WO2017204293A1 - Method for forming cured electrodeposition coating film - Google Patents

Method for forming cured electrodeposition coating film Download PDF

Info

Publication number
WO2017204293A1
WO2017204293A1 PCT/JP2017/019524 JP2017019524W WO2017204293A1 WO 2017204293 A1 WO2017204293 A1 WO 2017204293A1 JP 2017019524 W JP2017019524 W JP 2017019524W WO 2017204293 A1 WO2017204293 A1 WO 2017204293A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodeposition coating
coating film
water
gloss
cured
Prior art date
Application number
PCT/JP2017/019524
Other languages
French (fr)
Japanese (ja)
Inventor
金子 敏雄
裕久 加納
澄穂 西岡
勝 青木
Original Assignee
日本ペイント・インダストリアルコーティングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ペイント・インダストリアルコーティングス株式会社 filed Critical 日本ペイント・インダストリアルコーティングス株式会社
Priority to CN201780032487.3A priority Critical patent/CN109477235B/en
Priority to KR1020187033547A priority patent/KR102316870B1/en
Publication of WO2017204293A1 publication Critical patent/WO2017204293A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/04Electrophoretic coating characterised by the process with organic material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4407Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications with polymers obtained by polymerisation reactions involving only carbon-to-carbon unsaturated bonds
    • C09D5/4411Homopolymers or copolymers of acrylates or methacrylates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/448Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications characterised by the additives used
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/10Electrophoretic coating characterised by the process characterised by the additives used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/22Servicing or operating apparatus or multistep processes

Definitions

  • the present invention relates to a method for forming a cured electrodeposition coating film using an anionic electrodeposition coating composition.
  • Electrodeposition coating is a coating method performed by immersing an object to be coated in an electrodeposition coating composition and applying a voltage. This method can be applied to the details even if the object has a complicated shape, and can be applied automatically and continuously, so it is widely used as an undercoating method for various objects. It has been.
  • There are two types of electrodeposition coating compositions a cationic electrodeposition coating composition and an anionic electrodeposition coating composition.
  • a cationic electrodeposition coating composition can form a cured electrodeposition coating film having better rust prevention and corrosion resistance.
  • an anionic electrodeposition composition is often used for an aluminum material. The aluminum material is superior to the aluminum material by first forming an anodized film (anodized film) by anodizing treatment and then performing anion electrodeposition coating using the anion electrodeposition composition. This is because corrosion resistance can be imparted.
  • anionic electrodeposition coating for example, in the case of aluminum sash coating, a coated object provided with a low gloss coating or matting coating with a low specular gloss can generally give a calm visual impression, Moreover, since a high-class feeling is also felt, the request
  • Patent Document 1 uses a polymerizable unsaturated monomer in the presence of acrylic resin (I), water and an emulsifier.
  • An emulsion polymer produced by emulsion polymerization in multiple stages, wherein the polymerizable unsaturated monomer is an alkoxysilyl group-containing polymerizable unsaturated monomer based on the total monomer weight used in multiple stages.
  • the blending ratio of (II) and crosslinking agent (III) is 20 to 70% by weight of (I), 5 to 40% by weight of (II), and 20 to 60 of (III) with respect to the total solid content of these resins.
  • Anionic-type matte electricity characterized by the weight percent Coating composition are described (claim 1).
  • Patent Document 2 JP-A-2005-307161 discloses an emulsion polymer produced by emulsion polymerization in multiple stages using a polymerizable unsaturated monomer in the presence of water and an emulsifier.
  • An anionic electrodeposition paint containing A), an acrylic resin (B), and a curing agent (C) is described.
  • the cured electrodeposition coating films obtained with these anion electrodeposition coating compositions vary greatly in gloss depending on the coating conditions and / or the shape of the object to be coated, so-called gloss unevenness. There was a problem that occurred.
  • Patent Document 3 discloses a matte electrodeposition coating composition in which a matte electrodeposition coating composition is diluted and electrodeposited. 5) to 50% by weight of a water-soluble fluorine-containing copolymer resin having a carboxyl group and a hydroxyl group; (B1) 5 to 60% by weight of a water-soluble or water-dispersible acrylic copolymer resin having an alkoxysilane group; A method for forming a matte coating film comprising 20 to 60% by weight of an agent is described (claim 1).
  • the matte electrodeposition coating composition in Patent Document 3 has an insoluble gel structure when (B1) a water-soluble or water-dispersible acrylic copolymer resin having an alkoxysilane group is crosslinked, and the insoluble gel particles Is different from the method of the present invention in that it provides a matting effect.
  • Patent Document 4 in the presence of a water-soluble or water-dispersible vinyl copolymer (A) having a carboxyl group and a hydroxyl group in the side chain, (a) ⁇ , ⁇ -ethylenically unsaturated carboxylic acid hydroxyalkyl-containing ester monomer, (b) ⁇ , ⁇ -ethylenically unsaturated carboxylic acid alkoxysilane group-containing ester monomer, (c) copolymer having no carboxyl group After adding the amino resin (E) to the copolymer (D) obtained by copolymerizing the monomer mixture (B) of the polymerizable vinyl group-containing monomer, the wax (F) is mixed and partially mixed with an organic amine.
  • A water-soluble or water-dispersible vinyl copolymer having a carboxyl group and a hydroxyl group in the side chain, (a) ⁇ , ⁇ -ethylenically unsaturated carboxylic acid hydroxyalkyl-containing este
  • a method for producing a resin composition for a matte electrodeposition coating material, characterized in that after neutralization, water is added to form an emulsion (claim 1).
  • the matte cured electrodeposition coating film obtained by using the resin composition for electrodeposition coatings obtained by this production method the glossiness of the resulting cured electrodeposition coating film varies greatly depending on the heat curing temperature, A cured electrodeposition coating film having a desired glossiness may not be obtained.
  • the resulting cured electrodeposition coating film has a low cross-linking density, and there is a possibility that the coating film properties such as coating film hardness or corrosion resistance may be decreased.
  • the present invention solves the above-mentioned conventional problems, and the object of the present invention is to form a cured electrodeposition coating film with adjusted glossiness, such as a low-gloss coating film or matte coating film with low specular gloss. It is to provide a method.
  • a method of forming a cured electrodeposition coating film wherein the method is An electrodeposition coating process in which an object to be coated is immersed in an anionic electrodeposition coating composition, and an electrodeposition coating film is formed by applying a voltage; and A heat curing step for forming a cured electrodeposition coating by heat curing the electrodeposition coating formed in the electrodeposition coating step;
  • the anion electrodeposition coating composition includes an acrylic resin (A), a curing agent (B), a water-dispersed gloss adjusting agent (C), and a curing catalyst (D).
  • the water-dispersed gloss modifier (C) is an aqueous dispersion of one or more waxes selected from the group consisting of natural waxes and polyolefin waxes,
  • the wax constituting the water-dispersed gloss adjusting agent (C) has a softening point (T m ) of 100 ° C. or higher and a density in the range of 0.91 to 1.10.
  • T m softening point
  • the solid content mass of the water-dispersed gloss adjusting agent (C) contained in the anion electrodeposition coating composition is 6 to 20 parts by mass with respect to 100 parts by mass of the resin solid content of the anion electrodeposition coating composition.
  • the electrodeposition coating film formed in the electrodeposition coating step has a coating film viscosity at 50 ° C.
  • the above method wherein the heating temperature (T h ) in the heat curing step is 110 to 160 ° C.
  • T m softening point
  • the acrylic resin (A) is an acrylic resin having a carboxyl group and a hydroxyl group
  • the curing agent (B) is one or more selected from the group consisting of amino resins and blocked isocyanate compounds. The above method.
  • an uncured electrodeposition coating before heat curing is referred to as an “electrodeposition coating”, and a coating after heat curing is referred to as a “cured electrodeposition coating” or simply “curing coating”. It is called “membrane”.
  • a cured electrodeposition coating film with adjusted glossiness such as a low gloss coating film or matte coating film with low specular gloss.
  • a cured electrodeposition coating film having no gloss unevenness such as a glossiness change due to a heat curing temperature change and having an excellent finished appearance.
  • a cured electrodeposition coating film having good hardness can be obtained even when an electrodeposition coating film is formed and then heat-cured under low-temperature curing conditions.
  • the object to be coated in the forming method of the present invention is not particularly limited as long as it is a conductive substrate.
  • the objects to be coated include metal materials such as iron, stainless steel, aluminum, copper, zinc, tin and alloys thereof, molded products of these metal materials, and conductive plastics and surface treated products thereof. it can.
  • the metal material may be a base material that has been plated.
  • examples of the object to be coated include iron substrates such as iron and stainless steel, and aluminum substrates such as aluminum and aluminum alloys.
  • Acrylic resin (A) The acrylic resin (A) contained in the anion electrodeposition coating composition is a film-forming resin.
  • the acrylic resin (A) is preferably an acrylic resin having a carboxyl group and a hydroxyl group.
  • examples of such an acrylic resin (A) include a carboxyl group-containing radical polymerizable unsaturated monomer (a-1) and a hydroxyl group-containing radical polymerizable unsaturated monomer (a-2), and if necessary, And acrylic resins obtained by radical polymerization of these monomers using other radically polymerizable unsaturated monomers (a-3).
  • (meth) acrylic acid represents acrylic acid or methacrylic acid.
  • Plaxel FM1 (trade name, caprolactone-modified (meth) acrylic acid hydroxyesters manufactured by Daicel Chemical Industries), Plaxel FM2 (same as left), Plaxel FM3 (same as left) Plaxel FA1 (same as left), Plaxel FA2 (same as left), Plaxel FA3 (same as left), and the like.
  • the other radical polymerizable unsaturated monomer (a-3) includes the above-mentioned carboxyl group-containing radical polymerizable unsaturated monomer (a-1) and hydroxyl group-containing radical polymerizable unsaturated monomer (a-2). And a monomer having at least one radical polymerizable unsaturated bond in one molecule.
  • radical polymerizable unsaturated monomers (a-3) include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, (meth) C 1-8 alkyl ester of (meth) acrylic acid such as hexyl acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, cyclohexyl (meth) acrylate or C 3-8 cycloalkyl esters; aromatic polymerizable monomers such as styrene, ⁇ -methylstyrene, vinyltoluene; (meth) acrylic acid amide, N-butoxymethyl (meth) acrylamide, N-methylol (meth) acrylamide, etc.
  • the carboxyl group-containing radically polymerizable unsaturated monomer (a-1) is preferably 3 to 30% by mass, more preferably 4 to 20% by mass, based on the total mass of the monomers.
  • the hydroxyl group-containing radically polymerizable unsaturated monomer (a-2) is preferably 3 to 40% by weight, more preferably 5 to 30% by weight, and other radically polymerizable unsaturated monomers (a-2) based on the total weight of the monomers.
  • the saturated monomer (a-3) is preferably 30 to 90% by mass, more preferably 40 to 85% by mass, based on the total mass of the monomers. It is preferable to use within the range.
  • the acrylic resin (A) preferably has a hydroxyl group value of 30 to 200 mgKOH / g, more preferably 50 to 150 mgKOH / g.
  • the hydroxyl value of the acrylic resin (A) is 30 mgKOH / g or more, the curing reaction occurs sufficiently and the original coating film performance can be obtained.
  • it is 200 mgKOH / g or less, there exists an advantage that an unreacted hydroxyl group does not remain in a coating film, and corrosion resistance, acid resistance, etc. are not reduced.
  • an acid value and a hydroxyl value represent a solid content acid value and a solid content hydroxyl value, respectively, and can be measured by the method described in JIS K0070.
  • the acrylic resin (A) preferably has a weight average molecular weight (Mw) of 5,000 to 100,000, and more preferably 10,000 to 50,000.
  • Mw weight average molecular weight
  • the weight average molecular weight (Mw) of the acrylic resin (A) is 5000 or more, there are advantages such as improved coating performance such as corrosion resistance and acid resistance.
  • the weight average molecular weight (Mw) is a value in terms of polystyrene measured by gel permeation chromatography (GPC).
  • the acrylic resin (A) is water-soluble or water-dispersible by neutralizing a carboxyl group with a basic substance (for example, triethylamine, dimethylethanolamine, ammonia, etc.). It is preferable to use as the resin.
  • the neutralization rate is preferably 30 to 100%, and more preferably 50 to 80%. When the neutralization rate is within the above range, the acrylic resin (A) can be favorably dispersed in the anion electrodeposition coating composition.
  • the content of the acrylic resin (A) is 50 to 80 mass with respect to 100 mass% of the total resin solid content of the acrylic resin (A) and the curing agent (B).
  • % Is preferred.
  • chemical resistance such as acid resistance and alkali resistance and corrosion resistance are enhanced.
  • an electrodeposition coating film fully hardens
  • the coating composition of the present invention may contain other coating film forming resins as needed other than the acrylic resin (A).
  • other coating film forming resins include polyester resins, urethane resins, epoxy resins, butadiene resins, phenol resins, xylene resins, and the like.
  • an epoxy resin is preferred.
  • the content in the case of using such other coating film-forming resin is preferably less than 20% by mass, preferably less than 10% by mass with respect to the resin solid content contained in the coating composition. More preferred.
  • Curing agent (B) The anion electrodeposition coating composition in this invention contains a hardening
  • the curing agent (B) is preferably one or more selected from the group consisting of amino resins and blocked isocyanate compounds.
  • Amino resin is a condensate obtained by modifying a condensate of an amino compound such as melamine, urea or benzoguanamine with an aldehyde compound such as formaldehyde or acetaldehyde using a lower alcohol such as methanol, ethanol, propanol or butanol. It is.
  • amino resins include, for example, fully alkyl type methyl / butyl mixed etherified melamine resin, methylol group type methyl / butyl mixed etherified melamine resin, imino type methyl / butyl mixed etherified melamine resin, fully alkyl type Mention may be made of methylated melamine resins and imino group-type methylated melamine resins.
  • the blocked isocyanate compound the following 1) to 3): 1) Aliphatic diisocyanates such as trimethylene diisocyanate and hexamethylene diisocyanate, alicyclic diisocyanates such as isophorone diisocyanate, 2) Bifunctional or higher polyisocyanates obtained by reacting the above diisocyanates with polyhydric alcohols such as ethylene glycol, trimethylolpropane, pentol, 3) Isocyanurate bond-containing trifunctional isocyanate obtained by reacting 3 moles of the diisocyanates of 1) above;
  • a blocked isocyanate compound obtained by reacting a blocking agent with at least one selected from the group consisting of Examples of the blocking agent include monovalent alkyl (or aromatic) alcohols such as n-butanol, n-hexyl alcohol, 2-ethylhexanol, lauryl alcohol, phenol carbinol and methylphenyl carbinol; ethylene glycol monohexyl Cello
  • polyisocyanate compounds include Bihijoule VPLS 2186 (manufactured by Sumika Bayer Urethane Co., Ltd.).
  • curing agent (B) a mixture of the amino resin and the blocked isocyanate compound may be used.
  • curing agent (B) it is more preferable to use an amino resin from the point which can acquire the effect of this invention effectively.
  • the content of the curing agent (B) is 20 to 50 masses with respect to 100 mass% of the total resin solid content of the acrylic resin (A) and the curing agent (B). % Is preferred. In the case of 20% by mass or more, the curing reaction sufficiently proceeds and desired coating film performance is obtained. Moreover, in the case of 50 mass% or less, the adhesiveness and flexibility of a coating film increase.
  • the anion electrodeposition coating composition in the present invention contains a water-dispersed gloss adjusting agent (C).
  • the water-dispersed gloss modifier (C) is an aqueous dispersion of one or more waxes selected from the group consisting of natural waxes and polyolefin waxes. This wax is required to have a softening point (T m ) of 100 ° C. or higher and a density in the range of 0.91 to 1.10.
  • T m softening point
  • specific examples of natural waxes include wood wax, carnauba wax, petroleum-based microcrystalline wax, paraffin wax, and mineral-based montan wax.
  • polyolefin wax examples include polyolefin waxes such as polyethylene, polypropylene, polyethylene oxide, polypropylene oxide, chlorinated polyethylene, and chlorinated polypropylene.
  • a method for preparing an aqueous dispersion of the wax for example, A method in which the wax is dissolved in a hydrophilic organic solvent and then mechanically dispersed in an aqueous solvent; A method of dispersing the wax in an aqueous solvent using a surfactant or a polymer emulsifier, and the like, and A method of emulsifying and dispersing in an aqueous solvent by reacting the wax with an ⁇ , ⁇ -unsaturated carboxylic acid to introduce a carboxyl group, and then neutralizing the introduced carboxyl group with an organic amine or an inorganic base; Etc.
  • a wax having a softening point (T m ) of 100 ° C. or higher is used as the wax constituting the water-dispersed gloss adjusting agent (C).
  • T m softening point of the wax constituting the water-dispersed gloss adjusting agent
  • the softening point (T m ) of the wax constituting the water-dispersed gloss adjusting agent (C) is preferably within the range of 100 to 140 ° C.
  • the softening point (T m ) of the wax constituting the water-dispersed gloss modifier (C) is softened by heating in the solid state before the wax constituting the water-dispersed gloss modifier (C) is water-dispersed. It can be determined by measuring the temperature at the time. Specifically, the measurement of the softening point (T m ) of the wax constituting the water-dispersed gloss adjusting agent (C) is used for the preparation of the water-dispersing gloss adjusting agent (C), and the above-mentioned state before water dispersion. It can be measured by a method based on JIS K 2207 using wax.
  • the aqueous medium is evaporated in the water dispersion type gloss adjusting agent (C) instead of the solid state before the water constituting the water dispersion type gloss adjusting agent (C) is dispersed in water, and the wax is solid. It is also possible to use what is in a state.
  • the wax constituting the water-dispersed gloss adjusting agent (C) has a density in the range of 0.91 to 1.10.
  • the density of the wax constituting the water-dispersed gloss adjusting agent (C) is preferably in the range of 0.92 to 1.05.
  • the water-dispersed gloss adjusting agent (C) is preferably an anion-dispersed type.
  • the water-dispersed gloss adjusting agent (C) is an anion-dispersing type, there are advantages such as improved coating stability of the resulting anionic electrodeposition coating composition.
  • a commercially available product may be used as the water-dispersed gloss adjusting agent (C).
  • Commercially available products include, for example, HI-DISPER (trademark) series manufactured by Gifu Shellac, AQUACER (trademark) series and AQUAMAT (trademark) series, manufactured by Big Chemie Japan, Chemipearl W (trademark) series, manufactured by Mitsui Chemicals, and Unitika.
  • the Arrow Base (trademark) series made by the company is mentioned.
  • the “resin solid content of the anion electrodeposition coating composition” refers to the resin solid content of the coating film-forming resin contained in the electrodeposition coating composition. Specifically, the acrylic resin (A) , Curing agent (B), and resin solid content of other coating film forming resin as required.
  • the anion electrodeposition coating composition in the present invention contains a curing catalyst (D).
  • the curing catalyst (D) include n-butylbenzenesulfonic acid, amylbenzenesulfonic acid, octylbenzenesulfonic acid, dodecylbenzenesulfonic acid, octadecylbenzenesulfonic acid, dibutylbenzenesulfonic acid, i-propylnaphthalenesulfonic acid, p -Sulfonic acid catalysts such as toluenesulfonic acid, dodecylnaphthalenesulfonic acid, dinonylnaphthalenesulfonic acid, dinonylnaphthalenedisulfonic acid, and amine neutralized products of these sulfonic acid catalysts; dioctyltin dilaurate, dioctyltin dibenzoate, dibut
  • the anion electrodeposition coating composition in the present invention such as other components is an aqueous coating composition and contains water as a main solvent.
  • the anion electrodeposition coating composition in the present invention may contain an organic solvent as necessary.
  • the organic solvent include alcohols such as methanol, isopropanol, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol and methoxypropanol, ethers such as ethylene glycol monobutyl ether, propylene glycol monobutyl ether and diethylene glycol monobutyl ether, and acetylacetone. Ketones such as, esters such as ethylene glycol monoethyl ether acetate, hexane and the like. These organic solvents may use only 1 type and may use 2 or more types together. However, from the viewpoint of VOC emission regulation, the amount of the organic solvent is preferably as small as possible.
  • the anion electrodeposition coating composition according to the present invention includes a colorant, a pigment, a film-forming aid, a drying delay aid, a viscosity modifier, an antiseptic, an antifungal agent, an antiseptic, an antifoaming agent, a light as necessary.
  • a colorant for example, a pigment, a film-forming aid, a drying delay aid, a viscosity modifier, an antiseptic, an antifungal agent, an antiseptic, an antifoaming agent, a light as necessary.
  • Other additives known in the art such as stabilizers (for example, hindered amine light stabilizers), antioxidants, ultraviolet absorbers, pH adjusters and the like may be included.
  • the anion electrodeposition coating composition in the present invention may contain a pigment as necessary.
  • the pigment is not particularly limited.
  • extender pigments such as barium sulfate, talc, calcium carbonate, and barium sulfate
  • phosphorus molybdate-based rust preventives such as aluminum zinc phosphomolybdate, zinc phosphomolybdate and calcium phosphomolybdate
  • examples thereof include pigments, rust preventive pigments such as molybdate salt rust preventive pigments and phosphate rust preventive pigments
  • color pigments commonly used in the paint field are commonly used in the paint field.
  • an anionic pigment dispersion paste can be prepared by dispersing a pigment in an anionic pigment dispersion resin.
  • an anionic pigment dispersion resin for example, a modified acrylic resin prepared using an acrylic ester, acrylic acid, an azonitrile compound, or the like can be used.
  • the anionic pigment dispersion paste is prepared by mixing an anionic pigment dispersion resin, a pigment, an aqueous medium, and, if necessary, a neutralizing base, until the particle diameter of the pigment in the mixture reaches a predetermined uniform particle diameter.
  • the anionic pigment dispersion paste is prepared to a solid content of 35 to 70% by mass, preferably 40 to 65% by mass.
  • a commercially available anionic colored paste may be used as the anionic pigment dispersion paste.
  • Examples of commercially available products include WAJ-AAT-907 black, WAJ-AAT-825 violet, WAJ-AAT-731 blue (above, manufactured by Toyochem), Emacol NS Ocher 4622 (manufactured by Sanyo Dye).
  • the anion electrodeposition coating composition in the present invention is the above-mentioned acrylic resin (A), curing agent (B), water-dispersed gloss modifier (C), curing catalyst (D), and further necessary.
  • the aqueous medium is water or a mixture of water and the above organic solvent.
  • ion-exchanged water is preferably used.
  • the amount of the neutralizing base used is an amount sufficient to neutralize at least 30%, preferably 50 to 120% of the anionic group (carboxyl group) of the coating film-forming resin such as acrylic resin (A). preferable.
  • the pH of the anionic electrodeposition coating composition is preferably 7.0 to 9.0, and more preferably 7.0 to 8.5.
  • the method of the present invention comprises the following steps: An electrodeposition coating process in which an object to be coated is immersed in an anionic electrodeposition coating composition, and an electrodeposition coating film is formed by applying a voltage; and A heat curing step for forming a cured electrodeposition coating film by heating and curing the electrodeposition coating film formed in the electrodeposition coating step; Is included.
  • the anion electrodeposition coating composition is used, and the coating viscosity at 50 ° C. of the electrodeposition coating film formed in the electrodeposition coating step is in the range of 10,000 to 100,000 Pa ⁇ s. Therefore, the glossiness of low-gloss or matte coatings with low specular glossiness is adjusted, which is not accompanied by defects such as gloss differences due to differences in heating temperature or poor matting effect.
  • a cured electrodeposition coating film can be obtained.
  • Electrodeposition coating of the anion electrodeposition coating composition is performed by immersing the object to be coated in the anion electrodeposition coating composition and then applying a voltage of usually 1 to 400 V to the cathode. .
  • the coating temperature of the anion electrodeposition coating composition during electrodeposition coating is preferably 10 to 45 ° C, more preferably 15 to 30 ° C.
  • the time for applying the voltage can be arbitrarily selected according to the electrodeposition coating conditions, and can be, for example, 30 seconds to 5 minutes.
  • an electrodeposition coating film is formed on the surface of the object to be coated.
  • the formed electrodeposition coating film may be washed with water as necessary.
  • the coating film viscosity at 50 ° C. of the electrodeposition coating film formed in the electrodeposition coating step is within the range of 10,000 to 100,000 Pa ⁇ s.
  • the water-dispersed gloss modifier (C) contained in the anionic electrodeposition coating composition in the present invention has a good gloss control function.
  • the gloss of the obtained cured electrodeposition coating film can be designed in a low range (60 ° specular gloss is 70 or less).
  • the reason for measuring the viscosity of the electrodeposition coating film at 50 ° C. is as follows.
  • An electrodeposition coating film is a coating film deposited on the surface of an object to be coated by application of a voltage.
  • the electrodeposition coating is generally designed to have a higher viscosity (high Tg). Therefore, when the viscosity of the electrodeposition coating film is measured at a general electrodeposition bath temperature (for example, 30 ° C.), the measurement may be impossible due to the very high viscosity. For this reason, it is difficult to measure the viscosity of the electrodeposition coating film at 30 ° C. On the other hand, the deposited electrodeposition coating film undergoes a heat flow by heating, and the viscosity is once reduced.
  • the coating film forming resins such as the acrylic resin (A) and the curing agent (B) contained in the electrodeposition coating film undergo a crosslinking reaction, and the coating film viscosity rapidly increases.
  • the electrodeposition coating film is cured to form a cured electrodeposition coating film. That is, the viscosity of the electrodeposition coating film is temporarily reduced by heating, and then the viscosity increases.
  • the viscosity measurement at 50 ° C. is a state in which the physical properties at the time of electrodeposition coating deposition are reproduced.
  • the temperature of 50 ° C. is a temperature preferable for the measurement of the viscosity of the coating film from the above properties of the electrodeposition coating composition, and is a temperature at which no crosslinking of the coating film forming resin occurs, that is, an uncured electrodeposition coating film. It is considered that the temperature is appropriate for judging the properties at the time of precipitation.
  • the flowability of the electrodeposition coating film by heating does not increase excessively, and the cured electrodeposition has low gloss.
  • a coating film can be formed, and a poor appearance of the cured electrodeposition coating film can be avoided.
  • the coating film viscosity at 50 ° C. and the coating film viscosity at 80 ° C. of the electrodeposition coating film can be measured as follows. First, electrodeposition coating is carried out for 180 seconds so that the film thickness becomes about 20 ⁇ m to form an electrodeposition coating film, which is washed with water to remove the extra electrodeposition coating composition. Next, after removing excess moisture adhering to the surface of the electrodeposition coating film, the coating film is taken out immediately without drying to prepare a sample. By measuring the viscosity of the sample thus obtained using a dynamic viscoelasticity measuring apparatus, the coating film viscosity at 50 ° C. and 80 ° C. can be measured.
  • the heating temperature (T h ) in this heat curing step is preferably 110 to 160 ° C.
  • the difference ( ⁇ T) between the softening point (T m ) and the heating temperature (T h ) is more preferably 10 ° C. or more and 50 ° C. or less.
  • T m softening point
  • T h heating temperature
  • T m heating temperature
  • T h heating temperature
  • T m heating temperature
  • the difference ⁇ T between the softening point (T m ) and the heating temperature (T h ) is 10 ° C. or more and 50 ° C. or less, It is more preferable that The ⁇ T is more preferably 10 ° C. or higher and 30 ° C. or lower.
  • the heating temperature (T h ) in the heat curing step is within the above range, the difference from the softening point (T m ) of the wax constituting the water-dispersed gloss adjusting agent (C) is in an appropriate range, and is obtained.
  • the gloss of the cured electrodeposition coating film can be designed well in a low range (60 ° specular gloss is 70 or less), and further the occurrence of uneven gloss can be suppressed.
  • the heating time of the electrodeposition coating can be appropriately selected depending on the size of the object to be coated and the heating temperature (T h ).
  • the heating time is, for example, 5 to 60 minutes, preferably 10 to 30 minutes.
  • the film thickness of the cured electrodeposition coating film formed in the method of the present invention is preferably 5 to 30 ⁇ m, more preferably 10 to 25 ⁇ m.
  • a cured electrodeposition coating film adjusted to have a low glossiness can be formed without causing uneven glossiness.
  • Such a technical effect is not limited by theory, but it controls the softening point (T m ) of the wax constituting the water-dispersed gloss modifier (C) contained in the anionic electrodeposition coating composition.
  • T m softening point
  • C water-dispersed gloss modifier
  • by controlling the viscosity of the electrodeposition coating film at 50 ° C. within a specific range it is possible to control the change in the coating state that occurs during the heat curing of the electrodeposition coating film. This is thought to be because it was possible to suppress the occurrence of uneven gloss in the formation of a cured electrodeposition coating film having a high degree.
  • a cured electrodeposition coating film is further formed under a low temperature condition as compared with the heat curing step in normal electrodeposition coating, such as a heating temperature in the heat curing step of 100 to 160 ° C., for example.
  • a heating temperature in the heat curing step of 100 to 160 ° C.
  • Example 1 Production of Anion Electrodeposition Coating Composition 328 parts of acrylic resin (A) prepared in Production Example 1 (solid content concentration 50%), Cymel 235 (Ornex Japan Co., Ltd.) which is a melamine resin as a curing agent (B) Manufactured, solid content concentration 100%) 86 parts and triethylamine 11 parts while mixing and stirring, 3.75 parts of dinonylnaphthalenesulfonic acid (curing catalyst (D)) in the amount shown in the following table and the following table 71.4 parts of water dispersion type gloss adjusting agent (C) of the kind and amount were added and mixed. The obtained mixture was diluted to 10% solid content using ion exchange water to obtain an anionic electrodeposition coating composition.
  • acrylic resin (A) prepared in Production Example 1 (solid content concentration 50%), Cymel 235 (Ornex Japan Co., Ltd.) which is a melamine resin as a curing agent
  • B Manufactured, solid content concentration 100%
  • the amount of the water-dispersed gloss adjusting agent (C) shown in the following table is a solid content part by mass with respect to 100 parts by mass of the total resin solid content of the acrylic resin (A) and the curing agent (B) as the coating film forming resin. .
  • Formation of cured electrodeposition coating film A SUS430 plate as an object to be coated is immersed in the anion electrodeposition coating composition obtained as described above, and a DC voltage of a coating voltage of 80 to 200 V is applied for 2.5 minutes to form a cured film. Electrodeposition was applied so that the thickness was 20 ⁇ m, and an electrodeposition coating film was provided. Three painted plates were prepared.
  • a coating plate having an electrodeposition coating film is heated at a temperature 10 ° C, 30 ° C and 50 ° C higher than the softening point (Tm) of the water-dispersed gloss adjusting agent (C) used in the preparation of the anion electrodeposition coating composition (respectively, 145 ° C., 165 ° C., and 185 ° C.) for 30 minutes each to obtain a coated plate having a cured electrodeposition coating film.
  • Tm softening point
  • C water-dispersed gloss adjusting agent
  • Example 2 and Comparative Examples 1-5 In the preparation of the anion electrodeposition coating composition, in the same manner as in Example 1 except that the type and amount of the water-dispersed gloss modifier (C) and the amount of the curing catalyst (D) were changed as shown in the table below, An anionic electrodeposition coating composition was prepared. Using the obtained anionic electrodeposition coating composition, electrodeposition coating was performed in the same manner as in Example 1 to obtain a coated plate having a cured electrodeposition coating film.
  • An anionic electrodeposition coating composition was prepared in the same manner as in Example 2, except that the water-dispersed gloss modifier (C) was not used in the preparation of the anionic electrodeposition coating composition. Using the resulting anionic electrodeposition coating composition, electrodeposition coating was carried out in the same manner as in Example 1, and baked at 120 ° C., 140 ° C. and 160 ° C. for 30 minutes, respectively, and a coated plate having a cured electrodeposition coating film Got.
  • Electrodeposition coating film viscosity at 50 ° C. and 80 ° C. of the electrodeposition coating film Using the anion electrodeposition coating composition obtained by the above Examples and Comparative Examples, the film thickness is about 20 ⁇ m on the object to be coated. Electrodeposition coating was performed for 180 seconds to form an electrodeposition coating film, which was washed with water to remove excess electrodeposition coating composition. Next, after removing moisture, the coating film was taken out immediately without drying to prepare a sample. The sample thus obtained was subjected to frequency-dependent measurement in dynamic viscoelasticity using a Rheosol G-3000 (manufactured by UBM), which is a rotary dynamic viscoelasticity measuring device, with a strain of 0.5 deg and a frequency of 0.02 Hz.
  • a Rheosol G-3000 manufactured by UBM
  • the cured electrodeposition coating film obtained by heating at a temperature of the softening point of the water-dispersed gloss modifier (C) + 30 ° C. was visually evaluated based on the following criteria.
  • A coating film appearance defect such as a stirring mark is not recognized
  • A coating film appearance defect such as a stirring mark is recognized *
  • Stirring trace poor coating appearance, recognized as a streak-like trace on the cured electrodeposition coating, which is thought to be derived from stirring of the electrodeposition coating composition during the formation of the electrodeposition coating.
  • electrodeposition coating was performed by placing a substrate in a horizontal state in an unstirred electrodeposition coating composition.
  • the obtained electrodeposition coating film was cured by heating for 30 minutes at a temperature of the softening point of the water-dispersed gloss modifier (C) + 30 ° C.
  • the coating film appearance after baking of the obtained coated plate was visually observed, and the difference in appearance between the upper surface and the lower surface was visually evaluated according to the following criteria. ⁇ : No difference is recognized by visual observation, and it is judged that the appearance is good.
  • X Since it is recognized that the matte degree of the upper and lower surfaces is different by visual observation, it is determined that the appearance is poor.
  • Pencil Hardness Using a cured electrodeposition coating film obtained by heating at a temperature of the softening point of the water-dispersed gloss modifier (C) + 30 ° C., in accordance with JIS K 5600-5-4 The pencil hardness was measured. Specifically, a pencil (Mitsubishi Pencil Co., Ltd .: for scratch hardness test of Japan Paint Inspection Association) is pressed against the surface of the cured electrodeposition coating so that the scratch angle is 45 °. Was observed visually. For example, in the case of a test using a pencil of H, when there was no generation of a scar, it was judged as H or more. It was judged as H when the occurrence of a slight dent was visually recognized in one test out of five tests.
  • a pencil Mitsubishi Pencil Co., Ltd .: for scratch hardness test of Japan Paint Inspection Association
  • Comparative Example 1 is an experimental example in which the softening point (T m ) of the wax constituting the water-dispersed gloss adjusting agent (C) is less than 100 ° C. In this case, the glossiness of the obtained cured electrodeposition coating film was increased overall, and the difference in glossiness caused by changes in heating temperature was increased. Furthermore, there was a problem that the hardness of the cured electrodeposition coating film was lowered.
  • Comparative Example 2 is an experimental example in which the density of the wax constituting the water-dispersed gloss adjusting agent (C) is less than 0.91. In this case, the difference in glossiness caused by the change in heating temperature became large. Moreover, generation
  • Comparative Example 3 is an experimental example in which the amount of the water-dispersed gloss adjusting agent (C) is small. In this case, the glossiness of the obtained cured electrodeposition coating film was increased overall, and the difference in glossiness caused by changes in heating temperature was increased. Furthermore, coating film appearance unevenness was confirmed.
  • Comparative Example 4 is an experimental example in which the amount of the water-dispersed gloss adjusting agent (C) is large. In this case, the glossiness value was low, but the glossiness difference caused by the heating temperature change was large. Furthermore, there was a problem that the hardness of the cured electrodeposition coating film was lowered.
  • Comparative Example 5 is an experimental example in which the electrodeposition coating film has a coating film viscosity at 50 ° C. of less than 10,000. In this case, the difference in glossiness caused by the change in heating temperature became large.
  • Comparative Example 6 is an experimental example that does not include the water-dispersed gloss adjusting agent (C). In this case, the gloss of the cured electrodeposition coating film was very high.
  • a cured electrodeposition coating film with adjusted glossiness such as a low-gloss coating film or matte coating film with low specular glossiness
  • uneven glossiness such as a glossiness change due to a change in heating temperature.
  • the method of the present invention further has an advantage that a cured electrodeposition coating film having good hardness can be obtained even when the electrodeposition coating film is formed and then heat-cured under low-temperature curing conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention addresses the problem of providing a method for forming a cured electrodeposition coating film in which the glossiness thereof is adjusted, such as a low-gloss coating film having low specular gloss or a mat coating film. The present invention provides a method for forming a cured electrodeposition coating film, wherein the method includes an electrodeposition coating step for dipping an object to be coated in an anion electrodeposition coating material composition and forming an electrodeposition coating film, and a thermal curing step for heating and curing the electrodeposition coating film formed in the coating step, the anion electrodeposition coating material composition including an acrylic resin (A), a curing agent (B), a water-dispersion-type gloss adjuster (C), and a curing catalyst (D), the water-dispersion-type gloss adjuster (C) being a water dispersion of one or more types of wax selected from the group consisting of natural wax and a polyolefin wax, the wax configuring the water-dispersion-type gloss adjuster (C) having a softening point (Tm) of 100°C or higher and a density in the range of 0.91-1.10, the solid content mass of the water-dispersion-type gloss adjuster (C) included in the anion electrodeposition coating material composition being 6-20 parts by mass with respect to 100 parts by mass of resin solid content of the anion electrodeposition coating material composition, and the coating film viscosity at 50°C of the electrodeposition coating film formed in the electrodeposition coating step being in the range of 10,000-100,000 Pa∙s.

Description

硬化電着塗膜の形成方法Method for forming cured electrodeposition coating film
 本発明は、アニオン電着塗料組成物を用いた硬化電着塗膜の形成方法に関する。 The present invention relates to a method for forming a cured electrodeposition coating film using an anionic electrodeposition coating composition.
 電着塗装は、電着塗料組成物中に被塗物を浸漬させ、電圧を印加することにより行われる塗装方法である。この方法は、複雑な形状を有する被塗物であっても細部にまで塗装を施すことができ、自動的かつ連続的に塗装することができるので、各種被塗物の下塗り塗装方法として広く用いられている。この電着塗料組成物として、カチオン電着塗料組成物およびアニオン電着塗料組成物の2種類がある。カチオン電着塗料組成物は一般に、より優れた防錆性および耐食性を有する硬化電着塗膜を形成できる。一方で、アルミニウム素材に対しては、アニオン電着組成物が用いられることが多い。これは、アルミニウム素材は、まず、陽極酸化処理により陽極酸化皮膜(アルマイト皮膜)を形成させ、次いで、アニオン電着組成物を用いたアニオン電着塗装を行うことによって、アルミニウム素材に対して優れた耐食性を付与することができるためである。 Electrodeposition coating is a coating method performed by immersing an object to be coated in an electrodeposition coating composition and applying a voltage. This method can be applied to the details even if the object has a complicated shape, and can be applied automatically and continuously, so it is widely used as an undercoating method for various objects. It has been. There are two types of electrodeposition coating compositions, a cationic electrodeposition coating composition and an anionic electrodeposition coating composition. In general, a cationic electrodeposition coating composition can form a cured electrodeposition coating film having better rust prevention and corrosion resistance. On the other hand, an anionic electrodeposition composition is often used for an aluminum material. The aluminum material is superior to the aluminum material by first forming an anodized film (anodized film) by anodizing treatment and then performing anion electrodeposition coating using the anion electrodeposition composition. This is because corrosion resistance can be imparted.
 アニオン電着塗装において、例えばアルミサッシの塗装においては、鏡面光沢度の低い低光沢塗膜または艶消し塗膜などが設けられた被塗物は、一般に落ち着いた視覚的印象を与えることができ、また高級感も感じられることから、近年、そのような塗膜を形成できる塗装方法への要望が高くなっている。 In anionic electrodeposition coating, for example, in the case of aluminum sash coating, a coated object provided with a low gloss coating or matting coating with a low specular gloss can generally give a calm visual impression, Moreover, since a high-class feeling is also felt, the request | requirement to the coating method which can form such a coating film is increasing in recent years.
 艶消しアニオン電着塗料組成物として、例えば特開2002-188044号公報(特許文献1)には、アクリル樹脂(I)、水および乳化剤の存在下で、重合性不飽和単量体を用いて多段階で乳化重合して製造される乳化重合体であって、該重合性不飽和単量体としてアルコキシシリル基含有重合性不飽和単量体を多段で使用される全単量体重量に対して5~40重量%の割合で含むアルコキシシリル基含有乳化重合体(II)、および架橋剤(III)を含む塗料組成物であって、該アクリル樹脂(I)、アルコキシシリル基含有乳化重合体(II)および架橋剤(III)の配合割合がこれらの樹脂固形分の合計に対して(I)が20~70重量%、(II)が5~40重量%、(III)が20~60重量%であることを特徴とするアニオン型艶消し電着塗料組成物が記載されている(請求項1)。また特開2005-307161号公報(特許文献2)には、水および乳化剤の存在下で、重合性不飽和単量体を用いて多段階で乳化重合して製造される乳化重合体であって、該重合性不飽和単量体としてアルコキシシリル基含有重合性不飽和単量体を多段で使用される全単量体重量に対して1~40重量%の割合で含むコア/シェル型エマルション(A)、アクリル樹脂(B)、硬化剤(C)を含有するアニオン電着塗料について記載されている。しかしながら、これらのアニオン電着塗料組成物により得られた硬化電着塗膜は、その光沢度が塗装条件および/または被塗物の形状などに依存して大きく変動してしまい、いわゆる光沢ムラを生じるという問題があった。 As a matte anion electrodeposition coating composition, for example, JP-A-2002-188044 (Patent Document 1) uses a polymerizable unsaturated monomer in the presence of acrylic resin (I), water and an emulsifier. An emulsion polymer produced by emulsion polymerization in multiple stages, wherein the polymerizable unsaturated monomer is an alkoxysilyl group-containing polymerizable unsaturated monomer based on the total monomer weight used in multiple stages. A coating composition containing an alkoxysilyl group-containing emulsion polymer (II) and a crosslinking agent (III) in a proportion of 5 to 40% by weight, comprising the acrylic resin (I) and the alkoxysilyl group-containing emulsion polymer The blending ratio of (II) and crosslinking agent (III) is 20 to 70% by weight of (I), 5 to 40% by weight of (II), and 20 to 60 of (III) with respect to the total solid content of these resins. Anionic-type matte electricity characterized by the weight percent Coating composition are described (claim 1). JP-A-2005-307161 (Patent Document 2) discloses an emulsion polymer produced by emulsion polymerization in multiple stages using a polymerizable unsaturated monomer in the presence of water and an emulsifier. A core / shell type emulsion containing an alkoxysilyl group-containing polymerizable unsaturated monomer as the polymerizable unsaturated monomer in a ratio of 1 to 40% by weight based on the total weight of monomers used in multiple stages ( An anionic electrodeposition paint containing A), an acrylic resin (B), and a curing agent (C) is described. However, the cured electrodeposition coating films obtained with these anion electrodeposition coating compositions vary greatly in gloss depending on the coating conditions and / or the shape of the object to be coated, so-called gloss unevenness. There was a problem that occurred.
 特開平5-039445号公報(特許文献3)には、艶消し電着塗料組成物を希釈して電着する艶消し塗膜の形成方法において、前記艶消し電着塗料組成物が、(A)カルボキシル基および水酸基を有する水溶性含フッ素共重合樹脂5~50重量%と、(B1)アルコキシシラン基を有する水溶性または水分散型アクリル共重合樹脂5~60重量%と、(C)架橋剤20~60重量%とを含むことを特徴とする艶消し塗膜の形成方法が記載されている(請求項1)。この特許文献3における艶消し電着塗料組成物は、(B1)アルコキシシラン基を有する水溶性または水分散型アクリル共重合樹脂が、架橋することによって、不溶性のゲル構造となり、この不溶性のゲル粒子が艶消し効果を与える点において、本発明の方法とはその構成が異なる。 Japanese Patent Application Laid-Open No. 5-039445 (Patent Document 3) discloses a matte electrodeposition coating composition in which a matte electrodeposition coating composition is diluted and electrodeposited. 5) to 50% by weight of a water-soluble fluorine-containing copolymer resin having a carboxyl group and a hydroxyl group; (B1) 5 to 60% by weight of a water-soluble or water-dispersible acrylic copolymer resin having an alkoxysilane group; A method for forming a matte coating film comprising 20 to 60% by weight of an agent is described (claim 1). The matte electrodeposition coating composition in Patent Document 3 has an insoluble gel structure when (B1) a water-soluble or water-dispersible acrylic copolymer resin having an alkoxysilane group is crosslinked, and the insoluble gel particles Is different from the method of the present invention in that it provides a matting effect.
 特開平8-113735号公報(特許文献4)には、カルボキシル基およびヒドロキシル基を側鎖に有する水溶性または水分散性のビニル系共重合体(A)の存在下に、(a)α,β-エチレン性不飽和カルボン酸のヒドロキシアルキル含有エステル単量体、(b)α,β-エチレン性不飽和カルボン酸のアルコキシシラン基含有エステル単量体、(c)カルボキシル基を有しない共重合性ビニル基含有単量体の混合単量体(B)を共重合させて得られる共重合体(D)にアミノ樹脂(E)を加えたのち、ワックス(F)を混合し有機アミンで部分的に中和した後、水を加えてエマルジョンとすることを特徴とする艶消し電着塗料用樹脂組成物の製造方法が記載されている(請求項1)。しかしながら、この製造方法により得られた電着塗料用樹脂組成物を用いて得られる艶消し硬化電着塗膜は、加熱硬化温度により、得られる硬化電着塗膜の光沢度が大きく変化し、所望の光沢度の硬化電着塗膜が得られない場合がある。 In Japanese Patent Laid-Open No. 8-113735 (Patent Document 4), in the presence of a water-soluble or water-dispersible vinyl copolymer (A) having a carboxyl group and a hydroxyl group in the side chain, (a) α, β-ethylenically unsaturated carboxylic acid hydroxyalkyl-containing ester monomer, (b) α, β-ethylenically unsaturated carboxylic acid alkoxysilane group-containing ester monomer, (c) copolymer having no carboxyl group After adding the amino resin (E) to the copolymer (D) obtained by copolymerizing the monomer mixture (B) of the polymerizable vinyl group-containing monomer, the wax (F) is mixed and partially mixed with an organic amine. A method for producing a resin composition for a matte electrodeposition coating material, characterized in that after neutralization, water is added to form an emulsion (claim 1). However, the matte cured electrodeposition coating film obtained by using the resin composition for electrodeposition coatings obtained by this production method, the glossiness of the resulting cured electrodeposition coating film varies greatly depending on the heat curing temperature, A cured electrodeposition coating film having a desired glossiness may not be obtained.
 ところで、近年における省エネルギー化およびCO排出量削減といった環境負荷低減に対するさらなる要請により、塗膜形成における加熱硬化温度を低くすることが求められている。一方で、加熱硬化温度を低くすることによって、得られる硬化電着塗膜の架橋密度が低くなり、塗膜硬度または耐食性などの塗膜物性が低くなるおそれがある。 By the way, due to further demands for environmental load reduction such as energy saving and CO 2 emission reduction in recent years, it is required to lower the heat curing temperature in coating film formation. On the other hand, by lowering the heat curing temperature, the resulting cured electrodeposition coating film has a low cross-linking density, and there is a possibility that the coating film properties such as coating film hardness or corrosion resistance may be decreased.
特開2002-188044号公報JP 2002-188044 A 特開2005-307161号公報JP 2005-307161 A 特開平5-039445号公報Japanese Patent Laid-Open No. 5-039445 特開平8-113735号公報Japanese Patent Laid-Open No. 8-113735
 本発明は上記従来の課題を解決するものであり、その目的とするところは、鏡面光沢度の低い低光沢塗膜または艶消し塗膜など、光沢度の調整された硬化電着塗膜の形成方法を提供することにある。 The present invention solves the above-mentioned conventional problems, and the object of the present invention is to form a cured electrodeposition coating film with adjusted glossiness, such as a low-gloss coating film or matte coating film with low specular gloss. It is to provide a method.
 上記課題を解決するため、本発明は下記態様を提供する。
[1]
 硬化電着塗膜の形成方法であって、上記方法は、
 アニオン電着塗料組成物中に被塗物を浸漬し、電圧を印加して電着塗膜を形成する、電着塗装工程、および、
 上記電着塗装工程で形成した電着塗膜を加熱硬化して硬化電着塗膜を形成する、加熱硬化工程、
を包含し、
 上記アニオン電着塗料組成物は、アクリル樹脂(A)、硬化剤(B)、水分散型光沢調整剤(C)および硬化触媒(D)を含み、
 上記水分散型光沢調整剤(C)は、天然ワックスおよびポリオレフィンワックスからなる群から選択される1種またはそれ以上のワックスの水分散物であって、
上記水分散型光沢調整剤(C)を構成するワックスは、軟化点(T)が100℃以上であり、および、密度が0.91~1.10の範囲内であり、
 上記アニオン電着塗料組成物中に含まれる水分散型光沢調整剤(C)の固形分質量は、アニオン電着塗料組成物の樹脂固形分100質量部に対して6~20質量部であり、
 上記電着塗装工程において形成された電着塗膜の50℃における塗膜粘度が10,000~100,000Pa・sの範囲内である、
方法。
[2]
 上記加熱硬化工程における加熱温度(T)が、110~160℃である上記方法。
[3]
 上記軟化点(T)は100~140℃の範囲内である上記方法。
[4]
 上記電着塗装工程において形成された電着塗膜の80℃における塗膜粘度が1,000~10,000Pa・sの範囲内である、上記方法。
[5]
 上記アクリル樹脂(A)は、カルボキシル基および水酸基を有するアクリル樹脂であり、
上記硬化剤(B)は、アミノ樹脂およびブロックイソシアネート化合物からなる群から選択される1種またはそれ以上である、
上記方法。
[6]
 上記軟化点(T)および加熱温度(T)の差(△T)が、10℃以上50℃以下であり、かつ、T>Tである、上記方法。
[7]
 上記形成方法によって形成された硬化電着塗膜は、60°鏡面光沢度が70以下である、上記方法。
In order to solve the above problems, the present invention provides the following aspects.
[1]
A method of forming a cured electrodeposition coating film, wherein the method is
An electrodeposition coating process in which an object to be coated is immersed in an anionic electrodeposition coating composition, and an electrodeposition coating film is formed by applying a voltage; and
A heat curing step for forming a cured electrodeposition coating by heat curing the electrodeposition coating formed in the electrodeposition coating step;
Including
The anion electrodeposition coating composition includes an acrylic resin (A), a curing agent (B), a water-dispersed gloss adjusting agent (C), and a curing catalyst (D).
The water-dispersed gloss modifier (C) is an aqueous dispersion of one or more waxes selected from the group consisting of natural waxes and polyolefin waxes,
The wax constituting the water-dispersed gloss adjusting agent (C) has a softening point (T m ) of 100 ° C. or higher and a density in the range of 0.91 to 1.10.
The solid content mass of the water-dispersed gloss adjusting agent (C) contained in the anion electrodeposition coating composition is 6 to 20 parts by mass with respect to 100 parts by mass of the resin solid content of the anion electrodeposition coating composition.
The electrodeposition coating film formed in the electrodeposition coating step has a coating film viscosity at 50 ° C. in the range of 10,000 to 100,000 Pa · s.
Method.
[2]
The above method wherein the heating temperature (T h ) in the heat curing step is 110 to 160 ° C.
[3]
The above method, wherein the softening point (T m ) is in the range of 100 to 140 ° C.
[4]
The method as described above, wherein the electrodeposition coating film formed in the electrodeposition coating step has a coating film viscosity at 80 ° C. in the range of 1,000 to 10,000 Pa · s.
[5]
The acrylic resin (A) is an acrylic resin having a carboxyl group and a hydroxyl group,
The curing agent (B) is one or more selected from the group consisting of amino resins and blocked isocyanate compounds.
The above method.
[6]
The method as described above, wherein the difference (ΔT) between the softening point (T m ) and the heating temperature (T h ) is 10 ° C. or more and 50 ° C. or less and T h > T m .
[7]
The above-mentioned method, wherein the cured electrodeposition coating film formed by the above-described forming method has a 60 ° specular gloss of 70 or less.
 なお本明細書においては、加熱硬化前の未硬化の電着塗膜を「電着塗膜」といい、それを加熱硬化した後の塗膜を「硬化電着塗膜」または単に「硬化塗膜」という。 In this specification, an uncured electrodeposition coating before heat curing is referred to as an “electrodeposition coating”, and a coating after heat curing is referred to as a “cured electrodeposition coating” or simply “curing coating”. It is called “membrane”.
 本発明の方法によれば、鏡面光沢度の低い低光沢塗膜または艶消し塗膜など、光沢度の調整された硬化電着塗膜を得ることができる。本発明の方法によって、加熱硬化温度変化による光沢度変化などの光沢ムラがなく、優れた仕上がり外観を有する硬化電着塗膜を得ることができる。本発明の方法においてはさらに、電着塗膜を形成した後、低温硬化条件で加熱硬化させる場合であっても、良好な硬度を有する硬化電着塗膜を得ることができる。 According to the method of the present invention, it is possible to obtain a cured electrodeposition coating film with adjusted glossiness, such as a low gloss coating film or matte coating film with low specular gloss. By the method of the present invention, it is possible to obtain a cured electrodeposition coating film having no gloss unevenness such as a glossiness change due to a heat curing temperature change and having an excellent finished appearance. In the method of the present invention, a cured electrodeposition coating film having good hardness can be obtained even when an electrodeposition coating film is formed and then heat-cured under low-temperature curing conditions.
 本発明の硬化電着塗膜の形成方法は、下記工程、
 アニオン電着塗料組成物中に被塗物を浸漬し、電圧を印加して電着塗膜を形成する、電着塗装工程、および、
 前記電着塗装工程で形成した電着塗膜を加熱硬化して硬化電着塗膜を形成する、加熱硬化工程、
を包含する。以下、本発明の方法について詳述する。
The method for forming the cured electrodeposition coating film of the present invention comprises the following steps:
An electrodeposition coating process in which an object to be coated is immersed in an anionic electrodeposition coating composition, and an electrodeposition coating film is formed by applying a voltage; and
A heat curing step for forming a cured electrodeposition coating film by heating and curing the electrodeposition coating film formed in the electrodeposition coating step;
Is included. Hereinafter, the method of the present invention will be described in detail.
被塗物
 本発明の形成方法おける被塗物は、導電性を有する基材であれば特に限定されずに用いることができる。被塗物として、例えば、鉄、ステンレス、アルミニウム、銅、亜鉛、錫およびこれらの合金などの金属材料、これらの金属材料の成型物、そして、導電性プラスチックおよびその表面処理品などを挙げることができる。上記金属材料は、めっき処理が施された基材であってもよい。本発明において好適な被塗物としては、鉄、ステンレスなどの鉄基材、そして、アルミニウム、アルミニウム合金などのアルミニウム基材が挙げられる。
The object to be coated in the forming method of the present invention is not particularly limited as long as it is a conductive substrate. Examples of the objects to be coated include metal materials such as iron, stainless steel, aluminum, copper, zinc, tin and alloys thereof, molded products of these metal materials, and conductive plastics and surface treated products thereof. it can. The metal material may be a base material that has been plated. In the present invention, examples of the object to be coated include iron substrates such as iron and stainless steel, and aluminum substrates such as aluminum and aluminum alloys.
アニオン電着塗料組成物
 本発明におけるアニオン電着塗料組成物は、アクリル樹脂(A)、硬化剤(B)、水分散型光沢調整剤(C)および硬化触媒(D)を含む。
Anionic electrodeposition coating composition The anionic electrodeposition coating composition in the present invention comprises an acrylic resin (A), a curing agent (B), a water-dispersed gloss adjusting agent (C) and a curing catalyst (D).
  アクリル樹脂(A)
 アニオン電着塗料組成物中に含まれるアクリル樹脂(A)は、塗膜形成樹脂である。アクリル樹脂(A)は、カルボキシル基および水酸基を有するアクリル樹脂であるのが好ましい。このようなアクリル樹脂(A)としては、例えば、カルボキシル基含有ラジカル重合性不飽和単量体(a-1)および水酸基含有ラジカル重合性不飽和単量体(a-2)、さらに必要に応じてその他のラジカル重合性不飽和単量体(a-3)を用いて、これらの単量体をラジカル重合させて得られるアクリル樹脂が挙げられる。
Acrylic resin (A)
The acrylic resin (A) contained in the anion electrodeposition coating composition is a film-forming resin. The acrylic resin (A) is preferably an acrylic resin having a carboxyl group and a hydroxyl group. Examples of such an acrylic resin (A) include a carboxyl group-containing radical polymerizable unsaturated monomer (a-1) and a hydroxyl group-containing radical polymerizable unsaturated monomer (a-2), and if necessary, And acrylic resins obtained by radical polymerization of these monomers using other radically polymerizable unsaturated monomers (a-3).
 カルボキシル基含有ラジカル重合性不飽和単量体(a-1)は、1分子中にカルボキシル基と重合性不飽和結合をそれぞれ少なくとも1個有する化合物である。カルボキシル基含有ラジカル重合性不飽和単量体(a-1)としては、例えば、(メタ)アクリル酸、イタコン酸、マレイン酸、無水マレイン酸、フマル酸、マレイン酸モノエステル、イタコン酸モノエステル、クロトン酸、シトラコン酸などのビニル重合可能なα,β-不飽和脂肪酸、カプロラクトン変性カルボキシル基含有(メタ)アクリル系単量体、およびこれらの混合物などが挙げられる。カルボキシル基含有ラジカル重合性不飽和単量体(a-1)として、アクリル酸およびメタクリル酸からなる群から選択される少なくとも1種を用いるのが好ましい。
 なお、本明細書中において、(メタ)アクリル酸は、アクリル酸またはメタクリル酸を示す。
The carboxyl group-containing radical polymerizable unsaturated monomer (a-1) is a compound having at least one carboxyl group and polymerizable unsaturated bond in one molecule. Examples of the carboxyl group-containing radical polymerizable unsaturated monomer (a-1) include (meth) acrylic acid, itaconic acid, maleic acid, maleic anhydride, fumaric acid, maleic acid monoester, itaconic acid monoester, Examples thereof include vinyl polymerizable α, β-unsaturated fatty acids such as crotonic acid and citraconic acid, caprolactone-modified carboxyl group-containing (meth) acrylic monomers, and mixtures thereof. As the carboxyl group-containing radical polymerizable unsaturated monomer (a-1), it is preferable to use at least one selected from the group consisting of acrylic acid and methacrylic acid.
In the present specification, (meth) acrylic acid represents acrylic acid or methacrylic acid.
 水酸基含有ラジカル重合性不飽和系単量体(a-2)は、1分子中に水酸基と重合性不飽和結合をそれぞれ少なくとも1個有する化合物である。水酸基含有ラジカル重合性不飽和系単量体(a-2)としては、例えば、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチルなどの(メタ)アクリル酸ヒドロキシアルキル類;(メタ)アクリル酸(ポリ)エチレングリコール、(メタ)アクリル酸(ポリ)プロピレングリコールなどの(メタ)アクリル酸(ポリ)アルキレングリコール類;およびこれらの水酸基含有アクリル系単量体と、β-プロピオラクトン、ジメチルプロピオラクトン、ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、γ-カプリロラクトン、γ-ラウリロラクトン、ε-カプロラクトン、δ-カプロラクトンなどのラクトン類化合物との反応物などが挙げられる。このような反応物として市販品を用いてもよく、例えば、プラクセルFM1(ダイセル化学社製、商品名、カプロラクトン変性(メタ)アクリル酸ヒドロキシエステル類)、プラクセルFM2(同左)、プラクセルFM3(同左)、プラクセルFA1(同左)、プラクセルFA2(同左)、プラクセルFA3(同左)などが挙げられる。 The hydroxyl group-containing radical polymerizable unsaturated monomer (a-2) is a compound having at least one hydroxyl group and at least one polymerizable unsaturated bond in one molecule. Examples of the hydroxyl group-containing radical polymerizable unsaturated monomer (a-2) include (meth) acrylic such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl (meth) acrylate. Hydroxyalkyl acids; (meth) acrylic acid (poly) ethylene glycol, (meth) acrylic acid (poly) propylene glycol and other (meth) acrylic acid (poly) alkylene glycols; and hydroxyl group-containing acrylic monomers And lactone compounds such as β-propiolactone, dimethylpropiolactone, butyrolactone, γ-valerolactone, γ-caprolactone, γ-caprolactone, γ-lauryllactone, ε-caprolactone, and δ-caprolactone. And reactants. Commercially available products may be used as such reactants. For example, Plaxel FM1 (trade name, caprolactone-modified (meth) acrylic acid hydroxyesters manufactured by Daicel Chemical Industries), Plaxel FM2 (same as left), Plaxel FM3 (same as left) Plaxel FA1 (same as left), Plaxel FA2 (same as left), Plaxel FA3 (same as left), and the like.
 その他のラジカル重合性不飽和単量体(a-3)は、上記のカルボキシル基含有ラジカル重合性不飽和単量体(a-1)および水酸基含有ラジカル重合性不飽和単量体(a-2)以外の単量体であって、1分子中にラジカル重合性不飽和結合を少なくとも1個有する化合物である。その他のラジカル重合性不飽和単量体(a-3)としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸シクロヘキシルなどの(メタ)アクリル酸のC1-8アルキルエステルまたはC3-8シクロアルキルエステル;スチレン、α-メチルスチレン、ビニルトルエンなどの芳香族重合性単量体;(メタ)アクリル酸アミド、N-ブトキシメチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミドなどの(メタ)アクリルアミドおよびその誘導体;(メタ)アクリロニトリル化合物類;γ-(メタ)アクリロキシプロピルトリメトキシシラン、γ-(メタ)アクリロキシプロピルメチルジメトキシシラン、γ-(メタ)アクリロキシプロピルトリエトキシシラン、ビニルトリメトキシシランなどのアルコキシシリル基含有重合性単量体;などが挙げられる。 The other radical polymerizable unsaturated monomer (a-3) includes the above-mentioned carboxyl group-containing radical polymerizable unsaturated monomer (a-1) and hydroxyl group-containing radical polymerizable unsaturated monomer (a-2). And a monomer having at least one radical polymerizable unsaturated bond in one molecule. Other radical polymerizable unsaturated monomers (a-3) include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, (meth) C 1-8 alkyl ester of (meth) acrylic acid such as hexyl acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, cyclohexyl (meth) acrylate or C 3-8 cycloalkyl esters; aromatic polymerizable monomers such as styrene, α-methylstyrene, vinyltoluene; (meth) acrylic acid amide, N-butoxymethyl (meth) acrylamide, N-methylol (meth) acrylamide, etc. (Meth) acrylamide and derivatives thereof; (meth) acrylonitrile compounds; γ Alkoxysilyl group-containing polymerizable monomers such as (meth) acryloxypropyltrimethoxysilane, γ- (meth) acryloxypropylmethyldimethoxysilane, γ- (meth) acryloxypropyltriethoxysilane, vinyltrimethoxysilane; Etc.
 上記単量体(a-1)、(a-2)および(a-3)をラジカル共重合反応させる方法として、当業者において通常用いられる溶液重合方法、乳化重合法などを用いることができる。アクリル樹脂(A)の調製において、
カルボキシル基含有ラジカル重合性不飽和単量体(a-1)を、単量体の合計質量に対して好ましくは3~30質量%、より好ましくは4~20質量%、
水酸基含有ラジカル重合性不飽和単量体(a-2)を、単量体の合計質量に対して好ましくは3~40質量%、より好ましくは5~30質量%、および
その他のラジカル重合性不飽和単量体(a-3)を、単量体の合計質量に対して好ましくは30~90質量%、より好ましくは40~85質量%、
の範囲内で用いるのが好ましい。
As a method for subjecting the monomers (a-1), (a-2) and (a-3) to a radical copolymerization reaction, a solution polymerization method, an emulsion polymerization method and the like which are usually used by those skilled in the art can be used. In preparing the acrylic resin (A),
The carboxyl group-containing radically polymerizable unsaturated monomer (a-1) is preferably 3 to 30% by mass, more preferably 4 to 20% by mass, based on the total mass of the monomers.
The hydroxyl group-containing radically polymerizable unsaturated monomer (a-2) is preferably 3 to 40% by weight, more preferably 5 to 30% by weight, and other radically polymerizable unsaturated monomers (a-2) based on the total weight of the monomers. The saturated monomer (a-3) is preferably 30 to 90% by mass, more preferably 40 to 85% by mass, based on the total mass of the monomers.
It is preferable to use within the range.
 上記アクリル樹脂(A)は、酸価が15~150mgKOH/gであるのが好ましく、40~80mgKOH/gであるのがより好ましい。アクリル樹脂(A)の酸価が15mgKOH/g以上である場合、樹脂の水分散性が高まり、均一な塗料を製造することができる。また、150mgKOH/g以下の場合、硬化塗膜の耐食性、耐酸性などが高まるなどの利点がある。 The acid value of the acrylic resin (A) is preferably 15 to 150 mgKOH / g, and more preferably 40 to 80 mgKOH / g. When the acid value of the acrylic resin (A) is 15 mgKOH / g or more, the water dispersibility of the resin is increased, and a uniform paint can be produced. Moreover, when it is 150 mgKOH / g or less, there exists an advantage that the corrosion resistance of a cured coating film, acid resistance, etc. increase.
 上記アクリル樹脂(A)は、水酸酸基価が30~200mgKOH/gであるのが好ましく、50~150mgKOH/gであることがより好ましい。アクリル樹脂(A)の水酸基価が30mgKOH/g以上の場合、硬化反応が充分に起こり、本来の塗膜性能が得られる。また、200mgKOH/g以下の場合、未反応の水酸基が塗膜に残存することなく、耐食性、耐酸性などを低下させることがないなどの利点がある。
 なお、本明細書で、酸価および水酸基価は、それぞれ固形分酸価、固形分水酸基価を表し、JIS K 0070に記載される方法によって測定することができる。
The acrylic resin (A) preferably has a hydroxyl group value of 30 to 200 mgKOH / g, more preferably 50 to 150 mgKOH / g. When the hydroxyl value of the acrylic resin (A) is 30 mgKOH / g or more, the curing reaction occurs sufficiently and the original coating film performance can be obtained. Moreover, when it is 200 mgKOH / g or less, there exists an advantage that an unreacted hydroxyl group does not remain in a coating film, and corrosion resistance, acid resistance, etc. are not reduced.
In addition, in this specification, an acid value and a hydroxyl value represent a solid content acid value and a solid content hydroxyl value, respectively, and can be measured by the method described in JIS K0070.
 アクリル樹脂(A)は、重量平均分子量(Mw)が5,000~100,000であるのが好ましく、10,000~50,000であるのがより好ましい。アクリル樹脂(A)の重量平均分子量(Mw)が5000以上の場合、耐食性、耐酸性などの塗膜性能が高まるなどの利点がある。また、100,000以下の場合、電着塗膜のフロー性が高まり、塗膜外観の良好な硬化電着塗膜が得られるなどの利点がある。
 なお、本明細書では、重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の値である。
The acrylic resin (A) preferably has a weight average molecular weight (Mw) of 5,000 to 100,000, and more preferably 10,000 to 50,000. When the weight average molecular weight (Mw) of the acrylic resin (A) is 5000 or more, there are advantages such as improved coating performance such as corrosion resistance and acid resistance. Moreover, in the case of 100,000 or less, there exists an advantage that the flow property of an electrodeposition coating film improves and the cured electrodeposition coating film with a favorable coating-film external appearance is obtained.
In the present specification, the weight average molecular weight (Mw) is a value in terms of polystyrene measured by gel permeation chromatography (GPC).
 本発明におけるアニオン電着塗料組成物において、上記アクリル樹脂(A)は、カルボキシル基を、塩基性物質(例えば、トリエチルアミン、ジメチルエタノールアミン、アンモニアなど)で中和して、水溶性または水分散性の樹脂として用いるのが好ましい。このようなアクリル樹脂(A)の中和において、中和率は、30~100%であることが好ましく、50~80%であることがより好ましい。中和率が上記範囲であることによって、アニオン電着塗料組成物中において上記アクリル樹脂(A)を良好に分散させることができる。 In the anionic electrodeposition coating composition in the present invention, the acrylic resin (A) is water-soluble or water-dispersible by neutralizing a carboxyl group with a basic substance (for example, triethylamine, dimethylethanolamine, ammonia, etc.). It is preferable to use as the resin. In such neutralization of the acrylic resin (A), the neutralization rate is preferably 30 to 100%, and more preferably 50 to 80%. When the neutralization rate is within the above range, the acrylic resin (A) can be favorably dispersed in the anion electrodeposition coating composition.
 本発明におけるアニオン電着塗料組成物において、上記アクリル樹脂(A)の含有量は、上記アクリル樹脂(A)および硬化剤(B)の合計樹脂固形分100質量%に対して、50~80質量%であることが好ましい。50質量%以上であることで、耐酸性、耐アルカリ性などの耐薬品性および耐食性が高まる。また、80質量%以下の場合、電着塗膜が十分に硬化し、所望の塗膜性能が得られる。 In the anion electrodeposition coating composition in the present invention, the content of the acrylic resin (A) is 50 to 80 mass with respect to 100 mass% of the total resin solid content of the acrylic resin (A) and the curing agent (B). % Is preferred. By being 50 mass% or more, chemical resistance such as acid resistance and alkali resistance and corrosion resistance are enhanced. Moreover, when it is 80 mass% or less, an electrodeposition coating film fully hardens | cures and desired coating-film performance is obtained.
 本発明の塗料組成物は、上記アクリル樹脂(A)以外の、必要に応じた他の塗膜形成樹脂を含んでもよい。他の塗膜形成樹脂として、例えば、ポリエステル樹脂、ウレタン樹脂、エポキシ樹脂、ブタジエン系樹脂、フェノール樹脂、キシレン樹脂などが挙げられる。硬化電着塗膜の耐食性向上の観点からエポキシ樹脂が好ましい。また、このような他の塗膜形成樹脂を用いる場合における含有量は、塗料組成物中に含まれる樹脂固形分に対して20質量%未満であるのが好ましく、10質量%未満であるのがより好ましい。 The coating composition of the present invention may contain other coating film forming resins as needed other than the acrylic resin (A). Examples of other coating film forming resins include polyester resins, urethane resins, epoxy resins, butadiene resins, phenol resins, xylene resins, and the like. From the viewpoint of improving the corrosion resistance of the cured electrodeposition coating film, an epoxy resin is preferred. Further, the content in the case of using such other coating film-forming resin is preferably less than 20% by mass, preferably less than 10% by mass with respect to the resin solid content contained in the coating composition. More preferred.
  硬化剤(B)
 本発明におけるアニオン電着塗料組成物は、硬化剤(B)を含む。硬化剤(B)は、アミノ樹脂およびブロックイソシアネート化合物からなる群から選択される1種またはそれ以上であるのが好ましい。
Curing agent (B)
The anion electrodeposition coating composition in this invention contains a hardening | curing agent (B). The curing agent (B) is preferably one or more selected from the group consisting of amino resins and blocked isocyanate compounds.
 アミノ樹脂は、メラミン、尿素、ベンゾグアナミンなどのアミノ化合物と、ホルムアルデヒド、アセトアルデヒドなどのアルデヒド化合物との縮合体に、メタノール、エタノール、プロパノール、ブタノールなどの低級アルコールを用いて変性させることによって得られる縮合体である。このようなアミノ樹脂の具体例として、例えば、完全アルキル型メチル/ブチル混合エーテル化メラミン樹脂、メチロール基型メチル/ブチル混合エーテル化メラミン樹脂、イミノ型メチル/ブチル混合エーテル化メラミン樹脂、完全アルキル型メチル化メラミン樹脂、イミノ基型メチル化メラミン樹脂を挙げることができる。 Amino resin is a condensate obtained by modifying a condensate of an amino compound such as melamine, urea or benzoguanamine with an aldehyde compound such as formaldehyde or acetaldehyde using a lower alcohol such as methanol, ethanol, propanol or butanol. It is. Specific examples of such amino resins include, for example, fully alkyl type methyl / butyl mixed etherified melamine resin, methylol group type methyl / butyl mixed etherified melamine resin, imino type methyl / butyl mixed etherified melamine resin, fully alkyl type Mention may be made of methylated melamine resins and imino group-type methylated melamine resins.
 アミノ樹脂としては、市販品を用いてもよい。市販品としては、例えば、サイメル232、サイメル232S、サイメル235、サイメル236、サイメル238、サイメル266、サイメル267、サイメル285などの完全アルキル型メチル/ブチル混合エーテル化メラミン樹脂;サイメル272などのメチロール基型メチル/ブチル混合エーテル化メラミン樹脂;サイメル202、サイメル207、サイメル212、サイメル253、サイメル254などのイミノ型メチル/ブチル混合エーテル化メラミン樹脂;サイメル300、サイメル301、サイメル303、サイメル350などの完全アルキル型メチル化メラミン樹脂;サイメル325、サイメル327、サイメル703、サイメル712、サイメル254、サイメル253、サイメル212、サイメル1128などのイミノ基型メチル化メラミン樹脂(以上、オルネクスジャパン社製)、ユーバン20SE60(三井化学社製、ブチルエーテル化メラミン樹脂)などが挙げられる。 Commercial products may be used as amino resins. Examples of commercially available products include fully alkyl type methyl / butyl mixed etherified melamine resins such as Cymel 232, Cymel 232S, Cymel 235, Cymel 236, Cymel 238, Cymel 266, Cymel 267, and Cymel 285; Type methyl / butyl mixed etherified melamine resin; Cymel 202, Cymel 207, Cymel 212, Cymel 253, Cymel 254 and other imino type methyl / butyl mixed etherified melamine resins; Cymel 300, Cymel 301, Cymel 303, Cymel 350, etc. Immediately alkyl type methylated melamine resin; Cymel 325, Cymel 327, Cymel 703, Cymel 712, Cymel 254, Cymel 253, Cymel 212, Cymel 1128, etc. Group type methylated melamine resin (manufactured by Aulnay box Japan), U-VAN 20SE60 (manufactured by Mitsui Chemicals, Inc., butyl etherified melamine resins).
 ブロックイソシアネート化合物としては、下記1)~3);
1)トリメチレンジイソシアネート、ヘキサメチレンジイソシアネートなどの脂肪族ジイソシアネート、イソホロンジイソシアネートなどの脂環式ジイソシアネート、
2)上記ジイソシアネート類とエチレングリコール、トリメチロールプロパン、ペントールなどの多価アルコール類とを反応させて得られる2官能性以上のポリイソシアネート、
3)上記1)のジイソシアネート類3モルを反応させて得られるイソシアヌレート結合含有3官能性イソシアネート;
からなる群から選択される少なくとも1種に、ブロック剤を反応させて得られるブロックイソシアネート化合物が好適に用いられる。
 ブロック剤としては、例えば、n-ブタノール、n-ヘキシルアルコール、2-エチルヘキサノール、ラウリルアルコール、フェノールカルビノール、メチルフェニルカルビノールなどの一価のアルキル(または芳香族)アルコール類;エチレングリコールモノヘキシルエーテル、エチレングリコールモノ2-エチルヘキシルエーテルなどのセロソルブ類;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコールフェノールなどのポリエーテル型両末端ジオール類;エチレングリコール、プロピレングリコール、1,4-ブタンジオールなどのジオール類と、シュウ酸、コハク酸、アジピン酸、スベリン酸、セバシン酸などのジカルボン酸類から得られるポリエステル型両末端ポリオール類;パラ-t-ブチルフェノール、クレゾールなどのフェノール類;ジメチルケトオキシム、メチルエチルケトオキシム、メチルイソブチルケトオキシム、メチルアミルケトオキシム、シクロヘキサノンオキシムなどのオキシム類;および、ε-カプロラクタム、γ-ブチロラクタムに代表されるラクタム類などが好ましく用いられる。
As the blocked isocyanate compound, the following 1) to 3):
1) Aliphatic diisocyanates such as trimethylene diisocyanate and hexamethylene diisocyanate, alicyclic diisocyanates such as isophorone diisocyanate,
2) Bifunctional or higher polyisocyanates obtained by reacting the above diisocyanates with polyhydric alcohols such as ethylene glycol, trimethylolpropane, pentol,
3) Isocyanurate bond-containing trifunctional isocyanate obtained by reacting 3 moles of the diisocyanates of 1) above;
A blocked isocyanate compound obtained by reacting a blocking agent with at least one selected from the group consisting of
Examples of the blocking agent include monovalent alkyl (or aromatic) alcohols such as n-butanol, n-hexyl alcohol, 2-ethylhexanol, lauryl alcohol, phenol carbinol and methylphenyl carbinol; ethylene glycol monohexyl Cellosolves such as ether and ethylene glycol mono-2-ethylhexyl ether; polyether-type double-end diols such as polyethylene glycol, polypropylene glycol and polytetramethylene ether glycol phenol; ethylene glycol, propylene glycol, 1,4-butanediol and the like Polyester-type double-ended polyols obtained from diols and dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, suberic acid, sebacic acid; para-t Phenols such as butylphenol and cresol; oximes such as dimethylketoxime, methylethylketoxime, methylisobutylketoxime, methylamylketoxime, and cyclohexanone oxime; and lactams represented by ε-caprolactam and γ-butyrolactam are preferable. Used.
 ポリイソシアネート化合物の市販品の具体例としては、バイヒジュールVPLS2186(住化バイエルウレタン社製)などが挙げられる。 Specific examples of commercially available polyisocyanate compounds include Bihijoule VPLS 2186 (manufactured by Sumika Bayer Urethane Co., Ltd.).
 硬化剤(B)として、上記アミノ樹脂およびブロックイソシアネート化合物の混合物を用いてもよい。上記硬化剤(B)として、本発明の効果を効果的に得られる点から、アミノ樹脂を用いることがより好ましい。 As the curing agent (B), a mixture of the amino resin and the blocked isocyanate compound may be used. As said hardening | curing agent (B), it is more preferable to use an amino resin from the point which can acquire the effect of this invention effectively.
 本発明におけるアニオン電着塗料組成物において、上記硬化剤(B)の含有量は、上記アクリル樹脂(A)および硬化剤(B)の合計樹脂固形分100質量%に対して、20~50質量%であることが好ましい。20質量%以上の場合、十分に硬化反応が進行し、所望の塗膜性能が得られる。また、50質量%以下の場合、塗膜の密着性や柔軟性が高まる。 In the anionic electrodeposition coating composition of the present invention, the content of the curing agent (B) is 20 to 50 masses with respect to 100 mass% of the total resin solid content of the acrylic resin (A) and the curing agent (B). % Is preferred. In the case of 20% by mass or more, the curing reaction sufficiently proceeds and desired coating film performance is obtained. Moreover, in the case of 50 mass% or less, the adhesiveness and flexibility of a coating film increase.
  水分散型光沢調整剤(C)
 本発明におけるアニオン電着塗料組成物は、水分散型光沢調整剤(C)を含む。水分散型光沢調整剤(C)は、天然ワックスおよびポリオレフィンワックスからなる群から選択される1種またはそれ以上のワックスの水分散物である。このワックスは、軟化点(T)が100℃以上であり、そして、密度が0.91~1.10の範囲内であることを条件とする。
 上記ワックスのうち、天然ワックスの具体例として、例えば、木ロウ、カルナバワックス、石油系のマイクロクリスタリンワックス、パラフィンワックス、鉱物系のモンタンワックスなどが挙げられる。ポリオレフィンワックスの具体例として、例えば、ポリエチレン、ポリプロピレン、酸化ポリエチレン、酸化ポリプロピレン、塩化ポリエチレン、塩素化ポリプロピレンなどのポリオレフィンワックスなどが挙げられる。
 上記ワックスの水分散物の調製方法の例として、例えば、
上記ワックスを親水性有機溶媒に溶解させ、次いで水性溶媒中に機械的に分散させる方法、
界面活性剤または高分子乳化剤などを用いて、上記ワックスを水性溶媒中に分散させる方法、および、
上記ワックスにα,β-不飽和カルボン酸を反応させて、カルボキシル基を導入し、次いで、導入したカルボキシル基を有機アミンまたは無機塩基で中和することによって、水性溶媒中に乳化分散させる方法、
などが挙げられる。
 これらの調製方法において、ワックスとして、ポリエチレン、ポリプロピレン、酸化ポリエチレン、酸化ポリプロピレンなどを用いるのが好ましい。
Water-dispersed gloss modifier (C)
The anion electrodeposition coating composition in the present invention contains a water-dispersed gloss adjusting agent (C). The water-dispersed gloss modifier (C) is an aqueous dispersion of one or more waxes selected from the group consisting of natural waxes and polyolefin waxes. This wax is required to have a softening point (T m ) of 100 ° C. or higher and a density in the range of 0.91 to 1.10.
Among the waxes, specific examples of natural waxes include wood wax, carnauba wax, petroleum-based microcrystalline wax, paraffin wax, and mineral-based montan wax. Specific examples of the polyolefin wax include polyolefin waxes such as polyethylene, polypropylene, polyethylene oxide, polypropylene oxide, chlorinated polyethylene, and chlorinated polypropylene.
As an example of a method for preparing an aqueous dispersion of the wax, for example,
A method in which the wax is dissolved in a hydrophilic organic solvent and then mechanically dispersed in an aqueous solvent;
A method of dispersing the wax in an aqueous solvent using a surfactant or a polymer emulsifier, and the like, and
A method of emulsifying and dispersing in an aqueous solvent by reacting the wax with an α, β-unsaturated carboxylic acid to introduce a carboxyl group, and then neutralizing the introduced carboxyl group with an organic amine or an inorganic base;
Etc.
In these preparation methods, it is preferable to use polyethylene, polypropylene, polyethylene oxide, polypropylene oxide or the like as the wax.
 本発明において、上記水分散型光沢調整剤(C)を構成するワックスとして、軟化点(T)が100℃以上であるものが用いられる。水分散型光沢調整剤(C)を構成するワックスの軟化点(T)が100℃未満である場合は、十分な光沢調整効果が得られない。また、硬化電着塗膜において光沢ムラが生じる不具合がある。水分散型光沢調整剤(C)を構成するワックスの軟化点(T)は100~140℃の範囲内であるのが好ましい。 In the present invention, a wax having a softening point (T m ) of 100 ° C. or higher is used as the wax constituting the water-dispersed gloss adjusting agent (C). When the softening point (T m ) of the wax constituting the water-dispersed gloss adjusting agent (C) is less than 100 ° C., a sufficient gloss adjusting effect cannot be obtained. Further, there is a problem that gloss unevenness occurs in the cured electrodeposition coating film. The softening point (T m ) of the wax constituting the water-dispersed gloss adjusting agent (C) is preferably within the range of 100 to 140 ° C.
 水分散型光沢調整剤(C)を構成するワックスの軟化点(T)は、水分散型光沢調整剤(C)を構成するワックスが水分散される前の固形状態において、加熱により軟化する時点の温度を測定することによって決定することができる。水分散型光沢調整剤(C)を構成するワックスの軟化点(T)の測定は、具体的には、水分散型光沢調整剤(C)の調製に用いる、水分散前の状態の上記ワックスを用いて、JIS K 2207に準拠した方法により測定することができる。上記測定において、水分散型光沢調整剤(C)を構成するワックスが水分散される前の固形状態に代えて、水分散型光沢調整剤(C)において水性媒体を蒸発させて、ワックスが固形状態となったものを用いることもできる。 The softening point (T m ) of the wax constituting the water-dispersed gloss modifier (C) is softened by heating in the solid state before the wax constituting the water-dispersed gloss modifier (C) is water-dispersed. It can be determined by measuring the temperature at the time. Specifically, the measurement of the softening point (T m ) of the wax constituting the water-dispersed gloss adjusting agent (C) is used for the preparation of the water-dispersing gloss adjusting agent (C), and the above-mentioned state before water dispersion. It can be measured by a method based on JIS K 2207 using wax. In the above measurement, the aqueous medium is evaporated in the water dispersion type gloss adjusting agent (C) instead of the solid state before the water constituting the water dispersion type gloss adjusting agent (C) is dispersed in water, and the wax is solid. It is also possible to use what is in a state.
 また本発明において、上記水分散型光沢調整剤(C)を構成するワックスは、密度が0.91~1.10の範囲内であるものを用いる。水分散型光沢調整剤(C)を構成するワックスの密度は、0.92~1.05の範囲内であるのが好ましい。水分散型光沢調整剤(C)を構成するワックスの密度が上記範囲を外れる場合は、得られる硬化電着塗膜において、硬化塗膜の外観に不具合が生じるおそれがある。 In the present invention, the wax constituting the water-dispersed gloss adjusting agent (C) has a density in the range of 0.91 to 1.10. The density of the wax constituting the water-dispersed gloss adjusting agent (C) is preferably in the range of 0.92 to 1.05. When the density of the wax that constitutes the water-dispersed gloss adjusting agent (C) is out of the above range, there is a possibility that a defect may occur in the appearance of the cured coating film in the obtained cured electrodeposition coating film.
 水分散型光沢調整剤(C)を構成するワックスの密度は、JIS K 7112に準拠した方法により測定することができる。 The density of the wax constituting the water-dispersed gloss modifier (C) can be measured by a method based on JIS K7112.
 上記水分散型光沢調整剤(C)は、アニオン分散型であるのが好ましい。水分散型光沢調整剤(C)がアニオン分散型であることによって、得られるアニオン電着塗料組成物の塗料安定性が向上するなどの利点がある。 The water-dispersed gloss adjusting agent (C) is preferably an anion-dispersed type. When the water-dispersed gloss adjusting agent (C) is an anion-dispersing type, there are advantages such as improved coating stability of the resulting anionic electrodeposition coating composition.
 水分散型光沢調整剤(C)として、市販品を用いてもよい。市販品として、例えば、岐阜セラック社製のHI-DISPER(商標)シリーズ、ビックケミー・ジャパン社製のAQUACER(商標)シリーズおよびAQUAMAT(商標)シリーズ、三井化学社製のケミパールW(商標)シリーズ、ユニチカ社製のアローベース(商標)シリーズなどが挙げられる。 A commercially available product may be used as the water-dispersed gloss adjusting agent (C). Commercially available products include, for example, HI-DISPER (trademark) series manufactured by Gifu Shellac, AQUACER (trademark) series and AQUAMAT (trademark) series, manufactured by Big Chemie Japan, Chemipearl W (trademark) series, manufactured by Mitsui Chemicals, and Unitika. The Arrow Base (trademark) series made by the company is mentioned.
 本発明において、上記アニオン電着塗料組成物中に含まれる水分散型光沢調整剤(C)の固形分質量は、アニオン電着塗料組成物の樹脂固形分100質量部に対して6~20質量部である。水分散型光沢調整剤(C)の固形分質量は7~20質量部であるのが好ましく、10~15質量部であるのがより好ましい。水分散型光沢調整剤(C)の固形分質量が20質量部を超える場合は、得られる硬化電着塗膜の硬度が低下するおそれがある。また、水分散型光沢調整剤(C)の固形分質量が6質量部未満ある場合は、十分な光沢調整効果が得られない。
 なお本明細書において「アニオン電着塗料組成物の樹脂固形分」とは、電着塗料組成物中に含まれる塗膜形成樹脂の樹脂固形分をいい、具体的には、アクリル樹脂(A)、硬化剤(B)、そして必要に応じた他の塗膜形成樹脂の樹脂固形分をいう。
In the present invention, the solid content mass of the water-dispersed gloss adjusting agent (C) contained in the anionic electrodeposition coating composition is 6 to 20 masses per 100 parts by mass of the resin solid content of the anionic electrodeposition coating composition. Part. The solid content mass of the water-dispersed gloss adjusting agent (C) is preferably 7 to 20 parts by mass, and more preferably 10 to 15 parts by mass. When the solid content mass of the water-dispersed gloss adjusting agent (C) exceeds 20 parts by mass, the hardness of the resulting cured electrodeposition coating film may decrease. Moreover, when the solid content mass of the water-dispersed gloss adjusting agent (C) is less than 6 parts by mass, a sufficient gloss adjusting effect cannot be obtained.
In the present specification, the “resin solid content of the anion electrodeposition coating composition” refers to the resin solid content of the coating film-forming resin contained in the electrodeposition coating composition. Specifically, the acrylic resin (A) , Curing agent (B), and resin solid content of other coating film forming resin as required.
  硬化触媒(D)
 本発明におけるアニオン電着塗料組成物は、硬化触媒(D)を含む。硬化触媒(D)としては、例えば、n-ブチルベンゼンスルホン酸、アミルベンゼンスルホン酸、オクチルベンゼンスルホン酸、ドデシルベンゼンスルホン酸、オクタデシルベンゼンスルホン酸、ジブチルベンゼンスルホン酸、i-プロピルナフタレンスルホン酸、p-トルエンスルホン酸、ドデシルナフタレンスルホン酸、ジノニルナフタレンスルホン酸、ジノニルナフタレンジスルホン酸などのスルホン酸触媒、およびこれらのスルホン酸触媒のアミン中和物など;ジオクチル錫ジラウレート、ジオクチル錫ジベンゾエート、ジブチル錫ジベンゾエートなどの錫化合物触媒;などが挙げられる。
Curing catalyst (D)
The anion electrodeposition coating composition in the present invention contains a curing catalyst (D). Examples of the curing catalyst (D) include n-butylbenzenesulfonic acid, amylbenzenesulfonic acid, octylbenzenesulfonic acid, dodecylbenzenesulfonic acid, octadecylbenzenesulfonic acid, dibutylbenzenesulfonic acid, i-propylnaphthalenesulfonic acid, p -Sulfonic acid catalysts such as toluenesulfonic acid, dodecylnaphthalenesulfonic acid, dinonylnaphthalenesulfonic acid, dinonylnaphthalenedisulfonic acid, and amine neutralized products of these sulfonic acid catalysts; dioctyltin dilaurate, dioctyltin dibenzoate, dibutyl Tin compound catalysts such as tin dibenzoate; and the like.
 硬化触媒(D)として、上記スルホン酸触媒を用いるのがより好ましく、ドデシルベンゼンスルホン酸、p-トルエンスルホン酸、ドデシルナフタレンスルホン酸、ジノニルナフタレンスルホン酸、ジノニルナフタレンジスルホン酸からなる群から選択される1種またはそれ以上を用いるのがさらに好ましい。本発明におけるアニオン電着塗料組成物において、このような硬化触媒(D)を用いることによって、加熱硬化工程における加熱温度を、例えば100~160℃、好ましくは110~160℃といった、比較的低温加熱条件に設定することができる。また、加熱硬化工程における加熱温度が上記のように比較的低温の加熱条件であっても、耐擦傷性などの性能が良好な硬化電着塗膜を形成することができる利点がある。 The sulfonic acid catalyst is more preferably used as the curing catalyst (D), and is selected from the group consisting of dodecylbenzenesulfonic acid, p-toluenesulfonic acid, dodecylnaphthalenesulfonic acid, dinonylnaphthalenesulfonic acid, and dinonylnaphthalenedisulfonic acid. More preferably, one or more of the above are used. By using such a curing catalyst (D) in the anion electrodeposition coating composition in the present invention, the heating temperature in the heat curing step is relatively low temperature, for example, 100 to 160 ° C., preferably 110 to 160 ° C. Can be set in the condition. Further, there is an advantage that a cured electrodeposition coating film having good performance such as scratch resistance can be formed even when the heating temperature in the heat curing step is relatively low as described above.
 アニオン電着塗料組成物中に含まれる硬化触媒(D)の量は、アクリル樹脂(A)および架橋剤(B)の固形分合計100質量部を基準として、硬化触媒(D)の固形分量として0.05~10質量部であるのが好ましく、0.1~5質量部であるのがより好ましく、0.2~4質量部であるのがさらに好ましい。上記範囲で用いることで、耐擦傷性などの性能が良好な硬化電着塗膜を形成することができる。 The amount of the curing catalyst (D) contained in the anionic electrodeposition coating composition is based on the solid content of the curing catalyst (D) based on the total solid content of 100 parts by mass of the acrylic resin (A) and the crosslinking agent (B). The amount is preferably 0.05 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, and still more preferably 0.2 to 4 parts by mass. By using it in the above range, a cured electrodeposition coating film having good performance such as scratch resistance can be formed.
  その他の成分など
 本発明におけるアニオン電着塗料組成物は、水性塗料組成物であり、水を主溶媒として含む。一方で、本発明におけるアニオン電着塗料組成物は、必要に応じて有機溶媒を含んでもよい。有機溶媒の具体例としては、メタノール、イソプロパノール、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、メトキシプロパノールなどのアルコール類、エチレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルなどのエーテル類、アセチルアセトンなどのケトン類、エチレングリコールモノエチルエーテルアセテートなどのエステル類、ヘキサンなどが挙げられる。これらの有機溶媒は、1種のみを用いてもよく、2種またはそれ以上を併用してもよい。ただし、VOC排出規制の観点から、有機溶媒の量は可能な限り少ないことが好ましい。
The anion electrodeposition coating composition in the present invention such as other components is an aqueous coating composition and contains water as a main solvent. On the other hand, the anion electrodeposition coating composition in the present invention may contain an organic solvent as necessary. Specific examples of the organic solvent include alcohols such as methanol, isopropanol, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol and methoxypropanol, ethers such as ethylene glycol monobutyl ether, propylene glycol monobutyl ether and diethylene glycol monobutyl ether, and acetylacetone. Ketones such as, esters such as ethylene glycol monoethyl ether acetate, hexane and the like. These organic solvents may use only 1 type and may use 2 or more types together. However, from the viewpoint of VOC emission regulation, the amount of the organic solvent is preferably as small as possible.
 本発明におけるアニオン電着塗料組成物は、必要に応じて、着色剤、顔料、造膜助剤、乾燥遅延助剤、粘性調整剤、防腐剤、防かび剤、防腐剤、消泡剤、光安定剤(例えばヒンダードアミン系光安定剤など)、酸化防止剤、紫外線吸収剤、pH調整剤など、当分野において公知の他の添加剤を含んでもよい。 The anion electrodeposition coating composition according to the present invention includes a colorant, a pigment, a film-forming aid, a drying delay aid, a viscosity modifier, an antiseptic, an antifungal agent, an antiseptic, an antifoaming agent, a light as necessary. Other additives known in the art such as stabilizers (for example, hindered amine light stabilizers), antioxidants, ultraviolet absorbers, pH adjusters and the like may be included.
 本発明におけるアニオン電着塗料組成物は、必要に応じて顔料を含んでもよい。この顔料としては特に限定されず、例えば、硫酸バリウム、タルク、炭酸カルシウム、硫酸バリウムなどの体質顔料;リンモリブテン酸アルミニウム亜鉛、リンモリブテン酸亜鉛、リンモリブテン酸カルシウムなどのリンモリブテン酸塩系防錆顔料、および、モリブテン酸塩系防錆顔料、リン酸塩系防錆顔料などの防錆顔料;および、塗料分野において通常用いられる着色顔料;などが挙げられる。 The anion electrodeposition coating composition in the present invention may contain a pigment as necessary. The pigment is not particularly limited. For example, extender pigments such as barium sulfate, talc, calcium carbonate, and barium sulfate; phosphorus molybdate-based rust preventives such as aluminum zinc phosphomolybdate, zinc phosphomolybdate and calcium phosphomolybdate Examples thereof include pigments, rust preventive pigments such as molybdate salt rust preventive pigments and phosphate rust preventive pigments; and color pigments commonly used in the paint field.
  アニオン性顔料分散ペースト
 アニオン電着塗料組成物に顔料を含有させる場合、顔料の分散容易性の観点から、顔料を予め顔料分散ペーストの形態に調製するのが好ましい。アニオン性顔料分散ペーストは、顔料をアニオン性顔料分散樹脂に分散させることによって調製することができる。
 アニオン性顔料分散樹脂として、例えば、アクリル酸エステル、アクリル酸およびアゾニトリル化合物などを用いて調製される変性アクリル樹脂を用いることができる。
 アニオン性顔料分散ペーストは、アニオン性顔料分散樹脂、顔料、水性媒体、そして必要に応じて中和塩基を混合した後、その混合物中の顔料の粒子径が所定の均一な粒子径となるまで、ボールミルまたはサンドグラインドミルなどの通常用いられる分散装置を用いて分散させることによって調製することができる。
 中和塩基としては、例えば、アンモニア;ジエチルアミン、エチルエタノールアミン、ジエタノールアミン、モノエタノールアミン、モノプロパノールアミン、イソプロパノールアミン、エチルアミノエチルアミン、ヒドロキシエチルアミン、ジエチレントリアミン、トリエチルアミンなどの有機アミン;水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物などの塩基性化合物;などが挙げられる。一般に、アニオン性顔料分散ペーストは、固形分35~70質量%、好ましくは40~65質量%に調製される。
When the anionic pigment dispersion paste contains a pigment in the anionic electrodeposition coating composition, it is preferable to prepare the pigment in the form of a pigment dispersion paste from the viewpoint of easy dispersion of the pigment. An anionic pigment dispersion paste can be prepared by dispersing a pigment in an anionic pigment dispersion resin.
As the anionic pigment dispersion resin, for example, a modified acrylic resin prepared using an acrylic ester, acrylic acid, an azonitrile compound, or the like can be used.
The anionic pigment dispersion paste is prepared by mixing an anionic pigment dispersion resin, a pigment, an aqueous medium, and, if necessary, a neutralizing base, until the particle diameter of the pigment in the mixture reaches a predetermined uniform particle diameter. It can be prepared by dispersing using a commonly used dispersing apparatus such as a ball mill or a sand grind mill.
Examples of the neutralizing base include ammonia; organic amines such as diethylamine, ethylethanolamine, diethanolamine, monoethanolamine, monopropanolamine, isopropanolamine, ethylaminoethylamine, hydroxyethylamine, diethylenetriamine, triethylamine; sodium hydroxide, hydroxide And basic compounds such as alkali metal hydroxides such as potassium. In general, the anionic pigment dispersion paste is prepared to a solid content of 35 to 70% by mass, preferably 40 to 65% by mass.
 アニオン性顔料分散ペーストとして、市販のアニオン性の着色ペーストを用いてもよい。市販品としては、例えば、WAJ-AAT-907ブラック、WAJ-AAT-825バイオレット、WAJ-AAT-731ブルー(以上、トーヨーケム社製)、エマコールNSオーカー4622(山陽色素社製)などが挙げられる。 A commercially available anionic colored paste may be used as the anionic pigment dispersion paste. Examples of commercially available products include WAJ-AAT-907 black, WAJ-AAT-825 violet, WAJ-AAT-731 blue (above, manufactured by Toyochem), Emacol NS Ocher 4622 (manufactured by Sanyo Dye).
  アニオン電着塗料組成物の調製
 本発明におけるアニオン電着塗料組成物は、上記アクリル樹脂(A)、硬化剤(B)、水分散型光沢調整剤(C)、硬化触媒(D)、さらに必要に応じたアニオン性顔料分散ペーストを、水性媒体中に分散させることによって調製することができる。水性媒体は、水、または水と上記の有機溶媒との混合物である。水としては、イオン交換水を用いるのが好ましい。ここで、必要に応じて上記中和塩基を用いてもよい。
Preparation of anion electrodeposition coating composition The anion electrodeposition coating composition in the present invention is the above-mentioned acrylic resin (A), curing agent (B), water-dispersed gloss modifier (C), curing catalyst (D), and further necessary. Can be prepared by dispersing an anionic pigment-dispersed paste in an aqueous medium. The aqueous medium is water or a mixture of water and the above organic solvent. As water, ion-exchanged water is preferably used. Here, you may use the said neutralization base as needed.
 中和塩基の量は、アクリル樹脂(A)などの塗膜形成樹脂が有するアニオン性基(カルボキシル基)の少なくとも30%、好ましくは50~120%を中和するのに足りる量で用いるのが好ましい。また中和塩基を用いて、アニオン電着塗料組成物のpHの調節を行ってもよい。アニオン電着塗料組成物のpHは7.0~9.0であるのが好ましく、7.0~8.5であるのがより好ましい。 The amount of the neutralizing base used is an amount sufficient to neutralize at least 30%, preferably 50 to 120% of the anionic group (carboxyl group) of the coating film-forming resin such as acrylic resin (A). preferable. Moreover, you may adjust the pH of an anionic electrodeposition coating-material composition using a neutralizing base. The pH of the anionic electrodeposition coating composition is preferably 7.0 to 9.0, and more preferably 7.0 to 8.5.
硬化電着塗膜の形成
 本発明の方法は、下記工程、
 アニオン電着塗料組成物中に被塗物を浸漬し、電圧を印加して電着塗膜を形成する、電着塗装工程、および、
 前記電着塗装工程で形成した電着塗膜を加熱硬化して硬化電着塗膜を形成する、加熱硬化工程、
を包含する。
 この方法において、上記アニオン電着塗料組成物を用いること、そして、上記電着塗装工程において形成された電着塗膜の50℃における塗膜粘度が10,000~100,000Pa・sの範囲内であることによって、加熱温度の違いによる光沢差または艶消し効果不良などの不具合を伴わないことを特徴とする、鏡面光沢度の低い低光沢塗膜または艶消し塗膜などの光沢度の調整された硬化電着塗膜を得ることが可能となる。
Formation of cured electrodeposition coating film The method of the present invention comprises the following steps:
An electrodeposition coating process in which an object to be coated is immersed in an anionic electrodeposition coating composition, and an electrodeposition coating film is formed by applying a voltage; and
A heat curing step for forming a cured electrodeposition coating film by heating and curing the electrodeposition coating film formed in the electrodeposition coating step;
Is included.
In this method, the anion electrodeposition coating composition is used, and the coating viscosity at 50 ° C. of the electrodeposition coating film formed in the electrodeposition coating step is in the range of 10,000 to 100,000 Pa · s. Therefore, the glossiness of low-gloss or matte coatings with low specular glossiness is adjusted, which is not accompanied by defects such as gloss differences due to differences in heating temperature or poor matting effect. A cured electrodeposition coating film can be obtained.
 アニオン電着塗料組成物の電着塗装は、被塗物を陽極としてアニオン電着塗料組成物中に浸漬し、次いで、陰極との間に、通常1~400Vの電圧を印加することによって行われる。電着塗装時におけるアニオン電着塗料組成物の塗料温度は、10~45℃であるのが好ましく、15~30℃であるのがより好ましい。電圧を印加する時間は、電着塗装条件に応じて任意に選択することができ、例えば30秒~5分とすることができる。電圧を印加することによって、被塗物の表面に電着塗膜が形成される。形成された電着塗膜は、必要に応じて水洗してもよい。 Electrodeposition coating of the anion electrodeposition coating composition is performed by immersing the object to be coated in the anion electrodeposition coating composition and then applying a voltage of usually 1 to 400 V to the cathode. . The coating temperature of the anion electrodeposition coating composition during electrodeposition coating is preferably 10 to 45 ° C, more preferably 15 to 30 ° C. The time for applying the voltage can be arbitrarily selected according to the electrodeposition coating conditions, and can be, for example, 30 seconds to 5 minutes. By applying a voltage, an electrodeposition coating film is formed on the surface of the object to be coated. The formed electrodeposition coating film may be washed with water as necessary.
 本発明の方法においては、上記電着塗装工程において形成された電着塗膜の50℃における塗膜粘度が10,000~100,000Pa・sの範囲内であることを条件とする。電着塗膜の50℃における塗膜粘度が上記範囲内であることによって、本発明におけるアニオン電着塗料組成物中に含まれる水分散型光沢調整剤(C)が、光沢調整機能を良好に発揮することとなり、得られる硬化電着塗膜の光沢度を低い範囲(60°鏡面光沢度が70以下)に設計することができる。 In the method of the present invention, the coating film viscosity at 50 ° C. of the electrodeposition coating film formed in the electrodeposition coating step is within the range of 10,000 to 100,000 Pa · s. When the coating film viscosity at 50 ° C. of the electrodeposition coating film is within the above range, the water-dispersed gloss modifier (C) contained in the anionic electrodeposition coating composition in the present invention has a good gloss control function. Thus, the gloss of the obtained cured electrodeposition coating film can be designed in a low range (60 ° specular gloss is 70 or less).
 本発明において、電着塗膜の粘度を50℃で測定する理由は以下の通りである。電着塗膜は、電圧の印加により被塗物表面に析出した塗膜である。電着塗膜は一般に、より高粘度(高Tg)に設計されている。そのため、一般的な電着槽の温度(例えば30℃)において電着塗膜の粘度を測定すると、粘度が非常に高いため測定が不能となることさえある。このため、30℃において電着塗膜の塗膜粘度を測定することは困難である。一方、析出した電着塗膜は、加熱によって熱フローが生じて一旦粘度が低下する。そしてさらに加熱することによって、電着塗膜中に含まれるアクリル樹脂(A)および硬化剤(B)などの塗膜形成樹脂が架橋反応し、塗膜粘度は急上昇する。これによって電着塗膜は硬化し、硬化電着塗膜となる。つまり、電着塗膜は加熱によって一旦粘度が低下し、その後に粘度が上昇することとなる。 In the present invention, the reason for measuring the viscosity of the electrodeposition coating film at 50 ° C. is as follows. An electrodeposition coating film is a coating film deposited on the surface of an object to be coated by application of a voltage. The electrodeposition coating is generally designed to have a higher viscosity (high Tg). Therefore, when the viscosity of the electrodeposition coating film is measured at a general electrodeposition bath temperature (for example, 30 ° C.), the measurement may be impossible due to the very high viscosity. For this reason, it is difficult to measure the viscosity of the electrodeposition coating film at 30 ° C. On the other hand, the deposited electrodeposition coating film undergoes a heat flow by heating, and the viscosity is once reduced. By further heating, the coating film forming resins such as the acrylic resin (A) and the curing agent (B) contained in the electrodeposition coating film undergo a crosslinking reaction, and the coating film viscosity rapidly increases. As a result, the electrodeposition coating film is cured to form a cured electrodeposition coating film. That is, the viscosity of the electrodeposition coating film is temporarily reduced by heating, and then the viscosity increases.
 さらに、電着塗装時においては、ジュール熱が発生することにより、被塗物付近は、40~50℃程に上昇している。つまり50℃での粘度測定は、電着塗膜析出時の物理的性質を再現させた状態であるということができる。以上より50℃という温度は、電着塗料組成物の上記性質から塗膜粘度の測定に好ましい温度であり、かつ、塗膜形成樹脂の架橋も生じていない温度、つまり未硬化の電着塗膜の析出時の性質を判断するのに適切な温度であると考えられる。 Furthermore, at the time of electrodeposition coating, Joule heat is generated, and the vicinity of the object to be coated is raised to about 40-50 ° C. That is, it can be said that the viscosity measurement at 50 ° C. is a state in which the physical properties at the time of electrodeposition coating deposition are reproduced. From the above, the temperature of 50 ° C. is a temperature preferable for the measurement of the viscosity of the coating film from the above properties of the electrodeposition coating composition, and is a temperature at which no crosslinking of the coating film forming resin occurs, that is, an uncured electrodeposition coating film. It is considered that the temperature is appropriate for judging the properties at the time of precipitation.
 電着塗膜の50℃における塗膜粘度が10,000Pa・s未満である場合は、析出した電着塗膜の熱フロー性が向上するため、得られる硬化電着塗膜の光沢度が高くなる。一方で、電着塗膜の50℃における塗膜粘度が100,000Pa・sを超える場合は、得られる電着塗膜のフロー性低下により、硬化塗膜の外観不良となる。 When the coating film viscosity at 50 ° C. of the electrodeposition coating film is less than 10,000 Pa · s, the heat flow property of the deposited electrodeposition coating film is improved, and thus the resulting cured electrodeposition coating film has high glossiness. Become. On the other hand, when the coating film viscosity at 50 ° C. of the electrodeposition coating film exceeds 100,000 Pa · s, the appearance of the cured coating film becomes poor due to a decrease in flowability of the obtained electrodeposition coating film.
 本発明においては、上記電着塗装工程において形成された電着塗膜の80℃における塗膜粘度が1,000~10,000Pa・sの範囲内であるのがより好ましい。電着塗膜の80℃における塗膜粘度が上記範囲内であることによって、得られる硬化電着塗膜の光沢度を低い範囲に設計しつつ、硬化電着塗膜の仕上がり外観を均一とすることができる。この80℃という温度は、電着塗膜に含まれるアクリル樹脂(A)および硬化剤(B)の硬化反応の開始する直前の温度ということができる。このような温度条件下における、電着塗膜の80℃における塗膜粘度が上記範囲であることによって、加熱による電着塗膜のフロー性が増加しすぎず、低光沢度である硬化電着塗膜の形成が可能となり、かつ、硬化電着塗膜の外観不良を回避することができる。 In the present invention, the electrodeposition coating film formed in the electrodeposition coating step preferably has a coating film viscosity at 80 ° C. in the range of 1,000 to 10,000 Pa · s. When the coating film viscosity at 80 ° C. of the electrodeposition coating film is within the above range, the finished appearance of the cured electrodeposition coating film is made uniform while designing the glossiness of the resulting cured electrodeposition coating film to be in a low range. be able to. This temperature of 80 ° C. can be said to be a temperature just before the start of the curing reaction of the acrylic resin (A) and the curing agent (B) contained in the electrodeposition coating film. Under such temperature conditions, the coating viscosity at 80 ° C. of the electrodeposition coating film is in the above range, so that the flowability of the electrodeposition coating film by heating does not increase excessively, and the cured electrodeposition has low gloss. A coating film can be formed, and a poor appearance of the cured electrodeposition coating film can be avoided.
 電着塗膜の50℃における塗膜粘度および80℃における塗膜粘度は、次のようにして測定することができる。まず被塗物に膜厚約20μmとなるように180秒間電着塗装を行い、電着塗膜を形成し、これを水洗して余分に付着した電着塗料組成物を取り除く。次いで、電着塗膜表面に付着した余分な水分を取り除いた後、乾燥させることなくすぐに塗膜を取り出して、試料を調製する。こうして得られた試料を、動的粘弾性測定装置を用いて粘度測定することによって、50℃および80℃それぞれにおける塗膜粘度を測定することができる。 The coating film viscosity at 50 ° C. and the coating film viscosity at 80 ° C. of the electrodeposition coating film can be measured as follows. First, electrodeposition coating is carried out for 180 seconds so that the film thickness becomes about 20 μm to form an electrodeposition coating film, which is washed with water to remove the extra electrodeposition coating composition. Next, after removing excess moisture adhering to the surface of the electrodeposition coating film, the coating film is taken out immediately without drying to prepare a sample. By measuring the viscosity of the sample thus obtained using a dynamic viscoelasticity measuring apparatus, the coating film viscosity at 50 ° C. and 80 ° C. can be measured.
 上記塗装工程で形成した電着塗膜を加熱することによって、電着塗膜が硬化し、硬化電着塗膜が得られることとなる(加熱硬化工程)。本発明の方法においては、この加熱硬化工程における加熱温度(T)が110~160℃であるのが好ましい。
 上記軟化点(T)および加熱温度(T)の差(△T)は、10℃以上50℃以下であるのがより好ましい。上記軟化点(T)および加熱温度(T)については、
>T および、
軟化点(T)および加熱温度(T)の差△Tが10℃以上50℃以下、
であるのがより好ましい。
 また上記△Tは、10℃以上30℃以下であるのがより好ましい。
By heating the electrodeposition coating film formed at the said coating process, an electrodeposition coating film will harden | cure and a cured electrodeposition coating film will be obtained (heat-hardening process). In the method of the present invention, the heating temperature (T h ) in this heat curing step is preferably 110 to 160 ° C.
The difference (ΔT) between the softening point (T m ) and the heating temperature (T h ) is more preferably 10 ° C. or more and 50 ° C. or less. Regarding the softening point (T m ) and heating temperature (T h ),
T h > T m and
The difference ΔT between the softening point (T m ) and the heating temperature (T h ) is 10 ° C. or more and 50 ° C. or less,
It is more preferable that
The ΔT is more preferably 10 ° C. or higher and 30 ° C. or lower.
 加熱硬化工程における加熱温度(T)が上記範囲内であることによって、水分散型光沢調整剤(C)を構成するワックスの軟化点(T)との差が適切な範囲となり、得られる硬化電着塗膜の光沢度を低い範囲(60°鏡面光沢度が70以下)に良好に設計することができ、さらに光沢ムラの発生を抑制することができる利点がある。 When the heating temperature (T h ) in the heat curing step is within the above range, the difference from the softening point (T m ) of the wax constituting the water-dispersed gloss adjusting agent (C) is in an appropriate range, and is obtained. There is an advantage that the gloss of the cured electrodeposition coating film can be designed well in a low range (60 ° specular gloss is 70 or less), and further the occurrence of uneven gloss can be suppressed.
 電着塗膜の加熱時間は、被塗物の大きさおよび上記加熱温度(T)などによって適宜選択することができる。加熱時間は、例えば5~60分であり、好ましくは10~30分である。 The heating time of the electrodeposition coating can be appropriately selected depending on the size of the object to be coated and the heating temperature (T h ). The heating time is, for example, 5 to 60 minutes, preferably 10 to 30 minutes.
 本発明の方法において形成される硬化電着塗膜の膜厚は、5~30μmであるのが好ましく、10~25μmであるのがより好ましい。 The film thickness of the cured electrodeposition coating film formed in the method of the present invention is preferably 5 to 30 μm, more preferably 10 to 25 μm.
 本発明の方法によって形成された硬化電着塗膜は、60°鏡面光沢度が70以下であるのがより好ましい。60°鏡面光沢度は、一般に60゜グロス(Gs(60゜))といわれる指標であり、塗膜面に入射角60度の光源からの光を照射してその鏡面反射光束(ψs)を測定し、同一条件における屈折率n=1.567のガラス面の鏡面反射光束(ψos)を基準として、その比で表わした数値[Gs(60゜)=ψs/ψos×100(%)]であり、JIS Z 8741に準拠した方法で測定される値である。上記60°鏡面光沢度は、例えばUni-Gross 60(コニカミノルタ社製)などの光沢計を用いて測定することができる。 The cured electrodeposition coating film formed by the method of the present invention preferably has a 60 ° specular gloss of 70 or less. The 60 ° specular gloss is an index generally referred to as 60 ° gloss (Gs (60 °)), and the specular reflected light flux (ψs) is measured by irradiating the coating surface with light from a light source with an incident angle of 60 °. Then, a numerical value [Gs (60 °) = ψs / ψos × 100 (%)] expressed as a ratio with respect to a specular reflection light beam (ψos) of a glass surface having a refractive index n = 1.567 under the same conditions. It is a value measured by a method based on JIS Z 8741. The 60 ° specular gloss can be measured by using a gloss meter such as Uni-Gross 60 (manufactured by Konica Minolta).
 本発明の方法によって、光沢ムラの発生を伴うことなく、低光沢度に調整された硬化電着塗膜を形成することができる。このような技術的効果は、理論に拘束されるものではないが、アニオン電着塗料組成物中に含まれる水分散型光沢調整剤(C)を構成するワックスの軟化点(T)を制御し、かつ、電着塗膜の50℃における塗膜粘度を特定範囲に制御することによって、電着塗膜の加熱硬化時に生じる塗膜状態の変化をコントロールすることができ、これにより、低光沢度を有する硬化電着塗膜の形成において、光沢ムラの発生を抑制することが可能となったためと考えられる。 By the method of the present invention, a cured electrodeposition coating film adjusted to have a low glossiness can be formed without causing uneven glossiness. Such a technical effect is not limited by theory, but it controls the softening point (T m ) of the wax constituting the water-dispersed gloss modifier (C) contained in the anionic electrodeposition coating composition. In addition, by controlling the viscosity of the electrodeposition coating film at 50 ° C. within a specific range, it is possible to control the change in the coating state that occurs during the heat curing of the electrodeposition coating film. This is thought to be because it was possible to suppress the occurrence of uneven gloss in the formation of a cured electrodeposition coating film having a high degree.
 本発明の方法ではさらに、加熱硬化工程における加熱温度が例えば100~160℃といった、通常の電着塗装における加熱硬化工程と比較して低温条件下において、硬化電着塗膜を形成する場合であっても、十分な塗膜硬度を有する塗膜を形成することができる利点がある。これにより、塗装工程において環境負荷を低減することができるなどの利点がある。 In the method of the present invention, a cured electrodeposition coating film is further formed under a low temperature condition as compared with the heat curing step in normal electrodeposition coating, such as a heating temperature in the heat curing step of 100 to 160 ° C., for example. However, there exists an advantage which can form the coating film which has sufficient coating-film hardness. Thereby, there exists an advantage that an environmental load can be reduced in a painting process.
 以下の実施例により本発明をさらに具体的に説明するが、本発明はこれらに限定されない。実施例中、「部」および「%」は、ことわりのない限り、質量基準による。 The present invention will be described more specifically with reference to the following examples, but the present invention is not limited thereto. In the examples, “parts” and “%” are based on mass unless otherwise specified.
製造例1 アクリル樹脂(A)の製造
 攪拌装置、冷却管、窒素導入管、温度調整機に連結した温度計を装備した2Lの反応容器に、イソプロピルアルコール700部を仕込み、窒素雰囲気下で80℃に加熱した。この反応容器に、メタクリル酸メチル(MMA)322部、アクリル酸ブチル(nBA)140部、スチレン(St)105部、メタクリル酸ヒドロキシエチル(HEMA)84部、アクリル酸(AA)49部、アゾイソプチロニトリル7部の混合溶液を、3時間かけて等速滴下し、その後、2時間80℃で保持することにより、酸価55mgKOH/g、水酸基価52mgKOH/g、重量平均分子量30,000のアクリル樹脂(A)を得た。
Production Example 1 Production of acrylic resin (A) 700 parts of isopropyl alcohol was charged into a 2 L reaction vessel equipped with a stirrer, a cooling pipe, a nitrogen introduction pipe, and a thermometer connected to a temperature controller, and the temperature was 80 ° C. under a nitrogen atmosphere. Heated. In this reaction vessel, 322 parts of methyl methacrylate (MMA), 140 parts of butyl acrylate (nBA), 105 parts of styrene (St), 84 parts of hydroxyethyl methacrylate (HEMA), 49 parts of acrylic acid (AA), azoisopropyl A mixed solution of 7 parts of tyronitrile was dropped at a constant rate over 3 hours, and then kept at 80 ° C. for 2 hours, whereby acrylic acid having an acid value of 55 mgKOH / g, a hydroxyl value of 52 mgKOH / g, and a weight average molecular weight of 30,000 was obtained. Resin (A) was obtained.
実施例1 アニオン電着塗料組成物の製造
 上記製造例1で調製したアクリル樹脂(A)328部(固形分濃度50%)、硬化剤(B)としてメラミン樹脂であるサイメル235(オルネクスジャパン社製、固形分量濃度100%)86部、トリエチルアミン11部を混合撹拌しながら、下記表に記載の量のジノニルナフタレンスルホン酸(硬化触媒(D))3.75部および、下記表に記載の種類および量の水分散型光沢調整剤(C)71.4部を加えて混合した。得られた混合物を、イオン交換水を用いて固形分10%に希釈して、アニオン電着塗料組成物を得た。
 下記表に記載の水分散型光沢調整剤(C)の量は、塗膜形成樹脂であるアクリル樹脂(A)および硬化剤(B)の総樹脂固形分100質量部に対する固形分質量部である。
Example 1 Production of Anion Electrodeposition Coating Composition 328 parts of acrylic resin (A) prepared in Production Example 1 (solid content concentration 50%), Cymel 235 (Ornex Japan Co., Ltd.) which is a melamine resin as a curing agent (B) Manufactured, solid content concentration 100%) 86 parts and triethylamine 11 parts while mixing and stirring, 3.75 parts of dinonylnaphthalenesulfonic acid (curing catalyst (D)) in the amount shown in the following table and the following table 71.4 parts of water dispersion type gloss adjusting agent (C) of the kind and amount were added and mixed. The obtained mixture was diluted to 10% solid content using ion exchange water to obtain an anionic electrodeposition coating composition.
The amount of the water-dispersed gloss adjusting agent (C) shown in the following table is a solid content part by mass with respect to 100 parts by mass of the total resin solid content of the acrylic resin (A) and the curing agent (B) as the coating film forming resin. .
硬化電着塗膜形成
 上記より得られたアニオン電着塗料組成物中に、被塗物であるSUS430板を浸漬し、塗装電圧80~200Vの直流電圧を2.5分間印加して、硬化膜厚が20μmになるように電着塗装し、電着塗膜を設けた。この塗装板を3つ作成した。
 電着塗膜を有する塗装板を、アニオン電着塗料組成物の調製において用いた水分散型光沢調整剤(C)の軟化点(Tm)から10℃、30℃および50℃高い加熱温度(それぞれ145℃、165℃、185℃)で、それぞれ30分間焼付けて、硬化電着塗膜を有する塗装板を得た。
Formation of cured electrodeposition coating film A SUS430 plate as an object to be coated is immersed in the anion electrodeposition coating composition obtained as described above, and a DC voltage of a coating voltage of 80 to 200 V is applied for 2.5 minutes to form a cured film. Electrodeposition was applied so that the thickness was 20 μm, and an electrodeposition coating film was provided. Three painted plates were prepared.
A coating plate having an electrodeposition coating film is heated at a temperature 10 ° C, 30 ° C and 50 ° C higher than the softening point (Tm) of the water-dispersed gloss adjusting agent (C) used in the preparation of the anion electrodeposition coating composition (respectively, 145 ° C., 165 ° C., and 185 ° C.) for 30 minutes each to obtain a coated plate having a cured electrodeposition coating film.
実施例2および比較例1~5
 アニオン電着塗料組成物の調製において、水分散型光沢調整剤(C)の種類および量、硬化触媒(D)の量を下表のとおり変更したこと以外は、実施例1と同様にして、アニオン電着塗料組成物を調製した。
 得られたアニオン電着塗料組成物を用いて、実施例1と同様に電着塗装を行い、硬化電着塗膜を有する塗装板を得た。
Example 2 and Comparative Examples 1-5
In the preparation of the anion electrodeposition coating composition, in the same manner as in Example 1 except that the type and amount of the water-dispersed gloss modifier (C) and the amount of the curing catalyst (D) were changed as shown in the table below, An anionic electrodeposition coating composition was prepared.
Using the obtained anionic electrodeposition coating composition, electrodeposition coating was performed in the same manner as in Example 1 to obtain a coated plate having a cured electrodeposition coating film.
比較例6
 アニオン電着塗料組成物の調製において、水分散型光沢調整剤(C)を用いなかったこと以外は、実施例2と同様にして、アニオン電着塗料組成物を調製した。
 得られたアニオン電着塗料組成物を用いて、実施例1と同様に電着塗装を行い、120℃、140℃、160℃ で、それぞれ30分間焼付けて、硬化電着塗膜を有する塗装板を得た。
Comparative Example 6
An anionic electrodeposition coating composition was prepared in the same manner as in Example 2, except that the water-dispersed gloss modifier (C) was not used in the preparation of the anionic electrodeposition coating composition.
Using the resulting anionic electrodeposition coating composition, electrodeposition coating was carried out in the same manner as in Example 1, and baked at 120 ° C., 140 ° C. and 160 ° C. for 30 minutes, respectively, and a coated plate having a cured electrodeposition coating film Got.
 上記実施例および比較例により得られた塗装板を用いて、下記基準により評価を行った。評価結果を下記表に示す。 Evaluation was performed according to the following criteria using the coated plates obtained in the above examples and comparative examples. The evaluation results are shown in the following table.
電着塗膜の50℃および80℃における電着塗膜粘度の測定
 上記実施例および比較例により得られたアニオン電着塗料組成物を用いて、被塗物に膜厚約20μmとなるように180秒間電着塗装を行い、電着塗膜を形成し、これを水洗して余分な電着塗料組成物を取り除いた。次いで水分を取り除いた後、乾燥させることなくすぐに塗膜を取り出して、試料を調製した。こうして得られた試料を、回転型動的粘弾性測定装置であるRheosol G-3000(ユービーエム社製)を用いて、動的粘弾性における周波数依存測定を、歪み0.5deg、周波数0.02Hzの設定条件で行った。調製した試料をセットし、測定温度を50℃に保った。測定開始後、コーンプレート内で電着塗膜が均一に広がった状態となった時点で塗膜の粘度の測定を行った。80℃における塗膜粘度は、測定温度を変更したこと以外は上記と同様にして測定した。
Measurement of electrodeposition coating film viscosity at 50 ° C. and 80 ° C. of the electrodeposition coating film Using the anion electrodeposition coating composition obtained by the above Examples and Comparative Examples, the film thickness is about 20 μm on the object to be coated. Electrodeposition coating was performed for 180 seconds to form an electrodeposition coating film, which was washed with water to remove excess electrodeposition coating composition. Next, after removing moisture, the coating film was taken out immediately without drying to prepare a sample. The sample thus obtained was subjected to frequency-dependent measurement in dynamic viscoelasticity using a Rheosol G-3000 (manufactured by UBM), which is a rotary dynamic viscoelasticity measuring device, with a strain of 0.5 deg and a frequency of 0.02 Hz. The setting conditions were used. The prepared sample was set and the measurement temperature was kept at 50 ° C. After the measurement was started, the viscosity of the coating film was measured when the electrodeposition coating film was spread uniformly in the cone plate. The coating film viscosity at 80 ° C. was measured in the same manner as described above except that the measurement temperature was changed.
加熱温度変化による光沢度変化の評価
  60°鏡面光沢度の測定および光沢度評価
 上記より得られた塗装板の60°鏡面光沢度を、Uni-Gross 60(コニカミノルタ社製)を用いて測定した。
 この60°鏡面光沢度が70以下である場合を、低光沢範囲に調整ができており「○」であると評価し、70を超える場合を、低光沢範囲に調整ができておらず「×」であると評価した。
Evaluation of gloss change due to heating temperature change Measurement of 60 ° specular gloss and gloss evaluation The 60 ° specular gloss of the coated plate obtained above was measured using Uni-Gross 60 (manufactured by Konica Minolta). .
When the 60 ° specular gloss is 70 or less, the low gloss range is evaluated as “◯”, and when it exceeds 70, the low gloss range is not adjusted and “×” ".
  加熱温度変化によって生じる光沢度の差
 上記種々の加熱温度において加熱硬化させた塗装板それぞれの60°鏡面光沢度を比較して、60°鏡面光沢度の最大値から最小値を減じ、光沢度の差として算出し、以下の基準により評価した。
○:光沢度の差が20以下である
×:光沢度の差が20を超える
 この差の値が大きい程、加熱温度の変化に依存した光沢度変化が生じやすいと判断できる。光沢度の差が20を超える場合は、目視評価においても明確に光沢度の違いが認識できる。
 加熱温度の変化に依存した光沢度変化が生じやすい場合は、例えば大型の被塗物または厚みの異なる被塗物に設けられた電着塗膜を加熱硬化させる場合において、被塗物の各部位における加熱温度にばらつきが生じた場合、光沢ムラが発生するという不具合がある。
Difference in glossiness caused by changes in heating temperature The 60 ° specular glossiness of each of the coated plates heat-cured at the above various heating temperatures is compared, and the minimum value is subtracted from the maximum value of the 60 ° specular glossiness. The difference was calculated and evaluated according to the following criteria.
○: The difference in glossiness is 20 or less. X: The difference in glossiness exceeds 20. It can be determined that the larger this difference is, the more easily the glossiness change depending on the change in heating temperature. When the difference in glossiness exceeds 20, the difference in glossiness can be clearly recognized even in visual evaluation.
When the glossiness change depending on the heating temperature is likely to occur, for example, when heat-curing an electrodeposition coating film provided on a large-scale coating material or a coating material of different thickness, each part of the coating material When the heating temperature varies in the case, there is a problem that uneven gloss occurs.
塗膜外観評価
 水分散型光沢調整剤(C)の軟化点+30℃の温度で加熱して得られた硬化電着塗膜を、下記基準に基づき目視評価を行った。
○:撹拌跡などの塗膜外観不良が認識されない
×:撹拌跡などの塗膜外観不良が認識される

*撹拌跡:電着塗膜形成時における電着塗料組成物の撹拌に由来すると考えられる、硬化電着塗膜上においてスジ状跡と認識される、塗膜外観不良。
Coating Film Appearance Evaluation The cured electrodeposition coating film obtained by heating at a temperature of the softening point of the water-dispersed gloss modifier (C) + 30 ° C. was visually evaluated based on the following criteria.
○: A coating film appearance defect such as a stirring mark is not recognized ×: A coating film appearance defect such as a stirring mark is recognized

* Stirring trace: poor coating appearance, recognized as a streak-like trace on the cured electrodeposition coating, which is thought to be derived from stirring of the electrodeposition coating composition during the formation of the electrodeposition coating.
水平外観ムラの評価
 各実施例および比較例記載の電着塗料組成物を用いて、無攪拌状態の電着塗料組成物中に水平状態に基材を置いて電着塗装を行った。得られた電着塗膜を、水分散型光沢調整剤(C)の軟化点+30℃の温度で30分加熱して硬化させた。得られた塗装板の焼付け後の塗膜外観を目視観察し、上面、下面の外観の差異について、下記基準により目視評価した。

○:目視観察で差異が認識されず、外観良好であると判断される。
×:上下面の艶消し度合が目視観察で異なると認識されるため、外観不良であると判断される。
Evaluation of Horizontal Appearance Unevenness Using the electrodeposition coating compositions described in each Example and Comparative Example, electrodeposition coating was performed by placing a substrate in a horizontal state in an unstirred electrodeposition coating composition. The obtained electrodeposition coating film was cured by heating for 30 minutes at a temperature of the softening point of the water-dispersed gloss modifier (C) + 30 ° C. The coating film appearance after baking of the obtained coated plate was visually observed, and the difference in appearance between the upper surface and the lower surface was visually evaluated according to the following criteria.

○: No difference is recognized by visual observation, and it is judged that the appearance is good.
X: Since it is recognized that the matte degree of the upper and lower surfaces is different by visual observation, it is determined that the appearance is poor.
鉛筆硬度の測定
 水分散型光沢調整剤(C)の軟化点+30℃の温度で加熱して得られた硬化電着塗膜を用いて、JIS K 5600-5-4に準拠して、塗膜の鉛筆硬度を測定した。具体的には、硬化電着塗膜表面に鉛筆(三菱鉛筆社製:日本塗料検査協会の引っかき硬度試験用)を引っかき角度が45°になるように押し付けて動かし、鉛筆の芯による傷跡の有無を目視により観察した。
 例えばHの鉛筆を用いた試験の場合、傷跡の発生が無い場合、H以上と判断した。5回の試験中1回の試験において僅かに凹みの発生を視認した場合は、Hと判断した。そして、5回の試験中において2回以上、凹みの発生がある場合は、H未満と判断し、1段階下げての評価を同様に実施した。
 鉛筆硬度がF未満である場合は、硬度・耐擦傷性が劣っていると判断することができる。
Measurement of Pencil Hardness Using a cured electrodeposition coating film obtained by heating at a temperature of the softening point of the water-dispersed gloss modifier (C) + 30 ° C., in accordance with JIS K 5600-5-4 The pencil hardness was measured. Specifically, a pencil (Mitsubishi Pencil Co., Ltd .: for scratch hardness test of Japan Paint Inspection Association) is pressed against the surface of the cured electrodeposition coating so that the scratch angle is 45 °. Was observed visually.
For example, in the case of a test using a pencil of H, when there was no generation of a scar, it was judged as H or more. It was judged as H when the occurrence of a slight dent was visually recognized in one test out of five tests. Then, in the case where there was a dent twice or more during the five tests, it was judged that it was less than H, and the evaluation was performed in the same manner by lowering by one step.
When the pencil hardness is less than F, it can be determined that the hardness and scratch resistance are poor.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記実施例および比較例において用いた水分散型光沢調整剤(C)は、下記のとおりである。

(C1) 実施例1、比較例3および4:ビックケミー・ジャパン社製 AQUAMAT208(固形分濃度(NV)=35%、軟化点(T)=135℃、密度=1.00)
(C2) 実施例2:ユニチカ社製 アローベースSD-1010(NV=20%、T=105℃、密度=0.93)
(C3) 比較例1:ユニチカ社製 アローベースSB-1010(NV=25%、T=80℃、密度=0.93)
(C4) 比較例2:三井化学社製 ケミパールWP-100(NV=40%、T=148℃、密度=0.90)
(C5) 比較例5:ビックケミー・ジャパン社製 AQUACER531(ノニオン型エマルションワックス、NV=45%、T=130℃、密度=0.98)
The water-dispersed gloss modifier (C) used in the above examples and comparative examples is as follows.

(C1) Example 1, Comparative Examples 3 and 4: AQUAMAT 208 manufactured by Big Chemie Japan (solid content concentration (NV) = 35%, softening point (T m ) = 135 ° C., density = 1.00)
(C2) Example 2: Arrow Base SD-1010 manufactured by Unitika (NV = 20%, T m = 105 ° C., density = 0.93)
(C3) Comparative Example 1: Arrow Base SB-1010 manufactured by Unitika (NV = 25%, T m = 80 ° C., density = 0.93)
(C4) Comparative Example 2: Chemipearl WP-100 manufactured by Mitsui Chemicals (NV = 40%, T m = 148 ° C., density = 0.90)
(C5) Comparative Example 5: AQUACER 531 (nonionic emulsion wax, NV = 45%, T m = 130 ° C., density = 0.98) manufactured by Big Chemie Japan
 上記評価結果に示される通り、実施例によって得られたアニオン電着塗料組成物を用いた硬化電着塗膜形成においては、加熱温度変化によって生じる光沢度の変化が小さく、また、塗膜外観不良なども伴わないことが確認された。
 比較例1は、水分散型光沢調整剤(C)を構成するワックスの軟化点(T)が100℃未満である実験例である。この場合においては、得られる硬化電着塗膜の光沢度が全体に高くなり、また、加熱温度変化によって生じる光沢度の差が大きくなった。さらに、硬化電着塗膜の硬度が低くなる不具合があった。
 比較例2は、水分散型光沢調整剤(C)を構成するワックスの密度が0.91未満である実験例である。この場合は、加熱温度変化によって生じる光沢度の差が大きくなった。また、水平外観ムラの発生が確認された。これは、水分散型光沢調整剤(C)を構成するワックスの密度が低いことによって、アニオン電着塗料組成物中において水分散型光沢調整剤(C)が良好に分散せず、かつ電着塗装工程および加熱硬化工程において、電着塗膜および硬化電着塗膜中に水分散型光沢調整剤(C)が基材の上下面で均一に存在しなかったためと考えられる。
 比較例3は、水分散型光沢調整剤(C)の量が少ない実験例である。この場合においては、得られる硬化電着塗膜の光沢度が全体に高くなり、また、加熱温度変化によって生じる光沢度の差が大きくなった。さらに、塗膜外観ムラが確認された。
 比較例4は、水分散型光沢調整剤(C)の量が多い実験例である。この場合においては、光沢度の値は低くなった一方で、加熱温度変化によって生じる光沢度の差が大きくなった。さらに、硬化電着塗膜の硬度が低くなる不具合があった。
 比較例5は、電着塗膜の50℃における塗膜粘度が10,000未満である実験例である。この場合は、加熱温度変化によって生じる光沢度の差が大きくなった。
 比較例6は、水分散型光沢調整剤(C)を含まない実験例である。この場合は、硬化電着塗膜の光沢度が非常に高くなった。
As shown in the above evaluation results, in the cured electrodeposition coating film formation using the anion electrodeposition coating composition obtained in the examples, the change in glossiness caused by the change in heating temperature is small, and the coating film appearance is poor. It was confirmed that it was not accompanied.
Comparative Example 1 is an experimental example in which the softening point (T m ) of the wax constituting the water-dispersed gloss adjusting agent (C) is less than 100 ° C. In this case, the glossiness of the obtained cured electrodeposition coating film was increased overall, and the difference in glossiness caused by changes in heating temperature was increased. Furthermore, there was a problem that the hardness of the cured electrodeposition coating film was lowered.
Comparative Example 2 is an experimental example in which the density of the wax constituting the water-dispersed gloss adjusting agent (C) is less than 0.91. In this case, the difference in glossiness caused by the change in heating temperature became large. Moreover, generation | occurrence | production of the horizontal external appearance nonuniformity was confirmed. This is because the water-dispersed gloss adjusting agent (C) does not disperse well in the anion electrodeposition coating composition due to the low density of the wax constituting the water-dispersing gloss adjusting agent (C), and electrodeposition It is considered that the water-dispersed gloss adjusting agent (C) was not uniformly present on the upper and lower surfaces of the base material in the electrodeposition coating film and the cured electrodeposition coating film in the coating process and the heat curing process.
Comparative Example 3 is an experimental example in which the amount of the water-dispersed gloss adjusting agent (C) is small. In this case, the glossiness of the obtained cured electrodeposition coating film was increased overall, and the difference in glossiness caused by changes in heating temperature was increased. Furthermore, coating film appearance unevenness was confirmed.
Comparative Example 4 is an experimental example in which the amount of the water-dispersed gloss adjusting agent (C) is large. In this case, the glossiness value was low, but the glossiness difference caused by the heating temperature change was large. Furthermore, there was a problem that the hardness of the cured electrodeposition coating film was lowered.
Comparative Example 5 is an experimental example in which the electrodeposition coating film has a coating film viscosity at 50 ° C. of less than 10,000. In this case, the difference in glossiness caused by the change in heating temperature became large.
Comparative Example 6 is an experimental example that does not include the water-dispersed gloss adjusting agent (C). In this case, the gloss of the cured electrodeposition coating film was very high.
 本発明の方法によれば、鏡面光沢度の低い低光沢塗膜または艶消し塗膜など、光沢度の調整された硬化電着塗膜を、加熱温度変化による光沢度変化などの光沢ムラを伴うことがなく形成することができるという利点がある。本発明の方法においてはさらに、電着塗膜を形成した後、低温硬化条件で加熱硬化させる場合であっても、良好な硬度を有する硬化電着塗膜を得ることができる利点がある。 According to the method of the present invention, a cured electrodeposition coating film with adjusted glossiness, such as a low-gloss coating film or matte coating film with low specular glossiness, is accompanied by uneven glossiness such as a glossiness change due to a change in heating temperature. There is an advantage that it can be formed without any problems. The method of the present invention further has an advantage that a cured electrodeposition coating film having good hardness can be obtained even when the electrodeposition coating film is formed and then heat-cured under low-temperature curing conditions.

Claims (7)

  1.  硬化電着塗膜の形成方法であって、前記方法は、
     アニオン電着塗料組成物中に被塗物を浸漬し、電圧を印加して電着塗膜を形成する、電着塗装工程、および、
     前記電着塗装工程で形成した電着塗膜を加熱硬化して硬化電着塗膜を形成する、加熱硬化工程、
    を包含し、
     前記アニオン電着塗料組成物は、アクリル樹脂(A)、硬化剤(B)、水分散型光沢調整剤(C)および硬化触媒(D)を含み、
     前記水分散型光沢調整剤(C)は、天然ワックスおよびポリオレフィンワックスからなる群から選択される1種またはそれ以上のワックスの水分散物であって、
    前記水分散型光沢調整剤(C)を構成するワックスは、軟化点(T)が100℃以上であり、および、密度が0.91~1.10の範囲内であり、
     前記アニオン電着塗料組成物中に含まれる水分散型光沢調整剤(C)の固形分質量は、アニオン電着塗料組成物の樹脂固形分100質量部に対して6~20質量部であり、
     前記電着塗装工程において形成された電着塗膜の50℃における塗膜粘度が10,000~100,000Pa・sの範囲内である、
    方法。
    A method of forming a cured electrodeposition coating film, the method comprising:
    An electrodeposition coating process in which an object to be coated is immersed in an anionic electrodeposition coating composition, and an electrodeposition coating film is formed by applying a voltage; and
    A heat curing step for forming a cured electrodeposition coating film by heating and curing the electrodeposition coating film formed in the electrodeposition coating step;
    Including
    The anion electrodeposition coating composition includes an acrylic resin (A), a curing agent (B), a water-dispersed gloss adjusting agent (C), and a curing catalyst (D).
    The water-dispersed gloss modifier (C) is an aqueous dispersion of one or more waxes selected from the group consisting of natural waxes and polyolefin waxes,
    The wax constituting the water-dispersible gloss modifier (C) has a softening point (T m ) of 100 ° C. or higher and a density in the range of 0.91 to 1.10.
    The solid content mass of the water-dispersed gloss adjusting agent (C) contained in the anion electrodeposition coating composition is 6 to 20 parts by mass with respect to 100 parts by mass of the resin solid content of the anion electrodeposition coating composition.
    The electrodeposition coating film formed in the electrodeposition coating step has a coating film viscosity at 50 ° C. in the range of 10,000 to 100,000 Pa · s.
    Method.
  2.  前記加熱硬化工程における加熱温度(T)が、110~160℃である、請求項1記載の方法。 The method according to claim 1, wherein the heating temperature (T h ) in the heat curing step is 110 to 160 ° C.
  3.  前記軟化点(T)は100~140℃の範囲内である、請求項1または2記載の方法。 The method according to claim 1 or 2, wherein the softening point (T m ) is in the range of 100 to 140 ° C.
  4.  前記電着塗装工程において形成された電着塗膜の80℃における塗膜粘度が1,000~10,000Pa・sの範囲内である、請求項1~3いずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein the electrodeposition coating film formed in the electrodeposition coating step has a coating film viscosity at 80 ° C in the range of 1,000 to 10,000 Pa · s.
  5.  前記アクリル樹脂(A)は、カルボキシル基および水酸基を有するアクリル樹脂であり、
    前記硬化剤(B)は、アミノ樹脂およびブロックイソシアネート化合物からなる群から選択される1種またはそれ以上である、
    請求項1~4いずれかに記載の方法。
    The acrylic resin (A) is an acrylic resin having a carboxyl group and a hydroxyl group,
    The curing agent (B) is one or more selected from the group consisting of amino resins and blocked isocyanate compounds.
    The method according to any one of claims 1 to 4.
  6.  前記軟化点(T)および加熱温度(T)の差(△T)が、10℃以上50℃以下であり、かつ、T>Tである、請求項1~5いずれかに記載の方法。 The difference (ΔT) between the softening point (T m ) and the heating temperature (T h ) is 10 ° C. or more and 50 ° C. or less, and T h > T m is set. the method of.
  7.  前記形成方法によって形成された硬化電着塗膜は、60°鏡面光沢度が70以下である、請求項1~6いずれかに記載の方法。 The method according to any one of claims 1 to 6, wherein the cured electrodeposition coating film formed by the forming method has a 60 ° specular gloss of 70 or less.
PCT/JP2017/019524 2016-05-27 2017-05-25 Method for forming cured electrodeposition coating film WO2017204293A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780032487.3A CN109477235B (en) 2016-05-27 2017-05-25 Method for forming cured electrophoretic coating film
KR1020187033547A KR102316870B1 (en) 2016-05-27 2017-05-25 Method of Forming a Cured Electrodeposition Film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-106053 2016-05-27
JP2016106053A JP6058191B1 (en) 2016-05-27 2016-05-27 Method for forming cured electrodeposition coating film

Publications (1)

Publication Number Publication Date
WO2017204293A1 true WO2017204293A1 (en) 2017-11-30

Family

ID=57756230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019524 WO2017204293A1 (en) 2016-05-27 2017-05-25 Method for forming cured electrodeposition coating film

Country Status (4)

Country Link
JP (1) JP6058191B1 (en)
KR (1) KR102316870B1 (en)
CN (1) CN109477235B (en)
WO (1) WO2017204293A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108395802A (en) * 2018-03-28 2018-08-14 江阴恒兴涂料有限公司 A kind of adjustable transparent electrophoretic coating of gloss delustring and preparation method thereof
CN108467655A (en) * 2018-03-26 2018-08-31 江阴恒兴涂料有限公司 A kind of extinction electrophoresis coating low aqueous solubility amino resins and preparation method thereof
CN108587293A (en) * 2018-03-26 2018-09-28 江阴恒兴涂料有限公司 A kind of extinction electrophoresis aqueous coating dissolubility bridging agent and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110079174A (en) * 2019-05-27 2019-08-02 枣阳市旺前电泳涂料有限公司 Electrophoretic coating and its processing technology based on acrylic resin

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05179175A (en) * 1991-12-27 1993-07-20 Nippon Paint Co Ltd Matted electrodeposition coating composition
JPH11256080A (en) * 1998-01-07 1999-09-21 Nippon Paint Co Ltd Flat electrodeposition coating composition
JP2000080332A (en) * 1998-06-24 2000-03-21 Toray Ind Inc Resin composition for flatting anion electrodeposition coating
JP2011148846A (en) * 2010-01-19 2011-08-04 Shinto Paint Co Ltd Matte electrodeposition coating composition for thick coating
JP2016060890A (en) * 2014-09-22 2016-04-25 関西ペイント株式会社 Anionic electrodeposition coating composition

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5431791A (en) * 1993-12-21 1995-07-11 Basf Corporation Cathodic electrodeposition method utilizing cyclic carbonate-curable coating composition
JPH08113735A (en) 1994-05-17 1996-05-07 Honny Chem Ind Co Ltd Production of resin composition for delustered electrodeposition coating
JP4005331B2 (en) 2000-10-11 2007-11-07 関西ペイント株式会社 Anionic matte electrodeposition coating composition
JP2002143756A (en) 2000-11-07 2002-05-21 Nippon Paint Co Ltd Method for forming double-layer coating film and substrate coated thereby
CN1331959C (en) * 2003-11-20 2007-08-15 关西涂料株式会社 Extinction anion electrophoresis film forming method and coating implement
JP2005307161A (en) 2004-03-22 2005-11-04 Kansai Paint Co Ltd Anionic electrodeposition coating material and coated artice
JP4916319B2 (en) 2006-01-23 2012-04-11 関西ペイント株式会社 Multilayer pattern coating film forming method
JP2008202122A (en) * 2007-02-22 2008-09-04 Nippon Paint Co Ltd Method for forming cured electrodeposition coating film and method for forming multiple layer coating film
JP6406842B2 (en) * 2014-03-25 2018-10-17 日本ペイント・オートモーティブコーティングス株式会社 Electrodeposition coating composition and electrodeposition coating method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05179175A (en) * 1991-12-27 1993-07-20 Nippon Paint Co Ltd Matted electrodeposition coating composition
JPH11256080A (en) * 1998-01-07 1999-09-21 Nippon Paint Co Ltd Flat electrodeposition coating composition
JP2000080332A (en) * 1998-06-24 2000-03-21 Toray Ind Inc Resin composition for flatting anion electrodeposition coating
JP2011148846A (en) * 2010-01-19 2011-08-04 Shinto Paint Co Ltd Matte electrodeposition coating composition for thick coating
JP2016060890A (en) * 2014-09-22 2016-04-25 関西ペイント株式会社 Anionic electrodeposition coating composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108467655A (en) * 2018-03-26 2018-08-31 江阴恒兴涂料有限公司 A kind of extinction electrophoresis coating low aqueous solubility amino resins and preparation method thereof
CN108587293A (en) * 2018-03-26 2018-09-28 江阴恒兴涂料有限公司 A kind of extinction electrophoresis aqueous coating dissolubility bridging agent and preparation method thereof
CN108587293B (en) * 2018-03-26 2020-09-22 江阴恒兴涂料有限公司 Water-soluble bridging agent for extinction electrophoresis coating and preparation method thereof
CN108467655B (en) * 2018-03-26 2020-09-22 江阴恒兴涂料有限公司 Low-water-solubility amino resin for extinction electrophoresis coating and preparation method thereof
CN108395802A (en) * 2018-03-28 2018-08-14 江阴恒兴涂料有限公司 A kind of adjustable transparent electrophoretic coating of gloss delustring and preparation method thereof
CN108395802B (en) * 2018-03-28 2021-02-26 江阴恒兴涂料有限公司 Transparent electrophoresis coating with adjustable gloss and extinction and preparation method thereof

Also Published As

Publication number Publication date
CN109477235B (en) 2021-03-23
KR102316870B1 (en) 2021-10-22
JP2017210668A (en) 2017-11-30
CN109477235A (en) 2019-03-15
KR20190013755A (en) 2019-02-11
JP6058191B1 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
JP3094109B2 (en) Water-based paint and coating method using the same
US7875684B2 (en) Thermosetting water-based paint and coating film-forming methods
JP6058191B1 (en) Method for forming cured electrodeposition coating film
JP5261089B2 (en) Aqueous primer for recoating and coating film forming method
JPWO2006009219A1 (en) Thermosetting aqueous coating composition and coating film forming method
JPH09192588A (en) Coating method
JP2011131135A (en) Method for forming multilayer coating film
WO2003106560A1 (en) Water base resin composition
JP2004358462A (en) Forming method of multilayer coat
WO2016121241A1 (en) Aqueous coating composition
JP2007283271A (en) Method for forming multilayer coating film
JP2006022216A (en) Polyesterpolyol and thermosetting aqueous coating composition
KR102217675B1 (en) Water-soluble base coat composition
JP5546877B2 (en) Matte electrodeposition coating composition capable of thick film coating
JPH05179176A (en) Electrodeposition coating composition and formation of highly weather-resistant electrodeposition coating film
JP4364550B2 (en) Aqueous resin composition
JP4775998B2 (en) High hardness matte electrodeposition coating composition
JP6177172B2 (en) Anionic electrodeposition coating composition
JP3954377B2 (en) Steel plastic integrated paint finishing method
JP2512907B2 (en) Painting method
JPH0425076B2 (en)
KR102245709B1 (en) Water-soluble base coat composition
JP2649704B2 (en) Thick film coating method
JP2024016473A (en) Cationic electrodeposition coating method
JPH11349866A (en) Lusterless electrodeposition coating material and electrodeposition coating method therewith

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187033547

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17802879

Country of ref document: EP

Kind code of ref document: A1