WO2017206435A1 - 一种无人机拍摄器焦距调整方法及智能穿戴设备 - Google Patents

一种无人机拍摄器焦距调整方法及智能穿戴设备 Download PDF

Info

Publication number
WO2017206435A1
WO2017206435A1 PCT/CN2016/104472 CN2016104472W WO2017206435A1 WO 2017206435 A1 WO2017206435 A1 WO 2017206435A1 CN 2016104472 W CN2016104472 W CN 2016104472W WO 2017206435 A1 WO2017206435 A1 WO 2017206435A1
Authority
WO
WIPO (PCT)
Prior art keywords
sliding
focal length
parameter
focus adjustment
focus
Prior art date
Application number
PCT/CN2016/104472
Other languages
English (en)
French (fr)
Inventor
刘均
刘新
宋朝忠
欧阳张鹏
Original Assignee
深圳市元征科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市元征科技股份有限公司 filed Critical 深圳市元征科技股份有限公司
Publication of WO2017206435A1 publication Critical patent/WO2017206435A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/04847Interaction techniques to control parameter settings, e.g. interaction with sliders or dials
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/0485Scrolling or panning

Definitions

  • Focal length adjustment method for unmanned aerial vehicle camera and smart wearable device
  • the present invention relates to the field of electronic technologies, and in particular, to a method for adjusting a focal length of a drone camera and a smart wearing device.
  • the technical problem to be solved by the embodiments of the present invention is to provide a method for adjusting the focal length of a drone camera and a smart wearable device, which improves the convenience of the drone control.
  • An embodiment of the invention provides a method for adjusting a focal length of a drone camera, the method comprising:
  • the sliding parameter includes a sliding direction
  • determining the focus adjustment parameter according to the sliding parameter includes:
  • the sliding parameter includes a sliding direction and a sliding distance
  • the focal length adjusting parameter includes a focal length adjustment command and a focal length adjustment value
  • determining the focus adjustment parameter according to the sliding parameter includes:
  • determining the focus adjustment value according to the sliding distance includes:
  • the method further includes:
  • the transmitting the focus adjustment parameter to the drone associated with the smart wearable device includes:
  • the method embodiment provides a smart wearable device, and the device includes:
  • an obtaining module configured to acquire a sliding parameter of the sliding operation when detecting a sliding operation on the smart wearable device
  • a parameter module configured to determine a focus adjustment parameter according to the sliding parameter
  • a sending module configured to send the focus adjustment parameter to a drone associated with the smart wearable device, so that the drone adjusts a focal length of the camera according to the focus adjustment parameter.
  • the sliding parameter includes a sliding direction
  • the parameter module includes:
  • a numerical value obtaining unit configured to acquire a preset focus adjustment value
  • the parameter determining unit is configured to determine a focal length adjustment parameter corresponding to the sliding direction according to the sliding direction and the preset focal length adjustment value.
  • the sliding parameter includes a sliding direction and a sliding distance
  • the focal length adjusting parameter includes a focal length Adjust the command and focus adjustment values
  • the parameter module includes:
  • an instruction determining unit configured to determine, according to the sliding direction, a focus adjustment instruction corresponding to the sliding direction, where the distance adjustment instruction includes an increase focus command and a decrease focus command;
  • the numerical value determining unit is configured to determine the focal length adjustment value according to the sliding distance.
  • the determining unit according to the value is used to:
  • an adjustment value corresponding to the target sliding distance section in the focal length adjustment table is acquired as the focus adjustment value.
  • the device further includes:
  • a determining module configured to determine whether the focus adjustment parameter is greater than a preset focus adjustment threshold
  • an update module configured to: when the focus adjustment parameter is greater than a preset focus adjustment threshold, update the focus adjustment parameter, and use the focus adjustment threshold as a current focus adjustment parameter;
  • the sending module is configured to:
  • a sliding parameter of the sliding operation is obtained, and according to the sliding parameter, a focus adjustment parameter is determined, and is associated with the smart wearable device.
  • the drone transmits the focus adjustment parameter, so that the drone adjusts the focal length of the camera according to the focus adjustment parameter, so that the focal length of the drone camera can be more conveniently adjusted, thereby improving the control of the drone. Convenience.
  • 1 is a schematic flow chart of a method for adjusting a focal length of an unmanned aerial vehicle camera according to an embodiment of the present invention
  • 2 is a schematic flow chart of another method for adjusting a focal length of an unmanned aerial vehicle camera according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a smart wearable device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a parameter module 320 of FIG. 3 according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a parameter module 320 of FIG. 3 according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of another smart wearable device according to an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of a method for adjusting a focal length of a drone camera according to an embodiment of the present invention.
  • the method may be implemented by a smart wearable device, which may be a smart wearable device itself or run in an intelligent manner.
  • a software program of the wearable device which may include smart glasses, a smart watch, a smart bracelet, and the like.
  • the smart glasses are taken as an example for description.
  • other smart wearable devices may be used as an example for description.
  • the method as shown in the figure includes at least:
  • Step S101 When a sliding operation on the smart wearable device is detected, the sliding parameter of the sliding operation is acquired.
  • the smart glasses have a touch sensing device, and when the user performs a sliding operation at the touch sensing portion, the smart glasses can detect the sliding operation through the touch sensing device, and acquire the sliding parameter of the sliding operation.
  • the sliding parameter may include a sliding direction, a sliding distance, a sliding force, a sliding time, a sliding speed, and the like corresponding to the sliding operation.
  • the user can slide on the temples of the smart glasses, and when the smart glasses detects the sliding operation of the user on the temples, the sliding parameters of the sliding operation can be obtained.
  • Step S102 Determine a focus adjustment parameter according to the sliding parameter.
  • the sliding parameters include a plurality of types, so the method of determining the focus adjustment parameters according to the sliding parameters may also be various.
  • the smart glasses may determine the focus adjustment parameter according to one of the sliding parameters, or may determine the focus adjustment parameter according to a combination of the plurality of parameters in the sliding parameters.
  • the smart glasses can determine whether the focus adjustment parameter is to increase the focal length or reduce the focal length according to whether the sliding direction is forward or backward; or according to the sliding direction and the sliding speed, determine the focal length adjustment parameter to increase the focal length or Decrease the focal length; according to the sliding direction and the sliding force, it is also possible to determine the focal length of the numerical value of the focus adjustment parameter or the focal length of the reduced value, and the like.
  • the sliding parameter includes a sliding direction
  • the smart glasses may first obtain a preset focal length adjustment value, and then adjust a value according to the sliding direction and the preset focal length to determine a focal length adjustment parameter corresponding to the sliding direction.
  • the preset focus adjustment value is the value of the focus adjustment
  • the sliding direction can determine whether to increase the focal length by the preset focus adjustment value or decrease the preset focus adjustment value.
  • the user may preset that the sliding direction of the smart glasses is forward sliding, and the corresponding focal length adjustment parameter is to increase the preset focal length adjustment value; the sliding direction is backward sliding ⁇ , and the corresponding focal length adjustment parameter is reduced Set the focus adjustment value.
  • the corresponding focal length adjustment parameter for the forward sliding is +20 mm
  • the corresponding focal length adjustment parameter for the backward sliding is -20 mm.
  • the sliding parameters include a sliding direction and a sliding distance
  • the focus adjustment parameters include a focus adjustment command and a focus adjustment value.
  • the smart glasses may first determine a focus adjustment command corresponding to the sliding direction according to the sliding direction, and the distance adjustment command includes an increase focus command and a focus reduction command, and then determine a focus adjustment value according to the sliding distance.
  • the focus adjustment value is the numerical value of the focus adjustment.
  • the smart glasses may preset a correspondence relationship between the sliding direction and the focus adjustment command.
  • the forward sliding corresponding increase focus command may be set, and the backward sliding corresponding reduction focus command may be set.
  • the smart glasses can determine the corresponding focus adjustment command according to the sliding direction.
  • the method for determining the focus adjustment value according to the sliding distance may be various.
  • the conversion formula of the sliding distance and the focal length adjustment value may be preset, and then the focal length adjustment value corresponding to the sliding distance may be determined according to the formula; or the sliding distance may be divided.
  • each sliding distance range corresponds to a preset focal length adjustment value, thereby obtaining a focal length adjustment value corresponding to the range to which the sliding distance belongs.
  • the sliding parameters acquired by the smart glasses include a sliding direction of sliding forward, a sliding distance of 2 cm, and a focal length adjustment command corresponding to the forward sliding to increase the focal length command, then the smart glasses are When the sliding direction of the sliding operation is obtained to slide forward ⁇ , it can be determined that the focus adjustment parameter includes an increase focal length command. Further, assuming that the preset sliding distance and the focal length adjustment value are related to each other, the smart glasses can determine the focal length adjustment value to be 20 mm after acquiring the sliding distance. Finally, it can be determined that the focus adjustment parameters include an increase in the focus command and a focus adjustment value of 20 mm.
  • the sliding parameter acquired by the smart glasses includes that the sliding direction is backward sliding, and the sliding distance is
  • the corresponding focal length adjustment command for sliding backward is to reduce the focus command, and then the smart glasses can slide the ⁇ in the sliding direction of the sliding operation, and then the focal length adjustment parameter can be determined to include the reduction of the focus command.
  • three sliding distance intervals are preset, which are respectively 0-1.9 cm, 2-3.9 cm, and 4 cm or more, wherein the focal length adjustment value corresponding to 0-1.99 cm can be preset to 20 mm, 2-3.9 cm corresponding
  • the focal length adjustment value is 30mm, and the corresponding focal length adjustment value of 4cm or more is 40mm.
  • the sliding distance of the smart glasses is 2cm
  • the sliding distance interval corresponds to The focal length adjustment value is 30mm.
  • the focus adjustment parameters include a reduction of the focus command and the focus adjustment value of 30 mm.
  • Step S103 Send the focus adjustment parameter to a drone associated with the smart wearable device, so that the drone adjusts a focal length of the camera according to the focus adjustment parameter.
  • the smart glasses may be configured with a Bluetooth mode or a wireless connection module, etc., so that the smart glasses have the function of connecting with the drone and transmitting the focus adjustment parameters to the drone.
  • the drone can adjust the focal length of the camera with the focus adjustment parameter. For example, if the focus adjustment parameter includes a reduction focus command and a focus adjustment value of 30 mm, the drone can reduce the focal length of the camera by 30 mm.
  • the smart wearable device before the smart wearable device sends the focus adjustment parameter to the drone, it must first associate with the drone, that is, establish a connection relationship with each other, and the connection manner may include Bluetooth, wireless wifi, mobile network. Wait.
  • the method of establishing connection between the smart glasses and the drone may be different according to different connection modes.
  • the smart glasses can search for Bluetooth signals sent by the surrounding terminals.
  • Each Bluetooth terminal periodically emits a Bluetooth signal when the Bluetooth module is snoring, and the smart glasses can search for surrounding Bluetooth terminals by receiving such a Bluetooth signal.
  • the Bluetooth signal of the Bluetooth terminal can carry its Bluetooth address and the Bluetooth logo, and the smart glasses are connected.
  • the Bluetooth address and Bluetooth identifier of each Bluetooth terminal can be obtained at the same time. The user can select the Bluetooth identifier of the drone that wants to establish a connection among the Bluetooth identifiers of the searched Bluetooth terminals, so that the smart glasses and the drone can establish a Bluetooth connection.
  • the smart glasses and the drone can first open the wifi connection module to separately find and connect to the same or different available wifi networks, and then ⁇ The smart glasses and the drone can exchange data through the wifi network, so that the smart glasses can send the focus adjustment parameters to the drone through the IP address or MAC address of the terminal.
  • the method further includes:
  • the smart glasses may preset a focus adjustment threshold, which is a threshold with an adjustable focal length, that is, a maximum range that the focal length adjustment range of the camera can reach. After the smart glasses determine the focus adjustment parameter, it is determined whether the current focus adjustment parameter is greater than a preset focus adjustment threshold. If yes, the smart glasses update the focus adjustment parameter, and use the focus adjustment threshold as the current focus adjustment parameter. Further, the transmitted to the drone associated with the smart wearable device is also the updated focus adjustment parameter.
  • a focus adjustment threshold which is a threshold with an adjustable focal length, that is, a maximum range that the focal length adjustment range of the camera can reach.
  • a sliding parameter of the sliding operation is obtained, and according to the sliding parameter, a focus adjustment parameter is determined, and is associated with the smart wearable device.
  • the drone transmits the focus adjustment parameter, so that the drone adjusts the focal length of the camera according to the focus adjustment parameter, so that the focal length of the drone camera can be more conveniently adjusted, thereby improving the control of the drone. Convenience.
  • the sliding parameter includes a sliding direction and a sliding distance
  • the focal length adjusting parameter includes a focal length adjustment command and a focal length. Adjust the value.
  • the method includes:
  • Step S201 When a sliding operation on the smart wearable device is detected, the sliding parameter of the sliding operation is acquired.
  • the smart wearable device has a touch sensing device.
  • the smart wear device can detect the sliding operation through the touch sensing device, and acquire the sliding parameter of the sliding operation.
  • the sliding parameter may include a sliding direction corresponding to the sliding operation, Sliding distance, sliding force, sliding time, sliding speed, and more.
  • the user can slide on the temples of the smart glasses, slide on the screen of the smart watch, slide on the loop of the smart bracelet, and the like.
  • Step S202 determining a focus adjustment instruction corresponding to the sliding direction according to the sliding direction.
  • the distance adjustment instruction may include an increase focus command and a decrease focus command.
  • the smart wearable device can preset the correspondence between the sliding direction and the focus adjustment command, and when the sliding direction of the sliding operation is obtained, the focus adjustment command corresponding to the sliding direction can be determined.
  • a forward sliding corresponding increase focus command may be set, and a backward sliding corresponding reduction focus command may be set.
  • the smart wearable device can determine that the corresponding focus adjustment command is to slide backward to reduce the focus command.
  • Step S203 Obtain a preset focal length adjustment table, where the focal length adjustment table includes an adjustment value corresponding to at least one sliding distance interval.
  • the focus adjustment value may be further determined.
  • the smart wearable device may preset a focus adjustment table, and the focus adjustment table may include at least one sliding distance interval and an adjustment value corresponding to each sliding distance interval.
  • a focus adjustment table as shown in Table 1 can be preset.
  • Step S204 determining a target sliding distance interval in which the sliding distance is located according to the focal length adjustment table.
  • the smart wearable device may determine the previously acquired sliding The target sliding distance interval to which the corresponding sliding distance belongs is operated. For example, as shown in Table 1, if the sliding distance is 15 mm, it can be determined that the target sliding distance interval corresponding to the sliding distance of 15 mm is 1 0-19.9 mm.
  • Step S205 Acquire an adjustment value corresponding to the target sliding distance interval in the focal length adjustment table as the focal length adjustment value.
  • the adjustment value corresponding to the target sliding distance interval may be acquired, and the value is used as the focal length adjustment value.
  • the focal length adjustment table is shown in Table 1. If the target sliding distance interval is 10-19.9mm, the corresponding adjustment value is 20mm, then the focal length adjustment value is 20mm°.
  • Step S206 Send the focus adjustment parameter to the drone associated with the smart wearable device, so that the drone adjusts the focal length of the camera according to the focus adjustment parameter.
  • the smart wearable device can send the focus adjustment parameter to the drone associated with the focus adjustment, so that the drone receives the focal length
  • the focal length of the camera can be adjusted according to the focus adjustment command and the focus adjustment value. For example, if the focus adjustment command is the focus reduction command and the focus adjustment parameter is 20mm, the drone can reduce the focal length of the camera by 20mm.
  • a sliding parameter of the sliding operation is acquired, and a focal length adjustment parameter is determined according to the sliding parameter, and is associated with the smart wearable device.
  • the drone transmits the focus adjustment parameter, so that the drone adjusts the focal length of the camera according to the focus adjustment parameter, so that the focal length of the drone camera can be more conveniently adjusted, thereby improving the control of the drone. Convenience.
  • FIG. 3 is a schematic structural diagram of a smart wearable device according to an embodiment of the present invention. As shown, the smart wearable device includes:
  • the obtaining module 310 is configured to acquire a sliding parameter of the sliding operation when detecting a sliding operation on the smart wearable device.
  • the acquiring module 310 has a touch sensing device.
  • the acquiring module 310 can detect the sliding operation through the touch sensing device, and acquire the sliding parameter of the sliding operation.
  • the sliding parameter may include a sliding direction corresponding to the sliding operation, and sliding Moving distance, sliding force, sliding time, sliding speed, etc.
  • the user can slide on the temples of the smart glasses, and when the acquisition module 310 detects the sliding operation of the user on the temples, the sliding parameters of the sliding operation can be acquired.
  • the parameter module 320 is configured to determine a focus adjustment parameter according to the sliding parameter.
  • the sliding parameters include a plurality of types, and thus the method of determining the focus adjustment parameters according to the sliding parameters may also be various.
  • the parameter module 320 may determine the focus adjustment parameter according to one of the sliding parameters, or may determine the focus adjustment parameter according to a combination of the plurality of parameters in the sliding parameter.
  • the parameter module 320 can determine whether the focus adjustment parameter is to increase the focal length or reduce the focal length according to whether the sliding direction is forward or backward; or according to the sliding direction and the sliding speed, determine the focal length adjustment parameter to increase the focal length. Or reduce the focal length; according to the sliding direction and the sliding force, it is also possible to determine the focal length of the numerical value of the focus adjustment parameter or the focal length of the reduced value, and the like.
  • the sliding parameter includes a sliding direction
  • the parameter module 320 includes a value acquisition unit 321 and a parameter determination unit 322, as shown in FIG. among them
  • the numerical value obtaining unit 321 is configured to acquire a preset focus adjustment value.
  • the numerical value acquiring unit 321 may first acquire a preset focus adjustment value.
  • the preset focus adjustment value is the value of the focus adjustment.
  • the parameter determining unit 322 is configured to determine a focal length adjustment parameter corresponding to the sliding direction according to the sliding direction and the preset focal length adjustment value.
  • the sliding direction may determine whether to increase the focal length by a preset focus adjustment value or to decrease the preset focus adjustment value.
  • the parameter determining unit 322 can preset the user to slide forward in the sliding direction of the smart glasses.
  • the corresponding focal length adjustment parameter is to increase the preset focus adjustment value; the sliding direction is backward sliding ⁇ , and the corresponding focal length adjustment parameter is to reduce the preset focus adjustment value.
  • the parameter determining unit 322 determines that the focal length adjustment parameter corresponding to the forward sliding is +20 mm, and the corresponding focal length adjustment parameter of the backward sliding is -20 mm.
  • the sliding parameter includes a sliding direction and a sliding distance
  • the focal length adjusting parameter includes a focus adjustment command and a focus adjustment value
  • the parameter module 320 includes an instruction determining unit 323 and a value determining unit 324, as shown in FIG. among them [0113]
  • the instruction determining unit 323 is configured to determine, according to the sliding direction, a focus adjustment instruction corresponding to the sliding direction, where the distance adjustment instruction includes an increase focus command and a decrease focus command.
  • the instruction determining unit 323 may first determine a focus adjustment instruction corresponding to the sliding direction according to the sliding direction, and the distance adjustment instruction includes an increase focus command and a decrease focus command. Specifically, the correspondence between the sliding direction and the focus adjustment command may be set in advance. For example, the forward sliding corresponding increase focal length command may be set, and the backward sliding corresponding reduced focus command may be set. After acquiring the sliding direction of the sliding operation, the command determining unit 323 can determine the corresponding focus adjustment command according to the sliding direction.
  • the value determining unit 324 is configured to determine the focus adjustment value according to the sliding distance.
  • the numerical value determining unit 324 determines the focal length adjustment value based on the sliding distance.
  • the focus adjustment value is the value of the focus adjustment.
  • the method for determining the focus adjustment value according to the sliding distance may be various.
  • the conversion formula of the sliding distance and the focal length adjustment value may be preset, and then the focal length adjustment value corresponding to the sliding distance may be determined according to the formula; or the sliding distance may be divided.
  • each sliding distance range corresponds to a preset focal length adjustment value, thereby obtaining a focal length adjustment value corresponding to the range to which the sliding distance belongs.
  • the sliding parameter acquired by the smart glasses includes that the sliding direction is forward sliding, the sliding distance is 2 cm, and the focal length adjusting instruction corresponding to the forward sliding is the increasing focus command, then the instruction determining unit 323 is acquiring.
  • the sliding direction to the sliding operation is forward sliding ⁇
  • the focus adjustment parameter includes an increase focal length command.
  • the numerical value determining unit 324 can determine the focal length adjustment value to be 20 mm after acquiring the sliding distance.
  • the focus adjustment parameters include an increase in the focus command and a focus adjustment value of 20 mm.
  • the value determining unit 324 may be specifically configured to:
  • the value determining unit 324 may preset a focus adjustment table, and the focus adjustment table may include at least one sliding distance interval and an adjustment value corresponding to each sliding distance interval.
  • the focus adjustment table as shown in Table 1 can be preset.
  • the value determining unit 324 may determine the target sliding distance interval to which the sliding distance corresponding to the previously acquired sliding operation belongs.
  • the focal length adjustment table is as shown in Table 1. If the sliding distance is 15 mm, it can be determined that the target sliding distance corresponding to the sliding distance of 15 mm is 10-19.9 mm.
  • the numerical value determining unit 324 may acquire the adjustment value corresponding to the target sliding distance interval, and use the value as the focal length adjustment value.
  • the focal length adjustment table is shown in Table 1. If the target sliding distance interval is 10-19.9mm, the corresponding adjustment value is 20mm, then the focal length adjustment value is 20mm.
  • the sending module 330 is configured to send the focus adjustment parameter to a drone associated with the smart wearable device, so that the drone adjusts a focal length of the camera according to the focus adjustment parameter.
  • the smart glasses may be configured with a Bluetooth mode or a wireless connection module, etc., so that the smart glasses have the function of connecting with the drone and transmitting the focus adjustment parameters to the drone.
  • the sending module 330 sends the focus adjustment parameter to the associated non-human machine
  • the drone can adjust the focal length of the camera with the focus adjustment parameter. For example, if the focus adjustment parameter includes a reduction focus command and a focus adjustment value of 30 mm, the focal length of the camera can be reduced by 30 mm without a human machine.
  • the device further includes: [0129]
  • the determining module 340 is configured to determine whether the focus adjustment parameter is greater than a preset focus adjustment threshold.
  • the focus adjustment threshold may be preset, and the threshold is a threshold with adjustable focal length, that is, a maximum range that the focal length adjustment range of the camera can reach.
  • the determination module 340 determines whether the current focus adjustment parameter is greater than a preset focus adjustment threshold.
  • the update module 350 is configured to update the focus adjustment parameter when the focus adjustment parameter is greater than a preset focus adjustment threshold, and use the focus adjustment threshold as a current focus adjustment parameter.
  • the update module 350 updates the focus adjustment parameter, and uses the focus adjustment threshold as the current focus adjustment parameter.
  • the sending module 330 is used to:
  • a sliding parameter of the sliding operation is acquired, and a focal length adjustment parameter is determined according to the sliding parameter, and is associated with the smart wearable device.
  • the drone transmits the focus adjustment parameter, so that the drone adjusts the focal length of the camera according to the focus adjustment parameter, so that the focal length of the drone camera can be more conveniently adjusted, thereby improving the control of the drone. Convenience.
  • FIG. 6 is a schematic structural diagram of another smart wearable device according to an embodiment of the present invention.
  • the device includes a processor 61, a memory 62, and a communication interface 63.
  • the processor 61 is connected to the memory 62 and the communication interface 63, and for example, the processor 61 can be connected to the memory 62 and the communication interface 63 via a bus.
  • the processor 61 is configured to support the smart wearable device to perform the corresponding functions in the above methods.
  • the processor 61 can be a central processing unit (CPU), a network processor (NP), a hardware chip, or any combination thereof.
  • the above hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the above PLD can be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), or a general array logic (GAL). Or any combination thereof.
  • the memory 62 memory is used to store focus adjustment parameters and the like.
  • the memory 62 may include a volatile memory (English: volatile memory), such as a random access memory (English: random-access memory) , abbreviation: RAM); Memory 62 may also include non-volatile memory (English: non-volatile memory), such as read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory ), hard disk (English: hard disk drive, abbreviated: HDD) or solid state drive (English: solid-state drive, abbreviated: SSD); the memory 62 may also include a combination of the above types of memory.
  • a volatile memory such as a random access memory (English: random-access memory) , abbreviation: RAM
  • Memory 62 may also include non-volatile memory (English: non-volatile memory), such as read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory ), hard disk (English: hard
  • the communication interface 63 is for wireless connection with a communication device, such as a drone.
  • the processor 61 can perform the following operations:
  • the sliding parameter includes a sliding direction
  • the processor 61 is specifically configured to:
  • the sliding parameter includes a sliding direction and a sliding distance
  • the focal length adjusting parameter includes a focus adjustment instruction and a focus adjustment value
  • the processor 61 is specifically configured to:
  • the processor 61 is specifically configured to:
  • the focus adjustment table includes an adjustment value corresponding to at least one sliding distance interval
  • the processor 61 is further configured to: [0155] determine whether the focus adjustment parameter is greater than a preset focus adjustment threshold; [0156] If yes, updating the focus adjustment parameter, using the focus adjustment threshold as a current focus adjustment parameter [0157]
  • the processor 61 is configured to:
  • the storage medium may be a magnetic disk, an optical disk, or a read-only storage memory (Read-Only)
  • ROM Read Only Memory
  • RAM Random Access Memory

Abstract

一种无人机拍摄器焦距调整方法及智能穿戴设备,其中,方法包括:当检测到在智能穿戴设备上的滑动操作时,获取所述滑动操作的滑动参数(S101);根据所述滑动参数,确定焦距调整参数(S102);向与所述智能穿戴设备关联的无人机发送所述焦距调整参数,以使所述无人机根据所述焦距调整参数调整拍摄器的焦距(S103)。采用所述无人机拍摄器焦距调整方法及智能穿戴设备,可以更方便的对无人机拍摄器焦距进行调整,从而提高对无人机操控的便捷度。

Description

一种无人机拍摄器焦距调整方法及智能穿戴设备
[0001] 技术领域
[0002] 本发明涉及电子技术领域, 尤其涉及一种无人机拍摄器焦距调整方法及智能穿 戴设备。
[0003] 背景技术
[0004] 随着无人机技术的发展成熟, 利用无人机进行拍摄不仅可以满足不同角度的拍 摄需求, 还可以减少在人力和资源上的投资, 因此无人机越来越受到人们的追 捧。 目前, 无人机拍摄焦距的调整, 一般是通过遥控杆进行操控, 这种操控方 法的问题在于, 遥控杆的操作方法复杂, 携带不便, 并且在人们看无人机飞行 情况或者传回的实吋画面的同吋调整焦距吋, 就不能很方便地低头看着遥控杆 进行调整, 降低了对无人机操控的便捷度。
[0005] 发明内容
[0006] 本发明实施例所要解决的技术问题在于, 提供一种无人机拍摄器焦距调整方法 及智能穿戴设备, 提高对无人机操控的便捷度。
[0007] 本发明实施例提供了一种无人机拍摄器焦距调整方法, 该方法包括:
[0008] 当检测到在智能穿戴设备上的滑动操作吋, 获取所述滑动操作的滑动参数; [0009] 根据所述滑动参数, 确定焦距调整参数;
[0010] 向与所述智能穿戴设备关联的无人机发送所述焦距调整参数, 以使所述无人机 根据所述焦距调整参数调整拍摄器的焦距。
[0011] 可选的, 所述滑动参数包括滑动方向;
[0012] 所述根据所述滑动参数, 确定焦距调整参数包括:
[0013] 获取预设的焦距调整数值;
[0014] 根据所述滑动方向以及所述预设的焦距调整数值, 确定与所述滑动方向对应的 焦距调整参数。
[0015] 可选的, 所述滑动参数包括滑动方向和滑动距离, 所述焦距调整参数包括焦距 调整指令和焦距调整数值; [0016] 所述根据所述滑动参数, 确定焦距调整参数包括:
[0017] 根据所述滑动方向, 确定与所述滑动方向对应的焦距调整指令, 所述距调整指 令包括增大焦距指令和减小焦距指令;
[0018] 根据所述滑动距离, 确定所述焦距调整数值。
[0019] 可选的, 所述根据所述滑动距离, 确定所述焦距调整数值包括:
[0020] 获取预设的焦距调整表, 所述焦距调整表包括至少一个滑动距离区间对应的调 整数值;
[0021] 根据所述焦距调整表, 确定所述滑动距离所在的目标滑动距离区间;
[0022] 获取所述焦距调整表中所述目标滑动距离区间对应的调整数值作为所述焦距调 整数值。
[0023] 可选的, 该方法还包括:
[0024] 判断所述焦距调整参数是否大于预设的焦距调整阈值;
[0025] 若是, 则更新所述焦距调整参数, 将所述焦距调整阈值作为当前焦距调整参数
[0026] 所述向与所述智能穿戴设备关联的无人机发送所述焦距调整参数包括:
[0027] 向与所述智能穿戴设备关联的无人机发送所述更新后的焦距调整参数。
[0028] 相应的, 本方法实施例提供了一种智能穿戴设备, 该设备包括:
[0029] 获取模块, 用于当检测到在智能穿戴设备上的滑动操作吋, 获取所述滑动操作 的滑动参数;
[0030] 参数模块, 用于根据所述滑动参数, 确定焦距调整参数;
[0031] 发送模块, 用于向与所述智能穿戴设备关联的无人机发送所述焦距调整参数, 以使所述无人机根据所述焦距调整参数调整拍摄器的焦距。
[0032] 可选的, 所述滑动参数包括滑动方向;
[0033] 所述参数模块包括:
[0034] 数值获取单元, 用于获取预设的焦距调整数值;
[0035] 参数确定单元, 用于根据所述滑动方向以及所述预设的焦距调整数值, 确定与 所述滑动方向对应的焦距调整参数。
[0036] 可选的, 所述滑动参数包括滑动方向和滑动距离, 所述焦距调整参数包括焦距 调整指令和焦距调整数值;
[0037] 所述参数模块包括:
[0038] 指令确定单元, 用于根据所述滑动方向, 确定与所述滑动方向对应的焦距调整 指令, 所述距调整指令包括增大焦距指令和减小焦距指令;
[0039] 数值确定单元, 用于根据所述滑动距离, 确定所述焦距调整数值。
[0040] 可选的, 所述根据所述数值确定单元用于:
[0041] 获取预设的焦距调整表, 所述焦距调整表包括至少一个滑动距离区间对应的调 整数值;
[0042] 根据所述焦距调整表, 确定所述滑动距离所在的目标滑动距离区间;
[0043] 获取所述焦距调整表中所述目标滑动距离区间对应的调整数值作为所述焦距调 整数值。
[0044] 可选的, 该设备还包括:
[0045] 判断模块, 用于判断所述焦距调整参数是否大于预设的焦距调整阈值;
[0046] 更新模块, 用于当所述焦距调整参数大于预设的焦距调整阈值吋, 更新所述焦 距调整参数, 将所述焦距调整阈值作为当前焦距调整参数;
[0047] 所述发送模块用于:
[0048] 向与所述智能穿戴设备关联的无人机发送所述更新后的焦距调整参数。
[0049] 本发明实施例通过当检测到在智能穿戴设备上的滑动操作吋, 获取所述滑动操 作的滑动参数, 根据所述滑动参数, 确定焦距调整参数, 向与所述智能穿戴设 备关联的无人机发送所述焦距调整参数, 以使所述无人机根据所述焦距调整参 数调整拍摄器的焦距, 可以更方便的对无人机拍摄器焦距进行调整, 从而提高 对无人机操控的便捷度。
[0050] 附图说明
[0051] 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施例或 现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的 附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创 造性劳动的前提下, 还可以根据这些附图获得其他的附图。
[0052] 图 1是本发明实施例中一种无人机拍摄器焦距调整方法的流程示意图; [0053] 图 2是本发明实施例中另一种无人机拍摄器焦距调整方法的流程示意图;
[0054] 图 3是本发明实施例中一种智能穿戴设备的结构示意图;
[0055] 图 4是本发明实施例中图 3的参数模块 320的结构示意图;
[0056] 图 5是本发明实施例中图 3的参数模块 320的结构示意图;
[0057] 图 6是本发明实施例中另一种智能穿戴设备的结构示意图。
[0058] 具体实施方式
[0059] 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部 的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳 动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
[0060] 图 1是本发明实施例中一种无人机拍摄器焦距调整方法的流程示意图, 本方法 流程可以由智能穿戴设备实施, 所述智能穿戴设备可以为智能穿戴设备本身或 运行在智能穿戴设备的软件程序, 所述智能穿戴设备可以包括智能眼镜、 智能 手表、 智能手环等。 在本实施例中, 以智能眼镜为例进行说明, 在其他实施例 场景中, 也可以以其他智能穿戴设备为例进行说明。 如图所示所述方法至少包 括:
[0061] 步骤 S101, 当检测到在智能穿戴设备上的滑动操作吋, 获取所述滑动操作的滑 动参数。
[0062] 具体的, 智能眼镜具有触摸感应装置, 当用户在触摸感应部位进行滑动操作吋 , 智能眼镜就可以通过触摸感应装置检测到该滑动操作, 并且获取该滑动操作 的滑动参数。 其中, 滑动参数可以包括该滑动操作对应的滑动方向、 滑动距离 、 滑动力度、 滑动吋间、 滑动速度等等。
[0063] 具体实施中, 用户可以在智能眼镜的镜腿上进行滑动, 当智能眼镜检测到用户 在镜腿上的滑动操作吋, 就可以获取该滑动操作的滑动参数。
[0064] 步骤 S 102, 根据所述滑动参数, 确定焦距调整参数。
[0065] 具体的, 滑动参数包括多种, 因此根据滑动参数来确定焦距调整参数的方法也 可以是多种的。 例如, 智能眼镜可以根据滑动参数中的其中一种参数来确定焦 距调整参数, 也可以根据滑动参数中的多种参数结合来确定焦距调整参数。 例 如, 智能眼镜可以只根据滑动方向是向前还是向后, 确定焦距调整参数是增大 焦距还是减小焦距; 也可以根据滑动方向和滑动速度, 确定焦距调整参数是以 什么速度增大焦距或者减小焦距; 还可以根据滑动方向和滑动力度, 确定焦距 调整参数具体增大多少数值的焦距或者减小多少数值的焦距等等。
[0066] 其中, 在一些实施场景中, 滑动参数包括滑动方向, 智能眼镜可以先获取预设 的焦距调整数值, 然后根据滑动方向以及预设的焦距调整数值, 确定与滑动方 向对应的焦距调整参数。 这里, 预设的焦距调整数值是焦距调整的数值大小, 滑动方向则可以确定将焦距增大预设的焦距调整数值还是减小预设的焦距调整 数值。 例如, 可以预设用户在智能眼镜的滑动方向为向前滑动吋, 对应的焦距 调整参数为增大预设的焦距调整数值; 滑动方向为向后滑动吋, 对应的焦距调 整参数为减小预设的焦距调整数值。
[0067] 具体举例说明, 设预设的焦距调整数值为 20mm, 则向前滑动对应的焦距调整 参数为 +20mm, 向后滑动对应的焦距调整参数为 -20mm。
[0068] 在另一些实施场景中, 滑动参数包括滑动方向和滑动距离, 焦距调整参数包括 焦距调整指令和焦距调整数值。 智能眼镜可以先根据滑动方向, 确定与滑动方 向对应的焦距调整指令, 距调整指令包括增大焦距指令和减小焦距指令, 然后 根据滑动距离, 确定焦距调整数值。 这里, 焦距调整数值是焦距调整的数值大 小。
[0069] 具体来说, 智能眼镜可以预先设定滑动方向与焦距调整指令的对应关系, 例如 , 可以设定向前滑动对应增大焦距指令、 向后滑动对应减小焦距指令。 在获取 到滑动操作的滑动方向后, 智能眼镜就可以根据滑动方向确定对应的焦距调整 指令。 根据滑动距离确定焦距调整数值的方法可以是多种的, 例如, 可以预设 滑动距离与焦距调整数值的换算公式, 然后根据该公式确定滑动距离对应的焦 距调整数值; 也可以是将滑动距离划分几个不同的范围, 每个滑动距离范围对 应一个预设的焦距调整数值, 从而获取到的滑动距离所属范围对应的焦距调整 数值。
[0070] 具体举例说明, 设智能眼镜获取到的滑动参数包括滑动方向为向前滑动, 滑动 距离为 2cm, 设向前滑动对应的焦距调整指令为增大焦距指令, 那么智能眼镜在 获取到滑动操作的滑动方向为向前滑动吋, 则可以确定焦距调整参数包括增大 焦距指令。 进一步地, 假设预设的滑动距离与焦距调整数值得关系为相等的, 那么智能眼镜在获取到滑动距离后就可以确定焦距调整数值为 20mm。 最终, 可 以确定焦距调整参数包括增大焦距指令和焦距调整数值 20mm。
[0071] 又例如, 设智能眼镜获取到的滑动参数包括滑动方向为向后滑动, 滑动距离为
2cm, 设向后滑动对应的焦距调整指令为减小焦距指令, 那么智能眼镜在获取到 滑动操作的滑动方向为向后滑动吋, 则可以确定焦距调整参数包括减小焦距指 令。 进一步地, 假设预设了三个滑动距离区间, 分别为 0-1.9cm, 2-3.9cm, 4cm 以上, 其中, 可以预设 0-1.9cm对应的焦距调整数值为 20mm, 2-3.9cm对应的焦 距调整数值为 30mm, 4cm以上对应的焦距调整数值为 40mm, 那么当智能眼镜获 取到滑动距离为 2cm吋, 可以确定该滑动距离所属的滑动距离区间为 2-3.9cm, 该滑动距离区间对应的焦距调整数值为 30mm。 最终, 可以确定焦距调整参数包 括减小焦距指令和焦距调整数值 30mm。
[0072] 步骤 S103, 向与所述智能穿戴设备关联的无人机发送所述焦距调整参数, 以使 所述无人机根据所述焦距调整参数调整拍摄器的焦距。
[0073] 具体的, 智能眼镜中可以配置蓝牙模或者无线连接模块等, 从而使智能眼镜具 备与无人机连接并向无人机发送焦距调整参数的功能。 智能眼镜向关联的无人 机发送焦距调整参数后, 无人机可以跟该焦距调整参数对拍摄器的焦距进行调 整。 例如, 若焦距调整参数包括减小焦距指令和焦距调整数值 30mm, 那么无人 机就可以对拍摄器的焦距进行减小 30mm的操作。
[0074] 需要说明的是, 智能穿戴设备在向无人机发送焦距调整参数前, 要先与无人机 进行关联, 即建立彼此建立连接关系, 连接的方式可以包括蓝牙、 无线 wifi、 移 动网络等。 具体实施中根据不同的连接方式, 智能眼镜与无人机建立连接的方 法也可以不同。
[0075] 例如, 若智能眼镜与无人机建立的是蓝牙连接, 那么智能眼镜可以搜索周围的 终端发出的蓝牙信号。 各蓝牙终端在蓝牙模块打幵的情况下, 会周期性地发出 蓝牙信号, 智能眼镜可以通过接收这种蓝牙信号来搜索周围的蓝牙终端。 进一 步的, 蓝牙终端的蓝牙信号中可以携带其蓝牙地址和蓝牙标识, 智能眼镜在接 收各蓝牙终端的蓝牙信号吋, 就可以同吋获取各蓝牙终端的蓝牙地址和蓝牙标 识。 用户可以在搜索到的蓝牙终端的蓝牙标识中选择想要建立连接的无人机的 蓝牙标识, 从而智能眼镜与无人机可以建立蓝牙连接。
[0076] 又例如, 若智能眼镜与无人机建立的是 wifi连接, 则智能眼镜与无人机可以先 幵启 wifi连接模块, 分别査找并连入相同或不同的可用 wifi网络, 则此吋智能眼 镜与无人机即可通过 wifi网络进行数据交互, 从而智能眼镜可以通过终端的 IP地 址或者 MAC地址向无人机发送焦距调整参数。
[0077] 可选的, 在智能眼镜确定了焦距调整参数之后, 还可以包括:
[0078] 判断所述焦距调整参数是否大于预设的焦距调整阈值, 若是, 则更新所述焦距 调整参数, 将所述焦距调整阈值作为当前焦距调整参数。
[0079] 具体的, 智能眼镜可以预设焦距调整阈值, 该阈值是焦距可调的门限值, 也就 是说是拍摄器的焦距调整范围能达到的最大范围。 在智能眼镜确定了焦距调整 参数之后, 判断当前的焦距调整参数是否大于预设的焦距调整阈值, 如果是, 那么智能眼镜就更新焦距调整参数, 将焦距调整阈值作为当前的焦距调整参数 。 进而, 向与智能穿戴设备关联的无人机发送的也为更新后的焦距调整参数。
[0080] 本发明实施例通过当检测到在智能穿戴设备上的滑动操作吋, 获取所述滑动操 作的滑动参数, 根据所述滑动参数, 确定焦距调整参数, 向与所述智能穿戴设 备关联的无人机发送所述焦距调整参数, 以使所述无人机根据所述焦距调整参 数调整拍摄器的焦距, 可以更方便的对无人机拍摄器焦距进行调整, 从而提高 对无人机操控的便捷度。
[0081] 图 2是本发明实施例中另一种无人机拍摄器焦距调整方法的流程示意图, 在本 实施例中, 滑动参数包括滑动方向和滑动距离, 焦距调整参数包括焦距调整指 令和焦距调整数值。 所述方法包括:
[0082] 步骤 S201 , 当检测到在智能穿戴设备上的滑动操作吋, 获取所述滑动操作的滑 动参数。
[0083] 具体的, 智能穿戴设备具有触摸感应装置, 当用户在触摸感应部位进行滑动操 作吋, 智能穿戴设备就可以通过触摸感应装置检测到该滑动操作, 并且获取该 滑动操作的滑动参数。 其中, 滑动参数可以包括该滑动操作对应的滑动方向、 滑动距离、 滑动力度、 滑动吋间、 滑动速度等等。
[0084] 具体实施中, 用户可以在智能眼镜的镜腿上进行滑动, 也可以在智能手表的屏 幕上进行滑动, 还可以在智能手环的环带上进行滑动等等。
[0085] 步骤 S202, 根据所述滑动方向, 确定与所述滑动方向对应的焦距调整指令。
[0086] 具体的, 距调整指令可以包括增大焦距指令和减小焦距指令。 智能穿戴设备可 以预先设定滑动方向与焦距调整指令的对应关系, 当获取到滑动操作的滑动方 向吋, 就可以确定与滑动方向对应的焦距调整指令。
[0087] 例如, 可以设定向前滑动对应增大焦距指令、 向后滑动对应减小焦距指令。 在 获取到滑动操作的滑动方向为向后滑动吋, 智能穿戴设备就可以确定向后滑动 对应的焦距调整指令为减小焦距指令。
[0088] 步骤 S203 , 获取预设的焦距调整表, 所述焦距调整表包括至少一个滑动距离区 间对应的调整数值。
[0089] 确定了焦距调整指令之后, 可以进一步确定焦距调整数值。 具体的, 智能穿戴 设备可以预先设置一个焦距调整表, 焦距调整表中可以包括至少一个滑动距离 区间, 以及每个滑动距离区间对应的调整数值。 例如, 可以预设一个如表 1所示 的焦距调整表。
Figure imgf000010_0001
•1; 舰璣整表:麵鶴:
[0091] 步骤 S204, 根据所述焦距调整表, 确定所述滑动距离所在的目标滑动距离区间 [0092] 具体的, 智能穿戴设备在获取到焦距调整表之后, 可以确定之前获取到的滑动 操作对应的滑动距离所属的目标滑动距离区间。 例如, 焦距调整表如表 1所示, 若滑动距离为 15mm, 那么可以确定滑动距离 15mm对应的目标滑动距离区间为 1 0-19.9mm。
[0093] 步骤 S205, 获取所述焦距调整表中所述目标滑动距离区间对应的调整数值作为 所述焦距调整数值。
[0094] 具体的, 确定目标滑动距离区间之后, 就可以获取目标滑动距离区间对应的调 整数值, 并将该数值作为焦距调整数值。 例如, 焦距调整表如表 1所示, 若目标 滑动距离区间为 10-19.9mm, 则对应的调整数值即为 20mm, 则焦距调整数值即 为 20mm°
[0095] 步骤 S206, 向与所述智能穿戴设备关联的无人机发送所述焦距调整参数, 以使 所述无人机根据所述焦距调整参数调整拍摄器的焦距。
[0096] 具体的, 焦距调整参数包括的焦距调整指令和焦距调整数值确定了之后, 智能 穿戴设备就可以向与其关联的无人机发送该焦距调整参数, 从而使无人机在接 收到该焦距调整参数之后, 可以根据焦距调整指令和焦距调整数值对拍摄器的 焦距进行调整。 例如, 若焦距调整指令为焦距减小指令, 焦距调整参数为 20mm , 则无人机就可以将拍摄器的焦距减小 20mm。
[0097] 本发明实施例通过当检测到在智能穿戴设备上的滑动操作吋, 获取所述滑动操 作的滑动参数, 根据所述滑动参数, 确定焦距调整参数, 向与所述智能穿戴设 备关联的无人机发送所述焦距调整参数, 以使所述无人机根据所述焦距调整参 数调整拍摄器的焦距, 可以更方便的对无人机拍摄器焦距进行调整, 从而提高 对无人机操控的便捷度。
[0098] 图 3是本发明实施例中一种智能穿戴设备的结构示意图。 如图所示, 所述智能 穿戴设备包括:
[0099] 获取模块 310, 用于当检测到在智能穿戴设备上的滑动操作吋, 获取所述滑动 操作的滑动参数。
[0100] 具体的, 获取模块 310具有触摸感应装置, 当用户在触摸感应部位进行滑动操 作吋, 获取模块 310就可以通过触摸感应装置检测到该滑动操作, 并且获取该滑 动操作的滑动参数。 其中, 滑动参数可以包括该滑动操作对应的滑动方向、 滑 动距离、 滑动力度、 滑动吋间、 滑动速度等等。
[0101] 具体实施中, 用户可以在智能眼镜的镜腿上进行滑动, 当获取模块 310检测到 用户在镜腿上的滑动操作吋, 就可以获取该滑动操作的滑动参数。
[0102] 参数模块 320, 用于根据所述滑动参数, 确定焦距调整参数。
[0103] 具体的, 滑动参数包括多种, 因此根据滑动参数来确定焦距调整参数的方法也 可以是多种的。 例如, 参数模块 320可以根据滑动参数中的其中一种参数来确定 焦距调整参数, 也可以根据滑动参数中的多种参数结合来确定焦距调整参数。 例如, 参数模块 320可以只根据滑动方向是向前还是向后, 确定焦距调整参数是 增大焦距还是减小焦距; 也可以根据滑动方向和滑动速度, 确定焦距调整参数 是以什么速度增大焦距或者减小焦距; 还可以根据滑动方向和滑动力度, 确定 焦距调整参数具体增大多少数值的焦距或者减小多少数值的焦距等等。
[0104] 可选的, 所述滑动参数包括滑动方向;
[0105] 所述参数模块 320包括数值获取单元 321和参数确定单元 322, 如图 4所示。 其中
[0106] 数值获取单元 321, 用于获取预设的焦距调整数值。
[0107] 数值获取单元 321可以先获取预设的焦距调整数值。 这里, 预设的焦距调整数 值是焦距调整的数值大小。
[0108] 参数确定单元 322, 用于根据所述滑动方向以及所述预设的焦距调整数值, 确 定与所述滑动方向对应的焦距调整参数。
[0109] 滑动方向可以确定将焦距增大预设的焦距调整数值还是减小预设的焦距调整数 值。 例如, 参数确定单元 322可以预设用户在智能眼镜的滑动方向为向前滑动吋
, 对应的焦距调整参数为增大预设的焦距调整数值; 滑动方向为向后滑动吋, 对应的焦距调整参数为减小预设的焦距调整数值。
[0110] 具体举例说明, 设预设的焦距调整数值为 20mm, 则参数确定单元 322确定向前 滑动对应的焦距调整参数为 +20mm, 向后滑动对应的焦距调整参数为 -20mm。
[0111] 可选的, 所述滑动参数包括滑动方向和滑动距离, 所述焦距调整参数包括焦距 调整指令和焦距调整数值;
[0112] 所述参数模块 320包括指令确定单元 323和数值确定单元 324, 如图 5所示。 其中 [0113] 指令确定单元 323, 用于根据所述滑动方向, 确定与所述滑动方向对应的焦距 调整指令, 所述距调整指令包括增大焦距指令和减小焦距指令。
[0114] 指令确定单元 323可以先根据滑动方向, 确定与滑动方向对应的焦距调整指令 , 距调整指令包括增大焦距指令和减小焦距指令。 具体来说, 可以预先设定滑 动方向与焦距调整指令的对应关系, 例如, 可以设定向前滑动对应增大焦距指 令、 向后滑动对应减小焦距指令。 在获取到滑动操作的滑动方向后, 指令确定 单元 323就可以根据滑动方向确定对应的焦距调整指令。
[0115] 数值确定单元 324, 用于根据所述滑动距离, 确定所述焦距调整数值。
[0116] 数值确定单元 324根据滑动距离, 确定焦距调整数值。 这里, 焦距调整数值是 焦距调整的数值大小。 根据滑动距离确定焦距调整数值的方法可以是多种的, 例如, 可以预设滑动距离与焦距调整数值的换算公式, 然后根据该公式确定滑 动距离对应的焦距调整数值; 也可以是将滑动距离划分几个不同的范围, 每个 滑动距离范围对应一个预设的焦距调整数值, 从而获取到的滑动距离所属范围 对应的焦距调整数值。
[0117] 具体举例说明, 设智能眼镜获取到的滑动参数包括滑动方向为向前滑动, 滑动 距离为 2cm, 设向前滑动对应的焦距调整指令为增大焦距指令, 那么指令确定单 元 323在获取到滑动操作的滑动方向为向前滑动吋, 则可以确定焦距调整参数包 括增大焦距指令。 进一步地, 假设预设的滑动距离与焦距调整数值得关系为相 等的, 那么数值确定单元 324在获取到滑动距离后就可以确定焦距调整数值为 20 mm。 最终, 可以确定焦距调整参数包括增大焦距指令和焦距调整数值 20mm。
[0118] 可选的, 所述数值确定单元 324可以具体用于:
[0119] 获取预设的焦距调整表, 所述焦距调整表包括至少一个滑动距离区间对应的调 整数值。
[0120] 具体的, 数值确定单元 324可以预先设置一个焦距调整表, 焦距调整表中可以 包括至少一个滑动距离区间, 以及每个滑动距离区间对应的调整数值。 例如, 可以预设一个如表 1所示的焦距调整表。
[0121]
Figure imgf000014_0001
[0122] 根据所述焦距调整表, 确定所述滑动距离所在的目标滑动距离区间。
[0123] 具体的, 数值确定单元 324在获取到焦距调整表之后, 可以确定之前获取到的 滑动操作对应的滑动距离所属的目标滑动距离区间。 例如, 焦距调整表如表 1所 示, 若滑动距离为 15mm, 那么可以确定滑动距离 15mm对应的目标滑动距离区 间为 10-19.9mm。
[0124] 获取所述焦距调整表中所述目标滑动距离区间对应的调整数值作为所述焦距调 整数值。
[0125] 具体的, 确定目标滑动距离区间之后, 数值确定单元 324就可以获取目标滑动 距离区间对应的调整数值, 并将该数值作为焦距调整数值。 例如, 焦距调整表 如表 1所示, 若目标滑动距离区间为 10-19.9mm, 则对应的调整数值即为 20mm, 则焦距调整数值即为 20mm。
[0126] 发送模块 330, 用于向与所述智能穿戴设备关联的无人机发送所述焦距调整参 数, 以使所述无人机根据所述焦距调整参数调整拍摄器的焦距。
[0127] 具体的, 智能眼镜中可以配置蓝牙模或者无线连接模块等, 从而使智能眼镜具 备与无人机连接并向无人机发送焦距调整参数的功能。 发送模块 330向关联的无 人机发送焦距调整参数后, 无人机可以跟该焦距调整参数对拍摄器的焦距进行 调整。 例如, 若焦距调整参数包括减小焦距指令和焦距调整数值 30mm, 那么无 人机就可以对拍摄器的焦距进行减小 30mm的操作。
[0128] 可选的, 所述设备还包括: [0129] 判断模块 340, 用于判断所述焦距调整参数是否大于预设的焦距调整阈值。
[0130] 具体的, 可以预设焦距调整阈值, 该阈值是焦距可调的门限值, 也就是说是拍 摄器的焦距调整范围能达到的最大范围。 在确定了焦距调整参数之后, 判断模 块 340判断当前的焦距调整参数是否大于预设的焦距调整阈值。
[0131] 更新模块 350, 用于当所述焦距调整参数大于预设的焦距调整阈值吋, 更新所 述焦距调整参数, 将所述焦距调整阈值作为当前焦距调整参数。
[0132] 如果焦距调整参数大于预设的焦距调整阈值, 那么更新模块 350就更新焦距调 整参数, 将焦距调整阈值作为当前的焦距调整参数。
[0133] 则所述发送模块 330用于:
[0134] 向与所述智能穿戴设备关联的无人机发送所述更新后的焦距调整参数。
[0135] 本发明实施例通过当检测到在智能穿戴设备上的滑动操作吋, 获取所述滑动操 作的滑动参数, 根据所述滑动参数, 确定焦距调整参数, 向与所述智能穿戴设 备关联的无人机发送所述焦距调整参数, 以使所述无人机根据所述焦距调整参 数调整拍摄器的焦距, 可以更方便的对无人机拍摄器焦距进行调整, 从而提高 对无人机操控的便捷度。
[0136] 图 6是本发明实施例中另一种智能穿戴设备的结构示意图。 如图 6所示, 该设备 包括处理器 61、 存储器 62以及通信接口 63。 处理器 61连接到存储器 62和通信接 口 63, 例如处理器 61可以通过总线连接到存储器 62和通信接口 63。
[0137] 处理器 61被配置为支持智能穿戴设备执行上述方法中相应的功能。 该处理器 61 可以是中央处理器 (英文: central processing unit, CPU) , 网络处理器 (英文 : network processor, NP) , 硬件芯片或者其任意组合。 上述硬件芯片可以是专 用集成电路 (英文: application-specific integrated circuit, ASIC) , 可编程逻辑 器件 (英文: programmable logic device, PLD) 或其组合。 上述 PLD可以是复杂 可编程逻辑器件 (英文: complex programmable logic device, CPLD) , 现场可 编程逻辑门阵列 (英文: field-programmable gate array , FPGA) , 通用阵列逻辑 (英文: generic array logic, GAL) 或其任意组合。
[0138] 存储器 62存储器用于存储焦距调整参数等。 存储器 62可以包括易失性存储器 ( 英文: volatile memory) , 例如随机存取存储器 (英文: random-access memory , 缩写: RAM) ; 存储器 62也可以包括非易失性存储器 (英文: non-volatile memory) , 例如只读存储器 (英文: read-only memory, 缩写: ROM) , 快闪 存储器 (英文: flash memory) , 硬盘 (英文: hard disk drive, 缩写: HDD) 或 固态硬盘 (英文: solid-state drive , 缩写: SSD) ; 存储器 62还可以包括上述种 类的存储器的组合。
[0139] 通信接口 63用于与通信设备无线连接, 例如与无人机连接。
[0140] 处理器 61可以执行以下操作:
[0141] 当检测到在智能穿戴设备上的滑动操作吋, 获取所述滑动操作的滑动参数; [0142] 根据所述滑动参数, 确定焦距调整参数;
[0143] 向与所述智能穿戴设备关联的无人机发送所述焦距调整参数, 以使所述无人机 根据所述焦距调整参数调整拍摄器的焦距。
[0144] 可选的, 所述滑动参数包括滑动方向, 处理器 61具体用于:
[0145] 获取预设的焦距调整数值;
[0146] 根据所述滑动方向以及所述预设的焦距调整数值, 确定与所述滑动方向对应的 焦距调整参数。
[0147] 可选的, 所述滑动参数包括滑动方向和滑动距离, 所述焦距调整参数包括焦距 调整指令和焦距调整数值, 处理器 61具体用于:
[0148] 根据所述滑动方向, 确定与所述滑动方向对应的焦距调整指令, 所述距调整指 令包括增大焦距指令和减小焦距指令;
[0149] 根据所述滑动距离, 确定所述焦距调整数值。
[0150] 可选的, 处理器 61具体用于:
[0151] 获取预设的焦距调整表, 所述焦距调整表包括至少一个滑动距离区间对应的调 整数值;
[0152] 根据所述焦距调整表, 确定所述滑动距离所在的目标滑动距离区间;
[0153] 获取所述焦距调整表中所述目标滑动距离区间对应的调整数值作为所述焦距调 整数值。
[0154] 可选的, 根据所述滑动参数, 确定焦距调整参数之后, 处理器 61还用于: [0155] 判断所述焦距调整参数是否大于预设的焦距调整阈值; [0156] 若是, 则更新所述焦距调整参数, 将所述焦距调整阈值作为当前焦距调整参数 [0157] 处理器 61用于:
[0158] 向与所述智能穿戴设备关联的无人机发送所述更新后的焦距调整参数。
[0159] 本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可 以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于一计算机可 读取存储介质中, 该程序在执行吋, 可包括如上述各方法的实施例的流程。 其 中, 所述的存储介质可为磁碟、 光盘、 只读存储记忆体 (Read-Only
Memory , ROM) 或随机存储记忆体 (Random Access Memory , RAM) 等。
[0160] 以上所揭露的仅为本发明较佳实施例而已, 当然不能以此来限定本发明之权利 范围, 因此依本发明权利要求所作的等同变化, 仍属本发明所涵盖的范围。 技术问题
问题的解决方案
发明的有益效果

Claims

权利要求书
[权利要求 1] 一种无人机拍摄器焦距调整方法, 其特征在于, 包括:
当检测到在智能穿戴设备上的滑动操作吋, 获取所述滑动操作的滑动 参数;
根据所述滑动参数, 确定焦距调整参数;
向与所述智能穿戴设备关联的无人机发送所述焦距调整参数, 以使所 述无人机根据所述焦距调整参数调整拍摄器的焦距。
[权利要求 2] 如权利要求 1所述的方法, 其特征在于, 所述滑动参数包括滑动方向
所述根据所述滑动参数, 确定焦距调整参数包括: 获取预设的焦距调整数值;
根据所述滑动方向以及所述预设的焦距调整数值, 确定与所述滑动方 向对应的焦距调整参数。
[权利要求 3] 如权利要求 1所述的方法, 其特征在于, 所述滑动参数包括滑动方向 和滑动距离, 所述焦距调整参数包括焦距调整指令和焦距调整数值; 所述根据所述滑动参数, 确定焦距调整参数包括: 根据所述滑动方向, 确定与所述滑动方向对应的焦距调整指令, 所述 距调整指令包括增大焦距指令和减小焦距指令; 根据所述滑动距离, 确定所述焦距调整数值。
[权利要求 4] 如权利要求 3所述的方法, 其特征在于, 所述根据所述滑动距离, 确 定所述焦距调整数值包括:
获取预设的焦距调整表, 所述焦距调整表包括至少一个滑动距离区间 对应的调整数值; 根据所述焦距调整表, 确定所述滑动距离所在的目标滑动距离区间; 获取所述焦距调整表中所述目标滑动距离区间对应的调整数值作为所 述焦距调整数值。
[权利要求 5] 如权利要求 1-4任一所述的方法, 其特征在于, 所述根据所述滑动参 数, 确定焦距调整参数之后, 还包括:
判断所述焦距调整参数是否大于预设的焦距调整阈值;
若是, 则更新所述焦距调整参数, 将所述焦距调整阈值作为当前焦距 调整参数;
所述向与所述智能穿戴设备关联的无人机发送所述焦距调整参数包括 向与所述智能穿戴设备关联的无人机发送所述更新后的焦距调整参数
[权利要求 6] —种智能穿戴设备, 其特征在于, 包括:
获取模块, 用于当检测到在智能穿戴设备上的滑动操作吋, 获取所述 滑动操作的滑动参数;
参数模块, 用于根据所述滑动参数, 确定焦距调整参数;
发送模块, 用于向与所述智能穿戴设备关联的无人机发送所述焦距调 整参数, 以使所述无人机根据所述焦距调整参数调整拍摄器的焦距。
[权利要求 7] 如权利要求 6所述的设备, 其特征在于, 所述滑动参数包括滑动方向 所述参数模块包括:
数值获取单元, 用于获取预设的焦距调整数值; 参数确定单元, 用于根据所述滑动方向以及所述预设的焦距调整数值 , 确定与所述滑动方向对应的焦距调整参数。
[权利要求 8] 如权利要求 6所述的设备, 其特征在于, 所述滑动参数包括滑动方向 和滑动距离, 所述焦距调整参数包括焦距调整指令和焦距调整数值; 所述参数模块包括:
指令确定单元, 用于根据所述滑动方向, 确定与所述滑动方向对应的 焦距调整指令, 所述距调整指令包括增大焦距指令和减小焦距指令; 数值确定单元, 用于根据所述滑动距离, 确定所述焦距调整数值。
[权利要求 9] 如权利要求 8所述的设备, 其特征在于,
所述数值确定单元用于:
获取预设的焦距调整表, 所述焦距调整表包括至少一个滑动距离区间 对应的调整数值; 根据所述焦距调整表, 确定所述滑动距离所在的目标滑动距离区间; 获取所述焦距调整表中所述目标滑动距离区间对应的调整数值作为所 述焦距调整数值。
[权利要求 10] 如权利要求 6-9任一所述的设备, 其特征在于, 所述设备还包括: 判断模块, 用于判断所述焦距调整参数是否大于预设的焦距调整阈值
更新模块, 用于当所述焦距调整参数大于预设的焦距调整阈值吋, 更 新所述焦距调整参数, 将所述焦距调整阈值作为当前焦距调整参数; 所述发送模块用于:
向与所述智能穿戴设备关联的无人机发送所述更新后的焦距调整参数
PCT/CN2016/104472 2016-05-31 2016-11-03 一种无人机拍摄器焦距调整方法及智能穿戴设备 WO2017206435A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610378006.1A CN106095265A (zh) 2016-05-31 2016-05-31 一种无人机拍摄器焦距调整方法及智能穿戴设备
CN201610378006.1 2016-05-31

Publications (1)

Publication Number Publication Date
WO2017206435A1 true WO2017206435A1 (zh) 2017-12-07

Family

ID=57230541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104472 WO2017206435A1 (zh) 2016-05-31 2016-11-03 一种无人机拍摄器焦距调整方法及智能穿戴设备

Country Status (2)

Country Link
CN (1) CN106095265A (zh)
WO (1) WO2017206435A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110892321B (zh) * 2018-07-18 2021-09-03 深圳市大疆创新科技有限公司 一种图像拍摄方法及无人机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104660913A (zh) * 2015-03-18 2015-05-27 努比亚技术有限公司 焦距调节方法和装置
CN104731483A (zh) * 2015-03-31 2015-06-24 努比亚技术有限公司 快速调节设置参数的方法及终端
CN105138126A (zh) * 2015-08-26 2015-12-09 小米科技有限责任公司 无人机的拍摄控制方法及装置、电子设备
CN105425952A (zh) * 2015-11-04 2016-03-23 腾讯科技(深圳)有限公司 无人机操控界面交互方法和装置
CN205179207U (zh) * 2015-12-07 2016-04-20 深圳市帝翼飞科技有限公司 一种无人机的拍摄系统
WO2016080598A1 (en) * 2014-11-17 2016-05-26 Lg Electronics Inc. Mobile terminal and controlling method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941991B (zh) * 2013-01-21 2017-02-08 联想(北京)有限公司 一种信息处理方法及电子设备
CN104714740B (zh) * 2013-12-11 2019-07-26 联想(北京)有限公司 调整预定参数的方法、调整装置和电子设备
CN105141840B (zh) * 2015-08-24 2018-06-01 联想(北京)有限公司 信息处理方法及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016080598A1 (en) * 2014-11-17 2016-05-26 Lg Electronics Inc. Mobile terminal and controlling method thereof
CN104660913A (zh) * 2015-03-18 2015-05-27 努比亚技术有限公司 焦距调节方法和装置
CN104731483A (zh) * 2015-03-31 2015-06-24 努比亚技术有限公司 快速调节设置参数的方法及终端
CN105138126A (zh) * 2015-08-26 2015-12-09 小米科技有限责任公司 无人机的拍摄控制方法及装置、电子设备
CN105425952A (zh) * 2015-11-04 2016-03-23 腾讯科技(深圳)有限公司 无人机操控界面交互方法和装置
CN205179207U (zh) * 2015-12-07 2016-04-20 深圳市帝翼飞科技有限公司 一种无人机的拍摄系统

Also Published As

Publication number Publication date
CN106095265A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
US9699732B2 (en) Apparatus and method for controlling communication module
CN106465045B (zh) 用于快速配置入网(onboarding)具备互联网能力的设备的装置和方法
US9998297B2 (en) Method and apparatus for controlling smart home device to upload data, method and apparatus for acquiring data uploaded by smart home device
KR101808771B1 (ko) 라우터 신호 강도 조절방법, 장치, 프로그램 및 기록매체
WO2015127834A1 (en) Content displaying method and device
US10194371B2 (en) Communication apparatus and control method of communication apparatus
US9357126B2 (en) Imaging operation terminal, imaging system, imaging operation method, and program device in which an operation mode of the operation terminal is selected based on its contact state with an imaging device
US9961661B2 (en) Determination of a communication object
US20150065053A1 (en) Method of controlling short-range wireless communication and apparatus supporting the same
US10959143B2 (en) Communication connection control method, and device
US11641576B2 (en) Method and apparatus for identifying dual-mode wireless device, IOS device, and medium
JP6594212B2 (ja) 通信装置およびその制御方法、通信システム
US20130194968A1 (en) Communication device, program and communication method
WO2019015051A1 (zh) 一种工作模式的切换方法及装置
US10404487B2 (en) Communication method, computer readable storage medium and information processing device
KR102619952B1 (ko) 데이터 패킷을 처리하기 위한 장치 및 방법
WO2017206435A1 (zh) 一种无人机拍摄器焦距调整方法及智能穿戴设备
US20170372462A1 (en) Intelligent Filter Matching Method and Terminal
WO2016137693A1 (en) Control apparatus
US9606613B2 (en) System and method for shifting image display apparatus to energy-saving state based on result of detection of data input and operation on the image display apparatus within a predetermined time period
WO2022100314A1 (zh) IoT设备的控制方法、装置、控制系统及终端设备
WO2017063437A1 (zh) 可穿戴设备及其进行数据收发的方法
US9319986B2 (en) Method of controlling mobile information terminal and mobile information terminal
WO2017206457A1 (zh) 一种无人机拍摄器方向调整方法及智能穿戴设备
WO2018082104A1 (zh) 一种辅助定位数据的共享方法及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16903817

Country of ref document: EP

Kind code of ref document: A1