WO2017206700A1 - 圆形电炉及其电极布置结构 - Google Patents

圆形电炉及其电极布置结构 Download PDF

Info

Publication number
WO2017206700A1
WO2017206700A1 PCT/CN2017/084281 CN2017084281W WO2017206700A1 WO 2017206700 A1 WO2017206700 A1 WO 2017206700A1 CN 2017084281 W CN2017084281 W CN 2017084281W WO 2017206700 A1 WO2017206700 A1 WO 2017206700A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
electric furnace
phase
circular electric
arrangement structure
Prior art date
Application number
PCT/CN2017/084281
Other languages
English (en)
French (fr)
Inventor
赵桐
牟文恒
刘吉斌
王存虎
陈雷
温翰
Original Assignee
北京中凯宏德科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610371588.0A external-priority patent/CN105916229B/zh
Priority claimed from CN201620509366.6U external-priority patent/CN205681653U/zh
Application filed by 北京中凯宏德科技有限公司 filed Critical 北京中凯宏德科技有限公司
Priority to AU2017275056A priority Critical patent/AU2017275056A1/en
Priority to KR1020187036891A priority patent/KR20190009791A/ko
Priority to EP17805645.3A priority patent/EP3468302A4/en
Priority to US16/304,650 priority patent/US20190170443A1/en
Priority to CA3025378A priority patent/CA3025378A1/en
Publication of WO2017206700A1 publication Critical patent/WO2017206700A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/08Heating by electric discharge, e.g. arc discharge
    • F27D11/10Disposition of electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/08Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces heated electrically, with or without any other source of heat
    • F27B3/085Arc furnaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/02Details
    • H05B7/10Mountings, supports, terminals or arrangements for feeding or guiding electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/02Details
    • H05B7/144Power supplies specially adapted for heating by electric discharge; Automatic control of power, e.g. by positioning of electrodes

Definitions

  • the present invention relates to the field of smelting equipment technology, and in particular to an electrode arrangement structure of a circular electric furnace and a circular electric furnace including the electrode arrangement structure.
  • the traditional round metallurgical alternating current electric furnace or the steelmaking electric arc furnace is provided with three electrodes, and the lines connecting the centers of the three electrodes form an equilateral triangle.
  • This electrode arrangement has the following disadvantages: 1) Due to the limitation of the diameter of the electrode, the current intensity becomes a bottleneck, and the size of the transformer of the metallurgical furnace of the three electrodes is limited and cannot be expanded; 2) the circle of the three electrodes In the metallurgical electric furnace, due to the induction electromagnetic force, the arc repels, and its position is biased from the center of the electric furnace to the center of the electrode. Therefore, a plum-shaped molten pool is formed, which is not conducive to the control of the feed.
  • an object of the present invention to provide an electrode arrangement structure of a circular electric furnace.
  • Another object of the present invention is to provide a circular electric furnace including the above electrode arrangement structure.
  • an embodiment of the first aspect of the present invention provides an electrode arrangement structure of a circular electric furnace, comprising: 2n electrodes; and n single-phase transformers, wherein the single-phase transformer includes two output ends, 2n of said electrodes are respectively connected to outputs of said n single-phase transformers; wherein Is an integer and n ⁇ 2.
  • An electrode arrangement structure of a circular electric furnace provided by an embodiment of the first aspect of the present invention includes 2n electrodes and n single-phase transformers, and n ⁇ 2, that is, includes at least 4 electrodes and 2 single-phase transformers, and a single phase
  • the transformer connects two electrodes, which effectively increases the number of electrodes in the circular electric furnace and the number of transformers, breaking the limitation that only three electrodes and one transformer can be set in the conventional circular electric furnace, thereby effectively expanding the circular electric furnace. Electric power.
  • the electrode arrangement structure of the circular electric furnace in the above embodiment provided by the present invention may further have the following additional technical features:
  • n 3.
  • n 3
  • the electrode arrangement structure of the circular electric furnace includes 6 electrodes and 3 single-phase transformers. Since one single-phase transformer connects two electrodes, the two electrodes connected to the same single-phase transformer are in-phase electrodes, and pass The current is the same phase current, then the 6 electrodes and the 3 single-phase transformers form the electrode arrangement structure of the 3-phase 6-electrode, which can be powered by the three-phase alternating current. Since the current intensity and time are sinusoidal, the three-phase alternating current can effectively The average current intensity makes the resulting weld pool more uniform.
  • the six electrodes are disposed in parallel along the circumference of the electric furnace.
  • the centers of the six electrodes are on the same circle, and the circles form the center circle of the six electrodes.
  • the center of the pole circle coincides with the center of the furnace cavity of the electric furnace.
  • the six electrodes are arranged in parallel along the circumferential direction of the electric furnace, and the molten pool formed by the six electrodes is also distributed along the circumferential direction of the electric furnace. Therefore, the molten pool in the furnace chamber is relatively uniform, and the load on the furnace wall is relatively uniform, thereby avoiding The furnace wall at a certain location is seriously damaged due to the high temperature melt flow flushing, effectively extending the service life of the furnace wall, thereby improving the safety and durability of the circular electric furnace; further, six electrodes
  • the center is located on the same circle, forming a center of the circle, which makes the shape of the molten pool in the cavity more
  • the addition is close to a circle, so that the molten pool is more uniform, and the load on the furnace wall is more uniform; preferably, the center of the center circle coincides with the center of the furnace chamber of the electric furnace, so that the molten pool can be formed at the center of the furnace chamber, Thereby, the uniformity of the load of the circular electric furnace wall is further ensured,
  • the arc strike has a great relationship with the flow of the molten pool and the safety of the furnace wall.
  • the arcs repel each other. If the electrode is used to reduce the electrode consumption or the maximum power operation, the voltage must be increased. However, if the voltage is extremely high, the arc will be long, and sometimes the arc tail will burn out the corresponding furnace wall. . Therefore, domestic metallurgical furnaces generally avoid using high voltage operation.
  • the arrangement of the electrodes is very important, which not only affects the formation of the molten pool, but also affects the direction of the arc, which has a great influence on the melt flow of the molten pool.
  • the two electrodes connected to the same single-phase transformer are in-phase electrodes, and the two electrodes of the same phase are disposed adjacent to each other.
  • the two electrodes of the same phase are arranged adjacent to each other.
  • the electrode arrangement structure of the 3-phase 6-electrode is equivalent to three independent single-phase electric furnaces, and there is no furnace wall interval and a shared molten pool in the middle, which effectively increases the single The electric power of the electric furnace; on the other hand, it avoids the situation that the cross-setting causes the mutual influence of the opposite-phase electrodes to cause the power factor to be greatly reduced. It should be explained that if the two electrodes of the same phase are arranged at the same time, the phases interact with each other, and the arc strike has no regularity, and a large number of harmonics may be generated, resulting in a great reduction in power factor.
  • the angle between the centers of the two adjacent electrodes and the line connecting the centers of the polar circles is ⁇ .
  • the six electrodes Since the two electrodes of the same phase are disposed adjacent to each other in the six electrodes that are rounded, the six electrodes form three pairs of adjacent in-phase electrodes and three pairs of adjacent out-of-phase electrodes, and each pair of adjacent electrodes The angle between the center of the center and the center of the center of the center of the circle is formed.
  • the angles of the three angles formed between the center of the three pairs of adjacent out-of-phase electrodes and the line connecting the center of the center of the circle are both ⁇ .
  • the arc between the in-phase electrodes repels, so the three angles between the three pairs of out-of-phase electrodes Etc., the arc generated by the six electrodes can be made relatively and uniformly along the circumference of the electric furnace, so that a uniform circular molten pool can be formed.
  • the 3-phase 6 electrodes are symmetrically arranged in a circular electric furnace, so that the mutual interference between the three pairs of in-phase electrodes is also relatively average, and the resulting arc and molten pool are more symmetrical and more uniform, so that the melt flow is relatively
  • the circumferential wall is the same, which increases the life of the furnace wall and thus improves the safety and durability of the circular furnace.
  • the ratio B/A of the distance B between the centers of two adjacent electrodes of adjacent phases and the distance A between the centers of two adjacent electrodes in the same phase is not less than 1 .
  • the ratio B/A of the distance B between the centers of two adjacent electrodes of adjacent ones and the distance between the centers of two adjacent electrodes of the same phase is greater than or equal to 1.1. And less than or equal to 1.3.
  • the ratio B/A of the distance B between the centers of the adjacent out-of-phase electrodes and the center A of the adjacent in-phase electrodes is not less than 1, that is, the distance B between the centers of the adjacent out-of-phase electrodes A distance A greater than the center of the adjacent in-phase electrode to avoid excessive arc attraction between the out-of-phase electrodes, resulting in a local high temperature zone, so that the arc is evenly received between the two phases, so that a circular electric furnace can be formed A uniform circular molten pool to facilitate the control of the feed; at the same time, the arc receives between the two phases, and can avoid the occurrence of the arc tail sweep to the furnace wall, thus enabling the circular electric furnace to operate at a high voltage to lower the electrode Loss, while also avoiding high-temperature melt flow to the furnace wall.
  • B/A is greater than or equal to 1.1 and less than or equal to 1.3, which can further improve the uniformity of the arc distribution, thereby further improving the uniformity of the circular molten pool
  • the ratio d/D between the diameter d of the pole circle and the inner diameter D of the furnace chamber is not more than 0.5.
  • the ratio d/D between the diameter d of the pole circle and the inner diameter D of the cavity is greater than or equal to 0.25 and less than or equal to 0.33.
  • the ratio d/D between the diameter d of the polar circle and the inner diameter D of the furnace chamber is not more than 0.5, that is, the diameter d of the polar circle is less than half of the inner diameter D of the furnace cavity, so that the electrode and the furnace wall are relatively enlarged on the one hand.
  • the molten pool can be effectively controlled in the middle part of the furnace cavity, thereby avoiding the high temperature melt flow to the furnace wall and causing the furnace wall
  • the scouring damage occurs, which effectively increases the service life of the furnace wall, thereby improving the safety and durability of the circular electric furnace.
  • d/D is 0.25 or more and 0.33 or less, which can further extend the service life of the furnace wall, thereby further improving the safety and durability of the circular electric furnace.
  • An embodiment of the second aspect of the present invention provides a circular electric furnace comprising the electrode arrangement structure of the circular electric furnace according to any one of the first aspect.
  • the circular electric furnace provided by the embodiment of the second aspect of the present invention is provided with the electrode arrangement structure of the circular electric furnace according to any one of the first aspect, thereby effectively expanding the electric power of the circular electric furnace and capable of A uniform circular molten pool is formed to facilitate the control of the feed, and the service life of the furnace wall is extended, and the safety and durability of the circular electric furnace are improved.
  • FIG. 1 is a schematic view showing an electrode arrangement structure of a circular electric furnace according to the present invention.
  • a circular electric furnace and an electrode arrangement structure thereof according to some embodiments of the present invention are described below with reference to FIG.
  • an electrode arrangement structure of a circular electric furnace provided by an embodiment of the first aspect of the present invention includes: 2n electrodes and n single-phase transformers 40.
  • a single-phase transformer 40 includes two output terminals, and 2n electrodes are respectively connected to the output ends of the n single-phase transformers 40; wherein n is an integer and n ⁇ 2.
  • An electrode arrangement structure of a circular electric furnace provided by an embodiment of the first aspect of the present invention includes 2n electrodes and n single-phase transformers 40, and n ⁇ 2, that is, includes at least 4 electrodes and 2 single-phase transformers 40, one
  • the single-phase transformer 40 connects two electrodes, thereby effectively increasing the number of electrodes in the circular electric furnace and the number of transformers, breaking the limitation that only three electrodes and one transformer can be set in the conventional circular electric furnace, thereby effectively expanding the limit.
  • the electric power of a circular electric furnace includes 2n electrodes and n single-phase transformers 40, and n ⁇ 2, that is, includes at least 4 electrodes and 2 single-phase transformers 40, one
  • the single-phase transformer 40 connects two electrodes, thereby effectively increasing the number of electrodes in the circular electric furnace and the number of transformers, breaking the limitation that only three electrodes and one transformer can be set in the conventional circular electric furnace, thereby effectively expanding the limit.
  • the electric power of a circular electric furnace includes 2n electrodes and
  • n is three.
  • n 3 that is, the electrode arrangement structure of the circular electric furnace includes 6 electrodes and 3 single-phase transformers 40, and since one single-phase transformer 40 connects the two electrodes, it is connected to the same single-phase transformer 40.
  • the two electrodes are in-phase electrodes, the current passing through is the same-phase current, and the 6 electrodes and the three single-phase transformers 40 form the electrode arrangement structure of the 3-phase 6-electrode, which can be powered by three-phase alternating current, because the current intensity and time are The sinusoidal relationship, therefore, the three-phase alternating current can effectively average the current intensity, making the formed molten pool more uniform.
  • an electrode arrangement structure in the form of two single-phase transformers 40 and four electrodes, four single-phase transformers 40 and eight electrodes may be provided.
  • the electrodes can be placed down, and the electric power of the circular electric furnace can be expanded, and the design idea and the purpose of the invention are not deviated from the design and the purpose of the invention. .
  • Fig. 1 Preferably, as shown in Fig. 1, six electrodes are arranged in parallel along the circumference of the electric furnace.
  • the centers of the six electrodes are located on the same circle, and the circle forms a pole circle 20 of six electrodes.
  • the center of the center circle 20 coincides with the center of the furnace chamber of the electric furnace.
  • the six electrodes are arranged in parallel along the circumferential direction of the electric furnace, and the molten pool formed by the six electrodes is also distributed along the circumferential direction of the electric furnace. Therefore, the molten pool in the furnace chamber is relatively uniform, and the load on the furnace wall 30 is relatively uniform. Uniform, thereby avoiding the situation that the furnace wall 30 at a certain location is severely damaged due to the high-temperature melt flow scouring, effectively extending the service life of the furnace wall 30, thereby improving the safety and durability of the circular electric furnace.
  • the centers of the six electrodes are located on the same circle to form a pole circle 20, so that the shape of the molten pool in the furnace chamber is closer to a circle, so that the molten pool is more uniform, and the load on the furnace wall 30 is more uniform.
  • the center of the center circle 20 coincides with the center of the furnace chamber of the electric furnace, so that the molten pool can be formed at the center of the furnace chamber, thereby further ensuring the uniformity of the load of the circular electric furnace wall 30, further improving the circle The safety and durability of the electric furnace.
  • the arc strike has a great relationship with the flow of the molten pool and the safety of the furnace wall 30.
  • the arcs repel each other. If the electrode is used to reduce the electrode consumption or the maximum power operation, the voltage must be increased. However, if the voltage is extremely high, the arc will be long, and sometimes the arc tail will burn the corresponding furnace wall 30. Bad. Therefore, domestic metallurgical furnaces generally avoid using high voltage operation.
  • the arrangement of the electrodes is very important, which not only affects the formation of the molten pool, but also affects the direction of the arc, which has a great influence on the melt flow of the molten pool.
  • the two electrodes connected to the same single phase transformer 40 are in-phase electrodes, and the two electrodes in the same phase are disposed adjacent to each other.
  • the two electrodes in the same phase are arranged adjacently, on the one hand, the electrode arrangement structure of the 3-phase 6-electrode is equivalent to three independent single-phase electric furnaces, and the furnace wall 30 is not disposed in the middle, and the fusion is shared.
  • the pool which effectively increases the electrical power of a single electric furnace; on the other hand, avoids the situation where the cross-setting causes the mutual influence of the opposite-phase electrodes to cause a large decrease in the power factor. It should be explained that if the two electrodes of the same phase are arranged at the same time, the phases interact with each other, and the arc strike has no regularity, and a large number of harmonics may be generated, resulting in a great reduction in power factor.
  • the angle between the centers of the adjacent two-phase electrodes and the line connecting the centers of the center circles 20 is ⁇ .
  • the six electrodes Since the two electrodes of the same phase are disposed adjacent to each other in the six electrodes that are rounded, the six electrodes form three pairs of adjacent in-phase electrodes and three pairs of adjacent out-of-phase electrodes, and each pair of adjacent electrodes Center and An angle is formed between the lines of the center of the center of the circle 20, and the angles of the three angles formed between the center of the three pairs of adjacent out-of-phase electrodes and the center line of the center circle 20 are both ⁇ .
  • the three angles between the three pairs of out-of-phase electrodes are equal, so that the arcs generated by the six electrodes can be opposite, and evenly It runs along the circumference of the electric furnace so that a uniform circular molten pool can be formed.
  • the sum of ⁇ is 120°
  • the 3-phase 6 electrodes are symmetrically arranged in a circular electric furnace, so that the mutual interference between the three pairs of in-phase electrodes is also relatively average, and the generated arc and molten pool are more symmetrical and more uniform, so that The melt flow is the same as the circumferential wall 30, thereby increasing the life of the furnace wall 30, thereby improving the safety and durability of the circular electric furnace.
  • the ratio B/A of the distance B between the centers of the adjacent two-phase electrodes and the distance A between the centers of the adjacent two-phase electrodes is not less than 1.
  • the ratio B/A of the distance B between the centers of the adjacent two-phase electrodes and the distance A between the centers of the adjacent two-phase electrodes is greater than or equal to 1.1 and less than or equal to 1.3.
  • the ratio B/A of the distance B between the centers of the adjacent out-of-phase electrodes and the center A of the adjacent in-phase electrodes is not less than 1, that is, the distance B between the centers of the adjacent out-of-phase electrodes A distance A greater than the center of the adjacent in-phase electrode to avoid excessive arc attraction between the out-of-phase electrodes, resulting in a local high temperature zone, so that the arc is evenly received between the two phases, so that a circular electric furnace can be formed A uniform circular molten pool to facilitate the control of the feed; at the same time, the arc receives between the two phases, and the arc tail sweep can be prevented from occurring to the furnace wall 30, thereby enabling the circular electric furnace to operate at a high voltage to reduce The electrode is lost while avoiding the high temperature melt flow to the furnace wall 30.
  • B/A is greater than or equal to 1.1 and less than or equal to 1.3, which can further improve the uniformity of the arc distribution, thereby further improving the uniformity of the circular molten pool.
  • the ratio d/D between the diameter d of the pole circle 20 and the inner diameter D of the furnace chamber is not more than 0.5.
  • the ratio d/D between the diameter d of the pole circle 20 and the inner diameter D of the furnace chamber is 0.25 or more and 0.33 or less.
  • the ratio d/D between the diameter d of the pole circle 20 and the inner diameter D of the furnace chamber is not more than 0.5, that is, the diameter d of the pole circle 20 is less than half of the inner diameter D of the furnace cavity, so that the electrode is relatively enlarged on the one hand.
  • the distance between the furnace walls 30, thereby avoiding the occurrence of the burnout of the furnace wall 30 caused by the arc tail sweeping to the furnace wall 30, and on the other hand, the molten pool can be effectively controlled in the middle portion of the furnace chamber, thereby avoiding the high temperature melting.
  • the flow to the furnace wall 30 causes damage to the furnace wall 30, which effectively increases the service life of the furnace wall 30, thereby improving the safety and durability of the circular electric furnace.
  • d/D is 0.25 or more and 0.33 or less, which can further extend the service life of the furnace wall 30, thereby further improving the safety and durability of the circular electric furnace.
  • the electrode arrangement structure of the circular electric furnace includes three single-phase transformers 40 and six electrodes; six electrodes are arranged in parallel along the circumferential direction of the electric furnace; and the centers of the six electrodes are located on the same circle, that is, The center of the circle 20 is coincident with the center of the furnace chamber; the two electrodes of the same phase are arranged adjacent to each other, and the first electrode 11 and the second electrode 12 form the first phase, and the third electrode 13 and the fourth electrode
  • the electrode 14 forms a second phase, and the fifth electrode 15 and the sixth electrode 16 form a third phase; and the angle between the center of the adjacent in-phase electrode and the line connecting the center of the center circle 20 is equal, denoted as ⁇ , adjacent
  • each single-phase transformer 40 is 25MVA; the diameter d of the core circle 20 is 3.9 meters, the inner diameter D of the furnace cavity is 13.6 meters, so d/D ⁇ 0.29; A is 1.77 meters, B is 2.13 meters, so B/A ⁇ 1.2; ⁇ is 54° and ⁇ is 66°.
  • each single-phase transformer 40 is 12 MVA; the diameter d of the core circle 20 is 2.6 m, the inner diameter D of the furnace cavity is 9.1 m, so d/D ⁇ 0.29; A is 1.24 m, B is 1.36 m, so B/A ⁇ 1.1; ⁇ is 57°, and ⁇ is 63°.
  • each single-phase transformer 40 is 18 MVA; the diameter d of the core circle 20 is 3.52 m, the inner diameter D of the furnace cavity is 12.3 m, so d/D ⁇ 0.29; A is 1.53 m, B It is 1.98 meters, so B/A ⁇ 1.3; ⁇ is 51°, and ⁇ is 69°.
  • each single-phase transformer 40 is 30 MVA; the diameter d of the core circle 20 is 3.9 m, the inner diameter D of the furnace cavity is 15.58 m, so d/D ⁇ 0.25; A is 1.77 m, B is 2.13 meters, so B/A ⁇ 1.2; ⁇ is 54°, and ⁇ is 66°.
  • each single-phase transformer 40 is 45 MVA; the diameter d of the core circle 20 is 3.52 m, the inner diameter D of the furnace cavity is 10.68 m, so d/D ⁇ 0.33; A is 1.53 m, B is 1.98 meters, so B/A ⁇ 1.3; ⁇ is 51°, and ⁇ is 69°.
  • each single-phase transformer 40 is 5 MVA; the diameter d of the core circle 20 is 3 meters, the inner diameter D of the furnace cavity is 6 meters, so d/D ⁇ 0.5; A is 1.43 meters, B is 1.57 meters, so B/A ⁇ 1.1; ⁇ is 57°, and ⁇ is 63°.
  • each single-phase transformer 40 is 5 MVA; the diameter d of the core circle 20 is 3 meters, the inner diameter D of the furnace cavity is 6 meters, so d/D ⁇ 0.5; A is 1.5 meters, B is 1.5 meters, so B/A ⁇ 1; ⁇ is 60°, and ⁇ is 60°.
  • a uniform circular molten pool is formed in the center of the circular AC electric furnace; since there are six electrodes, three single-phase transformers 40 can be used, thereby effectively expanding the electric power of the electric furnace. .
  • a circular electric furnace according to an embodiment of the second aspect of the present invention includes the electrode arrangement structure of the circular electric furnace according to any one of the first aspect.
  • the circular electric furnace provided by the embodiment of the second aspect of the present invention is provided with the electrode arrangement structure of the circular electric furnace according to any one of the first aspect embodiments, thereby effectively expanding the electric power of the circular electric furnace and forming uniformity
  • the circular molten pool is beneficial to the control of the feed, and also extends the service life of the furnace wall 30, improving the safety and durability of the circular electric furnace.
  • the circular electric furnace arrangement structure comprises 2n electrodes and n single-phase transformers, and n ⁇ 2, that is, includes at least 4 electrodes and 2 single-phase transformers, and a single-phase transformer connection.
  • Two electrodes which effectively increase the number of electrodes in the circular electric furnace and the number of transformers, It breaks the limitation that only three electrodes and one transformer can be set in the traditional circular electric furnace, thereby effectively expanding the electric power of the circular electric furnace.
  • the terms “first” and “second” are used for the purpose of description only, and are not to be construed as indicating or implying relative importance; the term “plurality” means two or more unless otherwise Clearly defined.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like should be understood broadly.
  • “connecting” may be a fixed connection, a detachable connection, or an integral connection; “connected” may They are directly connected or indirectly connected through an intermediary.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the description of the terms “one embodiment”, “some embodiments”, “specific embodiments” and the like means that the specific features, structures, materials, or characteristics described in connection with the embodiments or examples are included in the present invention. At least one embodiment or example.
  • the schematic representation of the above terms does not necessarily refer to the same embodiment or example.
  • the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

一种圆形电炉及其电极布置结构,该圆形电炉的电极布置结构包括:2n个电极(11-16)和n个单相变压器(40),一个单相变压器(40)包括两个输出端,2n个电极(11-16)分别与n个单相变压器(40)的输出端相连;其中,n为整数,且n≥2。该圆形电炉的电极布置结构,包括2n个电极(11-16)和n个单相变压器(40),且n≥2,即包括至少4个电极和2个单相变压器(40),一个单相变压器(40)连接两个电极,从而有效地增加了圆形电炉内电极的数量和变压器的数量,打破了传统圆形电炉内只能设置3个电极和一个变压器的限制,进而有效地扩大了圆形电炉的电功率。

Description

圆形电炉及其电极布置结构
本申请要求于2016年5月30日提交中国专利局、申请号为2016103715880、发明名称为“圆形电炉及电极布置结构”的中国专利及2016年5月30日提交中国专利局、申请号为2016205093666、发明名称为“圆形电炉及电极布置结构”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及冶炼设备技术领域,具体而言,涉及一种圆形电炉的电极布置结构及包括该电极布置结构的圆形电炉。
背景技术
目前,传统圆形冶金交流电电炉或炼钢电弧炉都是设置三个电极,三个电极中心的连线形成一个等边三角形。这种电极布置结构具有以下缺点:1)受电极直径大小的限制,电流强度成了制约瓶颈,三个电极的冶金电炉的变压器大小就受到限制,无法扩大;2)在三个电极的圆形冶金电炉中,由于感应电磁力的产生,电弧相斥,其位置偏向由电炉中心与电极中心连线方向,因此形成一个梅花型熔池,不利于进料的控制。
发明内容
为了解决上述技术问题至少之一,本发明的一个目的在于提供一种圆形电炉的电极布置结构。
本发明的另一个目的在于提供一种包括上述电极布置结构的圆形电炉。
为了实现上述目的,本发明第一方面的实施例提供了一种圆形电炉的电极布置结构,包括:2n个电极;和n个单相变压器,一所述单相变压器包括两个输出端,2n个所述电极分别与n个所述单相变压器的输出端相连;其中,n 为整数,且n≥2。
本发明第一方面的实施例提供的圆形电炉的电极布置结构,包括2n个电极和n个单相变压器,且n≥2,即包括至少4个电极和2个单相变压器,一个单相变压器连接两个电极,从而有效地增加了圆形电炉内电极的数量和变压器的数量,打破了传统圆形电炉内只能设置3个电极和一个变压器的限制,进而有效地扩大了圆形电炉的电功率。
另外,本发明提供的上述实施例中的圆形电炉的电极布置结构还可以具有如下附加技术特征:
在上述技术方案中,n为3。
n为3,即该圆形电炉的电极布置结构包括6个电极和3个单相变压器,由于一个单相变压器连接两个电极,故与同一单相变压器相连的两个电极为同相电极,通过的电流为同相电流,则6个电极和3个单相变压器形成3相6电极的电极布置结构,可通过三相交流电来供电,由于电流强度与时间是正弦关系,故而三相交流电能够有效地平均电流强度,使形成的熔池更加均匀。当然,本领域的技术人员应当理解,根据圆形电炉内部空间的大小,也可以设置2个单相变压器和4个电极、4个单相变压器和8个电极等形式的电极布置结构,只要炉腔内具有足够的空间,能够摆下这些电极即可,均能够起到扩大圆形电炉电功率的目的,且均未脱离本发明的设计思想和宗旨,因此均在本发明的保护范围内。
在上述任一技术方案中,六个所述电极沿所述电炉的圆周平行设置。
在上述任一技术方案中,六个所述电极的中心位于同一个圆上,所述圆形成六个所述电极的极心圆。
在上述任一技术方案中,所述极心圆的圆心与所述电炉的炉腔的中心重合。
六个电极沿电炉的圆周方向平行设置,则六个电极形成的熔池也沿电炉的周向分布,故而炉腔内的熔池相对均匀,则炉墙受到的负荷也相对均匀,从而避免了某个位置处的炉墙因高温熔流冲刷严重而严重受损的情况发生,有效地延长了炉墙的使用寿命,进而提高了圆形电炉的安全性和耐久性;进一步地,六个电极的中心位于同一个圆上,形成极心圆,这样使得炉腔内熔池的形状更 加接近圆形,因而熔池更加均匀,炉墙受到的负荷也更加均匀;优选地,极心圆的圆心与电炉的炉腔的中心重合,这样,熔池能够在炉腔的中心部位形成,从而进一步保证圆形电炉炉墙负荷的均匀性,进一步提高了圆形电炉的安全性和耐久性。
需要解释的是,在明弧冶炼系统中,电弧走向与熔池流动和炉墙的安全有极大的关系。在传统圆形电炉中,电弧彼此相斥,如果为了减低电极消耗或是极大功率操作,必须提高电压;但如果电压极高,电弧会很长,有时电弧尾会把相应的炉墙烧坏。因此国内的冶金炉通常都避免使用高电压操作。但是,如果低电压操作,则高电流会造成强烈的电弧动量,朝炉墙方向冲击熔池表面,使得极高温度的熔渣流向炉墙;如果下料不均,炉墙极易被冲刷损坏。因此电极的布置非常重要,不仅影响熔池的形成,也影响电弧的走向,对熔池熔流的影响非常大。
在上述任一技术方案中,与同一所述单相变压器相连的两个所述电极为同相电极,同相的两个所述电极相邻设置。
使同相的两个电极相邻设置,一方面使得3相6电极的电极布置结构相当于三个独立的单相电炉挨着,而中间没有设置炉墙间隔,共享熔池,这样有效增加了单个电炉的电功率;另一方面还避免了交叉设置导致异相电极之间相互影响致使功率因素大为降低的情况发生。需要解释的是,如果同相的两个电极交叉设置,那么各相之间互相影响,电弧走向没有一定规律,可能产生大量谐波,导致功率因素大为降低。
在上述任一技术方案中,相邻的异相两个所述电极的中心与所述极心圆的圆心的连线之间的角度均为β。
在上述任一技术方案中,相邻的同相两个所述电极的中心与所述极心圆的圆心的连线之间的角度均为α,α+β=120°。
由于围成圆形的六个电极中,同相的两个电极相邻设置,因此六个电极形成了三对相邻的同相电极和三对相邻的异相电极,则每对相邻的电极的中心与极心圆圆心的连线之间均形成一个夹角,这里设置三对相邻的异相电极的中心与极心圆圆心连线之间形成的三个夹角的角度均为β,是由于异相电极之间的电弧相吸,而同相电极之间的电弧相斥,因此三对异相电极之间的三个夹角相 等,能够使六个电极产生的电弧相对、且均匀地沿电炉圆周走向,从而能够形成一个均匀的圆形熔池。
进一步地,三对相邻的同相电极的中心与极心圆圆心连线之间形成的三个夹角的角度均为α,由于3α+3β=360°,故α+β=120°,即相邻的同相两个电极的中心与极心圆的圆心的连线之间的角度α与相邻的异相两个电极的中心与极心圆的圆心的连线之间的角度β之和为120°,则3相6电极在圆形电炉中对称布置,这样使得三对同相电极之间的相互干扰也较为平均,进而产生的电弧和熔池也更加对称,更加均匀,使熔流相对于周向的炉墙都是一样的,从而提高炉墙的寿命,进而提高圆形电炉的安全性和耐久性。
在上述任一技术方案中,相邻的异相两个所述电极的中心之间的距离B与相邻的同相两个所述电极的中心之间的距离A的比值B/A不小于1。
在上述任一技术方案中,相邻的异相两个所述电极的中心之间的距离B与相邻的同相两个所述电极的中心之间的距离A的比值B/A大于等于1.1且小于等于1.3。
设置相邻的异相电极的中心之间的距离B与相邻的同相电极的中心之间的距离A的比值B/A不小于1,即相邻的异相电极的中心之间的距离B大于相邻的同相电极的中心之间的距离A,以避免异相电极之间的电弧过度相吸,造成局部高温区,这样把电弧平均收到两相之间,使圆形电炉内能够形成均匀的圆形熔池,以便于进料的控制;同时,电弧收到两相之间,还能够避免电弧尾扫向炉墙的情况发生,因而使得圆形电炉可以高电压操作,以降低电极损耗,同时还可以避免高温熔流流向炉墙。优选地,B/A大于等于1.1且小于等于1.3,这样能够进一步提高电弧分布的均匀性,进而进一步提高圆形熔池的均匀程度。
在上述任一技术方案中,所述极心圆的直径d与所述炉腔的内径D之间的比值d/D不大于0.5。
在上述任一技术方案中,所述极心圆的直径d与所述炉腔的内径D之间的比值d/D大于等于0.25且小于等于0.33。
设置极心圆的直径d与炉腔的内径D之间的比值d/D不大于0.5,即极心圆的直径d小于炉腔内径D的一半,这样一方面相对增大了电极与炉墙之间 的距离,从而避免了电弧尾扫向炉墙导致炉墙烧坏的情况发生,另一方面能够把熔池有效地控制在炉腔的中间部位,因而避免了高温熔流流向炉墙导致炉墙冲刷受损的情况发生,这有效地提高了炉墙的使用寿命,进而提高了圆形电炉的安全性和耐久性。优选地,d/D大于等于0.25且小于等于0.33,这样能够进一步延长炉墙的使用寿命,从而进一步提高圆形电炉的安全性和耐久性。
本发明第二方面的实施例提供了一种圆形电炉,包括如第一方面实施例中任一项所述的圆形电炉的电极布置结构。
本发明第二方面的实施例提供的圆形电炉,因设置有第一方面实施例中任一项所述的圆形电炉的电极布置结构,因而有效地扩大了圆形电炉的电功率,且能够形成均匀的圆形熔池,以利于进料的控制,同时还延长了炉墙的使用寿命,提高了圆形电炉的安全性和耐久性。
本发明的附加方面和优点将在下面的描述部分中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明所述圆形电炉的电极布置结构的示意图。
其中,图1中的附图标记与部件名称之间的对应关系为:
11一号电极,12二号电极,13三号电极,14四号电极,15五号电极,16六号电极,20极心圆,30炉墙,40单相变压器。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
下面参照图1描述根据本发明一些实施例所述的圆形电炉及其电极布置结构。
如图1所示,本发明第一方面的实施例提供的圆形电炉的电极布置结构,包括:2n个电极和n个单相变压器40。
具体地,一单相变压器40包括两个输出端,2n个电极分别与n个单相变压器40的输出端相连;其中,n为整数,且n≥2。
本发明第一方面的实施例提供的圆形电炉的电极布置结构,包括2n个电极和n个单相变压器40,且n≥2,即包括至少4个电极和2个单相变压器40,一个单相变压器40连接两个电极,从而有效地增加了圆形电炉内电极的数量和变压器的数量,打破了传统圆形电炉内只能设置3个电极和一个变压器的限制,进而有效地扩大了圆形电炉的电功率。
在本发明的一些实施例中,如图1所示,n为3。
在上述实施例中,n为3,即该圆形电炉的电极布置结构包括6个电极和3个单相变压器40,由于一个单相变压器40连接两个电极,故与同一单相变压器40相连的两个电极为同相电极,通过的电流为同相电流,则6个电极和3个单相变压器40形成3相6电极的电极布置结构,可通过三相交流电来供电,由于电流强度与时间是正弦关系,故而三相交流电能够有效地平均电流强度,使形成的熔池更加均匀。
当然,本领域的技术人员应当理解,根据圆形电炉内部空间的大小,也可以设置2个单相变压器40和4个电极、4个单相变压器40和8个电极等形式的电极布置结构,只要炉腔内具有足够的空间,能够摆下这些电极即可,均能够起到扩大圆形电炉电功率的目的,且均未脱离本发明的设计思想和宗旨,因此均在本发明的保护范围内。
优选地,如图1所示,六个电极沿电炉的圆周平行设置。
更优选地,六个电极的中心位于同一个圆上,圆形成六个电极的极心圆20。
更优选地,如图1所示,极心圆20的圆心与电炉的炉腔的中心重合。
六个电极沿电炉的圆周方向平行设置,则六个电极形成的熔池也沿电炉的圆周方向分布,故而炉腔内的熔池相对均匀,则炉墙30受到的负荷也相对均 匀,从而避免了某个位置处的炉墙30因高温熔流冲刷严重而严重受损的情况发生,有效地延长了炉墙30的使用寿命,进而提高了圆形电炉的安全性和耐久性;进一步地,六个电极的中心位于同一个圆上,形成极心圆20,这样使得炉腔内熔池的形状更加接近圆形,因而熔池更加均匀,炉墙30受到的负荷也更加均匀;优选地,极心圆20的圆心与电炉的炉腔的中心重合,这样,熔池能够在炉腔的中心部位形成,从而进一步保证圆形电炉炉墙30负荷的均匀性,进一步提高了圆形电炉的安全性和耐久性。
需要解释的是,在明弧冶炼系统中,电弧走向与熔池流动和炉墙30的安全有极大的关系。在传统圆形电炉中,电弧彼此相斥,如果为了减低电极消耗或是极大功率操作,必须提高电压;但如果电压极高,电弧会很长,有时电弧尾会把相应的炉墙30烧坏。因此国内的冶金炉通常都避免使用高电压操作。但是,如果低电压操作,则高电流会造成强烈的电弧动量,朝炉墙30方向冲击熔池表面,使得极高温度的熔渣流向炉墙30;如果下料不均,炉墙30极易被冲刷损坏。因此电极的布置非常重要,不仅影响熔池的形成,也影响电弧的走向,对熔池熔流的影响非常大。
在本发明的一些实施例中,如图1所示,与同一单相变压器40相连的两个电极为同相电极,同相的两个电极相邻设置。
在上述实施例中,使同相的两个电极相邻设置,一方面使得3相6电极的电极布置结构相当于三个独立的单相电炉挨着,而中间没有设置炉墙30间隔,共享熔池,这样有效增加了单个电炉的电功率;另一方面还避免了交叉设置导致异相电极之间相互影响致使功率因素大为降低的情况发生。需要解释的是,如果同相的两个电极交叉设置,那么各相之间互相影响,电弧走向没有一定规律,可能产生大量谐波,导致功率因素大为降低。
在上述实施例中,进一步地,如图1所示,相邻的异相两个电极的中心与极心圆20的圆心的连线之间的角度均为β。
更进一步地,如图1所示,相邻的同相两个电极的中心与极心圆20的圆心的连线之间的角度均为α,α+β=120°。
由于围成圆形的六个电极中,同相的两个电极相邻设置,因此六个电极形成了三对相邻的同相电极和三对相邻的异相电极,则每对相邻的电极的中心与 极心圆20圆心的连线之间均形成一个夹角,这里设置三对相邻的异相电极的中心与极心圆20圆心连线之间形成的三个夹角的角度均为β,是由于异相电极之间的电弧相吸,而同相电极之间的电弧相斥,因此三对异相电极之间的三个夹角相等,能够使六个电极产生的电弧相对,且均匀地沿电炉圆周走向,从而能够形成一个均匀的圆形熔池。
进一步地,三对相邻的同相电极的中心与极心圆20圆心连线之间形成的三个夹角的角度均为α,由于3α+3β=360°,故α+β=120°,即相邻的同相两个电极的中心与极心圆20的圆心的连线之间的角度α与相邻的异相两个电极的中心与极心圆20的圆心的连线之间的角度β之和为120°,则3相6电极在圆形电炉中对称布置,这样使得三对同相电极之间的相互干扰也较为平均,进而产生的电弧和熔池也更加对称,更加均匀,使熔流相对于周向的炉墙30都是一样的,从而提高炉墙30的寿命,进而提高圆形电炉的安全性和耐久性。
在上述实施例中,进一步地,相邻的异相两个电极的中心之间的距离B与相邻的同相两个电极的中心之间的距离A的比值B/A不小于1。
优选地,相邻的异相两个电极的中心之间的距离B与相邻的同相两个电极的中心之间的距离A的比值B/A大于等于1.1且小于等于1.3。
设置相邻的异相电极的中心之间的距离B与相邻的同相电极的中心之间的距离A的比值B/A不小于1,即相邻的异相电极的中心之间的距离B大于相邻的同相电极的中心之间的距离A,以避免异相电极之间的电弧过度相吸,造成局部高温区,这样把电弧平均收到两相之间,使圆形电炉内能够形成均匀的圆形熔池,以便于进料的控制;同时,电弧收到两相之间,还能够避免电弧尾扫向炉墙30的情况发生,因而使得圆形电炉可以高电压操作,以降低电极损耗,同时还可以避免高温熔流流向炉墙30。优选地,B/A大于等于1.1且小于等于1.3,这样能够进一步提高电弧分布的均匀性,进而进一步提高圆形熔池的均匀程度。
在上述实施例中,更进一步地,极心圆20的直径d与炉腔的内径D之间的比值d/D不大于0.5。
优选地,极心圆20的直径d与炉腔的内径D之间的比值d/D大于等于0.25且小于等于0.33。
设置极心圆20的直径d与炉腔的内径D之间的比值d/D不大于0.5,即极心圆20的直径d小于炉腔内径D的一半,这样一方面相对增大了电极与炉墙30之间的距离,从而避免了电弧尾扫向炉墙30导致炉墙30烧坏的情况发生,另一方面能够把熔池有效地控制在炉腔的中间部位,因而避免了高温熔流流向炉墙30导致炉墙30冲刷受损的情况发生,这有效地提高了炉墙30的使用寿命,进而提高了圆形电炉的安全性和耐久性。优选地,d/D大于等于0.25且小于等于0.33,这样能够进一步延长炉墙30的使用寿命,从而进一步提高圆形电炉的安全性和耐久性。
下面结合本发明的一些具体实施例来详细描述本发明提供的圆形电炉的电极布置结构。
实施例一
如图1所示,圆形电炉的电极布置结构包括三个单相变压器40和六个电极;六个电极沿电炉的圆周方向平行设置;且六个电极的中心位于同一个圆上,即位于极心圆20上;极心圆20的圆心与电炉炉腔的中心重合;同相的两个电极相邻设置,一号电极11、二号电极12形成第一相,三号电极13、四号电极14形成第二相,五号电极15、六号电极16形成第三相;且相邻的同相电极的中心与极心圆20圆心的连线之间的角度相等,记为α,相邻的异相电极的中心与极心圆20圆心的连线之间的角度相等,记为β,α+β=120°;相邻的同相电极的中心之间的距离记为A,相邻的异相电极的中心之间的距离记为B。
其中,每个单相变压器40的功率为25MVA;极心圆20的直径d为3.9米,炉腔内径D为13.6米,故d/D≈0.29;A为1.77米,B为2.13米,故B/A≈1.2;α为54°,β为66°。
实施例二
与实施例一的区别在于,每个单相变压器40的功率为12MVA;极心圆20的直径d为2.6米,炉腔内径D为9.1米,故d/D≈0.29;A为1.24米,B为1.36米,故B/A≈1.1;α为57°,β为63°。
实施例三
与实施例一的区别在于,每个单相变压器40的功率为18MVA;极心圆20的直径d为3.52米,炉腔内径D为12.3米,故d/D≈0.29;A为1.53米,B 为1.98米,故B/A≈1.3;α为51°,β为69°。
实施例四
与实施例一的区别在于,每个单相变压器40的功率为30MVA;极心圆20的直径d为3.9米,炉腔内径D为15.58米,故d/D≈0.25;A为1.77米,B为2.13米,故B/A≈1.2;α为54°,β为66°。
实施例五
与实施例一的区别在于,每个单相变压器40的功率为45MVA;极心圆20的直径d为3.52米,炉腔内径D为10.68米,故d/D≈0.33;A为1.53米,B为1.98米,故B/A≈1.3;α为51°,β为69°。
实施例六
与实施例一的区别在于,每个单相变压器40的功率为5MVA;极心圆20的直径d为3米,炉腔内径D为6米,故d/D≈0.5;A为1.43米,B为1.57米,故B/A≈1.1;α为57°,β为63°。
实施例七
与实施例一的区别在于,每个单相变压器40的功率为5MVA;极心圆20的直径d为3米,炉腔内径D为6米,故d/D≈0.5;A为1.5米,B为1.5米,故B/A≈1;α为60°,β为60°。
上述具体实施例均具有以下有益效果:在圆形交流电电炉的中心部位形成了均匀的圆形熔池;由于具有6个电极,因此能够使用3个单相变压器40,从而有效扩大了电炉的电功率。
本发明第二方面的实施例提供的圆形电炉,包括如第一方面实施例中任一项的圆形电炉的电极布置结构。
本发明第二方面的实施例提供的圆形电炉,因设置有第一方面实施例中任一项的圆形电炉的电极布置结构,因而有效地扩大了圆形电炉的电功率,且能够形成均匀的圆形熔池,以利于进料的控制,同时还延长了炉墙30的使用寿命,提高了圆形电炉的安全性和耐久性。
综上所述,本发明提供的圆形电炉的布置结构,包括2n个电极和n个单相变压器,且n≥2,即包括至少4个电极和2个单相变压器,一个单相变压器连接两个电极,从而有效地增加了圆形电炉内电极的数量和变压器的数量, 打破了传统圆形电炉内只能设置3个电极和一个变压器的限制,进而有效地扩大了圆形电炉的电功率。
在本发明中,术语“第一”、“第二”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种圆形电炉的电极布置结构,其特征在于,包括:
    2n个电极;和
    n个单相变压器,一所述单相变压器包括两个输出端,2n个所述电极分别与n个所述单相变压器的输出端相连;
    其中,n为整数,且n≥2。
  2. 根据权利要求1所述的圆形电炉的电极布置结构,其特征在于,
    n为3。
  3. 根据权利要求2所述的圆形电炉的电极布置结构,其特征在于,
    六个所述电极沿所述电炉的圆周平行设置。
  4. 根据权利要求3所述的圆形电炉的电极布置结构,其特征在于,
    六个所述电极的中心位于同一个圆上,所述圆形成六个所述电极的极心圆。
  5. 根据权利要求4所述的圆形电炉的电极布置结构,其特征在于,
    所述极心圆的圆心与所述电炉的炉腔的中心重合。
  6. 根据权利要求4或5所述的圆形电炉的电极布置结构,其特征在于,
    与同一所述单相变压器相连的两个所述电极为同相电极,同相的两个所述电极相邻设置。
  7. 根据权利要求6所述的圆形电炉的电极布置结构,其特征在于,
    相邻的异相两个所述电极的中心与所述极心圆的圆心的连线之间的角度均为β。
  8. 根据权利要求7所述的圆形电炉的电极布置结构,其特征在于,
    相邻的同相两个所述电极的中心与所述极心圆的圆心的连线之间的角度均为α,α+β=120°。
  9. 根据权利要求8所述的圆形电炉的电极布置结构,其特征在于,
    相邻的异相两个所述电极的中心之间的距离B与相邻的同相两个所述电极的中心之间的距离A的比值B/A不小于1。
  10. 根据权利要求9所述的圆形电炉的电极布置结构,其特征在于,
    相邻的异相两个所述电极的中心之间的距离B与相邻的同相两个所述电极的中心之间的距离A的比值B/A大于等于1.1且小于等于1.3。
  11. 根据权利要求5所述的圆形电炉的电极布置结构,其特征在于,
    所述极心圆的直径d与所述炉腔的内径D之间的比值d/D不大于0.5。
  12. 根据权利要求11所述的圆形电炉的电极布置结构,其特征在于,
    所述极心圆的直径d与所述炉腔的内径D之间的比值d/D大于等于0.25且小于等于0.33。
  13. 一种圆形电炉,其特征在于,包括如权利要求1至12中任一项所述的圆形电炉的电极布置结构。
PCT/CN2017/084281 2016-05-30 2017-05-15 圆形电炉及其电极布置结构 WO2017206700A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2017275056A AU2017275056A1 (en) 2016-05-30 2017-05-15 Circular electric furnace, and electrode arrangement structure thereof
KR1020187036891A KR20190009791A (ko) 2016-05-30 2017-05-15 원형 전기로 및 그 전극 배치 구조
EP17805645.3A EP3468302A4 (en) 2016-05-30 2017-05-15 CIRCULAR ELECTRIC OVEN AND ITS ELECTRODE ARRANGEMENT STRUCTURE
US16/304,650 US20190170443A1 (en) 2016-05-30 2017-05-15 Circular Electric Furnace, and Electrode Arrangement Structure Thereof
CA3025378A CA3025378A1 (en) 2016-05-30 2017-05-15 Circular electric furnace, and electrode arrangement structure thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610371588.0A CN105916229B (zh) 2016-05-30 2016-05-30 圆形电炉及其电极布置结构
CN201620509366.6 2016-05-30
CN201610371588.0 2016-05-30
CN201620509366.6U CN205681653U (zh) 2016-05-30 2016-05-30 圆形电炉及其电极布置结构

Publications (1)

Publication Number Publication Date
WO2017206700A1 true WO2017206700A1 (zh) 2017-12-07

Family

ID=60479725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084281 WO2017206700A1 (zh) 2016-05-30 2017-05-15 圆形电炉及其电极布置结构

Country Status (6)

Country Link
US (1) US20190170443A1 (zh)
EP (1) EP3468302A4 (zh)
KR (1) KR20190009791A (zh)
AU (1) AU2017275056A1 (zh)
CA (1) CA3025378A1 (zh)
WO (1) WO2017206700A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4406008A (en) * 1981-05-18 1983-09-20 Mannesmann Aktiengesellschaft Three phase arc melting and reduction furnace
CN202013104U (zh) * 2011-04-22 2011-10-19 广西新振锰业集团有限公司 双三角六电极长圆形直流矿热炉
CN203132321U (zh) * 2013-02-25 2013-08-14 成都高威节能科技有限公司 六电极交流矿热炉
CN203561217U (zh) * 2013-11-26 2014-04-23 佛山市顺德区万缔福电器有限公司 一种多电极直流刚玉冶炼炉
CN105425013A (zh) * 2015-11-16 2016-03-23 西安电炉研究所有限公司 矩形六电极矿热电炉的电极大电流检测系统
CN105916229A (zh) * 2016-05-30 2016-08-31 北京中凯宏德科技有限公司 圆形电炉及其电极布置结构
CN205681653U (zh) * 2016-05-30 2016-11-09 北京中凯宏德科技有限公司 圆形电炉及其电极布置结构

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1127475A (en) * 1913-04-09 1915-02-09 Union Carbide Corp Electric furnace.
US3665081A (en) * 1969-06-16 1972-05-23 Boris Evgenicvich Paton Apparatus for electroslag remelting of consumable electrodes
WO2001053434A1 (en) * 2000-01-21 2001-07-26 Integrated Environmental Technologies, Llc. Methods and apparatus for treating waste

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4406008A (en) * 1981-05-18 1983-09-20 Mannesmann Aktiengesellschaft Three phase arc melting and reduction furnace
CN202013104U (zh) * 2011-04-22 2011-10-19 广西新振锰业集团有限公司 双三角六电极长圆形直流矿热炉
CN203132321U (zh) * 2013-02-25 2013-08-14 成都高威节能科技有限公司 六电极交流矿热炉
CN203561217U (zh) * 2013-11-26 2014-04-23 佛山市顺德区万缔福电器有限公司 一种多电极直流刚玉冶炼炉
CN105425013A (zh) * 2015-11-16 2016-03-23 西安电炉研究所有限公司 矩形六电极矿热电炉的电极大电流检测系统
CN105916229A (zh) * 2016-05-30 2016-08-31 北京中凯宏德科技有限公司 圆形电炉及其电极布置结构
CN205681653U (zh) * 2016-05-30 2016-11-09 北京中凯宏德科技有限公司 圆形电炉及其电极布置结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3468302A4 *

Also Published As

Publication number Publication date
EP3468302A4 (en) 2019-11-27
EP3468302A1 (en) 2019-04-10
US20190170443A1 (en) 2019-06-06
AU2017275056A1 (en) 2018-12-13
CA3025378A1 (en) 2017-12-07
KR20190009791A (ko) 2019-01-29

Similar Documents

Publication Publication Date Title
AU2005326424B2 (en) Minitype single-phase generator with two poles
US3949151A (en) Arc furnaces
CN103840685B (zh) 三相可控极性的直流电弧炉电源装置
KR20120094875A (ko) 제강용 레이들의 예열방법과 예열장치
WO2017206700A1 (zh) 圆形电炉及其电极布置结构
CN105916229B (zh) 圆形电炉及其电极布置结构
CN101657048A (zh) 感应炉的变频控制系统
CN205681653U (zh) 圆形电炉及其电极布置结构
CN1020953C (zh) 控弧式磁镜直流电弧炉
CN110094965B (zh) 新型直流冶炼电炉
WO2019052499A1 (zh) 一种无极间支路电流矿热电炉
CN207622493U (zh) 一种无极间支路电流矿热电炉
CN206301708U (zh) 一种有极性直流接触器的灭弧机构
CN208210354U (zh) 一种碳化硅感应圈喷涂绝缘结构
CN104344711A (zh) 分体式炉盖
CN210469139U (zh) 一种两极可控极性的直流电弧炉电源装置
CN208489104U (zh) 特高压交流串补工程阻尼装置用干式空心阻尼电抗器
US20210025654A1 (en) Direct current smelting electric furnace
CN204923829U (zh) 一种单电极直流刚玉的冶炼设备
CN202949587U (zh) 节能导电铜瓦
JPH09145254A (ja) 電気炉
CN211606115U (zh) 一种矿热炉用节能短网
CN204574787U (zh) 一种安全耐热保温型中频炉
CN207781284U (zh) 一种高压瓷绝缘子
CN211606413U (zh) 一种用于电弧炉、矿热炉的三电极直流电源系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3025378

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17805645

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017275056

Country of ref document: AU

Date of ref document: 20170515

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187036891

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017805645

Country of ref document: EP

Effective date: 20190102