WO2017206084A1 - 回热循环燃气轮机系统及冷热电联供系统 - Google Patents

回热循环燃气轮机系统及冷热电联供系统 Download PDF

Info

Publication number
WO2017206084A1
WO2017206084A1 PCT/CN2016/084199 CN2016084199W WO2017206084A1 WO 2017206084 A1 WO2017206084 A1 WO 2017206084A1 CN 2016084199 W CN2016084199 W CN 2016084199W WO 2017206084 A1 WO2017206084 A1 WO 2017206084A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
regenerator
compressed air
turbine
exhaust gas
Prior art date
Application number
PCT/CN2016/084199
Other languages
English (en)
French (fr)
Inventor
王志强
Original Assignee
深圳智慧能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳智慧能源技术有限公司 filed Critical 深圳智慧能源技术有限公司
Priority to PCT/CN2016/084199 priority Critical patent/WO2017206084A1/zh
Publication of WO2017206084A1 publication Critical patent/WO2017206084A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to a gas turbine system, and more particularly to a gas turbine system with a regenerative cycle and a combined heat and power system.
  • Gas turbine systems with regenerative cycles are known.
  • the exhaust gas from the turbine is introduced into the regenerator, and the compressed air supplied by the compressor is first introduced into the regenerator and preheated by the turbine exhaust gas, and then introduced into the combustion chamber to participate in combustion.
  • the combustion product is formed, that is, the gas working medium. Since the compressed air is advanced in preheating, the amount of fuel injected into the combustion chamber is relatively reduced for combustion products that provide the same temperature and pressure, thereby increasing the thermal efficiency of the system.
  • a lithium bromide unit is usually connected behind the regenerator to meet the cooling requirements. If there is no need for refrigeration, then such a system will waste more waste heat. Moreover, the demand for refrigeration will change, and the system needs to adopt some mechanism to adapt to this change.
  • this paper proposes a regenerative cycle gas turbine system that can adopt a flexible operation mode to adapt to changes in demand of cold and heat electricity according to the demand of cold and heat electricity.
  • This paper proposes a cold and heat power supply system, which can adopt a flexible operation mode to adapt to changes in demand of cold and heat electricity according to the demand of cold and heat electricity.
  • the regenerative cycle gas turbine system proposed herein includes a compressor, an air regenerator, a combustion chamber, a turbine, a steam regenerator, and a steam passage.
  • the compressor has a compressed air outlet.
  • An air regenerator is used to preheat the compressed air at the compressed air outlet of the compressor.
  • the combustion chamber receives the preheated compressed air and discharges the combustion products after participating in the combustion.
  • the turbine receives the combustion products and exhausts the exhaust gases after the combustion products are worked, the exhaust gases being introduced into the air regenerator for heat exchange with the compressed air.
  • a steam regenerator is coupled to the air regenerator to receive exhaust gas flowing through the air regenerator. Steam passage Through the steam regenerator, water in the steam passage absorbs heat of the exhaust gas to become steam, and the steam passage is connected to the turbine or the combustion chamber, so that the steam is injected into the steam Flat or the combustion chamber.
  • the regenerative cycle gas turbine system includes a lithium bromide unit, and a junction of the lithium bromide unit and the regenerative cycle gas turbine system is located between the air regenerator and the steam regenerator.
  • the connection point is provided with an exhaust gas flow control device configured to control a respective flow rate of the exhaust gas flowing through the air regenerator to the steam regenerator and the lithium bromide unit.
  • the compressed air outlet of the compressor is in communication with the air regenerator through a first compressed air passage, and the compressed air outlet of the compressor further passes through the second compressed air passage and the a combustion chamber is connected, and a compressed air flow control device is disposed between the first compressed air passage and the second compressed air passage, and the compressed air flow control device is configured to control the first compressed air passage and the second compression The respective compressed air flow in the air passage.
  • the system further includes a gas-liquid separator.
  • the gas-liquid separator includes an exhaust gas inlet that receives exhaust gas flowing through the steam regenerator, a gas outlet that communicates with an inlet of the compressor, and a liquid outlet that communicates with an inlet of the steam passage.
  • the turbine has a gas inlet and a steam inlet, the gas inlet and the steam inlet, respectively, for receiving the combustion products and the steam.
  • the turbine includes a gas working portion and a steam working portion divided in a circumferential direction, and combustion products injected from the gas inlet are substantially only worked on the gas working portion, and steam injected from the steam inlet is substantially only Work on the steam work department.
  • Another cogeneration system proposed herein includes a compressor, an air regenerator, a combustion chamber, a turbine, a generator, a lithium bromide unit, a steam regenerator, a steam passage, and an exhaust gas flow control device.
  • the compressor has a compressed air outlet.
  • An air regenerator is used to preheat the compressed air at the compressed air outlet of the compressor.
  • the combustion chamber receives the preheated compressed air and discharges combustion products after the compressed air participates in combustion.
  • the turbine receives the combustion products and exhausts the exhaust gases after the combustion products are worked, the exhaust gases being introduced into the air regenerator for heat exchange with the compressed air.
  • the generator is coupled to the turbine drive to be powered by the turbine drive.
  • the lithium bromide unit is coupled to the air regenerator to receive exhaust gas flowing through the air regenerator.
  • the steam regenerator is coupled to the air regenerator to receive exhaust gas flowing through the air regenerator.
  • the steam passage passes through the steam regenerator The water in the steam passage absorbs the heat of the exhaust gas to form a steam working medium working on the turbine.
  • the exhaust gas flow control device is configured to control a respective flow rate of the exhaust gas flowing through the air regenerator to the steam regenerator and the lithium bromide unit.
  • the exhaust gas flow control device is a three-way valve, the three-way valve includes an inlet and two outlets, and the one inlet is in communication with the air regenerator, the two The outlet is in communication with the lithium bromide unit and the steam regenerator, respectively.
  • the cogeneration system includes a first compressed air passage, a second compressed air passage, and a three-way valve.
  • the first compressed air passage is in communication with a compressed air outlet of the compressor and the air regenerator.
  • the second compressed air passage is in communication with a compressed air outlet of the compressor and the combustion chamber.
  • the three-way valve includes an inlet and two outlets, the inlet being in communication with a compressed air outlet of the compressor, the two outlets being in communication with the first compressed air passage and the second compressed air passage, respectively .
  • a regenerative cycle gas turbine system including a turbine, an air regenerator, a gas working medium passage, a steam working channel, and a steam regenerator.
  • the air regenerator is configured to receive exhaust gas discharged from the turbine.
  • the gas working fluid passage is configured to provide a gas working fluid working on the turbine, and the gas working fluid passage passes through the air regenerator to absorb a portion of the heat of the exhaust gas in the air regenerator.
  • the steam working fluid passage is for providing a working fluid working on the turbine.
  • the steam regenerator is disposed downstream of the air regenerator to receive exhaust gas discharged from the air regenerator, and the vapor working medium passage passes through the steam regenerator to absorb the steam regenerator Another portion of the heat of the exhaust gas thereby changes the water in the steam working channel to the steam working fluid.
  • the system may include a gas-liquid separator as appropriate.
  • the gas-liquid separator includes an exhaust gas inlet that receives exhaust gas flowing through the steam regenerator, a gas outlet that communicates with an inlet of the compressor, and a liquid outlet that communicates with an inlet of the steam working fluid passage.
  • FIG. 1 is a simplified schematic diagram of one embodiment of a regenerative cycle gas turbine system.
  • FIG. 2 is a simplified schematic view of the turbine of FIG. 1.
  • FIG. 3 is a simplified schematic diagram of another embodiment of a regenerative cycle gas turbine system.
  • FIG. 4 is a simplified schematic diagram of another embodiment of a regenerative cycle gas turbine system.
  • FIG. 5 is a simplified schematic diagram of another embodiment of a regenerative cycle gas turbine system.
  • FIG. 6 is a simplified schematic diagram of yet another embodiment of a regenerative cycle gas turbine system.
  • FIG. 1 is a simplified schematic diagram of an embodiment of a regenerative cycle gas turbine system.
  • the regenerative gas turbine system includes a compressor 10, a combustion chamber 12, a turbine 14, a generator 16, an air regenerator 18, a steam regenerator 20, and a steam passage 22.
  • the compressor 10 is used to compress air.
  • the compressor 10 can be any suitable type of compressor, such as an axial or centrifugal compressor, which can be one or more stages, and is not limited herein.
  • Compressor 10 has a compressed air outlet 11 for exhausting compressed air to participate in the combustion process within combustion chamber 12.
  • the compressed air is preheated in the air regenerator 18 before being injected into the combustion chamber 12.
  • the heat of the compressed air in the air regenerator 18 is derived from the exhaust gas discharged from the turbine 14.
  • the fuel input to the combustion chamber 12 can be reduced for combustion products that produce the same temperature and pressure, thereby increasing the thermal efficiency of the system.
  • the combustion chamber 12 receives the preheated compressed air.
  • the compressed air participates in combustion in the combustion chamber 12 to form high temperature and high pressure combustion products and is discharged.
  • Turbine 14 receives the products of combustion, allowing the products of combustion to work on turbine 14, and exhausting the exhaust gases after work on the products of combustion.
  • the exhaust gas discharged from the turbine 14 contains a large amount of residual heat, so that the exhaust gas is introduced into the air regenerator 18 to exchange heat with the compressed air, thereby preheating the compressed air.
  • the generator 16 is drivingly coupled to the turbine 14 to be driven by the turbine 14 to generate electricity.
  • generator 16 is taken as an example of a system load. In other embodiments, the system load may also be other mechanisms that need to be driven.
  • the steam regenerator 20 is disposed downstream of the air regenerator 18 as viewed from the exhaust gas discharged from the turbine 14.
  • the steam regenerator 20 is coupled to the air regenerator 18 to receive exhaust gas flowing through the air regenerator.
  • the steam passage 22 is connected to the turbine 14 for supplying steam to the turbine 14 for work on the turbine 14.
  • the steam passage 22 passes through the steam regenerator 20 such that the water in the steam passage 22 absorbs the heat of the exhaust gas to form steam.
  • the input to the steam passage 22 may be water at normal temperature. After the heat exchanger 18 has undergone heat exchange, the exhaust gas temperature is about 320 degrees. After the countercurrent heat exchange, the water at normal temperature becomes steam, and the high temperature exhaust gas can be theoretically reduced to near normal temperature. From the point of view of energy conversion, most of the energy of the high-temperature exhaust gas is transferred to the steam working medium, thus significantly improving the thermal efficiency of the system.
  • the exhaust of the steam regenerator 20 is the exhaust of the entire system.
  • the exhaust temperature of the entire system can be as low as near normal temperature, but in other embodiments such low temperature exhaust may not be necessary. Therefore, different exhaust temperatures can be designed according to actual conditions.
  • the turbine 14 is provided with a separate gas inlet 24 and a steam inlet 26.
  • the gas inlet 24 receives combustion products or gas working fluid from the combustion chamber 12, while the steam inlet 26 receives the vapor working fluid from the steam passage 22.
  • the turbine 14 includes a gas working portion 28 and a steam working portion 30 which are divided in the circumferential direction.
  • the gas working department 28 corresponds to the gas inlet 24, and the gas working fluid injected from the gas inlet 24 is actually only worked on the gas working part 28.
  • the steam working portion 30 corresponds to the steam inlet 26, and the steam working fluid injected from the steam inlet 26 is substantially only worked on the steam working portion 30.
  • the system is to work on the same turbine according to the work of the Brayton cycle and the work according to the Rankine cycle.
  • the higher the temperature before the gas enters the turbine the higher its workability and the higher the thermal efficiency of the gas turbine.
  • the heat resistance of the turbine components such as the blades is also more challenging.
  • the temperature of the Brayton cycle is as high as 1000 degrees Celsius, while the temperature of the Rankine cycle is relatively low, usually less than 700 degrees Celsius.
  • gas and steam are each worked in different parts of the turbine, so that at any moment, only a portion of the turbine receives the high temperature of the high temperature gas, while the other portion receives the relatively low temperature of the steam, and the turbine continues to follow the turbine.
  • the ground is rotated, and the part of the gas that receives the high temperature before is continuously rotated to the portion where the steam is received and cooled by the steam. Since the gas and steam work separately in different turbine sections, although the steam continuously cools those turbines that receive the high temperature of the gas before, it does not lower the high temperature of the gas, that is, the temperature before the gas enters the turbine. In other words, the workability of high temperature gas is not impaired by the addition of steam.
  • gas and steam may also enter the turbine from the same turbine inlet, ie, the gas inlet and the steam inlet are the same inlet.
  • FIG. 3 is a simplified schematic diagram of another embodiment of a regenerative cycle gas turbine system.
  • the regenerative gas turbine system includes a compressor 210, a combustion chamber 212, a turbine 214, a generator 216, an air regenerator 218, a steam regenerator 220, and a steam passage 222.
  • the compressor 210 is used to compress air.
  • Compressor 210 can be any suitable type of compressor, such as an axial or centrifugal compressor, which can be one or more stages, and is not limited herein.
  • the compressor 210 has a compressed air outlet 211 for discharging compressed air to participate in a combustion process within the combustion chamber 212.
  • the system includes a first compressed air passage 224, a second compressed air passage 226, and a compressed air flow control device 228.
  • the first compressed air passage 224 is in communication with the compressed air outlet 211 of the compressor and the air regenerator 218 for passing compressed air to the air regenerator 218.
  • a second compressed air passage 226 is communicated between the compressed air outlet 211 of the compressor and the combustion chamber 212 for passing compressed air into the combustion chamber 212.
  • the compressed air flow control device 228 is configured to control respective compressed air flows within the first compressed air passage 224 and the second compressed air passage 226.
  • the compressed air flow control device 228 selectively passes compressed air through the first compressed air passage 224 into the air regenerator or through the second compressed air passage 226 into the combustion chamber. That is, the flow of compressed air within the first compressed air passage 224 and the second compressed air passage 226 is switched between zero and maximum flow, i.e., between preheating and no preheating is required.
  • compressed air flow control device 228 distributes the flow of compressed air in first compressed air passage 224 and second compressed air passage 226. That is, the compressed air flow control device 228 is used to adjust how much compressed air is preheated before entering the combustion.
  • Chamber 212 burns and how much compressed air enters combustion chamber 212 for combustion.
  • the former mode is a special case of the latter mode, that is, the compressed air flow control device 228 adjusts the compressed air flow rate of one compressed air passage to zero, and the compressed air flow rate of the other compressed air passage. Adjust to maximum.
  • the temperature of the exhaust gas in the air regenerator can be controlled from the temperature of the regenerator :: The amount of preheated compressed air is large, and the temperature of the exhaust gas from the regenerator is lower.
  • the next-stage recovery unit (for example, the steam regenerator 220, which uses the thermal energy of the exhaust gas, so that it can be regarded as a heat recovery device), can recover less heat from the exhaust gas; if the amount of preheated compressed air is small, then The exhaust gas temperature of the helium regenerator is higher, and the next-stage recovery unit can recover more heat from the exhaust gas. Therefore, the above-described adjustment of the amount of compressed air can be performed according to how much heat is required to be recovered from the exhaust gas by the next-stage recovery device.
  • the compressed air flow control device 228 can be implemented as a three-way valve 228, one inlet of the three-way valve 228 being in communication with the compressed air outlet 211 of the compressor, and two The outlets are in communication with the air regenerator 218 and the combustion chamber 212, respectively.
  • the compressed air is preheated in the air regenerator 218 and injected into the combustion chamber 212.
  • the heat of the compressed air in the air regenerator 218 is derived from the exhaust gas discharged from the turbine 214.
  • the fuel input to the combustion chamber 212 can be reduced, thereby increasing the thermal efficiency of the system.
  • the combustion chamber 212 receives compressed air and/or preheated compressed air. These compressed air participates in combustion in the combustion chamber 212 to form high temperature and high pressure combustion products or gas working substances and is discharged.
  • the turbine 214 receives the gas working medium, allows the gas working fluid to work on the turbine 214, and discharges the exhaust gas after work.
  • the exhaust gas discharged from the turbine 214 contains a large amount of residual heat, so that the exhaust gas is introduced into the air regenerator 218 to exchange heat with the compressed air, thereby preheating the compressed air.
  • generator 216 is an example of a system load. In other embodiments, the system load may also be other mechanisms that need to be driven.
  • the steam regenerator 220 is disposed downstream of the air regenerator 218 as seen from the flow of exhaust gas discharged from the turbine 214.
  • Steam regenerator 220 is coupled to air regenerator 218 to receive exhaust gas flowing through the air regenerator.
  • a steam passage 222 is coupled to the turbine 214 for providing steam to the turbine 214 for work on the turbine 214.
  • the steam passage 222 passes through the steam regenerator 220, so that the water in the steam passage 222 absorbs the heat of the exhaust gas to form Steam.
  • the input to the steam passage 222 may be water at normal temperature.
  • the exhaust gas temperature is about 320 degrees.
  • the high temperature exhaust gas can theoretically be reduced to near normal temperature. From the point of view of energy conversion, most of the energy of the high-temperature exhaust gas is transferred to the steam working medium, thus significantly improving the thermal efficiency of the system.
  • gas inlet and the steam inlet of the turbine 214 can be arranged in the same manner as in the previous embodiment, or can be the same inlet. Gas and steam can be worked on different parts of turbine 214 or mixed together.
  • the regenerative gas turbine system includes a compressor 310, a combustion chamber 312, a turbine 314, a generator 316, an air regenerator 318, a steam regenerator 320, a steam passage 322, and a lithium bromide unit 330.
  • the regenerative cycle gas turbine system of this embodiment is actually a cogeneration system.
  • Compressor 310 is used to compress air.
  • Compressor 310 can be any suitable type of compressor, such as an axial or centrifugal compressor, and can be one or more stages, without limitation.
  • the compressor 310 has a compressed air outlet 311 for discharging compressed air to participate in a combustion process within the combustion chamber 312.
  • the compressed air is preheated in the air regenerator 318 before being injected into the combustion chamber 312.
  • the heat of the compressed air in the air regenerator 318 is derived from the exhaust gas from the turbine 314.
  • the compressed air is preheated and injected into the combustion chamber 312.
  • the fuel input to the combustion chamber 312 can be reduced, thereby increasing the thermal efficiency of the system.
  • the combustion chamber 312 receives the preheated compressed air.
  • the compressed air participates in combustion in the combustion chamber 312 to form high temperature and high pressure combustion products or gas working fluid and is discharged.
  • Turbine 314 receives the gas working fluid, allows the gas working fluid to work on the turbine 314, and discharges the exhaust gas after work.
  • the exhaust gas discharged from the turbine 31 4 contains a large amount of residual heat, so that the exhaust gas is introduced into the air regenerator 318 to exchange heat with the compressed air, thereby preheating the compressed air.
  • generator 316 is an example of a system load. In other embodiments, the system load may also be other mechanisms that need to be driven.
  • the steam regenerator 320 is disposed downstream of the air regenerator 318 as seen from the flow of exhaust gas discharged from the turbine 314.
  • a steam regenerator 320 is coupled to the air regenerator 318 to receive exhaust gases flowing through the air regenerator.
  • a steam passage 322 is coupled to the turbine 314 for providing steam to the turbine 314 for work on the turbine 314. Steaming The steam passage 322 passes through the steam regenerator 320 such that the water in the steam passage 322 absorbs the heat of the exhaust gas to form steam.
  • the input to the steam passage 322 may be water at normal temperature.
  • the exhaust gas temperature is about 320 degrees.
  • the high temperature exhaust gas can theoretically be reduced to near normal temperature. From the point of view of energy conversion, most of the energy of the high-temperature exhaust gas is transferred to the steam working medium, thus significantly improving the thermal efficiency of the system.
  • the junction of the lithium bromide unit 330 and the regenerative cycle gas turbine system is located between the air regenerator 318 and the steam regenerator 320, which is provided with an exhaust gas flow control device 332.
  • Exhaust gas flow control device 332 is configured to control the respective flow rates of exhaust gas flowing through air regenerator 318 to steam regenerator 320 and lithium bromide unit 330. In one mode, the exhaust gas flow control device 332 selectively passes the exhaust gas to the steam regenerator 320 or to the lithium bromide unit 330.
  • the exhaust gas from the air regenerator 318 either flows to the steam regenerator 320 or to the lithium bromide unit 330, i.e., between the operation of the steam regenerator 320 and the operation of the lithium bromide unit 330.
  • the exhaust gas flow control device 332 distributes the exhaust gas flow of the steam regenerator 320 and the lithium bromide unit 330. That is, the exhaust gas flow control device 332 regulates how much of the exhaust gas enters the steam regenerator 320, and how much of the exhaust gas enters the lithium bromide unit 330.
  • the lithium bromide unit 330 is turned on, and when there is no need for refrigeration, the lithium bromide unit 330 is turned off.
  • the exhaust gas flow control device 332 can be utilized to adjust the amount of exhaust gas fed to the lithium bromide unit 330 to accommodate this change.
  • the former method is a special case of the latter mode, that is, the exhaust gas flow control device 33 2 adjusts the exhaust gas flow rate of one of the steam regenerator 320 and the lithium bromide unit 330 to zero, and Adjust the flow rate of the other exhaust gas to the maximum.
  • the exhaust gas flow control device 332 can be implemented as a three-way valve 332, one inlet of the three-way valve 332 is in communication with the outlet of the air regenerator 318, and two The outlets are in communication with steam regenerator 320 and lithium bromide unit 330, respectively.
  • gas inlet and the steam inlet of the turbine 314 can be arranged in the same manner as in the previous embodiment, and can be divided into two or the same inlet. Gas and steam can be worked on different parts of turbine 314 or mixed together.
  • FIG. 5 is a simplified schematic diagram of another embodiment of a regenerative cycle gas turbine system.
  • the regenerative gas turbine system includes a compressor 410, a combustion chamber 412, a turbine 414, a generator 416, and an air regenerator 418.
  • Compressor 410 is used to compress air.
  • Compressor 410 can be any suitable type of compressor, such as an axial or centrifugal compressor, and can be one or more stages, and is not limited herein.
  • the compressor 410 has a compressed air outlet 411 for discharging compressed air to participate in the combustion process of the combustion chamber 412.
  • the system includes a first compressed air passage 424, a second compressed air passage 426, and a compressed air flow control device 428.
  • the first compressed air passage 424 is in communication with the compressed air outlet 411 of the compressor and the air regenerator 418 for passing compressed air to the air regenerator 418.
  • a second compressed air passage 426 is in communication with the compressed air outlet 411 of the compressor and the combustion chamber 412 for passing compressed air into the combustion chamber 412.
  • the compressed air flow control device 428 is configured to control respective compressed air flows within the first compressed air passage 424 and the second compressed air passage 426.
  • the compressed air flow control device 428 selectively passes compressed air through the first compressed air passage 424 to the air regenerator or through the second compressed air passage 426 to the combustion chamber. That is, the flow of compressed air within the first compressed air passage 424 and the second compressed air passage 426 is switched between zero and maximum flow, i.e., between the need for preheating and the absence of preheating.
  • the compressed air flow control device 428 distributes the flow of compressed air in the first compressed air passage 424 and the second compressed air passage 426.
  • the compressed air flow control device 428 is used to adjust how much compressed air is preheated before entering the combustion chamber 412 for combustion, and how much compressed air is connected to the combustion chamber 412 for combustion.
  • the former method is a special case of the latter mode, that is, the compressed air flow control device 428 adjusts the compressed air flow rate of one compressed air passage to zero, and the compressed air flow rate of the other compressed air passage. Adjust to maximum.
  • the temperature of the exhaust gas in the air regenerator can be controlled from the temperature of the regenerator :: The amount of preheated compressed air is large, and the temperature of the exhaust gas from the regenerator is lower.
  • the next-stage recovery unit (for example, the steam regenerator 420 and the lithium bromide unit 430, which utilizes or partially utilizes the thermal energy of the exhaust gas, and thus can be regarded as a heat recovery device) can recover less heat from the exhaust gas;
  • the amount of compressed air is small, the temperature of the exhaust gas from the regenerator is higher, and the next-stage recovery device can recover more heat from the exhaust gas. Therefore, the above-described adjustment of the amount of compressed air can be performed according to how much heat is required to be recovered from the exhaust gas by the next-stage recovery device.
  • the compressed air flow control device 428 can be implemented as A three-way valve 428, one inlet of the three-way valve 428 is in communication with the compressed air outlet 411 of the compressor, and the two outlets are in communication with the air regenerator 418 and the combustion chamber 412, respectively.
  • the compressed air is preheated in the air regenerator 418 and then injected into the combustion chamber 412.
  • the heat of the compressed air in the air regenerator 418 is derived from the exhaust gas from the turbine 414.
  • the fuel input to the combustion chamber 412 can be reduced, thereby increasing the thermal efficiency of the system.
  • Combustion chamber 412 receives compressed air and/or preheated compressed air. These compressed air participates in combustion in the combustion chamber 412 to form high temperature and high pressure combustion products or gas working substances and is discharged.
  • Turbine 414 receives the gas working fluid, allows the gas working fluid to work on the turbine 414, and discharges the exhaust gas after work.
  • the exhaust gas discharged from the turbine 414 contains a large amount of residual heat, so that the exhaust gas is introduced into the air regenerator 418 to exchange heat with the compressed air, thereby preheating the compressed air.
  • generator 416 is exemplified as a system load. In other embodiments, the system load may also be other mechanisms that need to be driven.
  • the steam regenerator 420 is disposed downstream of the air regenerator 418 as viewed from the exhaust gas exiting the turbine 414.
  • Steam regenerator 420 is coupled to air regenerator 418 to receive exhaust gases flowing through the air regenerator.
  • a steam passage 422 is coupled to the turbine 414 for providing steam to the turbine 414 for work on the turbine 414.
  • the steam passage 422 passes through the steam regenerator 420 such that the water in the steam passage 422 absorbs heat from the exhaust gas to form steam.
  • the input to the steam passage 422 may be water at normal temperature.
  • the exhaust gas temperature is about 320 degrees.
  • the high temperature exhaust gas can theoretically be reduced to near normal temperature. From the point of view of energy conversion, most of the energy of the high-temperature exhaust gas is transferred to the steam working medium, thus significantly improving the thermal efficiency of the system.
  • the junction of the lithium bromide unit 430 and the regenerative cycle gas turbine system is located between the air regenerator 418 and the steam regenerator 420, which is provided with an exhaust gas flow control device 432.
  • the exhaust gas flow control device 432 is configured to control the respective flow rates of the exhaust gas flowing through the air regenerator 418 to the steam regenerator 420 and the lithium bromide unit 430. In one mode, the exhaust gas flow control device 432 selectively passes the exhaust gases to the steam regenerator 420 or to the lithium bromide unit 430.
  • the exhaust gas discharged from the air regenerator 418 either flows to the steam regenerator 420 or flows to the lithium bromide unit 430, that is, switches between the operation of the steam regenerator 420 and the operation of the lithium bromide unit 430.
  • the exhaust gas flow control device 432 distributes steam back The exhaust gas flow rate of the heat exchanger 420 and the lithium bromide unit 430. That is, the exhaust gas flow control device 432 regulates how much exhaust gas enters the steam regenerator 420, and how much of the exhaust gas enters the lithium bromide unit 430.
  • the exhaust gas flow control device 432 can be utilized to adjust the amount of exhaust gas to the lithium bromide unit 430 to accommodate this change.
  • the former mode is a special case of the latter mode, that is, the exhaust gas flow control device 43
  • the exhaust gas flow control device 432 can be implemented as a three-way valve 432, one inlet of the three-way valve 432 communicating with the outlet of the air regenerator 418, and two The outlets are in communication with a steam regenerator 420 and a lithium bromide unit 430, respectively.
  • gas inlet and the steam inlet of the turbine 414 can be arranged in the same manner as in the previous embodiment, or can be the same inlet. Gas and steam can be worked on different parts of turbine 414 or mixed together.
  • the regenerative gas turbine system includes a compressor 510, a combustion chamber 512, a turbine 514, a generator 516, an air regenerator 518, a steam regenerator 520, a steam passage 522, a lithium bromide unit 530, and a gas-liquid separator 540.
  • the compressor 510, the combustion chamber 512, the turbine 514, the generator 516, the air regenerator 518, the steam regenerator 520, the steam passage 522, and the lithium bromide unit 530 operate in a manner similar to the embodiment of FIG. No longer
  • the gas-liquid separator 540 is connected to the exhaust gas passage outlet of the steam regenerator 520 to separate the gas and water in the exhaust gas passage.
  • the gas-liquid separator 540 includes an exhaust gas inlet that receives exhaust gas flowing through the steam regenerator, a gas outlet that communicates with an inlet of the compressor 510, and a liquid outlet that communicates with an inlet of the steam passage.
  • the separated liquid or moisture is passed to the steam passage inlet of the steam regenerator 520, and the separated gas is passed through line 542 to the inlet of the compressor 510, thus forming a closed cycle.
  • Oxygen or other suitable oxidizers need to be replenished to the system due to the continued consumption of oxygen in the gas.
  • the addition of oxygen or a combustion improver to the system can be carried out in an existing manner and will therefore not be described in detail herein. Due to the addition of oxygen or combustion improver, the total quality of the working fluid is increasing, so it is necessary to extract the exhaust gas in a suitable place.
  • an air pump for extracting exhaust gas may be connected to the gas-liquid separator 540. In other embodiments, the air pump can also be placed in other suitable locations.
  • the closed loop can also be constructed by adding a gas-liquid separator.
  • the steam working fluid provided by the steam passage for working on the turbine is directly connected to the turbine for work.
  • the steam medium in the steam passage can also be passed to the combustion chamber, mixed with the gas and passed to the turbine for work.
  • the combustion chamber is provided with a steam inlet in the rear section thereof (to prevent the injected steam from affecting the flame).
  • the working fluids on turbines 14, 214, 314, 414, and 514 include gas working fluids and steam working fluids, and gas working fluids are formed by heating compressed air. Heating of the compressed air includes primary heating of the air regenerators 18, 218, 318, 418, 518
  • Heating exchange and secondary heating of the combustion chambers 12, 212, 312, 412, 512 (heating by combustion). Therefore, from the outlet of the compressor to the air regenerator, the combustion chamber and the gas inlet of the turbine can be regarded as a gas working channel, and the function of the gas working channel is to change the compressed air into a high temperature gas working medium.
  • the gas working fluid passage absorbs a portion of the heat of the turbine exhaust through the air regenerators 18, 218, 318, 418, 518.
  • Steam working fluid is formed by heating water. Heating of the water includes heating (heat exchange) of the steam regenerators 20, 220, 320, 420, 520 connected downstream of the air regenerators 18, 218, 318, 418, 518.
  • the steam inlet from the inlet end of the water to the steam regenerator to the turbine inlet of the turbine or the combustion chamber can be regarded as a steam working channel, which functions to turn the low temperature water into high temperature steam.
  • a cogeneration system can be realized, and the system operation mode can be changed to adapt to such heat or cold changes according to changes in heat or cold demand.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明公开一种回热循环燃气轮机系统及冷热电联供系统。回热循环燃气轮机系统包括压气机、空气回热器、燃烧室、透平、蒸汽回热器、蒸汽通道。压气机具有一压缩空气出口。空气回热器用以对所述压气机的压缩空气出口的压缩空气进行预热。燃烧室接收所述被预热的压缩空气并在参与燃烧后排出燃烧产物。透平接收所述燃烧产物并在所述燃烧产物做工后排出废气,所述废气被引入所述空气回热器以与所述压缩空气进行热交换。蒸汽回热器与空气回热器连接以接收流过所述空气回热器的废气。蒸汽通道通过所述蒸汽回热器,使得所述蒸汽通道内的水吸收所述废气的热量而变成蒸汽。蒸汽通道与透平或燃烧室连接,使得所述蒸汽被注入透平或燃烧室。

Description

回热循环燃气轮机系统及冷热电联供系统 技术领域
[0001] 本发明涉及一种燃气轮机系统, 特别是涉及带回热循环的燃气轮机系统及冷热 电联供系统。
背景技术
[0002] 带回热循环的燃气轮机系统是已知的。 在这种系统中, 透平排出的废气通入回 热器中, 同吋压气机提供的压缩空气先通入回热器中利用透平废气先进行预热 , 然后通入燃烧室参与燃烧以形成燃烧产物, 即燃气工质。 由于压缩空气先进 行了预热, 对于提供相同温度和压力的燃烧产物, 投入燃烧室内的燃料相对减 少, 从而提高了系统的热效率。 在冷热电联产系统中, 通常在回热器后面连接 一溴化锂机组满足制冷的需求。 如果暂吋没有制冷的需求, 那么这种系统就会 浪费较多的废气余热。 而且, 制冷的需求量有吋也会变化, 系统需要采用一些 机制能适应这种变化。
技术问题
[0003] 有鉴于此, 本文提出一种回热循环燃气轮机系统, 其能根据冷热电的需求, 采 取灵活的运行方式以适应冷热电的需求变化。
[0004] 本文提出一种冷热电联供系统, 其能根据冷热电的需求, 采取灵活的运行方式 以适应冷热电的需求变化。
问题的解决方案
技术解决方案
[0005] 本文提出的回热循环燃气轮机系统包括压气机、 空气回热器、 燃烧室、 透平、 蒸汽回热器、 蒸汽通道。 压气机具有一压缩空气出口。 空气回热器用以对所述 压气机的压缩空气出口的压缩空气进行预热。 燃烧室接收所述被预热的压缩空 气并在参与燃烧后排出燃烧产物。 透平接收所述燃烧产物并在所述燃烧产物做 工后排出废气, 所述废气被引入所述空气回热器以与所述压缩空气进行热交换 。 蒸汽回热器与空气回热器连接以接收流过所述空气回热器的废气。 蒸汽通道 通过所述蒸汽回热器, 使得所述蒸汽通道内的水吸收所述废气的热量而变成蒸 汽, 所述蒸汽通道与所述透平或燃烧室连接, 使得所述蒸汽被注入所述透平或 所述燃烧室。
[0006] 在一实施例中, 回热循环燃气轮机系统包括溴化锂机组, 溴化锂机组与回热循 环燃气轮机系统的连接点位于所述空气回热器和所述蒸汽回热器之间。 所述连 接点设有废气流量控制装置, 所述废气流量控制装置构造成用以控制所述废气 流过所述空气回热器后向所述蒸汽回热器和所述溴化锂机组的各自流量。
[0007] 在一实施例中, 所述压气机的压缩空气出口通过第一压缩空气通道与所述空气 回热器连通, 所述压气机的压缩空气出口还通过第二压缩空气通道与所述燃烧 室连通, 且所述第一压缩空气通道和第二压缩空气通道之间设置压缩空气流量 控制装置, 所述压缩气孔流量控制装置构造成用以控制所述第一压缩空气通道 和第二压缩空气通道内的各自压缩空气流量。
[0008] 在一实施例中, 该系统还包括气液分离器。 该气液分离器包括接收流过所述蒸 汽回热器的废气的废气入口、 与所述压气机的入口连通的气体出口和与所述蒸 汽通道的入口连通的液体出口。
[0009] 在一实施例中, 所述透平具有燃气入口和蒸汽入口, 所述燃气入口和蒸汽入口 分别用以接收所述燃烧产物和所述蒸汽。 所述透平包括沿圆周方向划分的燃气 做工部和蒸汽做工部, 从所述燃气入口注入的燃烧产物实质上仅在所述燃气做 工部上做工, 从所述蒸汽入口注入的蒸汽实质上仅在所述蒸汽做工部上做工。
[0010] 本文提出的另一种冷热电联供系统包括压气机、 空气回热器、 燃烧室、 透平、 发电机、 溴化锂机组、 蒸汽回热器、 蒸汽通道、 废气流量控制装置。 压气机具 有一压缩空气出口。 空气回热器用以对所述压气机的压缩空气出口的压缩空气 进行预热。 所述燃烧室接收所述被预热的压缩空气并在所述压缩空气参与燃烧 后排出燃烧产物。 透平接收所述燃烧产物并在所述燃烧产物做工后排出废气, 所述废气被引入所述空气回热器以与所述压缩空气进行热交换。 所述发电机与 所述透平驱动连接以被所述透平驱动发电。 所述溴化锂机组与所述空气回热器 连接以接收流过所述空气回热器的废气。 所述蒸汽回热器与所述空气回热器连 接以接收流过所述空气回热器的废气。 所述蒸汽通道通过所述蒸汽回热器, 使 得所述蒸汽通道内的水吸收所述废气的热量而形成在所述透平上做工的蒸汽工 质。 所述废气流量控制装置构造成用以控制所述废气流过所述空气回热器后流 向所述蒸汽回热器和溴化锂机组的各自流量。
[0011] 在一实施例中, 所述废气流量控制装置为三通阀, 所述三通阀包括一个入口和 两个出口, 所述一个入口与所述空气回热器连通, 所述两个出口分别与所述溴 化锂机组和所述蒸汽回热器连通。
[0012] 在一实施例中, 所述冷热电联供系统包括第一压缩空气通道、 第二压缩空气通 道、 三通阀。 所述第一压缩空气通道连通于所述压气机的压缩空气出口与所述 空气回热器之间。 所述第二压缩空气通道连通于所述压气机的压缩空气出口与 所述燃烧室之间。 所述三通阀包括一个入口和两个出口, 所述入口与所述压气 机的压缩空气出口连通, 所述两个出口分别与所述第一压缩空气通道和所述第 二压缩空气通道连通。
[0013] 本文还提出一种回热循环燃气轮机系统, 包括透平、 空气回热器、 燃气工质通 道、 蒸汽工质通道、 蒸汽回热器。 所述空气回热器用以接收所述透平排出的废 气。 所述燃气工质通道用以提供在所述透平上做工的燃气工质, 所述燃气工质 通道通过所述空气回热器以吸收所述空气回热器中的废气的一部分热量。 所述 蒸汽工质通道用以提供在所述透平上做工的蒸汽工质。 所述蒸汽回热器设置在 所述空气回热器下游以接收所述空气回热器排出的废气, 所述蒸汽工质通道通 过所述蒸汽回热器以吸收所述蒸汽回热器中的废气的另一部分热量从而将所述 蒸汽工质通道中的水变成所述蒸汽工质。 而且, 该系统可视情况包括气液分离 器。 所述气液分离器包括接收流过所述蒸汽回热器的废气的废气入口、 与压气 机的入口连通的气体出口和与所述蒸汽工质通道的入口连通的液体出口。
发明的有益效果
有益效果
[0014] 综上所述, 上述实施例通过多级吸收透平排气的热量, 可以更大程度的回收透 平尾气的余热, 提高系统的效率。 另外, 通过加入溴化锂机组和废气流量控制 装置, 可以实现一种冷热电联产系统, 而且可以根据热或冷的需求变化改变系 统运行方式以适应这种热或冷的变化。 对附图的简要说明
附图说明
[0015] 图 1是回热循环燃气轮机系统的一个实施例的简化示意图。
[0016] 图 2是图 1的透平简化示意图。
[0017] 图 3是回热循环燃气轮机系统的另一个实施例的简化示意图。
[0018] 图 4是回热循环燃气轮机系统的另一个实施例的简化示意图。
[0019] 图 5是回热循环燃气轮机系统的另一个实施例的简化示意图。
[0020] 图 6是回热循环燃气轮机系统的又一个实施例的简化示意图。
本发明的实施方式
[0021] 在详细描述实施例之前, 应该理解的是, 本发明不限于本申请中下文或附图中 所描述的详细结构或元件排布。 本发明可为其它方式实现的实施例。 而且, 应 当理解, 本文所使用的措辞及术语仅仅用作描述用途, 不应作限定性解释。 本 文所使用的"包括"、 "包含"、 "具有"等类似措辞意为包含其后所列出之事项、 其 等同物及其它附加事项。 特别是, 当描述 "一个某元件 "吋, 本发明并不限定该元 件的数量为一个, 也可以包括多个。
[0022] 图 1是回热循环燃气轮机系统一实施例的简化示意图。 本实施例中, 回热燃气 轮机系统包括压气机 10、 燃烧室 12、 透平 14、 发电机 16、 空气回热器 18、 蒸汽 回热器 20和蒸汽通道 22。
[0023] 压气机 10用以压缩空气。 压气机 10可以为任何适当类型的压气机, 比如轴流式 或离心式压气机, 可以为一级或多级, 在此不加以限制。 压气机 10具有一压缩 空气出口 11, 用以排出压缩空气, 参与燃烧室 12内的燃烧过程。
[0024] 在本实施例中, 压缩空气在注入燃烧室 12之前, 先在空气回热器 18中进行预热 。 空气回热器 18中对压缩空气进行加热的热量来自于透平 14排出的废气。 压缩 空气预热后再注入燃烧室 12, 对于产生同样温度和压力的燃烧产物而言, 燃烧 室 12的燃料投入可以减少, 因此提高了系统的热效率。
[0025] 压缩空气在空气回热器 18中预热后, 燃烧室 12接收被预热的压缩空气。 压缩空 气在燃烧室 12内参与燃烧后形成高温高压燃烧产物并被排出。 [0026] 透平 14接收燃烧产物, 让燃烧产物在透平 14上做工, 并在燃烧产物做工后排出 废气。 透平 14排出的废气中含有大量余热, 因此废气被引入空气回热器 18与压 缩空气进行热交换, 从而对压缩空气进行预热。 发电机 16与透平 14驱动连接以 被透平 14驱动发电。 在此实施例中, 发电机 16作为系统负载的一个举例, 在其 他实施例中, 系统负载也可以是需要被驱动的其他机构。
[0027] 从透平 14排出的废气流向看, 蒸汽回热器 20设置在空气回热器 18的下游。 蒸汽 回热器 20与空气回热器 18连接以接收流过所述空气回热器的废气。 蒸汽通道 22 与透平 14连接, 用于向透平 14提供蒸汽工质以在透平 14上做工。 蒸汽通道 22通 过蒸汽回热器 20, 使得蒸汽通道 22内的水吸收废气的热量而形成蒸汽。 蒸汽通 道 22的输入可以是常温下的水。 空气回热器 18在经过换热后, 其排出的废气温 度大概还有 320度左右, 经过逆流式换热后, 常温下的水变成蒸汽, 而高温废气 理论上可降低至接近常温。 从能量转换的角度上看, 高温废气的绝大部分能量 转移到了蒸汽工质上, 因此显著提高了系统的热效率。
[0028] 在上述实施例中, 蒸汽回热器 20的排气即为整个系统的排气。 理论上整个系统 的排气温度可以低至接近常温, 但是在其它实施例中如此低温的排气可能并不 是必须的。 因此, 可以根据实际情形设计不同的排气温度。
[0029] 同吋参考图 2, 在所示的实施例中, 透平 14设有单独的燃气入口 24和蒸汽入口 2 6。 燃气入口 24接收来自燃烧室 12的燃烧产物或燃气工质, 而蒸汽入口 26接收来 自蒸汽通道 22的蒸汽工质。 透平 14包括沿圆周方向划分的燃气做工部 28和蒸汽 做工部 30。 燃气做工部 28与燃气入口 24对应, 从燃气入口 24注入的燃气工质实 质上仅在燃气做工部 28上做工。 蒸汽做工部 30与蒸汽入口 26对应, 从蒸汽入口 2 6注入的蒸汽工质实质上仅在蒸汽做工部 30上做工。
[0030] 也就是说, 在本实施例中, 该系统是将根据布雷顿循环的做工与根据朗肯循环 的做工整合在同一个透平上进行做工。 相对于现有的燃气-蒸汽联合循环而言, 这样可以使燃气轮机机组的结构更加紧凑。 通常而言, 燃气进涡轮前的温度越 高, 其做工能力就越高, 燃气轮机热效率也就越高。 但随着燃气温度的提高, 对透平部件如叶片的耐热能力也提出更大挑战。 一般布雷顿循环的工质温度高 达 1000多摄氏度, 而朗肯循环的工质温度相对要低很多, 通常低于 700摄氏度。 在该燃气轮机系统中, 燃气和蒸汽在透平的不同部位各自做工, 因此在任一吋 刻, 透平只有一部分接收高温燃气的高温, 而另一部分接收蒸汽的相对低温, 而随着透平不停地旋转, 之前接收高温的那一部分燃气做工部会不断地旋转至 接收蒸汽的部位而被蒸汽冷却。 由于燃气和蒸汽在不同的透平部位单独做工, 因此, 虽然蒸汽不断地冷却之前接收燃气高温的那些透平部位, 但不会降低燃 气的高温, 即燃气进涡轮前的温度。 换句话说, 高温燃气的做工能力没有因蒸 汽的加入而被削弱。
[0031] 当然, 在其它实施例中, 燃气和蒸汽也可以从同一个透平入口进入到透平做工 , 即燃气入口和蒸汽入口为同一入口。
[0032] 图 3是回热循环燃气轮机系统另一实施例的简化示意图。 本实施例中, 回热燃 气轮机系统包括压气机 210、 燃烧室 212、 透平 214、 发电机 216、 空气回热器 218 、 蒸汽回热器 220和蒸汽通道 222。
[0033] 压气机 210用以压缩空气。 压气机 210可以为任何适当类型的压气机, 比如轴流 式或离心式压气机, 可以为一级或多级, 在此不加以限制。 压气机 210具有一压 缩空气出口 211, 用以排出压缩空气, 参与燃烧室 212内的燃烧过程。
[0034] 在本实施例中, 系统包括第一压缩空气通道 224、 第二压缩空气通道 226和压缩 空气流量控制装置 228。
[0035] 第一压缩空气通道 224连通于压气机的压缩空气出口 211与空气回热器 218之间 , 用以将压缩空气通入空气回热器 218。 第二压缩空气通道 226连通于压气机的 压缩空气出口 211与燃烧室 212之间, 用以将压缩空气通入燃烧室 212。
[0036] 压缩空气流量控制装置 228构造成用以控制第一压缩空气通道 224和第二压缩空 气通道 226内的各自压缩空气流量。 在一种方式下, 压缩空气流量控制装置 228 选择性地将压缩空气通过第一压缩空气通道 224通入所述空气回热器或通过所述 第二压缩空气通道 226通入所述燃烧室。 也就是说, 第一压缩空气通道 224和第 二压缩空气通道 226内的压缩空气的流量在零和最大流量之间切换, 即在需要预 热和不需要预热之间进行切换。 在另一种方式下, 压缩空气流量控制装置 228分 配第一压缩空气通道 224和第二压缩空气通道 226中的压缩空气流量。 也就是说 , 通过压缩空气流量控制装置 228来调节有多少压缩空气进行预热后再进入燃烧 室 212燃烧, 有多少压缩空气直接进入燃烧室 212进行燃烧。 由此可以看出, 前 一种方式是后一种方式的一个特例, 即压缩空气流量控制装置 228将一个压缩空 气通道的压缩空气流量调节为零, 而将另一个压缩空气通道的压缩空气流量调 节为最大。 通过上述对预热的压缩空气量进行调节, 可以控制空气回热器中的 废气离幵回热器吋的温度: 预热的压缩空气量大, 则离幵回热器的废气温度就 低一些, 下一级回收装置 (例如蒸汽回热器 220, 其利用废气的热能工作, 因此 可视为热量回收装置) 可从废气中回收的热量就少一些; 预热的压缩空气量小 , 则离幵回热器的废气温度就高一些, 下一级回收装置可从废气中回收的热量 就多一些。 因此, 可以根据下一级回收装置需要从废气中回收的热量多少来进 行上述压缩空气量的调节。
[0037] 无论是前一种方式还是后一种方式, 压缩空气流量控制装置 228都可以实施成 一个三通阀 228, 三通阀 228的一个入口与压气机的压缩空气出口 211连通, 而两 个出口分别与空气回热器 218和燃烧室 212连通。
[0038] 同样, 压缩空气先在空气回热器 218中进行预热, 再注入燃烧室 212。 空气回热 器 218中对压缩空气进行加热的热量来自于透平 214排出的废气。 对于产生同样 温度和压力的燃烧产物而言, 燃烧室 212的燃料投入可以减少, 因此提高了系统 的热效率。
[0039] 燃烧室 212接收压缩空气和 /或被预热的压缩空气。 这些压缩空气在燃烧室 212 内参与燃烧后形成高温高压燃烧产物或者燃气工质并被排出。
[0040] 透平 214接收燃气工质, 让燃气工质在透平 214上做工, 并在做工后排出废气。
透平 214排出的废气中含有大量余热, 因此废气被引入空气回热器 218与压缩空 气进行热交换, 从而对压缩空气进行预热。 在此实施例中, 发电机 216作为系统 负载的一个举例, 在其他实施例中, 系统负载也可以是需要被驱动的其他机构
[0041] 从透平 214排出的废气流向看, 蒸汽回热器 220设置在空气回热器 218的下游。
蒸汽回热器 220与空气回热器 218连接以接收流过所述空气回热器的废气。 蒸汽 通道 222与透平 214连接, 用于向透平 214提供蒸汽工质以在透平 214上做工。 蒸 汽通道 222通过蒸汽回热器 220, 使得蒸汽通道 222内的水吸收废气的热量而形成 蒸汽。 蒸汽通道 222的输入可以是常温下的水。 空气回热器 218在经过换热后, 其排出的废气温度大概还有 320度左右, 经过逆流式换热后, 常温下的水变成蒸 汽, 而高温废气理论上可降低至接近常温。 从能量转换的角度上看, 高温废气 的绝大部分能量转移到了蒸汽工质上, 因此显著提高了系统的热效率。
[0042] 透平 214的燃气入口和蒸汽入口的设置可以前一实施例一样, 即可分幵设置, 也可以是同一个入口。 燃气和蒸汽可以在透平 214的不同部位上做工, 也可以混 合一起做工。
[0043] 图 4是回热循环燃气轮机系统另一实施例的简化示意图。 本实施例中, 回热燃 气轮机系统包括压气机 310、 燃烧室 312、 透平 314、 发电机 316、 空气回热器 318 、 蒸汽回热器 320、 蒸汽通道 322和溴化锂机组 330。 本实施例的回热循环燃气轮 机系统实际上是一个冷热电联产系统。
[0044] 压气机 310用以压缩空气。 压气机 310可以为任何适当类型的压气机, 比如轴流 式或离心式压气机, 可以为一级或多级, 在此不加以限制。 压气机 310具有一压 缩空气出口 311, 用以排出压缩空气, 参与燃烧室 312内的燃烧过程。
[0045] 在本实施例中, 压缩空气在注入燃烧室 312之前, 先在空气回热器 318中进行预 热。 空气回热器 318中对压缩空气进行加热的热量来自于透平 314排出的废气。 压缩空气预热后再注入燃烧室 312, 对于产生同样温度和压力的燃烧产物而言, 燃烧室 312的燃料投入可以减少, 因此提高了系统的热效率。
[0046] 压缩空气在空气回热器 318中预热后, 燃烧室 312接收被预热的压缩空气。 压缩 空气在燃烧室 312内参与燃烧后形成高温高压燃烧产物或燃气工质并被排出。
[0047] 透平 314接收燃气工质, 让燃气工质在透平 314上做工, 并在做工后排出废气。
透平 314排出的废气中含有大量余热, 因此废气被引入空气回热器 318与压缩空 气进行热交换, 从而对压缩空气进行预热。 在此实施例中, 发电机 316作为系统 负载的一个举例, 在其他实施例中, 系统负载也可以是需要被驱动的其他机构
[0048] 从透平 314排出的废气流向看, 蒸汽回热器 320设置在空气回热器 318的下游。
蒸汽回热器 320与空气回热器 318连接以接收流过所述空气回热器的废气。 蒸汽 通道 322与透平 314连接, 用于向透平 314提供蒸汽工质以在透平 314上做工。 蒸 汽通道 322通过蒸汽回热器 320, 使得蒸汽通道 322内的水吸收废气的热量而形成 蒸汽。 蒸汽通道 322的输入可以是常温下的水。 空气回热器 318在经过换热后, 其排出的废气温度大概还有 320度左右, 经过逆流式换热后, 常温下的水变成蒸 汽, 而高温废气理论上可降低至接近常温。 从能量转换的角度上看, 高温废气 的绝大部分能量转移到了蒸汽工质上, 因此显著提高了系统的热效率。
[0049] 溴化锂机组 330与回热循环燃气轮机系统的连接点位于空气回热器 318和蒸汽回 热器 320之间, 所述连接点设有废气流量控制装置 332。 废气流量控制装置 332构 造成用以控制废气流过空气回热器 318后流向蒸汽回热器 320和溴化锂机组 330的 各自流量。 在一种方式下, 废气流量控制装置 332选择性地将废气通入蒸汽回热 器 320或通入溴化锂机组 330。 也就是说, 空气回热器 318排出的废气要么流向蒸 汽回热器 320, 要么流向溴化锂机组 330, 即在让蒸汽回热器 320工作和溴化锂机 组 330工作之间进行切换。 在另一种方式下, 废气流量控制装置 332分配蒸汽回 热器 320和溴化锂机组 330的废气流量。 也就是说, 通过废气流量控制装置 332来 调节有多少废气进入蒸汽回热器 320, 有多少废气进入溴化锂机组 330。 当有制 冷的需求吋, 幵启溴化锂机组 330, 而当没有制冷的需求吋, 则关闭溴化锂机组 330。 而且, 随着制冷的需求量发生变化, 可以利用废气流量控制装置 332来调 节通入溴化锂机组 330的废气量以适应这种变化。
[0050] 由此可以看出, 前一种方式是后一种方式的一个特例, 即废气流量控制装置 33 2将蒸汽回热器 320和溴化锂机组 330其中之一的废气流量调节为零, 而将另一个 的废气流量调节为最大。
[0051] 无论是前一种方式还是后一种方式, 废气流量控制装置 332都可以实施成一个 三通阀 332, 三通阀 332的一个入口与空气回热器 318的出口连通, 而两个出口分 别与蒸汽回热器 320和溴化锂机组 330连通。
[0052] 同样, 透平 314的燃气入口和蒸汽入口的设置可以前面的实施例一样, 即可分 幵设置, 也可以是同一个入口。 燃气和蒸汽可以在透平 314的不同部位上做工, 也可以混合一起做工。
[0053] 图 5是回热循环燃气轮机系统另一实施例的简化示意图。 本实施例中, 回热燃 气轮机系统包括压气机 410、 燃烧室 412、 透平 414、 发电机 416、 空气回热器 418 、 蒸汽回热器 420、 蒸汽通道 422和溴化锂机组 430。
[0054] 压气机 410用以压缩空气。 压气机 410可以为任何适当类型的压气机, 比如轴流 式或离心式压气机, 可以为一级或多级, 在此不加以限制。 压气机 410具有一压 缩空气出口 411, 用以排出压缩空气, 参与燃烧室 412的燃烧过程。
[0055] 在本实施例中, 系统包括第一压缩空气通道 424、 第二压缩空气通道 426和压缩 空气流量控制装置 428。
[0056] 第一压缩空气通道 424连通于压气机的压缩空气出口 411与空气回热器 418之间 , 用以将压缩空气通入空气回热器 418。 第二压缩空气通道 426连通于压气机的 压缩空气出口 411与燃烧室 412之间, 用以将压缩空气通入燃烧室 412。
[0057] 压缩空气流量控制装置 428构造成用以控制第一压缩空气通道 424和第二压缩空 气通道 426内的各自压缩空气流量。 在一种方式下, 压缩空气流量控制装置 428 选择性地将压缩空气通过第一压缩空气通道 424通入所述空气回热器或通过所述 第二压缩空气通道 426通入所述燃烧室。 也就是说, 第一压缩空气通道 424和第 二压缩空气通道 426内的压缩空气的流量在零和最大流量之间切换, 即在需要预 热和不需要预热之间进行切换。 在另一种方式下, 压缩空气流量控制装置 428分 配第一压缩空气通道 424和第二压缩空气通道 426中的压缩空气流量。 也就是说 , 通过压缩空气流量控制装置 428来调节有多少压缩空气进行预热后再进入燃烧 室 412燃烧, 有多少压缩空气接进入燃烧室 412进行燃烧。 由此可以看出, 前一 种方式是后一种方式的一个特例, 即压缩空气流量控制装置 428将一个压缩空气 通道的压缩空气流量调节为零, 而将另一个压缩空气通道的压缩空气流量调节 为最大。 通过上述对预热的压缩空气量进行调节, 可以控制空气回热器中的废 气离幵回热器吋的温度: 预热的压缩空气量大, 则离幵回热器的废气温度就低 一些, 下一级回收装置 (例如蒸汽回热器 420和溴化锂机组 430, 其利用或部分 利用废气的热能工作, 因此可视为热量回收装置) 可从废气中回收的热量就少 一些; 预热的压缩空气量小则离幵回热器的废气温度就高一些, 下一级回收装 置可从废气中回收的热量就多一些。 因此, 可以根据下一级回收装置需要从废 气中回收的热量多少来进行上述压缩空气量的调节。
[0058] 无论是前一种方式还是后一种方式, 压缩空气流量控制装置 428都可以实施成 一个三通阀 428, 三通阀 428的一个入口与压气机的压缩空气出口 411连通, 而两 个出口分别与空气回热器 418和燃烧室 412连通。
[0059] 同样, 压缩空气先在空气回热器 418中进行预热, 再注入燃烧室 412。 空气回热 器 418中对压缩空气进行加热的热量来自于透平 414排出的废气。 对于产生同样 温度和压力的燃烧产物而言, 燃烧室 412的燃料投入可以减少, 因此提高了系统 的热效率。
[0060] 燃烧室 412接收压缩空气和 /或被预热的压缩空气。 这些压缩空气在燃烧室 412 内参与燃烧后形成高温高压燃烧产物或者燃气工质并被排出。
[0061] 透平 414接收燃气工质, 让燃气工质在透平 414上做工, 并在做工后排出废气。
透平 414排出的废气中含有大量余热, 因此废气被引入空气回热器 418与压缩空 气进行热交换, 从而对压缩空气进行预热。 在此实施例中, 发电机 416作为系统 负载的一个举例, 在其他实施例中, 系统负载也可以是需要被驱动的其他机构
[0062] 从透平 414排出的废气流向看, 蒸汽回热器 420设置在空气回热器 418的下游。
蒸汽回热器 420与空气回热器 418连接以接收流过所述空气回热器的废气。 蒸汽 通道 422与透平 414连接, 用于向透平 414提供蒸汽工质以在透平 414上做工。 蒸 汽通道 422通过蒸汽回热器 420, 使得蒸汽通道 422内的水吸收废气的热量而形成 蒸汽。 蒸汽通道 422的输入可以是常温下的水。 空气回热器 418在经过换热后, 其排出的废气温度大概还有 320度左右, 经过逆流式换热后, 常温下的水变成蒸 汽, 而高温废气理论上可降低至接近常温。 从能量转换的角度上看, 高温废气 的绝大部分能量转移到了蒸汽工质上, 因此显著提高了系统的热效率。
[0063] 溴化锂机组 430与回热循环燃气轮机系统的连接点位于空气回热器 418和蒸汽回 热器 420之间, 所述连接点设有废气流量控制装置 432。 废气流量控制装置 432构 造成用以控制废气流过空气回热器 418后流向蒸汽回热器 420和溴化锂机组 430的 各自流量。 在一种方式下, 废气流量控制装置 432选择性地将废气通入蒸汽回热 器 420或通入溴化锂机组 430。 也就是说, 空气回热器 418排出的废气要么流向蒸 汽回热器 420, 要么流向溴化锂机组 430, 即在让蒸汽回热器 420工作和溴化锂机 组 430工作之间进行切换。 在另一种方式下, 废气流量控制装置 432分配蒸汽回 热器 420和溴化锂机组 430的废气流量。 也就是说, 通过废气流量控制装置 432来 调节有多少废气进入蒸汽回热器 420, 有多少废气进入溴化锂机组 430。 当有制 冷的需求吋, 幵启溴化锂机组 430, 而当没有制冷的需求吋, 则关闭溴化锂机组
430。 而且, 随着制冷的需求发生变化, 可以利用废气流量控制装置 432来调节 通入溴化锂机组 430的废气量以适应这种变化。
[0064] 由此可以看出, 前一种方式是后一种方式的一个特例, 即废气流量控制装置 43
2将蒸汽回热器 420和溴化锂机组 430其中之一的废气流量调节为零, 而将另一个 的废气流量调节为最大。
[0065] 无论是前一种方式还是后一种方式, 废气流量控制装置 432都可以实施成一个 三通阀 432, 三通阀 432的一个入口与空气回热器 418的出口连通, 而两个出口分 别与蒸汽回热器 420和溴化锂机组 430连通。
[0066] 透平 414的燃气入口和蒸汽入口的设置可以前一实施例一样, 即可分幵设置, 也可以是同一个入口。 燃气和蒸汽可以在透平 414的不同部位上做工, 也可以混 合一起做工。
[0067] 图 6是回热循环燃气轮机系统另一实施例的简化示意图。 本实施例中, 回热燃 气轮机系统包括压气机 510、 燃烧室 512、 透平 514、 发电机 516、 空气回热器 518 、 蒸汽回热器 520、 蒸汽通道 522、 溴化锂机组 530和气液分离器 540。 其中, 压 气机 510、 燃烧室 512、 透平 514、 发电机 516、 空气回热器 518、 蒸汽回热器 520 、 蒸汽通道 522、 溴化锂机组 530的工作方式与图 5的实施例类似, 在此不再赘述
[0068] 本实施例中, 气液分离器 540与蒸汽回热器 520的废气通道出口连接, 以对废气 通道中的气水进行分离。 气液分离器 540包括接收流过所述蒸汽回热器的废气的 废气入口、 与压气机 510的入口连通的气体出口和与蒸汽通道的入口连通的液体 出口。 分离出来的液体或水分通入蒸汽回热器 520的蒸汽通道入口, 而分离出来 的气体通过管线 542通入压气机 510的入口, 如此, 构成一种闭式循环。
[0069] 由于气体中的氧气不断消耗, 需要向系统中补充氧气或其它适当的助燃剂。 向 系统中补充氧气或助燃剂可以利用现有的方式进行, 因此在此不再详述。 由于 氧气或助燃剂的加入, 总工质质量不断增加, 因此需要在适当地方抽取废气。 优选的是, 抽取废气的抽气泵可以连接在气液分离器 540上。 在其它实施例中, 抽气泵也可以设置在其它适当的位置。
[0070] 类似的, 图 1、 图 3和图 4的实施例中, 也可以通过增加气液分离器而构成闭式 循环。
[0071] 在上述各实施例中, 蒸汽通道提供的用以在透平上做工的蒸汽工质都是直接通 入透平进行做工的。 在其他实施例中, 蒸汽通道中的蒸汽工质也可以通入燃烧 室, 与燃气一起混合后通入透平做工。 在这样的实施例中, 燃烧室在其中后段 (避免注入的蒸汽对火焰造成影响) 设有蒸汽入口。
[0072] 本质上看, 上述实施例公幵了以下概念。 在透平 14、 214、 314、 414、 514上做 工的工质包括燃气工质和蒸汽工质, 燃气工质是通过对压缩空气进行加热而形 成的。 对压缩空气的加热包括空气回热器 18、 218、 318、 418、 518的一级加热
(热交换) 和燃烧室 12、 212、 312、 412、 512的二级加热 (以燃烧方式加热) 。 因此, 从压气机出口到空气回热器、 燃烧室再到透平的燃气入口之间可以视 为一条燃气工质通道, 燃气工质通道的作用是将压缩空气变成高温燃气工质, 该燃气工质通道通过空气回热器 18、 218、 318、 418、 518吸收透平排气的一部 分热量。 蒸汽工质是通过对水进行加热而形成的。 对水的加热包括连接在空气 回热器 18、 218、 318、 418、 518下游的蒸汽回热器 20、 220、 320、 420、 520的 加热 (热交换) 。 因此, 从水的入口端到蒸汽回热器再到透平的蒸汽入口或者 燃烧室的蒸汽入口可以视为一条蒸汽工质通道, 该蒸汽工质通道的作用是将低 温的水变成高温蒸汽工质, 该蒸汽工质通道通过蒸汽回热器 20、 220、 320、 420 、 520吸收透平排气的另一部分热量。 因此, 通过多级吸收透平排气的热量, 可 以更大程度的回收透平尾气的余热, 提高系统的效率。
[0073] 另外, 通过加入溴化锂机组和废气流量控制装置, 可以实现一种冷热电联产系 统, 而且可以根据热或冷的需求变化改变系统运行方式以适应这种热或冷的变 化。
[0074] 本文所描述的概念在不偏离其精神和特性的情况下可以实施成其它形式。 所公 幵的具体实施例应被视为例示性而不是限制性的。 因此, 本发明的范围是由所 附的权利要求, 而不是根据之前的这些描述进行确定。 在权利要求的字面意义 及等同范围内的任何改变都应属于这些权利要求的范围。

Claims

权利要求书
一种回热循环燃气轮机系统, 包括:
压气机, 所述压气机具有一压缩空气出口;
空气回热器, 所述空气回热器用以对所述压气机的压缩空气出口的压 缩空气进行预热;
燃烧室, 所述燃烧室接收所述被预热的压缩空气并在参与燃烧后排出 燃烧产物; 以及
透平, 所述透平接收所述燃烧产物并在所述燃烧产物做工后排出废气 , 所述废气被引入所述空气回热器以与所述压缩空气进行热交换; 其特征在于, 所述回热循环燃气轮机系统还包括:
蒸汽回热器, 所述蒸汽回热器与所述空气回热器连接以接收流过所述 空气回热器的废气; 以及
蒸汽通道, 所述蒸汽通道通过所述蒸汽回热器, 使得所述蒸汽通道内 的水吸收所述废气的热量而变成蒸汽, 所述蒸汽通道与所述透平或燃 烧室连接, 使得所述蒸汽被注入所述透平或所述燃烧室。
如权利要求 1所述的回热循环燃气轮机系统, 其特征在于, 还包括: 溴化锂机组, 所述溴化锂机组与所述回热循环燃气轮机系统的连接点 位于所述空气回热器和所述蒸汽回热器之间, 所述连接点设有废气流 量控制装置, 所述废气流量控制装置构造成用以控制所述废气流过所 述空气回热器后向所述蒸汽回热器和所述溴化锂机组的各自流量。 如权利要求 1所述的回热循环燃气轮机系统, 其特征在于, 所述压气 机的压缩空气出口通过第一压缩空气通道与所述空气回热器连通, 所 述压气机的压缩空气出口还通过第二压缩空气通道与所述燃烧室连通 , 且所述第一压缩空气通道和第二压缩空气通道之间设置压缩空气流 量控制装置, 所述压缩气孔流量控制装置构造成用以控制所述第一压 缩空气通道和第二压缩空气通道内的各自压缩空气流量。
如权利要求 1所述的回热循环燃气轮机系统, 其特征在于, 还包括气 液分离器, 所述气液分离器包括接收流过所述蒸汽回热器的废气的废 气入口、 与所述压气机的入口连通的气体出口和与所述蒸汽通道的入 口连通的液体出口。
[权利要求 5] 如权利要求 1所述的回热循环燃气轮机系统, 其特征在于, 所述透平 具有燃气入口和蒸汽入口, 所述燃气入口和蒸汽入口分别用以接收所 述燃烧产物和所述蒸汽, 所述透平包括沿圆周方向划分的燃气做工部 和蒸汽做工部, 从所述燃气入口注入的燃烧产物实质上仅在所述燃气 做工部上做工, 从所述蒸汽入口注入的蒸汽实质上仅在所述蒸汽做工 部上做工。
[权利要求 6] —种冷热电联供系统, 包括:
压气机, 所述压气机具有一压缩空气出口;
空气回热器, 所述空气回热器用以对所述压气机的压缩空气出口的压 缩空气进行预热;
燃烧室, 所述燃烧室接收所述被预热的压缩空气并在所述压缩空气参 与燃烧后排出燃烧产物; 以及
透平, 所述透平接收所述燃烧产物并在所述燃烧产物做工后排出废气 , 所述废气被引入所述空气回热器以与所述压缩空气进行热交换; 发电机, 所述发电机与所述透平驱动连接以被所述透平驱动发电; 溴化锂机组, 所述溴化锂机组与所述空气回热器连接以接收流过所述 空气回热器的废气;
其特征在于, 所述冷热电联供系统还包括:
蒸汽回热器, 所述蒸汽回热器与所述空气回热器连接以接收流过所述 空气回热器的废气;
蒸汽通道, 所述蒸汽通道通过所述蒸汽回热器, 使得所述蒸汽通道内 的水吸收所述废气的热量而形成在所述透平上做工的蒸汽工质; 以及 废气流量控制装置, 所述废气流量控制装置构造成用以控制所述废气 流过所述空气回热器后流向所述蒸汽回热器和所述溴化锂机组的各自
[权利要求 7] 如权利要求 6所述的冷热电联供系统, 其特征在于, 所述废气流量控 制装置为三通阀, 所述三通阀包括一个入口和两个出口, 所述一个入 口与所述空气回热器连通, 所述两个出口分别与所述溴化锂机组和所 述蒸汽回热器连通。
[权利要求 8] 如权利要求 6或 7所述的冷热电联供系统, 其特征在于, 所述冷热电联 供系统包括:
第一压缩空气通道, 所述第一压缩空气通道连通于所述压气机的压缩 空气出口与所述空气回热器之间;
第二压缩空气通道, 所述第二压缩空气通道连通于所述压气机的压缩 空气出口与所述燃烧室之间; 以及 三通阀, 所述三通阀包括一个入口和两个出口, 所述入口与所述压气 机的压缩空气出口连通, 所述两个出口分别与所述第一压缩空气通道 和所述第二压缩空气通道连通。
[权利要求 9] 一种回热循环燃气轮机系统, 包括:
透平;
空气回热器, 所述空气回热器用以接收所述透平排出的废气; 燃气工质通道, 所述燃气工质通道用以提供在所述透平上做工的燃气 工质, 所述燃气工质通道通过所述空气回热器以吸收所述空气回热器 中的废气的一部分热量; 以及
蒸汽工质通道, 所述蒸汽工质通道用以提供在所述透平上做工的蒸汽 工质;
其特征在于, 所述回热循环燃气轮机系统包括: 蒸汽回热器, 所述蒸汽回热器设置在所述空气回热器下游以接收所述 空气回热器排出的废气, 所述蒸汽工质通道通过所述蒸汽回热器以吸 收所述蒸汽回热器中的废气的另一部分热量从而将所述蒸汽工质通道 中的水变成所述蒸汽工质。
[权利要求 10] 如权利要求 9所述的冷热电联供系统, 其特征在于, 所述回热循环燃 气轮机系统包括压气机和气液分离器, 所述气液分离器包括接收流过 所述蒸汽回热器的废气的废气入口、 与所述压气机的入口连通的气体 出口和与所述蒸汽工质通道的入口连通的液体出口。
PCT/CN2016/084199 2016-05-31 2016-05-31 回热循环燃气轮机系统及冷热电联供系统 WO2017206084A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/084199 WO2017206084A1 (zh) 2016-05-31 2016-05-31 回热循环燃气轮机系统及冷热电联供系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/084199 WO2017206084A1 (zh) 2016-05-31 2016-05-31 回热循环燃气轮机系统及冷热电联供系统

Publications (1)

Publication Number Publication Date
WO2017206084A1 true WO2017206084A1 (zh) 2017-12-07

Family

ID=60478309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084199 WO2017206084A1 (zh) 2016-05-31 2016-05-31 回热循环燃气轮机系统及冷热电联供系统

Country Status (1)

Country Link
WO (1) WO2017206084A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101761392A (zh) * 2010-01-11 2010-06-30 华北电力大学 集成化的多功能高效微型燃气轮机冷热电联产系统
CN104048313A (zh) * 2013-03-12 2014-09-17 株式会社日立制作所 热电比可变型热电联产系统
CN104533621A (zh) * 2015-01-06 2015-04-22 中国科学院工程热物理研究所 一种双燃料注蒸汽正逆燃气轮机联合循环
CN105822427A (zh) * 2016-05-31 2016-08-03 深圳智慧能源技术有限公司 回热循环燃气轮机系统及冷热电联供系统
CN205663516U (zh) * 2016-05-31 2016-10-26 深圳智慧能源技术有限公司 回热循环燃气轮机系统及冷热电联供系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101761392A (zh) * 2010-01-11 2010-06-30 华北电力大学 集成化的多功能高效微型燃气轮机冷热电联产系统
CN104048313A (zh) * 2013-03-12 2014-09-17 株式会社日立制作所 热电比可变型热电联产系统
CN104533621A (zh) * 2015-01-06 2015-04-22 中国科学院工程热物理研究所 一种双燃料注蒸汽正逆燃气轮机联合循环
CN105822427A (zh) * 2016-05-31 2016-08-03 深圳智慧能源技术有限公司 回热循环燃气轮机系统及冷热电联供系统
CN205663516U (zh) * 2016-05-31 2016-10-26 深圳智慧能源技术有限公司 回热循环燃气轮机系统及冷热电联供系统

Similar Documents

Publication Publication Date Title
CN107100736B (zh) 燃气轮机联合系统
US6276123B1 (en) Two stage expansion and single stage combustion power plant
US3971211A (en) Thermodynamic cycles with supercritical CO2 cycle topping
KR101594323B1 (ko) 통합형 연료 가스 예열을 갖는 발전소
US4753068A (en) Gas turbine cycle incorporating simultaneous, parallel, dual-mode heat recovery
JP2018529047A (ja) 入れ子式のco2サイクルを用いる電力生産のためのシステムおよび方法
KR102669709B1 (ko) 회수식 초임계 co2 동력 사이클들의 저등급의 열 최적화
CN102449271B (zh) 蒸气动力循环装置
CN113153473B (zh) 一种压缩空气与燃气蒸汽循环集成的调峰系统及其运行方法
KR20010092653A (ko) 복합 싸이클 시스템 및 그 작동 방법
JPH06317106A (ja) 蒸気−ガスタービン複合式発電プラント
US20190323384A1 (en) Boilor plant and method for operating the same
CN108495978A (zh) 联合循环发电厂
CN111457450A (zh) 热电解耦系统及工作方法
CN108425707B (zh) 一种联合循环汽轮机快速启动预暖系统及其暖机方法
GB2534914A (en) Adiabatic liquid air energy storage system
RU2237815C2 (ru) Способ получения полезной энергии в комбинированном цикле (его варианты) и устройство для его осуществления
US9404395B2 (en) Selective pressure kettle boiler for rotor air cooling applications
CN105822427B (zh) 回热循环燃气轮机系统及冷热电联供系统
CN113803166A (zh) 基于燃气轮机Kalina联合循环的冷热电多联产耦合系统及操作方法
CN205663516U (zh) 回热循环燃气轮机系统及冷热电联供系统
CN212408812U (zh) 热电解耦系统
CN106854997A (zh) 用于发电设施的改进的二氧化碳捕集界面
RU2728312C1 (ru) Способ работы и устройство маневренной газопаровой теплоэлектроцентрали с паровым приводом компрессора
JP2022161839A (ja) 直列熱交換器を有する複合サイクル発電プラント

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16903469

Country of ref document: EP

Kind code of ref document: A1