WO2017206956A1 - 一种海水盐度的在线检测方法及其装置 - Google Patents

一种海水盐度的在线检测方法及其装置 Download PDF

Info

Publication number
WO2017206956A1
WO2017206956A1 PCT/CN2017/087086 CN2017087086W WO2017206956A1 WO 2017206956 A1 WO2017206956 A1 WO 2017206956A1 CN 2017087086 W CN2017087086 W CN 2017087086W WO 2017206956 A1 WO2017206956 A1 WO 2017206956A1
Authority
WO
WIPO (PCT)
Prior art keywords
seawater
temperature
refractive index
sweep
frequency
Prior art date
Application number
PCT/CN2017/087086
Other languages
English (en)
French (fr)
Inventor
邹波
Original Assignee
深圳职业技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳职业技术学院 filed Critical 深圳职业技术学院
Priority to US15/778,631 priority Critical patent/US10876962B2/en
Publication of WO2017206956A1 publication Critical patent/WO2017206956A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/3206Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/4133Refractometers, e.g. differential
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • G01N2021/458Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods using interferential sensor, e.g. sensor fibre, possibly on optical waveguide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • G01N2021/8528Immerged light conductor

Definitions

  • the invention relates to a seawater salinity detection technology, in particular to a method and a device for online detection of seawater salinity.
  • Seawater salinity is a measure of salt content in seawater, which is a basic parameter that reflects the physical and chemical processes of seawater.
  • the real-time online detection of seawater salinity is of great significance in the fields of marine environmental protection, marine science, marine engineering and military defense. In recent years, the detection technology for seawater salinity has received extensive attention.
  • the existing seawater salinity detection technology has various technical defects, especially for long-term offshore online monitoring.
  • the present invention provides an on-line detection method for seawater salinity and a device thereof, wherein the frequency-swept laser source is controlled by a frequency-swept synchronization signal such that the wavelength of the output frequency-modulated light wave is a periodic sawtooth.
  • the wave signal is divided into two paths and sent to the refractive index probe and the temperature probe in the seawater respectively;
  • the refractive index probe is an interferometer structure, and the frequency value of the returned interference light intensity signal is related to the refractive index of the seawater,
  • the discrete Fourier transform is performed on the interfering light intensity signal to calculate the refractive index of the seawater;
  • the temperature probe has a built-in fiber Bragg grating, and the reflection spectrum Bragg wavelength is related to the seawater temperature, and the reflected frequency of the frequency sweeping signal and the fiber Bragg grating are reflected.
  • the discrete sampling of the signal is synchronized, and the seawater temperature value is calculated according to the grating temperature sensing demodulation algorithm; according to the obtained refractive index, the temperature value and the average wavelength of the modulated light wave, the salinity value of the measured seawater is obtained by solving the empirical equation.
  • the fiber Bragg grating in English Fiber Bragg Grating, the fiber Bragg grating is often referred to in the literature, referred to as FBG.
  • the refractive index detecting probe is an interferometer structure, and the sensing arm of the interferometer is composed of a seawater sample to be tested and a mirror, and the reference arm is composed of a medium with a known refractive index and a mirror, and the length of the sensing arm and the reference arm Equally, the frequency-modulated light wave entering the refractive index detecting probe forms a sensing light and a reference light under the action of the interferometer, and the two generate interference light due to the interference effect, and are returned by the refractive index detecting probe.
  • the interference light intensity signal I(t) returned by the refractive index detecting probe is:
  • I S and I R are the sensing light intensity and reference light intensity of the interferometer, respectively, I S ⁇ 0, I R ⁇ 0, ⁇ is the phase between the sensing light and the reference light of the interferometer difference. Since the length of the sensing arm and the reference arm are equal, the phase difference ⁇ is:
  • n S and n R are respectively the refractive index of the seawater to be measured, the known refractive index of the reference arm medium, and ⁇ (t) is the wavelength of the output light wave of the laser light source.
  • the intensity of the interference light I(t) returned by the refractive index detecting probe is:
  • the frequency-modulated light wave is output by using a frequency-swept laser light source, and the wavelength ⁇ (t) is a sawtooth wave signal with a sweep period of T, and the specific form is as follows:
  • the wavelength value, and ⁇ 0 is the minimum wavelength in the sweeping process, ⁇ >0, ⁇ is the sweep range of the wavelength, and ⁇ 0 + ⁇ is ⁇ (t) at the middle of each sweep period, ie Corresponding wavelength values, and ⁇ 0 + ⁇ is the maximum wavelength during the sweep.
  • the AC component I AC (t) of the interference light intensity I(t) is:
  • ⁇ 0 , ⁇ , l and n R of the above formula are constants.
  • the seawater refractive index n S generally changes slowly, and n S can also be regarded as a constant in a sweep period T.
  • the AC component I AC (t) in a sweep period T is a single frequency signal, and its frequency value ⁇ s
  • the frequency value ⁇ s is obtained by performing a discrete Fourier transform on the interference light intensity signal I(t), and the seawater refractive index n S can be calculated by the equation (15). Therefore, the use of the frequency sweeping laser source to output the frequency modulated light wave can effectively avoid the influence of the phase fading phenomenon and accurately realize the detection of the seawater refractive index.
  • the wavelength of the periodic sawtooth wave changes continuously, and the relative periodic square wave form has a smoother change in the output of the laser light source and a more stable performance.
  • the frequency-modulated light wave whose wavelength is changed by periodic sawtooth wave is used to facilitate the temperature sensing demodulation of the fiber Bragg grating.
  • the temperature probe has a built-in fiber Bragg grating, and the Bragg wavelength of the reflection spectrum is related to the seawater temperature value, and the above-mentioned frequency sweeping synchronization signal and the fiber Bragg grating reflected light intensity signal are synchronously and discretely sampled to obtain a reflection spectrum at the current temperature state, The maximum value in the reflection spectrum and the corresponding sweep sync signal voltage value obtain the corresponding Bragg wavelength, and then calculate the current seawater temperature value according to the characteristic parameter of the fiber Bragg grating temperature sensor. Therefore, the frequency-modulated light wave whose wavelength is changed by the periodic sawtooth wave is used to facilitate the temperature sensing demodulation of the fiber Bragg grating.
  • the salinity value of the seawater to be measured is obtained by solving the empirical equation, thereby realizing on-line detection of seawater salinity.
  • the specific form of the empirical equation is as follows:
  • the invention belongs to a method in which the seawater measuring end (wet end) is completely uncharged.
  • the invention relates to a seawater salinity on-line detecting device, which comprises a water platform, a seawater refractive index detecting probe and a seawater temperature detecting probe.
  • the water platform needs to be powered, and the two detection probes placed in the seawater are composed of optical passive components, and no power supply is required. It has no electrical connection with the water platform and is connected only by two optical fibers. It belongs to the method that the seawater measuring end (wet end) is completely uncharged. It has the characteristics of anti-leakage, anti-corrosion, simple installation and convenient maintenance. It is more suitable for on-line detection of seawater salinity in the wild.
  • FIG. 1 is a schematic view showing the structure of an on-line seawater salinity detecting device of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a method for online detection of seawater salinity comprising the following steps:
  • Step 1 Control the frequency sweep synchronization signal source so that the output frequency sweep synchronization signal V(t) is a sawtooth wave voltage signal with a sweep period of T, and its specific form is as follows:
  • t is a time variable
  • n is a non-negative integer
  • n 012
  • V 0 is V(t) at the beginning or end of each sweep period T
  • V P is V(t) at the middle of each sweep period, ie 2 corresponding voltage value
  • Step 2 Under the action of the frequency sweeping synchronization signal source, the frequency modulated light wave output by the frequency sweeping laser light source linearly changes with the frequency sweeping synchronization signal V(t), and the wavelength ⁇ (t) It is also a sawtooth wave signal with a sweep period of T.
  • V(t) the frequency sweeping synchronization signal
  • ⁇ (t) It is also a sawtooth wave signal with a sweep period of T.
  • the minimum wavelength, ⁇ >0, ⁇ is the sweep range of the wavelength, and ⁇ 0 + ⁇ is ⁇ (t) at the middle of each sweep period, ie 2 corresponding wavelength value, and ⁇ 0 + ⁇ is the maximum wavelength in the frequency sweeping process;
  • Step 3 The frequency modulated light wave output by the frequency sweeping laser light source is divided into two paths by the optical waveguide device, and respectively enters a refractive index detecting probe and a temperature detecting probe placed in the seawater to be tested, and the refractive index detecting probe is an interferometer structure, and the interferometer
  • the sensing arm is mainly composed of the sea sample to be tested and the first mirror
  • the reference arm of the interferometer is mainly composed of a medium with a known refractive index and a second mirror, and the length of the sensing arm and the reference arm are equal.
  • Both are light entering the refractive index detecting probe, and under the action of the interferometer, the sensing light and the reference light are formed, and the interference light is generated by the interference effect, and the interference light is returned by the refractive index detecting probe;
  • the temperature is
  • the detection probe has a built-in fiber Bragg grating temperature sensor, enters the frequency-modulated probe's frequency-modulated light wave, and forms a reflected light and a reflection spectrum under the action of the fiber Bragg grating temperature sensor, because the Bragg wavelength of the reflection spectrum is related to the seawater temperature value, The reflected light is called temperature reflected light;
  • the optical fiber Bragg grating temperature sensor built in the temperature detecting probe moves the Bragg wavelength of the reflection spectrum according to the change of the seawater temperature, and within a whole range of the seawater temperature, the Bragg wavelength of the temperature detecting probe does not exceed the scanning range.
  • the sweep wavelength range of the frequency laser source that is, the Bragg wavelength moves left and right between ⁇ 0 and ⁇ 0 + ⁇ ;
  • Step 4 Using the photodetector, measuring the interference light intensity signal I(t) and the temperature reflected light intensity signal G(t), and dividing the entire measurement time into a plurality of measurement time periods of equal length, the length of the time period is taken For two sweep cycles, that is, 2T, the interference light intensity I(t) is measured in the first sweep period T of each time period, and the temperature reflected light intensity G is performed in the second sweep period T. (t) measurement;
  • I S, I R respectively interferometer sensing light intensity and reference light intensity, if ignored I S, I R changes within a sweep period T, I S will be within a sweep period T, I R is regarded as a constant, and the above interference light intensity I(t) is the sum of the direct current component I DC and the alternating current component I AC (t), namely:
  • the AC component I AC (t) of the interference light intensity I(t) is:
  • the sampling period T 1 should meet the requirements of the sampling theorem, that is, the following conditions are met:
  • the sampling period T 2 is:
  • the swept synchronization signal sequence V(h) and the temperature reflected light intensity signal sequence G(h) are both L 2 and L 2 is:
  • Step 8 The signal processing unit performs a fast Fourier transform FFT on the interference light intensity sampling signal sequence I(m) in the first sweep period T of the current time period, and obtains the spectrum of the interference light intensity I(t) in the time. Distribution, from which the frequency value ⁇ s of the interfering light intensity I(t) AC component I AC (t) is calculated;
  • l is the length of the refractive index detecting probe sensing arm and the reference arm
  • n R is a known refractive index of the probe reference arm medium
  • Step 10 Calculate according to the fiber Bragg grating temperature sensing demodulation algorithm by using the frequency sweeping signal sequence V(h) and the temperature reflected light intensity signal sequence G(h) in the second sweep period T of the current time period.
  • the fiber Bragg grating temperature sensing demodulation algorithm includes the following steps:
  • the current seawater temperature value T S is calculated from the Bragg wavelength corresponding to the temperature-reflected light intensity maximum value G(h_M) obtained above.
  • Step 11 Since the change in the refractive index n S of the seawater and the temperature is relatively slow, the change in the refractive index n S of the seawater and the temperature T S in each measurement period can be ignored, and each measurement period is two sweeps.
  • Step 12 According to the current time period obtained above, the seawater refractive index n S , the temperature value T S and the average wavelength of the output light wave of the swept laser source Solve the following empirical equation:
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the seawater salinity on-line detecting device used in the seawater salinity on-line detecting method in the first embodiment includes a water platform, a seawater refractive index detecting probe and a seawater temperature detecting probe, and the water platform respectively detects the refractive index of the seawater through two optical fibers respectively.
  • the probe and seawater temperature detecting probe are connected.
  • the water platform outputs an FM light wave whose wavelength is a periodic sawtooth wave signal, and the frequency modulated light wave is divided into two paths and sent to a refractive index probe and a temperature probe in the seawater respectively;
  • the refractive index probe is an interferometer structure, and the temperature probe is Built-in fiber Bragg grating.
  • the water platform includes a frequency sweeping laser light source, a frequency sweeping synchronization signal source, a first photodetector, a second photodetector, an A/D converter, a signal processing unit, a control unit, a first 1x2 fiber coupler, and a first
  • the fiber optic circulator and the second fiber optic circulator, the seawater temperature detecting probe comprises a fiber Bragg grating temperature sensor, the swept laser source is provided with a fiber optic interface and an electrical interface, and the swept laser source is synchronized with the frequency sweep through an electrical interface a signal source is connected, the swept laser source is connected to one arm of the first 1x2 fiber coupler through a fiber optic interface, and the two arms and the three arms of the first 1x2 fiber coupler are respectively connected to one arm of the first fiber optic circulator, An arm of the second fiber circulator, the two arms and the three arms of the first fiber circulator are respectively connected to the refractive index detecting probe and the first photodetector, and the two arms
  • the refractive index detecting probe comprises a second 1x2 fiber coupler, a first fiber self-focusing lens, a second fiber self-focusing lens, a seawater sample cavity, a reference medium, a first mirror, a second mirror, and a second 1x2 fiber coupler
  • the 1 arm is connected to the 2 arms of the first fiber circulator, and the 2 arms and 3 arms of the second 1x2 fiber coupler are respectively connected to the first fiber self-focusing lens and the second fiber self-focusing lens, the seawater
  • the sample cavity is located between the first fiber-optic self-focusing lens and the first mirror
  • the reference medium is located between the second fiber-optic self-focusing lens and the second mirror

Landscapes

  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

一种海水盐度的在线检测方法及其装置,用扫频同步信号控制扫频激光光源,使其所输出调频光波的波长是一个周期性的锯齿波信号,将所输出的调频光波分成两路,分别送至海水中的折射率探头和温度探头;折射率探头为干涉仪结构,其返回的干涉光强信号的频率值与海水折射率相关,通过对干涉光强信号做离散傅里叶变换,计算出海水折射率;温度探头内置光纤Bragg光栅,其反射谱Bragg波长与海水温度相关,对上述扫频同步信号和光纤Bragg光栅反射光强信号进行同步的离散抽样,按照光栅温度传感解调算法,计算出海水温度值;根据所得的折射率、温度值及调频光波的平均波长,通过求解经验方程,得到被测海水的盐度值,从而实现海水盐度的在线检测。

Description

一种海水盐度的在线检测方法及其装置 技术领域
本发明涉及海水盐度检测技术,特别涉及一种海水盐度在线检测的方法及装置。
背景技术
海水盐度是海水中含盐量的一个标度,盐度是反映海水的物理过程和化学过程的基本参数。海水盐度的实时在线检测,在海洋环境保护、海洋科学、海洋工程和军事国防等领域有重要意义。近年来,关于海水盐度的检测技术得到了的广泛重视。
中国发明专利“棱镜模型多次折射的海水盐度检测装置”(专利申请号:201010603445.0),利用激光器输出650nm波长的红光,照射参考液体和被测液体,并经棱镜多次折射后,红光被位置敏感器件PSD接收,根据PSD的位置变化信息计算出液体的盐度值。由于PSD是光电器件,需要提供电源才能工作,属于海水测量端(俗称湿端)带电的方法,不适合长时间的海上在线监测。
中国发明专利“高精度海水盐度测量仪”(专利申请号:201210244182.8),分别将被测海水和标准海水盛入两个不同的恒温槽中。通过正弦波发生器、高精确标准电阻及电压变换器等部件测量出海水样品和标准海水的电导率,根据海水样品与标准海水的电导率之比,换算出海水的盐度值。由于该方法需要将正弦波电压加到恒温槽中的电极之上,且恒温槽本身要加电工作,也是海水测量端(湿端)带电的方法。仅适用实验室内检测,不适用海上在线监测。
中国发明专利“海水盐度的检测装置与方法”(专利申请号:201410425894.9),其利用微纳光纤的强倏逝场与海水相互作用,在微纳光纤环形腔中产生谐振,以谐振波长按公式计算出海水的盐度值。该专利技术的检测原理先进,有好的应用前景。但需要用到光谱分析仪,以扫描方式获得被测海水的光谱图,读出被测海水的谐振峰波长。因此,该专利技 术实施成本高,设备体积较大。
中国发明专利“利用布里渊频移和线宽同步反演海水温度和盐度的方法”(专利申请号:201410386610.X)。其仅给出了在一定海水温度和盐度条件下,布里渊散射频移和线宽的计算公式与反演方法,并未涉及海水温度和盐度测量方法与装置设计。
综上所述,现有的海水盐度检测技术存在多种技术缺陷,尤其不适用长时间的海上在线监测。
发明内容
为了解决现有技术中问题,本发明提供了一种海水盐度的在线检测方法及其装置,用扫频同步信号控制扫频激光光源,使其所输出调频光波的波长是一个周期性的锯齿波信号,将该调频光波分成两路,分别送至海水中的折射率探头和温度探头;该折射率探头为干涉仪结构,其返回的干涉光强信号的频率值与海水折射率相关,通过对该干涉光强信号做离散傅里叶变换,计算出海水折射率;该温度探头内置光纤Bragg光栅,其反射谱Bragg波长与海水温度相关,对上述扫频同步信号和光纤Bragg光栅反射光强信号进行同步的离散抽样,按照光栅温度传感解调算法,计算出海水温度值;根据所得的折射率、温度值及调频光波的平均波长,通过求解经验方程,得到被测海水的盐度值,从而实现海水盐度的在线检测。光纤Bragg光栅的英文:Fiber Bragg Grating,文献中常将光纤Bragg光栅,简称为FBG。
本发明的有益效果是:
一、采用波长以周期性的锯齿波变化的调频光波,能有效避免相位衰落现象。该折射率检测探头为干涉仪结构,干涉仪的传感臂由被测海水样本与反射镜构成,其参考臂由已知折射率的介质与反射镜构成,且传感臂与参考臂的长度相等,进入折射率检测探头的调频光波,在干涉仪的作用下,形成传感光和参考光,二者因干涉效应,产生干涉光,并由折射率检测探头返回。
根据双光束相干原理,该折射率检测探头返回的干涉光强度信号I(t)为:
Figure PCTCN2017087086-appb-000001
其中,t为时间变量,IS、IR分别为干涉仪的传感光强和参考光强,IS≥0,IR≥0,Δφ为干涉仪的传感光与参考光之间的相位差。因为传感臂与参考臂的长度相等,故相位差Δφ为:
Figure PCTCN2017087086-appb-000002
其中,l为传感臂和参考臂的长度,nS、nR分别为海水的待测折射率、参考臂介质的已知折射率,λ(t)为激光光源输出光波的波长。
如果激光光源输出固定波长的光波,即λ(t)=λ0,λ0为常数,根据式(1)、(2),则,折射率检测探头返回的干涉光强度I(t)为:
Figure PCTCN2017087086-appb-000003
其中,忽略IS、IR、nR随时间的变化,则干涉光强度I(t)对时间的微分
Figure PCTCN2017087086-appb-000004
Figure PCTCN2017087086-appb-000005
其中,
Figure PCTCN2017087086-appb-000006
为海水折射率对时间的微分。
由(4)式可知,
Figure PCTCN2017087086-appb-000007
时,其中m为整数,有下式成立:
Figure PCTCN2017087086-appb-000008
以上意味着,当激光光源输出光波为固定波长λ0,且当
Figure PCTCN2017087086-appb-000009
时,即使海水折射率nS的随时间随变化,即
Figure PCTCN2017087086-appb-000010
干涉光强度I(t)对时间的微分
Figure PCTCN2017087086-appb-000011
也为零,I(t)完全不随海水折射率nS而变化。此时,折射率检 测探头工作在最不灵敏的区域,出现所谓的相位衰落现象。因此,必须采用技术手段,才能避免相位衰落现象的影响,准确地实现物理量的传感。
采用扫频激光光源输出调频光波,波长λ(t)是一个扫频周期为T的锯齿波信号,具体形式如下:
Figure PCTCN2017087086-appb-000012
其中,t为时间变量,n为非负整数,λ0为波长λ(t)在每个扫频周期T的起始或终止时刻,即t=nT或t=(n+1)T对应的波长值,且λ0为扫频过程中的最小波长,Δλ>0,Δλ为波长的扫频变化范围,λ0+Δλ为λ(t)在每个扫频周期的中间时刻,即
Figure PCTCN2017087086-appb-000013
对应的波长值,且λ0+Δλ为扫频过程中的最大波长。
Figure PCTCN2017087086-appb-000014
Figure PCTCN2017087086-appb-000015
如果Δλ<<λ0,利用级数展开,忽略高阶小量:
Figure PCTCN2017087086-appb-000016
将式(8)代入式(2):
Figure PCTCN2017087086-appb-000017
将式(9)代入式(1):
Figure PCTCN2017087086-appb-000018
如果忽略IS、IR在一个扫频周期T内的变化,将一个扫频周期T内的IS、IR视为常数,则以上干涉光强度信号I(t)为直流分量IDC与交流分量IAC(t)之和:、I(t)=IDC+IAC(t)     (11)
其中,干涉光强度I(t)的直流分量IDC
IDC=IS+IR      (12)
干涉光强度I(t)的交流分量IAC(t)为:
Figure PCTCN2017087086-appb-000019
上式的λ0、Δλ、l及nR为常数。海水折射率nS一般变化较慢,nS在一个扫频周期T内的也可视为常数,则一个扫频周期T内的交流分量IAC(t)为单频信号,其频率值ωs
Figure PCTCN2017087086-appb-000020
可见,一个扫频周期T内的交流分量IAC(t)为频率值ωs与海水折射率nS相关。
利用式(14),对其变换,得到下式:
Figure PCTCN2017087086-appb-000021
进而有:
Figure PCTCN2017087086-appb-000022
通过对干涉光强度信号I(t)做离散傅里叶变换,得到频率值ωs,利用式(15),可计算出海水折射率nS。因此,采用扫频激光光源输出调频光波,可有效避免相位衰落现象的影响,准确地实现海水折射率的检测。
另外,以周期性的锯齿波变化的波长,是连续变化的,相对周期性的方波形式,其激光光源输出变化更平滑,性能更稳定。
二、采用波长以周期性的锯齿波变化的调频光波,方便光纤Bragg光栅实现温度传感解调。
本温度探头内置光纤Bragg光栅,其反射光谱的Bragg波长与海水温度值相关,对上述扫频同步信号和光纤Bragg光栅反射光强度信号进行同步的离散抽样,得到当前温度状态下的反射光谱,由该反射光谱中的最大值及所对应的扫频同步信号电压值,得到相应的Bragg波长,再根据光纤Bragg光栅温度传感器的特性参数,计算出当前的海水温度值。因此,采用波长以周期性的锯齿波变化的调频光波,方便光纤Bragg光栅实现温度传感解调。
三、通过求解经验方程,计算海水的盐度值。
根据所得的折射率、温度值及调频光波的平均波长,通过求解经验方程,得到被测海水的盐度值,从而实现海水盐度的在线检测。参考文献:Xiaohong Quan and Edward S.Fry.Empirical equation for the index of refraction of seawater,APPLIED OPTICS[J].1995.Vol.34,No.18:3477-3480。经验方程具体形式如下:
Figure PCTCN2017087086-appb-000023
其中,各系数为:
n0=1.31405,n1=1.779×10-4,n2=-1.05×10-6,n3=1.6×10-8
n4=-2.02×10-6,n5=15.868,n6=0.01155,n7=-0.00423,
n8=-4382,n9=1.1455×106
以上经验方程将海水的折射率视为海水盐度值、温度值及光波的平均波长的函数,参考文献表明,其计算结果与实验数据吻合度好,准确度可靠。
四、本发明属于海水测量端(湿端)完全不带电的方法。
本发明的一种海水盐度在线检测装置,其包括水上平台、海水折射率检测探头和海水温度检测探头。该水上平台需供电工作,而放置在海水中的两种检测探头,均由光学无源器件组成,无需供电。其与水上平台没有任何电气连接,仅通过两根光纤相连,属于海水测量端(湿端)完全不带电的方法。具有防漏电、防腐蚀、安装简单、维护方便的特点。更适合野外环境下的海水盐度在线检测。
附图说明
图1是本发明海水盐度在线检测装置结构示意图。
具体实施方式
下面结合附图对本发明做进一步说明。
实施方式1:
一种海水盐度在线检测方法,包括以下步骤:
步骤1:控制扫频同步信号源,使其输出的扫频同步信号V(t)是扫频周期为T的锯齿波电压信号,其具体形式如下:
Figure PCTCN2017087086-appb-000024
其中,t为时间变量,n为非负整数,n=012,......,V0为V(t)在每个扫频周期T的起始或终止时刻,即t=nT或t=(n+1)T对应的电压值,而VP为V(t)在每个扫频周期的中间时刻,即
Figure PCTCN2017087086-appb-000025
2对应的电压值,且V0≥0,VP>V0
步骤2:在所述的扫频同步信号源的作用下,扫频激光光源所输出的调频光波,其波长λ(t)随扫频同步信号V(t)而线性变化,波长λ(t)也是一个扫频周期为T的锯齿波信号,具体形式如下:
Figure PCTCN2017087086-appb-000026
其中,λ0为波长λ(t)在每个扫频周期T的起始或终止时刻,即t=nT或t=(n+1)T对应的波长值,且λ0为扫频过程中的最小波长,Δλ>0,Δλ为波长的扫频变化范围,而λ0+Δλ为λ(t)在每个扫频周期的中间时刻,即
Figure PCTCN2017087086-appb-000027
2对应的波长值,且λ0+Δλ为扫频过程中的最大波长;
步骤3:扫频激光光源输出的调频光波被光波导器件分成两路光,分别进入放置在被测海水中的折射率检测探头和温度检测探头,该折射率检测探头为干涉仪结构,干涉仪的传感臂主要由被测海水样本与第一反射镜构成,干涉仪的参考臂主要由已知折射率的介质与第二反射镜构成,且传感臂与参考臂的长度相等,二者均为l,进入折射率检测探头的光,在干涉仪的作用下,形成传感光和参考光,二者因干涉效应,产生干涉光,该干涉光由折射率检测探头返回;所述的温度检测探头内置光纤Bragg光栅温度传感器,进入温度检测探头的调频光波,在该光纤Bragg光栅温度传感器的作用下,形成反射光及反射光谱,因该反射光谱的Bragg波长与海水温度值相关,将该反射光称为温度反射光;
所述的温度检测探头内置的光纤Bragg光栅温度传感器,其反射谱Bragg波长随海水温度的变化而移动,且在海水温度的整个变化范围内,该温度检测探头的Bragg波长的移动区间不超过扫频激光光源的扫频波长范围,即该Bragg波长在λ0至λ0+Δλ之间左右移动;
步骤4:采用光电探测器,测量上述干涉光强度信号I(t)和温度反射光强度信号G(t),将整个测量时间,分成若干个长度相等的测量时间段,该时间段的长度取为2个扫频周期,即为2T,在每个时间段的第一个扫频周期T内进行干涉光强度I(t)的测量,第二个扫频周期T内进行温度反射光强度G(t)的测量;
其中的干涉光强度I(t):
Figure PCTCN2017087086-appb-000028
其中,IS、IR分别为干涉仪的传感光强和参考光强,如果忽略IS、IR在一个扫频周期T内的变化,将一个扫频周期T内的IS、IR视为常数,则以上干涉光强度I(t)为直流分量IDC与交流分量IAC(t)之和,即:
I(t)=IDC+IAC(t)
其中,干涉光强度I(t)的直流分量IDC
IDC=IS+IR
干涉光强度I(t)的交流分量IAC(t)为:
Figure PCTCN2017087086-appb-000029
上式的λ0、Δλ、l及nR为常数,海水折射率nS一般变化较慢,nS在一个扫频周期T内的也可视为常数,则该交流分量IAC(t)为单频信号,其频率值ωs
Figure PCTCN2017087086-appb-000030
步骤5:先令n=0,设置当前时间段的起始时刻为t=nT;
步骤6:从t=nT时刻开始,用A/D转换器,对当前时间段第一个扫频周期T内的干涉光强度I(t)信号,以采样周期为T1,进行离散抽样,得到第一个扫频周期T内,即t=nT至t=(n+1)T时间的抽样信号序列I(m),该序列的长度为L1,m为序列序号且是非负整数,m=0 1 2......L1-1,将I(m)保存在信号处理单元中;
其中的采样周期T1应满足采样定理的要求,即满足以下条件:
Figure PCTCN2017087086-appb-000031
且抽样信号序列I(m)的长度L1为:
Figure PCTCN2017087086-appb-000032
步骤7:从t=(n+1)T开始,用A/D转换器,对当前时间段第二个扫频周期T内的扫频同步信号V(t)和温度反射光强度G(t),以采样周期为T2,进行离散抽样,得到第二个扫频周期T内,即t=(n+1)T至t=(n+2)T时间的扫频同步信号序列V(h)、温度反射光强信号序列G(h),序列V(h)和G(h)的长度均为L2,h为序列序号且为非负整数,h=0 1 2......L2-1,将V(h)和G(h)保存在信号处理单元中;
其中的采样周期T2为:
Figure PCTCN2017087086-appb-000033
扫频同步信号序列V(h)和温度反射光强信号序列G(h)长度均为L2,且L2为:
Figure PCTCN2017087086-appb-000034
步骤8:信号处理单元对当前时间段第一个扫频周期T内的干涉光强度抽样信号序列I(m),做快速傅立叶变化FFT,得到干涉光强度I(t)在该时间内的频谱分布,由该频谱计算出以上时间内干涉光强度I(t)交流分量IAC(t)的频率值ωs
步骤9:根据干涉光强度交流分量IAC(t)的频率值ωs与海水折射率nS之间的关系,按下式计算出当前时间段第一个扫频周期T内,即t=nT至t=(n+1)T内的被测海水样本折射率nS
Figure PCTCN2017087086-appb-000035
其中,l为折射率检测探头传感臂和参考臂的长度,nR为该探头参考臂介质的已知折射率;
步骤10:利用当前时间段第二个扫频周期T内的扫频同步信号序列V(h)和温度反射光强度信号序列G(h),按照光纤Bragg光栅温度传感解调算法,计算得到第二个扫频周期T内,即t=(n+1)T至t=(n+2)T内的被测海水温度值TS
其中的光纤Bragg光栅温度传感解调算法,其包括以下步骤:
第一:由温度反射光强度信号序列G(h),找到温度反射光强的最大值G(h_M)及所对应的序号h_M;
第二:由以上温度反射光强的最大值G(h_M)所对应的序号h_M,找到位于该时刻的扫频同步信号电压值V(h_M);
第三:由序号h_M所对应的扫频同步信号电压值V(h_M),找到温度反射光强的最大值G(h_M)所对应的光纤光栅温度传感器的Bragg波长;
第四:根据光纤Bragg光栅温度传感器的特性参数,由以上得到的温度反射光强最大值G(h_M)所对应的Bragg波长,计算出当前的海水温度值TS
步骤11:由于海水的折射率nS和温度的变化较为缓慢,可忽略海水的折射率nS和温度TS在每个测量时间段内的变化,所述每个测量时间段为两个扫频周期,用该时间段的第一个扫频周期T,即t=nT至t=(n+1)T内所得的海水样本的折射率nS,近似为整个时间段,即t=nT至t=(n+2)T内的海水样本的折射率nS,同理,用该时间段的第二个扫频周期T,即t=(n+1)T至t=(n+2)T内所得的海水的温度值TS,近似为整个时间段,即t=nT至t=(n+2)T内的海水的温度值TS
步骤12:根据以上得到的当前时间段的海水折射率nS、温度值TS及扫频激光光源输出光波的平均波长
Figure PCTCN2017087086-appb-000036
求解以下经验方程式:
Figure PCTCN2017087086-appb-000037
计算出当前时间段,即t=nT至t=(n+2)T之间的海水盐度值S,其中,各系数为,
n0=1.31405,n1=1.779×10-4,n2=-1.05×10-6,n3=1.6×10-8
n4=-2.02×10-6,n5=15.868,n6=0.01155,n7=-0.00423,
n8=-4382,n9=1.1455×106
步骤13:令n=n+2,对时间段的起始时刻更新,指向下一时间段;
步骤14:重复步骤6-13,如此循环进行,测量在起始时刻t=0之后的任意时间段,即t=nT至t=(n+2)T内的海水盐度值S,实现海水盐度的实时检测,其中,n=0 1 2,......。
实施方式2:
实施方式1中的一种海水盐度在线检测方法所用的海水盐度在线检测装置,其包括水上平台、海水折射率检测探头和海水温度检测探头,水上平台通过两根光纤分别与海水折射率检测探头、海水温度检测探头相连, 该水上平台输出调频光波,其波长是一个周期性的锯齿波信号,该调频光波分成两路,分别送至海水中的折射率探头和温度探头;该折射率探头为干涉仪结构,该温度探头内置光纤Bragg光栅。
所述水上平台包括扫频激光光源、扫频同步信号源、第一光电探测器、第二光电探测器、A/D转换器、信号处理单元、控制单元、第一1x2光纤耦合器、第一光纤环形器及第二光纤环形器,该海水温度检测探头包括一个光纤Bragg光栅温度传感器,所述的扫频激光光源设有光纤接口和电气接口,该扫频激光光源通过电气接口与扫频同步信号源相连,该扫频激光光源通过光纤接口与第一1x2光纤耦合器的1臂相连,所述的第一1x2光纤耦合器的2臂、3臂分别接第一光纤环形器的1臂、第二光纤环形器的1臂,所述的第一光纤环形器的2臂、3臂分别与折射率检测探头、第一光电探测器相连,所述的第二光纤环形器的2臂、3臂分别与海水温度检测探头、第二光电探测器相连,所述的扫频同步信号源、第一光电探测器及第二光电探测器均与A/D转换器相连,所述的A/D转换器相连与信号处理单元相连,所述的信号处理单元与控制单元相连,所述的控制单元还与扫频同步信号源相连。
该折射率检测探头包括第二1x2光纤耦合器、第一光纤自聚焦透镜、第二光纤自聚焦透镜、海水样本腔、参考介质、第一反射镜、第二反射镜,第二1x2光纤耦合器的1臂与所述的第一光纤环形器的2臂相连,第二1x2光纤耦合器的2臂、3臂分别与第一光纤自聚焦透镜、第二光纤自聚焦透镜相连,所述的海水样本腔位于第一光纤自聚焦透镜与第一反射镜之间,所述的参考介质位于第二光纤自聚焦透镜与第二反射镜之间
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

  1. 一种海水盐度在线检测方法,其特征在于,包括以下步骤:
    步骤1:控制扫频同步信号源,使其输出的扫频同步信号V(t)是扫频周期为T的锯齿波电压信号,其具体形式如下:
    Figure PCTCN2017087086-appb-100001
    其中,t为时间变量,n为非负整数,n=0 1 2,......,V0为V(t)在每个扫频周期T的起始或终止时刻,即t=nT或t=(n+1)T对应的电压值,而VP为V(t)在每个扫频周期的中间时刻,即
    Figure PCTCN2017087086-appb-100002
    对应的电压值,且V0≥0,VP>V0
    步骤2:在所述的扫频同步信号源的作用下,扫频激光光源所输出的调频光波,其波长λ(t)随扫频同步信号V(t)而线性变化,波长λ(t)也是一个扫频周期为T的锯齿波信号,具体形式如下:
    Figure PCTCN2017087086-appb-100003
    其中,λ0为波长λ(t)在每个扫频周期T的起始或终止时刻,即t=nT或t=(n+1)T对应的波长值,且λ0为扫频过程中的最小波长,Δλ>0,Δλ为波长的扫频变化范围,而λ0+Δλ为λ(t)在每个扫频周期的中间时刻,即
    Figure PCTCN2017087086-appb-100004
    对应的波长值,且λ0+Δλ为扫频过程中的最大波长;
    步骤3:扫频激光光源输出的调频光波被光波导器件分成两路光,分别进入放置在被测海水中的折射率检测探头和温度检测探头,该折射率检测探头为干涉仪结构,干涉仪的传感臂主要由被测海水样本与第一反射镜构成,干涉仪的参考臂主要由已知折射率的参考介质与第二反射镜构成,且传感臂与参考臂的长度相等,二者均为l,进入折射率检测探头的光,在干涉仪的作用下,形成传感光和参考光,二者因干涉效应,产生干涉光,该干涉光由折射率检测探头返回;所述的温度检测探头内置光纤Bragg光栅温 度传感器,进入温度检测探头的调频光波,在该光纤Bragg光栅温度传感器的作用下,形成反射光及反射光谱,因该反射光谱的Bragg波长与海水温度值相关,将该反射光称为温度反射光;
    步骤4:采用光电探测器,测量上述干涉光强度信号I(t)和温度反射光强度信号G(t),将整个测量时间,分成若干个长度相等的测量时间段,该时间段长度取为2个扫频周期,即为2T,在每个时间段的第一个扫频周期T内进行干涉光强度I(t)的测量,第二个扫频周期T内进行温度反射光强度G(t)的测量;
    步骤5:先令n=0,设置当前时间段的起始时刻为t=nT;
    步骤6:从t=nT时刻开始,用A/D转换器,对当前时间段第一个扫频周期T内的干涉光强度I(t)信号,以采样周期为T1,进行离散抽样,得到第一个扫频周期T内,即t=nT至t=(n+1)T时间的抽样信号序列I(m),该序列的长度为L1,m为序列序号且是非负整数,m=0 1 2......L1-1,将I(m)保存在信号处理单元中;
    步骤7:从t=(n+1)T开始,用A/D转换器,对当前时间段第二个扫频周期T内的扫频同步信号V(t)和温度反射光强度G(t),以采样周期为T2,进行离散抽样,得到第二个扫频周期T内,即t=(n+1)T至t=(n+2)T时间的扫频同步信号序列V(h)、温度反射光强信号序列G(h),序列V(h)和G(h)的长度均为L2,h为序列序号且为非负整数,h=0 1 2......L2-1,将V(h)和G(h)保存在信号处理单元中;
    步骤8:信号处理单元对当前时间段第一个扫频周期T内的干涉光强度抽样信号序列I(m),做快速傅立叶变化FFT,得到干涉光强度I(t)在该时间内的频谱分布,由该频谱计算出以上时间内干涉光强度I(t)交流分量IAC(t)的频率值ωs
    步骤9:根据干涉光强度交流分量IAC(t)的频率值ωs与海水折射率nS之间的关系,按下式计算出当前时间段第一个扫频周期T内,即t=nT至t=(n+1)T内的被测海水样本折射率nS
    Figure PCTCN2017087086-appb-100005
    其中,l为折射率检测探头传感臂和参考臂的长度,nR为该探头参考介质的已知折射率;
    步骤10:利用当前时间段第二个扫频周期T内的扫频同步信号序列V(h)和 温度反射光强度信号序列G(h),按照光纤Bragg光栅温度传感解调算法,计算得到第二个扫频周期T内,即t=(n+1)T至t=(n+2)T内的被测海水温度值TS
    步骤11:由于海水的折射率nS和温度TS的变化较为缓慢,可忽略海水的折射率nS和温度TS在每个测量时间段内的变化,所述每个测量时间段为两个扫频周期,用该时间段的第一个扫频周期T,即t=nT至t=(n+1)T内所得的海水样本的折射率nS,近似为整个时间段,即t=nT至t=(n+2)T内的海水样本的折射率nS,同理,用该时间段的第二个扫频周期T,即t=(n+1)T至t=(n+2)T内所得的海水的温度值TS,近似为整个时间段,即t=nT至t=(n+2)T内的海水的温度值TS
    步骤12:根据以上得到的当前时间段的海水折射率nS、温度值TS及扫频激光光源输出光波的平均波长
    Figure PCTCN2017087086-appb-100006
    Figure PCTCN2017087086-appb-100007
    求解以下经验方程式:
    Figure PCTCN2017087086-appb-100008
    计算出当前时间段,即t=nT至t=(n+2)T之间的海水盐度值S,其中,各系数为,
    n0=1.31405,n1=1.779×10-4,n2=-1.05×10-6,n3=1.6×10-8
    n4=-2.02×10-6,n5=15.868,n6=0.01155,n7=-0.00423,
    n8=-4382,n9=1.1455×106
    步骤13:令n=n+2,对时间段的起始时刻更新,指向下一时间段;
    步骤14:重复步骤6-13,如此循环进行,测量在起始时刻t=0之后的任意时间段,即t=nT至t=(n+2)T内的海水盐度值S,实现海水盐度的实时检测,其中,n=0 1 2,......。
  2. 根据权利要求1所述的一种海水盐度在线检测方法,其特征在于:步骤3中所述的温度检测探头内置的光纤Bragg光栅温度传感器,其反射谱Bragg波长随海水温度的变化而移动,且在海水温度的整个变化范围内,该温度检测探头的Bragg波长的移动区间不超过扫频激光光源的扫频波长范围,即该Bragg波长在λ0至λ0+Δλ之间左右移动。
  3. 根据权利要求1所述的一种海水盐度在线检测方法,其特征在于:步骤4中的干涉光强度I(t):
    Figure PCTCN2017087086-appb-100009
    其中,IS、IR分别为干涉仪的传感光强和参考光强,如果忽略IS、IR在一个扫频周期T内的变化,将一个扫频周期T内的IS、IR视为常数,则以上干涉光强度I(t)为直流分量IDC与交流分量IAC(t)之和,即:
    I(t)=IDC+IAC(t)
    其中,干涉光强度I(t)的直流分量IDC
    IDC=IS+IR
    干涉光强度I(t)的交流分量IAC(t)为:
    Figure PCTCN2017087086-appb-100010
    上式的λ0、Δλ、l及nR为常数,海水折射率nS一般变化较慢,nS在一个扫频周期T内的也可视为常数,则该交流分量IAC(t)为单频信号,其频率值ωs
    Figure PCTCN2017087086-appb-100011
  4. 根据权利要求1所述的一种海水盐度在线检测方法,其特征在于:步骤6中的采样周期T1应满足采样定理的要求,即满足以下条件:
    Figure PCTCN2017087086-appb-100012
    且抽样信号序列I(m)的长度L1为:
    Figure PCTCN2017087086-appb-100013
  5. 根据权利要求1所述的一种海水盐度在线检测方法,其特征在于:
    步骤7中的采样周期T2为:
    Figure PCTCN2017087086-appb-100014
  6. 根据权利要求5所述的一种海水盐度在线检测方法,其特征在于:
    步骤7中的扫频同步信号序列V(h)和温度反射光强信号序列G(h)长度均为L2,且L2为:
    Figure PCTCN2017087086-appb-100015
  7. 根据权利要求1所述的一种海水盐度在线检测方法,其特征在于:步骤10中的光纤Bragg光栅温度传感解调算法,其包括以下步骤:
    第一:由温度反射光强度信号序列G(h),找到温度反射光强的最大值G(h_M)及所对应的序号h_M;
    第二:由以上温度反射光强的最大值G(h_M)所对应的序号h_M,找到位于该时刻的扫频同步信号电压值V(h_M);
    第三:由序号h_M所对应的扫频同步信号电压值V(h_M),找到温度反射光强的最大值G(h_M)所对应的光纤光栅温度传感器的Bragg波长;
    第四:根据光纤Bragg光栅温度传感器的特性参数,由以上得到的温度反射光强最大值G(h_M)所对应的Bragg波长,计算出当前的海水温度值TS
  8. 根据权利要求1至7任意一项所述的一种海水盐度在线检测方法所用的海水盐度在线检测装置,其特征在于:其包括水上平台、海水折射率检测探头和海水温度检测探头,水上平台通过两根光纤分别与海水折射率检测探头、海水温度检测探头相连,该水上平台输出调频光波,其波长是一个周期性的锯齿波信号,该调频光波分成两路,分别送至海水中的折射率探头和温度探头;该折射率探头为干涉仪结构,该温度探头内置光纤Bragg光栅。
  9. 根据权利要求8所述的一种海水盐度在线检测装置,其特征在于:所述水上平台包括扫频激光光源、扫频同步信号源、第一光电探测器、第二光电探测器、A/D转换器、信号处理单元、控制单元、第一1x2光纤耦合器、第一光纤环形器及第二光纤环形器,该海水温度检测探头包括一个光纤Bragg光栅温度传感器,所述的扫频激光光源设有光纤接口和电气接口,该扫频激光光源通过电气接口与扫频同步信号源相连,该扫频激光光源通过光纤接口与第一1x2光纤耦合器的1臂相连,所述的第一1x2光纤耦合器的2臂、3臂分别接第一光纤环形器的1臂、第二光纤环形器的1臂,所述的第一光纤环形器的2臂、3臂分别与折射率检测探头、第一光电探测器相连,所述的第二光纤环形器的2臂、3臂分别 与海水温度检测探头、第二光电探测器相连,所述的扫频同步信号源、第一光电探测器及第二光电探测器均与A/D转换器相连,所述的A/D转换器相连与信号处理单元相连,所述的信号处理单元与控制单元相连,所述的控制单元还与扫频同步信号源相连。
  10. 根据权利要求8所述的一种海水盐度在线检测装置,其特征在于:该折射率检测探头包括第二1x2光纤耦合器、第一光纤自聚焦透镜、第二光纤自聚焦透镜、海水样本腔、参考介质、第一反射镜、第二反射镜,第二1x2光纤耦合器的1臂与所述的第一光纤环形器的2臂相连,第二1x2光纤耦合器的2臂、3臂分别与第一光纤自聚焦透镜、第二光纤自聚焦透镜相连,所述的海水样本腔位于第一光纤自聚焦透镜与第一反射镜之间,所述的参考介质位于第二光纤自聚焦透镜与第二反射镜之间。
PCT/CN2017/087086 2016-06-03 2017-06-02 一种海水盐度的在线检测方法及其装置 WO2017206956A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/778,631 US10876962B2 (en) 2016-06-03 2017-06-02 Method and device for on-line detection of salinity of seater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610394000.3 2016-06-03
CN201610394000.3A CN105891434B (zh) 2016-06-03 2016-06-03 一种海水盐度的在线检测方法及其装置

Publications (1)

Publication Number Publication Date
WO2017206956A1 true WO2017206956A1 (zh) 2017-12-07

Family

ID=56710235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087086 WO2017206956A1 (zh) 2016-06-03 2017-06-02 一种海水盐度的在线检测方法及其装置

Country Status (3)

Country Link
US (1) US10876962B2 (zh)
CN (1) CN105891434B (zh)
WO (1) WO2017206956A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105891434B (zh) * 2016-06-03 2017-09-26 深圳职业技术学院 一种海水盐度的在线检测方法及其装置
CN107290063B (zh) * 2017-06-30 2019-12-10 华中科技大学鄂州工业技术研究院 一种海水温度测量方法及系统
CN109324020A (zh) * 2018-09-01 2019-02-12 哈尔滨工程大学 一种基于微纳光纤卷型谐振器的盐度和折射率传感器制作方法
CN109142278A (zh) * 2018-09-14 2019-01-04 华北电力大学(保定) 一种海水盐度的测量方法
CN110864742B (zh) * 2019-12-02 2021-11-12 中国人民解放军国防科技大学 基于微纳光纤耦合器干涉仪的全光纤温盐深传感器
CN111982862B (zh) * 2020-08-01 2023-10-27 中国石油天然气股份有限公司 一种光纤传感器气液两相流持气率的计算方法
CN114414529B (zh) * 2021-12-07 2023-09-19 广东科学技术职业学院 盐度检测方法、计算机装置及计算机可读存储介质
CN114414528A (zh) * 2021-12-07 2022-04-29 广东科学技术职业学院 基于5g微波光子信号的双光纤端面干涉盐度检测方法
CN113916838B (zh) * 2021-12-14 2022-03-01 山东省科学院海洋仪器仪表研究所 一种基于双共振效应的海水温盐传感器、测量系统及方法
CN114414504B (zh) * 2022-01-17 2023-05-30 太原理工大学 基于双弯曲长周期光纤光栅的海水盐度、温度检测装置及使用方法
CN114705231B (zh) * 2022-04-18 2024-09-06 武汉驭光科技有限公司 一种提高光纤光栅解算一致性的方法
CN115753682A (zh) * 2022-11-07 2023-03-07 山东大学 一种具有温度自解耦功能的海水盐度测量装置及方法
CN117347287A (zh) * 2023-12-06 2024-01-05 山东大学 一种光学干涉结构式自补偿海水盐度测量装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1374529A (zh) * 2002-04-19 2002-10-16 清华大学 一种海水盐度与温度同时在线检测方法及装置
JP2008203129A (ja) * 2007-02-21 2008-09-04 Kyoto Electron Mfg Co Ltd 塩分濃度計
CN101271241A (zh) * 2008-05-05 2008-09-24 浙江大学 一种复用与解调长周期光纤光栅阵列的方法及设备
CN202453113U (zh) * 2011-12-15 2012-09-26 中国计量学院 一种基于fbg的测量海水温度和盐度的传感器
CN103743675A (zh) * 2013-12-30 2014-04-23 宁波大学 用于盐度测量的光纤探头及使用该光纤探头的测量装置
US20140293286A1 (en) * 2013-01-28 2014-10-02 Woods Hole Oceanographic Institution N-wavelength interrogation system and method for multiple wavelength interferometers
CN104166130A (zh) * 2014-08-07 2014-11-26 华中科技大学 利用布里渊频移和线宽同步反演海水温度和盐度的方法
CN105891434A (zh) * 2016-06-03 2016-08-24 深圳职业技术学院 一种海水盐度的在线检测方法及其装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU1777061C (ru) * 1989-09-11 1992-11-23 Специальное конструкторско-технологическое бюро Морского гидрофизического института АН УССР Способ определени солености морской воды в реальном масштабе времени
CA2206945A1 (en) * 1996-06-03 1997-12-03 Tadashi Koga Optical receiver board, optical wavelength-tuning filter module used foroptical receiver board, and actuator for optical wavelength-tuning filter module
SE526927C2 (sv) * 2003-11-24 2005-11-22 Hoek Instr Ab Realtidsanalys av gasblandningar
US8315282B2 (en) * 2005-01-20 2012-11-20 Massachusetts Institute Of Technology Fourier domain mode locking: method and apparatus for control and improved performance
US7842507B1 (en) * 2007-04-27 2010-11-30 University Of South Florida Sensor for direct measurement of carbonate ions in seawater
RU2349910C1 (ru) * 2007-07-23 2009-03-20 Федеральное Государственное Унитарное Предприятие "Санкт-Петербургское Морское Бюро Машиностроения "Малахит" Способ определения солености и плотности морской воды
WO2014078646A1 (en) * 2012-11-15 2014-05-22 Corning Incorporated Label free method for assessing chemical cardiotoxicity
US10248083B2 (en) * 2015-10-09 2019-04-02 Benjamin J. Sheahan Reference time generator
CN102128810B (zh) * 2010-12-24 2012-05-30 山东省科学院海洋仪器仪表研究所 棱镜模型多次折射的海水盐度检测装置
CN102151121B (zh) * 2011-01-28 2012-08-15 浙江大学 基于干涉光谱相位信息的光谱标定方法及系统
CN201984066U (zh) * 2011-03-30 2011-09-21 大连民族学院 一种海水盐度监测系统
CN102735713A (zh) 2012-07-16 2012-10-17 国家海洋技术中心 高精度海水盐度测量仪
CN107252302B (zh) * 2012-07-27 2020-08-18 统雷有限公司 敏捷成像系统
CN102835948B (zh) * 2012-09-12 2016-03-30 无锡微奥科技有限公司 一种扫频光源oct实时图像显示方法及其系统
US8994954B2 (en) * 2012-12-28 2015-03-31 Axsun Technologies, Inc. System and method for stabilizing mode locked swept laser for OCT medical imaging
CN104155246A (zh) 2014-08-26 2014-11-19 中国海洋大学 海水盐度的检测装置与方法
CN104434028B (zh) * 2014-11-15 2016-04-27 中国科学院光电技术研究所 角膜弹性成像与眼前节结构成像相结合的系统与方法
KR101699273B1 (ko) * 2015-06-30 2017-01-24 한국표준과학연구원 테라헤르츠파를 이용한 실시간 비접촉 비파괴 두께 측정장치
CN105783763B (zh) * 2016-05-17 2018-08-31 安徽师范大学 一种高精度动态光纤应变传感装置及其传感方法
CN205785095U (zh) * 2016-05-17 2016-12-07 安徽师范大学 一种高精度动态光纤应变传感装置
EP3469301B1 (en) * 2016-06-08 2021-12-22 Zygo Corporation Precision positioning system using a wavelength tunable laser
CN105910728B (zh) * 2016-06-16 2018-08-31 威海北洋光电信息技术股份公司 高空间分辨率拉曼测温传感器及测温方法
CN106225816B (zh) * 2016-07-01 2018-06-08 南京大学 一种基于布里渊滤波器的光栅传感装置与方法
CN106547120B (zh) * 2016-11-25 2019-06-21 天津大学 超宽光谱范围线性扫频光源的光频梳多段光波拼接方法
CN107990997B (zh) * 2017-11-20 2019-08-09 大连理工大学 一种双光源自校正式光纤分布温度快速测量系统及方法
CN108180930B (zh) * 2017-12-29 2020-05-05 武汉理工光科股份有限公司 长距离阵列式光纤光栅传感解调方法及装置
CN110686709A (zh) * 2019-09-19 2020-01-14 天津大学 级联光纤啁啾光栅的信号解调方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1374529A (zh) * 2002-04-19 2002-10-16 清华大学 一种海水盐度与温度同时在线检测方法及装置
JP2008203129A (ja) * 2007-02-21 2008-09-04 Kyoto Electron Mfg Co Ltd 塩分濃度計
CN101271241A (zh) * 2008-05-05 2008-09-24 浙江大学 一种复用与解调长周期光纤光栅阵列的方法及设备
CN202453113U (zh) * 2011-12-15 2012-09-26 中国计量学院 一种基于fbg的测量海水温度和盐度的传感器
US20140293286A1 (en) * 2013-01-28 2014-10-02 Woods Hole Oceanographic Institution N-wavelength interrogation system and method for multiple wavelength interferometers
CN103743675A (zh) * 2013-12-30 2014-04-23 宁波大学 用于盐度测量的光纤探头及使用该光纤探头的测量装置
CN104166130A (zh) * 2014-08-07 2014-11-26 华中科技大学 利用布里渊频移和线宽同步反演海水温度和盐度的方法
CN105891434A (zh) * 2016-06-03 2016-08-24 深圳职业技术学院 一种海水盐度的在线检测方法及其装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YU , YIN ET AL.: "Simulation of Simultaneously Obtaining Ocean Temperature and Salinity Using Dual-Wavelength Brillouin Lidar", LASER PHYS. LETT., vol. 11, no. 3, 23 January 2014 (2014-01-23), pages 1 - 6, XP055444321, ISSN: 1612-202X *

Also Published As

Publication number Publication date
CN105891434B (zh) 2017-09-26
CN105891434A (zh) 2016-08-24
US20180356340A1 (en) 2018-12-13
US10876962B2 (en) 2020-12-29

Similar Documents

Publication Publication Date Title
WO2017206956A1 (zh) 一种海水盐度的在线检测方法及其装置
Yang et al. A review of recent developed and applications of plastic fiber optic displacement sensors
Rahman et al. Fiber-optic salinity sensor using fiber-optic displacement measurement with flat and concave mirror
CN110132330B (zh) 一种基于cp-φotdr的双折射分布式测量系统及其方法
CN107782696B (zh) 利用拉锥光纤测量分布式液体折射率的传感系统及方法
CN101968508A (zh) 全光纤电流传感器及其偏振态调节方法
EP3172545B1 (en) Temperature sensor
KR100367297B1 (ko) 광섬유 패브리페로 간섭계형 온도 측정 장치
CN109831249A (zh) 一种保偏光纤主轴差分延时的测量装置
CN110186500B (zh) 一种采用绝对法的非平衡光纤干涉仪臂长差测量装置及测量方法
Hamzah et al. Fast and accurate measurement in BOTDA fibre sensor through the application of filtering techniques in frequency and time domains
Yang et al. Refractive index and temperature sensing characteristics of an optical fiber sensor based on a tapered single mode fiber/polarization maintaining fiber
CN108007307B (zh) 一种光纤的测量方法以及测量装置
Yi et al. The liquid level monitoring with sub-millimeter resolution by discrete wavelength sampling method
CN112284430B (zh) 一种基于光载微波干涉的多相流多参量光纤探测装置
CN113984126A (zh) 基于不同掺杂双芯弱反射fbg阵列的温度应变监测系统和方法
Yi et al. Research on distributed optical fiber pipeline micro leakage detection technology based on recursive least square
Xu et al. Fabry-Perot temperature sensor for quasi-distributed measurement utilizing OTDR
Li et al. Research on large range OFDR distributed temperature sensing technology based on frequency sampling and moving reference spectral method
CN118362538A (zh) 基于聚酰亚胺光纤的光频域反射仪盐度测量装置及方法
Lin et al. A spectral vernier OFDR with High Frequency Response and Wide Measuring Range for Distributed Strain Sensing
CN214851235U (zh) 用于光纤故障检测的瑞丽散射光波采集装置
Liehr et al. A novel fiber optic technique for quasi-distributed and dynamic measurement of length change and refractive index
Loayssa et al. Distributed Vibration Sensing Based on Optical Vector Network Analysis
Bo et al. On the temperature characteristics of phase measurement in homodyne fiber interferometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17805901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17805901

Country of ref document: EP

Kind code of ref document: A1