WO2017204206A1 - Resin composition and resist film - Google Patents

Resin composition and resist film Download PDF

Info

Publication number
WO2017204206A1
WO2017204206A1 PCT/JP2017/019160 JP2017019160W WO2017204206A1 WO 2017204206 A1 WO2017204206 A1 WO 2017204206A1 JP 2017019160 W JP2017019160 W JP 2017019160W WO 2017204206 A1 WO2017204206 A1 WO 2017204206A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin composition
group
mass
parts
Prior art date
Application number
PCT/JP2017/019160
Other languages
French (fr)
Japanese (ja)
Inventor
今田 知之
教夫 長江
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2017204206A1 publication Critical patent/WO2017204206A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers

Definitions

  • the present invention relates to a resin composition excellent in heat resistance and dry etching resistance, and a resist film using the same.
  • phenolic hydroxyl group-containing resins are excellent in heat resistance and moisture resistance in cured products.
  • a curable composition containing a phenolic hydroxyl group-containing resin itself as a main ingredient, or as a curing agent such as an epoxy resin it is widely used in the electrical and electronic fields such as semiconductor sealing materials and insulating materials for printed wiring boards.
  • the phenolic hydroxyl group-containing resin most widely used for photoresist applications is of the cresol novolac type, but as mentioned above, it does not meet the demands of today's increasingly sophisticated and diversified markets, and is heat resistant. Also, developability was not sufficient (see Patent Document 1).
  • a problem to be solved by the present invention is to provide a resin composition excellent in heat resistance and dry etching resistance and a resist film using the same.
  • the present invention relates to a resin composition
  • a resin composition comprising an epoxy resin (A) having a polyarylene ether structure ( ⁇ ) and a hydroxynaphthalene novolac type phenol resin (B).
  • the present invention further relates to a cured product of the resin composition.
  • the present invention further relates to a resist resin material using the resin composition.
  • the present invention further relates to a resist film using the resin composition.
  • the resin composition of the present invention contains an epoxy resin (A) having a polyarylene ether structure ( ⁇ ) and a hydroxynaphthalene novolac-type phenol resin (B).
  • the arylene group forming the polyarylene ether structure is, for example, a phenylene group, a naphthylene group, and one of various substituents on these aromatic nuclei. Or a plurality of structural sites.
  • a structure in which at least one of the arylene groups in the epoxy resin (A) has one or more various substituents on the naphthylene group or its aromatic nucleus It is preferably a site, more preferably 80% or more of the arylene group in the epoxy resin (A) is a structural site having one or a plurality of various substituents on the naphthylene group or its aromatic nucleus.
  • the arylene ether structure ( ⁇ ) is particularly preferably a polynaphthylene ether structure.
  • Ar 1 and Ar 2 represent an aromatic ring, i is 0 or an integer of 1 to 5, and at least one of Ar 1 and Ar 2 present in the molecule is a naphthalene ring.
  • R 3 each independently represents an alkyl group, an aryl group, an aralkyl group, a structural site in which one or more of hydrogen atoms contained therein are substituted with a glycidyloxy group, an alkoxy group or a halogen atom, a glycidyloxy group, an alkoxy group, It is any of halogen atoms, j is 0 or an integer of 1 to 4, and k is 0 or an integer of 1 to 5.
  • R 3 in the structural formula (3) is an alkyl group, an aryl group, an aralkyl group, a structural site in which one or more of hydrogen atoms contained therein are substituted with a glycidyloxy group, an alkoxy group or a halogen atom, glycidyloxy A group, an alkoxy group, or a halogen atom.
  • the alkyl group include alkyl groups such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a cyclohexyl group.
  • Examples of the aryl group include aryl groups such as a phenyl group, a tolyl group, a xylyl group, and a naphthyl group.
  • Examples of the aralkyl group include a benzyl group, a diphenylmethyl group, a phenylethyl group, a naphthylmethyl group, and a naphthylethyl group.
  • the alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, and a butyloxy group.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom.
  • R 3 is a resin composition excellent in heat resistance and dry etching resistance
  • R 3 is glycidyloxy group, glycidyloxyphenyl group, glycidyloxynaphthyl group, benzyl group, phenylethyl group, naphthylmethyl group, naphthylethyl group. It is preferable that it is either.
  • two Ar ⁇ 1 > in the said Structural formula (3) has a glycidyloxy group, respectively.
  • the polyarylene ether structure ( ⁇ ) is a polynaphthylene ether structure
  • a more preferable specific structural example of the epoxy resin (A) is, for example, the following structural formula (4)
  • R 4 each independently represents an alkyl group, an aryl group, an aralkyl group, a structural site in which one or more of hydrogen atoms contained therein are substituted with a glycidyloxy group, an alkoxy group or a halogen atom, an alkoxy group, or a halogen atom.
  • P is 0 or an integer from 1 to 4
  • q is 0 or an integer from 1 to 4.
  • the bonding position of the oxygen atom on the naphthalene skeleton in the structural formula (4) is, for example, 1,2-position, 1,4-position, 1,5-position, 1,6-position, 1,7-position. , 2,3-position, 2,6-position, 2,7-position, etc., it may be bonded to any carbon atom on the aromatic nucleus.
  • 1,6-position or 2,7-position is preferred, and the 2,7-position is particularly preferred, because the resin composition is excellent in heat resistance and dry etching resistance.
  • the epoxy resin (A) contains the component whose i is 0 or 1.
  • the sum of the aromatic nuclei represented by Ar 1 , Ar 2 and R 3 in the structural formula (3), or the sum of the naphthalene ring and the aromatic nuclei represented by R 4 in the structural formula (4). Is preferably in the range of 4 to 12 because it provides a resin composition having excellent heat resistance and dry etching resistance.
  • the epoxy group content of the epoxy resin (A) is preferably in the range of 200 to 350 g / equivalent because it becomes a resin composition excellent in heat resistance and dry etching resistance.
  • the softening point of the epoxy resin (A) is preferably in the range of 80 to 140 ° C. because of its excellent solubility in organic solvents.
  • the epoxy resin (A) is, for example, a method in which an aromatic dihydroxy compound (a1) is reacted under an acid or alkali catalyst condition to obtain a polyarylene ether resin intermediate, and this is reacted with an epihalohydrin to form an epoxy resin.
  • a production method include the following two methods.
  • Method 1 A method in which an aromatic dihydroxy compound (a1) and an aralkylating agent (a2) are reacted under acid catalyst conditions to obtain a polyarylene ether resin intermediate (1), which is then reacted with an epihalohydrin.
  • Method 2 A method in which an aromatic dihydroxy compound (a1) is reacted under alkaline catalyst conditions to obtain a polyarylene ether resin intermediate (2), which is reacted with an epihalohydrin.
  • the aromatic dihydroxy compound (a1) used in Method 1 is, for example, dihydroxybenzene such as 1,2-benzenediol, 1,3-benzenediol, 1,4-benzenediol; 1,2-dihydroxynaphthalene, 1, Dihydroxynaphthalene such as 4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene Etc. These may be used alone or in combination of two or more.
  • dihydroxynaphthalene is preferable because it is a resin composition excellent in heat resistance and dry etching resistance, 1,6-dihydroxynaphthalene or 2,7-dihydroxynaphthalene is more preferable, and 2,7-dihydroxynaphthalene is particularly preferable.
  • the aralkylating agent (a2) used in Method 1 is, for example, the following structural formulas (5-1) to (5-3)
  • R 5 is each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • Ar 3 is a phenyl group, a naphthyl group, a hydroxyl group, a halogen atom, an alkyl group, an alkoxy group on the aromatic nucleus thereof Any one of a plurality of structural sites.
  • the compound represented by either of these is mentioned.
  • These aralkylating agents (a2) may be used alone or in combination of two or more.
  • the compound represented by the structural formula (5-1) is preferable because of its high reactivity.
  • a compound in which Ar 3 is a phenyl group or a naphthyl group is more preferable.
  • the reaction ratio between the aromatic dihydroxy compound (a1) and the aralkylating agent (a2) is such that the molar ratio [(a1) / (a2)] is 1.0 / 0.1 to 1.0 / 1.0. It is preferable that the ratio is
  • Examples of the acid catalyst used in Method 1 include inorganic acids such as phosphoric acid, sulfuric acid, and hydrochloric acid, oxalic acid, benzenesulfonic acid, toluenesulfonic acid, methanesulfonic acid, and organic acids such as fluoromethanesulfonic acid, aluminum chloride, and chloride.
  • Examples include Friedel-Crafts catalysts such as zinc, stannic chloride, ferric chloride, and diethyl sulfate. These may be used alone or in combination of two or more.
  • an inorganic acid or an organic acid is used as the acid catalyst, it is preferably used in the range of 0.01 to 5.0 parts by mass with respect to 100 parts by mass of the aromatic dihydroxy compound (a1).
  • a Friedel-Crafts catalyst is used as the acid catalyst, it is preferably used in a range of 0.2 to 3.0 moles with respect to 1 mole of the aromatic dihydroxy compound (a1).
  • the reaction of the aromatic dihydroxy compound (a1) and the aralkylating agent (a2) may be performed in an organic solvent as necessary.
  • organic solvent used herein include ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone, acetate solvents such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate, cellosolve, butyl carbitol, and the like.
  • Examples thereof include carbitol solvents, aromatic hydrocarbon solvents such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like. Each of these may be used alone, or two or more kinds of mixed solvents may be used.
  • the reaction between the aromatic dihydroxy compound (a1) and the aralkylating agent (a2) can be performed under a temperature condition of about 100 to 180 ° C. After the reaction is completed, an alkali compound such as an alkali metal hydroxide is added. After neutralizing the inside of the reaction system, the water and organic solvent produced in the reaction can be dried under reduced pressure to obtain the polyarylene ether resin intermediate (1).
  • an alkali compound such as an alkali metal hydroxide
  • the polyarylene ether resin intermediate (1) obtained in the first step of Method 1 preferably has a hydroxyl equivalent in the range of 150 to 200 g / equivalent.
  • the obtained polyarylene ether resin intermediate (1) is reacted with epihalohydrin.
  • the reaction uses, for example, 2 to 10 moles of epihalohydrin with respect to 1 mole of hydroxyl groups of the polyarylene ether resin intermediate (1), and 1 mole of hydroxyl groups of the polyarylene ether resin intermediate (1).
  • the basic catalyst include alkaline earth metal hydroxides, alkali metal carbonates, and alkali metal hydroxides. These may be used alone or in combination of two or more. Among these, alkali metal hydroxides are preferable from the viewpoint of excellent catalytic activity, and specifically sodium hydroxide and potassium hydroxide are preferable.
  • epihalohydrin examples include epichlorohydrin, epibromohydrin, ⁇ -methylepichlorohydrin, and the like. These may be used alone or in combination of two or more. Of these, epichlorohydrin is preferred because it is easily available industrially. In addition, surplus epihalohydrin used in the reaction can be recovered, and this recovered epihalohydrin may be reused when the epoxy resin (A) is industrially produced.
  • the reaction between the polyarylene ether resin intermediate (1) and epihalohydrin may be performed in an organic solvent.
  • organic solvent used here include ketonic solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, aromatic hydrocarbon solvents such as toluene and xylene, methanol, ethanol, 1-propyl alcohol, isopropyl alcohol, and 1-butanol.
  • Alcoholic solvents such as secondary butanol and tertiary butanol, cellosolve solvents such as methyl cellosolve and ethyl cellosolve, ether solvents such as tetrahydrofuran, 1,4-dioxane, 1,3-dioxane and diethoxyethane, acetonitrile, dimethyl sulfoxide, Examples include aprotic polar solvents such as dimethylformamide. These organic solvents may be used alone or in combination of two or more.
  • the reaction mixture is washed with water, and unreacted epihalohydrin and the organic solvent are distilled off by distillation under heating and reduced pressure.
  • the obtained epoxy resin is dissolved again in an organic solvent, and an aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added for further reaction.
  • an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added for further reaction.
  • a phase transfer catalyst such as a quaternary ammonium salt or crown ether may be present for the purpose of improving the reaction rate.
  • the amount used is preferably 0.1 to 3.0 parts by mass with respect to 100 parts by mass of the epoxy resin.
  • the epoxy resin (A) obtained by the above method 1 is, for example, when 2,7-dihydroxynaphthalene is used as the aromatic dihydroxy compound (a1) and benzyl alcohol is used as the aralkylating agent. And those represented by any one of (6-1) to (6-18).
  • G represents a glycidyl group
  • Bn represents a benzyl group.
  • alkali catalyst used in Method 2 examples include alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, alkali metal carbonates such as potassium carbonate and sodium carbonate, and phosphorus compounds such as triphenylphosphine. . These may be used alone or in combination of two or more. Among these, alkali metal hydroxides are preferable because they are more excellent in reactivity.
  • the amount of these alkali catalysts used is preferably in the range of 0.1 to 3.0 moles per mole of the aromatic dihydroxy compound (a1).
  • the polycondensation reaction of the aromatic dihydroxy compound (a1) may be performed in an organic solvent as necessary.
  • organic solvent used herein include ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone, acetate solvents such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate, cellosolve, butyl carbitol, and the like.
  • Examples thereof include carbitol solvents, aromatic hydrocarbon solvents such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like. These may be used alone or in combination of two or more.
  • the polycondensation reaction of the aromatic dihydroxy compound (a1) can be performed, for example, under a temperature condition of 150 to 210 ° C. After the reaction is completed, the aqueous layer and the organic layer are separated, and then the organic solvent is removed from the organic layer.
  • the polyarylene ether resin intermediate (2) can be obtained by drying under reduced pressure.
  • the polyarylene ether resin intermediate (2) obtained in the first step of Method 2 preferably has a hydroxyl equivalent in the range of 100 to 150 g / equivalent.
  • the second step of Method 2 can be performed by the same method as the second step of Method 1.
  • the epoxy resin (A) obtained by the method 2 specifically has the following structural formulas (7-1) to (7 -11) or the like.
  • G represents a glycidyl group.
  • the hydroxy naphthalene novolak type phenol resin (B) used in the present invention is specifically a polycondensation reaction product containing a hydroxy naphthalene compound (b1) and an aldehyde compound (b2) as essential reaction components.
  • Examples of the hydroxy naphthalene compound (b1) include naphthol, dihydroxynaphthalene, and compounds having one or more substituents such as a halogen atom, an alkyl group, and an alkoxy group on the aromatic nucleus.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom.
  • Examples of the alkyl group include alkyl groups such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a cyclohexyl group.
  • alkoxy group examples include a methoxy group, an ethoxy group, a propyloxy group, and a butyloxy group.
  • These hydroxy naphthalene compounds (b1) may be used alone or in combination of two or more. Among them, naphthol or dihydroxynaphthalene is preferable because it is a resin composition excellent in heat resistance and dry etching resistance.
  • the hydroxy naphthalene novolak-type phenol resin (B) of the present invention may be a combination of other phenolic hydroxyl group-containing compound (b3) other than the hydroxy naphthalene compound (b1).
  • the other phenolic hydroxyl group-containing compound (b3) include phenol, dihydroxybenzene, anthracenol, a compound having one or more substituents such as a halogen atom, an alkyl group, and an alkoxy group on the aromatic nucleus. Is mentioned. These may be used alone or in combination of two or more. When these other phenolic hydroxyl group-containing compounds (b3) are used, the resulting resin composition is excellent in heat resistance and dry etching resistance.
  • the hydroxynaphthalene compound (b1) and the other phenolic hydroxyl group-containing compounds is preferably 50 mol% or more, more preferably 80 mol% or more, and particularly preferably 90 mol% or more.
  • aldehyde compound (b2) examples include formaldehyde, alkyl aldehydes such as acetaldehyde, propyl aldehyde, and butyraldehyde, and aromatic aldehydes such as benzaldehyde, naphthaldehyde, hydroxybenzaldehyde, and hydroxynaphthaldehyde. These may be used alone or in combination of two or more.
  • the hydroxy naphthalene novolac type phenol resin (B) has the following structural formula (1)
  • R 1 represents a hydrogen atom, an alkyl group which may have a substituent, or a substituent.
  • R 2 is independently an alkyl group, an alkoxy group, or a halogen atom, and may be bonded to any carbon atom on the naphthalene ring;
  • m is 0 or an integer of 1 to 5.
  • a chain-like acyclic novolac resin (B1) having a structural site ( ⁇ ) represented by the following structural unit may be used, or the following structural formula (2)
  • the hydroxy naphthalene novolac type phenol resin (B) preferably contains the cyclic novolac type resin (B2) from the viewpoint of further improving heat resistance and dry etching resistance.
  • the ratio of the cyclic novolac resin (B2) in the hydroxy naphthalene novolac phenol resin (B) is preferably 3% or more, more preferably 30% or more, and 75% or more. Is particularly preferred.
  • the hydroxy naphthalene novolac type phenolic resin (B) is a resin composition having excellent heat resistance and dry etching resistance, so that the weight average molecular weight (Mw) is preferably in the range of 300 to 30,000, and polydispersed.
  • the degree (Mw / Mn) is preferably in the range of 1.1 to 5.
  • the weight average molecular weight (Mw) and polydispersity (Mw / Mn) are values measured by GPC under the following conditions.
  • the ratio of the said cyclic novolak-type resin (B2) in the said hydroxy naphthalene novolak-type phenol resin (B) is a value calculated from the area ratio of the GPC chart figure measured on condition of the following.
  • the hydroxy naphthalene novolac type phenolic resin (B) is a resin composition having excellent heat resistance and dry etching resistance, so that the residual monomer amount is preferably 1% by mass or less.
  • the production method of the hydroxy naphthalene novolac type phenol resin (B) is not particularly limited.
  • the hydroxy naphthalene compound (b1), the aldehyde compound (b2), and the other phenolic hydroxyl group-containing compound (if necessary) A method of reacting b3) in the presence of an acid catalyst or an alkali catalyst in a temperature range of about 60 to 200 ° C. for 0.5 to 100 hours can be mentioned.
  • the acid catalyst examples include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, organic acids such as methanesulfonic acid, paratoluenesulfonic acid, and oxalic acid, and Lewis acids such as boron trifluoride, anhydrous aluminum chloride, and zinc chloride. Is mentioned. These may be used alone or in combination of two or more. The amount of these acid catalysts used is preferably in the range of 0.1 to 5% by mass relative to the total mass of the reaction raw materials.
  • alkali catalyst examples include alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, alkali metal carbonates such as potassium carbonate and sodium carbonate, and phosphorus compounds such as triphenylphosphine. These may be used alone or in combination of two or more.
  • the acid catalyst and the alkali catalyst it is usually preferable to use an acid catalyst as in the case of producing a general phenol novolac resin.
  • the alkali catalyst is used, for example, in the case of producing hydroxynaphthalene novolac type phenol resin (B) containing the cyclic novolac type resin (B2) using formaldehyde as the aldehyde compound (b2).
  • the reaction may be performed in an organic solvent as necessary.
  • the solvent used here include monoalcohols such as methanol, ethanol, and propanol; monocarboxylic acids such as acetic acid, propionic acid, butyric acid, pentanoic acid, and hexanoic acid; ethylene glycol, 1,2-propanediol, 1,3- Propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, trimethylene glycol, diethylene glycol Polyols such as polyethylene glycol and glycerin; 2-ethoxyethanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol
  • a ketone compound is preferably used as a reaction solvent.
  • an alcohol solvent it is preferable to use an alcohol solvent.
  • reaction mixture is neutralized or washed with water, and then the unreacted reaction raw materials and by-products are distilled off to obtain the hydroxy naphthalene novolak type phenol resin (B).
  • the resin composition of the present invention described in detail above can be used for various electric and electronic member applications such as adhesives, paints, photoresists, printed wiring boards and the like, taking advantage of its excellent heat resistance.
  • various electric and electronic member applications such as adhesives, paints, photoresists, printed wiring boards and the like, taking advantage of its excellent heat resistance.
  • resist applications that take advantage of heat resistance and excellent dry etching resistance, and can be suitably used for thick film resist applications, resist underlayer films, and resist permanent film applications. It can also be used as a heat resistance imparting agent for photosensitive resist materials.
  • the curable composition of the present invention may contain other compounds in addition to the epoxy resin (A) and the hydroxy naphthalene novolac type phenol resin (B).
  • Other compounds include, for example, other epoxy resins (A ′) other than the epoxy resin (A), other phenol resins (B ′) other than the hydroxy naphthalene novolac type phenol resin (B), and various vinyl polymers.
  • Examples of the other epoxy resin (A ′) include diglycidyloxynaphthalene, phenol novolac type epoxy resin, cresol novolac type epoxy resin, naphthol novolak type epoxy resin, naphthol-phenol co-condensed novolak type epoxy resin, and naphthol-cresol co-polymer.
  • Condensed novolac type epoxy resin phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, 1,1-bis (2,7-diglycidyloxy-1-naphthyl) alkane, naphthylene ether type epoxy resin, triphenylmethane type epoxy resin Resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phosphorus atom-containing epoxy resin, co-condensation product of phenolic hydroxyl group-containing compound and alkoxy group-containing aromatic compound Le, and the like.
  • the other phenol resin (B ′) is, for example, a novolak resin using one or more phenol raw materials such as phenol, cresol, xylenol, phenylphenol, resorcinol, biphenyl, bisphenol, and alicyclic such as dicyclopentadiene.
  • phenol raw materials such as phenol, cresol, xylenol, phenylphenol, resorcinol, biphenyl, bisphenol, and alicyclic such as dicyclopentadiene.
  • Addition polymerization resin of diene compound and phenol compound modified novolak resin of phenolic hydroxyl group-containing compound and alkoxy group-containing aromatic compound, phenol aralkyl resin (Zyrock resin), naphthol aralkyl resin, trimethylol methane resin, tetraphenylol ethane Examples thereof include resins and aminotriazine-modified phenolic resins.
  • the various vinyl polymers include polyhydroxystyrene, polystyrene, polyvinyl naphthalene, polyvinyl anthracene, polyvinyl carbazole, polyindene, polyacenaphthylene, polynorbornene, polycyclodecene, polytetracyclododecene, polynortricyclene, poly ( A homopolymer of a vinyl compound such as (meth) acrylate or a copolymer thereof may be mentioned.
  • the melamine compound examples include hexamethylol melamine, hexamethoxymethyl melamine, a compound in which 1 to 6 methylol groups of hexamethylol melamine are methoxymethylated, hexamethoxyethyl melamine, hexaacyloxymethyl melamine, hexamethylol melamine methylol
  • guanamine compound examples include tetramethylol guanamine, tetramethoxymethyl guanamine, tetramethoxymethyl benzoguanamine, a compound in which 1 to 4 methylol groups of tetramethylol guanamine are methoxymethylated, tetramethoxyethyl guanamine, tetraacyloxyguanamine, tetra Examples thereof include compounds in which 1 to 4 methylol groups of methylolguanamine are acyloxymethylated.
  • glycoluril compound examples include 1,3,4,6-tetrakis (methoxymethyl) glycoluril, 1,3,4,6-tetrakis (butoxymethyl) glycoluril, 1,3,4,6-tetrakis ( Hydroxymethyl) glycoluril and the like.
  • urea compound examples include 1,3-bis (hydroxymethyl) urea, 1,1,3,3-tetrakis (butoxymethyl) urea and 1,1,3,3-tetrakis (methoxymethyl) urea. It is done.
  • the resole resin may be, for example, an alkylphenol such as phenol, cresol or xylenol, a bisphenol such as phenylphenol, resorcinol, biphenyl, bisphenol A or bisphenol F, a phenolic hydroxyl group-containing compound such as naphthol or dihydroxynaphthalene, and an aldehyde compound.
  • alkylphenol such as phenol, cresol or xylenol
  • a bisphenol such as phenylphenol, resorcinol, biphenyl, bisphenol A or bisphenol F
  • a phenolic hydroxyl group-containing compound such as naphthol or dihydroxynaphthalene
  • aldehyde compound examples include polymers obtained by reacting under catalytic conditions.
  • isocyanate compound examples include tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, and cyclohexane diisocyanate.
  • azide compound examples include 1,1'-biphenyl-4,4'-bisazide, 4,4'-methylidenebisazide, 4,4'-oxybisazide, and the like.
  • Examples of the compound containing a double bond such as an alkenyl ether group include ethylene glycol divinyl ether, triethylene glycol divinyl ether, 1,2-propanediol divinyl ether, 1,4-butanediol divinyl ether, tetramethylene glycol divinyl ether.
  • Examples of the acid anhydride include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, biphenyltetracarboxylic dianhydride, 4,4 Aromatic acid anhydrides such as '-(isopropylidene) diphthalic anhydride, 4,4'-(hexafluoroisopropylidene) diphthalic anhydride; tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride And alicyclic carboxylic acid anhydrides such as methylhexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, dodecenyl succinic anhydride, and trialkyltetrahydrophthalic anhydride.
  • Examples of the imidazole compound include 2-ethyl-4-methylimidazole.
  • Examples of the phosphorus compound include triphenylphosphine.
  • Examples of the amine compound include 1,8-diazabicyclo- [5.4.0] -undecene.
  • the blending ratio of each component can be appropriately adjusted according to desired performance and the like, and is not particularly limited.
  • the number of moles of all epoxy groups in the resin composition relative to 1 mole of all phenolic hydroxyl groups in the resin composition. is preferably blended at a ratio of 0.8 to 1.2.
  • the number of moles of all epoxy groups in the resin composition is 0.01 to 0.003 per mole of all phenolic hydroxyl groups in the resin composition.
  • the range is preferably 8 mol, more preferably 0.01 to 0.6 mol, and particularly preferably 0.01 to 0.5 mol.
  • the resin composition of the present invention is used for resist underlayer film (BARC film)
  • various additives such as surfactants, dyes, fillers, cross-linking agents, and dissolution accelerators are added as necessary. It can be set as the composition for resist underlayer films by melt
  • the organic solvent used in the resist underlayer film composition is not particularly limited.
  • alkylene glycol monoalkyl such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether propylene glycol monomethyl ether, etc.
  • Dialkylene glycol dialkyl ethers such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether; alkylene groups such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate Cole alkyl ether acetate; Ketone compounds such as acetone, methyl ethyl ketone, cyclohexanone, and methyl amyl ketone; Cyclic ethers such as dioxane; Methyl 2-hydroxypropionate, Ethyl 2-hydroxypropionate, Ethyl 2-hydroxy-2-methylpropionate , Ethyl ethoxyacetate, ethyl oxyacetate, methyl 2-hydroxy-3-methylbutanoate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate
  • the resist underlayer film composition can be produced by blending the above components and mixing them using a stirrer or the like.
  • the resist underlayer film composition contains a filler or a pigment, it can be produced by dispersing or mixing using a dispersing device such as a dissolver, a homogenizer, or a three roll mill.
  • the resist underlayer film composition is applied onto an object to be subjected to photolithography such as a silicon substrate, and is subjected to a temperature condition of 100 to 200 ° C. After drying, a resist underlayer film is formed by a method such as heat curing under a temperature condition of 250 to 400 ° C. Next, a resist pattern is formed on this lower layer film by performing a normal photolithography operation, and a resist pattern by a multilayer resist method can be formed by performing a dry etching process with a halogen-based plasma gas or the like.
  • the resin composition of the present invention When the resin composition of the present invention is used for resist permanent film applications, various additives such as surfactants, dyes, fillers, crosslinking agents, and dissolution accelerators are further added as necessary to dissolve in organic solvents. Thus, a composition for a resist permanent film can be obtained.
  • the organic solvent used here is the same as the organic solvent used in the resist underlayer film composition.
  • a photolithography method using the resist permanent film composition includes, for example, dissolving and dispersing a resin component and an additive component in an organic solvent, and applying the solution on an object to be subjected to silicon substrate photolithography, and a temperature of 60 to 150 ° C. Pre-bake under the following temperature conditions.
  • the coating method at this time may be any method such as spin coating, roll coating, flow coating, dip coating, spray coating, doctor blade coating and the like.
  • the resist permanent film composition is positive, the target resist pattern is exposed through a predetermined mask, and the exposed portion is dissolved with an alkali developer. Thus, a resist pattern is formed.
  • the permanent film made of the resist permanent film composition is, for example, a solder resist, a package material, an underfill material, a package adhesive layer such as a circuit element, an integrated circuit element-circuit board adhesive layer, an LCD, or an OELD for semiconductor devices.
  • a solder resist for example, a solder resist, a package material, an underfill material, a package adhesive layer such as a circuit element, an integrated circuit element-circuit board adhesive layer, an LCD, or an OELD for semiconductor devices.
  • a package adhesive layer such as a circuit element, an integrated circuit element-circuit board adhesive layer, an LCD, or an OELD for semiconductor devices.
  • the resin composition of the present invention is used as a heat resistance imparting agent for a photosensitive resist material, it is preferably used in a range of 0.05 to 20 parts by mass in 100 parts by mass of the photosensitive resist material. Any known and commonly used photosensitive resist material can be used.
  • resins for photosensitive resist materials include various phenol resins, hydroxy groups such as p-hydroxystyrene and p- (1,1,1,3,3,3-hexafluoro-2-hydroxypropyl) styrene.
  • examples thereof include an alternating polymer of a polymer, an alicyclic polymerizable monomer such as a norbornene compound or a tetracyclododecene compound, and maleic anhydride or maleimide.
  • Photosensitive agents for photosensitive resist materials include, for example, aromatic (poly) hydroxy compounds, naphthoquinone-1,2-diazide-5-sulfonic acid, naphthoquinone-1,2-diazide-4-sulfonic acid, orthoanthraquinonediazide
  • aromatic (poly) hydroxy compounds naphthoquinone-1,2-diazide-5-sulfonic acid, naphthoquinone-1,2-diazide-4-sulfonic acid, orthoanthraquinonediazide
  • Examples thereof include complete ester compounds, partial ester compounds, amidated products or partially amidated products with sulfonic acids having a quinonediazide group such as sulfonic acid.
  • examples thereof include compounds having a quinonediazide group such as a compound having a quinonediazide group.
  • Mn Number average molecular weight (Mn), weight average molecular weight (Mw), and polydispersity (Mw / Mn) were measured by GPC under the following conditions. The content of each component in the resin was calculated from the area ratio of the GPC chart measured under the following conditions.
  • GPC measurement conditions Measuring device: “HLC-8220 GPC” manufactured by Tosoh Corporation Column: “Shodex KF802” (8.0 mm ⁇ ⁇ 300 mm) manufactured by Showa Denko KK + “Shodex KF802” (8.0 mm ⁇ ⁇ 300 mm) manufactured by Showa Denko KK + Showa Denko Co., Ltd.
  • the temperature was raised to 150 ° C., and the resulting water and xylene were stirred for 3 hours while distilling out of the system.
  • the reaction mixture was neutralized by adding 2 parts by mass of a 20% aqueous sodium hydroxide solution and then dried under reduced pressure to obtain 178 parts by mass of a polyarylene ether resin intermediate (1-1).
  • the intermediate (1-1) had a hydroxyl group equivalent of 169 g / equivalent and a softening point of 130 ° C.
  • a compound in which one trimethylsilyloxynaphthyl group is added to a compound in which n is 1 in the following structural formula (a) (M + 660) 6).
  • a compound wherein n is 3 in the following structural formula (a) (M + 730) 7).
  • a compound in which one trimethylsilyloxynaphthyl group is added to a compound in which n is 2 in the following structural formula (a) (M + 802) 8).
  • a compound wherein n is 4 in the following structural formula (a) (M + 873) 9.
  • a compound in which one trimethylsilyloxynaphthyl group is added to a compound in which n is 3 in the following structural formula (a) (M + 944) 10.
  • n is 0 or an integer of 1 or more, and TMS is a trimethylsilyl group.
  • the system was dehydrated by azeotropic distillation, passed through microfiltration, and dried under reduced pressure to obtain 230 parts by mass of epoxy resin (A-1).
  • the softening point of the epoxy resin (A-1) was 100 ° C., and the epoxy equivalent was 277 g / equivalent.
  • the number average molecular weight (Mn) of the hydroxy naphthalene novolak type phenol resin (B-1) is 1,312, the weight average molecular weight (Mw) is 2,251, the polydispersity (Mw / Mn) is 1.716, and the residual monomer amount was 0.57 mass%.
  • the organic layer was washed with 160 parts by mass of ion-exchanged water, and washing with water was repeated until the pH of the washing water reached 4. After washing with water and drying with an evaporator, 466 parts by mass of a hydroxynaphthalene novolac type phenol resin (B-2) was obtained. From the GPC chart, it was confirmed that the hydroxynaphthalene novolac type phenol resin (B-2) contained 52% of a component represented by the following structural formula (2-1) and having n of 4. .
  • Production Example 4 Production of hydroxynaphthalene novolak type phenolic resin (B-3)
  • a flask equipped with a thermometer, a dropping funnel, a condenser tube, a fractionating tube, and a stirrer was 216 parts by mass of 1-naphthol and 146 parts by mass of 37% formaldehyde aqueous solution.
  • Parts, 121 parts by mass of isopropyl alcohol, and 46 parts by mass of a 49% aqueous sodium hydroxide solution were stirred at room temperature while blowing nitrogen. Subsequently, it heated up to 80 degreeC and made it react for 1 hour.
  • Production Example 5 Production of hydroxynaphthalene novolac-type phenolic resin (B-4) Same as Production Example 4 except that 1-naphthol (108 parts by mass) and 2-naphthol (108 parts by mass) were used instead of 1-naphthol (216 parts by mass) In this way, a hydroxy naphthalene novolak type phenol resin (B-4) was obtained. From the GPC chart, it is found that the hydroxy naphthalene novolak type phenolic resin (B-4) contains 6.9% of a compound represented by the following structural formula (2-3) where n is 4. confirmed.
  • the amount of water in the reaction system was 62.9 parts by mass with respect to 100 parts by mass of 2,7-dihydroxynaphthalene. While stirring in the flask, the temperature was raised to 80 ° C. and reacted for 2 hours. After completion of the reaction, the organic layer was recovered using a separatory funnel. The organic layer was washed with water until the washing water became neutral, and then dried under heating and reduced pressure conditions to obtain 165 parts by mass of a hydroxynaphthalene novolac type phenol resin (B-5).
  • the number average molecular weight (Mn) of the hydroxy naphthalene novolak type phenol resin (B-5) is 1,142
  • the weight average molecular weight (Mw) is 1,626
  • the polydispersity (Mw / Mn) is 1.424. The remaining amount was 0.61% by mass.
  • Production Example 7 Production of hydroxynaphthalene novolak-type phenolic resin (B-6) A flask equipped with a thermometer, a dropping funnel, a condenser, and a stirrer was charged with 48 parts by mass of 1,6-dihydroxynaphthalene, 26 masses of a 42 mass% formaldehyde aqueous solution. Part, 50 parts by mass of isopropyl alcohol, and 12.8 parts by mass of 48% potassium hydroxide were added and stirred at room temperature while blowing nitrogen. Then, it heated up at 80 degreeC and stirred for 1 hour. After completion of the reaction, 8 parts by mass of first sodium phosphate was added for neutralization, and the mixture was cooled and the crystals were separated by filtration.
  • the crystallized product separated by filtration was washed three times with 50 parts by mass of water and then dried under heating and reduced pressure conditions to obtain 20 parts by mass of a hydroxynaphthalene novolac type phenol resin (B-6). From the GPC chart, it was confirmed that the hydroxy naphthalene novolak type phenol resin (B-6) contained 36% of a compound represented by the following structural formula (2-4) and having n of 4. .
  • Production Example 8 Production of hydroxynaphthalene novolac type phenolic resin (B-7) In a flask equipped with a thermometer, a dropping funnel, a condenser, and a stirrer, 160 parts by mass of 1,6-dihydroxynaphthalene and 122 parts by mass of 4-hydroxybenzaldehyde Then, 290 parts by mass of 2-ethoxyethanol and 1.7 parts by mass of 95% sulfuric acid were added, and the mixture was heated to 80 ° C. and stirred for 8 hours. After completion of the reaction, 300 parts by mass of ethyl acetate and 160 parts by mass of ion-exchanged water were added, and then the organic layer was recovered using a separatory funnel.
  • the organic layer was washed with 160 parts by mass of ion-exchanged water until the pH of the washing water reached 4, and dried using an evaporator to obtain 247 parts by mass of a hydroxynaphthalene novolac type phenol resin (B-7). From the GPC chart, it was confirmed that the hydroxynaphthalene novolac-type phenol resin (B-7) contained 89% of a compound represented by the following structural formula (2-5), where n is 4. .
  • the organic layer was washed with 160 parts by weight of ion exchanged water until the pH of the washing water reached 4, and dried using an evaporator to obtain 237 parts by weight of a hydroxynaphthalene novolac type phenolic resin (B-8). From the GPC chart, it was confirmed that the hydroxynaphthalene novolac type phenolic resin (B-8) contained 79% of a cyclic novolac type resin represented by the following structural formula (2-6).
  • n is an integer of 2 to 10.
  • Examples 1-8 In the combination shown in Table 1 below, 50 parts by mass of an epoxy resin, 50 parts by mass of a hydroxynaphthalene novolac type phenol resin, and 0.1 parts by mass of 2-ethyl-4-methylimidazole are blended and dissolved in 400 parts by mass of propylene glycol monomethyl ether acetate. Then, it was filtered through a 0.2 ⁇ m membrane filter to prepare a resinous composition. The obtained resin composition was subjected to various evaluation tests in the following manner. The results are shown in Table 1.
  • Epoxy resin (A'-1) “EPICOLON N-740” manufactured by DIC Corporation
  • Epoxy resin (A'-2) “EPICOLON N-655-EXP-S” manufactured by DIC Corporation
  • the resin composition was applied onto a silicon wafer having a diameter of 5 inches using a spin coater, and heated at 180 ° C. for 60 seconds using a hot plate in an environment with an oxygen concentration of 20% by volume. Furthermore, it heated at 350 degreeC for 120 second, and obtained the silicon wafer with a resist film with a film thickness of 0.3 micrometer. The resist film was scraped from the silicon wafer and used as a test sample for heat resistance evaluation.
  • TG / DTA differential thermothermal gravimetric simultaneous measurement device
  • the resin composition was applied onto a silicon wafer having a diameter of 5 inches using a spin coater, and heated at 180 ° C. for 60 seconds using a hot plate in an environment with an oxygen concentration of 20% by volume. Furthermore, it heated at 350 degreeC for 120 second, and obtained the silicon wafer with a resist film with a film thickness of 0.3 micrometer.
  • the formed resist film is CF 4 / Ar / O 2 (CF 4 : 40 mL / min, Ar: 20 mL / min, O 2 : 5 mL / min) using an etching apparatus (“EXAM” manufactured by Shinko Seiki Co., Ltd.) : 20 Pa RF power: 200 W Processing time: 40 seconds Temperature: 15 ° C.) Etching was performed. The film thickness before and after the etching treatment was measured to calculate the etching rate, and the etching resistance was evaluated. The evaluation criteria are as follows. A: When the etching rate is 150 nm / min or less B: When the etching rate exceeds 150 nm / min

Abstract

To provide a resin composition having excellent heat resistance and dry etching resistance that can be used suitably as a resin material for a resist, a cured product thereof, a resin material for a resist made using the resin composition, and a resist film. A resin composition characterized by containing an epoxy resin (A) having a polyarylene ether structure (α) and a hydroxynaphthalene novolac phenol resin (B), a cured product of said composition, a resin material for a resist obtained using the resin composition, and a resist film.

Description

樹脂組成物及びレジスト膜Resin composition and resist film
 本発明は、耐熱性及びドライエッチング耐性に優れる樹脂組成物及びこれを用いてなるレジスト膜に関する。 The present invention relates to a resin composition excellent in heat resistance and dry etching resistance, and a resist film using the same.
 フェノール性水酸基含有樹脂は、接着剤、成形材料、塗料、フォトレジスト材料、エポキシ樹脂原料、エポキシ樹脂用硬化剤等に用いられている他、硬化物における耐熱性や耐湿性などに優れることから、フェノール性水酸基含有樹脂自体を主剤とする硬化性組成物として、或いは、エポキシ樹脂等の硬化剤として、半導体封止材やプリント配線板用絶縁材料等の電気・電子分野で幅広く用いられている。 In addition to being used for adhesives, molding materials, paints, photoresist materials, epoxy resin raw materials, epoxy resin curing agents, etc., phenolic hydroxyl group-containing resins are excellent in heat resistance and moisture resistance in cured products, As a curable composition containing a phenolic hydroxyl group-containing resin itself as a main ingredient, or as a curing agent such as an epoxy resin, it is widely used in the electrical and electronic fields such as semiconductor sealing materials and insulating materials for printed wiring boards.
 このうちフォトレジストの分野では、用途や機能に応じて細分化された多種多様なレジストパターン形成方法が次々に開発されており、それに伴いレジスト用樹脂材料に対する要求性能も高度化かつ多様化している。例えば、高集積化された半導体に微細なパターンを正確かつ高い生産効率で形成するための高い現像性はもちろんのこと、レジスト下層膜に用いる場合にはドライエッチング耐性や耐熱性等が要求され、また、レジスト永久膜に用いる場合には特に高い耐熱性が要求される。 Among these, in the field of photoresists, a variety of resist pattern forming methods that have been subdivided according to applications and functions have been developed one after another, and the performance requirements for resist resin materials have become sophisticated and diversified accordingly. . For example, not only high developability for forming a fine pattern accurately and with high production efficiency on a highly integrated semiconductor, but also when used as a resist underlayer film, dry etching resistance, heat resistance, etc. are required. Moreover, when using for a resist permanent film, especially high heat resistance is requested | required.
 フォトレジスト用途に最も広く用いられているフェノール性水酸基含有樹脂はクレゾールノボラック型のものであるが、前述の通り、高度化かつ多様化が進む昨今の市場要求性能に対応できるものではなく、耐熱性や現像性も十分なものではなかった(特許文献1参照)。 The phenolic hydroxyl group-containing resin most widely used for photoresist applications is of the cresol novolac type, but as mentioned above, it does not meet the demands of today's increasingly sophisticated and diversified markets, and is heat resistant. Also, developability was not sufficient (see Patent Document 1).
特開平2-55359号公報JP-A-2-55359
 したがって、本発明が解決しようとする課題は、耐熱性及びドライエッチング耐性に優れる樹脂組成物及びこれを用いてなるレジスト膜を提供することにある。 Therefore, a problem to be solved by the present invention is to provide a resin composition excellent in heat resistance and dry etching resistance and a resist film using the same.
 本発明者らは、上記課題を解決するため鋭意検討を行った結果、ポリアリーレンエーテル構造(α)を有するエポキシ樹脂(A)と、ヒドロキシナフタレンノボラック型フェノール樹脂(B)とを含有する樹脂組成物は耐熱性及びドライエッチング耐性に優れる特徴を有することを見出し、本発明を完成させるに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that a resin composition containing an epoxy resin (A) having a polyarylene ether structure (α) and a hydroxynaphthalene novolac-type phenol resin (B). The product has been found to have characteristics excellent in heat resistance and dry etching resistance, and the present invention has been completed.
 即ち、本発明は、ポリアリーレンエーテル構造(α)を有するエポキシ樹脂(A)と、ヒドロキシナフタレンノボラック型フェノール樹脂(B)とを含有することを特徴とする樹脂組成物に関する。 That is, the present invention relates to a resin composition comprising an epoxy resin (A) having a polyarylene ether structure (α) and a hydroxynaphthalene novolac type phenol resin (B).
 本発明はさらに、前記樹脂組成物の硬化物に関する。 The present invention further relates to a cured product of the resin composition.
 本発明はさらに、前記樹脂組成物を用いてなるレジスト用樹脂材料に関する。 The present invention further relates to a resist resin material using the resin composition.
 本発明はさらに、前記樹脂組成物を用いてなるレジスト膜に関する。 The present invention further relates to a resist film using the resin composition.
 本発明によれば、耐熱性及びドライエッチング耐性に優れる樹脂組成物及びこれを用いてなるレジスト膜を提供することができる。 According to the present invention, it is possible to provide a resin composition excellent in heat resistance and dry etching resistance and a resist film using the same.
 以下、本発明を詳細に説明する。
 本発明の樹脂組成物は、ポリアリーレンエーテル構造(α)を有するエポキシ樹脂(A)と、ヒドロキシナフタレンノボラック型フェノール樹脂(B)とを含有することを特徴とする。
Hereinafter, the present invention will be described in detail.
The resin composition of the present invention contains an epoxy resin (A) having a polyarylene ether structure (α) and a hydroxynaphthalene novolac-type phenol resin (B).
 前記ポリアリーレンエーテル構造(α)を有するエポキシ樹脂(A)について、ポリアリーレンエーテル構造を形成するアリーレン基は、例えば、フェニレン基、ナフチレン基、及びこれらの芳香核上に各種の置換基を一つ乃至複数有する構造部位等が挙げられる。中でも、耐熱性及びドライエッチング耐性に優れる樹脂組成物となることから、エポキシ樹脂(A)中のアリーレン基の少なくとも一つがナフチレン基又はその芳香核上に各種の置換基を一つ乃至複数有する構造部位であることが好ましく、エポキシ樹脂(A)中のアリーレン基の80%以上がナフチレン基又はその芳香核上に各種の置換基を一つ乃至複数有する構造部位であることがより好ましく、前記ポリアリーレンエーテル構造(α)がポリナフチレンエーテル構造であることが特に好ましい。 Regarding the epoxy resin (A) having the polyarylene ether structure (α), the arylene group forming the polyarylene ether structure is, for example, a phenylene group, a naphthylene group, and one of various substituents on these aromatic nuclei. Or a plurality of structural sites. Among these, since it becomes a resin composition excellent in heat resistance and dry etching resistance, a structure in which at least one of the arylene groups in the epoxy resin (A) has one or more various substituents on the naphthylene group or its aromatic nucleus It is preferably a site, more preferably 80% or more of the arylene group in the epoxy resin (A) is a structural site having one or a plurality of various substituents on the naphthylene group or its aromatic nucleus. The arylene ether structure (α) is particularly preferably a polynaphthylene ether structure.
 前記エポキシ樹脂(A)の具体構造例としては、例えば、下記構造式(3) As a specific structural example of the epoxy resin (A), for example, the following structural formula (3)
Figure JPOXMLDOC01-appb-C000003
[式中Ar及びArは芳香環を表し、iは0又は1~5の整数であり、分子中に存在するAr及びArのうち少なくとも一つはナフタレン環である。Rはそれぞれ独立してアルキル基、アリール基、アラルキル基、これらが有する水素原子の1つ乃至複数がグリシジルオキシ基、アルコキシ基又はハロゲン原子で置換された構造部位、グリシジルオキシ基、アルコキシ基、ハロゲン原子の何れかであり、jは0又は1~4の整数、kは0又は1~5の整数である。]
で表される分子構造を有し、分子中にグリシジルオキシ基を1つ以上有するものが挙げられる。
Figure JPOXMLDOC01-appb-C000003
[Wherein Ar 1 and Ar 2 represent an aromatic ring, i is 0 or an integer of 1 to 5, and at least one of Ar 1 and Ar 2 present in the molecule is a naphthalene ring. R 3 each independently represents an alkyl group, an aryl group, an aralkyl group, a structural site in which one or more of hydrogen atoms contained therein are substituted with a glycidyloxy group, an alkoxy group or a halogen atom, a glycidyloxy group, an alkoxy group, It is any of halogen atoms, j is 0 or an integer of 1 to 4, and k is 0 or an integer of 1 to 5. ]
And a molecule having at least one glycidyloxy group in the molecule.
 前記構造式(3)中のRは、アルキル基、アリール基、アラルキル基、これらが有する水素原子の1つ乃至複数がグリシジルオキシ基、アルコキシ基又はハロゲン原子で置換された構造部位、グリシジルオキシ基、アルコキシ基、ハロゲン原子の何れかである。
 前記アルキル基は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、へキシル基、シクロへキシル基等のアルキル基等が挙げられる。前記アリール基は、例えば、フェニル基、トリル基、キシリル基、ナフチル基等のアリール基等が挙げられる。前記アラルキル基は、例えば、ベンジル基、ジフェニルメチル基、フェニルエチル基、ナフチルメチル基、ナフチルエチル基等が挙げられる。前記アルコキシ基は、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ブチルオキシ基等が挙げられる。前記ハロゲン原子は、例えば、フッ素原子、塩素原子、臭素原子等が挙げられる。中でも、耐熱性及びドライエッチング耐性に優れる樹脂組成物となることから、前記Rはグリシジルオキシ基、グリシジルオキシフェニル基、グリシジルオキシナフチル基、ベンジル基、フェニルエチル基、ナフチルメチル基、ナフチルエチル基の何れかであることが好ましい。また、前記構造式(3)中の二つのArがそれぞれグリシジルオキシ基を有することが好ましい。
R 3 in the structural formula (3) is an alkyl group, an aryl group, an aralkyl group, a structural site in which one or more of hydrogen atoms contained therein are substituted with a glycidyloxy group, an alkoxy group or a halogen atom, glycidyloxy A group, an alkoxy group, or a halogen atom.
Examples of the alkyl group include alkyl groups such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a cyclohexyl group. Examples of the aryl group include aryl groups such as a phenyl group, a tolyl group, a xylyl group, and a naphthyl group. Examples of the aralkyl group include a benzyl group, a diphenylmethyl group, a phenylethyl group, a naphthylmethyl group, and a naphthylethyl group. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, and a butyloxy group. Examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom. Among them, since R 3 is a resin composition excellent in heat resistance and dry etching resistance, R 3 is glycidyloxy group, glycidyloxyphenyl group, glycidyloxynaphthyl group, benzyl group, phenylethyl group, naphthylmethyl group, naphthylethyl group. It is preferable that it is either. Moreover, it is preferable that two Ar < 1 > in the said Structural formula (3) has a glycidyloxy group, respectively.
 前記ポリアリーレンエーテル構造(α)がポリナフチレンエーテル構造である場合、前記エポキシ樹脂(A)のより好ましい具体構造例としては、例えば、下記構造式(4) When the polyarylene ether structure (α) is a polynaphthylene ether structure, a more preferable specific structural example of the epoxy resin (A) is, for example, the following structural formula (4)
Figure JPOXMLDOC01-appb-C000004
[式中iは0又は1~5の整数である。Rはそれぞれ独立してアルキル基、アリール基、アラルキル基、これらが有する水素原子の1つ乃至複数がグリシジルオキシ基、アルコキシ基又はハロゲン原子で置換された構造部位、アルコキシ基、ハロゲン原子の何れかであり、pは0又は1~4の整数、qは0又は1~4の整数である。]
で表される分子構造を有するものが挙げられる。
Figure JPOXMLDOC01-appb-C000004
[Wherein i is 0 or an integer of 1 to 5. R 4 each independently represents an alkyl group, an aryl group, an aralkyl group, a structural site in which one or more of hydrogen atoms contained therein are substituted with a glycidyloxy group, an alkoxy group or a halogen atom, an alkoxy group, or a halogen atom. P is 0 or an integer from 1 to 4, and q is 0 or an integer from 1 to 4. ]
The thing which has the molecular structure represented by these is mentioned.
 前記構造式(4)中のナフタレン骨格上の酸素原子の結合位置は、例えば、1,2-位、1,4-位、1,5-位、1,6-位、1,7-位、2,3-位、2,6-位、2,7位など、芳香核上の何れの炭素原子に結合していても良い。中でも、耐熱性及びドライエッチング耐性に優れる樹脂組成物となることから、1,6-位又は2,7-位であることが好ましく、2,7-位であることが特に好ましい。 The bonding position of the oxygen atom on the naphthalene skeleton in the structural formula (4) is, for example, 1,2-position, 1,4-position, 1,5-position, 1,6-position, 1,7-position. , 2,3-position, 2,6-position, 2,7-position, etc., it may be bonded to any carbon atom on the aromatic nucleus. Of these, the 1,6-position or 2,7-position is preferred, and the 2,7-position is particularly preferred, because the resin composition is excellent in heat resistance and dry etching resistance.
 前記構造式(3)及び前記構造式(4)中のiは0又は1~4の整数である。中でも、耐熱性及びドライエッチング耐性に優れる樹脂組成物となることから、エポキシ樹脂(A)が、iが0又は1である成分を含有していることが好ましい。 I in the structural formula (3) and the structural formula (4) is 0 or an integer of 1 to 4. Especially, since it becomes a resin composition excellent in heat resistance and dry etching resistance, it is preferable that the epoxy resin (A) contains the component whose i is 0 or 1.
 また、前記構造式(3)中のAr、Ar、Rで表される芳香核の合計、或いは、前記構造式(4)中のナフタレン環、Rで表される芳香核の合計は、耐熱性及びドライエッチング耐性に優れる樹脂組成物となることから、4~12の範囲であることが好ましい。 Further, the sum of the aromatic nuclei represented by Ar 1 , Ar 2 and R 3 in the structural formula (3), or the sum of the naphthalene ring and the aromatic nuclei represented by R 4 in the structural formula (4). Is preferably in the range of 4 to 12 because it provides a resin composition having excellent heat resistance and dry etching resistance.
 前記エポキシ樹脂(A)のエポキシ基含有量は、耐熱性及びドライエッチング耐性に優れる樹脂組成物となることから、200~350g/当量の範囲であることが好ましい。 The epoxy group content of the epoxy resin (A) is preferably in the range of 200 to 350 g / equivalent because it becomes a resin composition excellent in heat resistance and dry etching resistance.
 また、前記エポキシ樹脂(A)の軟化点は、有機溶剤への溶解性に優れることから、80~140℃の範囲であることが好ましい。 The softening point of the epoxy resin (A) is preferably in the range of 80 to 140 ° C. because of its excellent solubility in organic solvents.
 前記エポキシ樹脂(A)は、例えば、芳香族ジヒドロキシ化合物(a1)を酸又はアルカリ触媒条件下で反応させてポリアリーレンエーテル樹脂中間体を得、これとエピハロヒドリンとを反応させてエポキシ樹脂とする方法にて製造することができる。このような製造方法は、具体的に以下2つの方法が挙げられる。
方法1:芳香族ジヒドロキシ化合物(a1)とアラルキル化剤(a2)とを酸触媒条件下で反応させてポリアリーレンエーテル樹脂中間体(1)を得、これとエピハロヒドリンとを反応させる方法。
方法2:芳香族ジヒドロキシ化合物(a1)をアルカリ触媒条件下で反応させてポリアリーレンエーテル樹脂中間体(2)を得、これとエピハロヒドリンとを反応させる方法。
The epoxy resin (A) is, for example, a method in which an aromatic dihydroxy compound (a1) is reacted under an acid or alkali catalyst condition to obtain a polyarylene ether resin intermediate, and this is reacted with an epihalohydrin to form an epoxy resin. Can be manufactured. Specific examples of such a production method include the following two methods.
Method 1: A method in which an aromatic dihydroxy compound (a1) and an aralkylating agent (a2) are reacted under acid catalyst conditions to obtain a polyarylene ether resin intermediate (1), which is then reacted with an epihalohydrin.
Method 2: A method in which an aromatic dihydroxy compound (a1) is reacted under alkaline catalyst conditions to obtain a polyarylene ether resin intermediate (2), which is reacted with an epihalohydrin.
 前記方法1について説明する。前記方法1で用いる芳香族ジヒドロキシ化合物(a1)は、例えば、1,2-ベンゼンジオール、1,3-ベンゼンジオール、1,4-ベンゼンジオール等のジヒドロキシベンゼン;1,2-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン等のジヒドロキシナフタレン等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。中でも、耐熱性及びドライエッチング耐性に優れる樹脂組成物となることからジヒドロキシナフタレンが好ましく、1,6-ジヒドロキシナフタレン又は2,7-ジヒドロキシナフタレンがより好ましく、2,7-ジヒドロキシナフタレンが特に好ましい。 The method 1 will be described. The aromatic dihydroxy compound (a1) used in Method 1 is, for example, dihydroxybenzene such as 1,2-benzenediol, 1,3-benzenediol, 1,4-benzenediol; 1,2-dihydroxynaphthalene, 1, Dihydroxynaphthalene such as 4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene Etc. These may be used alone or in combination of two or more. Among them, dihydroxynaphthalene is preferable because it is a resin composition excellent in heat resistance and dry etching resistance, 1,6-dihydroxynaphthalene or 2,7-dihydroxynaphthalene is more preferable, and 2,7-dihydroxynaphthalene is particularly preferable.
 前記方法1で用いるアラルキル化剤(a2)は、例えば、下記構造式(5-1)~(5-3) The aralkylating agent (a2) used in Method 1 is, for example, the following structural formulas (5-1) to (5-3)
Figure JPOXMLDOC01-appb-C000005
[式中、Xはハロゲン原子を表す。Rはそれぞれ独立して水素原子、炭素原子数1~4のアルキル基の何れかであり、Arはフェニル基、ナフチル基、これらの芳香核上に水酸基、ハロゲン原子、アルキル基、アルコキシ基を1乃至複数個有する構造部位の何れかである。]
の何れかで表される化合物が挙げられる。これらアラルキル化剤(a2)はそれぞれ単独で用いてもよいし、2種類以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000005
[Wherein X represents a halogen atom. R 5 is each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms; Ar 3 is a phenyl group, a naphthyl group, a hydroxyl group, a halogen atom, an alkyl group, an alkoxy group on the aromatic nucleus thereof Any one of a plurality of structural sites. ]
The compound represented by either of these is mentioned. These aralkylating agents (a2) may be used alone or in combination of two or more.
 前記構造式(5-1)~(5-3)の何れかで表される化合物の中でも、反応性が高いことから、前記構造式(5-1)で表される化合物が好ましく、式中のArがフェニル基又はナフチル基である化合物がより好ましい。 Among the compounds represented by any one of the structural formulas (5-1) to (5-3), the compound represented by the structural formula (5-1) is preferable because of its high reactivity. A compound in which Ar 3 is a phenyl group or a naphthyl group is more preferable.
 前記芳香族ジヒドロキシ化合物(a1)とアラルキル化剤(a2)との反応割合は、両者のモル比[(a1)/(a2)]が1.0/0.1~1.0/1.0となる割合であることが好ましい。 The reaction ratio between the aromatic dihydroxy compound (a1) and the aralkylating agent (a2) is such that the molar ratio [(a1) / (a2)] is 1.0 / 0.1 to 1.0 / 1.0. It is preferable that the ratio is
 前記方法1で用いる酸触媒は、例えば、リン酸、硫酸、塩酸などの無機酸、シュウ酸、ベンゼンスルホン酸、トルエンスルホン酸、メタンスルホン酸、フルオロメタンスルホン酸等の有機酸、塩化アルミニウム、塩化亜鉛、塩化第2錫、塩化第2鉄、ジエチル硫酸などのフリーデルクラフツ触媒が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。酸触媒として無機酸や有機酸を用いる場合には、前記芳香族ジヒドロキシ化合物(a1)100質量部に対し0.01~5.0質量部の範囲で用いることが好ましい。酸触媒としてフリーデルクラフツ触媒を用いる場合には、前記芳香族ジヒドロキシ化合物(a1)1モルに対し、0.2~3.0モルの範囲で用いることが好ましい。 Examples of the acid catalyst used in Method 1 include inorganic acids such as phosphoric acid, sulfuric acid, and hydrochloric acid, oxalic acid, benzenesulfonic acid, toluenesulfonic acid, methanesulfonic acid, and organic acids such as fluoromethanesulfonic acid, aluminum chloride, and chloride. Examples include Friedel-Crafts catalysts such as zinc, stannic chloride, ferric chloride, and diethyl sulfate. These may be used alone or in combination of two or more. When an inorganic acid or an organic acid is used as the acid catalyst, it is preferably used in the range of 0.01 to 5.0 parts by mass with respect to 100 parts by mass of the aromatic dihydroxy compound (a1). When a Friedel-Crafts catalyst is used as the acid catalyst, it is preferably used in a range of 0.2 to 3.0 moles with respect to 1 mole of the aromatic dihydroxy compound (a1).
 前記芳香族ジヒドロキシ化合物(a1)とアラルキル化剤(a2)との反応は、必要に応じて有機溶媒中で行っても良い。ここで用いる有機溶媒は、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン溶媒、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル溶媒、セロソルブ、ブチルカルビトール等のカルビトール溶媒、トルエン、キシレン等の芳香族炭化水素溶媒、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上の混合溶媒としても良い。 The reaction of the aromatic dihydroxy compound (a1) and the aralkylating agent (a2) may be performed in an organic solvent as necessary. Examples of the organic solvent used herein include ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone, acetate solvents such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate, cellosolve, butyl carbitol, and the like. Examples thereof include carbitol solvents, aromatic hydrocarbon solvents such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like. Each of these may be used alone, or two or more kinds of mixed solvents may be used.
 前記芳香族ジヒドロキシ化合物(a1)とアラルキル化剤(a2)との反応は、100~180℃程度の温度条件下で行うことが出来、反応終了後は、アルカリ金属水酸化物等のアルカリ化合物を用いて反応系中を中和した後、反応にて生成した水及び有機溶媒を減圧乾燥させてポリアリーレンエーテル樹脂中間体(1)を得ることが出来る。 The reaction between the aromatic dihydroxy compound (a1) and the aralkylating agent (a2) can be performed under a temperature condition of about 100 to 180 ° C. After the reaction is completed, an alkali compound such as an alkali metal hydroxide is added. After neutralizing the inside of the reaction system, the water and organic solvent produced in the reaction can be dried under reduced pressure to obtain the polyarylene ether resin intermediate (1).
 方法1の第1工程で得られるポリアリーレンエーテル樹脂中間体(1)は、その水酸基当量が150~200g/当量の範囲であることが好ましい。 The polyarylene ether resin intermediate (1) obtained in the first step of Method 1 preferably has a hydroxyl equivalent in the range of 150 to 200 g / equivalent.
 ついで、方法1の第2行程では、得られたポリアリーレンエーテル樹脂中間体(1)とエピハロヒドリンとを反応させる。当該反応は、例えば、前記ポリアリーレンエーテル樹脂中間体(1)が有する水酸基1モルに対して2~10モルのエピハロヒドリンを用い、前記ポリアリーレンエーテル樹脂中間体(1)が有する水酸基1モルに対し0.9~2.0モルの塩基性触媒を一括又は分割添加しながら、20~120℃の温度で0.5~10時間反応させる方法が挙げられる。 Then, in the second step of Method 1, the obtained polyarylene ether resin intermediate (1) is reacted with epihalohydrin. The reaction uses, for example, 2 to 10 moles of epihalohydrin with respect to 1 mole of hydroxyl groups of the polyarylene ether resin intermediate (1), and 1 mole of hydroxyl groups of the polyarylene ether resin intermediate (1). A method of reacting at a temperature of 20 to 120 ° C. for 0.5 to 10 hours while adding 0.9 to 2.0 mol of a basic catalyst all at once or in a divided manner.
 前記塩基性触媒は、具体的には、アルカリ土類金属水酸化物、アルカリ金属炭酸塩及びアルカリ金属水酸化物等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。中でも、触媒活性に優れる点からアルカリ金属水酸化物が好ましく、具体的には、水酸化ナトリウムや水酸化カリウム等が好ましい。 Specific examples of the basic catalyst include alkaline earth metal hydroxides, alkali metal carbonates, and alkali metal hydroxides. These may be used alone or in combination of two or more. Among these, alkali metal hydroxides are preferable from the viewpoint of excellent catalytic activity, and specifically sodium hydroxide and potassium hydroxide are preferable.
 前記エピハロヒドリンは、エピクロルヒドリン、エピブロモヒドリン、β-メチルエピクロルヒドリン等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。なかでも工業的入手が容易なことからエピクロルヒドリンが好ましい。また、反応で用いた余剰のエピハロヒドリンは回収することができ、エポキシ樹脂(A)を工業的に製造する場合等においては、この回収エピハロヒドリンを再利用しても良い。 Examples of the epihalohydrin include epichlorohydrin, epibromohydrin, β-methylepichlorohydrin, and the like. These may be used alone or in combination of two or more. Of these, epichlorohydrin is preferred because it is easily available industrially. In addition, surplus epihalohydrin used in the reaction can be recovered, and this recovered epihalohydrin may be reused when the epoxy resin (A) is industrially produced.
 前記ポリアリーレンエーテル樹脂中間体(1)とエピハロヒドリンとの反応は、有機溶媒中で行っても良い。ここで用いる有機溶媒は、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン性溶媒、トルエン、キシレン等の芳香族炭化水素溶媒、メタノール、エタノール、1-プロピルアルコール、イソプロピルアルコール、1-ブタノール、セカンダリーブタノール、ターシャリーブタノール等のアルコール性溶媒、メチルセロソルブ、エチルセロソルブ等のセロソルブ溶媒、テトラヒドロフラン、1、4-ジオキサン、1、3-ジオキサン、ジエトキシエタン等のエーテル溶媒、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド等の非プロトン性極性溶媒等が挙げられる。これらの有機溶媒は、それぞれ単独で使用してもよいし、2種以上を併用してもよい。 The reaction between the polyarylene ether resin intermediate (1) and epihalohydrin may be performed in an organic solvent. Examples of the organic solvent used here include ketonic solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, aromatic hydrocarbon solvents such as toluene and xylene, methanol, ethanol, 1-propyl alcohol, isopropyl alcohol, and 1-butanol. Alcoholic solvents such as secondary butanol and tertiary butanol, cellosolve solvents such as methyl cellosolve and ethyl cellosolve, ether solvents such as tetrahydrofuran, 1,4-dioxane, 1,3-dioxane and diethoxyethane, acetonitrile, dimethyl sulfoxide, Examples include aprotic polar solvents such as dimethylformamide. These organic solvents may be used alone or in combination of two or more.
 反応終了後は、反応混合物を水洗した後、加熱減圧下での蒸留によって未反応のエピハロヒドリンや有機溶媒を留去する。また、加水分解性ハロゲンの一層少ないエポキシ樹脂とするために、得られたエポキシ樹脂を再び有機溶媒に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えてさらに反応を行うこともできる。この際、反応速度の向上を目的として、4級アンモニウム塩やクラウンエーテル等の相関移動触媒を存在させてもよい。相関移動触媒を使用する場合の使用量はエポキシ樹脂100質量部に対して0.1~3.0質量部となる割合であることが好ましい。反応終了後は、生成した塩を濾過や水洗等により除去し、加熱減圧下で有機溶媒を留去することにより、目的とするエポキシ樹脂(A)が得られる。 After completion of the reaction, the reaction mixture is washed with water, and unreacted epihalohydrin and the organic solvent are distilled off by distillation under heating and reduced pressure. In addition, in order to obtain an epoxy resin with less hydrolyzable halogen, the obtained epoxy resin is dissolved again in an organic solvent, and an aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added for further reaction. Can also be done. At this time, a phase transfer catalyst such as a quaternary ammonium salt or crown ether may be present for the purpose of improving the reaction rate. When the phase transfer catalyst is used, the amount used is preferably 0.1 to 3.0 parts by mass with respect to 100 parts by mass of the epoxy resin. After completion of the reaction, the produced salt is removed by filtration, washing with water, etc., and the organic solvent is distilled off under heating and reduced pressure to obtain the desired epoxy resin (A).
 前記方法1にて得られるエポキシ樹脂(A)は、例えば、芳香族ジヒドロキシ化合物(a1)として2,7-ジヒドロキシナフタレンを、アラルキル化剤としてベンジルアルコールを用いた場合、具体的には下記構造式(6-1)~(6-18)の何れかで表されるものなどが挙げられる。なお、式中のGはグリシジル基を、Bnはベンジル基を表す。 The epoxy resin (A) obtained by the above method 1 is, for example, when 2,7-dihydroxynaphthalene is used as the aromatic dihydroxy compound (a1) and benzyl alcohol is used as the aralkylating agent. And those represented by any one of (6-1) to (6-18). In the formula, G represents a glycidyl group, and Bn represents a benzyl group.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 次に前記方法2について説明する。前記方法2で用いる芳香族ジヒドロキシ化合物(a1)は前記方法1についての説明にて記載したものと同様である。 Next, the method 2 will be described. The aromatic dihydroxy compound (a1) used in Method 2 is the same as that described in the description of Method 1.
 前記方法2で用いるアルカリ触媒は、例えば、水酸化カリウム、水酸化ナトリウム等のアルカリ金属水酸化物、炭酸カリウム、炭酸ナトリウム等のアルカリ金属炭酸塩、トリフェニルホスフィン等のリン系化合物等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。中でも、反応性により優れることからアルカリ金属水酸化物が好ましい。 Examples of the alkali catalyst used in Method 2 include alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, alkali metal carbonates such as potassium carbonate and sodium carbonate, and phosphorus compounds such as triphenylphosphine. . These may be used alone or in combination of two or more. Among these, alkali metal hydroxides are preferable because they are more excellent in reactivity.
 これらアルカリ触媒の使用量は、芳香族ジヒドロキシ化合物(a1)1モルに対し、0.1~3.0モルの範囲で用いることが好ましい。 The amount of these alkali catalysts used is preferably in the range of 0.1 to 3.0 moles per mole of the aromatic dihydroxy compound (a1).
 前記芳香族ジヒドロキシ化合物(a1)の縮重合反応は、必要に応じて有機溶媒中で行っても良い。ここで用いる有機溶媒は、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン溶媒、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル溶媒、セロソルブ、ブチルカルビトール等のカルビトール溶媒、トルエン、キシレン等の芳香族炭化水素溶媒、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。 The polycondensation reaction of the aromatic dihydroxy compound (a1) may be performed in an organic solvent as necessary. Examples of the organic solvent used herein include ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone, acetate solvents such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate, cellosolve, butyl carbitol, and the like. Examples thereof include carbitol solvents, aromatic hydrocarbon solvents such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like. These may be used alone or in combination of two or more.
 前記芳香族ジヒドロキシ化合物(a1)の重縮合反応は、例えば150~210℃の温度条件下で行うことが出来、反応終了後は水層と有機層とを分離した後、有機層から有機溶媒を減圧乾燥させるなどして、ポリアリーレンエーテル樹脂中間体(2)を得ることが出来る。 The polycondensation reaction of the aromatic dihydroxy compound (a1) can be performed, for example, under a temperature condition of 150 to 210 ° C. After the reaction is completed, the aqueous layer and the organic layer are separated, and then the organic solvent is removed from the organic layer. The polyarylene ether resin intermediate (2) can be obtained by drying under reduced pressure.
 方法2の第1工程で得られるポリアリーレンエーテル樹脂中間体(2)は、その水酸基当量が100~150g/当量の範囲であることが好ましい。 The polyarylene ether resin intermediate (2) obtained in the first step of Method 2 preferably has a hydroxyl equivalent in the range of 100 to 150 g / equivalent.
 方法2の第2行程は、前記方法1の第2工程と同様の方法にて行うことができる。 The second step of Method 2 can be performed by the same method as the second step of Method 1.
 前記方法2にて得られるエポキシ樹脂(A)は、例えば、芳香族ジヒドロキシ化合物(a1)として2,7-ジヒドロキシナフタレンを用いた場合、具体的には下記構造式(7-1)~(7-11)の何れかで表されるものなどが挙げられる。なお、式中のGはグリシジル基を表す。 For example, when 2,7-dihydroxynaphthalene is used as the aromatic dihydroxy compound (a1), the epoxy resin (A) obtained by the method 2 specifically has the following structural formulas (7-1) to (7 -11) or the like. In the formula, G represents a glycidyl group.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 本発明で用いるヒドロキシナフタレンノボラック型フェノール樹脂(B)は、具体的には、ヒドロキシナフタレン化合物(b1)とアルデヒド化合物(b2)とを必須の反応成分とする重縮合反応物である。 The hydroxy naphthalene novolak type phenol resin (B) used in the present invention is specifically a polycondensation reaction product containing a hydroxy naphthalene compound (b1) and an aldehyde compound (b2) as essential reaction components.
 前記ヒドロキシナフタレン化合物(b1)は、例えば、ナフトール、ジヒドロキシナフタレン、これらの芳香核上にハロゲン原子、アルキル基、アルコキシ基等の置換基を一つ乃至複数有する化合物等が挙げられる。前記ハロゲン原子は、例えば、フッ素原子、塩素原子、臭素原子等が挙げられる。前記アルキル基は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、へキシル基、シクロへキシル基等のアルキル基等が挙げられる。前記アルコキシ基は、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ブチルオキシ基等が挙げられる。これらヒドロキシナフタレン化合物(b1)はそれぞれ単独で用いてもよいし、2種類以上を併用してもよい。中でも、耐熱性及びドライエッチング耐性に優れる樹脂組成物となることからナフトール又はジヒドロキシナフタレンが好ましい。 Examples of the hydroxy naphthalene compound (b1) include naphthol, dihydroxynaphthalene, and compounds having one or more substituents such as a halogen atom, an alkyl group, and an alkoxy group on the aromatic nucleus. Examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom. Examples of the alkyl group include alkyl groups such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a cyclohexyl group. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, and a butyloxy group. These hydroxy naphthalene compounds (b1) may be used alone or in combination of two or more. Among them, naphthol or dihydroxynaphthalene is preferable because it is a resin composition excellent in heat resistance and dry etching resistance.
 本発明のヒドロキシナフタレンノボラック型フェノール樹脂(B)は、前記ヒドロキシナフタレン化合物(b1)以外のその他のフェノール性水酸基含有化合物(b3)を併用したものであっても良い。前記その他のフェノール性水酸基含有化合物(b3)は、例えば、フェノール、ジヒドロキシベンゼン、アントラセノール、これらの芳香核上にハロゲン原子、アルキル基、アルコキシ基等の置換基を一つ乃至複数有する化合物等が挙げられる。これらはそれぞれ単独で用いてもよいし、2種類以上を併用してもよい。これらその他のフェノール性水酸基含有化合物(b3)を用いる場合には、耐熱性及びドライエッチング耐性に優れる樹脂組成物となることから、前記ヒドロキシナフタレン化合物(b1)と前記その他のフェノール性水酸基含有化合物(b3)との合計に対する前記ヒドロキシナフタレン化合物(b1)の割合が50モル%以上であることが好ましく、80モル%以上であることがより好ましく、90モル%以上であることが特に好ましい。 The hydroxy naphthalene novolak-type phenol resin (B) of the present invention may be a combination of other phenolic hydroxyl group-containing compound (b3) other than the hydroxy naphthalene compound (b1). Examples of the other phenolic hydroxyl group-containing compound (b3) include phenol, dihydroxybenzene, anthracenol, a compound having one or more substituents such as a halogen atom, an alkyl group, and an alkoxy group on the aromatic nucleus. Is mentioned. These may be used alone or in combination of two or more. When these other phenolic hydroxyl group-containing compounds (b3) are used, the resulting resin composition is excellent in heat resistance and dry etching resistance. Therefore, the hydroxynaphthalene compound (b1) and the other phenolic hydroxyl group-containing compounds ( The ratio of the hydroxy naphthalene compound (b1) to the sum of b3) is preferably 50 mol% or more, more preferably 80 mol% or more, and particularly preferably 90 mol% or more.
 前記アルデヒド化合物(b2)は、例えば、ホルムアルデヒドや、アセトアルデヒド、プロピルアルデヒド、ブチルアルデヒド等のアルキルアルデヒド、ベンズアルデヒド、ナフトアルデヒド、ヒドロキシベンズアルデヒド、ヒドロキシナフトアルデヒド等の芳香族アルデヒド等が挙げられる。これらはそれぞれ単独で用いてもよいし、2種類以上を併用してもよい。 Examples of the aldehyde compound (b2) include formaldehyde, alkyl aldehydes such as acetaldehyde, propyl aldehyde, and butyraldehyde, and aromatic aldehydes such as benzaldehyde, naphthaldehyde, hydroxybenzaldehyde, and hydroxynaphthaldehyde. These may be used alone or in combination of two or more.
 前記ヒドロキシナフタレンノボラック型フェノール樹脂(B)は、下記構造式(1) The hydroxy naphthalene novolac type phenol resin (B) has the following structural formula (1)
Figure JPOXMLDOC01-appb-C000014
(式中lは1又は2であり、水酸基はナフタレン環上の何れの炭素原子に結合していてもよい。Rは水素原子、置換基を有していても良いアルキル基、置換基を有していても良いアリール基の何れかである。Rはそれぞれ独立にアルキル基、アルコキシ基、ハロゲン原子の何れかであり、ナフタレン環上の何れの炭素原子に結合していてもよく、mは0又は1~5の整数である。)
で表される構造部位(β)を繰り返し構造単位として有する鎖状の非環状ノボラック型樹脂(B1)であっても良いし、下記構造式(2)
Figure JPOXMLDOC01-appb-C000014
(In the formula, l is 1 or 2, and the hydroxyl group may be bonded to any carbon atom on the naphthalene ring. R 1 represents a hydrogen atom, an alkyl group which may have a substituent, or a substituent. Each of R 2 is independently an alkyl group, an alkoxy group, or a halogen atom, and may be bonded to any carbon atom on the naphthalene ring; m is 0 or an integer of 1 to 5.)
A chain-like acyclic novolac resin (B1) having a structural site (β) represented by the following structural unit may be used, or the following structural formula (2)
Figure JPOXMLDOC01-appb-C000015
[式中βは前記構造式(1)で表される構造部位(β)であり、nは2~10の整数である。]
で表される分子構造を有する環状ノボラック型樹脂(B2)であっても良い。また、前記非環状ノボラック型樹脂(B1)と前記環状ノボラック型樹脂(B2)との混合物であっても良い。
Figure JPOXMLDOC01-appb-C000015
[Wherein β is the structural moiety (β) represented by the structural formula (1), and n is an integer of 2 to 10. ]
A cyclic novolac resin (B2) having a molecular structure represented by Further, it may be a mixture of the non-cyclic novolac resin (B1) and the cyclic novolac resin (B2).
 前記ヒドロキシナフタレンノボラック型フェノール樹脂(B)は、耐熱性やドライエッチング耐性が一層向上する点で前記環状ノボラック型樹脂(B2)を含有することが好ましい。特に、前記ヒドロキシナフタレンノボラック型フェノール樹脂(B)中の前記環状ノボラック型樹脂(B2)の割合が3%以上であることが好ましく、30%以上であることがより好ましく、75%以上であることが特に好ましい。 The hydroxy naphthalene novolac type phenol resin (B) preferably contains the cyclic novolac type resin (B2) from the viewpoint of further improving heat resistance and dry etching resistance. In particular, the ratio of the cyclic novolac resin (B2) in the hydroxy naphthalene novolac phenol resin (B) is preferably 3% or more, more preferably 30% or more, and 75% or more. Is particularly preferred.
 前記ヒドロキシナフタレンノボラック型フェノール樹脂(B)は、耐熱性やドライエッチング耐性に優れる樹脂組成物となることから、重量平均分子量(Mw)が300~30,000の範囲であることが好ましく、多分散度(Mw/Mn)は1.1~5の範囲であることが好ましい。 The hydroxy naphthalene novolac type phenolic resin (B) is a resin composition having excellent heat resistance and dry etching resistance, so that the weight average molecular weight (Mw) is preferably in the range of 300 to 30,000, and polydispersed. The degree (Mw / Mn) is preferably in the range of 1.1 to 5.
 なお、本発明において重量平均分子量(Mw)及び多分散度(Mw/Mn)は、下記条件のGPCにて測定される値である。また、前記ヒドロキシナフタレンノボラック型フェノール樹脂(B)中の前記環状ノボラック型樹脂(B2)の割合は、下記条件で測定されるGPCチャート図の面積比から算出される値である。 In the present invention, the weight average molecular weight (Mw) and polydispersity (Mw / Mn) are values measured by GPC under the following conditions. Moreover, the ratio of the said cyclic novolak-type resin (B2) in the said hydroxy naphthalene novolak-type phenol resin (B) is a value calculated from the area ratio of the GPC chart figure measured on condition of the following.
 [GPCの測定条件]
 測定装置:東ソー株式会社製「HLC-8220 GPC」
 カラム:昭和電工株式会社製「Shodex KF802」(8.0mmФ×300mm)+昭和電工株式会社製「Shodex KF802」(8.0mmФ×300mm)
+昭和電工株式会社製「Shodex KF803」(8.0mmФ×300mm)+昭和電工株式会社製「Shodex KF804」(8.0mmФ×300mm)
 カラム温度:40℃
 検出器: RI(示差屈折計)
 データ処理:東ソー株式会社製「GPC-8020モデルIIバージョン4.30」
 展開溶媒:テトラヒドロフラン
 流速:1.0mL/分
 試料:樹脂固形分換算で0.5質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
 標準試料:下記単分散ポリスチレン
 (標準試料:単分散ポリスチレン)
 東ソー株式会社製「A-500」
 東ソー株式会社製「A-2500」
 東ソー株式会社製「A-5000」
 東ソー株式会社製「F-1」
 東ソー株式会社製「F-2」
 東ソー株式会社製「F-4」
 東ソー株式会社製「F-10」
 東ソー株式会社製「F-20」
[GPC measurement conditions]
Measuring device: “HLC-8220 GPC” manufactured by Tosoh Corporation
Column: “Shodex KF802” (8.0 mmФ × 300 mm) manufactured by Showa Denko KK + “Shodex KF802” (8.0 mmФ × 300 mm) manufactured by Showa Denko KK
+ Showa Denko Co., Ltd. “Shodex KF803” (8.0 mmФ × 300 mm) + Showa Denko Co., Ltd. “Shodex KF804” (8.0 mmФ × 300 mm)
Column temperature: 40 ° C
Detector: RI (differential refractometer)
Data processing: “GPC-8020 Model II version 4.30” manufactured by Tosoh Corporation
Developing solvent: Tetrahydrofuran Flow rate: 1.0 mL / min Sample: Filtered 0.5% by mass tetrahydrofuran solution in terms of resin solids with a microfilter (100 μl)
Standard sample: Monodispersed polystyrene below (Standard sample: Monodispersed polystyrene)
“A-500” manufactured by Tosoh Corporation
“A-2500” manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
“F-1” manufactured by Tosoh Corporation
“F-2” manufactured by Tosoh Corporation
“F-4” manufactured by Tosoh Corporation
“F-10” manufactured by Tosoh Corporation
“F-20” manufactured by Tosoh Corporation
 前記ヒドロキシナフタレンノボラック型フェノール樹脂(B)は、耐熱性やドライエッチング耐性に優れる樹脂組成物となることから、残存モノマー量が1質量%以下であることが好ましい。 The hydroxy naphthalene novolac type phenolic resin (B) is a resin composition having excellent heat resistance and dry etching resistance, so that the residual monomer amount is preferably 1% by mass or less.
 前記ヒドロキシナフタレンノボラック型フェノール樹脂(B)の製法は特に限定されず、例えば、前記ヒドロキシナフタレン化合物(b1)、前記アルデヒド化合物(b2)、及び必要に応じて用いる前記その他のフェノール性水酸基含有化合物(b3)を酸触媒又はアルカリ触媒の存在下、60~200℃程度の温度範囲で0.5~100時間反応させる方法が挙げられる。 The production method of the hydroxy naphthalene novolac type phenol resin (B) is not particularly limited. For example, the hydroxy naphthalene compound (b1), the aldehyde compound (b2), and the other phenolic hydroxyl group-containing compound (if necessary) ( A method of reacting b3) in the presence of an acid catalyst or an alkali catalyst in a temperature range of about 60 to 200 ° C. for 0.5 to 100 hours can be mentioned.
 前記酸触媒は、例えば、塩酸、硫酸、リン酸などの無機酸、メタンスルホン酸、パラトルエンスルホン酸、シュウ酸などの有機酸、三フッ化ホウ素、無水塩化アルミニウム、塩化亜鉛などのルイス酸などが挙げられる。これらはそれぞれ単独で用いてもよいし、2種類以上を併用してもよい。これら酸触媒の使用量は、反応原料の総質量に対して0.1~5質量%の範囲であることが好ましい。 Examples of the acid catalyst include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, organic acids such as methanesulfonic acid, paratoluenesulfonic acid, and oxalic acid, and Lewis acids such as boron trifluoride, anhydrous aluminum chloride, and zinc chloride. Is mentioned. These may be used alone or in combination of two or more. The amount of these acid catalysts used is preferably in the range of 0.1 to 5% by mass relative to the total mass of the reaction raw materials.
 前記アルカリ触媒は、例えば、水酸化カリウム、水酸化ナトリウム等のアルカリ金属水酸化物、炭酸カリウム、炭酸ナトリウム等のアルカリ金属炭酸塩、トリフェニルホスフィン等のリン系化合物等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。 Examples of the alkali catalyst include alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, alkali metal carbonates such as potassium carbonate and sodium carbonate, and phosphorus compounds such as triphenylphosphine. These may be used alone or in combination of two or more.
 前記酸触媒及びアルカリ触媒について、通常は、一般的なフェノールノボラック型樹脂を製造する場合と同様に、酸触媒を用いることが好ましい。アルカリ触媒は、例えば、前記アルデヒド化合物(b2)としてホルムアルデヒドを用い、前記環状ノボラック型樹脂(B2)を含有するヒドロキシナフタレンノボラック型フェノール樹脂(B)を製造する場合等に用いる。 For the acid catalyst and the alkali catalyst, it is usually preferable to use an acid catalyst as in the case of producing a general phenol novolac resin. The alkali catalyst is used, for example, in the case of producing hydroxynaphthalene novolac type phenol resin (B) containing the cyclic novolac type resin (B2) using formaldehyde as the aldehyde compound (b2).
 反応は必要に応じて有機溶媒中で行っても良い。ここで用いる溶媒は、例えば、メタノール、エタノール、プロパノール等のモノアルコール;酢酸、プロピオン酸、酪酸、ペンタン酸、ヘキサン酸等のモノカルボン酸;エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、トリメチレングリコール、ジエチレングリコール、ポリエチレングリコール、グリセリン等のポリオール;2-エトキシエタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノペンチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールエチルメチルエーテル、エチレングリコールモノフェニルエーテル等のグリコールエーテル;1,3-ジオキサン、1,4-ジオキサン、テトラヒドロフラン等の環状エーテル;エチレングリコールアセテート等のグリコールエステル;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトンなどが挙げられる。これらの溶媒は、それぞれ単独で用いても良いし、2種類以上の混合溶媒として用いても良い。 The reaction may be performed in an organic solvent as necessary. Examples of the solvent used here include monoalcohols such as methanol, ethanol, and propanol; monocarboxylic acids such as acetic acid, propionic acid, butyric acid, pentanoic acid, and hexanoic acid; ethylene glycol, 1,2-propanediol, 1,3- Propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, trimethylene glycol, diethylene glycol Polyols such as polyethylene glycol and glycerin; 2-ethoxyethanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol Glycol ethers such as monopentyl ether, ethylene glycol dimethyl ether, ethylene glycol ethyl methyl ether and ethylene glycol monophenyl ether; cyclic ethers such as 1,3-dioxane, 1,4-dioxane and tetrahydrofuran; glycol esters such as ethylene glycol acetate; Examples include ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone. These solvents may be used alone or in combination of two or more kinds.
 ヒドロキシナフタレンノボラック型フェノール樹脂(B)として、前記非環状ノボラック型樹脂(B1)を主成分とするものを製造する場合には、反応溶媒としてケトン化合物を用いることが好ましい。他方、環状ノボラック型樹脂(B2)を含有するヒドロキシナフタレンノボラック型フェノール樹脂(B)を製造する場合には、アルコール溶媒を用いることが好ましい。 In the case of producing a hydroxy naphthalene novolak type phenolic resin (B) having the acyclic novolac type resin (B1) as a main component, a ketone compound is preferably used as a reaction solvent. On the other hand, when producing the hydroxy naphthalene novolac type phenol resin (B) containing the cyclic novolac type resin (B2), it is preferable to use an alcohol solvent.
 反応終了後は、反応混合物を中和処理或いは水洗した後、未反応の反応原料や副生成物等を留去するなどして、前記ヒドロキシナフタレンノボラック型フェノール樹脂(B)が得られる。 After completion of the reaction, the reaction mixture is neutralized or washed with water, and then the unreacted reaction raw materials and by-products are distilled off to obtain the hydroxy naphthalene novolak type phenol resin (B).
 以上詳述した本発明の樹脂組成物は、耐熱性に優れる特徴を生かし、接着剤や塗料、フォトレジスト、プリント配線基板等の各種の電気・電子部材用途に用いることが出来る。これらの用途の中でも、耐熱性の他ドライエッチング耐性にも優れる特徴を生かしたレジスト用途に特に適しており、厚膜レジスト用途やレジスト下層膜、レジスト永久膜用途に好適に用いることができる。また、感光性レジスト材料の耐熱性付与剤としても利用することができる。 The resin composition of the present invention described in detail above can be used for various electric and electronic member applications such as adhesives, paints, photoresists, printed wiring boards and the like, taking advantage of its excellent heat resistance. Among these applications, it is particularly suitable for resist applications that take advantage of heat resistance and excellent dry etching resistance, and can be suitably used for thick film resist applications, resist underlayer films, and resist permanent film applications. It can also be used as a heat resistance imparting agent for photosensitive resist materials.
 本発明の硬化性組成物は、前記エポキシ樹脂(A)、前記ヒドロキシナフタレンノボラック型フェノール樹脂(B)以外に、その他の化合物を併用しても良い。その他の化合物は、例えば、前記エポキシ樹脂(A)以外のその他のエポキシ樹脂(A’)、前記ヒドロキシナフタレンノボラック型フェノール樹脂(B)以外のその他のフェノール樹脂(B’)、各種のビニル重合体、メラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、レゾール樹脂、イソシアネート化合物、アジド化合物、アルケニルエーテル基等の2重結合を含む化合物、酸無水物、オキサゾリン化合物、イミダゾール化合物、リン系化合物、アミン化合物等が挙げられる。 The curable composition of the present invention may contain other compounds in addition to the epoxy resin (A) and the hydroxy naphthalene novolac type phenol resin (B). Other compounds include, for example, other epoxy resins (A ′) other than the epoxy resin (A), other phenol resins (B ′) other than the hydroxy naphthalene novolac type phenol resin (B), and various vinyl polymers. , Melamine compounds, guanamine compounds, glycoluril compounds, urea compounds, resol resins, isocyanate compounds, azide compounds, compounds containing double bonds such as alkenyl ether groups, acid anhydrides, oxazoline compounds, imidazole compounds, phosphorus compounds, amines Compounds and the like.
 前記その他のエポキシ樹脂(A’)は、例えば、ジグリシジルオキシナフタレン、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、1,1-ビス(2,7-ジグリシジルオキシ-1-ナフチル)アルカン、ナフチレンエーテル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、リン原子含有エポキシ樹脂、フェノール性水酸基含有化合物とアルコキシ基含有芳香族化合物との共縮合物のポリグリシジルエーテル等が挙げられる。 Examples of the other epoxy resin (A ′) include diglycidyloxynaphthalene, phenol novolac type epoxy resin, cresol novolac type epoxy resin, naphthol novolak type epoxy resin, naphthol-phenol co-condensed novolak type epoxy resin, and naphthol-cresol co-polymer. Condensed novolac type epoxy resin, phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, 1,1-bis (2,7-diglycidyloxy-1-naphthyl) alkane, naphthylene ether type epoxy resin, triphenylmethane type epoxy resin Resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phosphorus atom-containing epoxy resin, co-condensation product of phenolic hydroxyl group-containing compound and alkoxy group-containing aromatic compound Le, and the like.
 前記その他のフェノール樹脂(B’)は、例えば、フェノール、クレゾール、キシレノール、フェニルフェノール、レゾルシノール、ビフェニル、ビスフェノール等のフェノール原料を一種乃至複数種用いたノボラック型樹脂、ジシクロペンタジエン等の脂環式ジエン化合物とフェノール化合物との付加重合樹脂、フェノール性水酸基含有化合物とアルコキシ基含有芳香族化合物との変性ノボラック樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、アミノトリアジン変性フェノール樹脂等が挙げられる。 The other phenol resin (B ′) is, for example, a novolak resin using one or more phenol raw materials such as phenol, cresol, xylenol, phenylphenol, resorcinol, biphenyl, bisphenol, and alicyclic such as dicyclopentadiene. Addition polymerization resin of diene compound and phenol compound, modified novolak resin of phenolic hydroxyl group-containing compound and alkoxy group-containing aromatic compound, phenol aralkyl resin (Zyrock resin), naphthol aralkyl resin, trimethylol methane resin, tetraphenylol ethane Examples thereof include resins and aminotriazine-modified phenolic resins.
 前記各種のビニル重合体は、ポリヒドロキシスチレン、ポリスチレン、ポリビニルナフタレン、ポリビニルアントラセン、ポリビニルカルバゾール、ポリインデン、ポリアセナフチレン、ポリノルボルネン、ポリシクロデセン、ポリテトラシクロドデセン、ポリノルトリシクレン、ポリ(メタ)アクリレート等のビニル化合物の単独重合体或いはこれらの共重合体が挙げられる。 The various vinyl polymers include polyhydroxystyrene, polystyrene, polyvinyl naphthalene, polyvinyl anthracene, polyvinyl carbazole, polyindene, polyacenaphthylene, polynorbornene, polycyclodecene, polytetracyclododecene, polynortricyclene, poly ( A homopolymer of a vinyl compound such as (meth) acrylate or a copolymer thereof may be mentioned.
 前記メラミン化合物は、例えば、ヘキサメチロールメラミン、ヘキサメトキシメチルメラミン、ヘキサメチロールメラミンの1~6個のメチロール基がメトキシメチル化した化合物、ヘキサメトキシエチルメラミン、ヘキサアシロキシメチルメラミン、ヘキサメチロールメラミンのメチロール基の1~6個がアシロキシメチル化した化合物等が挙げられる。  Examples of the melamine compound include hexamethylol melamine, hexamethoxymethyl melamine, a compound in which 1 to 6 methylol groups of hexamethylol melamine are methoxymethylated, hexamethoxyethyl melamine, hexaacyloxymethyl melamine, hexamethylol melamine methylol Examples include compounds in which 1 to 6 groups are acyloxymethylated. *
 前記グアナミン化合物は、例えば、テトラメチロールグアナミン、テトラメトキシメチルグアナミン、テトラメトキシメチルベンゾグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がメトキシメチル化した化合物、テトラメトキシエチルグアナミン、テトラアシロキシグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がアシロキシメチル化した化合物等が挙げられる。 Examples of the guanamine compound include tetramethylol guanamine, tetramethoxymethyl guanamine, tetramethoxymethyl benzoguanamine, a compound in which 1 to 4 methylol groups of tetramethylol guanamine are methoxymethylated, tetramethoxyethyl guanamine, tetraacyloxyguanamine, tetra Examples thereof include compounds in which 1 to 4 methylol groups of methylolguanamine are acyloxymethylated.
 前記グリコールウリル化合物は、例えば、1,3,4,6-テトラキス(メトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ブトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ヒドロキシメチル)グリコールウリル等が挙げられる。 Examples of the glycoluril compound include 1,3,4,6-tetrakis (methoxymethyl) glycoluril, 1,3,4,6-tetrakis (butoxymethyl) glycoluril, 1,3,4,6-tetrakis ( Hydroxymethyl) glycoluril and the like.
 前記ウレア化合物は、例えば、1,3-ビス(ヒドロキシメチル)尿素、1,1,3,3-テトラキス(ブトキシメチル)尿素及び1,1,3,3-テトラキス(メトキシメチル)尿素等が挙げられる。 Examples of the urea compound include 1,3-bis (hydroxymethyl) urea, 1,1,3,3-tetrakis (butoxymethyl) urea and 1,1,3,3-tetrakis (methoxymethyl) urea. It is done.
 前記レゾール樹脂は、例えば、フェノール、クレゾールやキシレノール等のアルキルフェノール、フェニルフェノール、レゾルシノール、ビフェニル、ビスフェノールAやビスフェノールF等のビスフェノール、ナフトール、ジヒドロキシナフタレン等のフェノール性水酸基含有化合物と、アルデヒド化合物とをアルカリ性触媒条件下で反応させて得られる重合体が挙げられる。 The resole resin may be, for example, an alkylphenol such as phenol, cresol or xylenol, a bisphenol such as phenylphenol, resorcinol, biphenyl, bisphenol A or bisphenol F, a phenolic hydroxyl group-containing compound such as naphthol or dihydroxynaphthalene, and an aldehyde compound. Examples include polymers obtained by reacting under catalytic conditions.
 前記イソシアネート化合物は、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート等が挙げられる。 Examples of the isocyanate compound include tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, and cyclohexane diisocyanate.
 前記アジド化合物は、例えば、1,1’-ビフェニル-4,4’-ビスアジド、4,4’-メチリデンビスアジド、4,4’-オキシビスアジド等が挙げられる。  Examples of the azide compound include 1,1'-biphenyl-4,4'-bisazide, 4,4'-methylidenebisazide, 4,4'-oxybisazide, and the like.
前記アルケニルエーテル基等の2重結合を含む化合物は、例えば、エチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、1,2-プロパンジオールジビニルエーテル、1,4-ブタンジオールジビニルエーテル、テトラメチレングリコールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、ヘキサンジオールジビニルエーテル、1,4-シクロヘキサンジオールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ソルビトールテトラビニルエーテル、ソルビトールペンタビニルエーテル、トリメチロールプロパントリビニルエーテル等が挙げられる。 Examples of the compound containing a double bond such as an alkenyl ether group include ethylene glycol divinyl ether, triethylene glycol divinyl ether, 1,2-propanediol divinyl ether, 1,4-butanediol divinyl ether, tetramethylene glycol divinyl ether. , Neopentyl glycol divinyl ether, trimethylolpropane trivinyl ether, hexanediol divinyl ether, 1,4-cyclohexanediol divinyl ether, pentaerythritol trivinyl ether, pentaerythritol tetravinyl ether, sorbitol tetravinyl ether, sorbitol pentavinyl ether, trimethylolpropane trivinyl ether Etc.
 前記酸無水物は例えば、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、4,4’-(イソプロピリデン)ジフタル酸無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物等の芳香族酸無水物;無水テトラヒドロフタル酸、無水メチルテトラヒドロフタル酸、無水ヘキサヒドロフタル酸、無水メチルヘキサヒドロフタル酸、無水エンドメチレンテトラヒドロフタル酸無水ドデセニルコハク酸、無水トリアルキルテトラヒドロフタル酸等の脂環式カルボン酸無水物等が挙げられる。  Examples of the acid anhydride include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, biphenyltetracarboxylic dianhydride, 4,4 Aromatic acid anhydrides such as '-(isopropylidene) diphthalic anhydride, 4,4'-(hexafluoroisopropylidene) diphthalic anhydride; tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride And alicyclic carboxylic acid anhydrides such as methylhexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, dodecenyl succinic anhydride, and trialkyltetrahydrophthalic anhydride.
 前記イミダゾール化合物は、例えば、2-エチル-4-メチルイミダゾール等が挙げられる。前記リン系化合物は、例えば、トリフェニルホスフィン等が挙げられる。前記アミン化合物は、例えば、1,8-ジアザビシクロ-[5.4.0]-ウンデセンが挙げられる。 Examples of the imidazole compound include 2-ethyl-4-methylimidazole. Examples of the phosphorus compound include triphenylphosphine. Examples of the amine compound include 1,8-diazabicyclo- [5.4.0] -undecene.
本発明の樹脂組成物において、各成分の配合割合は、所望の性能等に応じて適宜調整できるものであり、特に限定されない。本発明の樹脂組成物を塗料や半導体封止材、プリント配線基板用途等に用いる場合には、樹脂組成物中の全フェノール性水酸基1モルに対し、樹脂組成物中の全エポキシ基のモル数が0.8~1.2となる割合で配合することが好ましい。他方、本発明の樹脂組成物をレジスト膜用途に用いる場合には、樹脂組成物中の全フェノール性水酸基1モルに対し、樹脂組成物中の全エポキシ基のモル数が0.01~0.8モルの範囲であることが好ましく、0.01~0.6モルの範囲で用いることがより好ましく、0.01~0.5モルの範囲で用いることが特に好ましい。 In the resin composition of the present invention, the blending ratio of each component can be appropriately adjusted according to desired performance and the like, and is not particularly limited. When the resin composition of the present invention is used for paints, semiconductor encapsulants, printed wiring board applications, etc., the number of moles of all epoxy groups in the resin composition relative to 1 mole of all phenolic hydroxyl groups in the resin composition. Is preferably blended at a ratio of 0.8 to 1.2. On the other hand, when the resin composition of the present invention is used for a resist film, the number of moles of all epoxy groups in the resin composition is 0.01 to 0.003 per mole of all phenolic hydroxyl groups in the resin composition. The range is preferably 8 mol, more preferably 0.01 to 0.6 mol, and particularly preferably 0.01 to 0.5 mol.
本発明の樹脂組成物をレジスト下層膜(BARC膜)用途に用いる場合には、更に必要に応じて界面活性剤や染料、充填材、架橋剤、溶解促進剤など各種の添加剤を加え、有機溶剤に溶解することによりレジスト下層膜用組成物とすることができる。 When the resin composition of the present invention is used for resist underlayer film (BARC film), various additives such as surfactants, dyes, fillers, cross-linking agents, and dissolution accelerators are added as necessary. It can be set as the composition for resist underlayer films by melt | dissolving in a solvent.
 レジスト下層膜用組成物に用いる有機溶剤は、特に限定されないが、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテルプロピレングリコールモノメチルエーテル等のアルキレングリコールモノアルキルエーテル;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル等のジアルキレングリコールジアルキルエーテル;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等のアルキレングリコールアルキルエーテルアセテート;アセトン、メチルエチルケトン、シクロヘキサノン、メチルアミルケトン等のケトン化合物;ジオキサン等の環式エーテル;2-ヒドロキシプロピオン酸メチル、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、オキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、蟻酸エチル、酢酸エチル、酢酸ブチル、アセト酢酸メチル、アセト酢酸エチル等のエステル化合物が挙げられる、これらはそれぞれ単独でも地いても良いし、2種類以上を併用しても良い。 The organic solvent used in the resist underlayer film composition is not particularly limited. For example, alkylene glycol monoalkyl such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether propylene glycol monomethyl ether, etc. Ethers; Dialkylene glycol dialkyl ethers such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether; alkylene groups such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate Cole alkyl ether acetate; Ketone compounds such as acetone, methyl ethyl ketone, cyclohexanone, and methyl amyl ketone; Cyclic ethers such as dioxane; Methyl 2-hydroxypropionate, Ethyl 2-hydroxypropionate, Ethyl 2-hydroxy-2-methylpropionate , Ethyl ethoxyacetate, ethyl oxyacetate, methyl 2-hydroxy-3-methylbutanoate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, ethyl formate, ethyl acetate, butyl acetate, methyl acetoacetate, acetoacetic acid Examples thereof include ester compounds such as ethyl, and these may be used alone or in combination of two or more.
 前記レジスト下層膜用組成物は上記各成分を配合し、攪拌機等を用いて混合することにより製造することができる。また、レジスト下層膜用組成物が充填材や顔料を含有する場合には、ディゾルバー、ホモジナイザー、3本ロールミル等の分散装置を用いて分散或いは混合して製造することが出来る。 The resist underlayer film composition can be produced by blending the above components and mixing them using a stirrer or the like. When the resist underlayer film composition contains a filler or a pigment, it can be produced by dispersing or mixing using a dispersing device such as a dissolver, a homogenizer, or a three roll mill.
 前記レジスト下層膜用組成物からレジスト下層膜を作成するには、例えば、前記レジスト下層膜用組成物を、シリコン基板などフォトリソグラフィーを行う対象物上に塗布し、100~200℃の温度条件下で乾燥させた後、更に250~400℃の温度条件下で加熱硬化させるなどの方法によりレジスト下層膜を形成する。次いで、この下層膜上で通常のフォトリソグラフィー操作を行ってレジストパターンを形成し、ハロゲン系プラズマガス等でドライエッチング処理することにより、多層レジスト法によるレジストパターンを形成することが出来る。 In order to prepare a resist underlayer film from the resist underlayer film composition, for example, the resist underlayer film composition is applied onto an object to be subjected to photolithography such as a silicon substrate, and is subjected to a temperature condition of 100 to 200 ° C. After drying, a resist underlayer film is formed by a method such as heat curing under a temperature condition of 250 to 400 ° C. Next, a resist pattern is formed on this lower layer film by performing a normal photolithography operation, and a resist pattern by a multilayer resist method can be formed by performing a dry etching process with a halogen-based plasma gas or the like.
 本発明の樹脂組成物をレジスト永久膜用途に用いる場合には、更に必要に応じて界面活性剤や染料、充填材、架橋剤、溶解促進剤など各種の添加剤を加え、有機溶剤に溶解することによりレジスト永久膜用組成物とすることができる。ここで用いる有機溶剤は、レジスト下層膜用組成物で用いる有機溶剤と同様のものが挙げられる。 When the resin composition of the present invention is used for resist permanent film applications, various additives such as surfactants, dyes, fillers, crosslinking agents, and dissolution accelerators are further added as necessary to dissolve in organic solvents. Thus, a composition for a resist permanent film can be obtained. The organic solvent used here is the same as the organic solvent used in the resist underlayer film composition.
 前記レジスト永久膜用組成物を用いたフォトリソグラフィーの方法は、例えば、有機溶剤に樹脂成分及び添加剤成分を溶解・分散させ、シリコン基板フォトリソグラフィーを行う対象物上に塗布し、60~150℃の温度条件でプリベークする。このときの塗布方法は、スピンコート、ロールコート、フローコート、ディップコート、スプレーコート、ドクターブレードコート等の何れの方法でもよい。次にレジストパターンの作成であるが、当該レジスト永久膜用組成物がポジ型の場合には、目的とするレジストパターンを所定のマスクを通じて露光し、露光した箇所をアルカリ現像液にて溶解することにより、レジストパターンを形成する。 A photolithography method using the resist permanent film composition includes, for example, dissolving and dispersing a resin component and an additive component in an organic solvent, and applying the solution on an object to be subjected to silicon substrate photolithography, and a temperature of 60 to 150 ° C. Pre-bake under the following temperature conditions. The coating method at this time may be any method such as spin coating, roll coating, flow coating, dip coating, spray coating, doctor blade coating and the like. Next, when creating the resist pattern, if the resist permanent film composition is positive, the target resist pattern is exposed through a predetermined mask, and the exposed portion is dissolved with an alkali developer. Thus, a resist pattern is formed.
 前記レジスト永久膜用組成物からなる永久膜は、例えば、半導体デバイス関係ではソルダーレジスト、パッケージ材、アンダーフィル材、回路素子等のパッケージ接着層や集積回路素子と回路基板の接着層、LCD、OELDに代表される薄型ディスプレイ関係では薄膜トランジスタ保護膜、液晶カラーフィルター保護膜、ブラックマトリックス、スペーサーなどに好適に用いることができる。 The permanent film made of the resist permanent film composition is, for example, a solder resist, a package material, an underfill material, a package adhesive layer such as a circuit element, an integrated circuit element-circuit board adhesive layer, an LCD, or an OELD for semiconductor devices. Can be suitably used for thin film transistor protective films, liquid crystal color filter protective films, black matrices, spacers and the like.
 本発明の樹脂組成物を感光性レジスト材料の耐熱性付与剤として用いる場合には、感光性レジスト材料100質量部中、0.05~20質量部の範囲で用いることが好ましい。前記感光性レジスト材料は公知慣用のものを何れも用いることができる。 When the resin composition of the present invention is used as a heat resistance imparting agent for a photosensitive resist material, it is preferably used in a range of 0.05 to 20 parts by mass in 100 parts by mass of the photosensitive resist material. Any known and commonly used photosensitive resist material can be used.
 感光性レジスト材料用樹脂の具体例としては、各種のフェノール樹脂、p-ヒドロキシスチレンやp-(1,1,1,3,3,3-ヘキサフルオロ-2-ヒドロキシプロピル)スチレン等のヒドロキシ基含有スチレン重合体、前記フェノール樹脂やヒドロキシ基含有スチレン重合体の水酸基をt-ブトキシカルボニル基やベンジルオキシカルボニル基等の酸分解性基で変性したもの、(メタ)アクリル酸の単独重合体あるいは共重合体、ノルボルネン化合物やテトラシクロドデセン化合物等の脂環式重合性単量体と無水マレイン酸或いはマレイミドとの交互重合体等が挙げられる。 Specific examples of resins for photosensitive resist materials include various phenol resins, hydroxy groups such as p-hydroxystyrene and p- (1,1,1,3,3,3-hexafluoro-2-hydroxypropyl) styrene. -Containing styrene polymer, a hydroxyl group of the phenol resin or hydroxy group-containing styrene polymer modified with an acid-decomposable group such as t-butoxycarbonyl group or benzyloxycarbonyl group, a homopolymer or copolymer of (meth) acrylic acid Examples thereof include an alternating polymer of a polymer, an alicyclic polymerizable monomer such as a norbornene compound or a tetracyclododecene compound, and maleic anhydride or maleimide.
 感光性レジスト材料用の感光剤は、例えば、芳香族(ポリ)ヒドロキシ化合物と、ナフトキノン-1,2-ジアジド-5-スルホン酸、ナフトキノン-1,2-ジアジド-4-スルホン酸、オルトアントラキノンジアジドスルホン酸等のキノンジアジド基を有するスルホン酸との完全エステル化合物、部分エステル化合物、アミド化物又は部分アミド化物などが挙げられる。キノンジアジド基を有する化合物等のキノンジアジド基を有する化合物が挙げられる。 Photosensitive agents for photosensitive resist materials include, for example, aromatic (poly) hydroxy compounds, naphthoquinone-1,2-diazide-5-sulfonic acid, naphthoquinone-1,2-diazide-4-sulfonic acid, orthoanthraquinonediazide Examples thereof include complete ester compounds, partial ester compounds, amidated products or partially amidated products with sulfonic acids having a quinonediazide group such as sulfonic acid. Examples thereof include compounds having a quinonediazide group such as a compound having a quinonediazide group.
 以下に具体的な例を挙げて、本発明をさらに詳しく説明する。なお、製造例にて製造した樹脂の分析はそれぞれ以下の条件で行った。 Hereinafter, the present invention will be described in more detail with specific examples. In addition, the analysis of resin manufactured in the manufacture example was performed on the following conditions, respectively.
 数平均分子量(Mn)、重量平均分子量(Mw)、多分散度(Mw/Mn)は下記条件のGPCにて測定した。また、樹脂中の各成分の含有量は下記条件で測定したGPCチャート図の面積比から計算した。
[GPCの測定条件]
 測定装置:東ソー株式会社製「HLC-8220 GPC」
 カラム:昭和電工株式会社製「Shodex KF802」(8.0mmФ×300mm)+昭和電工株式会社製「Shodex KF802」(8.0mmФ×300mm)
+昭和電工株式会社製「Shodex KF803」(8.0mmФ×300mm)+昭和電工株式会社製「Shodex KF804」(8.0mmФ×300mm)
 カラム温度:40℃
 検出器: RI(示差屈折計)
 データ処理:東ソー株式会社製「GPC-8020モデルIIバージョン4.30」
 展開溶媒:テトラヒドロフラン
 流速:1.0mL/分
 試料:樹脂固形分換算で0.5質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの
 注入量:0.1mL
 標準試料:下記単分散ポリスチレン
 (標準試料:単分散ポリスチレン)
 東ソー株式会社製「A-500」
 東ソー株式会社製「A-2500」
 東ソー株式会社製「A-5000」
 東ソー株式会社製「F-1」
 東ソー株式会社製「F-2」
 東ソー株式会社製「F-4」
 東ソー株式会社製「F-10」
 東ソー株式会社製「F-20」
Number average molecular weight (Mn), weight average molecular weight (Mw), and polydispersity (Mw / Mn) were measured by GPC under the following conditions. The content of each component in the resin was calculated from the area ratio of the GPC chart measured under the following conditions.
[GPC measurement conditions]
Measuring device: “HLC-8220 GPC” manufactured by Tosoh Corporation
Column: “Shodex KF802” (8.0 mmФ × 300 mm) manufactured by Showa Denko KK + “Shodex KF802” (8.0 mmФ × 300 mm) manufactured by Showa Denko KK
+ Showa Denko Co., Ltd. “Shodex KF803” (8.0 mmФ × 300 mm) + Showa Denko Co., Ltd. “Shodex KF804” (8.0 mmФ × 300 mm)
Column temperature: 40 ° C
Detector: RI (differential refractometer)
Data processing: “GPC-8020 Model II version 4.30” manufactured by Tosoh Corporation
Developing solvent: Tetrahydrofuran Flow rate: 1.0 mL / min Sample: 0.5% by mass tetrahydrofuran solution filtered with a microfilter in terms of resin solids Injection volume: 0.1 mL
Standard sample: Monodispersed polystyrene below (Standard sample: Monodispersed polystyrene)
“A-500” manufactured by Tosoh Corporation
“A-2500” manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
“F-1” manufactured by Tosoh Corporation
“F-2” manufactured by Tosoh Corporation
“F-4” manufactured by Tosoh Corporation
“F-10” manufactured by Tosoh Corporation
“F-20” manufactured by Tosoh Corporation
[FD-MSの測定装置]
日本電子株式会社製 二重収束型質量分析装置 AX505H(FD505H)
[Measurement equipment for FD-MS]
Double convergence mass spectrometer AX505H (FD505H) manufactured by JEOL Ltd.
製造例1 エポキシ樹脂(A-1)の製造
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、2,7-ジヒドロキシナフタレンを160質量部、ベンジルアルコール25質量部、キシレン160質量部、パラトルエンスルホン酸・1水和物2質量部を仕込み、室温下、窒素を吹き込みながら撹拌した。140℃に昇温し、生成する水を系外に留去し、かつ、水と共に留出したキシレンは反応系内に戻しながら4時間攪拌した。次いで150℃に昇温し、生成する水とキシレンとを系外に留去しながら3時間攪拌した。反応終了後、20%水酸化ナトリウム水溶液2質量部を添加して中和した後、減圧条件下で乾燥させてポリアリーレンエーテル樹脂中間体(1-1)を178質量部得た。前記中間体(1-1)の水酸基当量は169g/当量、軟化点は130℃であった。
Production Example 1 Production of Epoxy Resin (A-1) In a flask equipped with a thermometer, dropping funnel, condenser, fractionator, and stirrer, 160 parts by mass of 2,7-dihydroxynaphthalene, 25 parts by mass of benzyl alcohol, 160 parts by mass of xylene and 2 parts by mass of para-toluenesulfonic acid monohydrate were charged and stirred at room temperature while blowing nitrogen. The temperature was raised to 140 ° C., the generated water was distilled out of the system, and xylene distilled with water was stirred for 4 hours while returning to the reaction system. Next, the temperature was raised to 150 ° C., and the resulting water and xylene were stirred for 3 hours while distilling out of the system. After completion of the reaction, the reaction mixture was neutralized by adding 2 parts by mass of a 20% aqueous sodium hydroxide solution and then dried under reduced pressure to obtain 178 parts by mass of a polyarylene ether resin intermediate (1-1). The intermediate (1-1) had a hydroxyl group equivalent of 169 g / equivalent and a softening point of 130 ° C.
 前記ポリアリーレンエーテル樹脂中間体(1-1)のFD-MS、前記ポリアリーレンエーテル樹脂中間体(1-1)のトリメチルシリル化体のFD-MSを測定し、下記化合物の生成を確認した。
1.2,7-ジヒドロキシナフタレンにベンジル基が1つ付加したもの(M=250)
2.2,7-ジヒドロキシナフタレンにベンジル基が2つ付加したもの(M=340)
3.下記構造式(a)においてnが1である化合物(M=446)
4.下記構造式(a)においてnが2である化合物(M=588)
5.下記構造式(a)においてnが1である化合物にトリメチルシリルオキシナフチル基が1つ付加した化合物(M=660)
6.下記構造式(a)においてnが3である化合物(M=730)
7.下記構造式(a)においてnが2である化合物にトリメチルシリルオキシナフチル基が1つ付加した化合物(M=802)
8.下記構造式(a)においてnが4である化合物(M=873)
9.下記構造式(a)においてnが3である化合物にトリメチルシリルオキシナフチル基が1つ付加した化合物(M=944)
10.下記構造式(a)においてnが2である化合物にトリメチルシリルオキシナフチル基が2つ付加した化合物(M=1016)
11.前記3~10の各化合物にベンジル基が1つ又は2つ付加した化合物
The FD-MS of the polyarylene ether resin intermediate (1-1) and the FD-MS of the triarylated product of the polyarylene ether resin intermediate (1-1) were measured to confirm the formation of the following compounds.
1.2,7-dihydroxynaphthalene with one benzyl group added (M + = 250)
2. Two benzyl groups added to 2,7-dihydroxynaphthalene (M + = 340)
3. A compound in which n is 1 in the following structural formula (a) (M + = 446)
4). A compound in which n is 2 in the following structural formula (a) (M + = 588)
5). A compound in which one trimethylsilyloxynaphthyl group is added to a compound in which n is 1 in the following structural formula (a) (M + = 660)
6). A compound wherein n is 3 in the following structural formula (a) (M + = 730)
7). A compound in which one trimethylsilyloxynaphthyl group is added to a compound in which n is 2 in the following structural formula (a) (M + = 802)
8). A compound wherein n is 4 in the following structural formula (a) (M + = 873)
9. A compound in which one trimethylsilyloxynaphthyl group is added to a compound in which n is 3 in the following structural formula (a) (M + = 944)
10. A compound in which two trimethylsilyloxynaphthyl groups are added to a compound in which n is 2 in the following structural formula (a) (M + = 1016)
11. A compound in which one or two benzyl groups are added to each of the above 3 to 10 compounds
Figure JPOXMLDOC01-appb-C000016
(式中nは0又は1以上の整数、TMSはトリメチルシリル基である。)
Figure JPOXMLDOC01-appb-C000016
(In the formula, n is 0 or an integer of 1 or more, and TMS is a trimethylsilyl group.)
 温度計、滴下ロート、冷却管、撹拌機を取り付けたフラスコに、窒素ガスパージを施しながら先で得たポリアリーレンエーテル樹脂中間体(1-1)169質量部、エピクロルヒドリン463質量部、n-ブタノール139質量部、テトラエチルベンジルアンモニウムクロライド2質量部を仕込み溶解させた。65℃に昇温した後、共沸する圧力まで減圧して、49%水酸化ナトリウム水溶液90質量部を5時間かけて滴下した。その後、同条件で0.5時間撹拌を続けた。この間、共沸によって留出してきた留出分をディーンスタークトラップで分離して、水層は除去し、有機層は反応系内に戻しながら反応を行った。その後、未反応のエピクロルヒドリンを減圧蒸留によって留去させた。得られた粗エポキシ樹脂にメチルイソブチルケトン432質量部とn-ブタノール130質量部とを加えて溶解した。更に10%水酸化ナトリウム水溶液10質量部を添加して80℃で2時間反応させた。ついで、洗浄水のpHが中性になるまで水150質量部を用いて水洗した。共沸させて系内を脱水し、精密濾過を経た後に、減圧条件下で乾燥させて、エポキシ樹脂(A-1)230質量部を得た。エポキシ樹脂(A-1)の軟化点は100℃、エポキシ当量は277g/当量であった。 Into a flask equipped with a thermometer, a dropping funnel, a condenser, and a stirrer, 169 parts by mass of the polyarylene ether resin intermediate (1-1) obtained above while performing nitrogen gas purge, 463 parts by mass of epichlorohydrin, n-butanol 139 Part by mass and 2 parts by mass of tetraethylbenzylammonium chloride were charged and dissolved. After raising the temperature to 65 ° C., the pressure was reduced to an azeotropic pressure, and 90 parts by mass of a 49% aqueous sodium hydroxide solution was added dropwise over 5 hours. Thereafter, stirring was continued for 0.5 hours under the same conditions. During this time, the distillate distilled by azeotropic distillation was separated by a Dean-Stark trap, the aqueous layer was removed, and the organic layer was returned to the reaction system. Thereafter, unreacted epichlorohydrin was distilled off under reduced pressure. To the obtained crude epoxy resin, 432 parts by mass of methyl isobutyl ketone and 130 parts by mass of n-butanol were added and dissolved. Further, 10 parts by mass of a 10% aqueous sodium hydroxide solution was added and reacted at 80 ° C. for 2 hours. Subsequently, it washed with 150 mass parts of water until the pH of washing water became neutral. The system was dehydrated by azeotropic distillation, passed through microfiltration, and dried under reduced pressure to obtain 230 parts by mass of epoxy resin (A-1). The softening point of the epoxy resin (A-1) was 100 ° C., and the epoxy equivalent was 277 g / equivalent.
製造例2 ヒドロキシナフタレンノボラック型フェノール樹脂(B-1)の製造
 温度計、冷却管、撹拌器を取り付けた1L容4つ口フラスコに、1-ナフトール144質量部、メチルイソブチルケトン400質量部、水96質量部、及び92%パラホルムアルデヒド27.7質量部を仕込んだ。フラスコ内を攪拌しながら、50質量%に調整したパラトルエンスルホン酸の水溶液4.8質量部を添加した。反応系内の水の量は1-ナフトール100質量部に対し、69.9質量部であった。フラスコ内を攪拌しながら80℃まで昇温して2時間反応させた。反応中、有機層と水層は完全に相溶した「均一」とはなっておらず、「不均一」の状態であった。反応終了後、分液ロートを用いて有機層を回収した。洗浄水が中性を示すまで有機層を洗浄した後、加熱減圧条件下で乾燥させてヒドロキシナフタレンノボラック型フェノール樹脂(B-1)147gを得た。ヒドロキシナフタレンノボラック型フェノール樹脂(B-1)の数平均分子量(Mn)は1,312、重量平均分子量(Mw)は2,251、多分散度(Mw/Mn)は1.716、モノマー残存量は0.57質量%であった。
Production Example 2 Production of hydroxynaphthalene novolak type phenolic resin (B-1) In a 1 L four-necked flask equipped with a thermometer, a condenser tube and a stirrer, 144 parts by mass of 1-naphthol, 400 parts by mass of methyl isobutyl ketone, water 96 parts by mass and 27.7 parts by mass of 92% paraformaldehyde were charged. While stirring the inside of the flask, 4.8 parts by mass of an aqueous solution of paratoluenesulfonic acid adjusted to 50% by mass was added. The amount of water in the reaction system was 69.9 parts by mass with respect to 100 parts by mass of 1-naphthol. While stirring in the flask, the temperature was raised to 80 ° C. and reacted for 2 hours. During the reaction, the organic layer and the aqueous layer were not completely “uniform”, but were in a “non-uniform” state. After completion of the reaction, the organic layer was recovered using a separatory funnel. The organic layer was washed until the washing water showed neutrality, and then dried under heating and reduced pressure conditions to obtain 147 g of hydroxynaphthalene novolac type phenol resin (B-1). The number average molecular weight (Mn) of the hydroxy naphthalene novolak type phenol resin (B-1) is 1,312, the weight average molecular weight (Mw) is 2,251, the polydispersity (Mw / Mn) is 1.716, and the residual monomer amount Was 0.57 mass%.
製造例3 ヒドロキシナフタレンノボラック型フェノール樹脂(B-2)の製造
 温度計、滴下ロート、冷却管、撹拌器を取り付けたフラスコに、1-ナフトール288質量部、4-ヒドロキシベンズアルデヒド244質量部、1-ブタノール500質量部、95%硫酸14.4質量部を仕込み、80℃に昇温して17時間撹拌した。反応終了後、酢酸エチル300質量部、イオン交換水160質量部を加え、分液ロートを用いて有機層を回収した。イオン交換水160質量部を用いて有機層を水洗し、洗浄水のpHが4になるまで水洗を繰り返した。水洗後、エバポレータにて乾燥させてヒドロキシナフタレンノボラック型フェノール樹脂(B-2)466質量部を得た。GPCチャート図から、ヒドロキシナフタレンノボラック型フェノール樹脂(B-2)が下記構造式(2-1)で表される化合物であってnが4である成分を52%含有していることを確認した。
Production Example 3 Production of Hydroxynaphthalene Novolak Type Phenolic Resin (B-2) A flask equipped with a thermometer, dropping funnel, condenser, and stirrer was charged with 288 parts by mass of 1-naphthol, 244 parts by mass of 4-hydroxybenzaldehyde, 1- 500 parts by weight of butanol and 14.4 parts by weight of 95% sulfuric acid were charged, heated to 80 ° C. and stirred for 17 hours. After completion of the reaction, 300 parts by mass of ethyl acetate and 160 parts by mass of ion exchange water were added, and the organic layer was recovered using a separatory funnel. The organic layer was washed with 160 parts by mass of ion-exchanged water, and washing with water was repeated until the pH of the washing water reached 4. After washing with water and drying with an evaporator, 466 parts by mass of a hydroxynaphthalene novolac type phenol resin (B-2) was obtained. From the GPC chart, it was confirmed that the hydroxynaphthalene novolac type phenol resin (B-2) contained 52% of a component represented by the following structural formula (2-1) and having n of 4. .
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
製造例4 ヒドロキシナフタレンノボラック型フェノール樹脂(B-3)の製造
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、1-ナフトール216質量部、37%ホルムアルデヒド水溶液146質量部、イソプロピルアルコール121質量部、49%水酸化ナトリウム水溶液46質量部を仕込み、窒素を吹き込みながら室温条件下で撹拌した。次いで、80℃まで昇温して1時間反応させた。反応終了後、第1リン酸ソーダ40質量部を添加して中和した後、反応溶液を冷却して結晶物を取り出した。水200質量部を用いて結晶物を3回洗浄した後、加熱減圧条件下で乾燥させて、ヒドロキシナフタレンノボラック型フェノール樹脂(B-3)224質量部得た。GPCチャート図から、ヒドロキシナフタレンノボラック型フェノール樹脂(B-3)は下記構造式(2-2)で表される化合物であってnが4である成分を86%含有していることを確認した。
Production Example 4 Production of hydroxynaphthalene novolak type phenolic resin (B-3) A flask equipped with a thermometer, a dropping funnel, a condenser tube, a fractionating tube, and a stirrer was 216 parts by mass of 1-naphthol and 146 parts by mass of 37% formaldehyde aqueous solution. Parts, 121 parts by mass of isopropyl alcohol, and 46 parts by mass of a 49% aqueous sodium hydroxide solution were stirred at room temperature while blowing nitrogen. Subsequently, it heated up to 80 degreeC and made it react for 1 hour. After completion of the reaction, 40 parts by mass of first sodium phosphate was added for neutralization, and then the reaction solution was cooled to take out a crystal. The crystal was washed three times with 200 parts by mass of water and then dried under heating and reduced pressure to obtain 224 parts by mass of a hydroxynaphthalene novolac type phenol resin (B-3). From the GPC chart, it was confirmed that the hydroxynaphthalene novolak type phenol resin (B-3) contained 86% of a compound represented by the following structural formula (2-2) and n = 4. .
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
製造例5 ヒドロキシナフタレンノボラック型フェノール樹脂(B-4)の製造
 1-ナフトール216質量部の代わりに、1-ナフトール108質量部と2-ナフトール108質量部とを用いた以外は製造例4と同様の方法でヒドロキシナフタレンノボラック型フェノール樹脂(B-4)を得た。GPCチャート図から、ヒドロキシナフタレンノボラック型フェノール樹脂(B-4)は下記構造式(2-3)で表される化合物であってnが4である成分を6.9%含有していることを確認した。
Production Example 5 Production of hydroxynaphthalene novolac-type phenolic resin (B-4) Same as Production Example 4 except that 1-naphthol (108 parts by mass) and 2-naphthol (108 parts by mass) were used instead of 1-naphthol (216 parts by mass) In this way, a hydroxy naphthalene novolak type phenol resin (B-4) was obtained. From the GPC chart, it is found that the hydroxy naphthalene novolak type phenolic resin (B-4) contains 6.9% of a compound represented by the following structural formula (2-3) where n is 4. confirmed.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
製造例6 ヒドロキシナフタレンノボラック型フェノール樹脂(B-5)の製造
 温度計、冷却管、分留管、撹拌器を取り付けた1Lの4つ口フラスコに、2,7-ジヒドロキシナフタレン160質量部、メチルイソブチルケトン400質量部、水96質量部、及び92%パラホルムアルデヒド27.7質量部を仕込んだ。フラスコ内を攪拌しながら、50%濃度に調整したパラトルエンスルホン酸の水溶液4.8質量部を添加した。反応系内の水の量は2,7-ジヒドロキシナフタレン100質量部に対し、62.9質量部であった。フラスコ内を攪拌しながら80℃まで昇温して2時間反応させた。反応終了後、分液ロートを用いて有機層を回収した。洗浄水が中性を示すまで有機層を水洗した後、加熱減圧条件下で乾燥させてヒドロキシナフタレンノボラック型フェノール樹脂(B-5)165質量部を得た。ヒドロキシナフタレンノボラック型フェノール樹脂(B-5)の数平均分子量(Mn)は1,142、重量平均分子量(Mw)は1,626、多分散度(Mw/Mn)は1.424であり、モノマー残存量は0.61質量%であった。
Production Example 6 Production of Hydroxynaphthalene Novolak Type Phenolic Resin (B-5) Into a 1 L four-necked flask equipped with a thermometer, a condenser tube, a fractionating tube and a stirrer, 160 parts by mass of 2,7-dihydroxynaphthalene, methyl 400 parts by mass of isobutyl ketone, 96 parts by mass of water, and 27.7 parts by mass of 92% paraformaldehyde were charged. While stirring the inside of the flask, 4.8 parts by mass of an aqueous solution of paratoluenesulfonic acid adjusted to 50% concentration was added. The amount of water in the reaction system was 62.9 parts by mass with respect to 100 parts by mass of 2,7-dihydroxynaphthalene. While stirring in the flask, the temperature was raised to 80 ° C. and reacted for 2 hours. After completion of the reaction, the organic layer was recovered using a separatory funnel. The organic layer was washed with water until the washing water became neutral, and then dried under heating and reduced pressure conditions to obtain 165 parts by mass of a hydroxynaphthalene novolac type phenol resin (B-5). The number average molecular weight (Mn) of the hydroxy naphthalene novolak type phenol resin (B-5) is 1,142, the weight average molecular weight (Mw) is 1,626, and the polydispersity (Mw / Mn) is 1.424. The remaining amount was 0.61% by mass.
製造例7 ヒドロキシナフタレンノボラック型フェノール樹脂(B-6)の製造
 温度計、滴下ロート、冷却管、撹拌器を取り付けたフラスコに、1,6-ジヒドロキシナフタレン48質量部、42質量%ホルムアルデヒド水溶液26質量部、イソプロピルアルコール50質量部、48%水酸化カリウム12.8質量部を仕込み、室温下、窒素を吹き込みながら撹拌した。その後、80℃に昇温して1時間撹拌した。反応終了後、第1リン酸ソーダ8質量部を添加して中和し、冷却して結晶物を濾別した。濾別した結晶物を水50質量部で3回洗浄した後、加熱減圧条件下で乾燥させてヒドロキシナフタレンノボラック型フェノール樹脂(B-6)20質量部を得た。GPCチャート図から、ヒドロキシナフタレンノボラック型フェノール樹脂(B-6)は下記構造式(2-4)で表される化合物であってnが4である成分を36%含有していることを確認した。
Production Example 7 Production of hydroxynaphthalene novolak-type phenolic resin (B-6) A flask equipped with a thermometer, a dropping funnel, a condenser, and a stirrer was charged with 48 parts by mass of 1,6-dihydroxynaphthalene, 26 masses of a 42 mass% formaldehyde aqueous solution. Part, 50 parts by mass of isopropyl alcohol, and 12.8 parts by mass of 48% potassium hydroxide were added and stirred at room temperature while blowing nitrogen. Then, it heated up at 80 degreeC and stirred for 1 hour. After completion of the reaction, 8 parts by mass of first sodium phosphate was added for neutralization, and the mixture was cooled and the crystals were separated by filtration. The crystallized product separated by filtration was washed three times with 50 parts by mass of water and then dried under heating and reduced pressure conditions to obtain 20 parts by mass of a hydroxynaphthalene novolac type phenol resin (B-6). From the GPC chart, it was confirmed that the hydroxy naphthalene novolak type phenol resin (B-6) contained 36% of a compound represented by the following structural formula (2-4) and having n of 4. .
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
製造例8 ヒドロキシナフタレンノボラック型フェノール樹脂(B-7)の製造
 温度計、滴下ロート、冷却管、撹拌器を取り付けたフラスコに、1,6-ジヒドロキシナフタレン160質量部、4-ヒドロキシベンズアルデヒド122質量部、2-エトキシエタノール290質量部、95%硫酸1.7質量部を仕込み、80℃に昇温後8時間撹拌した。反応終了後、酢酸エチル300質量部、イオン交換水160質量部を加えた後、分液ロートを用いて有機層を回収した。洗浄水のpHが4になるまでイオン交換水160質量部を用いて有機層を洗浄し、エバポレータを用いて乾燥させてヒドロキシナフタレンノボラック型フェノール樹脂(B-7)247質量部を得た。GPCチャート図から、ヒドロキシナフタレンノボラック型フェノール樹脂(B-7)は下記構造式(2-5)で表される化合物であってnが4である成分を89%含有していることを確認した。
Production Example 8 Production of hydroxynaphthalene novolac type phenolic resin (B-7) In a flask equipped with a thermometer, a dropping funnel, a condenser, and a stirrer, 160 parts by mass of 1,6-dihydroxynaphthalene and 122 parts by mass of 4-hydroxybenzaldehyde Then, 290 parts by mass of 2-ethoxyethanol and 1.7 parts by mass of 95% sulfuric acid were added, and the mixture was heated to 80 ° C. and stirred for 8 hours. After completion of the reaction, 300 parts by mass of ethyl acetate and 160 parts by mass of ion-exchanged water were added, and then the organic layer was recovered using a separatory funnel. The organic layer was washed with 160 parts by mass of ion-exchanged water until the pH of the washing water reached 4, and dried using an evaporator to obtain 247 parts by mass of a hydroxynaphthalene novolac type phenol resin (B-7). From the GPC chart, it was confirmed that the hydroxynaphthalene novolac-type phenol resin (B-7) contained 89% of a compound represented by the following structural formula (2-5), where n is 4. .
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
製造例9 ヒドロキシナフタレンノボラック型フェノール樹脂(B-8)の製造
 温度計、滴下ロート、冷却管、撹拌器を取り付けたフラスコに、1,6-ジヒドロキシナフタレン80質量部、1-ナフトール72質量部、4-ヒドロキシベンズアルデヒド122質量部、1-ブタノール290質量部、及び95%硫酸1.7質量部を仕込み、100℃まで昇温して12時間撹拌しながら反応させた。反応終了後、イオン交換水160質量部を加え、分液ロートを用いて有機層を回収した。洗浄水のpHが4になるまでイオン交換水160量部を用いて有機層を洗浄し、エバポレータを用いて乾燥させてヒドロキシナフタレンノボラック型フェノール樹脂(B-8)237質量部を得た。GPCチャート図から、ヒドロキシナフタレンノボラック型フェノール樹脂(B-8)は下記構造式(2-6)で表される環状ノボラック型樹脂を79%含有していることを確認した。
Production Example 9 Production of Hydroxynaphthalene Novolak Type Phenolic Resin (B-8) To a flask equipped with a thermometer, dropping funnel, condenser and stirrer, 80 parts by mass of 1,6-dihydroxynaphthalene, 72 parts by mass of 1-naphthol, 122 parts by weight of 4-hydroxybenzaldehyde, 290 parts by weight of 1-butanol, and 1.7 parts by weight of 95% sulfuric acid were charged, and the temperature was raised to 100 ° C. and the reaction was conducted for 12 hours with stirring. After completion of the reaction, 160 parts by mass of ion exchange water was added, and the organic layer was recovered using a separatory funnel. The organic layer was washed with 160 parts by weight of ion exchanged water until the pH of the washing water reached 4, and dried using an evaporator to obtain 237 parts by weight of a hydroxynaphthalene novolac type phenolic resin (B-8). From the GPC chart, it was confirmed that the hydroxynaphthalene novolac type phenolic resin (B-8) contained 79% of a cyclic novolac type resin represented by the following structural formula (2-6).
Figure JPOXMLDOC01-appb-C000022
(式中lは1又は2、nは2~10の整数である。)
Figure JPOXMLDOC01-appb-C000022
(Wherein l is 1 or 2, n is an integer of 2 to 10)
実施例1~8
 下記表1に示す組み合わせでエポキシ樹脂50質量部、ヒドロキシナフタレンノボラック型フェノール樹脂50質量部、2-エチル-4-メチルイミダゾール0.1質量部を配合し、プロピレングリコールモノメチルエーテルアセテート400質量部に溶解させた後、0.2μmのメンブランフィルターで濾過して樹脂性組成物を調製した。得られた樹脂組成物について、下記の要領で各種の評価試験を行った。結果を表1に示す。
Examples 1-8
In the combination shown in Table 1 below, 50 parts by mass of an epoxy resin, 50 parts by mass of a hydroxynaphthalene novolac type phenol resin, and 0.1 parts by mass of 2-ethyl-4-methylimidazole are blended and dissolved in 400 parts by mass of propylene glycol monomethyl ether acetate. Then, it was filtered through a 0.2 μm membrane filter to prepare a resinous composition. The obtained resin composition was subjected to various evaluation tests in the following manner. The results are shown in Table 1.
表1中の各成分の詳細は以下の通り。
・エポキシ樹脂(A’-1):DIC株式会社製「EPICOLON N-740」
・エポキシ樹脂(A’-2):DIC株式会社製「EPICOLON N-655-EXP-S」
Details of each component in Table 1 are as follows.
Epoxy resin (A'-1): “EPICOLON N-740” manufactured by DIC Corporation
Epoxy resin (A'-2): "EPICOLON N-655-EXP-S" manufactured by DIC Corporation
耐熱性の評価
前記樹脂組成物を直径5インチのシリコンウェハー上にスピンコーターを用いて塗布し、酸素濃度20容量%の環境下、ホットプレートを用いて180℃で60秒間加熱した。更に、350℃で120秒間加熱して、膜厚0.3μmのレジスト膜付きシリコンウェハーを得た。シリコンウェハーからレジスト膜を削り取り耐熱性の評価の試験サンプルとした。示差熱熱重量同時測定装置(TG/DTA)を用い、下記条件で昇温させた時の質量減少を測定し、熱分解開始温度を求めた。
測定機器:セイコーインスツールメント社製TG/DTA 6200
測定範囲:RT~400℃
昇温速度:10℃/分
雰囲気:窒素
Evaluation of heat resistance The resin composition was applied onto a silicon wafer having a diameter of 5 inches using a spin coater, and heated at 180 ° C. for 60 seconds using a hot plate in an environment with an oxygen concentration of 20% by volume. Furthermore, it heated at 350 degreeC for 120 second, and obtained the silicon wafer with a resist film with a film thickness of 0.3 micrometer. The resist film was scraped from the silicon wafer and used as a test sample for heat resistance evaluation. Using a differential thermothermal gravimetric simultaneous measurement device (TG / DTA), the mass decrease when the temperature was raised under the following conditions was measured to determine the thermal decomposition starting temperature.
Measuring device: TG / DTA 6200 manufactured by Seiko Instruments Inc.
Measurement range: RT to 400 ° C
Temperature increase rate: 10 ° C / min Atmosphere: Nitrogen
ドライエッチング耐性の評価
 前記樹脂組成物を直径5インチのシリコンウェハー上にスピンコーターを用いて塗布し、酸素濃度20容量%の環境下、ホットプレートを用いて180℃で60秒間加熱した。更に、350℃で120秒間加熱して、膜厚0.3μmのレジスト膜付きシリコンウェハーを得た。形成したレジスト膜を、エッチング装置(神鋼精機社製「EXAM」)を使用して、CF/Ar/O(CF:40mL/分、Ar:20mL/分、O:5mL/分 圧力:20Pa RFパワー:200W 処理時間:40秒 温度:15℃)の条件でエッチング処理した。エッチング処理前後の膜厚を測定してエッチングレートを算出し、エッチング耐性を評価した。評価基準は以下の通りである。
A:エッチングレートが150nm/分以下の場合
B:エッチングレートが150nm/分を超える場合
Evaluation of dry etching resistance The resin composition was applied onto a silicon wafer having a diameter of 5 inches using a spin coater, and heated at 180 ° C. for 60 seconds using a hot plate in an environment with an oxygen concentration of 20% by volume. Furthermore, it heated at 350 degreeC for 120 second, and obtained the silicon wafer with a resist film with a film thickness of 0.3 micrometer. The formed resist film is CF 4 / Ar / O 2 (CF 4 : 40 mL / min, Ar: 20 mL / min, O 2 : 5 mL / min) using an etching apparatus (“EXAM” manufactured by Shinko Seiki Co., Ltd.) : 20 Pa RF power: 200 W Processing time: 40 seconds Temperature: 15 ° C.) Etching was performed. The film thickness before and after the etching treatment was measured to calculate the etching rate, and the etching resistance was evaluated. The evaluation criteria are as follows.
A: When the etching rate is 150 nm / min or less B: When the etching rate exceeds 150 nm / min
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023

Claims (8)

  1. ポリアリーレンエーテル構造(α)を有するエポキシ樹脂(A)と、ヒドロキシナフタレンノボラック型フェノール樹脂(B)とを含有することを特徴とする樹脂組成物。 A resin composition comprising an epoxy resin (A) having a polyarylene ether structure (α) and a hydroxynaphthalene novolac-type phenol resin (B).
  2. 前記ポリアリーレンエーテル構造(α)中の芳香核の少なくとも一つがナフタレン骨格を有するものである請求項1記載の樹脂組成物。 The resin composition according to claim 1, wherein at least one of the aromatic nuclei in the polyarylene ether structure (α) has a naphthalene skeleton.
  3. 前記ポリアリーレンエーテル構造(α)が、ポリナフチレンエーテル構造である請求項1記載の樹脂組成物。 The resin composition according to claim 1, wherein the polyarylene ether structure (α) is a polynaphthylene ether structure.
  4. 前記ヒドロキシナフタレンノボラック型フェノール樹脂(B)が、下記構造式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中lは1又は2であり、水酸基はナフタレン環上の何れの炭素原子に結合していてもよい。Rは水素原子、置換基を有していても良いアルキル基、置換基を有していても良いアリール基の何れかである。Rはそれぞれ独立にアルキル基、アルコキシ基、ハロゲン原子の何れかであり、ナフタレン環上の何れの炭素原子に結合していてもよく、mは0又は1~5の整数である。)
    で表される構造部位(β)を繰り返し構造単位として有する非環状ノボラック型樹脂(B1)と、下記構造式(2)
    Figure JPOXMLDOC01-appb-C000002
    [式中βは前記構造式(1)で表される構造部位(β)であり、nは2~10の整数である。]
    で表される分子構造を有する環状ノボラック型樹脂(B2)とを含有するものである請求項1記載の樹脂組成物。
    The hydroxy naphthalene novolac type phenol resin (B) is represented by the following structural formula (1):
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, l is 1 or 2, and the hydroxyl group may be bonded to any carbon atom on the naphthalene ring. R 1 represents a hydrogen atom, an alkyl group which may have a substituent, or a substituent. Each of R 2 is independently an alkyl group, an alkoxy group, or a halogen atom, and may be bonded to any carbon atom on the naphthalene ring; m is 0 or an integer of 1 to 5.)
    An acyclic novolac resin (B1) having a structural moiety (β) represented by the following structural unit, and the following structural formula (2)
    Figure JPOXMLDOC01-appb-C000002
    [Wherein β is the structural moiety (β) represented by the structural formula (1), and n is an integer of 2 to 10. ]
    The resin composition according to claim 1, comprising a cyclic novolac resin (B2) having a molecular structure represented by:
  5. 樹脂組成物中の全フェノール性水酸基1モルに対し、樹脂組成物中の全エポキシ基のモル数が0.01~0.8モルの範囲である請求項1記載の樹脂組成物。 The resin composition according to claim 1, wherein the number of moles of all epoxy groups in the resin composition is in the range of 0.01 to 0.8 moles with respect to 1 mole of all phenolic hydroxyl groups in the resin composition.
  6. 請求項1~5の何れか一つに記載の樹脂組成物の硬化物。 A cured product of the resin composition according to any one of claims 1 to 5.
  7. 請求項1~5の何れか一つに記載の樹脂組成物を用いてなるレジスト用樹脂材料。 A resist resin material comprising the resin composition according to any one of claims 1 to 5.
  8. 更請求項1~5の何れか一つに記載の樹脂組成物を用いてなるレジスト膜。 A resist film comprising the resin composition according to any one of claims 1 to 5.
PCT/JP2017/019160 2016-05-25 2017-05-23 Resin composition and resist film WO2017204206A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-104248 2016-05-25
JP2016104248 2016-05-25

Publications (1)

Publication Number Publication Date
WO2017204206A1 true WO2017204206A1 (en) 2017-11-30

Family

ID=60411360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019160 WO2017204206A1 (en) 2016-05-25 2017-05-23 Resin composition and resist film

Country Status (2)

Country Link
TW (1) TW201815949A (en)
WO (1) WO2017204206A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019135279A (en) * 2018-02-05 2019-08-15 Dic株式会社 Resist material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258364A (en) * 1994-03-22 1995-10-09 Sumikin Chem Co Ltd Phenolic curative and semiconductor-sealing resin composition containing the same
JP2014205774A (en) * 2013-04-12 2014-10-30 Dic株式会社 Modified polyarylene ether resin, epoxy resin composition, cured product thereof, prepreg, circuit board, and build-up film
JP2014218600A (en) * 2013-05-09 2014-11-20 住友ベークライト株式会社 Prepreg, metal-clad laminate, printed circuit substrate and semiconductor package
JP2015021086A (en) * 2013-07-22 2015-02-02 住友ベークライト株式会社 Resin composition, resin sheet, prepreg, laminate, printed wiring board, and semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258364A (en) * 1994-03-22 1995-10-09 Sumikin Chem Co Ltd Phenolic curative and semiconductor-sealing resin composition containing the same
JP2014205774A (en) * 2013-04-12 2014-10-30 Dic株式会社 Modified polyarylene ether resin, epoxy resin composition, cured product thereof, prepreg, circuit board, and build-up film
JP2014218600A (en) * 2013-05-09 2014-11-20 住友ベークライト株式会社 Prepreg, metal-clad laminate, printed circuit substrate and semiconductor package
JP2015021086A (en) * 2013-07-22 2015-02-02 住友ベークライト株式会社 Resin composition, resin sheet, prepreg, laminate, printed wiring board, and semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019135279A (en) * 2018-02-05 2019-08-15 Dic株式会社 Resist material
JP7043861B2 (en) 2018-02-05 2022-03-30 Dic株式会社 Resist material

Also Published As

Publication number Publication date
TW201815949A (en) 2018-05-01

Similar Documents

Publication Publication Date Title
JP5700269B1 (en) Phenolic hydroxyl group-containing compound, photosensitive composition, resist composition, resist coating film, curable composition, resist underlayer film composition, and resist underlayer film
TWI711655B (en) Resin and resist film containing phenolic hydroxyl group
JP6025011B1 (en) Phenolic hydroxyl group-containing compound, composition containing the same, and cured film thereof
JP6156591B2 (en) Novolac type phenolic hydroxyl group-containing resin and resist film
JP6341348B1 (en) Phenolic hydroxyl group-containing resin and resist material
JP6123967B1 (en) Novolac type phenolic hydroxyl group-containing resin and resist film
JP2018083786A (en) Phenolic hydroxyl group-containing compound and resist material
WO2016006358A1 (en) Phenolic hydroxyl group-containing resin, production method therefor, photosensitive composition, resist material, coating film, curable composition and cured product thereof, and resist underlayer film
WO2017217312A1 (en) Resin composition for resist and resist film
WO2017204206A1 (en) Resin composition and resist film
JP6274366B1 (en) Novolac resin and resist material
JP6269904B1 (en) Method for producing novolac resin
JP7043861B2 (en) Resist material
JP7124989B1 (en) Phenolic hydroxyl-containing resin, alkali-developable resist resin composition, resist-curable resin composition, and method for producing phenolic hydroxyl-containing resin
JP6590084B2 (en) Phenolic hydroxyl group-containing resin and resist material
JP6328350B2 (en) Novolac resin and resist material
JP6590085B2 (en) Phenolic hydroxyl group-containing resin and resist material
JP6863077B2 (en) Dendrimer type resin and resist material
JP6341349B1 (en) Phenolic hydroxyl group-containing resin and resist material
JP2023022510A (en) Epoxy resin, photosensitive resin composition, resist film. curable composition, and cured film

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802792

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP