WO2017206079A1 - Unmanned aerial vehicle, and device and method for image anti-jitter thereof - Google Patents

Unmanned aerial vehicle, and device and method for image anti-jitter thereof Download PDF

Info

Publication number
WO2017206079A1
WO2017206079A1 PCT/CN2016/084182 CN2016084182W WO2017206079A1 WO 2017206079 A1 WO2017206079 A1 WO 2017206079A1 CN 2016084182 W CN2016084182 W CN 2016084182W WO 2017206079 A1 WO2017206079 A1 WO 2017206079A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
jitter
motor
image
control module
Prior art date
Application number
PCT/CN2016/084182
Other languages
French (fr)
Chinese (zh)
Inventor
王军
Original Assignee
深圳曼塔智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳曼塔智能科技有限公司 filed Critical 深圳曼塔智能科技有限公司
Priority to PCT/CN2016/084182 priority Critical patent/WO2017206079A1/en
Publication of WO2017206079A1 publication Critical patent/WO2017206079A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof

Definitions

  • the present invention belongs to the field of drones, and in particular, to a drone and an image anti-shake device and method thereof.
  • the technology for unmanned aerial vehicle image stabilization is mainly based on the mechanical anti-shake mode of the gimbal.
  • the common one has two-axis or three-axis gimbal; the anti-shake effect of the mechanical anti-shake method of the gimbal is good. , but it will increase the cost and weight, and the gimbal will take up a certain amount of space, usually only used on drones with a large wheelbase (280cm) and weight above lKg, while the miniaturized entertainment drones are not.
  • the method is equipped with a device such as a gimbal.
  • the present invention provides a drone and an image anti-shake device and method thereof, which aim to solve the problem that the anti-shake processing cannot be implemented on a drone without using a pan/tilt in the prior art.
  • an unmanned image stabilization device the image stabilization device includes a control module, a camera module, a sensing module, and a motor module; the control module and the camera module respectively The sensing module and the motor module are connected;
  • the sensing module acquires a jitter displacement variable on the drone, and generates a feedback signal and sends the signal to the control module;
  • the control module generates a compensation jitter instruction according to the feedback signal, and sends the compensation to the motor module;
  • the motor module is fixedly connected to the camera module, and the motor module is configured according to the compensation jitter command
  • the camera module is driven to move to compensate for jitter on the drone.
  • Another object of the present invention is to provide a drone, which further includes the unmanned image anti-shake device as described above.
  • Another object of the present invention is to provide an image stabilization method, comprising the following steps: [0011] acquiring a jitter displacement variable on the drone by the sensing module, and generating a feedback signal and transmitting the signal to the control module
  • control module calculates and generates a compensation jitter command according to the feedback signal, and sends the compensation to the motor module; [0013] the motor module drives the camera module to move according to the compensation jitter command to make up for the shake.
  • the UAV image anti-shake device includes a control module, a camera module, a sensing module and a motor module; the control module and the camera module respectively The sensing module and the motor module are connected; the sensing module acquires the jitter displacement variable on the drone, and generates a feedback signal and sends it to the control module; the control module generates a compensation jitter command according to the feedback signal, and sends the compensation to the motor module; the motor module and The camera module is fixedly connected, and the motor module drives the camera module to move according to the compensation jitter command to compensate for the jitter on the drone; therefore, the anti-shake processing is implemented on the drone without using the pan/tilt.
  • FIG. 1 is a block diagram of an embodiment of an unmanned image stabilization device according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing another embodiment of an unmanned image stabilization device according to the present invention.
  • FIG. 3 is a circuit diagram showing an example of an unmanned image stabilization device according to the present invention.
  • FIG. 4 is a flowchart of an implementation of an image stabilization method according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of an implementation of another embodiment of an image stabilization method according to the present invention.
  • FIG. 1 shows an embodiment of a module structure of an unmanned image stabilization device provided by the present invention. For convenience of explanation, only parts related to the embodiment of the present invention are shown, which are described in detail as follows:
  • An unmanned image stabilization device 01 includes a control module 02, a camera module 03, a sensing module 04, and a motor module 05.
  • the control module 02 is connected to the camera module 03, the sensor module 04 and the motor module 05, respectively.
  • the sensing module 04 acquires the jitter displacement variable on the UAV, and generates a feedback signal and sends it to the control module 02; the control module 02 generates a compensation dither command according to the feedback signal. And sent to the motor module 05; the motor module 05 is fixedly connected with the camera module 03, and the motor module 0 5 drives the camera module 03 to move according to the compensation jitter command to compensate for the jitter on the drone.
  • the first embodiment of the present invention can be applied to an environment in which a drone is slightly shaken.
  • the motor module 05 drives the camera module to perform a linear type and/or a limited swing angle according to the compensation shake command.
  • the motion of the linear and/or finite swing angle is the same as the amplitude of the jitter on the drone, but the direction is opposite, so that the interference of the camera of the drone to the camera module 03 can be eliminated, and the camera module 03 is in a stable position. , Get a stable, clear image.
  • FIG. 2 shows another embodiment of the module structure of the UAV image anti-shake device provided by the present invention.
  • the shaking device 01 further includes an image processing module 06 connected to the control module 02 on the basis of the first embodiment; the control module 02 further includes a determining module; after receiving the feedback signal from the sensing module 04, the control module 02 determines the module determining Whether the jitter displacement variable exceeds the maximum range of movement of the motor module 05; if so, the control module 02 generates a compensation shake command to control the motor module 05 to drive the camera module 03 to move, and then the compensation shake command corresponds to the motor module 0 5 to drive the camera module 03
  • the maximum range of movement ie, the control module 02 controls the motor module 05 to drive the camera module 03 to the maximum range of movement
  • the control module 02 controls the image again.
  • the processing module 06 performs a correction process on the image acquired by the camera module 03.
  • control module 02 further includes a calculation module; the calculation module calculates a difference according to the jitter displacement variable and the maximum range of movement of the motor module 05, and the image acquired by the image processing module 06 according to the difference value to the camera module 03. Perform correction processing.
  • the control module 02 determines that the jitter displacement variable is greater than the maximum range of the motor module 05 control movement, and the motor module drives the camera module to perform the maximum range value movement to maximize calibration but only eliminates A part of the drone is shaken, and the control module controls the image processing module 06 to perform correction processing on the image acquired by the camera. Specifically, the shaking axis distance and/or the shaking angle of the drone exceed the maximum range that can be controlled by the motor module 05, and the control module 02 notifies the motor module 0 5 that the motor module 05 maximizes the distance and/or angle of the shaft.
  • the control module sends the remaining uncalibrated axial distance and/or angle information to the image processing module 06, and the image processing module 06 corrects the frame of the image taken by the current camera by a software algorithm.
  • the X-axis direction of the drone is originally offset by 28 degrees, corrected by 6 degrees by the motor module 05, and the image processing module rotates the image by 22 degrees, so that the obtained picture is consistent with the horizontally-shot picture, thereby ensuring The camera is stable and smooth and high definition.
  • FIG. 3 shows an exemplary circuit configuration of the image stabilization device 01 of the drone according to the embodiment of the present invention. For convenience of description, only parts related to the embodiment of the present invention are shown, which are described in detail as follows:
  • the UAV image stabilization device 01 further includes a power module 07.
  • the output of the power module 07 is connected to the first input of the control module 02, the input of the sensing module 04, and the first input of the motor module 05.
  • the second input end of the power module 07 is connected to the first output end of the control module 02, the data output end of the sensing module 04 is connected to the data input end of the control module 02, and the first output end of the sensing module 04 and the control module
  • the second input of the motor module 05 is connected to the data output of the control module 02, and the second input of the motor module 05 is connected to the second output of the control module 02.
  • the power module 07 includes a voltage regulator Ul, a first capacitor Cl, a second capacitor C2, and a third capacitor C3.
  • the input end of the voltage regulator U1, the first end of the first capacitor C1 and the first end of the second capacitor C2 are the first input end of the power module 07, the empty end NR of the voltage regulator U1 and the third
  • the first end of the capacitor C3, the output terminal OUT of the voltage regulator U1 is the output end of the power module 07
  • the enable terminal EN of the voltage regulator is the second input end of the power module 07
  • the second end of the first capacitor C1
  • the second end of the second capacitor C2 and the second end of the third capacitor C3 are And the ground terminal of the voltage regulator U1 is connected to the power ground.
  • the sensing module 04 includes a gyroscope U2, a fourth capacitor C4, a fifth capacitor C5, a sixth capacitor C6, a seventh capacitor C7, a first resistor R1, a second resistor R2, and a third resistor R3.
  • the first end of the resistor R3 is the input end of the sensing module 04
  • the I2C of the gyroscope U2 is connected from the lower end of the address ADO to the first end of the first resistor R1, and the calibration filter capacitor end REGOUT and the sixth capacitor C6 of the gyroscope U2
  • the first end is connected, the charge pump capacitor CPOUT of the gyroscope U2 is connected to the first end of the seventh capacitor C7, and the I2C of the gyroscope U2 (inte r-integrated circuit) data terminal SDA, the second resistor
  • the second end of R2, the I2C clock terminal SCL of the gyroscope U2, and the second end of the third resistor R3 together constitute
  • the grounding terminal GND of U2 is connected to the power ground. .
  • the motor module 05 includes a voice coil motor U3, a fourth resistor R4, and a fifth resistor R5.
  • the power terminal VCC of the voice coil motor U3, the first end of the fourth resistor R4, and the first end of the fifth resistor R5 are the first input end of the motor module 05, and the I2C data terminal SDA of the voice coil motor U3, The second end of the fourth resistor R4, the I2C clock terminal of the voice coil motor U3, and the second end of the fifth resistor R5 together constitute a data input end of the motor module 05, and the interrupt end INT of the voice coil motor U3 is the motor module 05.
  • the ground terminal GND of the voice coil motor U3 is connected to the power ground.
  • the control module 02 includes a microprocessor U4, a crystal oscillator U5, an eighth capacitor C8, a ninth capacitor C9, a tenth capacitor C10, an eleventh capacitor Cl1, a twelfth capacitor C12, a thirteenth capacitor C13, Fourteen capacitor C14, fifteenth capacitor C15, sixteenth capacitor C16, sixth resistor R6 and seventh resistor R7.
  • the first end, the first end of the tenth capacitor C10, the first end of the eleventh capacitor C11, the first end of the twelfth capacitor C12, and the first end of the thirteenth capacitor C13 are the first input of the control module 02 Terminal, battery power terminal V of microprocessor U4
  • the BAT is connected to the second end of the sixth resistor R6, and the reset terminal NRST of the microprocessor U4 is connected to the second end of the seventh resistor R7 and the capacitor end of the
  • the fourth input/output terminal PA10 of the microprocessor U4 is the second input end of the control module 02, and the fifth input/output terminal PA9 of the microprocessor U4 and the sixth input/output terminal PA8 of the microprocessor U4 form a control module.
  • the data output terminal of 02, the seventh input/output terminal PA7 of the microprocessor U4 is the second output end of the control module 02, the second end of the eighth capacitor C8, the second end of the ninth capacitor C9, and the tenth capacitor C10
  • the gyroscope U2 acquires the jitter displacement variable on the drone and generates a feedback signal to be sent to the second portion of the microprocessor U4 through the I2C data terminal SDA of the gyroscope U2.
  • the microprocessor U4 generates a compensation jitter command according to the jitter displacement variable and sends it to the I2C data terminal SDA of the voice coil motor U3 through the fifth input/output terminal PA9 of the microprocessor U4, and the voice coil motor U3 according to the compensation jitter command
  • the camera module is driven to move to compensate for the jitter on the drone, thereby ensuring that the camera module 0 3 is in a stable position, and ensuring that the image acquired by the camera module 03 is clear.
  • the present invention also provides a drone, including the above-described UAV image stabilization device 01.
  • the drone further includes a remote controller, and the remote controller includes an anti-shake mode setting module communicably connected to the control module 02, and the anti-shake mode setting module generates an anti-shake mode control signal according to a command input by the user, and sends the anti-shake mode control signal To the control module to control the motor module and/or image processing
  • the module is turned on or off.
  • the anti-shake mode setting module corresponds to the integrated anti-shake mode and the six-axis anti-shake mode.
  • the integrated anti-shake mode is set, and then the first anti-shake mode command is given to the control module to control the motor module and the image processing module.
  • the motor module anti-shake mode that is, set the six-axis anti-shake mode
  • the second anti-shake mode command is given to the control module to control the motor module and close the image processing module.
  • the present invention provides an embodiment of an image stabilization method based on the UAV image stabilization device 01.
  • the present invention provides an embodiment of an image stabilization method based on the UAV image stabilization device 01.
  • the present invention provides an embodiment of an image stabilization method based on the UAV image stabilization device 01.
  • step 101 the jitter displacement variable on the drone is acquired by the sensing module, and a feedback signal is generated and sent to the control module.
  • step 102 the control module calculates a generated compensation jitter command based on the feedback signal and transmits it to the motor module.
  • step 103 the motor module drives the camera module to move to compensate for the jitter on the drone according to the compensation jitter command.
  • the image stabilization method of the present embodiment corresponds to a six-axis anti-shake mode, in which the drone is slightly shaken, the user sets a six-axis anti-shake mode on the remote control according to the environment, and the image anti-shake method on the drone follow steps 01, 102 and 103.
  • a determination procedure is added, as in steps 201 and 202.
  • the control module determines whether the jitter displacement variable exceeds a maximum range of movement of the motor module.
  • the image stabilization method of the present embodiment corresponds to the integrated anti-shake mode, and the user sets the integrated anti-shake mode on the remote control.
  • step 203-1 if no, the control module calculates a generation compensation shake command based on the feedback signal and sends it to the motor module.
  • step 204-1 the motor module drives the camera module to move to compensate for the jitter on the drone based on the compensation jitter command.
  • step 203-2 if yes, the motor module drives the camera module to move the maximum range, and the control module controls the image processing module to perform correction processing on the image acquired by the camera module.
  • the motor module drives the camera module to move the maximum range
  • the control module controls the image processing module to perform the correction processing on the image acquired by the camera module
  • the control module is based on the jitter displacement variable and the motor module.
  • the maximum range of block movement calculates the difference, and the image processing module performs correction processing on the image acquired by the camera module according to the difference. For example: The X-axis direction of the drone is originally offset by 28 degrees and corrected by the motor module.
  • the image processing module rotates the image by 22 degrees, so that the resulting image is consistent with the horizontally captured image, thereby ensuring stable and smooth imaging and high definition.
  • the embodiment of the present invention implements anti-shake processing on the drone without using the pan/tilt, and ensures that the camera module obtains a stable image.
  • the anti-shake effect of the drone is better, the acquired image is more stable and clear, and there is no need to sacrifice image resolution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

An unmanned aerial vehicle, and a device and a method for image anti-jitter thereof. The image anti-jitter device (01) of the unmanned aerial vehicle comprises a controlling module (02), a camera module (03), a sensing module (04), and a motor module (05); the controlling module (02) being connected to the camera module (03), the sensing module (04), and the motor module (05) respectively; the sensing module (04) acquiring jitter displacement variables of the unmanned aerial vehicle, and generating a feedback signal and sending same to the controlling module (02); the controlling module (02) generating, according to the feedback signal, a jitter compensation instruction, and sending same to the motor module (05); and the motor module (05) and the camera module (03) being fixedly connected to each other, and the motor module (05) driving, according to the jitter compensation instruction, the camera module to move, so as to compensate for jitter in the unmanned aerial vehicle.

Description

说明书 发明名称:一种无人机及其影像防抖装置和方法 技术领域  Description: A UAV and an image anti-shake device and method thereof
[0001] 本发明属于无人机领域, 尤其涉及一种无人机及其影像防抖装置和方法。  [0001] The present invention belongs to the field of drones, and in particular, to a drone and an image anti-shake device and method thereof.
背景技术  Background technique
[0002] 目前,用于无人机摄像防抖的技术主要是基于云台的机械防抖方式, 常见的有两 轴的或者三轴的云台; 云台的机械防抖方式防抖效果好, 但会增加成本和重量 , 且云台会占用一定的空间, 通常只能用在较大轴距 (280cm) 且重量在 lKg以 上的无人机上, 而小型化的娱乐型无人机则没办法搭载云台这种装置。  [0002] At present, the technology for unmanned aerial vehicle image stabilization is mainly based on the mechanical anti-shake mode of the gimbal. The common one has two-axis or three-axis gimbal; the anti-shake effect of the mechanical anti-shake method of the gimbal is good. , but it will increase the cost and weight, and the gimbal will take up a certain amount of space, usually only used on drones with a large wheelbase (280cm) and weight above lKg, while the miniaturized entertainment drones are not. The method is equipped with a device such as a gimbal.
[0003] 综上可知, 现有技术存在无法在不采用云台情况下对无人机实现防抖处理的问 题。  [0003] As can be seen from the above, there is a problem in the prior art that the anti-shake processing cannot be implemented on the drone without using the pan/tilt.
技术问题  technical problem
[0004] 本发明提供了一种无人机及其影像防抖装置和方法, 旨在解决现有技术所存在 的无法在不采用云台情况下对无人机实现防抖处理的问题。  The present invention provides a drone and an image anti-shake device and method thereof, which aim to solve the problem that the anti-shake processing cannot be implemented on a drone without using a pan/tilt in the prior art.
问题的解决方案  Problem solution
技术解决方案  Technical solution
[0005] 本发明是这样实现的, 一种无人机影像防抖装置, 所述影像防抖装置包括控制 模块、 摄像模块、 传感模块以及马达模块; 所述控制模块分别与所述摄像模块 、 所述传感模块以及所述马达模块连接;  [0005] The present invention is implemented as follows, an unmanned image stabilization device, the image stabilization device includes a control module, a camera module, a sensing module, and a motor module; the control module and the camera module respectively The sensing module and the motor module are connected;
[0006] 所述传感模块获取无人机上的抖动位移变量, 并生成反馈信号且发送给所述控 制模块;  [0006] the sensing module acquires a jitter displacement variable on the drone, and generates a feedback signal and sends the signal to the control module;
[0007] 所述控制模块根据所述反馈信号生成补偿抖动指令, 并发送给所述马达模块; [0008] 所述马达模块与所述摄像模块固定相连, 所述马达模块根据所述补偿抖动指令 驱动所述摄像模块移动以补偿所述无人机上的抖动。  [0007] The control module generates a compensation jitter instruction according to the feedback signal, and sends the compensation to the motor module; [0008] the motor module is fixedly connected to the camera module, and the motor module is configured according to the compensation jitter command The camera module is driven to move to compensate for jitter on the drone.
[0009] 本发明的另一目的在于提供一种无人机, 还包括如上述的无人机影像防抖装置 Another object of the present invention is to provide a drone, which further includes the unmanned image anti-shake device as described above.
[0010] 本发明的另一目的在于提供一种影像防抖方法, 包括以下步骤: [0011] 由传感模块获取无人机上的抖动位移变量, 并生成反馈信号且发送至控制模块 [0010] Another object of the present invention is to provide an image stabilization method, comprising the following steps: [0011] acquiring a jitter displacement variable on the drone by the sensing module, and generating a feedback signal and transmitting the signal to the control module
[0012] 所述控制模块根据所述反馈信号计算生成补偿抖动指令, 并发送至马达模块; [0013] 所述马达模块根据所述补偿抖动指令, 驱动摄像模块移动以弥补所述无人机上 的抖动。 [0012] the control module calculates and generates a compensation jitter command according to the feedback signal, and sends the compensation to the motor module; [0013] the motor module drives the camera module to move according to the compensation jitter command to make up for the shake.
发明的有益效果  Advantageous effects of the invention
有益效果  Beneficial effect
[0014] 本发明提供的技术方案带来的有益效果是: 从上述本发明可知, 由于无人机影 像防抖装置包括控制模块、 摄像模块、 传感模块以及马达模块; 控制模块分别 与摄像模块、 传感模块以及马达模块连接; 传感模块获取无人机上的抖动位移 变量, 并生成反馈信号且发送给控制模块; 控制模块根据反馈信号生成补偿抖 动指令, 并发送给马达模块; 马达模块与摄像模块固定相连, 马达模块根据补 偿抖动指令驱动摄像模块移动以补偿无人机上的抖动; 因此, 在无需采用云台 的情况下对无人机实现了防抖处理。  [0014] The technical solution provided by the present invention has the following beneficial effects: It can be seen from the above description that the UAV image anti-shake device includes a control module, a camera module, a sensing module and a motor module; the control module and the camera module respectively The sensing module and the motor module are connected; the sensing module acquires the jitter displacement variable on the drone, and generates a feedback signal and sends it to the control module; the control module generates a compensation jitter command according to the feedback signal, and sends the compensation to the motor module; the motor module and The camera module is fixedly connected, and the motor module drives the camera module to move according to the compensation jitter command to compensate for the jitter on the drone; therefore, the anti-shake processing is implemented on the drone without using the pan/tilt.
对附图的简要说明  Brief description of the drawing
附图说明  DRAWINGS
[0015] 为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所需要 使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一 些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还 可以根据这些附图获得其他的附图。  [0015] In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings used in the description of the embodiments will be briefly described below. Obviously, the drawings in the following description are only some of the present invention. For the embodiments, those skilled in the art can obtain other drawings according to the drawings without any creative work.
[0016] 图 1为本发明提供的无人机影像防抖装置一种实施例的模块结构图; 1 is a block diagram of an embodiment of an unmanned image stabilization device according to an embodiment of the present invention;
[0017] 图 2为本发明提供的无人机影像防抖装置另一种实施例的模块结构图; 2 is a block diagram showing another embodiment of an unmanned image stabilization device according to the present invention;
[0018] 图 3为本发明提供的无人机影像防抖装置的示例电路结构图; 3 is a circuit diagram showing an example of an unmanned image stabilization device according to the present invention;
[0019] 图 4为发明提供的影像防抖方法一种实施例的实现流程图; 4 is a flowchart of an implementation of an image stabilization method according to an embodiment of the present invention;
[0020] 图 5为本发明提供的影像防抖方法另一种实施例的实现流程图。 5 is a flowchart of an implementation of another embodiment of an image stabilization method according to the present invention.
本发明的实施方式 [0021] 为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施 方式作进一步地详细描述。 Embodiments of the invention The embodiments of the present invention will be further described in detail below with reference to the accompanying drawings.
[0022] 图 1示出了本发明提供的无人机影像防抖装置的模块结构一种实施例, 为了便 于说明, 仅示出了与本发明实施例相关的部分, 详述如下:  [0022] FIG. 1 shows an embodiment of a module structure of an unmanned image stabilization device provided by the present invention. For convenience of explanation, only parts related to the embodiment of the present invention are shown, which are described in detail as follows:
[0023] 一种无人机影像防抖装置 01, 影像防抖装置 01包括控制模块 02、 摄像模块 03、 传感模块 04以及马达模块 05。  [0023] An unmanned image stabilization device 01, the image stabilization device 01 includes a control module 02, a camera module 03, a sensing module 04, and a motor module 05.
[0024] 其中, 控制模块 02分别与摄像模块 03、 传感模块 04以及马达模块 05连接。  [0024] The control module 02 is connected to the camera module 03, the sensor module 04 and the motor module 05, respectively.
[0025] 在上述无人机的影像防抖装置 01中, 传感模块 04获取无人机上的抖动位移变量 , 并生成反馈信号且发送给控制模块 02; 控制模块 02根据反馈信号生成补偿抖 动指令, 并发送给马达模块 05 ; 马达模块 05与摄像模块 03固定相连, 马达模块 0 5根据补偿抖动指令驱动摄像模块 03移动以补偿无人机上的抖动。  [0025] In the image stabilization device 01 of the UAV, the sensing module 04 acquires the jitter displacement variable on the UAV, and generates a feedback signal and sends it to the control module 02; the control module 02 generates a compensation dither command according to the feedback signal. And sent to the motor module 05; the motor module 05 is fixedly connected with the camera module 03, and the motor module 0 5 drives the camera module 03 to move according to the compensation jitter command to compensate for the jitter on the drone.
[0026] 本发明第一实施例可应用于无人机出现轻微抖动的环境中, 当无人机出现轻微 抖动吋, 马达模块 05根据补偿抖动指令驱动摄像模块作直线型和 /或有限摆角的 运动, 该直线型和 /或有限摆角的运动与无人机上抖动的幅度相同但是方向相反 , 故能够消除无人机的抖动对摄像模块 03的干扰, 保证摄像模块 03处于一个稳 定的位置, 获取稳定, 清楚的图像。  [0026] The first embodiment of the present invention can be applied to an environment in which a drone is slightly shaken. When the drone has slight jitter, the motor module 05 drives the camera module to perform a linear type and/or a limited swing angle according to the compensation shake command. The motion of the linear and/or finite swing angle is the same as the amplitude of the jitter on the drone, but the direction is opposite, so that the interference of the camera of the drone to the camera module 03 can be eliminated, and the camera module 03 is in a stable position. , Get a stable, clear image.
[0027] 由于马达模块 05控制摄像模组移动的范围有限, 如: 最大范围是: 角变量为 6 度、 轴向距离变量为 8 mm。 故, 当无人机出现大幅度抖动吋, 本发明在马达模 块 05驱动摄像模块 03移动但只能抵消掉无人机上的一部分抖动的基础上, 再结 合图像处理模块对摄影机所获取的图像再进行修正处理。 如图 2示出了本发明提 供的无人机影像防抖装置的模块结构的另一种实施例, 为了便于说明, 仅示出 了与本发明实施例相关的部分, 详述如下: 影像防抖装置 01在第一实施例的基 础上还包括与控制模块 02连接的图像处理模块 06; 控制模块 02还包括判断模块 ; 控制模块 02在收到传感模块 04的反馈信号后, 判断模块判断抖动位移变量是 否超出马达模块 05移动的最大范围; 如果是, 控制模块 02生成补偿抖动指令控 制马达模块 05驱动摄像模块 03移动, 此吋, 该补偿抖动指令对应的是马达模块 0 5驱动摄像模块 03移动的最大范围 (即控制模块 02控制马达模块 05驱动摄像模块 03最大范围移动) , 由于还剩下未被校准的抖动量, 控制模块 02再控制图像处 理模块 06对摄像模块 03所获取的图像再进行修正处理。 [0027] Since the range in which the motor module 05 controls the movement of the camera module is limited, for example, the maximum range is: an angular variable of 6 degrees and an axial distance variable of 8 mm. Therefore, when the drone has a large jitter, the present invention drives the camera module 03 to move but can only offset a part of the jitter on the drone, and then combines the image acquired by the image processing module with the camera. Perform correction processing. FIG. 2 shows another embodiment of the module structure of the UAV image anti-shake device provided by the present invention. For the convenience of description, only parts related to the embodiment of the present invention are shown, which are described in detail as follows: The shaking device 01 further includes an image processing module 06 connected to the control module 02 on the basis of the first embodiment; the control module 02 further includes a determining module; after receiving the feedback signal from the sensing module 04, the control module 02 determines the module determining Whether the jitter displacement variable exceeds the maximum range of movement of the motor module 05; if so, the control module 02 generates a compensation shake command to control the motor module 05 to drive the camera module 03 to move, and then the compensation shake command corresponds to the motor module 0 5 to drive the camera module 03 The maximum range of movement (ie, the control module 02 controls the motor module 05 to drive the camera module 03 to the maximum range of movement), since the amount of jitter that is not calibrated remains, the control module 02 controls the image again. The processing module 06 performs a correction process on the image acquired by the camera module 03.
[0028] 更进一步的是, 控制模块 02还包括计算模块; 计算模块根据抖动位移变量和马 达模块 05移动的最大范围计算出差值, 图像处理模块 06根据差值对摄像模块 03 所获取的图像进行修正处理。  [0028] Further, the control module 02 further includes a calculation module; the calculation module calculates a difference according to the jitter displacement variable and the maximum range of movement of the motor module 05, and the image acquired by the image processing module 06 according to the difference value to the camera module 03. Perform correction processing.
[0029] 当无人机出现大幅度抖动吋, 由控制模块 02判断出抖动位移变量大于马达模块 05控制移动的最大范围, 马达模块驱动摄像模块做最大范围值移动以最大限度 校准但只能消除无人机上的一部分抖动, 本发明再由控制模块控制图像处理模 块 06对摄影机所获取的图像再进行修正处理。 具体的是: 无人机的抖动轴距离 和 /或抖动角度超出马达模块 05能控制的最大范围, 控制模块 02通知给马达模块 0 5, 马达模块 05在该轴距离和 /或角度上进行最大限度的校准, 同吋, 控制模块把 剩余的没有被校准的轴距离和 /或角度信息发送给图像处理模块 06, 图像处理模 块 06通过软件算法对当前摄像机所拍的图像的帧进行修正。 如: 无人机的 X轴方 向原始偏移了 28度, 经过马达模块 05校正了 6度, 图像处理模块再将图像旋转 22 度, 这样得到的画面就和水平拍摄的画面一致, 从而, 保证摄像的稳定流畅和 高清晰度。  [0029] When the drone has a large jitter, the control module 02 determines that the jitter displacement variable is greater than the maximum range of the motor module 05 control movement, and the motor module drives the camera module to perform the maximum range value movement to maximize calibration but only eliminates A part of the drone is shaken, and the control module controls the image processing module 06 to perform correction processing on the image acquired by the camera. Specifically, the shaking axis distance and/or the shaking angle of the drone exceed the maximum range that can be controlled by the motor module 05, and the control module 02 notifies the motor module 0 5 that the motor module 05 maximizes the distance and/or angle of the shaft. The calibration of the limit, at the same time, the control module sends the remaining uncalibrated axial distance and/or angle information to the image processing module 06, and the image processing module 06 corrects the frame of the image taken by the current camera by a software algorithm. For example, the X-axis direction of the drone is originally offset by 28 degrees, corrected by 6 degrees by the motor module 05, and the image processing module rotates the image by 22 degrees, so that the obtained picture is consistent with the horizontally-shot picture, thereby ensuring The camera is stable and smooth and high definition.
[0030] 图 3示出了本发明实施例提供的无人机的影像防抖装置 01的示例电路结构, 为 了便于说明, 仅示出了与本发明实施例相关的部分, 详述如下:  [0030] FIG. 3 shows an exemplary circuit configuration of the image stabilization device 01 of the drone according to the embodiment of the present invention. For convenience of description, only parts related to the embodiment of the present invention are shown, which are described in detail as follows:
[0031] 无人机影像防抖装置 01还包括电源模块 07, 电源模块 07的输出端与控制模块 02 的第一输入端、 传感模块 04的输入端以及马达模块 05的第一输入端连接, 电源 模块 07的第二输入端与控制模块 02的第一输出端连接, 传感模块 04的数据输出 端与控制模块 02的数据输入端连接, 传感模块 04的第一输出端与控制模块 02的 第二输入端连接, 马达模块 05的数据输如端与控制模块 02的数据输出端连接, 马达模块 05的第二输入端与控制模块 02的第二输出端连接。  [0031] The UAV image stabilization device 01 further includes a power module 07. The output of the power module 07 is connected to the first input of the control module 02, the input of the sensing module 04, and the first input of the motor module 05. The second input end of the power module 07 is connected to the first output end of the control module 02, the data output end of the sensing module 04 is connected to the data input end of the control module 02, and the first output end of the sensing module 04 and the control module The second input of the motor module 05 is connected to the data output of the control module 02, and the second input of the motor module 05 is connected to the second output of the control module 02.
[0032] 电源模块 07包括稳压器 Ul、 第一电容 Cl、 第二电容 C2以及第三电容 C3。  [0032] The power module 07 includes a voltage regulator Ul, a first capacitor Cl, a second capacitor C2, and a third capacitor C3.
[0033] 稳压器 U1的输入端、 第一电容 C1的第一端以及第二电容 C2的第一端为电源模 块 07的第一输入端, 稳压器 U1的空脚端 NR与第三电容 C3的第一端, 稳压器 U1 的输出端 OUT为电源模块 07的输出端, 稳压器的使能端 EN为电源模块 07的第二 输入端, 第一电容 C1的第二端、 第二电容 C2的第二端、 第三电容 C3的第二端以 及稳压器 Ul的接地端共接于电源地。 [0033] The input end of the voltage regulator U1, the first end of the first capacitor C1 and the first end of the second capacitor C2 are the first input end of the power module 07, the empty end NR of the voltage regulator U1 and the third The first end of the capacitor C3, the output terminal OUT of the voltage regulator U1 is the output end of the power module 07, the enable terminal EN of the voltage regulator is the second input end of the power module 07, the second end of the first capacitor C1, The second end of the second capacitor C2 and the second end of the third capacitor C3 are And the ground terminal of the voltage regulator U1 is connected to the power ground.
[0034] 传感模块 04包括陀螺仪 U2、 第四电容 C4、 第五电容 C5、 第六电容 C6、 第七电 容 C7、 第一电阻 Rl、 第二电阻 R2以及第三电阻 R3。  [0034] The sensing module 04 includes a gyroscope U2, a fourth capacitor C4, a fifth capacitor C5, a sixth capacitor C6, a seventh capacitor C7, a first resistor R1, a second resistor R2, and a third resistor R3.
[0035] 陀螺仪 U2的电源端 VDD、 陀螺仪 U2的数字电源端 VLOGK:、 第四电容 C4的第 一端、 第五电容 C5的第一端、 第二电阻 R2的第一端以及第三电阻 R3的第一端为 传感模块 04的输入端, 陀螺仪 U2的 I2C从地址低位端 ADO与第一电阻 R1的第一端 连接, 陀螺仪 U2的校准滤波电容端 REGOUT与第六电容 C6的第一端连接, 陀螺 仪 U2的电荷泵电容 CPOUT端与第七电容 C7的第一端连接, 陀螺仪 U2的 I2C (inte r— Integrated Circuit, 内部集成电路总线) 数据端 SDA、 第二电阻 R2的第二端、 陀螺仪 U2的 I2C吋钟端 SCL以及第三电阻 R3的第二端共同构成传感模块 04的数据 输出端, 陀螺仪 U2的中断端 INT为传感模块 04的第一输出端, 第四电容 C4的第 二端、 第五电容 C5的第二端、 第一电阻 R1的第二端、 第六电容 C6的第二端、 第 七电容 C7的第二端以及陀螺仪 U2的接地端 GND共接于电源地。  [0035] The power terminal VDD of the gyro U2, the digital power terminal VLOGK of the gyro U2, the first end of the fourth capacitor C4, the first end of the fifth capacitor C5, the first end of the second resistor R2, and the third The first end of the resistor R3 is the input end of the sensing module 04, and the I2C of the gyroscope U2 is connected from the lower end of the address ADO to the first end of the first resistor R1, and the calibration filter capacitor end REGOUT and the sixth capacitor C6 of the gyroscope U2 The first end is connected, the charge pump capacitor CPOUT of the gyroscope U2 is connected to the first end of the seventh capacitor C7, and the I2C of the gyroscope U2 (inte r-integrated circuit) data terminal SDA, the second resistor The second end of R2, the I2C clock terminal SCL of the gyroscope U2, and the second end of the third resistor R3 together constitute a data output end of the sensing module 04, and the interrupt end INT of the gyroscope U2 is the first of the sensing module 04. The output end, the second end of the fourth capacitor C4, the second end of the fifth capacitor C5, the second end of the first resistor R1, the second end of the sixth capacitor C6, the second end of the seventh capacitor C7, and the gyroscope The grounding terminal GND of U2 is connected to the power ground. .
[0036] 马达模块 05包括音圈马达 U3、 第四电阻 R4以及第五电阻 R5。  [0036] The motor module 05 includes a voice coil motor U3, a fourth resistor R4, and a fifth resistor R5.
[0037] 音圈马达 U3的电源端 VCC、 第四电阻 R4的第一端以及第五电阻 R5的第一端为 马达模块 05的第一输入端, 音圈马达 U3的 I2C数据端 SDA、 第四电阻 R4的第二端 、 音圈马达 U3的 I2C吋钟端以及第五电阻 R5的第二端共同构成马达模块 05的数据 输入端, 音圈马达 U3的中断端 INT为马达模块 05的第二输入端, 音圈马达 U3的 接地端 GND与电源地连接。  [0037] The power terminal VCC of the voice coil motor U3, the first end of the fourth resistor R4, and the first end of the fifth resistor R5 are the first input end of the motor module 05, and the I2C data terminal SDA of the voice coil motor U3, The second end of the fourth resistor R4, the I2C clock terminal of the voice coil motor U3, and the second end of the fifth resistor R5 together constitute a data input end of the motor module 05, and the interrupt end INT of the voice coil motor U3 is the motor module 05. At the two input terminals, the ground terminal GND of the voice coil motor U3 is connected to the power ground.
[0038] 控制模块 02包括微处理器 U4、 晶振 U5、 第八电容 C8、 第九电容 C9、 第十电容 C10、 第十一电容 Cl l、 第十二电容 C12、 第十三电容 C13、 第十四电容 C14、 第 十五电容 C15、 第十六电容 C16、 第六电阻 R6以及第七电阻 R7。  [0038] The control module 02 includes a microprocessor U4, a crystal oscillator U5, an eighth capacitor C8, a ninth capacitor C9, a tenth capacitor C10, an eleventh capacitor Cl1, a twelfth capacitor C12, a thirteenth capacitor C13, Fourteen capacitor C14, fifteenth capacitor C15, sixteenth capacitor C16, sixth resistor R6 and seventh resistor R7.
[0039] 微处理器 U4的第一电源端 VDD_1、 微处理器 U4的第二电源端 VDD_2、 微处理 器 U4的第三电源端 VDD_3、 微处理器 U4的第四电源端 VDD_4、 微处理器 U4的 参考电源正极端 VREF+、 微处理器 U4的模拟电源端 VDDA、 第六电阻 R6的第一 端、 第七电阻 R7的第一端、 第八电容 C8的第一端、 第九电容 C9的第一端、 第十 电容 C10的第一端、 第十一电容 C11的第一端、 第十二电容 C12的第一端以及第 十三电容 C13的第一端为控制模块 02的第一输入端, 微处理器 U4的电池电源端 V BAT与第六电阻 R6的第二端连接, 微处理器 U4的复位端 NRST与第七电阻 R7的 第二端和第十四电容 C14的电容端连接, 微处理器 U4的晶振输入端 OSC_IN与晶 振 U5的输入端 XIN和第十六电容 C16的第一端连接, 微处理器 U4的晶振输出端 0 SC_OUT与晶振 U5的输出端 XOUT和第十五电容 C 15的第一端连接, 微处理器 U4 的第一输入输出端 PC8为控制模块 02的第一输出端, 微处理器 U4的第二输入输出 端 PA12和微处理器 U4的第三输入输出端 PA11共同构成控制模块 02的数据输入端 , 微处理器 U4的第四输入输出端 PA10为控制模块 02的第二输入端, 微处理器 U4 的第五输入输出端 PA9和微处理器 U4的第六输入输出端 PA8共同构成控制模块 02 的数据输出端, 微处理器 U4的第七输入输出端 PA7为控制模块 02的第二输出端 , 第八电容 C8的第二端、 第九电容 C9的第二端、 第十电容 C10的第二端、 第十 一电容 C11的第二端、 第十二电容 C12的第二端、 第十三电容 C13的第二端、 第 十四电容 C14的第二端、 第十五电容 C15的第二端、 第十六电容 C16的第二端、 晶振 U5的第一接地端 GND1、 晶振 U5的第二接地端 GND2、 微处理器 U4的第一 接地端 VSS_1、 微处理器 U4的第二接地端 VSS_2、 微处理器 U4的第三接地端 VSS _3、 微处理器 U4的第四接地端 VSS_4、 微处理器 U4的第五接地端 VSS_5、 微处 理器 U4的模拟接地端 VSSA以及微处理器 U4的参考电源负极端 VREF-共接于电源 地。 [0039] The first power terminal VDD_1 of the microprocessor U4, the second power terminal VDD_2 of the microprocessor U4, the third power terminal VDD_3 of the microprocessor U4, the fourth power terminal VDD_4 of the microprocessor U4, and the microprocessor The reference power supply positive terminal VREF+ of U4, the analog power supply terminal VDDA of the microprocessor U4, the first end of the sixth resistor R6, the first end of the seventh resistor R7, the first end of the eighth capacitor C8, and the ninth capacitor C9 The first end, the first end of the tenth capacitor C10, the first end of the eleventh capacitor C11, the first end of the twelfth capacitor C12, and the first end of the thirteenth capacitor C13 are the first input of the control module 02 Terminal, battery power terminal V of microprocessor U4 The BAT is connected to the second end of the sixth resistor R6, and the reset terminal NRST of the microprocessor U4 is connected to the second end of the seventh resistor R7 and the capacitor end of the fourteenth capacitor C14, and the crystal oscillator input terminal OSC_IN of the microprocessor U4 is The input terminal XIN of the crystal oscillator U5 is connected to the first end of the sixteenth capacitor C16, and the crystal oscillator output terminal 0 SC_OUT of the microprocessor U4 is connected to the output terminal XOUT of the crystal oscillator U5 and the first end of the fifteenth capacitor C 15 , and the micro processing The first input and output terminal PC8 of the U4 is the first output end of the control module 02, and the second input and output terminal PA12 of the microprocessor U4 and the third input and output terminal PA11 of the microprocessor U4 together form the data input of the control module 02. The fourth input/output terminal PA10 of the microprocessor U4 is the second input end of the control module 02, and the fifth input/output terminal PA9 of the microprocessor U4 and the sixth input/output terminal PA8 of the microprocessor U4 form a control module. The data output terminal of 02, the seventh input/output terminal PA7 of the microprocessor U4 is the second output end of the control module 02, the second end of the eighth capacitor C8, the second end of the ninth capacitor C9, and the tenth capacitor C10 The second end, the second end of the eleventh capacitor C11, The second end of the twelve capacitor C12, the second end of the thirteenth capacitor C13, the second end of the fourteenth capacitor C14, the second end of the fifteenth capacitor C15, the second end of the sixteenth capacitor C16, and the crystal oscillator The first ground terminal GND1 of U5, the second ground terminal GND2 of the crystal oscillator U5, the first ground terminal VSS_1 of the microprocessor U4, the second ground terminal VSS_2 of the microprocessor U4, and the third ground terminal VSS_3 of the microprocessor U4 The fourth ground terminal VSS_4 of the microprocessor U4, the fifth ground terminal VSS_5 of the microprocessor U4, the analog ground terminal VSSA of the microprocessor U4, and the reference power source negative terminal VREF- of the microprocessor U4 are connected to the power ground.
[0040] 以下结合工作原理对图 3所示的无人机的影像防抖装置作进一步说明:  [0040] The image stabilization device of the drone shown in FIG. 3 is further described below in conjunction with the working principle:
[0041] 在具体实施过程 (无人机轻微抖动吋) 中, 陀螺仪 U2获取无人机上的抖动位移 变量并生成反馈信号通过陀螺仪 U2的 I2C数据端 SDA发送至微处理器 U4的第二输 入输出端 PA12, 微处理器 U4根据抖动位移变量生成补偿抖动指令并通过微处理 器 U4的第五输入输出端 PA9发送至音圈马达 U3的 I2C数据端 SDA, 音圈马达 U3根 据补偿抖动指令驱动摄像模块移动以补偿无人机上的抖动, 从而保证摄像模块 0 3处于一个稳定位置, 保证摄像模块 03获取的图像清晰。 [0041] In a specific implementation process (slight vibration of the drone), the gyroscope U2 acquires the jitter displacement variable on the drone and generates a feedback signal to be sent to the second portion of the microprocessor U4 through the I2C data terminal SDA of the gyroscope U2. Input and output terminal PA12, the microprocessor U4 generates a compensation jitter command according to the jitter displacement variable and sends it to the I2C data terminal SDA of the voice coil motor U3 through the fifth input/output terminal PA9 of the microprocessor U4, and the voice coil motor U3 according to the compensation jitter command The camera module is driven to move to compensate for the jitter on the drone, thereby ensuring that the camera module 0 3 is in a stable position, and ensuring that the image acquired by the camera module 03 is clear.
[0042] 基于上述的影像防抖装置 01, 本发明还提供一种无人机, 包括上述的无人机影 像防抖装置 01。 该无人机还包括遥控器, 遥控器包括与控制模块 02通信相连的 防抖模式设置模块, 防抖模式设置模块根据用户输入的指令生成防抖模式控制 信号, 并将防抖模式控制信号发送至控制模块以控制述马达模块和 /或图像处理 模块的幵启或关闭。 防抖模式设置模块对应综合防抖模式和六轴防抖模式。 当 用户需要综合利用马达模组防抖和图像处理模块处理吋, 即设置综合防抖模式 , 此吋, 给出第一防抖模式指令发动给控制模块从而控制马达模块和图像处理 模块都幵启。 当用户仅需要利用马达模组防抖吋, 即设置六轴防抖模式, 此吋 , 给出第二防抖模式指令给控制模块从而控制幵启马达模块、 关闭图像处理模 块。 [0042] Based on the image stabilization device 01 described above, the present invention also provides a drone, including the above-described UAV image stabilization device 01. The drone further includes a remote controller, and the remote controller includes an anti-shake mode setting module communicably connected to the control module 02, and the anti-shake mode setting module generates an anti-shake mode control signal according to a command input by the user, and sends the anti-shake mode control signal To the control module to control the motor module and/or image processing The module is turned on or off. The anti-shake mode setting module corresponds to the integrated anti-shake mode and the six-axis anti-shake mode. When the user needs to comprehensively utilize the motor module anti-shake and image processing module processing, that is, the integrated anti-shake mode is set, and then the first anti-shake mode command is given to the control module to control the motor module and the image processing module. . When the user only needs to use the motor module anti-shake mode, that is, set the six-axis anti-shake mode, then, the second anti-shake mode command is given to the control module to control the motor module and close the image processing module.
[0043] 如图所示, 本发明提供基于无人机影像防抖装置 01的影像防抖方法的一种实施 方式, 为了便于说明, 仅示出了与本发明相关的部分, 详述如下:  As shown in the figure, the present invention provides an embodiment of an image stabilization method based on the UAV image stabilization device 01. For ease of explanation, only parts related to the present invention are shown, which are described in detail as follows:
[0044] 在步骤 101中, 由传感模块获取无人机上的抖动位移变量, 并生成反馈信号且 发送至控制模块。  [0044] In step 101, the jitter displacement variable on the drone is acquired by the sensing module, and a feedback signal is generated and sent to the control module.
[0045] 在步骤 102中, 控制模块根据反馈信号计算生成补偿抖动指令, 并发送至马达 模块。  [0045] In step 102, the control module calculates a generated compensation jitter command based on the feedback signal and transmits it to the motor module.
[0046] 在步骤 103中, 马达模块根据补偿抖动指令, 驱动摄像模块移动以弥补无人机 上的抖动。  [0046] In step 103, the motor module drives the camera module to move to compensate for the jitter on the drone according to the compensation jitter command.
[0047] 本实施方式的影像防抖方法对应的是六轴防抖模式, 在无人机轻微抖动吋应用 , 用户根据环境, 在遥控上设置六轴防抖模式, 无人机上影像防抖方法如步骤 1 01、 102和 103。  [0047] The image stabilization method of the present embodiment corresponds to a six-axis anti-shake mode, in which the drone is slightly shaken, the user sets a six-axis anti-shake mode on the remote control according to the environment, and the image anti-shake method on the drone Follow steps 01, 102 and 103.
[0048] 如图 5所示, 更进一步的是, 在以上影像防抖方法的基础上, 由控制模块在接 收到抖动位移变量的反馈信号后, 再增加一判断程序, 如步骤 201和 202所示, 控制模块判断抖动位移变量是否超出马达模块移动的最大范围。 本实施方式的 影像防抖方法对应的是综合防抖模式, 用户在遥控上设置综合防抖模式。  [0048] As shown in FIG. 5, further, based on the above image stabilization method, after the feedback signal of the jitter displacement variable is received by the control module, a determination procedure is added, as in steps 201 and 202. The control module determines whether the jitter displacement variable exceeds a maximum range of movement of the motor module. The image stabilization method of the present embodiment corresponds to the integrated anti-shake mode, and the user sets the integrated anti-shake mode on the remote control.
[0049] 在步骤 203-1中, 如果否, 控制模块根据反馈信号计算生成补偿抖动指令, 并 发送至马达模块。 在步骤 204-1中, 马达模块根据补偿抖动指令, 驱动摄像模块 移动以弥补无人机上的抖动。  [0049] In step 203-1, if no, the control module calculates a generation compensation shake command based on the feedback signal and sends it to the motor module. In step 204-1, the motor module drives the camera module to move to compensate for the jitter on the drone based on the compensation jitter command.
[0050] 在步骤 203-2中, 如果是, 马达模块驱动摄像模块最大范围移动, 控制模块控 制图像处理模块对摄像模块所获取的图像再进行修正处理。 具体实施中, 马达 模块驱动摄像模块最大范围移动, 控制模块控制图像处理模块对摄像模块所获 取的图像再进行修正处理的步骤具体为: 控制模块根据抖动位移变量和马达模 块移动的最大范围计算出差值, 图像处理模块根据差值对摄像模块所获取的图 像进行修正处理。 如: 无人机的 X轴方向原始偏移了 28度, 经过马达模块校正了[0050] In step 203-2, if yes, the motor module drives the camera module to move the maximum range, and the control module controls the image processing module to perform correction processing on the image acquired by the camera module. In a specific implementation, the motor module drives the camera module to move the maximum range, and the control module controls the image processing module to perform the correction processing on the image acquired by the camera module, specifically: the control module is based on the jitter displacement variable and the motor module. The maximum range of block movement calculates the difference, and the image processing module performs correction processing on the image acquired by the camera module according to the difference. For example: The X-axis direction of the drone is originally offset by 28 degrees and corrected by the motor module.
6度, 图像处理模块再将图像旋转 22度, 这样得到的画面就和水平拍摄的画面一 致, 从而, 保证摄像的稳定流畅和高清晰度。 At 6 degrees, the image processing module rotates the image by 22 degrees, so that the resulting image is consistent with the horizontally captured image, thereby ensuring stable and smooth imaging and high definition.
[0051] 综上所述, 本发明实施例在既不采用云台的情况下对无人机实现了防抖处理, 保证摄像模组获取到稳定的图像。 其中, 综合防抖模式下, 无人机防抖效果更 好, 所获取的图像更稳定和清晰, 而且不需要牺牲图像分辨率。 In summary, the embodiment of the present invention implements anti-shake processing on the drone without using the pan/tilt, and ensures that the camera module obtains a stable image. Among them, in the integrated anti-shake mode, the anti-shake effect of the drone is better, the acquired image is more stable and clear, and there is no need to sacrifice image resolution.
[0052] 以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的精神 和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。 The above description is only the preferred embodiment of the present invention, and is not intended to limit the present invention. Any modifications, equivalent substitutions, improvements, etc., which are included in the spirit and principles of the present invention, should be included in the present invention. Within the scope of protection of the invention.

Claims

权利要求书 Claim
一种无人机影像防抖装置, 其特征在于, 所述影像防抖装置包括控制 模块、 摄像模块、 传感模块以及马达模块; 所述控制模块分别与所述 摄像模块、 所述传感模块以及所述马达模块连接; An image anti-shake device of a drone, wherein the image anti-shake device comprises a control module, a camera module, a sensing module and a motor module; the control module and the camera module and the sensing module respectively And connecting the motor module;
所述传感模块获取无人机上的抖动位移变量, 并生成反馈信号且发送 给所述控制模块; The sensing module acquires a jitter displacement variable on the drone, and generates a feedback signal and sends the signal to the control module;
所述控制模块根据所述反馈信号生成补偿抖动指令, 并发送给所述马 达模块; The control module generates a compensation jitter instruction according to the feedback signal, and sends the compensation jitter instruction to the motor module;
所述马达模块与所述摄像模块固定相连, 所述马达模块根据所述补偿 抖动指令驱动所述摄像模块移动以补偿所述无人机上的抖动。 The motor module is fixedly connected to the camera module, and the motor module drives the camera module to move according to the compensation jitter command to compensate for jitter on the drone.
如权利要求 1所述的无人机影像防抖装置, 其特征在于, 所述马达模 块移动的最大范围是: 角变量为 6度、 轴向距离变量为 8 mm。 The drone image stabilization device according to claim 1, wherein the maximum range of movement of the motor module is: an angular variable of 6 degrees and an axial distance variable of 8 mm.
如权利要求 2所述的无人机影像防抖装置, 其特征在于, 所述影像防 抖装置还包括与所述控制模块连接的图像处理模块; 所述控制模块还 包括判断模块; The image stabilization device of the UAV according to claim 2, wherein the image stabilization device further comprises an image processing module connected to the control module; the control module further comprising a determination module;
所述判断模块判断所述抖动位移变量是否超出所述马达模块移动的最 大范围; 如果是, 所述马达模块驱动所述摄像模块最大范围移动, 所 述控制模块控制所述图像处理模块对摄像模块所获取的图像再进行修 正处理。 The determining module determines whether the jitter displacement variable exceeds a maximum range of movement of the motor module; if yes, the motor module drives the camera module to move the maximum range, and the control module controls the image processing module to the camera module The acquired image is then subjected to correction processing.
如权利要求 3所述的无人机影像防抖装置, 其特征在于, 所述控制模 块还包括计算模块; The anti-shake image stabilization device of claim 3, wherein the control module further comprises a calculation module;
所述计算模块根据所述抖动位移变量和所述马达模块移动的最大范围 计算出差值, 所述图像处理模块根据所述差值对摄像模块所获取的图 像进行修正处理。 The calculation module calculates a difference according to the jitter displacement variable and a maximum range of movement of the motor module, and the image processing module performs a correction process on the image acquired by the camera module according to the difference.
一种无人机, 其特征在于, 还包括如权利要求 1至 4任意一项所述的无 人机影像防抖装置。 A drone, characterized by further comprising the non-human image stabilization device according to any one of claims 1 to 4.
如权利要求 5所述的无人机, 还包括遥控器, 其特征在于, 所述遥控 器包括与所述控制模块通信相连的防抖模式设置模块, 所述防抖模式 设置模块根据用户输入的指令生成防抖模式控制信号, 并将所述防抖 模式控制信号发送至所述控制模块以控制所述马达模块和 /或所述图 像处理模块的幵启或关闭。 The drone according to claim 5, further comprising a remote controller, wherein the remote controller comprises an anti-shake mode setting module communicably connected to the control module, the anti-shake mode The setting module generates an anti-shake mode control signal according to an instruction input by the user, and sends the anti-shake mode control signal to the control module to control the turning on or off of the motor module and/or the image processing module.
[权利要求 7] —种基于如权利要求 1所述的无人机影像防抖装置的影像防抖方法, 其特征在于, 包括以下步骤: [Attachment 7] The image stabilization method of the unmanned image stabilization device according to claim 1, comprising the following steps:
由传感模块获取无人机上的抖动位移变量, 并生成反馈信号且发送至 控制模块;  Obtaining a jitter displacement variable on the drone by the sensing module, and generating a feedback signal and transmitting the signal to the control module;
所述控制模块根据所述反馈信号计算生成补偿抖动指令, 并发送至马 达模块;  The control module calculates and generates a compensation jitter instruction according to the feedback signal, and sends the compensation jitter command to the motor module;
所述马达模块根据所述补偿抖动指令, 驱动摄像模块移动以弥补所述 无人机上的抖动。  The motor module drives the camera module to move to compensate for the jitter on the drone according to the compensation jitter command.
[权利要求 8] 如权利要求 7所述的影像防抖方法, 其特征在于, 所述影像防抖方法 还包括:  The image stabilization method according to claim 7, wherein the image stabilization method further comprises:
所述控制模块在收到所述抖动位移变量的反馈信号后, 判断所述抖动 位移变量是否超出所述马达模块移动的最大范围; 如果是, 所述马达模块驱动所述摄像模块最大范围移动, 所述控制模 块控制所述图像处理模块对摄像模块所获取的图像再进行修正处理。  After receiving the feedback signal of the jitter displacement variable, the control module determines whether the jitter displacement variable exceeds a maximum range of movement of the motor module; if yes, the motor module drives the maximum range of movement of the camera module, The control module controls the image processing module to perform a correction process on the image acquired by the camera module.
[权利要求 9] 如权利要求 8所述的影像防抖方法, 其特征在于, 所述影像防抖方法 还包括: The image stabilization method according to claim 8, wherein the image stabilization method further comprises:
所述控制模块根据所述抖动位移变量和所述马达模块移动的最大范围 计算出差值, 所述图像处理模块根据所述差值对摄像模块所获取的图 像进行修正处理。  The control module calculates a difference according to the jitter displacement variable and a maximum range of movement of the motor module, and the image processing module performs a correction process on the image acquired by the camera module according to the difference.
[权利要求 10] 如权利要求 9所述的影像防抖方法, 其特征在于, 所述无人机还包括 遥控器; 所述遥控器接收第一防抖模式指令和第二防抖模式指令; 所述第一防抖模式和所述第二防抖模式指令控制所述马达模块和 /或 所述图像处理模块幵启或关闭。  The image stabilization method according to claim 9, wherein the unmanned aerial vehicle further includes a remote controller; the remote controller receives the first anti-shake mode command and the second anti-shake mode command; The first anti-shake mode and the second anti-shake mode command control the motor module and/or the image processing module to be turned on or off.
PCT/CN2016/084182 2016-05-31 2016-05-31 Unmanned aerial vehicle, and device and method for image anti-jitter thereof WO2017206079A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/084182 WO2017206079A1 (en) 2016-05-31 2016-05-31 Unmanned aerial vehicle, and device and method for image anti-jitter thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/084182 WO2017206079A1 (en) 2016-05-31 2016-05-31 Unmanned aerial vehicle, and device and method for image anti-jitter thereof

Publications (1)

Publication Number Publication Date
WO2017206079A1 true WO2017206079A1 (en) 2017-12-07

Family

ID=60479481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084182 WO2017206079A1 (en) 2016-05-31 2016-05-31 Unmanned aerial vehicle, and device and method for image anti-jitter thereof

Country Status (1)

Country Link
WO (1) WO2017206079A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112819710A (en) * 2021-01-19 2021-05-18 郑州凯闻电子科技有限公司 Unmanned aerial vehicle jelly effect self-adaptive compensation method and system based on artificial intelligence

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060272328A1 (en) * 2005-06-06 2006-12-07 Konica Minolta Holdings, Inc. Driving device and image stabilizing system
CN101251706A (en) * 2008-03-24 2008-08-27 香港应用科技研究院有限公司 Optical die set, camera and mobile terminal equipment
CN101334574A (en) * 2007-06-28 2008-12-31 奥林巴斯映像株式会社 Imaging device
CN102694979A (en) * 2011-03-22 2012-09-26 佳能株式会社 Camera and control method of the same
CN104410134A (en) * 2014-12-23 2015-03-11 深圳市保千里电子有限公司 Charger baby with digital camera function
CN205249350U (en) * 2015-12-31 2016-05-18 信利光电股份有限公司 Anti -shake camera module and electronic equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060272328A1 (en) * 2005-06-06 2006-12-07 Konica Minolta Holdings, Inc. Driving device and image stabilizing system
CN101334574A (en) * 2007-06-28 2008-12-31 奥林巴斯映像株式会社 Imaging device
CN101251706A (en) * 2008-03-24 2008-08-27 香港应用科技研究院有限公司 Optical die set, camera and mobile terminal equipment
CN102694979A (en) * 2011-03-22 2012-09-26 佳能株式会社 Camera and control method of the same
CN104410134A (en) * 2014-12-23 2015-03-11 深圳市保千里电子有限公司 Charger baby with digital camera function
CN205249350U (en) * 2015-12-31 2016-05-18 信利光电股份有限公司 Anti -shake camera module and electronic equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112819710A (en) * 2021-01-19 2021-05-18 郑州凯闻电子科技有限公司 Unmanned aerial vehicle jelly effect self-adaptive compensation method and system based on artificial intelligence

Similar Documents

Publication Publication Date Title
JP5365173B2 (en) Physical quantity measuring device and electronic device
US11930273B2 (en) Vibration damping gimbal sleeve for an aerial vehicle
CN203757311U (en) Holder with self-balancing gyroscope
US20170171468A1 (en) Apparatus and methods for stabilization and vibration reduction
CN110891862A (en) System and method for obstacle avoidance in a flight system
CN206413079U (en) Head stability augmentation system
US20090278932A1 (en) System and Method of Optical Sensing in an Aerial Vehicle
US10150576B2 (en) Vibration damping gimbal sleeve for an aerial vehicle
KR101098097B1 (en) Vibration correction control circuit and imaging device having the same thereon
JP6834581B2 (en) Physical quantity sensors, electronic devices and mobile objects
WO2020181494A1 (en) Parameter synchronization method, image capture apparatus, and movable platform
CN105045275A (en) IMC (Image Motion Compensation) method of IMC structure based on real-time visual axis tracking
US5978137A (en) Image stabilizing apparatus
WO2017206079A1 (en) Unmanned aerial vehicle, and device and method for image anti-jitter thereof
JP2021185356A (en) Physical quantity detection circuit, physical quantity detection device, electronic apparatus and moving body
CN202484536U (en) Shaking prevention mechanism for photographing unit
KR20180106603A (en) Gimbal Unit and Drone including the same
WO2019227464A1 (en) Rotation angle control method, pan-tilt device and computer-readable recording medium
JP2020122675A (en) Physical quantity detection circuit, physical quantity sensor, electronic apparatus, movable body, and method for operating physical quantity detection circuit
KR102128548B1 (en) Line of sight stabilization system with canceling disturbance
JP5050448B2 (en) Angular velocity sensor and electronic device
JP2001091858A (en) Image stabilizer
TW201208359A (en) Anti-shake control device
JP7322718B2 (en) Physical quantity detection circuit, physical quantity sensor, electronic device, moving object, and operation method of physical quantity detection circuit
JP2001100106A (en) Image stabilizer

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903464

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30.04.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16903464

Country of ref document: EP

Kind code of ref document: A1