WO2017204683A1 - Шеститактный роторно-лопастной двигатель внутреннего сгорания - Google Patents

Шеститактный роторно-лопастной двигатель внутреннего сгорания Download PDF

Info

Publication number
WO2017204683A1
WO2017204683A1 PCT/RU2017/000316 RU2017000316W WO2017204683A1 WO 2017204683 A1 WO2017204683 A1 WO 2017204683A1 RU 2017000316 W RU2017000316 W RU 2017000316W WO 2017204683 A1 WO2017204683 A1 WO 2017204683A1
Authority
WO
WIPO (PCT)
Prior art keywords
chambers
rotor
engine
stator
air
Prior art date
Application number
PCT/RU2017/000316
Other languages
English (en)
French (fr)
Inventor
Николай Михайлович КРИВКО
Original Assignee
Николай Михайлович КРИВКО
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Николай Михайлович КРИВКО filed Critical Николай Михайлович КРИВКО
Priority to US16/096,436 priority Critical patent/US10920589B2/en
Publication of WO2017204683A1 publication Critical patent/WO2017204683A1/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/344Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F01C1/3446Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/344Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C20/00Control of, monitoring of, or safety arrangements for, machines or engines
    • F01C20/06Control of, monitoring of, or safety arrangements for, machines or engines specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/02Methods of operating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/02Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/08Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/14Shapes or constructions of combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B75/021Engines characterised by their cycles, e.g. six-stroke having six or more strokes per cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to the field of engine engineering, in particular, to internal combustion engines with rotating working bodies, namely to a rotary vane internal combustion engine (ICE), which can be used in water, air and land transport.
  • ICE rotary vane internal combustion engine
  • Known rotary-piston ICE Wankel containing a trihedral rotor (piston) with an arched lateral surface, rotating on an eccentric shaft, a housing (stator), acting as a cylinder with a working surface made in the form of an epitrochoid.
  • the kinematic connection of the rotor with the stator is carried out using gearing.
  • Face and radial seals are made in the form of spring-loaded plates located in the corresponding grooves on the ends of the rotor and on the vertices of its triangle (TSB, Sovetskaya Encyclopedia, 1971, v. 4, p. 289 - 290) (1).
  • TAB Sovetskaya Encyclopedia, 1971, v. 4, p. 289 - 290
  • the Wankel engine is simple in design and has proven effective in practical applications. In particular, it was successfully used by Mazda in the Renesis engine for the RX-8 sports car. However, the Wankel engine also has a number of significant drawbacks, the main of which are low manufacturability, non-repairability, low reliability of mechanical and radial seals and incomplete combustion of fuel due to the non-optimal shape of the combustion chamber.
  • SUBSTITUTE SHEET (RULE 26) Known rotary ICE according to the patent of the Russian Federation for the invention N ° 2416032 (published on 10. 11. 2010) (2).
  • This engine contains a housing (stator) with an elliptical working surface, a cylindrical rotor, in the longitudinal grooves of which are placed blades that are moved in the radial direction by rollers mounted on the blades, which roll on profiled grooves made in the side walls of the stator.
  • End and radial seals are provided with split U-shaped plates placed in the grooves of the blades, and spring-loaded rings placed in the bores of the side walls.
  • each working chamber of the engine (2) for a full revolution of the rotor with the shaft, a four-cycle cycle is performed, i.e. the number of working strokes per shaft revolution is determined by the number of working chambers, which can be from six to twenty-four.
  • the engine according to the patent (2) repeats the main disadvantages of the Wankel engine, namely the low manufacturability, low reliability of the seals, and the non-optimal shape of the combustion chamber. In addition, this engine is excessively cumbersome in design.
  • rotary engine described in the patent of the Russian Federation for the invention N2 2386823 (published 20. 04. 2010) (3).
  • This engine comprises a housing with inlet and outlet windows having an oval inner working surface, a rotor with retractable working blades, a source of compressed air associated with it, a fuel nozzle and a turbocharger.
  • the working blades of the engine form four compartments in the housing.
  • the ICE is also equipped with an electro-pneumatic system for extending and fixing the blades in the grooves of the rotor, made of an electro-pneumatic spool that communicates with the air source a compressed air source with sub-blades of the rotor.
  • Recesses are made on the lateral surfaces of the rotor grooves, in which spring-loaded pads forming chambers are mounted in their
  • SUBSTITUTE SHEET (RULE 26) the line is connected by ducts with a spool.
  • the blades are made in the form of a package of plates moving relative to each other, and on the engine housing between the inlet and outlet windows an additional window is made with a removable cover.
  • the disadvantages of the engine described in (3) are: excessive design complexity, in particular, due to the complex spool device and spring pads, the more than non-optimal shape of the combustion chamber and the absence of a mechanical seal between the rotor and side walls.
  • the engine described in (4) contains a fixed casing with grooves made in it, a rotor rigidly mounted on the shaft in the form of a wheel with spokes having guide channels for n pairs of multifunctional blades. Between the blades of each pair on the rim surface of the rotor are recesses forming a combustion chamber isolated from the blades.
  • the grooves with the rotor rim form functional cavities with inlet and outlet windows.
  • the profile of the grooves in the longitudinal section is n alternating, displaced full-period sinusoids with cut vertices directed inward.
  • the rotor shaft is made of two separate parts, the shaft and the hollow shaft, respectively, rigidly fixed to the ends in the lower and upper parts of the rotor and not passing through its body.
  • a freely rotating shaft of a retractable device with a sleeve rotating on it is installed inside the rotor, on its geometric axis.
  • the retractable device is either a crank-rack-pinion gear or a four-hinged lever-slide mechanism and contains a gear-cam sleeve having half couplings. Shaft and bushing
  • SUBSTITUTE SHEET (RULE 26) of the sliding device have levers with pushers for extending the blades, on the splines of the shaft of the sliding device and the sleeve there are double-sided gear engagement clutches, each of which separately and alternately engages with the coupling halves of the gear-cam sleeve and caliper hollows on the flange of the hollow part of the rotor shaft, in accordance with the operation mode of the fixing unit.
  • the fixation unit includes a cam mechanism with a drive axially moving gear couplings.
  • the prototype engine (4) Taken as a prototype engine (4) is characterized by higher efficiency and increased specific power. At the same time, the drawback of the engine (4) is the excessive complexity of the design, in particular, the blade extension mechanism and the associated lack of reliability, cumbersomeness and low manufacturability of the engine. In addition, the prototype, like all considered engines, does not provide for the possibility of transferring the engine to an economical mode of operation, for example, when cruising speed is reached.
  • the objective of the present invention is to provide a simple in design and technologically advanced in the manufacture of ICE with rotating working bodies, characterized by reliability, having high technical characteristics and providing the ability to transfer the engine to an economical mode of operation, in particular, when cruising speed is achieved.
  • the technical result achieved in the invention is to simplify the design of ICE with rotating working bodies, increase its reliability and manufacturability, prevent emissions of unburned fractions of the air-fuel mixture into the atmosphere and ensure the possibility of putting the engine into an economical mode of operation.
  • grooves are made on the ends of the stator along the entire periphery of the working surface, in which tape seals are located, each of which is pressed by springs to the inner wall of the groove and to the side wall of the motor adjacent to this end of the stator.
  • SUBSTITUTE SHEET (RULE 26) rectilinear-translational, which ensures high adaptability of engine manufacturing.
  • the rotary-bladed ICE implements a six-cycle duty cycle consisting of the strokes: intake of the air-fuel mixture, compression of the air-fuel mixture, combustion of the compressed air-fuel mixture, expansion of the combustion products, exhaust of the combustion products, and stand-up, and burning in time and space is separated from compression and expansion.
  • the sixth cycle of work - dormant - eliminates the mutual overflow of the air-fuel mixture into the exhaust gas discharge zone, and the exhaust gas into the air-intake mixture intake zone.
  • the number of double (triple, quadruple, etc.) strokes per shaft revolution is equal to the number of blades in the rotor grooves.
  • the invention also provides the possibility of putting the internal combustion engine into an economical mode of operation, while the number of working strokes per revolution of the rotor remains unchanged.
  • FIG. 1 shows a cross-sectional view of an engine
  • FIG. 2 shows a section A - A of FIG. one
  • FIG. 3 shows place I of FIG. 1 (some details not shown)
  • FIG. 4 shows place II of FIG. 2
  • FIG. 5 shows section B - B of FIG. 3.
  • the rotor-blade ICE contains a stator 1 (Fig. 1; 2) with inlet 2 and outlet 3 windows (Fig. 1). On the inner cylindrical surface of the stator 1 there are cylindrical bores, pairwise forming chambers 4 for intake of the air-fuel mixture and chambers 5 for expanding the combustion products (Fig. 1). In the grooves on the ends of the stator 1, enveloping the working surfaces of the stator 1, tape (for example) mechanical seals 6 are placed, springs 7 pressed against the inner wall of the groove and springs 8 through intermediate parts 9 (Fig. 2; 3; 4) to the side walls 10 and 11 (Fig. 2; 4; 5). Candles 12 are screwed into the threaded holes of the stator 1 (Fig. 1; 2). With stator 1, centered and firmly fixed
  • SUBSTITUTE SHEET (RULE 26) front 13 and rear 14 bearing shields (Fig. 2).
  • a shaft 15 is mounted on the angular contact bearings in the bearing shields, on which the cylindrical rotor 16 is fixedly mounted with the side walls 10 and 11 (Fig. 1; 2).
  • the cylindrical rotor 16 In the longitudinal grooves of the rotor 16 placed plate 17, 18, 19, 20 with inserts 21 (Fig. 3; 5).
  • the number of plates can be any, but not less than two.
  • the inserts 21 and the plates 17, 18, 19, 20 are opened by the springs 22 (Fig. 5).
  • hemispherical recesses 23 are made (Fig. 1; 2).
  • the set of plates (hereinafter, the set of plates will be called “blades”) air is supplied under pressure ⁇ 2 (oil-air system), which moves the blades in the radial direction, providing a multi-row labyrinth-gap seal in the pair of "blade-stator” and at the same time lubricates them.
  • ⁇ 2 oil-air system
  • SUBSTITUTE SHEET (RULE 26) air-fuel mixture and exhaust gases. Banded mechanical seals prevent the breakthrough of the air-fuel mixture and its combustion products outside the working area of the engine.
  • the air-fuel mixture is sucked in through the inlets 2, which during further rotation of the next blade is compressed in the tapering space bounded by the cylindrical surfaces of the stator 1, the rotor 16 and the side walls 10 and 11 .
  • the mixture is concentrated in a hemispherical recess 23 on the cylindrical surface of the rotor 16.
  • the candles 12, the mixture ignites and burns into a closed of the spherical space, before the forward along the blade begins to advance into the open space of the chamber 5 expansion of the combustion products, transmitting torque to the shaft 15.
  • the exhaust windows 3 open and the exhaust gases are removed from the chambers 5.
  • the central section the cylindrical surface of the stator between the chambers 5 expansion of the products of combustion and exhaust gas and chambers 4 intake and compression of the air-fuel mixture prevents the ingress of exhaust gas into the intake air-fuel mixture.
  • Combustion synchronization in symmetrically located chambers provides unloading of shaft supports from radial forces.
  • the synchronous movement of the blades in the grooves of the rotor provides dynamic balance of the engine.
  • one of the intake and compression chambers of the air-fuel mixture can be cut off by any known method while maintaining the flow of air into the said chamber. In this case, the operation of the engine continues with reduced power output while maintaining the same number of working strokes per revolution of the rotor.
  • the invention provides the implementation of a six-cycle cycle of operation of a rotor-blade ICE, which has significant advantages. So, the execution of the side walls of all working chambers rotating together with the rotor and the blades, the sealing in the pairs of "blade - rotor" and “blade - stator” multi-row maximizes the degree of tightness of the working space of the engine and reduces friction losses. Periodic injection of oil into the air stream ensures reliable lubrication of the rubbing surfaces and contact of the blades and the stator, lubrication of the rotor shaft bearings and helps to cool the engine parts.
  • Multipoint combustion eliminates one-sided heating of engine parts, and the synchronous movement of the blades in the radial direction contributes to the smooth vibration-free operation of the engine.
  • the frequency of the engine’s strokes (in the example considered, a double stroke occurs every 36 ° of shaft rotation) ensures smooth torque.
  • Burning fuel in a constant volume in a spherical chamber contributes to the fullest use of the chemical energy of the fuel. Due to the invention, the possibility of stopping the supply of fuel to part of the intake chambers of the air-fuel mixture while maintaining the air supply provides the most economical operation mode of the engine.
  • the implementation of the working surfaces flat and cylindrical provides a high degree of manufacturability of the engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Supercharger (AREA)

Abstract

Изобретение относится к шеститактному роторно-лопастну двигателю внутреннего сгорания, содержащему статор и цилиндрический ротор с продольными пазами, в которых размещены лопатки, и камерами горения. Боковые стенки рабочих камер образованы вращающимися частями ротора. Камеры горения выполнены в виде полусферических углублений на цилиндрической поверхности ротора между его продольными пазами. Рабочие камеры статора выполнены в виде цилиндрических расточек с осями, параллельными оси статора, равномерно разнесенных по его внутренней поверхности. Каждая лопатка состоит из отдельных пластин с возможностью свободного взаимного перемещения. Каждая пластина лопатки выполнена из двух частей, раздвигаемых в осевом направлении пружиной. Количество лопаток кратно количеству камер забора топливовоздушной смеси. Изобретение направлено на упрощение конструкции двигателя, повышение его надежности и технологичности изготовления.

Description

ШЕСТИТАКТНЫИ РОТОРНО-ЛОПАСТНОЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО
СГОРАНИЯ
Настоящее изобретение относится к области двигателестроения, в частности, к двигателям внутреннего сгорания с вращающимися рабочими органами, а именно к роторно-лопастному двигателю внутреннего сгорания (ДВС), который может быть использован на водном, воздушном и сухопутном транспорте.
Известен роторно-поршневой ДВС Ванкеля, содержащий трёхгранный ротор (поршень) с дугообразной боковой поверхностью, вращающийся на эксцентриковом валу, корпус (статор), выполняющий роль цилиндра с рабочей поверхностью, выполненной в виде эпитрохоиды. Кинематическая связь ротора со статором осуществляется с помощью зубчатого зацепления. Торцовые и радиальные уплотнения выполнены в виде подпружиненных пластин, расположенных в соответствующих канавках на торцах ротора и на вершинах его треугольника (БСЭ, «Советская энциклопедия», 1971 г., т. 4, с. 289 - 290) (1). За один оборот ротора осуществляется 3 полных рабочих цикла, эксцентриковый вал выполняет 3 оборота.
Двигатель Ванкеля отличается простотой конструкции и доказал свою эффективность в практическом применении. В частности, он был успешно применён компанией Mazda в двигателе «Renesis» для спортивного автомобиля RX-8. Однако двигатель Ванкеля имеет и ряд существенных недостатков, главные из которых - низкая технологичность изготовления, неремонтопригодность, невысокая надёжность торцового и радиального уплотнений и неполное сгорание топлива, обусловленное неоптимальной формой камеры сгорания.
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) Известен роторный ДВС по патенту РФ на изобретение N° 2416032 (опубликован 10. 11. 2010 г.) (2). Данный двигатель содержит корпус (статор) с эллиптической рабочей поверхностью, цилиндрический ротор, в продольных пазах которого размещены лопатки, перемещаемые в радиальном направлении закреплёнными на лопатках роликами, которые перекатываются по профилированным пазам, выполненным в боковых стенках статора. Торцовые и радиальные уплотнения обеспечены разрезными П-образными пластинами, размещёнными в пазах лопаток, и подпружиненными кольцами, размещёнными в расточках боковых стенок. В каждой рабочей камере двигателя (2) за один полный оборот ротора с валом осуществляется четырёхтактный цикл, т. о. число рабочих ходов за один оборот вала определяется числом рабочих камер, которых может быть от шести до двадцати четырёх.
Двигатель согласно патенту (2) повторяет основные недостатки двигателя Ванкеля, а именно низкую технологичность изготовления, малую надёжность уплотнений, неоптимальность формы камеры сгорания. Кроме того, данный двигатель чрезмерно громоздок по конструкции.
Известен также роторный ДВС, описанный в патенте РФ на изобретение N2 2386823 (опубликован 20. 04. 2010 г.) (3). Данный двигатель содержит корпус с впускными и выпускными окнами, имеющий овальную внутреннюю рабочую поверхность, ротор с выдвижными рабочими лопастями, связанный с ним источник сжатого воздуха, топливную форсунку и турбонагнетатель. Рабочие лопасти двигателя образуют четыре отсека в корпусе. ДВС также снабжён электропневматической системой выдвижения и фиксации лопастей в пазах ротора, выполненной из электропневматического золотника, сообщающего воздуховодами источник сжатого воздуха с подлопастными камерами ротора. На боковых поверхностях пазов ротора выполнены углубления, в которых смонтированы подпружиненные колодки, образующие камеры, в свою
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) очередь сообщающиеся воздуховодами с золотником. Лопасти выполнены в виде пакета подвижных друг относительно друга пластин, а на корпусе двигателя между впускными и выпускными окнами выполнено дополнительное окно со съёмной крышкой.
Недостатками описанного в (3) двигателя являются: излишняя сложность конструкции, в частности, из-за сложного золотникового устройства и подпружиненных колодок, более чем неоптимальная форма камеры сгорания и отсутствие торцового уплотнения между ротором и боковыми стенками.
Наиболее близким к предлагаемому изобретению является двигатель, описанный в патенте РФ на изобретение N° 2387850 (опубликован 27. 04. 2010 г.) (4), выбранный в качестве прототипа. Описанный в (4) двигатель содержит неподвижный корпус с выполненными в нём канавками, жёстко посаженный на вал ротор в виде колеса со спицами, имеющими каналы-направляющие для п пар разнофункциональных лопаток. Между лопатками каждой пары на ободной поверхности ротора выполнены углубления, образующие камеры сгорания, изолированные от лопаток. Канавки с ободом ротора образуют функциональные полости с впускными и выпускными окнами. Профиль канавок в продольном сечении представляет собой п чередующихся, смещённых полнопериодных синусоид с направленными внутрь срезанными вершинами. Вал ротора выполнен из двух раздельных частей, вала и полого вала, соответственно жёстко закреплённых на торцах в нижней и верхней частях ротора и не проходящих через его тело. Внутри ротора на его геометрической оси установлен свободно вращающийся вал выдвижного устройства с вращающейся на нём втулкой. Выдвижное устройство представляет из себя либо кривошипно-реечно-шестерёнчатый, либо четырёхшарнирный рычажно-ползунный механизмы и содержит шестерёнчато-кулачковую втулку, имеющую полумуфты. Вал и втулка
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) выдвижного устройства имеют рычаги с толкателями для выдвижения лопаток, на шлицах вала выдвижного устройства и втулки расположены двухсторонние зубчатые муфты зацепления, каждая из которых отдельно и поочерёдно входит в зацепление с полумуфтами шестерёнчато-кулачковой втулки и впадинами суппорта на фланце полой части вала ротора, в соответствии с режимом работы узла фиксации. Узел фиксации включает в себя кулачковый механизм с приводом, осуществляющим осевое перемещение зубчатых муфт. Наконец, на ободной стенке основной части корпуса двигателя (4) в переходах, разделяющих компрессионную и рабочую полости, расположены элементы калильного зажигания.
Взятый за прототип двигатель (4) характеризуется более высоким КПД и увеличенной удельной мощностью. Вместе с тем, недостатком двигателя (4) является чрезмерная сложность конструкции, в частности, механизма выдвижения лопаток и связанные с этим недостаточная надёжность, громоздкость и низкая технологичность изготовления двигателя. Кроме того, прототип, как и все рассмотренные двигатели, не предусматривает возможности перевода двигателя в экономичный режим работы, например при достижении крейсерской скорости.
Задачей настоящего изобретения является создание простого по конструкции и технологичного в изготовлении ДВС с вращающимися рабочими органами, отличающегося надёжностью, имеющего высокие технические характеристики и обеспечивающего возможность перевода двигателя в экономичный режим работы, в частности, при достижении крейсерской скорости. Достигаемый в изобретении технический результат заключается в упрощении конструкции ДВС с вращающимися рабочими органами, повышении его надёжности и технологичности изготовления, предотвращении выбросов в атмосферу несгоревших фракций топливовоздушной смеси и обеспечении возможности перевода двигателя в экономичный режим работы.
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) Поставленная задача решается тем, что в роторно-лопастном ДВС, содержащем статор с впускными и выпускными окнами, с отверстиями для свечей зажигания, с рабочими камерами забора и сжатия топливовоздушной смеси, чередующимися с рабочими камерами расширения и удаления продуктов горения; закреплённый на валу цилиндрический ротор с продольными пазами, в которых размещены лопатки, и камерами горения, выполненными на цилиндрической поверхности ротора; боковые стенки, передний и задний подшипниковые щиты, причём боковые стенки всех рабочих камер образованы вращающимися частями ротора, камеры горения выполнены в виде полусферических углублений между продольными пазами ротора, рабочие камеры статора выполнены в виде цилиндрических расточек с осями, параллельными оси статора и разнесёнными равномерно по его внутренней поверхности, каждая лопатка статора состоит из отдельных пластин с возможностью свободного взаимного перемещения, причём каждая пластина лопатки выполнена из двух частей, раздвигаемых в осевом направлении пружиной, а количество лопаток кратно количеству камер забора топливовоздушной смеси. Для предотвращения утечки газов за пределы рабочей зоны на торцах статора по всей периферии рабочей поверхности выполнены канавки, в которых расположены ленточные уплотнители, каждый из которых прижат пружинами к внутренней стенке канавки и к боковой стенке двигателя, прилегающей к данному торцу статора. При достижении установившегося режима движения, например, при достижении крейсерской скорости, подача топлива в одну (как минимум) из камер забора топливовоздушной смеси может быть прекращена при сохранении подачи в указанную камеру воздуха.
Необходимо отметить, что рабочие поверхности основных деталей ДВС согласно изобретению подлежат изготовлению путём обработки механизмами с элементарными видами движения - вращательным и
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) прямолинейно-поступательным, что обеспечивает высокую технологичность изготовления двигателя.
Таким образом, роторно-лопастной ДВС согласно изобретению реализует шеститактный рабочий цикл, состоящий из тактов: впуска топливовоздушной смеси, сжатия топливовоздушной смеси, горения сжатой топливовоздушной смеси, расширения продуктов горения, выпуска продуктов горения, и выстоя, причём горение во времени и пространстве отделено от сжатия и расширения. Шестой такт работы - выстой - исключает взаимные перетечки топливовоздушной смеси в зону выпуска отработавших газов, а отработавших газов в зону забора топливовоздушной смеси. Число двойных (тройных, четверных и т. д) ходов за один оборот вала равно числу лопастей в пазах ротора. Изобретение также обеспечивает возможность перевода ДВС в экономичный режим работы, при этом число рабочих ходов за один оборот ротора остаётся неизменным.
Сущность изобретения поясняется чертежами, где на фиг. 1 показан вид двигателя в поперечном разрезе; на фиг. 2 показан разрез А - А с фиг. 1; на фиг. 3 показано место I с фиг. 1 (некоторые детали не показаны); на фиг. 4 показано место II с фиг.2; на фиг. 5 показано сечение Б - Б с фиг. 3.
Роторно-лопастной ДВС содержит статор 1 (фиг. 1; 2) с впускными 2 и выпускными 3 окнами (фиг. 1). По внутренней цилиндрической поверхности статора 1 расположены цилиндрические расточки, попарно образующие камеры 4 забора топливовоздушной смеси и камеры 5 расширения продуктов горения (фиг. 1). В канавках на торцах статора 1, огибающих рабочие поверхности статора 1, помещены ленточные (например) торцовые уплотнители 6, пружинами 7 прижимаемые к внутренней стенке канавки и пружинами 8 через промежуточные детали 9 (фиг. 2; 3; 4) к боковым стенкам 10 и 11 (фиг. 2; 4; 5). В резьбовые отверстия статора 1 ввинчены свечи 12 (фиг. 1; 2). Со статором 1 сцентрированы и жёстко скреплены
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) передний 13 и задний 14 подшипниковые щиты (фиг. 2). В подшипниковых щитах на радиально-упорных подшипниках установлен вал 15, на котором неподвижно закреплён цилиндрический ротор 16 с боковыми стенками 10 и 11 (фиг. 1; 2). В продольных пазах ротора 16 помещены пластины 17, 18, 19, 20 со вставками 21 (фиг. 3; 5). Число пластин может быть любым, но не менее двух. Вставки 21 и пластины 17, 18, 19, 20 разжимаются пружинами 22 (фиг. 5). На цилиндрической поверхности ротора 16, между продольными пазами, выполнены полусферические углубления 23 (фиг. 1; 2). В расточках, выполненных в статоре 1 вдоль продольных пазов, помещены подпружиненные маслосъёмники 24 (фиг. 1; 2). В нижней части щитов 13 и 14 выполнены отверстия 25, 26, а также отверстия 27 и 28 (произвольно) (фиг. 1; 2). Вал 15 имеет отверстие 29 с выходом на периферию (фиг. 2).
Работу ДВС согласно изобретению проследим на примере варианта, изображённого на чертежах (с двумя камерами забора, направление вращения по часовой стрелке, фиг. 1).
Перед моментом пуска двигателя через отверстия 27 и 28 в щитах 13 и 14 подаётся воздух под давлением Pi с периодическим впрыском масла (система «масло-воздух»), который, проходя через радиально-упорные подшипники, смазывает и охлаждает их и попадает в пространства между подшипниковыми щитами и вращающимися деталями ротора 16, откуда через отверстия 25 и 26 в нижней части щитов удаляется на регенерацию. Одновременно через отверстие 29 в валу 15 в пазы ротора 16 под размещённые в пазах пластины 17, 18, 19, 20 (далее совокупность пластин будем называть «лопатками») подаётся воздух под давлением Р2 (система «масло-воздух»), который раздвигает лопатки в радиальном направлении, обеспечивая многорядное лабиринтно-щелевое уплотнение в паре «лопатка-статор» и одновременно смазывает их. Каждая из пластин лопатки пружиной 22 через вставку 21 прижимается в шахматном порядке к боковым стенкамЮ и 11, предотвращая межкамерные перетечки
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) топливовоздушной смеси и отработавших газов. Ленточные торцовые уплотнители б предотвращают прорыв топливовоздушной смеси и продуктов её сгорания за пределы рабочей зоны двигателя. При вращении ротора 16 в пространство камер 4 забора топливовоздушной смеси, образующееся за выдвигающейся лопаткой, через впускные отверстия 2 засасывается топливовоздушная смесь, которая при дальнейшем вращении очередной лопаткой сжимается в сужающемся пространстве, ограниченном цилиндрическими поверхностями статора 1, ротора 16 и боковыми стенками 10 и 11. На конечной стадии сжатия смесь концентрируется в полусферическом углублении 23 на цилиндрической поверхности ротора 16. В этот момент свечами 12 смесь воспламеняется и сгорает в замкнутом сферическом пространстве, прежде чем передняя по ходу лопатка начнёт выдвигаться в открывшееся пространство камеры 5 расширения продуктов горения, осуществляя передачу крутящего момента валу 15. При дальнейшем вращении за передними по ходу лопатками открываются выпускные окна 3 и отработавшие газы удаляются из камер 5. Участок центральной цилиндрической поверхности статора между камерами 5 расширения продуктов горения и выпуска отработавших газов и камерами 4 забора и сжатия топливовоздушной смеси предотвращает попадание отработавших газов в зону забора топливовоздушной смеси. Синхронность горения в симметрично расположенных камерах обеспечивает разгрузку опор вала от радиальных усилий. Синхронное движение лопаток в пазах ротора обеспечивает динамическую уравновешенность двигателя. При достижении установившегося режима движения (крейсерской скорости) в одну из камер забора и сжатия топливовоздушной смеси может быть любым известным способом прекращена подача топлива при сохранении поступления в указанную камеру воздуха. При этом работа двигателя продолжается с пониженной отдаваемой мощностью при сохранении неизменным числа рабочих ходов за один оборот ротора.
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) Таким образом, изобретение обеспечивает реализацию шеститактного цикла работы роторно-лопастного ДВС, обладающего значительными преимуществами. Так, выполнение боковых стенок всех рабочих камер вращающимися совместно с ротором и лопатками, выполнение уплотнения в парах «лопатка - ротор» и «лопатка - статор» многорядным максимально повышает степень герметичности рабочего пространства двигателя и снижает потери на трение. Периодический впрыск масла в воздушный поток гарантирует надёжность смазки трущихся поверхностей и контакта лопаток и статора, смазку опор вала ротора и способствует охлаждению деталей двигателя. Многоточечное горение исключает односторонний нагрев деталей двигателя, а синхронность движения лопаток в радиальном направлении способствует плавной безвибрационной работе двигателя. Частота рабочих ходов двигателя (в рассмотренном примере сдвоенный рабочий ход происходит через каждые 36° поворота вала) обеспечивает плавность крутящего момента. Сжигание топлива в постоянном объёме в камере сферической формы способствует наиболее полному использованию химической энергии топлива. Обусловленная изобретением возможность прекращения подачи топлива в часть камер забора топливовоздушной смеси при сохранении подачи воздуха обеспечивает наиболее экономичный режим эксплуатации двигателя. Выполнение рабочих поверхностей плоскими и цилиндрическими обеспечивает высокую степень технологичности изготовления двигателя.
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26)

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Шеститактный роторно-лопастной двигатель внутреннего сгорания, содержащий статор с впускными и выпускными окнами, отверстиями для свечей зажигания и рабочими камерами забора и сжатия топливовоздушной смеси, чередующимися с рабочими камерами расширения и удаления продуктов горения; жёстко закреплённый на валу цилиндрический ротор с продольными пазами, в которых размещены лопатки, с камерами горения, выполненными на его цилиндрической поверхности между пазами; боковые стенки, передний и задний подшипниковые щиты, отличающийся тем, что боковые стенки всех рабочих камер двигателя образованы вращающимися частями ротора, при этом камеры горения выполнены в виде полусферических углублений на цилиндрической поверхности ротора между его продольными пазами, а рабочие камеры статора выполнены в виде цилиндрических расточек с осями, параллельными оси статора, равномерно разнесённых по внутренней поверхности статора, каждая лопатка состоит из отдельных пластин с возможностью свободного взаимного перемещения, причём каждая пластина лопатки выполнена из двух частей, раздвигаемых в осевом направлении пружиной, а количество лопаток кратно количеству камер забора топливовоздушной смеси.
2. Двигатель по п. 1, отличающийся тем, что перевод двигателя в экономичный режим работы осуществляется прекращением подачи топлива в часть камер забора топливовоздушной смеси с сохранением подачи в указанные камеры воздуха.
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26)
PCT/RU2017/000316 2016-05-25 2017-05-17 Шеститактный роторно-лопастной двигатель внутреннего сгорания WO2017204683A1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/096,436 US10920589B2 (en) 2016-05-25 2017-05-17 Six-stroke rotary-vane internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2016120215 2016-05-25
RU2016120215A RU2619672C1 (ru) 2016-05-25 2016-05-25 Шеститактный роторно-лопастной двигатель внутреннего сгорания

Publications (1)

Publication Number Publication Date
WO2017204683A1 true WO2017204683A1 (ru) 2017-11-30

Family

ID=58715746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2017/000316 WO2017204683A1 (ru) 2016-05-25 2017-05-17 Шеститактный роторно-лопастной двигатель внутреннего сгорания

Country Status (3)

Country Link
US (1) US10920589B2 (ru)
RU (1) RU2619672C1 (ru)
WO (1) WO2017204683A1 (ru)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2654555C1 (ru) 2017-07-13 2018-05-21 Николай Михайлович Кривко Шеститактный роторно-лопастной двигатель внутреннего сгорания
IT201700094241A1 (it) * 2017-08-17 2019-02-17 Angelo Bracalente Motore endotermico rotativo.
RU2707343C1 (ru) * 2019-05-22 2019-11-26 Николай Михайлович Кривко Шеститактный роторно-лопастной двигатель внутреннего сгорания

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6125814A (en) * 1996-03-29 2000-10-03 Tang; Hetian Rotary vane engine
RU2387850C2 (ru) * 2008-01-31 2010-04-27 Олег Георгиевич Чантурия Тепловой роторный двигатель (варианты)
RU2426899C2 (ru) * 2008-11-05 2011-08-20 Григорьянц Роберт Аветисович Роторный двигатель внутреннего сгорания

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3908608A (en) * 1973-08-16 1975-09-30 Hans G Fox Rotary piston engine having a turbo-supercharger
JPS5162216A (ru) * 1974-11-28 1976-05-29 Suzuki Sangyo Kk
FR2381176A1 (fr) * 1977-02-16 1978-09-15 Heidmann Jacques Moteur rotatif a palettes radiales en particulier moteur a combustion interne a quatre temps, a double admission continue et a double allumage simultane
US5711268A (en) * 1995-09-18 1998-01-27 C & M Technologies, Inc. Rotary vane engine
US6237560B1 (en) * 1998-01-06 2001-05-29 Saitoh & Co., Ltd. Overexpansion rotary engine
WO2000003132A1 (fr) * 1998-07-13 2000-01-20 Saito & Co. Ltd. Moteur rotatif a superexpansion
US6536403B1 (en) * 2001-09-27 2003-03-25 Magdi M Elsherbini Direct drive rotary engine
RU2386823C1 (ru) 2008-09-02 2010-04-20 Нулид Зуберович Нехай Роторный двигатель внутреннего сгорания
RU2416032C2 (ru) 2009-04-30 2011-04-10 Владимир Петрович Харченко Роторный двигатель внутреннего сгорания

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6125814A (en) * 1996-03-29 2000-10-03 Tang; Hetian Rotary vane engine
RU2387850C2 (ru) * 2008-01-31 2010-04-27 Олег Георгиевич Чантурия Тепловой роторный двигатель (варианты)
RU2426899C2 (ru) * 2008-11-05 2011-08-20 Григорьянц Роберт Аветисович Роторный двигатель внутреннего сгорания

Also Published As

Publication number Publication date
RU2619672C1 (ru) 2017-05-17
US20190145261A1 (en) 2019-05-16
US10920589B2 (en) 2021-02-16

Similar Documents

Publication Publication Date Title
CA2737435C (en) Internal combustion engine
US7117839B2 (en) Multi-stage modular rotary internal combustion engine
CA2844015A1 (en) Rotary internal combustion engine with pilot subchamber
JPH0693872A (ja) 複合回転羽根エンジン
RU2619672C1 (ru) Шеститактный роторно-лопастной двигатель внутреннего сгорания
US3863611A (en) Rotary engine
RU2325542C2 (ru) Многороторный двигатель внутреннего сгорания
US3762375A (en) Rotary vane internal combustion engine
US5819699A (en) Rotary internal combustion engine
RU2538990C1 (ru) Роторно-поршневой двигатель внутреннего сгорания
RU2699864C1 (ru) Роторная машина объемного типа
RU2654555C1 (ru) Шеститактный роторно-лопастной двигатель внутреннего сгорания
US5429083A (en) Rotary internal combustion twin engine
CN203515794U (zh) 叶片式发动机
CN101852123A (zh) 摆线转子发动机
EP2019912B1 (en) Energy transfer machine with inner rotor
RU2524795C2 (ru) Роторный двигатель внутреннего сгорания
RU2418180C1 (ru) Роторный двигатель и эксцентриковый вал
US20210381425A1 (en) Rotary vane internal combustion engine
US11428156B2 (en) Rotary vane internal combustion engine
US4227506A (en) Internal combustion engine
WO2009008743A1 (en) Circular run gear-piston engine
RU2773184C2 (ru) Роторно-поршневой двигатель внутреннего сгорания рыля
US4380220A (en) Internal combustion engine
RU2300649C2 (ru) Аксиальный роторно-лопастной двигатель внутреннего сгорания

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17803145

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17803145

Country of ref document: EP

Kind code of ref document: A1