WO2017206282A1 - 废水复合热载体发生器、废水磁化复合热载体发生器及复合热载体产生方法 - Google Patents

废水复合热载体发生器、废水磁化复合热载体发生器及复合热载体产生方法 Download PDF

Info

Publication number
WO2017206282A1
WO2017206282A1 PCT/CN2016/089995 CN2016089995W WO2017206282A1 WO 2017206282 A1 WO2017206282 A1 WO 2017206282A1 CN 2016089995 W CN2016089995 W CN 2016089995W WO 2017206282 A1 WO2017206282 A1 WO 2017206282A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
heat carrier
composite heat
vapor
wastewater
Prior art date
Application number
PCT/CN2016/089995
Other languages
English (en)
French (fr)
Inventor
吴耀文
梅立新
李国诚
陈龙
陆峰
司军涛
朱伟
宋宇波
梅奕中
李兴儒
徐梁
张建忠
Original Assignee
中油锐思技术开发有限责任公司
北京亦通石油科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201620521792.1U external-priority patent/CN205690381U/zh
Priority claimed from CN201610380781.0A external-priority patent/CN105823032B/zh
Priority claimed from CN201620526955.5U external-priority patent/CN205690374U/zh
Application filed by 中油锐思技术开发有限责任公司, 北京亦通石油科技有限公司 filed Critical 中油锐思技术开发有限责任公司
Priority to EA201792636A priority Critical patent/EA035022B1/ru
Publication of WO2017206282A1 publication Critical patent/WO2017206282A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B13/00Steam boilers of fire-box type, i.e. the combustion of fuel being performed in a chamber or fire-box with subsequent flue(s) or fire tube(s), both chamber or fire-box and flues or fire tubes being built-in in the boiler body

Definitions

  • the invention relates to a generator and a method, in particular to a wastewater composite heat carrier generator, a wastewater magnetization composite heat carrier generator and a composite heat carrier generation method in the field of high pressure combustion technology.
  • Multi-component thermal fluid technology Thermal exploitation of heavy oil is a very efficient new technology. It has the advantages of high combustion efficiency, zero carbon injection and environmental protection and energy saving.
  • the high temperature multi-component thermal fluid output by multiple thermal fluid technology has a comprehensive oil-increasing mechanism, which can greatly improve Single well capacity and enhanced oil recovery.
  • Multi-component thermal fluid technology is used in oil sands mining. Its core equipment is a generator. At present, the technology of cooling and gasifying the generator to form a multi-component thermal fluid with demineralized water is a mature technology. Since about one-third of the cost of oil sands is used for water treatment, in order to realize low-cost heat development of crude oil, the waste water separated from crude oil can be used for cooling and blending of generators to form water vapor, which can greatly reduce heavy oil/oil sand mining. Water treatment costs.
  • the object of the present invention is to provide a wastewater composite heat carrier generator which can not only meet the requirements of high pressure combustion and safe output of composite heat carrier, but also can use the waste water separated by crude oil as cooling water to cool the generator.
  • the steam required for the composite heat carrier is treated and produced, and the wastewater composite heat carrier generator not only saves water resources but also reduces the high cost of wastewater treatment.
  • Another object of the present invention is to provide a wastewater magnetization composite heat carrier generator which not only satisfies the requirements of high-pressure combustion and safely outputs a composite heat carrier, but also can perform wastewater entering the generator through a water magnetization device.
  • the water magnetization treatment makes the scale of the waste water relatively loose, and the generator is convenient to discharge the scale.
  • the composite heat carrier generator of the waste water has reasonable structure, safety, reliability and long service life.
  • a further object of the present invention is to provide a method for producing a composite heat carrier, which can generate a composite heat carrier, and can perform hydromagnetization treatment on the wastewater flowing into the generator to make the scale of the wastewater relatively loose, and facilitate the discharge of scale. .
  • the invention provides a wastewater composite heat carrier generator, the wastewater composite heat carrier generator comprising:
  • a generator body comprising a combustion chamber and a vapor chamber sleeved outside the combustion chamber, an upper end of the combustion chamber is in communication with the vapor chamber, and an upper end of the vapor chamber is connected with an outlet duct;
  • a generator head structure coupled to a lower end of the generator body, the generator head structure having a head body and a combustion nozzle and an ignition electrode disposed in the head body, the combustion nozzle and the chamber
  • the ignition electrodes are disposed opposite to the combustion chamber, and the head body is provided with a water inlet passage and a scale discharge passage communicating with the steam chamber.
  • the upper end of the vapor chamber is provided with a plurality of upper water inlet holes in a circumferential direction, and the plurality of upper water inlet holes are in communication with the vapor chamber.
  • the vapor chamber includes a vapor ring chamber and a vapor gas chamber, and the vapor chamber is formed between the combustion chamber and the vapor chamber.
  • a vapor chamber forms the vapor gasification chamber, and a plurality of the upper water inlet holes are in communication with the vapor gasification chamber.
  • the inner surface of the head body opposite to the combustion chamber is connected with a high temperature resistant heat insulation layer, and the combustion nozzle and the ignition electrode are both sealed on the high temperature resistant heat insulation layer. in.
  • an inner end surface of the head body is formed with a cooling cavity, the high temperature resistant heat insulation layer is located above the cooling cavity, and the water inlet passage passes through the cooling cavity and the steam chamber Connected.
  • the material of the high temperature resistant heat insulation layer is tungsten, tantalum, niobium or tantalum.
  • the high temperature resistant heat insulating layer has a thickness of 20 mm to 30 mm.
  • the water introduced into the water inlet passage is waste water.
  • the head body is provided with a plurality of the fouling passages in a circumferential direction, and the scale passage has a diameter of 15 mm to 25 mm.
  • the inner surface of the head body opposite to the combustion chamber is formed with a fouling ring groove, and the exhaust ring groove is disposed opposite to the steam chamber, and the plurality of the exhausting passages Connected to the fouling ring groove.
  • the present invention also provides a wastewater magnetization composite heat carrier generator comprising the above-described wastewater composite heat carrier generator, the wastewater magnetization composite heat carrier generator further comprising: a water magnetization device having a water inlet pipe, the water inlet pipe The outer sleeve of the road is provided with a water magnetizer connected to the water inlet passage of the waste water composite heat carrier generator.
  • the water magnetizer includes a housing and a DC electromagnet block disposed in the housing, and the DC electromagnet block is sleeved outside the water inlet conduit.
  • the DC electromagnet block comprises two semi-annular semi-DC electromagnet blocks that are interlocked together, and an iron plate is interposed between the two semi-DC electromagnet blocks.
  • the DC electromagnet block is electrically connected to a DC power source.
  • the invention also provides a composite heat carrier generating method for the above-mentioned wastewater magnetization composite heat carrier generator, the composite heat carrier generating method comprising the following steps:
  • the water magnetizer comprises a housing and a DC electromagnet block disposed in the housing, the DC electromagnet block being sleeved outside the water inlet conduit, in the step a)
  • the wastewater in the water inlet pipe is magnetized by the DC electromagnet block.
  • the upper end of the vapor chamber is provided with a plurality of upper water inlet holes in a circumferential direction, and the plurality of upper water inlet holes are in communication with the vapor chamber, in the step c), After the plurality of upper water inlets are sprayed into the steam chamber, the water is vaporized into a vapor, and then blended into the composite heat carrier and discharged from the outlet pipe.
  • the characteristics and advantages of the wastewater composite heat carrier generator, the wastewater magnetized composite heat carrier generator and the composite heat carrier generation method of the present invention are:
  • the invention divides the waste water after oil and water separation in the crude oil exploitation from the water inlet passage of the head body into the steam chamber through the cooling chamber of the head body, the waste water not only cools the head body, but also lifts the head structure of the generator.
  • the service life can also absorb the heat of the combustion chamber and vaporize it into the steam required for the composite heat carrier; in addition, after the wastewater is vaporized, the calcium and magnesium ions in the wastewater will deposit in the vapor chamber to form scale, and the scale can finally be The drainage channel from the head body is smoothly discharged.
  • the invention not only can meet the requirements of high-pressure combustion and safe output of the composite heat carrier, but also can use the waste water separated by crude oil as cooling water to cool the generator and generate steam required for the composite heat carrier, the wastewater compounding
  • the heat carrier generator can recycle the waste water after the crude oil is separated, which not only saves water resources, but also reduces the high cost of wastewater treatment.
  • the present invention provides a high temperature resistant heat insulating layer on the inner end surface of the head body.
  • the high temperature resistant heat insulating layer is just plugged in the combustion chamber of the wastewater composite heat carrier generator. End and face directly
  • the combustion chamber is effective for protecting the head body, avoiding the head body directly facing the combustion chamber, preventing high temperature ablation of the head body, and prolonging the service life of the head body; in addition, the combustion nozzle and the ignition electrode located in the head body They are all sealed in the high temperature resistant insulation layer. Therefore, the combustion nozzle and the ignition electrode can be effectively protected to prevent high temperature ablation and prolong the service life of the combustion nozzle and the ignition electrode.
  • the invention can realize the cooling treatment of the head body through the design of the cooling cavity in the head body; at the same time, the high temperature heat insulation layer of the straight face combustion chamber can be cooled to prevent high temperature ablation and high temperature of the fuel. The reaction occurs when the head body is damaged.
  • the invention performs hydromagnetization treatment on the wastewater in the wastewater magnetized composite heat carrier generator through the water magnetization device, so that the scale of the wastewater is relatively loose, and the scale of the wastewater can be easily peeled off from the outer wall of the combustion chamber, and in the steam.
  • the wastewater not only cools the head body, but also increases the service life of the generator head structure, and also absorbs heat from the combustion chamber and vaporizes it into the vapor required for the composite heat carrier.
  • the invention realizes the magnetization of the waste water, solves the problem of the scale formation and spalling of the waste water and the scale discharge generator, and realizes the purpose of safely outputting the composite heat carrier of the wastewater magnetization composite heat carrier generator.
  • FIG. 1 is a schematic view showing the structure of a wastewater composite heat carrier generator of the present invention.
  • Fig. 2 is an enlarged view of a portion A of Fig. 1;
  • FIG. 3 is a schematic view showing the structure of a generator head structure of a wastewater composite heat carrier generator of the present invention.
  • FIG. 4 is a schematic view showing the structure of a wastewater magnetization composite heat carrier generator of the present invention.
  • Fig. 5 is a top plan view showing the water magnetization apparatus of the wastewater magnetization composite heat carrier generator of the present invention.
  • Figure 6 is a schematic view showing the structure of the descaling apparatus of the present invention.
  • Figure 7 is a perspective view 1 of the descaling apparatus of the present invention.
  • Figure 8 is a perspective view 2 of the descaling apparatus of the present invention.
  • the present invention provides a wastewater composite heat carrier generator 4 comprising a generator body 42 and a generator head structure 20, wherein the generator body 42 includes a combustion chamber 41 and is sleeved over a vapor chamber 43 outside the combustion chamber 41, an upper end of the combustion chamber 41 is in communication with the vapor chamber 43, an upper end of the vapor chamber 43 is connected with an outlet duct 431; and a generator head structure 20 is connected to the At a lower end of the generator body 42, the generator head structure 20 has a head body 2 and a combustion nozzle 10 and an ignition electrode 3 disposed in the head body 2, the combustion nozzle 10 and the ignition electrode 3 Both of them are disposed opposite to the combustion chamber 41.
  • the head body 2 is provided with a water inlet passage 28 and a discharge passage 29 communicating with the steam chamber 43.
  • the generator body 42 is substantially cylindrical, the middle portion of the combustion chamber 41, the vapor chamber 43 is sleeved outside the combustion chamber 41, thereby forming an annular vapor ring cavity 432 between the vapor chamber 43 and the combustion chamber 41;
  • the upper end of the combustion chamber 41 is open and communicates with the vapor chamber 43, and the vapor chamber 43 located above the combustion chamber 41 forms a vapor gasification chamber 433.
  • the vapor chamber 43 is divided into two parts, namely a vapor ring chamber 432 located below and a vapor gasification chamber 433 located above, and the vapor ring chamber 432 and the vapor gasification chamber 433 are connected to each other without a clear boundary between the two. .
  • An outlet pipe 431 connected to the upper end of the vapor chamber 43 is in communication with the vapor gasification chamber 433.
  • a plurality of upper water inlet holes 434 are provided in the circumferential direction at the upper end of the vapor chamber 43, and the plurality of upper water inlet holes 434 communicate with the vapor gasification chamber 433 of the vapor chamber 43.
  • the water flow can be injected into the vapor gasification chamber 433 through the upper water inlet holes 434.
  • the upper water inlet holes 434 are disposed diametrically opposite to the upper end outer wall of the steam chamber 43, and the plurality of upper water inlet holes 434 are located on the same horizontal surface. This allows the water jetted from the plurality of upper water inlet holes 434 to concentrate on the center collision of the vapor gasification chamber 433, on the one hand for forming the water mist and cooling the generator body 42, and on the other hand, through the upward movement
  • the water flow injected into the vapor gasification chamber 433 by the water hole 434 absorbs the heat of the generator body 42 to generate high temperature steam which is generated by the combustion of the fuel in the combustion chamber 41 together with the vapor in the vapor ring chamber 432. Blending to form a composite heat carrier.
  • the generator head structure 20 is located at the bottom of the wastewater composite heat carrier generator 4, and the outer periphery of the head body 2 of the generator head structure 20 passes through a plurality of connecting members 24 and the generator body 42. Connected, the inner end surface 21 of the head body 2 is disposed opposite to the combustion chamber 41 and the vapor chamber 43.
  • the inner end surface 21 of the head body 2 is provided with a ring groove 25, and the ring groove 25 may be provided with a sealing ring 251.
  • the sealing ring 251 After the head body 2 is connected with the generator body 42, the sealing ring 251 The sealing performance between the head body 2 and the generator body 42 can be effectively ensured.
  • the head body 2 is provided with a nozzle passage 22 and an ignition electrode passage 23, both of which are opposite to the combustion chamber 41, the combustion nozzle 10 is located in the nozzle passage 22, and the ignition electrode 3 is located in the ignition electrode passage 23.
  • the inner end surface 21 of the head body 2 is connected with a high temperature resistant heat insulation layer 26, and the combustion nozzle 10 and the ignition electrode 3 are both sealed in the high temperature heat insulation layer 26.
  • the material of the high temperature resistant heat insulating layer 26 is tungsten, tantalum, niobium or tantalum. Considering the processing and practical cost, the high temperature resistant heat insulating layer 26 is preferably made of forged dense tungsten. In the present invention, the high temperature resistant heat insulating layer 26 has a thickness of 20 mm to 30 mm, and can withstand a high temperature of 3000 ° C or higher.
  • the high temperature resistant heat insulating layer 26 can effectively protect the combustion nozzle 10 and the ignition electrode 3 from high temperature ablation. To extend the service life of the combustion nozzle 10 and the ignition electrode 3.
  • the area of the high temperature resistant heat insulating layer 26 is exactly the same as the end surface area of the combustion chamber 41. After the head body 2 is connected to the generator body 42, the high temperature resistant heat insulating layer 26 is just blocked at the end of the combustion chamber 41. And directly facing the combustion chamber 41, the direct contact between the head body 2 and the combustion chamber 41 is blocked, the head body 2 is effectively protected, and the service life of the head body 2 is extended.
  • the inner end surface 21 of the head body 2 is formed with a cooling cavity 27 which is a groove provided in the inner end surface 21 of the head body 2, and the high temperature resistant heat insulation layer 26 is located above the cooling cavity 27.
  • the water inlet passage 28 in the head body 2 communicates with the cooling chamber 27.
  • a flow passage 271 is further disposed in the head body 2, and the flow passage 271 is in communication with the cooling chamber 27.
  • the overflow passage 271 An outlet pipe 272 may be connected to the outlet of the inner end surface 21 of the head body 2, and the outlet pipe 272 directly faces the vapor ring cavity 432 formed between the steam chamber 43 and the combustion chamber 41, so that the water inlet channel 28 flows in.
  • the cooling water flows into the vapor ring chamber 432 through the cooling chamber 27 and the overflow passage 271.
  • the invention can realize the cooling treatment of the head body 2 through the design of the cooling chamber 27; at the same time, the high temperature heat insulating layer 26 of the straight surface combustion chamber 41 can be cooled to prevent high temperature ablation and high temperature reaction of the fuel to damage the head. The situation of the body 2 occurs.
  • the working process of the wastewater composite heat carrier generator 4 is as follows: First, the wastewater is injected into the vapor chamber 43 of the generator body 42 through the water inlet passage 28 of the generator head structure 20, which is used for crude oil extraction in the present invention. The wastewater after the separation of the oily water, at the same time, through the combustion nozzle 10 disposed in the generator head structure 20 to the generator Fuel is injected into the combustion chamber 41 of the body 42; the ignition electrode 3 is opened, and the fuel ejected from the combustion nozzle 10 is burned in the combustion chamber 41, and the waste water injected into the vapor ring chamber 432 is first cooled by the cooling chamber 27 of the head body 2.
  • the head body 2 and the high temperature resistant heat insulating layer 26 therein, the combustion nozzle 10 and the ignition electrode 3 are then injected into the vapor ring chamber 432 of the vapor chamber 43 at a high speed, and the waste water in the vapor ring chamber 432 can absorb the combustion in the combustion chamber 41.
  • the generated heat is used to cool the combustion chamber 41 on the one hand.
  • the waste water in the vapor ring chamber 432 absorbs heat to generate superheated steam, which flows into the vapor gasification chamber 433 at the top of the vapor chamber 43.
  • the gas generated after the fuel is sufficiently combusted in the combustion chamber 41 is also discharged into the vapor gasification chamber 433 at the top of the vapor chamber 43; thereafter, water is sprayed into the vapor gasification chamber 433 through the plurality of upper water inlet holes 434, which The water injected into the vapor gasification chamber 433 from the plurality of upper water inlet holes 434 is instantaneously vaporized into vapor by the heat above the combustion chamber 41, and the vapor is discharged from the gas and vapor ring chamber 432 discharged from the combustion chamber 41.
  • the three vapors are mixed with each other, the most The high temperature composite heat carrier is finally formed, and the composite heat carrier is discharged from the outlet pipe 431 connected to the upper end of the vapor chamber 43.
  • a fouling ring groove 211 is formed on the inner end surface 21 of the head body 2, and the scavenging ring groove 211 is disposed opposite to the vapor ring chamber 432 of the vapor chamber 43 in the circumferential direction of the head body 2.
  • a plurality of descaling channels 29 are provided.
  • the descaling channels 29 are 4 to 6 and the descaling channels 29 have a diameter of 15 mm to 25 mm.
  • the descaling channels 29 and the descaling ring grooves 211 are provided. Connected.
  • the calcium and magnesium ions in the wastewater form scale on the outer wall of the combustion chamber 41, and the scale deposits in the vapor ring chamber 432 of the vapor chamber 43 and is finally deposited.
  • the scales are discharged into the generator body 42 by a plurality of exhausting passages 29 in a pressure difference manner without blocking the wastewater composite heat carrier generator 4, thereby ensuring the wastewater composite heat carrier generator 4 Safe and reliable operation.
  • the wastewater composite heat carrier generator of the present invention injects the waste water separated from the oil and water in the crude oil production from the water inlet passage 28 of the head body 2, through the cooling chamber 27 of the head body 2, and into the steam chamber 43, which not only cools the wastewater.
  • the head body 2 lifts the service life of the generator head structure 20, and can also absorb the heat of the combustion chamber 41 and vaporize it into the steam required for the composite heat carrier; in addition, after the wastewater is vaporized, the calcium and magnesium in the waste water The ions are deposited in the vapor chamber 43 to form scale which is finally smoothly discharged from the scale passage 29 in the head body 2.
  • the invention can not only meet the requirements of high-pressure combustion and safe output of the composite heat carrier, but also the wastewater composite heat carrier generator can also use the waste water separated by the crude oil as cooling water to cool the generator and generate the steam required for the composite heat carrier.
  • the wastewater composite heat carrier generator can recycle the waste water after the crude oil is separated, which not only saves water resources, but also reduces the high cost of wastewater treatment.
  • the present invention also provides a wastewater magnetization composite heat carrier generator comprising water magnetization
  • a wastewater magnetization composite heat carrier generator comprising water magnetization
  • the generator body 42 of the wastewater composite heat carrier generator 4 includes a combustion chamber 41 and a vapor chamber 43 sleeved outside the combustion chamber 41, and an upper end of the combustion chamber 41 is connected to the vapor chamber 43 The upper end of the vapor chamber 43 is connected with an outlet duct 431;
  • the generator head structure 20 is connected to the lower end of the generator body 42, the generator head structure 20 has a head body 2 and is disposed in the a combustion nozzle 10 and an ignition electrode 3 in the head body 2, the combustion nozzle 10 and the ignition electrode 3 are disposed opposite to the combustion chamber 41, and the steam chamber 43 is disposed in the head body 2 a water inlet passage 28 and a scale passage 29;
  • the water magnetization device 5 has a water inlet pipe 51, and the water inlet pipe 51 is externally provided with a water magnetizer 52, and the water inlet pipe 51 and the water inlet pipe Channels 28 are connected.
  • the water magnetization device 5 is located outside the wastewater composite heat carrier generator 4, and has a water inlet pipe 51.
  • the water inlet pipe 51 is externally provided with a water magnetizer 52.
  • the water magnetizer 52 includes The housing 521 and a DC electromagnet block 522 disposed in the housing 521 are sleeved on the outside of the water inlet pipe 51.
  • the DC electromagnet block 522 is electrically connected to an external DC power source.
  • the DC electromagnet block 522 includes two semi-annular semi-DC electromagnet blocks 523 that are buckled together, and an iron plate 524 is interposed between the two semi-DC electromagnet blocks 523.
  • the working process of the wastewater magnetization composite heat carrier generator is as follows: First, the wastewater is injected into the water inlet pipe 51 of the water magnetization device 5.
  • the wastewater is the wastewater after the oil and water separation in the crude oil production.
  • the wastewater is magnetized by the water magnetizer 52 of the water magnetization device 5 and then injected into the vapor ring chamber 432 of the vapor chamber 43 of the generator body 42 through the water inlet passage 28 of the generator head structure 20, and at the same time, through the generator head.
  • the combustion nozzle 10 in the portion structure 20 injects fuel into the combustion chamber 41 of the generator body 42; the ignition electrode 3 is opened, and the fuel ejected from the combustion nozzle 10 is burned in the combustion chamber 41, and the wastewater in the vapor ring chamber 432 is injected.
  • the head body 2 and the high temperature resistant heat insulating layer 26, the combustion nozzle 10 and the ignition electrode 3 are cooled by the cooling chamber 27 of the head body 2, and then the vapor ring chamber 432 of the vapor chamber 43 is sprayed at a high speed, and the vapor ring chamber is vaporized.
  • the waste water in 432 absorbs heat generated by combustion in the combustion chamber 41, and is used to cool the combustion chamber 41 on the one hand.
  • the waste water in the vapor ring chamber 432 absorbs heat to generate superheated steam, which will flow into the steam chamber.
  • the gas generated after the fuel is fully combusted in the combustion chamber 41 is also discharged into the vapor gasification chamber 433 at the top of the vapor chamber 43; thereafter, through the plurality of upper water inlet holes 434 Vapor gasification chamber 4 33 is sprayed with water, and the water injected into the vapor gasification chamber 433 from the plurality of upper water inlet holes 434 is instantaneously vaporized into vapor by the heat above the combustion chamber 41, and the vapor and the gas and vapor discharged from the combustion chamber 41.
  • the vapors discharged from the annular cavity 432 are mixed with each other to form a high temperature composite heat carrier, and the composite heat carrier is self-connected.
  • the outlet duct 431 connected to the upper end of the steam chamber 43 is discharged.
  • the calcium and magnesium ions in the waste water form scale on the outer wall of the combustion chamber 41. Since the waste water first passes through the magnetization of the water magnetization device 5 and then enters the generator body 42, the The water magnetization device 5 microscopically improves the fouling state of the wastewater, making the wastewater scale relatively loose or flocculent, which can be easily peeled off from the outer wall of the combustion chamber 41 and deposited in the vapor ring chamber 432 of the vapor chamber 43. Finally, it is discharged from the fouling passage 29 communicating with the vapor ring chamber 432.
  • the wastewater magnetization composite heat carrier generator of the present invention hydrolyzes the wastewater flowing into the generator through the water magnetization device 5, so that the scale of the wastewater is relatively loose, and the scale of the wastewater can be easily peeled off from the outer wall of the combustion chamber 41. And depositing in the vapor chamber 43, and finally discharging the generator smoothly from the fouling passage 29; in addition, the magnetized high-speed flowing wastewater enters the cooling chamber 27 from the water inlet passage 28 of the head body 2, and then enters the steam chamber 43.
  • a vapor ring chamber 432 which not only cools the head body 2, but also lifts the service life of the generator head structure 20, and also absorbs heat from the combustion chamber 41 and vaporizes it into a vapor required for the composite heat carrier, and
  • the combustion chamber 41 can be prevented from abating at a high temperature, and the combustion chamber 41 is cooled.
  • the invention realizes the magnetization of the waste water, solves the problem of the scale formation and spalling of the waste water and the scale discharge generator, and realizes the safe output composite heat carrier of the wastewater magnetization composite heat carrier generator.
  • the present invention also provides a composite heat carrier generating method for a wastewater magnetization composite heat carrier generator, wherein the composite heat carrier generating method is a composite of a wastewater magnetized composite heat carrier generator of Embodiment 2.
  • the heat carrier generation method, the structure, working principle and beneficial effects of the wastewater magnetization composite heat carrier generator are the same as those of the second embodiment, and are not described herein again.
  • the composite heat carrier generation method comprises the following steps:
  • the water magnetizer 52 includes a housing 521 and a DC electromagnet block 522 disposed in the housing 521.
  • the DC electromagnet block 522 is sleeved on the outside of the water inlet pipe 51.
  • DC electromagnet Block 522 magnetizes the wastewater in the water inlet line 51.
  • the wastewater is wastewater after oil-water separation in crude oil production.
  • step b) fuel is injected into the combustion chamber 41 of the generator body 42 through the combustion nozzle 10 disposed in the generator head structure 20; the ignition electrode 3 is opened, and the fuel ejected from the combustion nozzle 10 is in the combustion chamber.
  • the fuel injected into the vapor ring chamber 432 is firstly cooled by the cooling chamber 27 of the head body 2 to cool the head body 2 and the high temperature resistant heat insulating layer 26, the combustion nozzle 10 and the ignition electrode 3 therein, and then injected at a high speed.
  • the vapor ring chamber 432 of the vapor chamber 43 absorbs heat generated in the combustion chamber 41 by the waste water in the vapor chamber 432, and is used to cool the combustion chamber 41 on the one hand, and the waste water in the vapor chamber 432 absorbs heat on the other hand.
  • the superheated steam is generated, and the superheated vapor flows into the vapor gasification chamber 433 at the top of the vapor chamber 43 while the material generated by the fuel being fully combusted in the combustion chamber 41 is also discharged into the vapor gasification chamber 433 at the top of the vapor chamber 43. ;
  • water is sprayed into the vapor gasification chamber 433 through a plurality of upper water inlet holes 434 provided at the upper end of the vapor chamber 43, and the plurality of upper water inlet holes 434 are sprayed into the vapor gasification chamber 433.
  • the water absorbs the heat above the combustion chamber 41 and vaporizes into vapor.
  • the vapor is mixed with the gas discharged from the combustion chamber 41 and the vapor discharged from the gas ring chamber 432 to form a high-temperature composite heat carrier, and the composite heat carrier is formed.
  • the outlet pipe 431 connected to the upper end of the vapor chamber 43 is discharged.
  • the calcium and magnesium ions in the waste water form scale on the outer wall of the combustion chamber 41. Since the waste water first passes through the magnetization of the water magnetization device 5 and then enters the generator body 42, the The water magnetization device 5 microscopically improves the fouling state of the wastewater so that the scale of the wastewater can be easily peeled off from the outer wall of the combustion chamber 41 and deposited in the vapor ring chamber 432 of the vapor chamber 43 to finally flow from the vapor ring chamber 432.
  • the connected descaling passage 29 is discharged.
  • the composite heat carrier generating method of the present invention performs hydromagnetization treatment on the wastewater flowing into the wastewater magnetized composite heat carrier generator by the water magnetizing device 5, so that the scale of the wastewater is relatively loose, and the scale of the wastewater can be easily removed from the combustion chamber 41.
  • the outer wall is peeled off and deposited in the vapor chamber 43, and finally the wastewater magnetized composite heat carrier generator is smoothly discharged from the scale discharge passage 29; in addition, the magnetized high-speed flowing waste water is cooled by the water inlet passage 28 of the head body 2
  • the invention realizes the magnetization of the waste water, solves the problem of the scale formation and spalling of the waste water and the scale discharge generator, and realizes the safe output composite heat carrier of the wastewater magnetization composite heat carrier generator.
  • the present invention further provides a descaling device which is applied to a generator capable of generating a composite heat carrier, which may be the composite heat of wastewater according to the first embodiment.
  • Carrier generator 4 or implementer The wastewater magnetization composite heat carrier generator of the second embodiment, the generator mainly comprising a generator body 42 and a generator head structure 20 connected to the lower end of the generator body 42.
  • the generator body 42 has a combustion chamber 41 and a vapor chamber 43 sleeved outside the combustion chamber 41.
  • the vapor chamber 43 forms an annular vapor ring chamber 432 with the combustion chamber 41.
  • the generator head structure 20 has a head body. 2.
  • the head body 2 is sealingly coupled to the lower end of the generator body 42 through its inner end surface 21.
  • the generator 4 is a generator for cooling the generator using waste water as cooling water and generating steam required for the composite heat carrier, which can recycle the waste water after the crude oil is separated, which not only saves Clear water resources also reduce the high cost of wastewater treatment.
  • the wastewater introduced into the vapor ring chamber 42 of the generator 4 is the wastewater after the separation of the oil and water in the crude oil production.
  • the heat generated by the waste water absorption combustion chamber 41 will be vaporized into steam, and the calcium and magnesium ions in the waste water will form scale on the outer wall of the combustion chamber 41.
  • the scale will automatically Peel off.
  • the scaled scales will settle to the bottom of the generator body 42 under the action of gravity due to the high density, and need to be periodically discharged after a certain amount, so as not to affect the normal use of the generator 4.
  • the descaling device comprises a fouling structure 61 and a fouling loop 62, wherein: the fouling structure 61 is disposed within the generator head structure 20 of the generator, the fouling structure 61 comprising a plurality of descaling passages 29, The descaling passages 29 are circumferentially disposed in the generator head structure 20; the descaling loops 62 are located below the generator, and the descaling loops 62 are circumferentially spaced apart from each other.
  • the fouling inlet pipe 621 is in communication with the fouling passage 29, and the fouling outlet pipe 62 is provided with a fouling outlet 622.
  • a plurality of the exhausting passages 29 of the fouling structure 61 are disposed in the head body 2, and the plurality of the exhausting passages 29 are disposed at equal intervals in the circumferential direction.
  • the head body 2 is provided with 4 ⁇ 6 descaling channels 29, and the diameter of the descaling channel 29 is 15mm ⁇ 25mm.
  • the design of the aperture is mainly considering that the fouling time is short (about 1-3 seconds) to ensure that the scale of the uniform small holes is instantaneously passed through the row.
  • the scale passage 29 discharges the head body 2.
  • the fouling structure 61 further includes a scale ring groove 211 disposed on the inner end surface 21 of the generator head structure 20, a plurality of scale passages 29 and scale discharge
  • the ring grooves 211 are in communication.
  • An annular exhaust ring groove 211 is recessed in the inner end surface 21 of the head body 2.
  • the width of the exhaust ring groove 211 is the same as the width of the vapor ring cavity 432 of the vapor chamber 43 when the head body 2 is sealingly connected.
  • the fouling ring groove 211 is disposed just above and below the vapor ring chamber 432.
  • a countersunk groove 291 is formed at the upper end of the descaling passage 29, and the countersunk groove 291 is in communication with the descaling ring groove 211.
  • the countersunk groove 291 is a rounded trough groove, which is similar to a funnel shape.
  • the groove of the shape, the design of the countersunk groove 291 can facilitate the smooth deposition of the scale deposited in the fouling ring groove 211 into the countersunk tank 291, and the corresponding scale removal Channel 29 is exhausted.
  • the fouling loop 62 is located below the generator.
  • the shape of the fouling loop 62 may be an integral circular shape that is internally connected, or the shape of the fouling loop 62 as shown in FIG. It may be an arc shape or a semi-annular shape that is internally connected.
  • a plurality of scale entry pipes 621 are provided at the upper end of the scale ring pipe 62, and a plurality of scale entry pipes 621 are provided at equal intervals in the circumferential direction at the upper end of the scale ring pipe 62.
  • the fouling loop tube 62 is provided with four to six scale ingress pipes 621.
  • the number of the scale ingress pipes 621 is the same as the number of the exhausting passages 29, and the scales enter the pipe 621 and A plurality of exhaust passages 29 correspond to and are connected to each other.
  • the outer side wall of the fouling loop 62 is provided with a fouling outlet 622 for discharging scale within the generator 4.
  • the working process of the descaling device is as follows: since the wastewater in the vapor ring chamber 432 of the generator absorbs the heat of the combustion chamber 41, the temperature rises, and the calcium and magnesium ions in the wastewater form scale on the outer wall of the combustion chamber 41.
  • the scale After the scale is detached, it will deposit in the fouling ring groove 211 of the fouling structure 61; when deposited to a certain amount, the fouling outlet 622 of the fouling loop 62 is opened, at a certain pressure difference (a pressure difference of about 5-20 kg)
  • the scale in the scale ring groove 211 enters the plurality of countersunk tanks 291, and then collects into the fouling loops 62 through the plurality of scale passages 29 and the plurality of scale entry tubes 621, and finally The fouling outlet 622 is discharged.
  • the descaling device of the present invention after the waste water is absorbed and heated in the generator, the calcium and magnesium ions in the wastewater are precipitated to form scale, and the scale is deposited in the fouling ring groove 211, and the knot of the fouling ring tube 62 is opened.
  • the scale outlet 622, the scale located in the generator will be instantaneously discharged through the plurality of scale passages 29 in a pressure difference according to a certain pressure, without clogging the generator, ensuring safe and reliable operation of the generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

一种废水复合热载体发生器,包括:发生器本体(42),其包括燃烧室(41)及蒸气室(43),燃烧室(41)的上端与蒸气室(43)相连通,蒸气室(43)的上端连接有出口管道(431);发生器头部结构(20),其连接在发生器本体(42)的下端,发生器头部结构(20)内设有燃烧喷嘴(10)、点火电极(3)、以及与蒸气室(43)相连通的进水通道(28)及排垢通道(29)。还提供了一种利用发生器产生复合热载体的方法。

Description

废水复合热载体发生器、废水磁化复合热载体发生器及复合热载体产生方法 技术领域
本发明有关于一种发生器及方法,尤其有关于一种高压燃烧技术领域中的废水复合热载体发生器、废水磁化复合热载体发生器及复合热载体产生方法。
背景技术
多元热流体技术热力开采稠油是一种非常高效的新技术,其具有燃烧效率高、零碳注入环保节能的优势,多元热流体技术输出的高温多元热流体具有综合增油机理,可大幅提高单井产能和提高原油采收率。
多元热流体技术用于油砂开采,其核心装备是发生器,目前,用软化水对发生器冷却气化形成多元热流体技术是目前成熟技术。由于油砂开采成本约三分之一要用于水处理,为实现低成本热力开发原油,将原油分离出来的废水用于发生器冷却掺混形成水蒸气则可以大量减少稠油/油砂开采的水处理成本。
现有技术中还没有应用废水作为冷却水使用的专门发生器,因此,有必要来提供一种新的发生器及复合热载体产生方法,来解决此问题。
发明内容
本发明的目的是提供一种废水复合热载体发生器,其不仅可以满足高压燃烧并安全输出复合热载体的要求,同时该发生器还可使用原油分离出的废水作为冷却水对发生器进行冷却处理并生成复合热载体所需的蒸气,该废水复合热载体发生器不仅节约清水资源,还减少了废水处理的高额费用。
本发明的另一目的是提供一种废水磁化复合热载体发生器,其不仅可以满足高压燃烧并安全输出复合热载体的要求,同时通过水磁化装置还可对通入该发生器内的废水进行水磁化处理,使废水的结垢相对松散,方便发生器排出水垢,该废水复合热载体发生器结构合理、安全可靠、使用寿命长。
本发明的再一目的是提供一种复合热载体产生方法,该方法能生成复合热载体,且能够对通入发生器内的废水进行水磁化处理,使废水的结垢相对松散,方便排出水垢。
本发明的上述目的可采用下列技术方案来实现:
本发明提供一种废水复合热载体发生器,所述废水复合热载体发生器包括:
发生器本体,其包括燃烧室及套设在所述燃烧室外部的蒸气室,所述燃烧室的上端与所述蒸气室相连通,所述蒸气室的上端连接有出口管道;
发生器头部结构,其连接在所述发生器本体的下端,所述发生器头部结构具有头部本体和设置在所述头部本体内的燃烧喷嘴和点火电极,所述燃烧喷嘴和所述点火电极均与所述燃烧室相对设置,所述头部本体内设有与所述蒸气室相连通的进水通道及排垢通道。
在优选的实施方式中,所述蒸气室的上端沿圆周方向设有多个上进水孔,多个所述上进水孔与所述蒸气室相连通。
在优选的实施方式中,所述蒸气室包括相连通的蒸气环腔及蒸气气化腔,所述燃烧室与所述蒸气室之间形成所述蒸气环腔,所述燃烧室上方的所述蒸气室形成所述蒸气气化腔,多个所述上进水孔与所述蒸气气化腔相连通。
在优选的实施方式中,所述头部本体与所述燃烧室相对的内端面上连接有耐高温隔热层,所述燃烧喷嘴和所述点火电极均密封设于所述耐高温隔热层中。
在优选的实施方式中,所述头部本体的内端面形成有冷却腔,所述耐高温隔热层位于所述冷却腔的上方,所述进水通道通过所述冷却腔与所述蒸气室相连通。
在优选的实施方式中,所述耐高温隔热层的材料为钨、钽、铼或锇。
在优选的实施方式中,所述耐高温隔热层的厚度为20mm~30mm。
在优选的实施方式中,所述进水通道内通入的水为废水。
在优选的实施方式中,所述头部本体内沿圆周方向设有多个所述排垢通道,所述排垢通道的直径为15mm~25mm。
在优选的实施方式中,所述头部本体与所述燃烧室相对的内端面上形成有排垢环槽,所述排垢环槽与所述蒸气室相对设置,多个所述排垢通道与所述排垢环槽相连通。
本发明还提供一种包含上述的废水复合热载体发生器的废水磁化复合热载体发生器,所述废水磁化复合热载体发生器还包括:水磁化装置,其具有进水管路,所述进水管路的外部套设有水磁化器,所述进水管路与所述废水复合热载体发生器的进水通道相连接。
在优选的实施方式中,所述水磁化器包括壳体及设置在所述壳体内的直流电磁铁块,所述直流电磁铁块套设在所述进水管路的外部。
在优选的实施方式中,所述直流电磁铁块包括两个对扣在一起的半环形的半直流电磁铁块,两个所述半直流电磁铁块之间夹设有铁板。
在优选的实施方式中,所述直流电磁铁块与直流电源电连接。
本发明还提供一种上述的废水磁化复合热载体发生器的复合热载体产生方法,所述复合热载体产生方法包括如下步骤:
a)向水磁化装置的进水管路内注入废水,所述废水经所述水磁化装置的水磁化器磁化后通过发生器头部结构的进水通道注入发生器本体的蒸气室内;
b)打开点火电极,通过燃烧喷嘴向所述发生器本体的燃烧室内喷射燃料,所述蒸气室内的废水吸收所述燃烧室的热量后气化为蒸气并同时结垢;
c)所述燃料燃烧后生成的气体与所述蒸气室内的蒸气,在所述蒸气室的上端掺混后形成复合热载体,所述复合热载体自连接在所述蒸气室上端的出口管道排出,所述蒸气室内的废水结垢后通过所述发生器头部结构的排垢通道排出。
在优选的实施方式中,所述水磁化器包括壳体及设置在所述壳体内的直流电磁铁块,所述直流电磁铁块套设在所述进水管路的外部,在所述步骤a)中,通过所述直流电磁铁块对所述进水管路内的废水进行磁化处理。
在优选的实施方式中,所述蒸气室的上端沿圆周方向设有多个上进水孔,多个所述上进水孔与所述蒸气室相连通,在所述步骤c)中,自多个所述上进水孔喷入所述蒸气室内的水气化为蒸气后,掺混至所述复合热载体中并自所述出口管道排出。
本发明的废水复合热载体发生器、废水磁化复合热载体发生器及复合热载体产生方法的特点及优点是:
一、本发明将原油开采中油水分离后的废水由头部本体的进水通道,经头部本体的冷却腔后注入蒸气室,该废水不但能冷却头部本体,提升发生器头部结构的使用寿命,而且还能吸收燃烧室的热量,并气化为复合热载体所需的蒸气;另外,废水气化后,废水中的钙镁离子会在蒸气室内沉积形成水垢,该些水垢最终可从头部本体内的排垢通道顺利排出。本发明不仅可以满足高压燃烧并安全输出复合热载体的要求,同时该发生器还可使用原油分离出的废水作为冷却水对发生器进行冷却处理并生成复合热载体所需的蒸气,该废水复合热载体发生器可对原油分离后的废水循环再利用,其不仅节约清水资源,还减少了废水处理的高额费用。
二、本发明通过在头部本体的内端面设置耐高温隔热层,当头部本体与发生器本体连接后,该耐高温隔热层恰好封堵在废水复合热载体发生器的燃烧室的端部并直接面对 燃烧室,以有效保护头部本体,避免头部本体直接面对燃烧室,防止高温烧蚀头部本体,延长了头部本体的使用寿命;另外,位于头部本体内的燃烧喷嘴和点火电极均密封设于耐高温隔热层中,因此,可有效保护燃烧喷嘴和点火电极,防止高温烧蚀,延长了燃烧喷嘴和点火电极的使用寿命。
三、本发明通过头部本体内的冷却腔的设计,可实现对头部本体的冷却处理;同时,还可对直面燃烧室的耐高温隔热层进行冷却处理,防止高温烧蚀及燃料高温反应损坏头部本体的情况发生。
四、本发明通过水磁化装置对通入废水磁化复合热载体发生器内的废水进行水磁化处理,使废水的结垢相对松散,废水结垢可以容易的从燃烧室的外壁剥落,并在蒸气室内沉积,最终从排垢通道顺利排出废水磁化复合热载体发生器;另外,经磁化后的高速流动的废水由头部本体的进水通道进入冷却腔,之后进入蒸气室的蒸气环腔,该废水不但能冷却头部本体,提升发生器头部结构的使用寿命,而且还能吸收燃烧室的热量,并气化为复合热载体所需的蒸气。本发明实现了对废水的磁化,解决了废水结垢剥落和结垢排出发生器的难题,实现了废水磁化复合热载体发生器安全输出复合热载体的目的。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的废水复合热载体发生器的结构示意图。
图2为图1的A部放大图。
图3为本发明的废水复合热载体发生器的发生器头部结构的结构示意图。
图4为本发明的废水磁化复合热载体发生器的结构示意图。
图5为本发明的废水磁化复合热载体发生器的水磁化装置的俯视结构示意图。
图6为本发明的除垢装置的结构示意图。
图7为本发明的除垢装置的立体图一。
图8为本发明的除垢装置的立体图二。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施方式一
如图1至图3所示,本发明提供一种废水复合热载体发生器4,其包括发生器本体42和发生器头部结构20,其中:发生器本体42包括燃烧室41及套设在所述燃烧室41外部的蒸气室43,所述燃烧室41的上端与所述蒸气室43相连通,所述蒸气室43的上端连接有出口管道431;发生器头部结构20连接在所述发生器本体42的下端,所述发生器头部结构20具有头部本体2和设置在所述头部本体2内的燃烧喷嘴10和点火电极3,所述燃烧喷嘴10和所述点火电极3均与所述燃烧室41相对设置,所述头部本体2内设有与所述蒸气室43相连通的进水通道28及排垢通道29。
具体是,发生器本体42大体呈圆柱体形,其中部为燃烧室41,蒸气室43套设在燃烧室41的外部,从而在蒸气室43与燃烧室41之间形成环形的蒸气环腔432;该燃烧室41的上端开口且与蒸气室43相连通,位于燃烧室41上方的蒸气室43形成蒸气气化腔433。该蒸气室43被划分为两部分,即位于下方的蒸气环腔432和位于上方的蒸气气化腔433,蒸气环腔432和蒸气气化腔433相互连通,二者之间没有明显的界限区分。连接在蒸气室43上端的出口管道431与蒸气气化腔433相连通。
如图2所示,在本发明中,在蒸气室43的上端沿圆周方向设有多个上进水孔434,多个上进水孔434与蒸气室43的蒸气气化腔433相连通。通过该些上进水孔434可向蒸气气化腔433内喷入水流。
在本实施例中,该些上进水孔434两两径向相对设置在蒸气室43的上端外壁上,且多个上进水孔434位于同一水平面上。这样可使自多个上进水孔434喷出的水流集中于蒸气气化腔433的中心对撞,一方面用于形成水雾并冷却发生器本体42,另一方面,通过该些上进水孔434喷入蒸气气化腔433内的水流会吸收发生器本体42的热量而生成高温蒸气,该高温蒸气与蒸气环腔432内的蒸气共同与燃烧室41内的燃料燃烧后生成的气体掺混形成复合热载体。
如图3所示,该发生器头部结构20位于废水复合热载体发生器4的底部,该发生器头部结构20的头部本体2的外周缘通过多个连接件24与发生器本体42相连,该头部本体2的内端面21与燃烧室41和蒸气室43相对设置。
在本发明中,头部本体2的内端面21设有环凹槽25,该环凹槽25内可设有密封圈251,在头部本体2与发生器本体42连接后,该密封圈251可有效保证头部本体2与发生器本体42之间的密封性能。
该头部本体2内设有喷嘴通道22和点火电极通道23,该喷嘴通道22和点火电极通道23均与燃烧室41相对,燃烧喷嘴10位于喷嘴通道22内,点火电极3位于点火电极通道23内。
进一步的,根据本发明的一个实施方式,该头部本体2的内端面21上连接有耐高温隔热层26,该燃烧喷嘴10和点火电极3均密封设于该耐高温隔热层26中。在本发明中,该耐高温隔热层26的材料为钨、钽、铼或锇,综合考虑加工及实用成本,该耐高温隔热层26首选锻造致密纯钨制成。在本发明中,该耐高温隔热层26的厚度为20mm~30mm,其可承受3000℃以上的高温,该耐高温隔热层26可有效保护燃烧喷嘴10和点火电极3,防止高温烧蚀,以延长燃烧喷嘴10和点火电极3的使用寿命。该耐高温隔热层26的面积大小恰好与燃烧室41的端面面积一致,在头部本体2与发生器本体42连接后,该耐高温隔热层26恰好封堵在燃烧室41的端部并直接面对燃烧室41,阻绝了头部本体2与燃烧室41的直接接触,有效保护了头部本体2,延长了头部本体2的使用寿命。
进一步的,该头部本体2的内端面21形成有冷却腔27,该冷却腔27为设置在头部本体2内端面21的凹槽,该耐高温隔热层26位于冷却腔27的上方,该头部本体2内的进水通道28与冷却腔27相连通。
具体的,在头部本体2内还设有过流通道271,该过流通道271与冷却腔27相连通,当头部本体2密封连接在发生器本体42的下端后,该过流通道271位于头部本体2的内端面21的出口处可连接有一出口管272,该出口管272直接面对蒸气室43与燃烧室41之间形成的蒸气环腔432,从而使得自进水通道28流入的冷却水,经冷却腔27、过流通道271后流入蒸气环腔432内。
本发明通过冷却腔27的设计,可实现对头部本体2的冷却处理;同时,还可对直面燃烧室41的耐高温隔热层26进行冷却处理,防止高温烧蚀及燃料高温反应损坏头部本体2的情况发生。
该废水复合热载体发生器4的工作过程如下:首先,通过发生器头部结构20的进水通道28向发生器本体42的蒸气室43内注入废水,在本发明中,该废水为原油开采中油水分离后的废水,同时,通过设置在发生器头部结构20内的燃烧喷嘴10向发生器 本体42的燃烧室41内喷入燃料;打开点火电极3,自燃烧喷嘴10喷出的燃料在燃烧室41内燃烧,注入蒸气环腔432内的废水首先通过头部本体2的冷却腔27冷却头部本体2及其内的耐高温隔热层26、燃烧喷嘴10和点火电极3,而后高速喷入蒸气室43的蒸气环腔432,蒸气环腔432内的废水可吸收燃烧室41内因燃烧产生的热量,一方面用于冷却燃烧室41,另一方面,蒸气环腔432内的废水吸收热量后会生成过热蒸气,该些过热蒸气会流入蒸气室43顶部的蒸气气化腔433内,同时燃料在燃烧室41内充分燃烧后生成的气体也会排入蒸气室43顶部的蒸气气化腔433内;之后,通过多个上进水孔434向蒸气气化腔433内喷水,该些自多个上进水孔434喷入蒸气气化腔433内的水会吸收燃烧室41上方的热量瞬间气化成蒸气,该蒸气与燃烧室41内排出的气体及蒸气环腔432内排出的蒸气三者互相掺混,最终形成高温复合热载体,该复合热载体自连接在蒸气室43上端的出口管道431排出。
在本发明中,在头部本体2的内端面21上形成有排垢环槽211,该排垢环槽211与蒸气室43的蒸气环腔432相对设置,在头部本体2内沿圆周方向设有多个排垢通道29,在本实施例中,排垢通道29为4个~6个,且排垢通道29的直径为15mm~25mm,该些排垢通道29与排垢环槽211相连通。因蒸气环腔432中的废水温度升高后,废水中的钙镁离子会在燃烧室41的外壁结成水垢,该些水垢会在蒸气室43的蒸气环腔432内沉积,并最终沉积于排垢环槽211内,之后,该些水垢会通过多个排垢通道29以压差的方式排出发生器本体42而不堵塞废水复合热载体发生器4,确保了废水复合热载体发生器4安全可靠运行。
本发明的废水复合热载体发生器,将原油开采中油水分离后的废水由头部本体2的进水通道28,经头部本体2的冷却腔27后注入蒸气室43,该废水不但能冷却头部本体2,提升发生器头部结构20的使用寿命,而且还能吸收燃烧室41的热量,并气化为复合热载体所需的蒸气;另外,废水气化后,废水中的钙镁离子会在蒸气室43内沉积形成水垢,该些水垢最终可从头部本体2内的排垢通道29顺利排出。本发明不仅可以满足高压燃烧并安全输出复合热载体的要求,同时该废水复合热载体发生器还可使用原油分离出的废水作为冷却水对发生器进行冷却处理并生成复合热载体所需的蒸气,该废水复合热载体发生器可对原油分离后的废水循环再利用,其不仅节约清水资源,还减少了废水处理的高额费用。
实施方式二
如图1至图5所示,本发明还提供一种废水磁化复合热载体发生器,其包括水磁化 装置5及实施方式一所述的废水复合热载体发生器4,所述的废水复合热载体发生器4的结构、工作原理和有益效果与实施方式一相同,在此不再赘述。
其中:所述的废水复合热载体发生器4的发生器本体42包括燃烧室41及套设在所述燃烧室41外部的蒸气室43,所述燃烧室41的上端与所述蒸气室43相连通,所述蒸气室43的上端连接有出口管道431;发生器头部结构20连接在所述发生器本体42的下端,所述发生器头部结构20具有头部本体2和设置在所述头部本体2内的燃烧喷嘴10和点火电极3,所述燃烧喷嘴10和所述点火电极3均与所述燃烧室41相对设置,所述头部本体2内设有与所述蒸气室43相连通的进水通道28及排垢通道29;水磁化装置5具有进水管路51,所述进水管路51的外部套设有水磁化器52,所述进水管路51与所述进水通道28相连接。
具体是,水磁化装置5位于废水复合热载体发生器4的外部,其具有进水管路51,进水管路51的外部套设有水磁化器52,在本发明中,该水磁化器52包括壳体521及设置在壳体521内的直流电磁铁块522,该直流电磁铁块522套设在进水管路51的外部。该直流电磁铁块522与外部直流电源电连接。
具体的,如图5所示,该直流电磁铁块522包括两个对扣在一起的半环形的半直流电磁铁块523,两个半直流电磁铁块523之间夹设有铁板524。
该废水磁化复合热载体发生器的工作过程如下:首先,向水磁化装置5的进水管路51内注入废水,在本发明中,该废水为原油开采中油水分离后的废水。该废水经水磁化装置5的水磁化器52磁化后通过发生器头部结构20的进水通道28注入发生器本体42的蒸气室43的蒸气环腔432内,同时,通过设置在发生器头部结构20内的燃烧喷嘴10向发生器本体42的燃烧室41内喷入燃料;打开点火电极3,自燃烧喷嘴10喷出的燃料在燃烧室41内燃烧,注入蒸气环腔432内的废水首先通过头部本体2的冷却腔27冷却头部本体2及其内的耐高温隔热层26、燃烧喷嘴10和点火电极3,而后高速喷入蒸气室43的蒸气环腔432,蒸气环腔432内的废水吸收燃烧室41内因燃烧产生的热量,一方面用于冷却燃烧室41,另一方面,蒸气环腔432内的废水吸收热量后会生成过热蒸气,该些过热蒸气会流入蒸气室43顶部的蒸气气化腔433内,同时燃料在燃烧室41内充分燃烧后生成的气体也会排入蒸气室43顶部的蒸气气化腔433内;之后,通过多个上进水孔434向蒸气气化腔433内喷水,该些自多个上进水孔434喷入蒸气气化腔433内的水会吸收燃烧室41上方的热量瞬间气化成蒸气,该蒸气与燃烧室41内排出的气体及蒸气环腔432内排出的蒸气三者互相掺混,最终形成高温复合热载体,该复合热载体自连 接在蒸气室43上端的出口管道431排出。
因蒸气环腔432中的废水温度升高后,废水中的钙镁离子会在燃烧室41的外壁结成水垢,由于该废水先经过水磁化装置5的磁化后再进入发生器本体42,该水磁化装置5从微观上改善了废水的结垢状态,使废水结垢相对松散或呈絮状,其可以容易的从燃烧室41的外壁剥落,并在蒸气室43的蒸气环腔432内沉积,最终从与蒸气环腔432连通的排垢通道29排出。
本发明的废水磁化复合热载体发生器,通过水磁化装置5对通入发生器内的废水进行水磁化处理,使废水的结垢相对松散,废水结垢可以容易的从燃烧室41的外壁剥落,并在蒸气室43内沉积,最终从排垢通道29顺利排出发生器;另外,经磁化后的高速流动的废水由头部本体2的进水通道28进入冷却腔27,之后进入蒸气室43的蒸气环腔432,该废水不但能冷却头部本体2,提升发生器头部结构20的使用寿命,而且还能吸收燃烧室41的热量,并气化为复合热载体所需的蒸气,且可防止燃烧室41高温烧蚀,冷却燃烧室41。本发明实现了对废水的磁化,解决了废水结垢剥落和结垢排出发生器的难题,实现了废水磁化复合热载体发生器安全输出复合热载体。
实施方式三
如图1至图5所示,本发明还提供一种废水磁化复合热载体发生器的复合热载体产生方法,所述复合热载体产生方法为实施方式二的废水磁化复合热载体发生器的复合热载体产生方法,所述的废水磁化复合热载体发生器的结构、工作原理和有益效果与实施方式二相同,在此不再赘述。所述复合热载体产生方法包括如下步骤:
a)向水磁化装置5的进水管路51内注入废水,所述废水经所述水磁化装置5的水磁化器52磁化后通过发生器头部结构20的进水通道28注入发生器本体42的蒸气室43内;
b)打开点火电极3,通过燃烧喷嘴10向所述发生器本体42的燃烧室41内喷射燃料,所述蒸气室43内的废水吸收所述燃烧室41的热量后气化为蒸气并同时结垢;
c)所述燃料燃烧后生成的气体与所述蒸气室43内的蒸气,在所述蒸气室43的上端掺混后形成复合热载体,所述复合热载体自连接在所述蒸气室43上端的出口管道431排出,所述蒸气室43内的废水结垢后通过所述发生器头部结构20的排垢通道29排出。
具体是,在步骤a)中,水磁化器52包括壳体521及设置在壳体521内的直流电磁铁块522,所述直流电磁铁块522套设在所述进水管路51的外部,通过所述直流电磁铁 块522对进水管路51内的废水进行磁化处理。在本发明中,该废水为原油开采中油水分离后的废水。
在步骤b)中,通过设置在发生器头部结构20内的燃烧喷嘴10向发生器本体42的燃烧室41内喷入燃料;打开点火电极3,自燃烧喷嘴10喷出的燃料在燃烧室41内燃烧,注入蒸气环腔432内的废水首先通过头部本体2的冷却腔27冷却头部本体2及其内的耐高温隔热层26、燃烧喷嘴10和点火电极3,而后高速喷入蒸气室43的蒸气环腔432,蒸气环腔432内的废水吸收燃烧室41内因燃烧产生的热量,一方面用于冷却燃烧室41,另一方面,蒸气环腔432内的废水吸收热量后会生成过热蒸气,该些过热蒸气会流入蒸气室43顶部的蒸气气化腔433内,同时燃料在燃烧室41内充分燃烧后生成的物质也会排入蒸气室43顶部的蒸气气化腔433内;
在本实施例中,通过设置在蒸气室43上端的多个上进水孔434向蒸气气化腔433内喷水,该些自多个上进水孔434喷入蒸气气化腔433内的水会吸收燃烧室41上方的热量瞬间气化成蒸气,该蒸气与燃烧室41内排出的气体及蒸气环腔432内排出的蒸气三者互相掺混,最终形成高温复合热载体,该复合热载体自连接在蒸气室43上端的出口管道431排出。
因蒸气环腔432中的废水温度升高后,废水中的钙镁离子会在燃烧室41的外壁结成水垢,由于该废水先经过水磁化装置5的磁化后再进入发生器本体42,该水磁化装置5从微观上改善了废水的结垢状态,使废水结垢可以容易的从燃烧室41的外壁剥落,并在蒸气室43的蒸气环腔432内沉积,最终从与蒸气环腔432连通的排垢通道29排出。
本发明的复合热载体产生方法,通过水磁化装置5对通入废水磁化复合热载体发生器内的废水进行水磁化处理,使废水的结垢相对松散,废水结垢可以容易的从燃烧室41的外壁剥落,并在蒸气室43内沉积,最终从排垢通道29顺利排出废水磁化复合热载体发生器;另外,经磁化后的高速流动的废水由头部本体2的进水通道28进入冷却腔27,之后进入蒸气室43的蒸气环腔432,该废水不但能冷却头部本体2,提升发生器头部结构20的使用寿命,而且还能吸收燃烧室41的热量,并气化为复合热载体所需的蒸气。本发明实现了对废水的磁化,解决了废水结垢剥落和结垢排出发生器的难题,实现了废水磁化复合热载体发生器安全输出复合热载体。
实施方式四
如图6至图8所示,本发明还提供一种除垢装置,该除垢装置应用在一能产生复合热载体的发生器上,该发生器可为实施方式一所述的废水复合热载体发生器4或实施方 式二所述的废水磁化复合热载体发生器,该发生器主要包括发生器本体42和连接在发生器本体42下端的发生器头部结构20。其中,发生器本体42具有燃烧室41和套设在燃烧室41外部的蒸气室43,蒸气室43与燃烧室41之间形成环形的蒸气环腔432;发生器头部结构20具有头部本体2,头部本体2通过其内端面21密封连接在发生器本体42的下端。在本发明中,该发生器4为使用废水作为冷却水对发生器进行冷却处理并生成复合热载体所需蒸气的发生器,该发生器可对原油分离后的废水循环再利用,其不仅节约清水资源,还减少了废水处理的高额费用。在本发明中,通入发生器4的蒸气环腔42中的废水为原油开采中油水分离后的废水。
因废水吸收燃烧室41燃烧后的热量会气化为蒸气,而废水中的钙镁离子会在燃烧室41的外壁结成水垢,当燃烧室41外壁上沉积一定厚度的水垢时,水垢会自动剥落。在废水蒸气气化的过程中,该些剥落的水垢因密度大,会在重力的作用下沉降至发生器本体42的底部,到一定量后需定期排出,以免影响发生器4的正常使用。
本实施例本着解决上述问题的目的,研发出一种除垢装置。该除垢装置包括排垢结构61和排垢环管62,其中:排垢结构61设置在发生器的发生器头部结构20内,所述排垢结构61包括多个排垢通道29,多个所述排垢通道29沿圆周方向间隔设置在所述发生器头部结构20内;排垢环管62位于发生器的下方,所述排垢环管62上沿圆周方向间隔设有多个排垢进入管621,所述排垢进入管621与所述排垢通道29相连通,所述排垢环管62上设有结垢出口622。
具体是,排垢结构61的多个排垢通道29设置在头部本体2内,多个排垢通道29沿圆周方向等间隔设置,在本实施例中,在头部本体2内设有4个~6个排垢通道29,且排垢通道29的直径为15mm~25mm,该孔径的设计主要考虑排垢时间短(约1~3秒),以保证均布小孔的水垢瞬间通过排垢通道29排出头部本体2。
进一步的,在本发明中,该排垢结构61还包括排垢环槽211,该排垢环槽211设置在发生器头部结构20的内端面21上,多个排垢通道29与排垢环槽211相连通。在头部本体2的内端面21上凹设有环形的排垢环槽211,该排垢环槽211的宽度与蒸气室43的蒸气环腔432的宽度相同,当头部本体2密封连接在发生器本体42的下端时,排垢环槽211恰好与蒸气环腔432上下相对设置。
在本实施例中,在排垢通道29的上端形成有沉头槽291,该沉头槽291与排垢环槽211相连通,该沉头槽291为倒圆台形槽,也即类似漏斗形形状的凹槽,该些沉头槽291的设计,可便于沉积于排垢环槽211内的水垢顺利流入沉头槽291内,并自对应的排垢 通道29排出。
排垢环管62位于发生器的下方,在本实施例中,该排垢环管62的形状可为内部连通的整体圆环形,或者如图7所示,该排垢环管62的形状可为内部连通的弧形形状或半环形形状。
在该排垢环管62的上端设有多个排垢进入管621,多个排垢进入管621沿圆周方向等间隔设置在排垢环管62的上端。在本实施例中,排垢环管62上设有4个~6个排垢进入管621,该排垢进入管621的数量与排垢通道29的数量相同,该些排垢进入管621与多个排垢通道29对应并相互连接在一起。
该排垢环管62的外侧壁设有结垢出口622,该结垢出口622用于排出发生器4内的水垢。
该除垢装置的工作过程如下:因发生器的蒸气环腔432中的废水吸收燃烧室41的热量后温度会升高,废水中的钙镁离子会在燃烧室41的外壁结成水垢,该些水垢脱落后会沉积在排垢结构61的排垢环槽211内;当沉积至一定量后,打开排垢环管62的结垢出口622,在一定压差(约5~20公斤压力差)的作用下,排垢环槽211内的水垢会进入多个沉头槽291内,而后通过多个排垢通道29、多个排垢进入管621汇集至排垢环管62中,最终从结垢出口622排出。
本发明的除垢装置,废水在发生器内吸热气化后,废水中的钙镁离子析出形成水垢,该些水垢会沉积于排垢环槽211内,通过打开排垢环管62的结垢出口622,位于发生器内的该些水垢会通过多个排垢通道29以压差的方式按照一定压力瞬时排出发生器,而不会堵塞于发生器,确保了发生器安全可靠运行。
以上所述仅为本发明的几个实施例,本领域的技术人员依据申请文件公开的内容可以对本发明实施例进行各种改动或变型而不脱离本发明的精神和范围。

Claims (17)

  1. 一种废水复合热载体发生器,其特征在于,所述废水复合热载体发生器包括:
    发生器本体,其包括燃烧室及套设在所述燃烧室外部的蒸气室,所述燃烧室的上端与所述蒸气室相连通,所述蒸气室的上端连接有出口管道;
    发生器头部结构,其连接在所述发生器本体的下端,所述发生器头部结构具有头部本体和设置在所述头部本体内的燃烧喷嘴和点火电极,所述燃烧喷嘴和所述点火电极均与所述燃烧室相对设置,所述头部本体内设有与所述蒸气室相连通的进水通道及排垢通道。
  2. 如权利要求1所述的废水复合热载体发生器,其特征在于,所述蒸气室的上端沿圆周方向设有多个上进水孔,多个所述上进水孔与所述蒸气室相连通。
  3. 如权利要求2所述的废水复合热载体发生器,其特征在于,所述蒸气室包括相连通的蒸气环腔及蒸气气化腔,所述燃烧室与所述蒸气室之间形成所述蒸气环腔,所述燃烧室上方的所述蒸气室形成所述蒸气气化腔,多个所述上进水孔与所述蒸气气化腔相连通。
  4. 如权利要求1所述的废水复合热载体发生器,其特征在于,所述头部本体与所述燃烧室相对的内端面上连接有耐高温隔热层,所述燃烧喷嘴和所述点火电极均密封设于所述耐高温隔热层中。
  5. 如权利要求4所述的废水复合热载体发生器,其特征在于,所述头部本体的内端面形成有冷却腔,所述耐高温隔热层位于所述冷却腔的上方,所述进水通道通过所述冷却腔与所述蒸气室相连通。
  6. 如权利要求4所述的废水复合热载体发生器,其特征在于,所述耐高温隔热层的材料为钨、钽、铼或锇。
  7. 如权利要求4所述的废水复合热载体发生器,其特征在于,所述耐高温隔热层的厚度为20mm~30mm。
  8. 如权利要求1所述的废水复合热载体发生器,其特征在于,所述进水通道内通入的水为废水。
  9. 如权利要求1所述的废水复合热载体发生器,其特征在于,所述头部本体内沿圆周方向设有多个所述排垢通道,所述排垢通道的直径为15mm~25mm。
  10. 如权利要求9所述的废水复合热载体发生器,其特征在于,所述头部本体与所述燃烧室相对的内端面上形成有排垢环槽,所述排垢环槽与所述蒸气室相对设置,多个 所述排垢通道与所述排垢环槽相连通。
  11. 一种包含如权利要求1~10中任一项所述的废水复合热载体发生器的废水磁化复合热载体发生器,其特征在于,所述废水磁化复合热载体发生器还包括:水磁化装置,其具有进水管路,所述进水管路的外部套设有水磁化器,所述进水管路与所述废水复合热载体发生器的进水通道相连接。
  12. 如权利要求11所述的废水磁化复合热载体发生器,其特征在于,所述水磁化器包括壳体及设置在所述壳体内的直流电磁铁块,所述直流电磁铁块套设在所述进水管路的外部。
  13. 如权利要求12所述的废水磁化复合热载体发生器,其特征在于,所述直流电磁铁块包括两个对扣在一起的半环形的半直流电磁铁块,两个所述半直流电磁铁块之间夹设有铁板。
  14. 如权利要求12所述的废水磁化复合热载体发生器,其特征在于,所述直流电磁铁块与直流电源电连接。
  15. 一种如权利要求11~14中任一项所述的废水磁化复合热载体发生器的复合热载体产生方法,其特征在于,所述复合热载体产生方法包括如下步骤:
    a)向水磁化装置的进水管路内注入废水,所述废水经所述水磁化装置的水磁化器磁化后通过发生器头部结构的进水通道注入发生器本体的蒸气室内;
    b)打开点火电极,通过燃烧喷嘴向所述发生器本体的燃烧室内喷射燃料,所述蒸气室内的废水吸收所述燃烧室的热量后气化为蒸气并同时结垢;
    c)所述燃料燃烧后生成的气体与所述蒸气室内的蒸气,在所述蒸气室的上端掺混后形成复合热载体,所述复合热载体自连接在所述蒸气室上端的出口管道排出,所述蒸气室内的废水结垢后通过所述发生器头部结构的排垢通道排出。
  16. 如权利要求15所述的复合热载体产生方法,其特征在于,所述水磁化器包括壳体及设置在所述壳体内的直流电磁铁块,所述直流电磁铁块套设在所述进水管路的外部,在所述步骤a)中,通过所述直流电磁铁块对所述进水管路内的废水进行磁化处理。
  17. 如权利要求15所述的复合热载体产生方法,其特征在于,所述蒸气室的上端沿圆周方向设有多个上进水孔,多个所述上进水孔与所述蒸气室相连通,在所述步骤c)中,自多个所述上进水孔喷入所述蒸气室内的水气化为蒸气后,掺混至所述复合热载体中并自所述出口管道排出。
PCT/CN2016/089995 2016-06-01 2016-07-14 废水复合热载体发生器、废水磁化复合热载体发生器及复合热载体产生方法 WO2017206282A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EA201792636A EA035022B1 (ru) 2016-06-01 2016-07-14 Генератор многокомпонентного теплоносителя с использованием сточных вод, генератор многокомпонентного теплоносителя с омагничиванием сточных вод и способ образования многокомпонентного теплоносителя

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201620526955.5 2016-06-01
CN201620521792.1U CN205690381U (zh) 2016-06-01 2016-06-01 除垢装置
CN201610380781.0A CN105823032B (zh) 2016-06-01 2016-06-01 废水复合热载体发生器及复合热载体产生方法
CN201620521792.1 2016-06-01
CN201610380781.0 2016-06-01
CN201620526955.5U CN205690374U (zh) 2016-06-01 2016-06-01 废水复合热载体发生器

Publications (1)

Publication Number Publication Date
WO2017206282A1 true WO2017206282A1 (zh) 2017-12-07

Family

ID=60479623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089995 WO2017206282A1 (zh) 2016-06-01 2016-07-14 废水复合热载体发生器、废水磁化复合热载体发生器及复合热载体产生方法

Country Status (2)

Country Link
EA (1) EA035022B1 (zh)
WO (1) WO2017206282A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109025868A (zh) * 2018-10-23 2018-12-18 中国科学院新疆生态与地理研究所 一种钻井废弃物的处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4445570A (en) * 1982-02-25 1984-05-01 Retallick William B High pressure combustor having a catalytic air preheater
CN101580284A (zh) * 2009-06-23 2009-11-18 胜利油田胜利工程设计咨询有限责任公司 燃料高压燃烧直接汽化油田污水装置
CN101832552A (zh) * 2010-04-06 2010-09-15 东南大学 注水式高压燃烧器
CN105841129A (zh) * 2016-06-01 2016-08-10 天津中油锐思技术开发有限责任公司 废水复合热载体发生器及复合热载体产生方法
CN205664341U (zh) * 2016-06-01 2016-10-26 天津中油锐思技术开发有限责任公司 废水复合热载体发生器
CN205690373U (zh) * 2016-06-01 2016-11-16 天津中油锐思技术开发有限责任公司 废水复合热载体发生器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4445570A (en) * 1982-02-25 1984-05-01 Retallick William B High pressure combustor having a catalytic air preheater
CN101580284A (zh) * 2009-06-23 2009-11-18 胜利油田胜利工程设计咨询有限责任公司 燃料高压燃烧直接汽化油田污水装置
CN101832552A (zh) * 2010-04-06 2010-09-15 东南大学 注水式高压燃烧器
CN105841129A (zh) * 2016-06-01 2016-08-10 天津中油锐思技术开发有限责任公司 废水复合热载体发生器及复合热载体产生方法
CN205664341U (zh) * 2016-06-01 2016-10-26 天津中油锐思技术开发有限责任公司 废水复合热载体发生器
CN205690373U (zh) * 2016-06-01 2016-11-16 天津中油锐思技术开发有限责任公司 废水复合热载体发生器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109025868A (zh) * 2018-10-23 2018-12-18 中国科学院新疆生态与地理研究所 一种钻井废弃物的处理方法
CN109025868B (zh) * 2018-10-23 2023-08-18 中国科学院新疆生态与地理研究所 一种钻井废弃物的处理方法

Also Published As

Publication number Publication date
EA035022B1 (ru) 2020-04-17
EA201792636A1 (ru) 2018-12-28

Similar Documents

Publication Publication Date Title
US7394041B2 (en) Apparatus for treating a waste gas using plasma torch
US9409775B2 (en) Method of purification of biomass syngas under negative pressure
CN108342227B (zh) 一种合成气显热回收装置和回收方法及气化炉
CN110617466A (zh) 一种用于超深井下稠油热采的超临界水热燃烧型蒸汽发生器
CN102559289B (zh) 生物质合成气冷却、洗涤工艺及系统
WO2007071203A1 (fr) Systeme de combustion haute temperature et haute pression de generateur d'agent caloporteur de compose sous-critique
CN205690373U (zh) 废水复合热载体发生器
WO2017206282A1 (zh) 废水复合热载体发生器、废水磁化复合热载体发生器及复合热载体产生方法
CN205664341U (zh) 废水复合热载体发生器
CN102353033B (zh) 超临界复合热载体发生器的高温高压燃烧系统
CN105841129B (zh) 废水复合热载体发生器及复合热载体产生方法
CN104357094A (zh) 一种高效激冷装置
CN105823032B (zh) 废水复合热载体发生器及复合热载体产生方法
CN103527162A (zh) 用于石油稠油开采的蒸汽发生器
CN204251570U (zh) 一种高效激冷装置
WO2017206281A1 (zh) 冷却气化装置、废水复合热载体发生器及复合热载体产生方法
CN101659755A (zh) 洗涤分离法再生胶脱硫罐排放汽净化处理技术及设备
KR101049645B1 (ko) 분사냉각방식의 연소실
CN108579366A (zh) 一种基于布朗气体的废气处理器
CN204325276U (zh) 气化炉及其激冷装置
CN205690381U (zh) 除垢装置
CN210772088U (zh) 一种用于超深井下稠油热采的超临界水热燃烧型蒸汽发生器
WO2021077660A1 (zh) 一种用于稠油热采的超临界水热燃烧型井下蒸汽发生器
CN207395505U (zh) 一种高效硅钢线生产中的水蒸气回收利用装置
KR101898255B1 (ko) 고형분 부착방지 및 연소가스 유도찬넬이 구비된 열분해장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201792636

Country of ref document: EA

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16903664

Country of ref document: EP

Kind code of ref document: A1