y un tipo de traviesa; c. digitalizar la señal vibratoria capturada; b. continuously capture the signal corresponding to the vibration generated by the railway vehicle traveling on any type of railway track using the sensor arranged on said track, where the railway tracks are formed by a type of support or a combination of a type of support and a type of mischief; c. digitize the captured vibration signal;
d. calcular una transformada discreta de Fourier de dicha señal para obtener un espectro discreto de la señal; d. calculating a discrete Fourier transform of said signal to obtain a discrete spectrum of the signal;
e. realizar una primera correlación del espectro discreto de la señal con cada uno de los espectros discretos A de la base de datos y obtener un índice de correlación para cada correlación efectuada; and. perform a first correlation of the discrete spectrum of the signal with each of the discrete spectra A of the database and obtain a correlation index for each correlation carried out;
f. seleccionar de la base de datos el espectro discreto A que presente un mayor índice de correlación de entre aquellos índices de correlación que sean mayores de un umbral predefinido, cuando al menos uno de los índices de correlación supera el umbral predefinido, donde dicho espectro discreto A indica el tipo de vehículo ferroviario y que la vía por la que circula es la vía principal; F. select from the database the discrete spectrum A that presents a higher correlation index among those correlation indices that are greater than a predefined threshold, when at least one of the correlation indices exceeds the predefined threshold, where said discrete spectrum A indicates the type of railway vehicle and that the track on which it circulates is the main track;
g. y volver a b. g. and return to b.
2. Método de detección e identificación de vehículos ferroviarios en vías ferroviarias según la reivindicación 1 , caracterizado por que entre las etapas f y g comprende: 2. Method for detecting and identifying railway vehicles on railway tracks according to claim 1, characterized in that between stages f and g it comprises:
- ampliar la base de datos experimental con una pluralidad de espectros discretos B correspondientes a una vibración generada por un tipo de vehículo ferroviario circulando por cualquier tipo de vía ferroviaria cuando el tipo de vehículo ferroviario circula por una vía adyacente; - expand the experimental database with a plurality of discrete spectra B corresponding to a vibration generated by a type of railway vehicle circulating on any type of railway track when the type of railway vehicle circulates on an adjacent track;
- realizar una segunda correlación del espectro discreto de la señal con cada uno de los espectros discretos B de la base de datos y obtener un índice de correlación para cada correlación efectuada; y - perform a second correlation of the discrete spectrum of the signal with each of the discrete spectra B of the database and obtain a correlation index for each correlation carried out; and
- seleccionar de la base de datos el espectro discreto B que presente un mayor índice de correlación de entre aquellos índices de correlación que sean mayores de un umbral predefinido, cuando al menos uno de los índices de correlación supera el umbral predefinido, donde dicho espectro discreto B indica el tipo de vehículo ferroviario y la vía por la que circula. - select from the database the discrete spectrum B that presents a higher correlation index among those correlation indices that are greater than a predefined threshold, when at least one of the correlation indices exceeds the predefined threshold, where said discrete spectrum B indicates the type of railway vehicle and the track on which it circulates.
3. Método de detección e identificación de vehículos ferroviarios en vías ferroviarias según las reivindicaciones 1 o 2, caracterizado por que se activa un nivel de alarma que indica el tipo de vehículo ferroviario detectado y de si la vía por la que está circulando es la vía principal o una vía adyacente. 3. Method for detecting and identifying railway vehicles on railway tracks according to claims 1 or 2, characterized in that an alarm level is activated that indicates the type of railway vehicle detected and whether the track on which it is traveling is the track. main or an adjacent road.
4. Método de detección e identificación de vehículos ferroviarios en vías ferroviarias según las reivindicaciones 1 o 2, caracterizado por que entre las etapas c y d comprende realizar una primera detección digital del vehículo ferroviario, de manera que si la señal digitalizada tiene una duración mayor o igual a un tiempo t1 preestablecido y una amplitud mayor o igual a un umbral u1 predefinido entonces se activa un primer nivel digital de alarma que indica que se ha realizado dicha primera detección. 4. Method for detecting and identifying railway vehicles on railway tracks according to claims 1 or 2, characterized in that between stages c and d it comprises performing a first digital detection of the railway vehicle, so that if the digitized signal has a duration greater than or equal to at a pre-established time t1 and an amplitude greater than or equal to a predefined threshold u1, then a first digital alarm level is activated indicating that said first detection has been made.
5. Método de detección e identificación de vehículos ferroviarios en vías ferroviarias según la reivindicación 4, caracterizado por que comprende realizar una segunda detección digital del vehículo ferroviario, mediante un análisis de un conjunto de sub- bandas frecuenciales preestablecidas de la señal digitalizada, de manera que si todas las muestras del conjunto de las sub-bandas frecuenciales superan un umbral u2 predefinido durante un tiempo t2 preestablecido entonces se activa un segundo nivel digital de alarma que indica que se ha realizado dicha segunda detección. 5. Method for detecting and identifying railway vehicles on railway tracks according to claim 4, characterized in that it comprises performing a second digital detection of the railway vehicle, through an analysis of a set of pre-established frequency sub-bands of the digitized signal, so that if all the samples of the set of frequency sub-bands exceed a predefined threshold u2 during a preestablished time t2, then a second digital alarm level is activated that indicates that said second detection has been made.
6. Método de detección e identificación de vehículos ferroviarios en vías ferroviarias según las reivindicaciones 1 o 2, caracterizado por que la generación de la base de datos comprende: 6. Method for detecting and identifying railway vehicles on railway tracks according to claims 1 or 2, characterized in that the generation of the database comprises:
• medir experimentalmente la señal vibratoria generada por cada tipo de vehículo ferroviario circulando por cualquier tipo de vía ferroviaria cuando el vehículo ferroviario circula por la vía principal en la que se ha colocado el sensor y cuando el vehículo ferroviario circula por al menos una vía adyacente; • experimentally measure the vibration signal generated by each type of railway vehicle circulating on any type of railway track when the railway vehicle circulates on the main track on which the sensor has been placed and when the railway vehicle circulates on at least one adjacent track;
• digitalizar la señal vibratoria; y, • calcular una transformada discreta de Fourier de la señal vibratoria digitalizada, generando el espectro discreto para cada tipo de vehículo ferroviario circulando por cualquier tipo de vía ferroviaria. • digitize the vibration signal; and, • calculate a discrete Fourier transform of the digitized vibration signal, generating the discrete spectrum for each type of railway vehicle circulating on any type of railway track.
7. Método de detección e identificación de vehículos ferroviarios en vías ferroviarias según las reivindicaciones 1 o 2, caracterizado por que paralelamente a la etapa c se realiza una detección analógica del vehículo ferroviario, de manera que si la señal analógica tiene una duración mayor o igual a un tiempo t3 preestablecido y una amplitud mayor o igual a un umbral u3 predefinido entonces se activa un nivel analógico de alarma que indica que se ha realizado dicha detección analógica y se vuelve a b; en caso contrario se ejecuta b. 7. Method for detecting and identifying railway vehicles on railway tracks according to claims 1 or 2, characterized in that parallel to step c an analog detection of the railway vehicle is carried out, so that if the analog signal has a duration greater than or equal to at a pre-established time t3 and an amplitude greater than or equal to a predefined threshold u3, then an analog alarm level is activated that indicates that said analog detection has been made and returns to b; Otherwise, b is executed.
8. Método de detección e identificación de vehículos ferroviarios en vías ferroviarias según las reivindicaciones 1 o 2, caracterizado por que el método comprende transmitir unos tonos piloto a una unidad receptora para informar del estado del sensor, de unas conexiones y de unos enlaces. 8. Method for detecting and identifying railway vehicles on railway tracks according to claims 1 or 2, characterized in that the method comprises transmitting pilot tones to a receiving unit to report the state of the sensor, connections and links.
9. Método de detección e identificación de vehículos ferroviarios en vías ferroviarias según las reivindicaciones 1 o 2, caracterizado por que comprende almacenar unos datos correspondientes a un vehículo ferroviario desconocido cuando no se ha seleccionado ningún espectro discreto de la base de datos. 9. Method for detecting and identifying railway vehicles on railway tracks according to claims 1 or 2, characterized in that it comprises storing data corresponding to an unknown railway vehicle when no discrete spectrum has been selected from the database.
10. Sistema de detección e identificación de vehículos ferroviarios en vías ferroviarias para llevar a cabo el método definido en las reivindicaciones 1 a 9, caracterizado por que comprende: 10. System for detecting and identifying railway vehicles on railway tracks to carry out the method defined in claims 1 to 9, characterized in that it comprises:
- al menos un sensor (3) dispuesto en la vía configurado para capturar continuamente una señal correspondiente a una vibración generada por un vehículo ferroviario circulando por cualquier tipo de vía ferroviaria; - at least one sensor (3) arranged on the track configured to continuously capture a signal corresponding to a vibration generated by a railway vehicle traveling on any type of railway track;
- unos medios computacionales (4) configurados para: - computational means (4) configured to:
• almacenar una base de datos experimental que comprende una pluralidad de señales y sus espectros discretos correspondientes, donde cada señal corresponde a una vibración generada por un vehículo ferroviario circulando por cualquier tipo de vía ferroviaria; • store an experimental database comprising a plurality of signals and their corresponding discrete spectra, where each signal corresponds to a vibration generated by a railway vehicle traveling on any type of railway track;
• digitalizar la señal vibratoria capturada; • digitize the captured vibration signal;
• calcular una transformada discreta de Fourier de dicha señal para obtener un espectro discreto de la señal; • calculate a discrete Fourier transform of said signal to obtain a discrete signal spectrum;
• correlar el espectro discreto de la señal con cada uno de los espectros discretos de la base de datos que se corresponden al mismo tipo de vía por la que circula el vehículo ferroviario, y obtener un índice de correlación para cada correlación efectuada; y • correlate the discrete spectrum of the signal with each of the discrete spectra in the database that correspond to the same type of track on which the railway vehicle circulates, and obtain a correlation index for each correlation made; and
• seleccionar el espectro discreto de la base de datos que presente un mayor índice de correlación de entre aquellos índices de correlación que sean mayores de un umbral predefinido, cuando al menos uno de los índices de correlación supera el umbral predefinido. • select the discrete spectrum from the database that presents a higher correlation index among those correlation indices that are greater than a predefined threshold, when at least one of the correlation indices exceeds the predefined threshold.
1 1. Sistema de detección e identificación de vehículos ferroviarios en vías ferroviarias según la reivindicación 10, caracterizado por que comprende un sistema de activación de niveles de alarma cuando se detecta e identifica el vehículo ferroviario. 1 1. System for detecting and identifying railway vehicles on railway tracks according to claim 10, characterized in that it comprises a system for activating alarm levels when the railway vehicle is detected and identified.
12. Sistema de detección e identificación de vehículos ferroviarios en vías ferroviarias según la reivindicación 10, caracterizado por que el sensor (3) es de tipo acelerométrico triaxial. 12. System for detecting and identifying railway vehicles on railway tracks according to claim 10, characterized in that the sensor (3) is of the triaxial accelerometric type.
13. Sistema de aviso (6) caracterizado por que comprende el sistema de detección e identificación de vehículos ferroviarios en vías ferroviarias según una cualquiera de las reivindicaciones 10 a 12. 13. Warning system (6) characterized in that it comprises the system for detecting and identifying railway vehicles on railway tracks according to any one of claims 10 to 12.
PCT/ES2016/070420 2016-06-03 2016-06-03 Method and system for detecting and identifying rail vehicles on railways and warning system WO2017207830A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES201890074A ES2712661B1 (en) 2016-06-03 2016-06-03 METHOD AND SYSTEM OF DETECTION AND IDENTIFICATION OF RAILWAY VEHICLES ON RAILWAYS AND NOTICE SYSTEM
PCT/ES2016/070420 WO2017207830A1 (en) 2016-06-03 2016-06-03 Method and system for detecting and identifying rail vehicles on railways and warning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2016/070420 WO2017207830A1 (en) 2016-06-03 2016-06-03 Method and system for detecting and identifying rail vehicles on railways and warning system

Publications (1)

Publication Number Publication Date
WO2017207830A1 true WO2017207830A1 (en) 2017-12-07

Family

ID=60479183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2016/070420 WO2017207830A1 (en) 2016-06-03 2016-06-03 Method and system for detecting and identifying rail vehicles on railways and warning system

Country Status (2)

Country Link
ES (1) ES2712661B1 (en)
WO (1) WO2017207830A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3643580A1 (en) * 2018-10-23 2020-04-29 Greatcom AG Monitoring system and method for detecting traffic objects in a surveillance area
WO2023208744A1 (en) * 2022-04-25 2023-11-02 Konux Gmbh System and method for analysing railway related data

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5713540A (en) * 1996-06-26 1998-02-03 At&T Corp. Method and apparatus for detecting railway activity
US6290187B1 (en) * 1998-06-04 2001-09-18 Mitsubishi Denki Kabushiki Kaisha Train detection apparatus, train-location detection system and train-approach-alarm generating apparatus
US20020027831A1 (en) * 1996-08-20 2002-03-07 Nippon Signal Co., Ltd. Information generating apparatus using elastic waves
US20040261533A1 (en) * 2003-06-27 2004-12-30 General Electric Company Rail and train monitoring system and method
US20150284015A1 (en) * 2010-09-17 2015-10-08 Wavetrain Systems As System and method for early train detection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5713540A (en) * 1996-06-26 1998-02-03 At&T Corp. Method and apparatus for detecting railway activity
US20020027831A1 (en) * 1996-08-20 2002-03-07 Nippon Signal Co., Ltd. Information generating apparatus using elastic waves
US6290187B1 (en) * 1998-06-04 2001-09-18 Mitsubishi Denki Kabushiki Kaisha Train detection apparatus, train-location detection system and train-approach-alarm generating apparatus
US20040261533A1 (en) * 2003-06-27 2004-12-30 General Electric Company Rail and train monitoring system and method
US20150284015A1 (en) * 2010-09-17 2015-10-08 Wavetrain Systems As System and method for early train detection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3643580A1 (en) * 2018-10-23 2020-04-29 Greatcom AG Monitoring system and method for detecting traffic objects in a surveillance area
CH715491A1 (en) * 2018-10-23 2020-04-30 Greatcom Ag Monitoring system and method for detecting road users in a detection area.
WO2023208744A1 (en) * 2022-04-25 2023-11-02 Konux Gmbh System and method for analysing railway related data

Also Published As

Publication number Publication date
ES2712661A1 (en) 2019-05-14
ES2712661B1 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
ES2837758T3 (en) Monitoring system of the condition of a railway track to detect a partial or complete interruption of a railway track
ES2662877T5 (en) Railway systems using acoustic monitoring
ES2685958T3 (en) Procedure for early train detection
ES2900752T3 (en) Array of sensors for railway surveillance and corresponding method
US9031791B2 (en) System and method for detecting rock fall
US10597053B2 (en) Operations monitoring in an area
ES2808097T3 (en) Procedure for operating a locating device as well as locating device
US10145983B2 (en) Vibration monitoring system and method
US20150000415A1 (en) Detecting Train Separation
ES2712661B1 (en) METHOD AND SYSTEM OF DETECTION AND IDENTIFICATION OF RAILWAY VEHICLES ON RAILWAYS AND NOTICE SYSTEM
JP4388532B2 (en) Railway vehicle abnormality detection device
ES2274454T3 (en) DETECTION OF THE DEARRILATION THROUGH THE DETERMINATION OF FALL SPEED.
US10324067B2 (en) Vibration monitoring system and method
US11285980B2 (en) Speed proving method and apparatus
JP2023506870A (en) Method and monitoring system for determining rail vehicle position
CN108290585B (en) Method and device for detecting derailment in a comparative controlled manner
JP6391463B2 (en) VEHICLE SPEED DETECTING DEVICE, VEHICLE WITH THE DEVICE, AND TRAIN
ES2207986T3 (en) PROCEDURE TO RECOGNIZE DAMAGE TO RAILWAY TRAFFIC.
RU2569067C2 (en) Automated system for alerting on approaching rolling stock
KR101529443B1 (en) System and method for providing emergency escape path
US20160311452A1 (en) Vehicle detector unit, vehicle detector system and a method for detecting presence of a vehicle on a rail
US9090270B2 (en) Speed sensitive dragging equipment detector
ES2240542T3 (en) PROCEDURE AND DEVICE TO SUPERVISE THE BEHAVIOR OF VEHICLES ON RAILS.
BR102016010909A2 (en) method and system
US20190217828A1 (en) Onboard system and emergency brake control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16903892

Country of ref document: EP

Kind code of ref document: A1