WO2017204773A2 - Production d'énergie électrique libre dans des installations de production de mdf, d'osb, d'aggloméré et de contre-plaqué à l'aide d'un procédé de cogénération-w - Google Patents

Production d'énergie électrique libre dans des installations de production de mdf, d'osb, d'aggloméré et de contre-plaqué à l'aide d'un procédé de cogénération-w Download PDF

Info

Publication number
WO2017204773A2
WO2017204773A2 PCT/TR2017/050249 TR2017050249W WO2017204773A2 WO 2017204773 A2 WO2017204773 A2 WO 2017204773A2 TR 2017050249 W TR2017050249 W TR 2017050249W WO 2017204773 A2 WO2017204773 A2 WO 2017204773A2
Authority
WO
WIPO (PCT)
Prior art keywords
steam
boiler
heat
energy
superheated steam
Prior art date
Application number
PCT/TR2017/050249
Other languages
English (en)
Other versions
WO2017204773A4 (fr
WO2017204773A8 (fr
WO2017204773A3 (fr
Inventor
Yusuf POLAT
Ahmet DALGIN
Harun POLAT
Original Assignee
Polkar Orman Urunleri Ve Enerji A. S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polkar Orman Urunleri Ve Enerji A. S filed Critical Polkar Orman Urunleri Ve Enerji A. S
Priority to CN201780016501.0A priority Critical patent/CN108884726A/zh
Publication of WO2017204773A2 publication Critical patent/WO2017204773A2/fr
Publication of WO2017204773A3 publication Critical patent/WO2017204773A3/fr
Publication of WO2017204773A4 publication Critical patent/WO2017204773A4/fr
Publication of WO2017204773A8 publication Critical patent/WO2017204773A8/fr
Priority to PH12018501927A priority patent/PH12018501927A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/06Returning energy of steam, in exchanged form, to process, e.g. use of exhaust steam for drying solid fuel or plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/02Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • the invention cogeneration-w ( CHP-w) energy production method and what was developed for its becoming functional of steam and heat energy operation systems (7),(9) with closed-semi closed circuts, is that of being adapted to MDF,OSB, chipboard and plywood production (14) processes.
  • solid fuel boilers are used to obtain heat, steam (18) and hot oil (4) in the existing
  • the heat obtained by burning is used in in production processes (14) A significant portion of the heat and steam (18) energy is discharged through the chimney (29) The reason for this is that one end of these systems were designed to work to suitable to open circuit way (7,29), (18,29)
  • the MDF, OSB, Chipboard and plywood panel plant facilities (14) that have been designed according to traditional energy production and operation systems obtain to the steam (18), (19) required for their production from low pressure steam boilers which produces saturated steam.
  • the energy generation method CHP-w is in accordance with the first law of thermodynamics. In fact, it formulizes to its own internal running of the mechanism providing that to be established the proportional relationship between heat and extra work/ electricity within this frame of mathematical equation. It do does this, too on the basis of the following question; how should I establish the thermodynamics relationship between the total generated heat energy and the work/ electricity in closed circuit system so that I can obtain the maksimum work output? Because there is a direct proportional relationship between heat and the work this is a question that must be answered based on thermodynamics. At first sight the answer can be given either as an increase in the initial heat energy or as being used of the heat energy in the boiler in the work generation.
  • CHP-w is the solution of suppling heat and steam energy demanded by the production line and at the same time generating more electricity than Cogeneration with the same amount of fuel.
  • CHP-w does not aim to reduce fuel costs by converting the increase in efficiency to energy saving, since a probable shrinkage in the amount of total calorie-generated heat energy leads to work loss. Therefore, it aspires to preserve the magnitude of the current system. On top of that, preferably on condition that arising the boiler size (26), owing to knowing of much more rising of total energy efficiency in proportional basis, it voluntarily gives support to increasing of boiler capacity. Moreover, the general concept that is formed on is very suitable to produce a solution intended to capacity increasing. It collects to the total heat in a single hand and uses it to create additional work/ capacity.
  • CHP-w defines this as heat energy trapping in the boiler. If a significant part of heat energy of which the production line requires is obtained from steam with low pressure-relatively high entalphy through heat transfer "steam exchanger" procedure. CHP-w refers to this method with the same terms as "gradual and circular usage” that it uses for the flue gas circulation. What is needed to steam of production line is provided with turbine outlet (16) as saturated or dry steam (18,19) according to its characteristics.
  • the superheated steam boiler (26) is installed to wood-based panel production facility (14) in order to generate energy.
  • the superheated steam (9) required to generate electricity (11) after performing its function through diverse and alternating successive stages in the closed circuit will also be used with the aim of suppling to the steam (18),(19) needed by wood-based panel production facility (14)
  • the superheated steam (9) subjected to pressure and temperature decrease will be taken from the turbine outlet (16) by the reduction method in desired quantity and pressure level and will be transferred to wood-based panel production facility (14)
  • the steam (18,19) supplied to the system from the turbine outlet (16) for being used in wood-based panel producing (14) is the same steam (18),(19) that is used for electrical energy generation (11) in the turbine (10) previously.
  • This steam (9) first in generating electrical energy (11) and then alternately in meeting the needs (18,19) of the wood-based panel manufacturing facility is used for different purposes.
  • electrical energy (11) and in particular MDF wood-based panel production (14) are to become integral parts of a production relationship that mutually supports each other. Due to the quantity of wood residue to induce, there is no obstacle in front of a wood- based panel production facility (14) of being able to produced to all the total energy (4,3,5),(18,19) required during production processes, as for the electricity (11) that the substantial part of it, with solely own biomass residues.
  • the wood based panel production facilities (14) instead of burning directly to their own biomass residues in the boiler (26), which is suitable to be pellet, directs to manufacture pellet that the calorific burning value as per unite weight is much higher, electrical energy (11) generation capacity is going to ascend to upper levels.
  • the invention comprises to uncover to energy generation potential (11) in inert state in the existing facilities (14) by activating energy generation and operation (7),(9), in which the energy is produced and operated by the out date current tecnologies and therefore causing to serious source loss.
  • Figure 1/1 shows the general boiler flow diagram. In other words, it is a simple model of the energy operation systems (7),(9) developed for becoming of functional of CHP-w energy generation method with closed thermodynamics system. It consists of a single page.
  • Proportional valve 1 This valve will provide discharging of flue gas from chimney (29) by closing itself automatically when any compression in the seconder airline (5) occurs while it back- pumped into boiler. Another closed valve (30) in the chimney will be opened automatically to discharge the gas. This valve controlled by computer aided automation has the ability to arrange the amount of flue gas (7) that is suitable for the efficiency of combustion cell.
  • Proportional valve 2 When a compression in the flue gas line occurs that is transferred to dryer (3), this valve/mechanism is closed automatically to discharge gas from the chimney (29). Another closed valve located in chimney (30) is used for discharging while its being opened automatically. Also, thanks to this valve, the amount of flue gas (7) that should be steered to dryer is controlled using computer aided automation control system.
  • Dryer/ dring unit If heat is needed, the desired quantity and rate of flue gas is transferred from boiler through ventilator with automation control (27) and it is sent to production line (14) for dring.
  • Superheated/ hot oil boiler it is a boiler system where the oil is heated, which is needed by the wood panel production facility (14) Seconder hot air line: After most energy of the flue gas (7) circulated in closed and semi - closed circuit (4-3-5) is taken off and after filtration, it is re-pumped into boiler (26) under control to heat the air that is responsible for burning and to arrange the combustion balance.
  • Flue gas output valve 1 This valve is used automatically for immediate discharge of flue gas (7) that steered to hot oil coils (4) and from it to multi-cyclone (28) line if any counter pressure possibility on the flue gas route (7) exists. This valve has the eligibility to be controlled and directed by computer-aided automation control system.
  • Output point of flue gas from boiler and its route in closed and semi-closed to trace For heating of coils in the hot oil boiler (4) where oil reaches to a temperature at 280°C and then feeding to dryer (3) and seconder hot air line (5) to be absorbed of the flue gas in control by ventilator (27) is the route from the boiler (26) output to follow which is in features closed and semi closed circuits. Both the flue gas and its route to follow has been given the same reference number in the description set. Resulting from manner of taking out flue gas from the boiler, with being directed to hot oil boiler (4), dring unit (3) and seconder air line (5) in control, which occur to the usage type we give to "flue gas energy operation system" name.
  • Output point of superheated steam from boiler the output point where superheated steam is taken from boiler (26) to take advantage of itself in an area for any purpose.
  • wood-based panel production facilities has no need for such a steam to be taken from number 8. This is used for another adaptations of CHP-w.
  • the steam input point into turbine After transferring its energy to the turbine in a closed thermodynamic system by tranferring to be come to a state of different steam types of superheated steam where enters into turbine. And then, what is to be directed to wood- based panel process (18) and steam exchanger (19) in features closed and semi closed circuits of saturated steam is proceed with usage in different ways until becoming to condenced steam.
  • both superheated steam and its turbine inlet point is numbered with 9 figure.
  • Turbine It is an equipment where electric energy (11) is generated through rotating of generator.
  • Transformer It regulates desired voltage and current values in the certain power of electrical energy (11) which is generated by electric generator.
  • Medium voltage switchgear group This is substation or main distribution switchgear group where electric voltage is converted from high form into low form or vice versa that is coming from transformers.
  • Production facility (plant) This is the industrial plant where both heat and steam (18,19) is needed.
  • Interconnected system The system where variation arrangement is provided at the level of electricity generation and consumption.
  • Turbine steam output point Steam output point from turbine where desired steam exists for utilizing in steam heat exchanger or in the production process (14) 17.
  • Steam collector This is the distribution mechanism where the steam is taken off from
  • turbine output (16) back pressure & condensing extraction
  • production line (18) back pressure & condensing extraction
  • steam exchanger (19) considering desired steam quantity
  • the output point of steam The point where steam exists and is steered to production line.
  • Turbine exhaust output The superheated steam (9) that discharges its whole energy into turbine by the type of steam turbine from exhaust ouput (20) will exist as hot water with lower pressure having half a phase change.
  • Half condensed this water (21), as shown below, is handled as full complete condensation (21,22) and then after increasing its temperature to
  • Phase change (cell condensation 2): This is the section (place) where full phase change is occuring with addition of fresh water.
  • Pump cell 1 This is the first pump which is used for pumping water to water boiler (24) that is totally in liquid phase.
  • Water boiler This is the water boiler where the whole water is reserved and where its
  • Pump cell 2 This is the second pump that is used for pumping the boiled water in water boiler (24) whose temperature has been reached till 104°C into superheated steam boiler (26)
  • Superheated steam boiler This is the production center of heat energy where superheated steam with high pressure is generated.
  • Ventilator This is the air intake system that provides with absorbtion to desired amount of flue gas (7) from the boiler (26) under control.
  • Multi-cyclone This is a mechanic assembly where flue gas (7) is filtered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

L'état de base de la thermodynamique est qu'il est fermé. Ceci constitue une condition préalable principale pour qu'un système de thermodynamique puisse être mesurable et contrôlable. Ceci est la base sur laquelle la CHP-w a été mise en place. Il ne devrait pas y avoir de mauvaise conception concernant la CHP-w comme celle de savoir comment une égalité thermodynamique peut produire plus de travail en sens inverse. De fait, une égalité doit être identique des deux côtés. Cependant, la cogénération et la cogénération-w ne sont pas deux côtés d'une égalité. La cogénération et la cogénération-w sont constituées d'une équation séparée en elle-même. La cogénération est un procédé de récupération de la chaleur en utilisant des paramètres thermodynamiques qui ont chuté dans un état inerte dans un système ouvert. Alors que la CHP-w effectue la prédiction sur un système thermodynamique fermé qui aspire pour produire la sortie de travail en tant que cible. Le procédé de CHP-w a été mis en place sur les caractéristiques de prise en charge de l'équilibre des fluides de combustion interne de la chaudière avec un niveau de production de vapeur surchauffée élastique, à l'exception du gaz de combustion, évitant ainsi autant que possible l'utilisation directe de la chaleur interne de la chaudière, recueillant la chaleur interne de la chaudière d'une seule main en produisant de la vapeur surchauffée et en ayant été capable de convertir l'enthalpie/la température et l'énergie/pression cinétiques les unes dans les autres par différents types de vapeur dans un système fermé. Le procédé de production d'énergie par CHP-w permet d'obtenir autant de vapeur surchauffée que possible à partir de la chaleur interne de la chaudière, à l'exclusion du gaz de combustion et de produire le travail à partir de celle-ci. Si la vapeur doit être laissée dans le type et la quantité désirés à partir de la génération de travail en extrayant de la sortie de la turbine soit directement en tant que vapeur, soit en utilisant la conversion de celle-ci en énergie thermique est le nom d'un système thermodynamique fermé. En raison de l'utilisation du procédé de CHP-w, les installations de production de panneaux de bois MDF ont en particulier la possibilité de produire de l'énergie électrique à une vitesse très importante avec leurs propres résidus de production de biomasse. Il en va de même pour d'autres installations de fabrication de panneaux à base de bois dont les résidus de biomasse ligneuse découlant de la production ne sont pas aussi importants que pour le procédé de production de MDF. La vitesse de montée en température nécessaire pour produire de la vapeur surchauffée est très faible. Tout le travail effectué par la vapeur surchauffée n'est effectué qu'avec cette petite quantité d'énergie. En même temps, c'est la quantité totale d'énergie qui est perdue par transformation en travail dans un système fermé. C'est le coût de travail. La plus grande partie de la chaleur produite dans la chaudière est utilisée pour l'eau à une température de 104 °C pour la convertir en vapeur saturée. Cependant, cette énergie de chaleur perdue peut être récupérée à nouveau par un type approprié de vapeur dans un système fermé et peut être évaluée de la manière qui est souhaitée, lorsque nécessaire.
PCT/TR2017/050249 2016-05-27 2017-06-06 Production d'énergie électrique libre dans des installations de production de mdf, d'osb, d'aggloméré et de contre-plaqué à l'aide d'un procédé de cogénération-w WO2017204773A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780016501.0A CN108884726A (zh) 2016-10-21 2017-06-06 利用废热发电-w方法在MDF、OSB、压合板和胶合板生产设施中自由发电
PH12018501927A PH12018501927A1 (en) 2016-05-27 2018-09-10 Free electrical energy generation in mdf, osb, chipboard and plywood production facilities with cogeneration - w method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
TR2016/07119 2016-05-27
TR201607119 2016-05-27
TR2016/14937 2016-10-21
TR201614937 2016-10-21

Publications (4)

Publication Number Publication Date
WO2017204773A2 true WO2017204773A2 (fr) 2017-11-30
WO2017204773A3 WO2017204773A3 (fr) 2017-12-21
WO2017204773A4 WO2017204773A4 (fr) 2018-02-15
WO2017204773A8 WO2017204773A8 (fr) 2018-05-31

Family

ID=59955614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/TR2017/050249 WO2017204773A2 (fr) 2016-05-27 2017-06-06 Production d'énergie électrique libre dans des installations de production de mdf, d'osb, d'aggloméré et de contre-plaqué à l'aide d'un procédé de cogénération-w

Country Status (2)

Country Link
PH (1) PH12018501927A1 (fr)
WO (1) WO2017204773A2 (fr)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3095699A (en) * 1958-12-18 1963-07-02 Babcock & Wilcox Co Combined gas-steam turbine power plant and method of operating the same
US4414813A (en) * 1981-06-24 1983-11-15 Knapp Hans J Power generator system
US4957049A (en) * 1990-02-22 1990-09-18 Electrodyne Research Corp. Organic waste fuel combustion system integrated with a gas turbine combined cycle
DE4328648A1 (de) * 1993-08-26 1995-03-02 Rheinische Braunkohlenw Ag Kraftwerksprozeß
CZ19731U1 (cs) * 2009-04-22 2009-06-15 Tuma@Stanislav Zarízení pro výrobu elektrické energie a tepla z biomasy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Also Published As

Publication number Publication date
WO2017204773A4 (fr) 2018-02-15
WO2017204773A8 (fr) 2018-05-31
PH12018501927A1 (en) 2019-07-01
WO2017204773A3 (fr) 2017-12-21

Similar Documents

Publication Publication Date Title
Yan et al. Evaluation of solar aided thermal power generation with various power plants
CN100354504C (zh) 一种火电机组多级利用回热疏水余热发电装置
CA2342345C (fr) Systeme et procede relatifs a une centrale a cycle mixte de grande puissance volumique
Li et al. Coupling performance analysis of a solar aided coal-fired power plant
Wołowicz et al. Feedwater repowering of 800 MW supercritical steam power plant.
WO2011030285A1 (fr) Procédé et appareil pour production d'énergie électrique
CN106089341A (zh) 增强多燃气涡轮联合循环装置中冷蒸汽涡轮启动的方法
Booneimsri et al. Increasing power generation with enhanced cogeneration using waste energy in palm oil mills
Zhao et al. Energy, exergy, economic and environmental (4E) analyses of an integrated system based on CH-CAES and electrical boiler for wind power penetration and CHP unit heat-power decoupling in wind enrichment region
Yuan-Hu et al. Use of latent heat recovery from liquefied natural gas combustion for increasing the efficiency of a combined-cycle gas turbine power plant
Bartnik et al. Thermodynamic and economic analysis of a gas turbine set coupled with a turboexpander in a hierarchical gas-gas system
RU2253917C2 (ru) Способ эксплуатации атомной паротурбинной энергетической установки и установка для его осуществления
WO2017204773A2 (fr) Production d'énergie électrique libre dans des installations de production de mdf, d'osb, d'aggloméré et de contre-plaqué à l'aide d'un procédé de cogénération-w
Pan et al. Performance evaluation of an improved biomass-fired cogeneration system simultaneously using extraction steam, cooling water, and feedwater for heating
CN107620615A (zh) 废热回收系统
WO2017204758A1 (fr) Production d'énergie électrique à l'aide d'un procédé de cogénération réversible w (chp-w) en remplacement de la cogénération (chp)
CN108884726A (zh) 利用废热发电-w方法在MDF、OSB、压合板和胶合板生产设施中自由发电
Ziółkowski et al. Multiple approach to analysis of H2O injection into a gas turbine
Veszely Hybrid combined cycle power plant
Sergeev et al. Using Heat Pumps to Improve the Efficiency of Combined-Cycle Gas Turbines. Energies 2021, 14, 2685
Javad et al. Full repowering of an existing fossil fuel steam power plant in terms of energy, exergy, and environmen for efficiency improvement and sustainable development
Atanasoae et al. The qualification of electricity production in high efficiency cogeneration for the access to the support scheme through green certificates
Mutahhari et al. The process and importance of producing thermal power
Shubenko et al. Energy saving during the partial heat load period by integrating a steam-heated absorption heat pump into the thermal scheme of a PT-60/70-130/13 steam turbine
Zaferanlo Evaluation and Optimization of Efficiency of Power Plants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17772134

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17772134

Country of ref document: EP

Kind code of ref document: A2