WO2017204428A1 - Cathode active material, method for preparing same, and lithium secondary battery including same - Google Patents

Cathode active material, method for preparing same, and lithium secondary battery including same Download PDF

Info

Publication number
WO2017204428A1
WO2017204428A1 PCT/KR2016/013799 KR2016013799W WO2017204428A1 WO 2017204428 A1 WO2017204428 A1 WO 2017204428A1 KR 2016013799 W KR2016013799 W KR 2016013799W WO 2017204428 A1 WO2017204428 A1 WO 2017204428A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
active material
positive electrode
metal oxide
electrode active
Prior art date
Application number
PCT/KR2016/013799
Other languages
French (fr)
Korean (ko)
Inventor
최수안
정호준
전상훈
양지운
신준호
권성상
안지선
Original Assignee
주식회사 엘 앤 에프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘 앤 에프 filed Critical 주식회사 엘 앤 에프
Publication of WO2017204428A1 publication Critical patent/WO2017204428A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • It relates to a positive electrode active material, a method of manufacturing the same, and a lithium secondary battery including the same.
  • a battery generates electric power by using an electrochemical reaction material for the positive electrode and the negative electrode.
  • a typical example of such a battery is when lithium ions are intercalated / deintercalated at a positive electrode and a negative electrode.
  • lithium secondary battery that generates electrical energy by a change in chemical potential.
  • the lithium secondary battery is a reversible lithium ion
  • a material capable of intercalation / deantercalation is used as a cathode and an anode active material, and an organic electrolyte or a polymer electrolyte is layered between the cathode and the anode.
  • a lithium composite metal compound is used as a cathode active material of a lithium secondary battery, and composite metal oxides such as LiCo0 2 , LiMn 2 0 4 , LiNi0 2 , and LiMn0 2 have been studied.
  • LiCo0 2 is an excellent material having stable charge and discharge characteristics, excellent electron conductivity, relatively high battery voltage, high stability, and flat discharge voltage characteristics.
  • Japanese Patent Publication No. 19-55210 discloses a positive electrode active material prepared by coating a lithium-nickel oxide with Co, Al, Mn and alkoxide and then heat-treating it.
  • 16566 describes lithium-based oxides coated with metals of Ti, Sn, Bi, Cu, Si, Ga, W, Zr, B, or Mo and / or their oxides
  • Japanese Patent Application Laid-Open No. 11-185758 This discloses a positive electrode active material which is coated with a metal oxide on the surface of lithium manganese oxide by coprecipitation and then heat treated.
  • Patent Publication No. 2012-0139833 includes a polyanion structure formed to cover the surface of the positive electrode active material and having a cation portion composed of metal atoms serving as conductive ions and a polyanion structure portion composed of a central atom covalently bonded to a plurality of oxygen atoms.
  • a cathode active material including a reaction suppression layer made of a compound is provided.
  • the composite compound reaction suppression layer of the polyanion structure-containing compound for example Li 3 PO 4
  • the present invention provides a cathode active material, and provides a cathode including the cathode active material and a lithium secondary battery including the same.
  • a cathode active material represented by Chemical Formula 1 is provided.
  • A is selected from the group consisting of Mg, Ca, Sr, Ba, and combinations thereof
  • D is selected from the group consisting of Ti, Zr, Ce, Ge, Sn, and combinations thereof
  • X is selected from the group consisting of S, P, F and combinations thereof,
  • the average oxidation number of A and D is E, and £ is E ⁇ 2.5.
  • the dopant A may be Mg.
  • the dopant D may be Ti.
  • £ above may be a relationship of £ ⁇ 2.4.
  • It may include a coating layer located on a part of the surface of the compound represented by Formula 1, wherein the coating layer comprises lithium phosphate, the coating layer may be a composite coating layer further comprising a lithium metal oxide, a metal oxide, or a combination thereof have.
  • the metal M included in the lithium metal oxide, the metal oxide, or a combination thereof may be at least one element selected from Mg, Ca, Ti, Zr, Al, B, Si, or Sn.
  • the metal included in the lithium metal oxide, the metal oxide, or a combination thereof may be an element selected from Mg, Ti, or a combination thereof.
  • the lithium metal oxide, metal oxide, or The metal included in the combination may further include Co.
  • the metal included in the coating layer may be substituted in the surface portion of the compound represented by Formula 1, and may have a concentration gradient from the surface portion to the core portion.
  • the content of the composite coating layer with respect to the total weight of the positive electrode active material may be 0.2 to 2.0% by weight.
  • the coating layer includes Li 3 P3 ⁇ 4, and Li of Li 3 PO 4 may be derived from Li included in the compound represented by Chemical Formula 1.
  • M is selected from the group consisting of Ni, Co, Mn, Al, Ti, Fe and combinations thereof '
  • A is selected from the group consisting of Mg, Ca, Sr, Ba, and combinations thereof,
  • D is selected from the group consisting of Ti, Zr, Ce ⁇ Ge, Sn and combinations thereof
  • X is selected from the group consisting of S, P, F and combinations thereof
  • the average oxidation number of A and D is E, where E is E ⁇ 2.5.
  • the step of obtaining a compound capable of reversible intercalation and deintercalation of lithium comprising; in the heat treatment temperature,
  • the lithium metal oxide powder (a) having D50 of 3 to 5 and the lithium metal oxide powder (b) having D50 of 8 to 20 are in a bimodal form in which Of powders (a) and (b)
  • A is selected from the group consisting of Mg, Ca, Sr, Ba, and combinations thereof,
  • * D is selected from the group consisting of Ti, Zr, Ce, Ge, Sn and combinations thereof,
  • X is selected from the group consisting of S, P, F and combinations thereof,
  • a positive electrode active material having excellent battery characteristics at a high voltage of 4.5 V or more, and a positive electrode and a lithium secondary battery including the same can be provided.
  • FIG. 1 is a schematic diagram of a lithium secondary battery.
  • a cathode active material represented by the following formula (1).
  • M is in the group consisting of Ni, Co, Mn, Al, Ti, Fe, and combinations thereof
  • A is selected from the group consisting of Mg, Ca, Sr, Ba, and combinations thereof
  • D is selected from the group consisting of Ti, Zr, Ce, Ge, Sn, and combinations thereof
  • X is S, P , F and a combination thereof, the average oxidation number of A and D is E, E is E ⁇ 2.5.
  • Dopant A plays a role in preventing structural collapse caused by reaction with Li in the transition metal layer, which is a side effect of the coating material, which is performed to suppress side reaction with the whole liquid at high voltage.
  • the present inventors have found that the divalent cation can lead to the structural stability of the surface portion through the bulk surface doping of the bulk.
  • dopant A is one or more types selected from Mg, Ca, Sr, and Ba, and Mg is more preferable.
  • Dopant D is associated with the Rate property and is an element added with the doping of dopant A to achieve the desired cell properties.
  • the ratio of the dopant D is z, preferably 0 ⁇ z ⁇ 0.1.
  • the dopant D is at least one selected from Ti, Zr, Ce, Ge, and Sn, more preferably Ti and Zr, and most preferably Ti. In order to anticipate synergism between the properties of dopant A and the properties of dopant D, the ratio between these dopants may be considered.
  • the amount of doping is shown to be selectively or competitively performed on a specific dopant, rather than being doped into the particle by the amount injected for doping, and destroyed such as ICP (induct ivly coupled plasma).
  • ICP induct ivly coupled plasma
  • the content of the dopant is detected in an amount close to the input amount, but it is assumed that the position in the particles of each dopant may be changed by the dopant interaction.
  • Dopant D is expected to be present in the form of a separate compound as some or a significant portion of the dose precipitates out of the particles.
  • the dopant D may be reduced to suppress precipitation outside the particles and may be less than the ratio of the dopant A.
  • the ratio of the dopant A and the dopant D was preferably 3: 1 in molar ratio, and more preferably, the ratio of the dopant A was higher than this.
  • the dopant A is preferably E ⁇ 2.5, more preferably E ⁇ 2.4, when the average oxidation number of the dopant is E.
  • Anion X is selected from the group consisting of P, F, S and combinations thereof. It is assumed that they occupy oxygen sites at the bulk of the surface in a high voltage environment, thereby strengthening the bond with the transition metal.
  • Lithium of the lithium phosphate, lithium metal phosphate, lithium metal oxide contained in the composite coating layer is a reversible intercalation of the lithium and
  • the deintercalation may be from Li included in the possible compounds or from a separate Li feed material.
  • Lithium metal oxide, or metal contained in the composite coating layer Lithium metal oxide, or metal contained in the composite coating layer
  • the metal in the oxide may be Mg, Ca, Ni, Co, Ti, Al, Si, Sn, Mn, Cr, Fe, Zr, B, Al, Si, Ga, or a combination thereof.
  • the content of the composite coating layer based on the total weight of the cathode active material may be 0.2 to 2.0 weight 3 ⁇ 4.
  • the compound capable of reversible intercalation and deintercalation of lithium may be Li r ich (Li / M rat io> 1.0). ) May be a composition.
  • LiM0 2 (M is Ni, Co, or Mn) composition system rocksalt structures may be formed on the surface of the anode material under conventional manufacturing conditions.
  • a surface rearrangement reaction (Rocksalt-> layered) occurs in a chemical reaction process in which lithium phosphate or the like is formed on the surface, thereby controlling structural defects and impurities formed on the surface.
  • Li when applying a general LiM0 2 (M is Ni, Co, or Mn) composition Li in the process of forming lithium phosphate Shortage may occur, which may cause some deterioration of battery characteristics.
  • the cathode active material is a bimodal form in which a lithium metal oxide powder (a) having a D50 of 3 to an and a lithium metal oxide powder (b) having a D50 of 8 to 20 GPa are mixed.
  • the proportion of the powder (a) and the material of the (b) is 1-50: 50-99 (a: b) and the powder (a) and (b) the material of the positive electrode active material is represented by the formula Can be.
  • A is selected from the group consisting of Mg, Ca, Sr, Ba, and combinations thereof
  • D is selected from the group consisting of Ti, Zr, Ce, Ge, Sn, and combinations thereof
  • X is selected from the group consisting of S, P, F, and a combination thereof, the average oxidation number of A and D is E, and ⁇ : is E ⁇ 2.5.
  • the rolling density of the positive electrode active material may be higher than the rolling density of the positive electrode active material having an average particle diameter that is not the bimodal form.
  • the rolling density may be 4.0 to 4.4 g / cc. this is
  • the energy density is significantly increased as compared with the rolling density of two kinds of the mixed cathode active material having similar average particle diameters, not the bimodal form, of 3.7 to 4.0 g / cc.
  • the lithium source in a compound capable of reversible intercalation and deintercalation; Phosphorus source; And a lithium source on a surface of a compound capable of mixing a metal source to enable reversible intercalation and deintercalation of the lithium; Phosphorus source; And attaching the metal source uniformly; And the lithium source; Phosphorus source; And reversible of lithium with metal source
  • Reversible intercalation of lithium comprising a composite coating layer further comprising lithium phosphate, further comprising lithium metal oxide, metal oxide, or a combination thereof, in terms of compounds capable of intercalation and deintercalation. And obtaining a compound capable of deintercalation.
  • M is selected from the group consisting of Ni, Co, Mn, Al, Ti, Fe and combinations thereof,
  • A is selected from the group consisting of Mg, Ca, Sr, Ba, and combinations thereof
  • D is selected from the group consisting of Ti, Zr, Ce, Ge, Sn, and combinations thereof
  • X is S, P, F and. Selected from the group consisting of a combination of these,
  • the average oxidation number of A and D is E, and ⁇ ; is E ⁇ 2.5.
  • Heat-treating a compound capable of reversible intercalation and deintercalation of lithium to which the lithium source, phosphorus source or metal source is attached Reversible intercalation and deintercalation of lithium comprising a composite coating layer further comprising lithium phosphate, the coating layer further comprising lithium metal phosphate, metal phosphate, lithium metal oxide, metal oxide or combinations thereof
  • the heat treatment temperature in the step of obtaining a compound capable of oxidization may be 650 to 950 o C.
  • a cathode including a cathode active material for a lithium secondary battery according to an embodiment of the present invention described above, and provides a lithium secondary battery comprising the cathode and the anode and an electrolyte.
  • Co 3 O 4 , Li 2 CO 3) MgC0 3 , and Ti0 2 mixtures were dry mixed, and then the mixtures were heat-treated at 1000 ° C. for 10 hours to prepare lithium metal oxides.
  • cathode active material having a composition of L ii .02CO0.9 9 Mg0.009Ti0.00l02 having a composite coating layer including lithium phosphate and metal oxide formed on the surface of the cathode active material was prepared.
  • Example 2
  • a cathode active material including a lithium coating on the surface of the cathode active material and having a composite coating layer containing a metal oxide was prepared.
  • the wt% detection values of the dopants A and dopant D in the lithium metal oxide core including the lithium phosphate and the metal oxide obtained by the synthesis example are converted into ⁇ ⁇ ratios as shown in Table 1 below.
  • Li-metal was used as the negative electrode.
  • a coin cell type half cell was manufactured by using a cathode and a Li-metal prepared as described above, and using 1.15M LiPF 6EC: DMC (l: lvol%) as an electrolyte. Layer discharge was carried out in the range 4.5-3.0V. Table 2 below is 4.5V initial Formation, rate characteristic, lcyle, 20cycle, 30cycle capacity and life characteristic data of the above Examples and Comparative Examples.
  • Li tali complementation is made of Mg and it can be seen that the pattern may vary depending on the content of the tetravalent cation.
  • the present oxidation control technology can be applied to other compositions such as Ni-based. .
  • the present invention is not limited to the above embodiments, but may be manufactured in various forms, and a person of ordinary skill in the art to which the present invention pertains does not change the technical spirit or essential features of the present invention. It will be appreciated that the present invention may be practiced as. Thus the embodiments described above are exemplary in all respects will yo should be understood to be non-limiting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Provided is a cathode active material represented by chemical formula 1 below. [Formula 1] Lix(M1-m-zAmDz)O2-tXt In chemical formula 1, 0.8≤x≤1.2, 0≤m≤0.01, 0≤z≤0.04, 0≤t≤0.2, M is selected from the group consisting of Ni, Co, Mn, Al, Ti, Fe and a combination thereof, A is selected from the group consisting of Mg, Ca, Sr, Ba and a combination thereof, D is selected from the group consisting of Ti, Zr, Ce, Ge, Sn and a combination thereof, X is selected from the group consisting of S, P, F and a combination thereof, the average oxidation number of A and D is E, and E is E < 2.5.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지  Cathode active material, preparation method thereof, and lithium secondary battery comprising same
[기술분야】  [Technical Field]
양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 에 관한 것이다.  It relates to a positive electrode active material, a method of manufacturing the same, and a lithium secondary battery including the same.
【배경기술】  Background Art
최근 휴대용 전자기기의 소형화 및 경량화 추세와 관련하여 이들 기기의 전원으로 사용되는 전지의 고성능화 및 대용량화에 대한 필요성이 높아지고 있다.  Recently, with the trend toward miniaturization and light weight of portable electronic devices, the need for high performance and high capacity of batteries used as power sources for these devices is increasing.
전지는 양극과 음극에 전기 화학 반웅이 가능한 물질을 사용함으로써 전력을 발생시키는 것이다. 이러한 전지 중 대표적인 예로는 양극 및 음극에서 리튬 이온이 인터칼레이션 /디인터칼레이션될 때의  A battery generates electric power by using an electrochemical reaction material for the positive electrode and the negative electrode. A typical example of such a battery is when lithium ions are intercalated / deintercalated at a positive electrode and a negative electrode.
화학전위 (chemical pot ent ial )의 변화에 의하여 전기 에너지를 생성하는 리튬 이차 전지가 있다. There is a lithium secondary battery that generates electrical energy by a change in chemical potential.
상기 리튬 이차 전지는 리튬 이온의 가역적인  The lithium secondary battery is a reversible lithium ion
인터칼레이션 /디안터칼레이션이 가능한 물질을 양극과 음극 활물질로 사용하고, 상기 양극과 음극사이에 유기 전해액 또는 폴리머 전해액을 층전시켜 제조한다. A material capable of intercalation / deantercalation is used as a cathode and an anode active material, and an organic electrolyte or a polymer electrolyte is layered between the cathode and the anode.
리튬 이차 전지의 양극 활물질로는 리튬 복합금속 화합물이 사용되고 있으며, 그 예로 LiCo02 , LiMn204, LiNi02 , LiMn02 등의 복합금속 산화물들이 연구되고 있다. A lithium composite metal compound is used as a cathode active material of a lithium secondary battery, and composite metal oxides such as LiCo0 2 , LiMn 2 0 4 , LiNi0 2 , and LiMn0 2 have been studied.
이 중에서 LiCo02는 안정된 충방전 특성, 우수한 전자전도성, 비교적 높은 전지 전압, 높은 안정성, 및 평탄한 방전전압 특성을 갖는 뛰어난 물질이다. 그러나, 4.5V이상의 고전압 환경에서 충전 전압이 높을수록 Among them, LiCo0 2 is an excellent material having stable charge and discharge characteristics, excellent electron conductivity, relatively high battery voltage, high stability, and flat discharge voltage characteristics. However, the higher the charging voltage in the high voltage environment above 4.5V
Co4+의 양이 높아진다. 높은 농도의 Co4+는 전해질과 하전된 캐소드 사이의 원치 않는 부반웅들을 증가시킨다. 이들 부반웅들은 약한 안전성, 상승된 전압에서 충방전시 승온에서의 하전된 캐소드의 약한 저장 성질을 초래한다. 한국등록제 0300330 호에 의하면 LiCo¾의 Co의 일부를 마그네슘 및 티타늄으로 산화수의 평균 값이 +3이 되도록 치환시킨 활물질로서, 상대적으로 높은 전압대에서 사용하더라도사이클 수명 특성이 우수한 전지를 제공할수 있다고 하나, 도펀트의 +3가의 치환만으로는 통상적인 제조조건하에서 양극소재 표면에 형성 될 수 있는 rocksal t 구조의 개선이 이루어지지 않아 4.5V 이상고전압 환경에서 안정성을 유지할 수 없는 것으로 확인되었다. The amount of Co 4+ increases. High concentrations of Co 4+ increase unwanted side reactions between the electrolyte and the charged cathode. These side reactions result in weak safety, weak storage properties of charged cathodes at elevated temperatures during charge and discharge at elevated voltages. According to Korean Register No. 0300330, a part of Co of LiCo¾ is an active material in which magnesium and titanium are substituted so that the average value of oxidation water is +3. Although it is possible to provide a battery with excellent cycle life even when used in a relatively high voltage range, the +3 substitution of dopant alone does not improve the rocksal t structure that can be formed on the surface of the cathode material under ordinary manufacturing conditions. It was confirmed that stability cannot be maintained in a high voltage environment of V or higher.
이러한 고전위 층전시 구조적 불안정 현상의 보완을 위해 표면처리 방법이 주로 적용되고 있다. 이 때 주로 사용되는 원소는 일본 특허공개 저 19-55210호에는 리튬-니켈계 산화물에 Co , Al , Mn와 알콕사이드로 코팅한 후 열처리하여 제조되는 양극 활물질이 기재되어 있고, 일본 특허공개 제 11-16566호에는 Ti , Sn, Bi, Cu, Si , Ga , W, Zr , B, 또는 Mo의 금속 및 /또는 이들의 산화물로 코팅된 리튬계 산화물이 기재되어 있으며, 일본 특허공개 게 11-185758호에는 리튬 망간산화물의 표면에 금속 산화물을 공침법으로 코팅한후 열처리하는 양극 활물질이 기재되어 있다.  Surface treatment method is mainly applied to compensate for the structural instability of the high potential layer. In this case, Japanese Patent Publication No. 19-55210 discloses a positive electrode active material prepared by coating a lithium-nickel oxide with Co, Al, Mn and alkoxide and then heat-treating it. 16566 describes lithium-based oxides coated with metals of Ti, Sn, Bi, Cu, Si, Ga, W, Zr, B, or Mo and / or their oxides, and Japanese Patent Application Laid-Open No. 11-185758 This discloses a positive electrode active material which is coated with a metal oxide on the surface of lithium manganese oxide by coprecipitation and then heat treated.
그러나 상기 방법들은 고전위 층전 시 활물질의 표면과 전해액이 반웅에 의한 구조 붕괴를 층분히 개선하지 못하였다.  However, these methods did not significantly improve the structure collapse due to reaction of the surface of the active material and the electrolyte during high potential layer charge.
이에 특허공개제 2012-0139833 호에서는 양극 활물질의 표면을 피복하도록 형성되고, 전도 이온이 되는 금속 원자로 구성되는 카티온부 및 복수의 산소 원자와 공유결합한 중심 원자로 구성되는 폴리아니온 구조부를 갖는 폴리아니온 구조 함유 화합물로 이루어지는 반웅 억제층을 포함하는 양극활물질을 제시하였다. 그러나, 폴리아니온 구조 함유 화합물의 복합 화합물 반웅 억제 층, 예를 들어 Li3P04 는 이러한 반웅 억제층으로 인해 발생하는 천이 금속 환원 층에 의한 저항의 증가에 대해서는 근본 적인 해결책을 제시하지 못하였다. ' Accordingly, Patent Publication No. 2012-0139833 includes a polyanion structure formed to cover the surface of the positive electrode active material and having a cation portion composed of metal atoms serving as conductive ions and a polyanion structure portion composed of a central atom covalently bonded to a plurality of oxygen atoms. A cathode active material including a reaction suppression layer made of a compound is provided. However, the composite compound reaction suppression layer of the polyanion structure-containing compound, for example Li 3 PO 4, has not provided a fundamental solution to the increase in resistance due to the transition metal reduction layer caused by such reaction reaction suppression layer. '
그로 인해, 입자 표면부에서의 구조의 붕괴 및 전해액과의 부반옹으로 인한사이클 및 Rate특성 감소에 대한부분은 고전위 층전 시 안정적인 전지 구동을 위해서는 여전히 해결해야 할문제로 남아있다.  Therefore, the reduction of the cycle and rate characteristics due to the collapse of the structure at the surface of the particles and the reluctance with the electrolyte remains a problem to be solved for stable battery operation during high potential layer charge.
【발명의 상세한 설명】 [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
고전압에서 고용량, 고효율 및 수명특성이 우수한 리튬 이차 전지용 양극 활물질을 제공하며, 상기 양극 활물질을 포함하는 양극 및 이를 포함하는 리륨 이차 전지를 제공하는 것이다. For lithium secondary battery with high capacity, high efficiency and long life at high voltage The present invention provides a cathode active material, and provides a cathode including the cathode active material and a lithium secondary battery including the same.
[기술적 해결방법】 [Technical Solution]
본 발명의 일 구현예에서는, 하기 화학식 1로 표시되는 양극 활물질을 제공한다.  In one embodiment of the present invention, a cathode active material represented by Chemical Formula 1 is provided.
[화학식 1]  [Formula 1]
Lix(Mi-m-zAmDz)02-tXt Li x (Mi- m - z A m D z ) 0 2 - t Xt
상기 화학식 1에서 0.8<x<1.2, 0<m<0.4, 0<z<0.1, 0≤t≤0.2이고, M은 Ni, Co, Mn, Al, Ti , Fe 및 이들의 조합으로 이루어진 군에서 선택되며,  In Formula 1, 0.8 <x <1.2, 0 <m <0.4, 0 <z <0.1, 0 ≦ t ≦ 0.2, and M is in the group consisting of Ni, Co, Mn, Al, Ti, Fe, and combinations thereof. Selected,
A는 Mg, Ca, Sr, Ba 및 이들의 조합으로 이루어진 군에서 선택되고, D는 Ti, Zr, Ce, Ge, Sn 및 이들의 조합으로 이루어진 군에서 선택되며,  A is selected from the group consisting of Mg, Ca, Sr, Ba, and combinations thereof, D is selected from the group consisting of Ti, Zr, Ce, Ge, Sn, and combinations thereof,
X는 S, P, F 및 이들의 조합으로 이루어진 군에서 선택되며,  X is selected from the group consisting of S, P, F and combinations thereof,
A 및 D의 평균 산화수는 E이고, 상기 £는 E < 2.5 이다.  The average oxidation number of A and D is E, and £ is E <2.5.
상기 도편트 A는 Mg일 수 있다.  The dopant A may be Mg.
상기 도펀트 D는 Ti일 수 있다.  The dopant D may be Ti.
상기 £;는 £ < 2.4의 관계일 수 있다.  £ above may be a relationship of £ <2.4.
상기 화학식 1로 표시되는 화합물 표면의 일부에 위치하는 코팅층을 포함하고, 상기 코팅층은 리튬 인산화물을 포함하며, 상기 코팅층은 리튬 금속 산화물, 금속 산화물, 또는 이들의 조합을 더 포함하는 복합 코팅층일 수 있다.  It may include a coating layer located on a part of the surface of the compound represented by Formula 1, wherein the coating layer comprises lithium phosphate, the coating layer may be a composite coating layer further comprising a lithium metal oxide, a metal oxide, or a combination thereof have.
상기 코팅층에서, 리튬 금속 산화물, 금속 산화물, 또는 이들의 조합에 포함되는 금속 M은 Mg, Ca, Ti, Zr, Al, B, Si, 또는 Sn 에서 선택되는 적어도 하나의 원소일 수 있다.  In the coating layer, the metal M included in the lithium metal oxide, the metal oxide, or a combination thereof may be at least one element selected from Mg, Ca, Ti, Zr, Al, B, Si, or Sn.
상기 코팅층에서, 상기 리륨 금속 산화물, 금속 산화물, 또는 이들의 조합에 포함되는 금속은 Mg, Ti, 또는 이들의 조합에서 선택되는 원소일 수 있다.  In the coating layer, the metal included in the lithium metal oxide, the metal oxide, or a combination thereof may be an element selected from Mg, Ti, or a combination thereof.
상기 코팅층에서, 상기 리튬 금속 산화물, 금속 산화물, 또는 이들의 조합에 포함되는 금속은 Co를 더 포함할 수 있다. In the coating layer, the lithium metal oxide, metal oxide, or The metal included in the combination may further include Co.
상기 코팅층에 포함된 금속은 상기 화학식 1로 표시되는 화합물의 표면부에서 치환되고, 상기 표면부에서 코어부까지 농도 구배를 가질 수 있다.  The metal included in the coating layer may be substituted in the surface portion of the compound represented by Formula 1, and may have a concentration gradient from the surface portion to the core portion.
상기 양극 활물질의 총 중량에 대한 상기 복합 코팅층의 함량은 0.2 내지 2.0 중량 % 일 수 있다.  The content of the composite coating layer with respect to the total weight of the positive electrode active material may be 0.2 to 2.0% by weight.
상기 코팅층은 Li3P¾을 포함하며, 상기 Li3P04의 Li은 상기 화학식 1로 표시되는 화합물 내에 포함되는 Li으로부터 기인될 수 있다. 본 발명의 다른 일 구현예에서는, 하기 화학식 1로 표시되는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물;을 준비하는 단계 ; 리튬 공급원 ; 인 공급원 ; 및 금속 공급원;을 준비하는 단계 ; 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한화합물에 상기 리튬 공급원; 인 공급원; 및 금속 공급원을 흔합하여 , 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 표면에 리튬 공급원;, 인 공급원; 및 금속 공급원을 균일하게 부착시키는 단계; 및 상기 리튬 공급원; 인 공급원 ; 및 금속 공급원이 부착된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 열처리하여, 리튬 인산화물을 포함하며, 리튬 금속 산화물, 금속 산화물, 또는 이들의 조합을 더 포함하는 복합 코팅층을 포함하는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물;을 수득하는 단계;를 포함하는 양극 활물질의 제조 방법을 제공한다. The coating layer includes Li 3 P¾, and Li of Li 3 PO 4 may be derived from Li included in the compound represented by Chemical Formula 1. In another embodiment of the present invention, preparing a compound capable of reversible intercalation and deintercalation of lithium represented by the formula (1); Lithium source; Phosphorus source; And preparing a metal source; The lithium source in a compound capable of reversible intercalation and deintercalation of the lithium; Phosphorus source; And a lithium source on the surface of a compound capable of reversible intercalation and deintercalation of the lithium by mixing a metal source; Phosphorus source; And attaching the metal source uniformly; And the lithium source; Phosphorus source; And a composite coating layer including heat treatment of a compound capable of reversible intercalation and deintercalation of lithium to which a metal source is attached, including lithium phosphate, and further comprising lithium metal oxide, metal oxide, or a combination thereof. It provides a method for producing a positive electrode active material comprising; obtaining a compound capable of reversible intercalation and deintercalation of lithium containing.
[화학식 1]  [Formula 1]
Lix(M1-m-zAmDz)02-tXt. Li x (M 1 - m - z A m D z ) 0 2 -tXt.
상기 화학식 1에서 0.8≤x≤1.2, 0<m<0.4, 0<z<0.1, 0≤t≤0.2이고 In Formula 1, 0.8 ≦ x ≦ 1.2, 0 <m <0.4, 0 <z <0.1, and 0 ≦ t ≦ 0.2
M은 Ni, Co, Mn, Al, Ti, Fe 및 이들의 조합으로 이루어진 군에서 선택되며' M is selected from the group consisting of Ni, Co, Mn, Al, Ti, Fe and combinations thereof '
A는 Mg, Ca, Sr, Ba 및 이들의 조합으로 이루어진 군에서 선택되고, A is selected from the group consisting of Mg, Ca, Sr, Ba, and combinations thereof,
D는 Ti, Zr, Ceᅳ Ge, Sn 및 이들의 조합으로 이루어진 군에서 선택되며, X는 S, P, F 및 이들의 조합으로 이루어진 군에서 선택되며, D is selected from the group consisting of Ti, Zr, Ce ᅳ Ge, Sn and combinations thereof, X is selected from the group consisting of S, P, F and combinations thereof,
A 및 D의 평균 산화수는 E이고, 상기 E는 E < 2.5 이다.  The average oxidation number of A and D is E, where E is E <2.5.
상기 리튬 공급원; 인 공급원 ; 및 금속 공급원이 부착된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 열처리하예 리튬 인산화물을 포함하며, 리튬 금속산화물, 금속 산화물, 또는 이들의 조합을 더 포함하는 복합 코팅층을.포함하는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물;을 수득하는 단계;에서, 열처리 온도는, The lithium source; Phosphorus source; And heat treating a compound capable of reversible intercalation and deintercalation of lithium to which a metal source is attached, wherein the composite coating layer further comprises lithium metal oxide, lithium metal oxide, metal oxide, or a combination thereof. In the step of obtaining a compound capable of reversible intercalation and deintercalation of lithium comprising; in the heat treatment temperature,
650 내지 950°C일 수 있다. 본 발명의 또 다른 일 구현예에서는, D50이 3 내지 5 인 리튬 금속 산화물 분말 (a)와 D50 이 8 내지 20 의 리튬 금속 산화물 분말 (b)가 흔합된 바이모달 (bimodal) 형태이며, 이 때 분말 (a)과 (b) 물질의 It may be from 650 to 950 ° C. In another embodiment of the present invention, the lithium metal oxide powder (a) having D50 of 3 to 5 and the lithium metal oxide powder (b) having D50 of 8 to 20 are in a bimodal form in which Of powders (a) and (b)
중량비율이 1-50:50-99 (a:b) 이며 분말 (a)과 (b) 물질 모두 하기 화학식 1로 표현되는 것인 양극 활물질을 제공한다. It provides a positive electrode active material having a weight ratio of 1-50: 50-99 (a: b) and the powder (a) and the material (b) are represented by the following formula (1).
[화학식 1]  [Formula 1]
Lix(Mi-m-zA„1Dz)02-tXt Lix (Mi- m - z A „ 1 D z ) 02-tXt
상기 화학식 1에서 0.8<x<1.2, 0<m<0.4, 0<z<0.1, 0≤t≤0.2이고, M은 Ni, Co, Mn, Al, Ti, Fe 및 이들의 조합으로 이루어진 군에서 선택되며,  In Formula 1, 0.8 <x <1.2, 0 <m <0.4, 0 <z <0.1, 0 ≦ t ≦ 0.2, and M is in the group consisting of Ni, Co, Mn, Al, Ti, Fe, and combinations thereof. Selected,
A는 Mg, Ca, Sr, Ba 및 이들의 조합으로 이루어진 군에서 선택되고,  A is selected from the group consisting of Mg, Ca, Sr, Ba, and combinations thereof,
*D는 Ti, Zr, Ce, Ge, Sn 및 이들의 조합으로 이루어진 군에서 선택되며, * D is selected from the group consisting of Ti, Zr, Ce, Ge, Sn and combinations thereof,
X는 S, P, F 및 이들의 조합으로 이루어진 군에서 선택되며,  X is selected from the group consisting of S, P, F and combinations thereof,
A 및 D의 평균 산화수는 E이고, 상기 £는 E < 2.5 이다. 본 발명의 또 다른 일 구현예에서는, 전술한 본 발명의 일 구현예에 따른 리튬 이차 전지용 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 및 전해질;을 포함하는 리튬 이차 전지를 제공한다. 【발명의 효과】 The average oxidation number of A and D is E, and £ is E <2.5. In another embodiment of the present invention, a positive electrode including a positive active material for a lithium secondary battery according to an embodiment of the present invention described above; A negative electrode including a negative electrode active material; And it provides an lithium secondary battery comprising an electrolyte. 【Effects of the Invention】
4.5V이상의 고전압에서 우수한 전지 특성을 갖는 양극 활물질 및 이를 포함하는 양극 및 리튬 이차 전지를 제공할 수 있다. 【도면의 간단한 설명】  A positive electrode active material having excellent battery characteristics at a high voltage of 4.5 V or more, and a positive electrode and a lithium secondary battery including the same can be provided. [Brief Description of Drawings]
도 1은 리륨 이차 전지의 개략도이다.  1 is a schematic diagram of a lithium secondary battery.
【발명의 실시를 위한 최선의 형태】 [Best form for implementation of the invention]
본 발명의 일 구현예에서는, 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물에 있어서, 하기 화학식 1로 표시되는 양극 활물질을 제공하다.  In one embodiment of the present invention, in a compound capable of reversible intercalation and deintercalation of lithium, it provides a cathode active material represented by the following formula (1).
[화학식 1]  [Formula 1]
Lix(Mi-m-zAmDz)02-tXt Li x (Mi- m - z A m D z ) 0 2 - t Xt
상기 화학식 1에서, 0.8≤x≤1.2, 0<m<0.04, 0<z<0.1, 0≤t≤0.2이고 M은 Ni, Co, Mn, Al, Ti, Fe 및 이들의 조합으로 이루어진 군에서 선택되며, A는 Mg, Ca, Sr, Ba 및 이들의 조합으로 이루어진 군에서 선택되고, D는 Ti , Zr, Ce, Ge, Sn 및 이들의 조합으로 이루어진 군에서 선택되며, X는 S, P, F 및 이들의 조합으로 이루어진 군에서 선택되며, A 및 D의 평균 산화수는 E이고, 상기 E는 E < 2.5 이다.  In Formula 1, 0.8≤x≤1.2, 0 <m <0.04, 0 <z <0.1, 0≤t≤0.2 and M is in the group consisting of Ni, Co, Mn, Al, Ti, Fe, and combinations thereof A is selected from the group consisting of Mg, Ca, Sr, Ba, and combinations thereof, D is selected from the group consisting of Ti, Zr, Ce, Ge, Sn, and combinations thereof, and X is S, P , F and a combination thereof, the average oxidation number of A and D is E, E is E <2.5.
도펀트 A는 고전압에서 전액과의 부반웅 억제를 위해 실시되는 코팅물질의 부작용인 전이금속 층 내의 Li과의 반웅으로 인해 발생하는 구조 붕괴를 방지하는 역할을 수행하게 된다.  Dopant A plays a role in preventing structural collapse caused by reaction with Li in the transition metal layer, which is a side effect of the coating material, which is performed to suppress side reaction with the whole liquid at high voltage.
본 발명자들은 연구를 통하여 주로 2가 양이온 이 입자표면 벌크 (Bulk)부 도핑을 통한표면부의 구조 안정화 (Pillaring Effect)를 이를 수 있다는 것을 확인할수 있었다.  The present inventors have found that the divalent cation can lead to the structural stability of the surface portion through the bulk surface doping of the bulk.
그러나 도펀트 A의 함량이 너무 많으면 초기 용량 감소의 원인이 될 수 있으므로 함량에 대한조절이 수반돠어야 한다. 도펀트 A의 양비를 m로 했을 때 바람직하게는 0 < m < 0.4 이하이며 , 더욱 바람직하게는 0 < m < 0.04 이다. 보다 구체적으로, 0 < m < 0.01일 수 있다. 도펀트 A는 Mg, Ca, Sr, Ba 으로부터 선택되는 1종 이상이며, Mg 일 때가 더욱 바람직하다. 도편트 D는 Rate 특성과 관련있으며 도펀트 A의 도핑과 함께 원하는 전지 특성을 구현하기 위하여 추가되는 원소이다. 그러나 D의 함량이 너무 많으면 초기 용량 감소의 원인이 될 수 있고, 합성을 위한 소성 시 입자표면으로의 석출로 인해 원하지 않는 Li화합물 또는 산화물 형태의 저항체를 이를 수 있으므로 함량에 대한 조절이 수반되어야 한다. 도편트 D의 양비를 z로 했을 때 바람직하게는 0 < z < 0. 1 이며, 더욱 However, too much content of dopant A may cause a decrease in the initial dose, so adjustment of the content should be accompanied. When the amount ratio of the dopant A is m, preferably 0 <m <0.4 or less, and more preferably 0 <m <0.04. More specifically, it may be 0 <m <0.01. Dopant A is one or more types selected from Mg, Ca, Sr, and Ba, and Mg is more preferable. Dopant D is associated with the Rate property and is an element added with the doping of dopant A to achieve the desired cell properties. However, too much D content may cause the initial capacity decrease, and the precipitation to the particle surface during the firing for the synthesis may lead to unwanted Li compounds or oxide-type resistors, which must be accompanied by control over the content. . When the ratio of the dopant D is z, preferably 0 <z <0.1.
바람직하게는 0 < z < 0.04, 또는 0 < z < 0.01 이다. 도펀트 D는 Ti , Zr , Ce , Ge , Sn으로부터 선택되는 1종 이상이며, Ti, Zr 일 때가 더욱 바람직하며 , Ti 일 때가 가장 바람직하다. 도펀트 A의 특성과 도펀트 D의 특성 간의 상승 작용을 기대하기 위해서는 이들 도펀트 간의 양비가 고려될 수 있다. Preferably 0 <z <0.04, or 0 <z <0.01. The dopant D is at least one selected from Ti, Zr, Ce, Ge, and Sn, more preferably Ti and Zr, and most preferably Ti. In order to anticipate synergism between the properties of dopant A and the properties of dopant D, the ratio between these dopants may be considered.
확인결과 도펀트 A의 양과 도펀트 D의 양을 동일한 몰비로 도편트로 투입할 경우 도펀트 A의 인산화물 등의 코팅에 의해 표면 구조의 변이가 이루어진 부분을 보완하기 위한 목적 및 도펀트 D의 Rate 특성은 모두 달성할 수 없었다.  As a result, when dopant A and dopant D were introduced into the dopant at the same molar ratio, both the purpose and the rate characteristics of the dopant D were achieved to compensate for the portion where the surface structure was changed by the coating of dopant A, such as phosphate. I could not.
도펀트 A와 도펀트 D의 동시 도핑 시 도핑되는 정도는 도핑을 위해서 투입한 양 만큼 모두 입자 내로 도핑되는 것이 아닌 특정 도편트에 선택적으로 또는 경쟁적으로 이루어지는 것으로 보여지며, ICP ( induct ivly coupled plasma) 등 파괴 분석 시 도펀트의 함량은 투입양에 근접한 양으로 검출되지만 각 도편트의 입자에서의 위치는 도펀트 간상호작용에 의해 달라질 수 있다고 추측된다. 도펀트 D은 투입량 중 일부 또는 상당한 양이 입자외부로 석출되어 별도의 화합물 형태로 존재함이 예상된다.  When doping A and D doped simultaneously, the amount of doping is shown to be selectively or competitively performed on a specific dopant, rather than being doped into the particle by the amount injected for doping, and destroyed such as ICP (induct ivly coupled plasma). In the analysis, the content of the dopant is detected in an amount close to the input amount, but it is assumed that the position in the particles of each dopant may be changed by the dopant interaction. Dopant D is expected to be present in the form of a separate compound as some or a significant portion of the dose precipitates out of the particles.
이에, 도펀트 D는 입자 외부로의 석출을 억제하기 위해 감소될 수 있으며 도펀트 A의 양비보다 적을 수 있다. 실시예를 통해 확인한 결과 도펀트 A와 도펀트 D의 비율은 몰비로 3 : 1 일 때가 바람직하며 도펀트 A의 비율이 이보다 더 높을 때가 더욱 바람직하였다. 또한 도펀트 A은 주로 도편트의 평균산화수를 E로 했을 때 E < 2.5 일 때가 바람직하며 , E < 2.4 일 때 더욱 바람직하다. 음이온 X는 P, F, S 및 이들의 조합으로 이루어진 군에서 선택된다. 이들은 고전압 환경에서 표면 벌크부에서 산소 자리에 자리하여 전이금속과의 결합을 강고히 하는 역할을 하는 것으로 추측된다. 이로 인해 전이 금속용출의 억제로 인해 사이클 특성의 향상에 기여하는 것으로 생각된다. 상기 화학식 1의 화합물의 표면의 적어도 일부에 위치하는 코팅층을 포함하고, 상기 코팅층은 리튬 인산화물을 포함하며, 상기 코팅 층은 리륨 금속 인산화물, 금속인산화물, 리튬 금속 산화물, 금속 산화물 또는 이들의 조합을 더 포함하는 복합 코팅층을 포함하는 것인 리륨 이차 전지용 양극 활물질을 제공한다. 상기 복합 코팅층 내 포함된 리튬인산화물, 리튬 금속 인산화물, 리튬 금속 산화물의 리튬은 상기 리튬의 가역적인 인터칼레이션 및 Thus, the dopant D may be reduced to suppress precipitation outside the particles and may be less than the ratio of the dopant A. As a result, the ratio of the dopant A and the dopant D was preferably 3: 1 in molar ratio, and more preferably, the ratio of the dopant A was higher than this. In addition, the dopant A is preferably E <2.5, more preferably E <2.4, when the average oxidation number of the dopant is E. Anion X is selected from the group consisting of P, F, S and combinations thereof. It is assumed that they occupy oxygen sites at the bulk of the surface in a high voltage environment, thereby strengthening the bond with the transition metal. For this reason, it is thought that it contributes to the improvement of cycling characteristics by suppressing transition metal elution. A coating layer located on at least a portion of the surface of the compound of Formula 1, wherein the coating layer comprises lithium phosphate, and the coating layer is lithium metal phosphate, metal phosphate, lithium metal oxide, metal oxide, or a It provides a positive electrode active material for a lithium secondary battery comprising a composite coating layer further comprising a combination. Lithium of the lithium phosphate, lithium metal phosphate, lithium metal oxide contained in the composite coating layer is a reversible intercalation of the lithium and
디인터칼레이션이 가능한 화합물 내에 포함되는 Li으로부터 기인되거나, 별도의 Li 공급 물질로부터 기인될 수 있다. The deintercalation may be from Li included in the possible compounds or from a separate Li feed material.
상기 복합코팅층 내 포함된 리튬 금속 산화물, 또는 금속  Lithium metal oxide, or metal contained in the composite coating layer
산화물에서 금속은 Mg, Ca, Ni , Co , Ti, Al, Si , Sn, Mn, Cr , Fe, Zr , B, Al , Si , Ga, 또는 이들의 조합일 수 있다. The metal in the oxide may be Mg, Ca, Ni, Co, Ti, Al, Si, Sn, Mn, Cr, Fe, Zr, B, Al, Si, Ga, or a combination thereof.
상기 양극 활물질의 총 중량에 대한 상기 복합 코팅층의 함량은 0.2 내지 2.0 중량 ¾ 일 수 있다 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은 Li r ich(Li/M rat io >1.0) 조성일 수 있다.  The content of the composite coating layer based on the total weight of the cathode active material may be 0.2 to 2.0 weight ¾. The compound capable of reversible intercalation and deintercalation of lithium may be Li r ich (Li / M rat io> 1.0). ) May be a composition.
LiM02(M은 Ni , Co, 또는 Mn) 조성계에서는 통상적인 제조 조건 하에서 암염 (rocksalt) 구조가 양극 소재 표면에 형성 될 수 있다. 본 발명의 일 구현예와 같이 리튬인산화물 등이 표면에 형성되는 화학적 반웅 과정에서 표면 재배열 반웅이 (Rocksalt -> layered)이 일어나 표면에 형성된 구조 결함 및 불순물이 제어될 수 있다. 이때 일반적인 LiM02(M은 Ni , Co, 또는 Mn) 조성을 적용할 경우 리튬인산화물이 형성되는 과정에서 Li 부족 현상이 발생되어 전지특성이 일부 열화 될 수 있다. In the LiM0 2 (M is Ni, Co, or Mn) composition system, rocksalt structures may be formed on the surface of the anode material under conventional manufacturing conditions. As in one embodiment of the present invention, a surface rearrangement reaction (Rocksalt-> layered) occurs in a chemical reaction process in which lithium phosphate or the like is formed on the surface, thereby controlling structural defects and impurities formed on the surface. At this time, when applying a general LiM0 2 (M is Ni, Co, or Mn) composition Li in the process of forming lithium phosphate Shortage may occur, which may cause some deterioration of battery characteristics.
이에 Li rich(Li/M ratio >1.0) 조성으로 리튬인산화물 등이 형성되는 과정에서 일어나는 Li 부족 및 환원반응에 의한 표면 결함을 억제하여 코팅층의 효과를 극대화 할수 있다. 본 발명의 다른 일 구현예에서의 양극 활물질은 D50이 3 내지 an인 리튬 금속 산화물 분말 (a)와 D50 이 8 내지 20卿의 리튬 금속 산화물 분말 (b)가흔합된 바이모달 (bimodal) 형태이며ᅳ 이 때 분말 (a)과 (b) 물질의 증량비율이 1-50:50-99 (a:b) 이며 분말 (a)과 (b) 물질 모두 하기 화학식 1로 표현되는 것인 양극 활물질일 수 있다.  The Li rich (Li / M ratio> 1.0) composition to maximize the effect of the coating layer by suppressing the surface defects due to the lack of Li and the reduction reaction occurs in the process of forming lithium phosphate. In another embodiment of the present invention, the cathode active material is a bimodal form in which a lithium metal oxide powder (a) having a D50 of 3 to an and a lithium metal oxide powder (b) having a D50 of 8 to 20 GPa are mixed. ᅳ At this time, the proportion of the powder (a) and the material of the (b) is 1-50: 50-99 (a: b) and the powder (a) and (b) the material of the positive electrode active material is represented by the formula Can be.
[화학식 1]  [Formula 1]
Lix(M1-m-zAmDz)02-tXt Lix (M 1 - m - z A m Dz) 0 2 - t Xt
상기 화학식 1에서 0.8<x<1.2, 0<m<0.4, 0<z<0.1, 0≤t≤0.2이고, M은 Ni, Co, Mn, Al, Ti, Fe 및 이들의 조합으로 이루어진 군에서 선택되며,  In Formula 1, 0.8 <x <1.2, 0 <m <0.4, 0 <z <0.1, 0 ≦ t ≦ 0.2, and M is in the group consisting of Ni, Co, Mn, Al, Ti, Fe, and combinations thereof. Selected,
A는 Mg, Ca, Sr, Ba 및 이들의 조합으로 이루어진 군에서 선택되고, D는 Ti, Zr, Ce, Ge, Sn 및 이들의 조합으로 이루어진 군에서 선택되며,  A is selected from the group consisting of Mg, Ca, Sr, Ba, and combinations thereof, D is selected from the group consisting of Ti, Zr, Ce, Ge, Sn, and combinations thereof,
X는 S, P, F 및 이들의 조합으로 이루어진 군에서 선택되며, A 및 D의 평균 산화수는 E이고, 상기 ^:는 E < 2.5 이다. 이때, 상기 (a) 분말 및 (b) 분말의 흔합비율로 인해 바이모달 상태를 이루며 높은 압연 밀도를 가지는 것을 특징으로 한다.  X is selected from the group consisting of S, P, F, and a combination thereof, the average oxidation number of A and D is E, and ^: is E <2.5. At this time, due to the mixing ratio of the (a) powder and (b) powder to form a bimodal state, it characterized in that it has a high rolling density.
구체적으로 설명하자면, 양극 활물질의 압연 밀도는 상기 바이모달 형태가 아닌 평균 입경이 유사한 양극 활물질의 압연 밀도보다 높을 수 있다. 또한, 압연밀도는 4.0 내지 4.4 g/cc일 수 있다. 이는  Specifically, the rolling density of the positive electrode active material may be higher than the rolling density of the positive electrode active material having an average particle diameter that is not the bimodal form. In addition, the rolling density may be 4.0 to 4.4 g / cc. this is
바이모달 (bimodal) 형태가 아닌 평균 입경이 유사한 두 종류의 흔합 양극 활물질의 압연밀도가 3.7 내지 4.0 g/cc인 것과 비교하여 에너지 밀도가 현저히 증가 된 것을 알 수 있다. 본 발명의 다른 일 구현예에서는, 리튬 공급 물질, 전이 금속 전구체, 및 도편트 공급 물질을 건식 흔합하는 단계; 상기 흔합물을 열처리 온도 It can be seen that the energy density is significantly increased as compared with the rolling density of two kinds of the mixed cathode active material having similar average particle diameters, not the bimodal form, of 3.7 to 4.0 g / cc. In another embodiment of the invention, dry mixing a lithium feed material, a transition metal precursor, and a dopant feed material; Heat treatment temperature of the mixture
750 내지 1 , 050 °C 로 소성하는 단계 ; 및 하기 화학식 1로 표시되는  Firing at 750 to 1,050 ° C; And represented by the formula (1)
화합물을 수득하는 단계를 포함하는 양극 활물질의 제조 방법을 제공한다. 이에 더하여, 하기 화학식 1로 표시되는 리튬의 가역적인 It provides a method for producing a positive electrode active material comprising the step of obtaining a compound. In addition, the reversible of lithium represented by the following formula (1)
인터칼레이션 및 디인터칼레이션이 가능한 화합물;을 준비하는 단계; 리튬 공급원 ; 인 공급원 ; 및 금속 공급원;을 준비하는 단계 ; 상기 리튬의 Preparing a compound capable of intercalation and deintercalation; Lithium source; Phosphorus source; And preparing a metal source; Of the lithium
가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물에 상기 리튬 공급원; 인 공급원; 및 금속 공급원을 흔합하여, 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 표면에 리튬 공급원;, 인 공급원; 및 금속 공급원을 균일하게 부착시키는 단계; 및 상기 리튬 공급원; 인 공급원 ; 및 금속 공급원이 부착된 리튬의 가역적인 The lithium source in a compound capable of reversible intercalation and deintercalation; Phosphorus source; And a lithium source on a surface of a compound capable of mixing a metal source to enable reversible intercalation and deintercalation of the lithium; Phosphorus source; And attaching the metal source uniformly; And the lithium source; Phosphorus source; And reversible of lithium with metal source
인터칼레이션 및 디인터칼레이션이 가능한 화합물을 열처라하여, 리튬 인산화물을 포함하며 , 리튬 금속 산화물, 금속 산화물, 또는 이들의 조합을 더 포함하는 복합 코팅층을 포함하는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물;을 수득하는 단계 ;를 포함하는 양극 활불질의 제조 방법을 제공한다. Reversible intercalation of lithium comprising a composite coating layer further comprising lithium phosphate, further comprising lithium metal oxide, metal oxide, or a combination thereof, in terms of compounds capable of intercalation and deintercalation. And obtaining a compound capable of deintercalation.
[화학식 1]  [Formula 1]
Lix(Mi-m-zAmDz)02-tXt Lix (Mi- m -z A m D z ) 0 2 - t Xt
상기 화학식 1에서 0.8≤x≤1.2 , 0<m<0.4 , 0<z <0. 1 , 0≤t≤0.2이고, In Formula 1, 0.8 ≦ x ≦ 1.2, 0 <m <0.4, 0 <z <0. 1, 0≤t≤0.2,
M은 Ni , Co , Mn , Al , Ti, Fe 및 이들의 조합으로 이루어진 군에서 선택되며, M is selected from the group consisting of Ni, Co, Mn, Al, Ti, Fe and combinations thereof,
A는 Mg , Ca , Sr , Ba 및 이들의 조합으로 이루어진 군에서 선택되고, D는 Ti , Zr , Ce , Ge , Sn 및 이들의 조합으로 이투어진 군에서 선택되며,  A is selected from the group consisting of Mg, Ca, Sr, Ba, and combinations thereof, and D is selected from the group consisting of Ti, Zr, Ce, Ge, Sn, and combinations thereof,
X는 S , P , F 및. 이들의 조합으로 이루어진 군에서 선택되며,  X is S, P, F and. Selected from the group consisting of a combination of these,
A 및 D의 평균 산화수는 E이고, 상기 ^;는 E < 2.5 이다. 상기 리튬 공급원, 인 공급원 또는 금속 공급원이 부착된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 열처리하여 리튬인산화물을 포함하며, 상기 코팅 층은 리튬 금속 인산화물, 금속인산화물, 리륨 금속 산화물, 금속 산화물 또는 이들의 조합을 더 포함하는 복합 코팅층을 포함하는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 수득하는 단계에서 열처리 온도는, 650 내지 950oC 일 수 있다. The average oxidation number of A and D is E, and ^; is E <2.5. Heat-treating a compound capable of reversible intercalation and deintercalation of lithium to which the lithium source, phosphorus source or metal source is attached Reversible intercalation and deintercalation of lithium comprising a composite coating layer further comprising lithium phosphate, the coating layer further comprising lithium metal phosphate, metal phosphate, lithium metal oxide, metal oxide or combinations thereof The heat treatment temperature in the step of obtaining a compound capable of oxidization may be 650 to 950 o C.
본 발명의 또 다른 일 구현예에서는, 전술한 본 발명의 일 구현예에 따른 리튬 이차 전지용 양극 활물질을 포함하는 양극, 상기 양극과 음극 및 전해질을 포함하는 리튬 이차 전지를 제공한다. 【발명의 실시를 위한 형태】  In another embodiment of the present invention, a cathode including a cathode active material for a lithium secondary battery according to an embodiment of the present invention described above, and provides a lithium secondary battery comprising the cathode and the anode and an electrolyte. [Form for implementation of invention]
실험예 1 : 양극활물질의 제조  Experimental Example 1 Manufacture of Cathode Active Material
실시예 1  Example 1
Co304, Li2C03 ) MgC03, 및 Ti02흔합물을 건식 흔합한후, 흔합물을 1000oC로 10 시간 동안 열처리하여 리튬 금속 산화물을 제조하였다. Co 3 O 4 , Li 2 CO 3) MgC0 3 , and Ti0 2 mixtures were dry mixed, and then the mixtures were heat-treated at 1000 ° C. for 10 hours to prepare lithium metal oxides.
상기 제조된 리튬 금속 산화물 100g과 Zr(0H)4분말 2000ppm과100 g of the prepared lithium metal oxide and 2000 ppm of Zr (0H) 4 powder;
(NH4)2HP04 분말 2000ppm을 건식 흔합하여 , 상기 분말이 양극 활물질 본체의 표면에 부착된 흔합물을 제조 한 후 상가흔합물을 800 °C로 6시간 열처리하였다. (NH 4 ) 2 HP0 4 powder 2000ppm dry mixed, to prepare a mixture in which the powder is attached to the surface of the positive electrode active material body heat-treated the mixture was 800 ° C 6 hours.
이에 양극 활물질 표면에 리튬 인산화물 및 금속산화물을 포함하는 복합 코팅층이 형성된 L i i .02CO0.99Mg0.009Ti0.00l02 조성의 양극 활물질을 제조하였다. 실시예 2 Thus, a cathode active material having a composition of L ii .02CO0.9 9 Mg0.009Ti0.00l02 having a composite coating layer including lithium phosphate and metal oxide formed on the surface of the cathode active material was prepared. Example 2
코어 초성을 UCo0.994Mg0.004Ti0.00102 의 몰비가 되도록 제조한 것 꾀에는 실시예 1과 같은 공정으로 양극활물질을 제조하였다. 실시예 3 Core Initiality UCo 0 . 994 Mg 0 . 004 Ti 0 . In order to prepare a molar ratio of 001 0 2 , a cathode active material was prepared in the same manner as in Example 1. Example 3
Li [ (Ni0.6Co0.2Mn0.2)0.995Mg0.004Ti0.001]¾이 되도록 니켈복합수산화물ᅳ Li2C03 및 MgC¾흔합물을 건식 흔합한후, 흔합물을 800oC로 12시간 동안 열처리하여 양극 활물질을 제조하였다. 상기 제조된 양극 활물질 (리튬 금속 산화물) 100g과 Zr(0H)4분말 2000ppm과 (NH4)2HP04 분말 2000ppm 을 건식 흔합하여 상기 분말이 양극 활물질 본체의 표면에 부착된 흔합물을 제조 한후 상기 흔합물을 800 °C로 6시간 열처리하였다. Li [(Ni 0. 6 Co 0. 2 Mn 0. 2) 0. 995 Mg 0 . 004 Ti 0 . Nickel composite hydroxide ᅳ Li 2 CO 3 and MgC¾ mixture to dry 001 ] ¾ to dry, and then the mixture was heat-treated at 800 ° C for 12 hours to prepare a positive electrode active material. After dry mixing 100 g of the prepared cathode active material (lithium metal oxide), 2000 ppm of Zr (0H) 4 powder, and 2000 ppm of (NH 4 ) 2 HP0 4 powder to prepare a mixture having the powder attached to the surface of the cathode active material body, The mixture was heat treated at 800 ° C. for 6 hours.
이에 양극 활물질 표면에 리륨인산화물을 포함하며, 금속산화물을 포함하는 복합코팅층을 가지는 양극 활물질을 제조하였다. 실시예 4  Accordingly, a cathode active material including a lithium coating on the surface of the cathode active material and having a composite coating layer containing a metal oxide was prepared. Example 4
Co304, Li2C03 ) MgC03> LiF, 및 Ti02흔합물을 건식 흔합한 후, 혼합물을 1000oC로 10 시간 동안 열처리하여 리튬금속 산화물을 제조하였다. Co 3 0 4 , Li 2 CO 3) MgC0 3> LiF, and Ti0 2 mixture was dry mixed, and then the mixture was heat-treated at 1000 ° C. for 10 hours to prepare lithium metal oxide.
상기 제조된 리튬 금속산화물 100g과 LiOH분말과 MgC03 분말과 Ti02 분말과 (NH4)2HP04 분말을 건식 흔합하여, 상기 분말이 양극 활물질 본체의 표면에 부착된 혼합물을 제조 한후 상기 흔합물을 800 로 6시간 열처라하였다. Dry mixing the prepared lithium metal oxide 100g, LiOH powder, MgC0 3 powder, Ti0 2 powder and (NH 4 ) 2 HP0 4 powder, to prepare a mixture in which the powder is attached to the surface of the positive electrode active material body the mixture Was heated to 800 for 6 hours.
이에 양극 활물질 표면쎄 리튬 인산화물을 포함하는 복합 코팅층이 존재하고,
Figure imgf000014_0001
조성의 양극 활물질을 제조하였다. 비교예 1
There is a composite coating layer containing lithium phosphate on the surface of the positive electrode active material,
Figure imgf000014_0001
A positive electrode active material of composition was prepared. Comparative Example 1
코어의 조성을 LiCOo.992Mg0.004T io .00402 의 몰비가 되도록 제조한 것 외에는 실시예 1과 같은공정으로 양극활물질을 제조하였다. 비교예 2 Manufactured composition of the core such that the molar ratio of LiCOo.992Mg 0 .004T io .0040 2 was prepared, except the positive electrode active material in the same process as in Example 1. Comparative Example 2
코어의 조성을 LiCo0.994Mg0.002Ti0.00402 의 몰비가 되도록 제조한 것 외에는 실시예 1과 같은 공정으로 양극활물질을 제조하였다. 비교예 3 Except that the prepared composition of the core such that the molar ratio of LiCo 0 .994Mg0.00 2 Ti0.0040 2 to prepare a positive electrode active material in the same process as in Example 1. Comparative Example 3
Li [ (Ni0.6Co0.2Mn0.2)0.995Mg0.004Ti0.004 ]02이 니켈복합수산화물, Li2C03 및 MgC03 흔합물을 건식 흔합한 후, 흔합물을 800oC로 12시간 동안 열처리하여 양극 활물질을 제조하였다. Li [(Ni 0.6 Co 0 .2Mn 0.2) 0.995 Mg 0.004 Ti 0.004] 0 2 Ni complex hydroxide, Li 2 C0 3 and the heat treatment for 12 hours, MgC0 3 after the common compounds combined dry common, common compound to 800 o C To prepare a positive electrode active material.
상기 제조된 양극 활물질 (리튬 금속 산화물) 100g과 Z 0H 분말 2000ppm과 (NH4)2HP04분말 2000ppm과 (NH4)2HP04 분말을 건식 흔합하여 상기 분말이 양극 활물질 본체의 표면에 부착된 흔합물을 제조 한 후 상기 흔합물을 800 °C로 6시간 열처리하였다. 100 g of the prepared cathode active material (lithium metal oxide) and Z 0H powder 2000 ppm and (NH 4 ) 2 HP0 4 powder Dry mix of 2000 ppm and (NH 4 ) 2 HP0 4 powder to prepare a mixture in which the powder is attached to the surface of the positive electrode active material body, and then the mixture is changed to 800 ° C. Heat treatment for time.
이에 양극 활물질 표면에 리튬인산화물 및 금속산화물을 포함하는 복합 코팅층을 가지는 양극 활물질을 제조하였다. 실험예 2 : 평균산화상태 E확인  Thus, a cathode active material having a composite coating layer containing lithium phosphate and a metal oxide on the surface of the cathode active material was prepared. Experimental Example 2: Confirmation of the average oxidation state E
합성예에 의해 수득된 리튬인산화물 및 금속산화물을 포함하는 리튬금속 산화물 코어내의 도편트 A와 도펀트 D의 wt% 검출값을 πω ΐ비로 환산하면 하기 [표 1ᅵ과 같다.  The wt% detection values of the dopants A and dopant D in the lithium metal oxide core including the lithium phosphate and the metal oxide obtained by the synthesis example are converted into πω ε ratios as shown in Table 1 below.
(도펀트 Α 및 D의 함량 측정은 JE0L제 FE-EPMA의 정량분석으로 실시하였다. )  (The content of dopants A and D was measured by quantitative analysis of FE-EPMA made by JE0L.)
[화학식  Formula
【표 1】  Table 1
Figure imgf000015_0001
실험예 3 : 전기화학특성 평가
Figure imgf000015_0001
Experimental Example 3 Evaluation of Electrochemical Properties
상기 실시예 및 비교예에서 제조된 양극 활물질 95 중량 %, 도전제로 카본 블랙 (carbon bl ack) 2.5 중량 %, 결합제로 PVDF 2.5중량% 를 용제 (솔벤트)인 N-메틸 -2 피를리돈 (NMP) 5.0 중량 %에 첨가하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 두께 20 내지 40//II1의 양극 집전체인 알루미늄 (A1 ) 박막에 도포 및 진공 건조하고 롤 프레스 (rol l press)를 실시하여 양극을 제조하였다. 95% by weight of the positive electrode active material prepared in Examples and Comparative Examples, 2.5% by weight of carbon black (carbon bl ack) as a conductive agent, 2.5% by weight of PVDF as a binder N-methyl-2 pyridone (NMP) as a solvent (solvent) ) Was added to 5.0% by weight to prepare a positive electrode slurry. The positive electrode slurry was applied to a thin film of aluminum (A1), which is a positive electrode current collector having a thickness of 20 to 40 // II1, vacuum dried, and roll press press) to prepare a positive electrode.
음극으로는 Li-금속을 이용하였다.  Li-metal was used as the negative electrode.
이와 같이 제조된 양극과 Li-금속을 대극으로, 전해액으로는 1.15M LiPF6EC:DMC(l:lvol%)을 사용하여 코인 셀 타입의 반쪽 전지를 제조하였다. 층방전은 4.5-3.0V 범위에서 실시하였다. 하기 표 2은 상기의 실시예 및 비교예의 4.5V 초기 Formation, 율특성, lcyle, 20cycle, 30cycle 용량 및 수명특성 테이터이다. A coin cell type half cell was manufactured by using a cathode and a Li-metal prepared as described above, and using 1.15M LiPF 6EC: DMC (l: lvol%) as an electrolyte. Layer discharge was carried out in the range 4.5-3.0V. Table 2 below is 4.5V initial Formation, rate characteristic, lcyle, 20cycle, 30cycle capacity and life characteristic data of the above Examples and Comparative Examples.
【표 2] [Table 2]
Figure imgf000017_0001
상기 표 2 에서 실시예 1 내지 4는 비교예 1 내지 3 보다 뛰어난 전지 특성이 확인된다.
Figure imgf000017_0001
In Table 2, Examples 1 to 4 have better battery characteristics than Comparative Examples 1 to 3.
이를 통해 인산화물 코팅 활물질의 경우 인 (P)로 인한 표면 벌크부의 In this case, the surface bulk portion due to phosphorus (P) in the case of the phosphate coating active material
Li탈리의 보완이 Mg으로 이루어지며 4가 양이온의 함량에 따라 그 양상은 달라질 수 있음을 확인 할수 있다. Li tali complementation is made of Mg and it can be seen that the pattern may vary depending on the content of the tetravalent cation.
또한, 본 실험예에서의 F (불소) 등을 더욱 포함한 실시예의 경우 다른 전기화학 특성 저하 없이 사이클 특성의 향상이 확인되었다.  In addition, in the examples further including F (fluorine) and the like in the present experimental example, the improvement of the cycle characteristics was confirmed without deteriorating other electrochemical properties.
더불어, 본 산화수 조절 기술은 Ni계등 다른 조성물에서도 적용될 수 있음을 확인 할수 있었다. . 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. In addition, it was confirmed that the present oxidation control technology can be applied to other compositions such as Ni-based. . The present invention is not limited to the above embodiments, but may be manufactured in various forms, and a person of ordinary skill in the art to which the present invention pertains does not change the technical spirit or essential features of the present invention. It will be appreciated that the present invention may be practiced as. Thus the embodiments described above are exemplary in all respects will yo should be understood to be non-limiting.

Claims

【청구범위】 【청구항 1】 하기 화학식 1로 표시되는 양극 활물질: 【Claims】 【Claim 1】 A positive electrode active material represented by the following formula 1:
[화학식 1] [Formula 1]
Lix(M1-m-zAmDz)02-tXt Li x (M 1 - m - z A m D z )0 2 - t
상기 화학식 1에서, 0.8<x<1.2, 0<m<0.4, 0<z<0.1, 0≤t≤0.2이고, In Formula 1, 0.8<x<1.2, 0<m<0.4, 0<z<0.1, 0≤t≤0.2,
M은 Ni , Co, Mn, Al, Ti, Fe 및 이들의 조합으로 이루어진 군에서 선택되며, A는 Mg, Ca, Sr, Ba 및 이들의 조합으로 이루어진 군에서 선택되고, M is selected from the group consisting of Ni, Co, Mn, Al, Ti, Fe, and combinations thereof, and A is selected from the group consisting of Mg, Ca, Sr, Ba, and combinations thereof,
D는 Ti, Zr, Ce, Ge, Sn 및 이들의 조합으로 이루어진 군에서 선택되며, X는 S, P, F 및 이들의 조합으로 이루어진 군에서 선택되며, D is selected from the group consisting of Ti, Zr, Ce, Ge, Sn, and combinations thereof, and X is selected from the group consisting of S, P, F, and combinations thereof,
A 및 !)의 평균 산화수는 E이고, 상기 £;는 E < 2.5 이다. The average oxidation number of A and !) is E, and the £; is E < 2.5.
【청구항 2] [Claim 2]
제 1항에 있어서' In paragraph 1'
상기 도편트 A는 Mg인 것인 양극 활물질 . The dopant A is a positive electrode active material of Mg.
[청구항 3】 [Claim 3]
제 1항에 있어서, According to clause 1,
상기 도펀트 D는 Ti인 것인 양극 활물질 . A positive electrode active material wherein the dopant D is Ti.
【청구항 4】 【Claim 4】
제 1항에 있어서, In clause 1,
상기 £는 E < 2.4의 관계인 것을 특징으로 하는 양극 활물질. A positive electrode active material characterized in that £ has a relationship of E < 2.4.
【청구항 5】 【Claim 5】
제 1항에 있어서, In clause 1,
상기 화학식 1로 표시되는 화합물 표면의 일부에 위치하는 코팅층을 포함하고, It includes a coating layer located on a portion of the surface of the compound represented by Formula 1,
상기 코팅춤은 리튬 인산화물을 포함하며, 상기 코팅층은 리튬 금속 산화물, 금속 산화물, 또는 이들의 조합을 더 포함하는 복합 코팅층인 것인 양극 활물질 The coating layer includes lithium phosphate, and the coating layer is a composite coating layer further including lithium metal oxide, metal oxide, or a combination thereof.
【청구항 6】 【Claim 6】
제 5항에 있어서, In clause 5,
상기 코팅층에서, 리튬 금속 산화물, 금속 산화물, 또는 이들의 조합에 포함되는 금속 M은 Mg, Ca , Ti , Zr , Al , B, Si , 또는 Sn 에서 선택되.는 적어도 하나의 원소인 것인 양극 활물질. In the coating layer, A positive electrode active material wherein the metal M included in lithium metal oxide, metal oxide, or a combination thereof is at least one element selected from Mg, Ca, Ti, Zr, Al, B, Si, or Sn.
[청구항 7】 [Claim 7]
제 5항에 있어서' In clause 5'
상기 코팅층에서, In the coating layer,
상기 리튬 금속 산화물, 금속 산화물, 또는 이들의 조합에 포함되는 금속은 Mg, Ti , 또는 이들의 조합에서 선택되는 원소인 것인 양극 활물질. A positive electrode active material in which the metal included in the lithium metal oxide, metal oxide, or a combination thereof is an element selected from Mg, Ti, or a combination thereof.
【청구항 8】 【Claim 8】
제 7항에 있어서, In clause 7,
상기 코팅층에서, In the coating layer,
상기 리튬 금속 산화물, 금속 산화물, 또는 이들의 조합에 포함되는 금속은 Co를 더 포함하는 것인 양극 활물질. A positive electrode active material in which the metal included in the lithium metal oxide, metal oxide, or a combination thereof further includes Co.
【청구항 9】 【Claim 9】
게 5항에 있어서, In paragraph 5,
상기 코팅층에 포함된 금속은 상기 화학식 1로 표시되는 화합물의 표면부에서 치환되고, The metal contained in the coating layer is substituted on the surface of the compound represented by Formula 1,
상기 표면부에서 코어부까지 농도 구배를 가지는 것인 양극 활물질. A positive electrode active material having a concentration gradient from the surface portion to the core portion.
【청구항 10】 【Claim 10】
게 5항에 있어서, In paragraph 5,
상기 양극 활물질의 총 중량에 대한 상기 복합 코팅층의. 함량은 0.2 내지 2.0 중량 % 인 것인 양극 활물질. of the composite coating layer relative to the total weight of the positive electrode active material. A positive electrode active material having a content of 0.2 to 2.0% by weight.
[청구항 11】 [Claim 11]
제 1항에 있어서, According to clause 1,
상기 코팅층은 Li3P04을 포함하며, 상기 Li3P04의 Li은 상기 화학식 1로 표시되는 화합물 내에 포함되는 Li으로부터 기인되는 것인 양극 활물질. The coating layer includes Li 3 P0 4 , and the Li of Li 3 P0 4 is derived from Li contained in the compound represented by Chemical Formula 1.
【청구항 12] [Claim 12]
하기 화학식 1로 표시되는 리튬의 가역적인 인터칼레이션 및 Reversible intercalation of lithium represented by the following formula (1) and
디인터칼레이션이 가능한 화합물;을 준비하는 단계; Preparing a compound capable of deintercalation;
리튬 공급원 ; 인 공급원 ; 및 금속 공급원;을 준비하는 단계 ; 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물에 상기 리튬 공급원; 인 공급원; 및 금속 공급원을 흔합하여, 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 표면에 리튬 공급원;, 인 공급원; 및 금속 공급원을 균일하게 부착시키는 단계; 및 상기 리튬 공급원; 인 공급원; 및 금속 공급원이 부착된 리튬의 가역적인 인터칼레이션 및. 디인터칼레이션이 가능한 화합물을 열처리하여, 리튬 인산화물을 포함하며, 리튬 금속 산화물, 금속 산화물, 또는 이들의 조합을 더 포함하는 복합 코팅층을 포함하는 리륨의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물;을 수득하는 단계; Lithium source; Phosphorus source; and preparing a metal source; a lithium source to a compound capable of reversible intercalation and deintercalation of lithium; phosphorus source; and a lithium source on the surface of the compound capable of reversible intercalation and deintercalation of lithium by combining metal sources; a phosphorus source; and uniformly depositing the metal source; and the lithium source; phosphorus source; and reversible intercalation of lithium attached metal source and . By heat treating a compound capable of deintercalation, reversible intercalation and deintercalation of lithium comprising a composite coating layer containing lithium phosphate and further comprising lithium metal oxide, metal oxide, or a combination thereof. Obtaining this possible compound;
를 포함하는 양극 활물질의 제조 방법 : Method for producing a positive electrode active material containing:
[화학식 1] [Formula 1]
Lix(Mi-m-zAmDz)02-tXt Li x (Mi- m - z A m D z )02- t Xt
상기 화학식 1에서 0.8<x<1.2, 0<m<0.4, 0<z≤0.1, 0≤t≤0.2이고, In Formula 1, 0.8<x<1.2, 0<m<0.4, 0<z≤0.1, 0≤t≤0.2,
M은 Ni, Co, Mn, Al, Ti, Fe 및 이들의 조합으로 이루어진 군에서 선택되며, A는 Mg, Ca, Sr, Ba 및 이들의 조합으로 이루어진 군에서 선택되고, M is selected from the group consisting of Ni, Co, Mn, Al, Ti, Fe, and combinations thereof, and A is selected from the group consisting of Mg, Ca, Sr, Ba, and combinations thereof,
D는 Ti, Zr, Ce, Ge, Sn 및 이들의 조합으로 이루어진 군에서 선택되며, X는 S, P, F 및 이들의 조합으로 이루어진 군에서 선택되며, D is selected from the group consisting of Ti, Zr, Ce, Ge, Sn, and combinations thereof, and X is selected from the group consisting of S, P, F, and combinations thereof,
A 및 !)의 평균 산화수는 E이고, 상기 £;는 E < 2.5 이다. The average oxidation number of A and !) is E, and £; is E < 2.5.
【청구항 13] [Claim 13]
제 12항에 있어서, In clause 12,
상기 리튬 공급원; 인 공급원; 및 금속 공급원이 부착된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 열처리하여, 리튬 인산화물을 포함하며, 리튬 금속 산화물, 금속 산화물, 또는 이들의 조합을 더 포함하는 복합 코팅층을 포함하는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물;을 수득하는 단계;에서, the lithium source; phosphorus source; and heat-treating a compound capable of reversible intercalation and deintercalation of lithium to which a metal source is attached to form a composite coating layer containing lithium phosphate and further comprising lithium metal oxide, metal oxide, or a combination thereof. In the step of obtaining a compound capable of reversible intercalation and deintercalation of lithium containing,
열처리 은도는, 650 내지 950°C인 것인 양극 활물질의 제조 방법 . Method for producing a positive electrode active material wherein the heat treatment temperature is 650 to 950°C.
【청구항 14】 【Claim 14】
D50이 3 내지 5卿인 리튬 금속 산화물 분말 (a)와 D50 이 8 내지 Lithium metal oxide powder (a) having a D50 of 3 to 5 and a D50 of 8 to 8
20/m의 리튬 금속 산화물 분말 (b)가흔합된 바이모달 (bimodal) 형태이며ᅳ 이 때 분말 (a)과 (b) 물질의 중량비율이 1-50:50-99 (a:b) 이며 분말 (a)과 (b) 물질 모두 하기 화학식 1로 표현되는 것인 양극 활물질: It is a bimodal form in which 20/m lithium metal oxide powder (b) is mixed, and the weight ratio of the powder (a) and (b) materials is 1-50:50-99 (a:b). powder Both (a) and (b) materials are positive electrode active materials represented by the following formula (1):
[화학식 1] [Formula 1]
Lix(Mi-m-2AraDz)02-tXt Li x (M i - m - 2 A ra D z )0 2 - t Xt
상기 화학식 1에서 0.8<x<1.2, 0<m<0.4, 0<z<0.1, 0≤t≤0.2이고, In Formula 1, 0.8<x<1.2, 0<m<0.4, 0<z<0.1, 0≤t≤0.2,
M은 Ni, Co, Mn, Al, Ti, Fe 및 이들의 조합으로 이루어진 군에서 선택되며 A는 Mg, Ca, Sr, Ba 및 이들의 조합으로 이루어진 군에서 선택되고, M is selected from the group consisting of Ni, Co, Mn, Al, Ti, Fe, and combinations thereof, and A is selected from the group consisting of Mg, Ca, Sr, Ba, and combinations thereof,
D는 Ti, Zr, Ce, Ge, Sn 및 이들의 조합으로 이루어진 군에서 선택되며, X는 S, P, F 및 이들의 조합으로 이루어진 군에서 선택되며, D is selected from the group consisting of Ti, Zr, Ce, Ge, Sn, and combinations thereof, and X is selected from the group consisting of S, P, F, and combinations thereof,
A 및 D의 평균 산화수는 E이고, 상기 £는 E < 2.5 이다. The average oxidation number of A and D is E, and £ is E < 2.5.
【청구항 15】 【Claim 15】
제 1항 또는 제 14항에 따른 리튬 이차 전지용 양극 활물질을 포함하는 양극; A positive electrode containing the positive electrode active material for a lithium secondary battery according to claim 1 or 14;
음극 활물질을 포함하는 음극; 및 A negative electrode containing a negative electrode active material; and
전해질; electrolyte;
을 포함하는 리튬 이차 전지 . Lithium secondary battery containing.
PCT/KR2016/013799 2016-05-25 2016-11-28 Cathode active material, method for preparing same, and lithium secondary battery including same WO2017204428A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0064355 2016-05-25
KR1020160064355A KR101925105B1 (en) 2016-05-25 2016-05-25 Positive active material, method of preparing the same, and rechargeable lithium battery including the same

Publications (1)

Publication Number Publication Date
WO2017204428A1 true WO2017204428A1 (en) 2017-11-30

Family

ID=60411451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013799 WO2017204428A1 (en) 2016-05-25 2016-11-28 Cathode active material, method for preparing same, and lithium secondary battery including same

Country Status (2)

Country Link
KR (1) KR101925105B1 (en)
WO (1) WO2017204428A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114762149A (en) * 2019-12-05 2022-07-15 Sm研究所股份有限公司 Positive electrode active material, method for preparing same, and lithium secondary battery having positive electrode including same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019132080A1 (en) * 2017-12-29 2019-07-04 주식회사 엘 앤 에프 Cathode active material for lithium secondary battery, and lithium secondary battery comprising same
KR102542630B1 (en) * 2018-01-09 2023-06-09 주식회사 엘지에너지솔루션 Electrode for lithium secondary battery and lithium secondary battery comprising the same
KR102288851B1 (en) * 2018-05-11 2021-08-12 주식회사 엘지화학 Preparing method of positive electrode active material for lithium secondary battery, positive electrode active material thereby, positive electrode and lithium secondary battery including the same
US20220140320A1 (en) * 2019-08-12 2022-05-05 Lg Chem, Ltd. Positive Electrode for Lithium Secondary Battery and Lithium Secondary Battery Including the Same
CN113383445B (en) * 2019-08-12 2024-04-16 株式会社Lg化学 Positive electrode for lithium secondary battery and lithium secondary battery comprising same
KR102178781B1 (en) * 2019-12-24 2020-11-13 주식회사 에스엠랩 A cathode active material, method of preparing the same, and lithium secondary battery comprising a cathode comprising the cathode active material
KR102386904B1 (en) * 2020-04-29 2022-04-15 주식회사 에스엠랩 A positive electrode active material for lithium secondary battery, method of preparing the positive electrode active material, and lithium secondary battery including the positive electrode active material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100052419A (en) * 2008-11-10 2010-05-19 주식회사 엘지화학 Cathode active material exhibiting improved property in high voltage
KR20120029441A (en) * 2009-06-05 2012-03-26 유미코르 Nanoparticle doped precursors for stable lithium cathode material
JP2015015169A (en) * 2013-07-05 2015-01-22 日立マクセル株式会社 Nonaqueous electrolyte secondary battery
KR101511935B1 (en) * 2012-08-01 2015-04-14 주식회사 엘지화학 Electrode Assembly for Secondary Battery and Lithium Secondary Battery Comprising the Same
KR20150042730A (en) * 2013-10-11 2015-04-21 주식회사 엘앤에프신소재 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100052419A (en) * 2008-11-10 2010-05-19 주식회사 엘지화학 Cathode active material exhibiting improved property in high voltage
KR20120029441A (en) * 2009-06-05 2012-03-26 유미코르 Nanoparticle doped precursors for stable lithium cathode material
KR101511935B1 (en) * 2012-08-01 2015-04-14 주식회사 엘지화학 Electrode Assembly for Secondary Battery and Lithium Secondary Battery Comprising the Same
JP2015015169A (en) * 2013-07-05 2015-01-22 日立マクセル株式会社 Nonaqueous electrolyte secondary battery
KR20150042730A (en) * 2013-10-11 2015-04-21 주식회사 엘앤에프신소재 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114762149A (en) * 2019-12-05 2022-07-15 Sm研究所股份有限公司 Positive electrode active material, method for preparing same, and lithium secondary battery having positive electrode including same
CN114762149B (en) * 2019-12-05 2024-04-05 Sm研究所股份有限公司 Positive electrode active material, method for preparing same, and lithium secondary battery having positive electrode comprising same

Also Published As

Publication number Publication date
KR101925105B1 (en) 2018-12-04
KR20170133188A (en) 2017-12-05

Similar Documents

Publication Publication Date Title
EP3595060B1 (en) Positive electrode active material for lithium secondary battery and manufacturing method therefor
JP7045549B2 (en) Positive electrode material containing a spinel-structured lithium manganese-based positive electrode active material, positive electrode, and lithium secondary battery
US10886529B2 (en) Positive electrode active material containing lithium composite oxide and covering material and battery
KR102144056B1 (en) A cathode active material, method of preparing the same, and lithium secondary battery comprising a cathode comprising the cathode active material
JP6888297B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries and its manufacturing method
JP7241287B2 (en) Positive electrode active material and battery
WO2017204428A1 (en) Cathode active material, method for preparing same, and lithium secondary battery including same
EP2940762B1 (en) Anode active material coated with manganese potassium oxide for lithium secondary battery and method for manufacturing same
KR101478873B1 (en) Positive active material, method of preparing the same, and lithium battery using the same
JP2020068210A (en) Composite positive electrode active material, positive electrode containing the same, lithium battery and manufacturing method thereof
JP2018116930A (en) Positive electrode active material and battery
KR101977995B1 (en) Positive electrode active material coated with boron compounds for lithium secondary battery and preparation method thereof
KR20120099375A (en) Metal oxide coated positive electrode materials for lithium-based batteries
JP2006190687A (en) Positive active material for lithium secondary battery and its manufacturing method
CN111279528B (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, positive electrode composite material paste, and nonaqueous electrolyte secondary battery
JP7292574B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
EP2642564A1 (en) Positive electrode active material, a method of preparing the same, and lithium secondary battery including the same
JP2019029344A (en) Cathode active material, and battery
WO2018163518A1 (en) Positive electrode active material, and cell
WO2018198410A1 (en) Positive electrode active material and battery
WO2018220882A1 (en) Positive electrode active substance and battery
JP7271945B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
WO2019103488A1 (en) Positive electrode active material for lithium secondary battery and manufacturing method therefor
KR100812547B1 (en) Positive active material for lithium secondary battery, method for preparing same, and lithium secondary battery including same
JP2022521083A (en) A lithium secondary battery containing a positive electrode active material, a method for producing the same, and a positive electrode containing the positive electrode.

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903276

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16903276

Country of ref document: EP

Kind code of ref document: A1