WO2017203824A1 - Machine tool - Google Patents

Machine tool Download PDF

Info

Publication number
WO2017203824A1
WO2017203824A1 PCT/JP2017/012798 JP2017012798W WO2017203824A1 WO 2017203824 A1 WO2017203824 A1 WO 2017203824A1 JP 2017012798 W JP2017012798 W JP 2017012798W WO 2017203824 A1 WO2017203824 A1 WO 2017203824A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
tool
driven
transmission gear
rotary
Prior art date
Application number
PCT/JP2017/012798
Other languages
French (fr)
Japanese (ja)
Inventor
克史 湯口
雄二 増田
康直 笹井
近藤 智行
Original Assignee
スター精密株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スター精密株式会社 filed Critical スター精密株式会社
Publication of WO2017203824A1 publication Critical patent/WO2017203824A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B7/00Automatic or semi-automatic turning-machines with a single working-spindle, e.g. controlled by cams; Equipment therefor; Features common to automatic and semi-automatic turning-machines with one or more working-spindles
    • B23B7/02Automatic or semi-automatic machines for turning of stock
    • B23B7/04Turret machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B29/00Holders for non-rotary cutting tools; Boring bars or boring heads; Accessories for tool holders
    • B23B29/24Tool holders for a plurality of cutting tools, e.g. turrets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B39/00General-purpose boring or drilling machines or devices; Sets of boring and/or drilling machines
    • B23B39/16Drilling machines with a plurality of working-spindles; Drilling automatons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B47/00Constructional features of components specially designed for boring or drilling machines; Accessories therefor
    • B23B47/30Additional gear with one or more working-spindles attachable to the main working-spindle and mounting the additional gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/02Driving main working members
    • B23Q5/04Driving main working members rotary shafts, e.g. working-spindles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/20Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members
    • F16H1/22Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion

Definitions

  • the present invention relates to a machine tool including a tool post having a tool placement surface on which a plurality of rotary tools are arranged in a state of protruding in the axial direction of the rotary tool.
  • a front spindle and a rear spindle for gripping a workpiece, a front machining tool post, and a lathe equipped with a rear machining tool post are known.
  • the turret may be used in a state in which a plurality of rotary tools that are rotated by the rotational driving force transmitted to the driven gear are arranged on the same tool arrangement surface.
  • the axial directions of the plurality of rotary tools are parallel to each other, and each rotary tool protrudes in the axial direction from the tool placement surface.
  • the tool placement surface of the back machining tool post is directed to the back spindle side, for example.
  • the back machining tool post is arranged on the machine body with the surface opposite to the tool arrangement surface facing the front machining tool post.
  • the drive unit for rotating the rotary tool rotates all the rotary tools mounted on the back working tool post together.
  • the multi-axis machining unit disclosed in Patent Document 1 is a machining unit for performing drilling and tapping, but in relation to a plurality of drive shafts provided in the head, each of them is moved forward and backward in the axial direction.
  • An operating shaft for driving and rotating the spindle is provided.
  • Each drive shaft is wrapped in a drive sleeve.
  • the drive sleeve in the backward limit faces the non-rotating conduction means and does not rotate. Therefore, the tool corresponding to this drive sleeve does not rotate.
  • the drive sleeve that is moving forward among the plurality of drive sleeves is rotated by the rotation conducting means. Therefore, the tool corresponding to this drive sleeve rotates.
  • the above-mentioned problem may exist not only for the back working tool post but also for the front working tool post.
  • the present invention has an object to provide a machine tool capable of reducing the amount of heat generation while suppressing an increase in the size of the tool post in the axial direction of the rotary tool.
  • the present invention is a machine tool provided with a tool post having a tool placement surface on which a plurality of rotary tools rotated by a rotational driving force transmitted to a driven gear protrude in the axial direction of the rotary tool,
  • the tool post is A transmission gear that is movable along an imaginary plane passing through the plurality of driven gears and meshes directly or indirectly with each of the plurality of driven gears at different positions;
  • a rotation drive unit that meshes with the transmission gear and rotates the transmission gear;
  • An object selection unit that moves the transmission gear along the virtual plane and places the transmission gear in a position that directly or indirectly meshes with a driven gear that is selected from the plurality of driven gears. It has an aspect.
  • FIG. 6A and 6B are perspective views schematically showing examples of planetary gear units. It is a figure which shows typically the structural example of the tool post for back processing. It is a perspective view which shows typically the example which changed the position of the planetary gear. It is a perspective view which shows typically the gear structure of the tool post for back processing which concerns on a comparative example.
  • FIGS. 1 to 8 are schematic views, and the enlargement ratios in the respective directions shown in these figures may be different, and the figures may not be consistent.
  • the tool rest 10 of the machine tool (1) of the present technology illustrated in FIGS. 1 to 8 includes a plurality of rotating tools T2 that are rotated by the rotational driving force F1 transmitted to the driven gear G1 and project in the rotating tool axial direction D1. It has a tool placement surface 50 to be placed, and further has a transmission gear (for example, planetary gear 60), a rotation drive unit 70, and an object selection unit 80.
  • the transmission gear (60) is movable along an imaginary plane PL1 (see FIG. 5) that passes through the plurality of driven gears G1, and has different positions (for example, positions P1 to P6) with respect to each of the plurality of driven gears G1. Mesh directly or indirectly.
  • the rotation drive unit 70 meshes with the transmission gear (60) and rotates the transmission gear (60).
  • the object selection unit 80 moves the transmission gear (60) along the virtual plane PL1, and directly or indirectly moves the transmission gear (60) to the driven gear G10 to be driven selected from the plurality of driven gears G1. Set to the meshing position.
  • a front headstock 21 provided with a front main spindle 31, a guide bush 40, a rear headstock 22 provided with a rear main spindle 32, a comb tool post 11, a back processing tool post 12, are provided on the lathe 1.
  • the front headstock 21 is movable in the Z1 axis direction
  • the back mainstock 22 is movable in the Z2 axis direction and the X2 axis direction
  • the comb tool post 11 is moved in the X1 axis direction and the Y1 axis direction.
  • the back working tool post 12 is movable in the Y2 axis direction.
  • rotary tools T22, T23, T24, and T25 are arranged on the upper stage on the tool placement surface 50 on the side facing the back spindle 32 in the back machining tool post 12, and below the rotary tool T22. It is assumed that the rotary tool T21 is arranged at the bottom, and the rotary tool T26 is arranged below the rotary tool T25.
  • the rotary tools T21 to T26 are collectively referred to as a rotary tool T2.
  • the back machining tool post 12 moves in the Y2 axis direction, and the back spindle 32 that grips the workpiece W2 that has been machined in front moves in the X2 axis direction, so that the workpiece W2 faces one of the rotary tools T2. be able to.
  • FIG. 9 schematically shows the gear structure of the back working tool post according to the comparative example.
  • Each rotary tool T2 is provided with a driven gear G1 that is rotatable about a rotation axis AX10 (see FIG. 2) of the rotary tool T2, and rotates by a rotational driving force transmitted to the driven gear G1.
  • idler gears G91 mesh with the driven gears G11, G12, G13, and idler gears G92 mesh with the driven gears G14, G15, G16.
  • the idler gears G91 and G92 mesh with an idler gear G93, the idler gear G93 meshes with an idler gear G94, and the idler gear G94 meshes with a drive gear G95.
  • the workpiece W1 held by the guide bush 40 is processed by the tool T1 mounted on the comb tool post 11. Since the guide bush 40 is attached to the support base 24 so as not to move in the Z1 axis direction, the comb tool post 11 is also attached to the base 2 so as not to move in the Z1 axis direction. Since the back working tool post 12 is arranged on the comb tool post 11 with the surface 51 opposite to the tool placement surface 50 facing, the rotary tool axial direction D1 of the back working tool post 12 is set. Is limited in length (depth D).
  • the back working tool post 12 is placed in front of the comb tool post 11 in order to increase the depth D of the back processing tool post 12. Can not be placed in.
  • the transmission gear (60) meshes with each of the plurality of driven gears G1 directly or indirectly at different positions (P1 to P6).
  • the rotational driving force F1 is not transmitted to the driven gear G1 that is not directly or indirectly meshed with the gear (60).
  • the transmission gear (60) moves along a virtual plane PL1 passing through the plurality of driven gears G1. This eliminates the need to move the transmission gear (60) in the rotary tool axial direction D1 in order to selectively rotate the rotary tool T2. Therefore, this aspect can provide a machine tool that can reduce the amount of heat generation while suppressing an increase in the size of the tool post in the direction of the rotary tool axis.
  • the indirect meshing of the transmission gear with the driven gear includes the direct meshing of the transmission gear with the idler gear meshing with the driven gear, the direct meshing of the transmission gear with the idler gear train, and the like.
  • some driven gears directly mesh with the transmission gear and the remaining driven gears mesh indirectly with the transmission gear, all the driven gears mesh directly with the transmission gear, and all the driven gears communicate with the transmission gear. Including indirect meshing.
  • the rotational drive unit 70 may have a sun gear 71 that meshes with the transmission gear (60) and transmits the rotational driving force F1 to the transmission gear (60).
  • the transmission gear (60) may be supported so as to be able to rotate with respect to the planet carrier 62 that can rotate around the rotation shaft 72 of the sun gear 71.
  • the object selection unit 80 may rotate the planet carrier 62 around the rotation shaft 72 of the sun gear 71 and position the transmission gear (60) directly or indirectly in mesh with the driven gear G10 to be driven.
  • the transmission gear (60) functions as a planetary gear, it is possible to provide a suitable machine tool that reduces the amount of heat generation while suppressing an increase in the size of the tool rest in the direction of the rotary tool axis.
  • FIG. 1 is a plan view schematically illustrating a spindle moving NC (Numerical Control) lathe 1 as an example of a machine tool.
  • the lathe 1 includes a front spindle 21 provided with a front spindle 31, a guide bush 40, a rear spindle 22 provided with a rear spindle 32, a comb tool post 11, and a back machining tool post 12 on a base 2. , Turrets 13 and the like.
  • FIG. 1 also shows an NC device (numerical control device) 7 that numerically controls the operations of the headstock 20, guide bush 40, tool post 10 and the like, but the NC device 7 is in the position shown in FIG. Is not limited.
  • the front spindle 31 is movable in the Z1 axis direction together with the front spindle stock 21
  • the back spindle 32 is movable in the Z2 axis direction and the X2 axis direction together with the rear spindle stock 22
  • the comb tool post 11 is It can move in the X1 axis direction and the Y1 axis direction
  • the back working tool post 12 can move in the Y2 axis direction
  • the turret 13 can move in the X3 axis direction, the Y3 axis direction, and the Z3 axis direction.
  • the X1-axis direction, the X2-axis direction, and the X3-axis direction are the same direction, and are collectively referred to as the X-axis direction.
  • the Y1-axis direction, the Y2-axis direction, and the Y3-axis direction are the same direction and are collectively referred to as the Y-axis direction.
  • the Z1 axis direction, the Z2 axis direction, and the Z3 axis direction are the same direction and are collectively referred to as the Z axis direction.
  • the base 2 is also called a bed, a table, or the like, and constitutes a base part that directly or indirectly supports the above-described parts 10, 20, 40, and the like.
  • FIG. 1 shows that the base 2 supports the guide bush 40 via the support base 24.
  • a spindle 30 provided on the spindle stock 20 releasably holds a columnar (rod-like) workpiece W1 inserted in the longitudinal direction, and the workpiece W1 around the spindle centerlines AX1 and AX2 along the longitudinal direction of the workpiece W1.
  • the guide bush 40 supports a long workpiece W1 penetrating the front main shaft 31 in the Z1 axis direction so as to be slidable in the Z1 axis direction, and is driven to rotate about the main shaft center line AX1 in synchronization with the front main shaft 31. . Thereby, bending of an elongate workpiece
  • a portion of the work W1 that protrudes from the guide bush 40 in the + Z1 axial direction is front-faced by the comb tool post 11 and the turret 13.
  • the back spindle 32 releasably grips the workpiece W2 that has been processed in the front and inserted in the Z2 axis direction, and rotates the workpiece W1 about the spindle center line AX2.
  • the concept of the workpiece W2 that has been processed in front is included in the concept of the workpiece W1.
  • the back spindle 32 that grips the workpiece W2 cut off by the cutting tool included in the tool T1 moves in the X2 axis direction to rotate the rotary tool T2 of the back working tool post 12. It is possible to make the workpiece W2 face each other.
  • the tool post 10 is equipped with various tools T1 including a rotary tool T2 such as a rotary drill.
  • the comb-shaped tool post 11 is arranged on the + X1 axial direction side from the guide bush 40, and can perform front machining on the workpiece W1 gripped by the guide bush 40 with various tools T1.
  • the comb tool post 11 may perform back surface processing on the workpiece W ⁇ b> 2 gripped by the back main shaft 32.
  • the turret 13 is mounted with a plurality of tools T1 radially about the indexing axis AX3, can turn about the indexing axis AX3, and can perform front machining.
  • the turret 13 may also be subjected to back processing.
  • the back working tool post 12 is arranged on the + Z1 axis direction side from the comb tool post 11 and can perform back working on the workpiece W2 held by the back main spindle 32.
  • the NC device 7 includes a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), a clock circuit, an interface (I / F), and the like.
  • An NC program is executed upon receiving information input.
  • the operator can store the NC program in the RAM of the NC device 7 using an operation panel or an external computer.
  • the NC device 7 of this specific example can control the operation of the drive motors 74 and 81 (see FIG. 5) so as to selectively rotate the rotary tool T2 mounted on the back surface processing tool post 12.
  • FIG. 2 schematically illustrates a main part of the back working tool post 12.
  • the rotary tool T2 mounted on the back working tool post 12 is disposed on the tool placement surface 50 on the side facing the back main spindle 32.
  • each rotary tool T2 is provided with a driven gear G1 that is rotatable about a rotation axis AX10 of the rotary tool T2, and a rotational driving force F1 transmitted to the driven gear G1 (see FIG. 7). Rotates about the rotation axis AX10.
  • a plurality of rotary tools T2 are arranged on the tool arrangement surface 50 in a state of protruding in the rotary tool axial direction D1.
  • FIG. 4 is a perspective view schematically illustrating a gear structure arranged on the back surface 50b of the tool arrangement surface 50 with the illustration of the surface 51 opposite to the tool arrangement surface 50 in the back surface processing tool post 12 omitted. is there.
  • FIG. 5 schematically illustrates the configuration of the back surface processing tool post 12 as viewed from the + X1 direction side.
  • the driven gears G11, G12, G13, G14, G15, and G16 shown in FIG. 4 are provided on the rotary tools T21, T22, T23, T24, T25, and T26, respectively.
  • the idler gear G22 meshes with the driven gear G12
  • the idler gear G25 meshes with the driven gear G15.
  • the idler gears G22 and G25 are collectively referred to as an idler gear G2.
  • the idler gear is also an intermediate gear arranged between the driving side gear and the driven gear, and the side on which the rotational driving force from the driving side gear is driven without any rotational driving force from other than the driving side gear. Tell the gears.
  • the direction of the rotating shaft of the idler gear G2 shown in FIG. 4 is the direction along the rotating tool axis direction D1.
  • a virtual plane passing through the gears G11 to G16, G22, and G25 is defined as a plane PL1.
  • the virtual plane PL1 is orthogonal to the rotary tool axis direction D1, but may be a plane that is not orthogonal as long as it is offset from the rotary tool axis direction D1.
  • the fact that the virtual plane deviates from the direction orthogonal to the rotary tool axis direction due to an error in machining dimensions or the like is included in the fact that the virtual plane is orthogonal to the rotary tool axis direction.
  • the back working tool post 12 of this specific example includes a planetary gear unit U1, a unit driving gear 82, and a gear 75 for selectively transmitting the rotational driving force F1 to the driven gear G10 to be driven from the driven gears G11 to G16. , 76, 77 and drive motors 74, 81.
  • FIG. 6A illustrates the sun gear side of the planetary gear unit U1.
  • FIG. 6B illustrates the planet carrier side of the planetary gear unit U1.
  • the planetary gear unit U1 shown in FIGS. 6A and 6B has a sun gear 71, a planet carrier 62, a planetary gear 60 (an example of a transmission gear), and a unit driven gear 63.
  • the sun gear 71 passes through an imaginary plane PL1 shown in FIG. 5, meshes with the planetary gear 60, and can rotate around the rotation shaft 72 shown in FIG.
  • the rotating shaft 72 shown in FIG. 5 is oriented along the rotating tool axis direction D1, and is orthogonal to the virtual plane PL1.
  • the planet carrier 62 is closer to the tool placement surface 50 than the virtual plane PL1, and can rotate around the rotation shaft 72 of the sun gear 71.
  • the planetary gear 60 passes through an imaginary plane PL1, is supported so as to be rotatable about the rotation axis 61 with respect to the planet carrier 62 in a state of meshing with the sun gear 71, and rotates along the imaginary plane PL1. It can move around the sun gear 71 in an arc.
  • the rotating shaft 61 of the planetary gear is oriented along the rotating tool axis direction D1, and is orthogonal to the virtual plane PL1.
  • the unit driven gear 63 is located between the sun gear 71 and the planet carrier 62, is fixed relative to the planet carrier 62, and can rotate around the rotation shaft 72 of the sun gear 71.
  • FIG. 7 schematically illustrates the configuration of the back working tool post 12 as viewed from the ⁇ Z1 direction side.
  • the planetary gear 60 shown in FIG. 7 directly meshes with the driven gear G11 at the meshing position P1, directly meshes with the idler gear G22 at the meshing position P2, directly meshes with the driven gear G13 at the meshing position P3, and directly meshes with the driven gear G14 at the meshing position P4.
  • the meshing position directly meshes with the idler gear G25 at the meshing position P5, and meshes directly with the driven gear G16 at the meshing position P6. Since the idler gear G22 meshes with the driven gear G12, the planetary gear 60 meshes indirectly with the driven gear G12 at the meshing position P2.
  • the planetary gear 60 meshes indirectly with the driven gear G15 at the meshing position P5. Since the meshing positions P1 to P6 are different from each other, the planetary gear 60 is meshed directly or indirectly with each of the driven gears G11 to G16 at different meshing positions P1 to P6.
  • the back surface processing tool post 12 has a target selection unit 80 that moves the planetary gear 60 along the outer periphery of the sun gear 71.
  • the object selection unit 80 includes a unit drive gear 82 that meshes with the unit driven gear 63, and a planet carrier drive motor 81 that rotates the unit drive gear 82.
  • the planet carrier drive motor 81 is a servo motor having a self-locking function, and is connected via a unit drive gear 82 and a unit driven gear 63 so that the planet carrier 62 does not rotate at a rotation position according to an instruction from the NC device 7. Can be fixed.
  • the NC device 7 when the NC device 7 reads a command to selectively use the rotary tool T21 from the NC program when the planetary gear 60 is not in the position P1 where the planetary gear 60 is engaged with the driven gear G11, the NC device 7 rotates the planetary carrier 62 according to the engagement position P1.
  • An instruction to set the position is issued to the planetary carrier drive motor 81.
  • the planet carrier driving motor 81 receives this instruction, the planet carrier driving motor 81 rotates the planet carrier 62 through the gears 82 and 63 so that the planetary gear 60 is brought into the meshing position P1, and the gears 82 and 63 are rotated at the rotational positions corresponding to the meshing position P1.
  • the planet carrier 62 is fixed via FIG.
  • the object selection unit 80 moves the planetary gear 60 to any of the meshing positions P1 to P6 around the rotation shaft 72 of the sun gear 71, and meshes the planetary gear 60 directly or indirectly with the driven gear G10 to be driven. To position.
  • the position of the planet carrier drive motor 81 is not limited to the position shown in FIG. 7 and can be changed as appropriate.
  • a planet carrier drive motor 81 and a unit drive gear 82 are arranged on the right side of the back working tool post 12, and a wheel train that transmits rotational force between the unit drive gear 82 and the unit driven gear 63 ( A plurality of idler gears) may be arranged.
  • the fixing of the planet carrier 62 is not limited to the self-locking function of the planet carrier driving motor itself.
  • an excitation operation type electromagnetic clutch (non-excitation operation type electromagnetic brake) that disconnects the power transmission system by electromagnetic force generated by energization is provided on the rotation shaft of the unit drive gear 82 or the rotation shaft of the unit driven gear 63. May be.
  • the back working tool post 12 has a rotational driving force transmission system for rotating the planetary gear 60 for transmission of the rotational driving force F1.
  • the rotational driving force transmission system includes an idler gear 77 meshed with the sun gear 71, an idler gear 76 meshed with the idler gear 77, a drive gear 75 meshed with the idler gear 76, and a rotary tool drive motor 74 that rotates the drive gear 75. have.
  • the rotational driving force transmission system and the sun gear 71 function as the rotational driving unit 70 in this specific example.
  • the NC device 7 issues an instruction to rotate the drive gear 75 to the rotary tool drive motor 74 when a command to rotate the rotary tool to be driven selected from the rotary tools T21 to T26 is read from the NC program.
  • the rotary tool drive motor 74 Upon receiving this instruction, the rotary tool drive motor 74 rotates the drive gear 75, rotates the planetary gear 60 via the idler gears 76, 77 and the sun gear 71, and finally drives via the driven gear G10 to be driven. Rotate the target rotating tool. In this way, the rotational drive force F1 from the rotary tool drive motor 74 is transmitted to the driven gear G10 to be driven through at least the drive gear 75, the idler gears 76 and 77, the sun gear 71, and the planetary gear 60. .
  • the NC device 7 issues an instruction to stop the rotation of the drive gear 75 to the rotary tool drive motor 74
  • the rotary tool drive motor 74 stops the rotation of the drive gear 75 and at least the idler gear 76.
  • the rotation of the driven gear G10 to be driven is stopped.
  • the direction of the rotating shaft of the gears 75, 76, 77, 82 shown in FIGS. 4 and 5 is also the direction along the rotating tool axis direction D1.
  • rotary tools T22 and T25 provided with driven gears G12 and G15 meshed with idler gears G22 and G25 and driven gears G11, G13, G14 and G16 were provided.
  • the rotation direction is opposite to that of the rotary tools T21, T23, T24, and T26.
  • the rotation direction of the rotary tool drive motor 74 is controlled so that the rotation direction is reversed between when the planetary gear 60 is in the meshing positions P2 and P5 and when the planetary gear 60 is in the meshing positions P1, P3, P4 and P6. That's fine.
  • the NC device 7 issues an instruction to the planetary carrier drive motor 81 to set the planetary carrier 62 to a rotational position corresponding to the meshing position P5 in accordance with a command to selectively use the rotary tool T25.
  • the planet carrier driving motor 81 rotates the planet carrier 62 via the unit driving gear 82 and the unit driven gear 63 so as to move the planet gear 60 from the meshing position P1 to the meshing position P5, and the meshing position P5.
  • the planetary carrier 62 is fixed through the gears 82 and 63 at a rotational position corresponding to the above.
  • the driven gear G10 to be driven is switched to the driven gear G15, and the planetary gear 60 at the meshing position P5 is engaged with the driven gear G15.
  • the rotary tool drive motor 74 rotates the drive gear 75, and idler gears 76 and 77, sun gear 71, planetary gear 60, idler gear G25, and driven gear G15.
  • the rotary tool to be driven is rotated via the. That is, the rotational drive force F1 from the rotary tool drive motor 74 is transmitted to the driven gear G15 via the gears 75, 76, 77, 71, 60, G25, and the rotary tool T25 rotates. At this time, the rotational driving force F1 is not transmitted to the driven gears G11 to G14 and G16, and the rotary tools T21 to T24 and T26 do not rotate.
  • the planetary gear 60 meshes with each of the driven gears G11 to G16 directly or indirectly at different meshing positions P1 to P6, so that the driven gear that is not meshed directly or indirectly with the planetary gear 60 is used.
  • the rotational driving force F1 cannot be transmitted.
  • an unselected rotating tool does not rotate, vibration and noise are reduced, energy consumption is reduced, and the amount of heat generated by friction between the bearing portion of the rotating tool and the sliding portion of the cooling oil sealant is reduced. Less.
  • the thermal expansion of the tool post body is suppressed, and the stability of processing accuracy is improved.
  • the frequency of rotation of each rotary tool becomes low, the wear of the bearing of the rotary tool is reduced, leading to an improvement in the life of the rotary tool.
  • the planetary gear 60 moves along the virtual plane PL1 passing through the driven gears G11 to G16, it is not necessary to move the transmission gear in the rotary tool axial direction D1 in order to selectively rotate the rotary tool T2. If there is a comb-shaped tool post 11 in the ⁇ Z-axis direction from the back working tool post 12 and the exterior 3 is in front, the depth D of the back working tool post 12 is limited. There is no need to increase D. For this reason, the rotary tool switching mechanism can be housed in the back working tool post with the external dimensions of the back working tool post shown in FIG.
  • this example can provide a machine tool capable of reducing the amount of heat generation while suppressing the increase in the size of the tool post in the direction of the rotary tool axis.
  • the tool post to which the present technology can be applied is not limited to the back working tool post, and may be a front working tool post such as the comb tool post 11 as long as it has a rotary tool.
  • this technique is applicable also to machine tools other than a lathe.
  • a tool that does not rotate may be arranged on the tool arrangement surface.
  • the layout of the rotary tool with respect to the tool placement surface can be variously designed such that the number of rotary tools is three or more in the Y-axis direction and the number of rotary tools is five or more in the X-axis direction.
  • another rotary tool may be arranged under the rotary tool T21, and another rotary tool may be arranged under the rotary tool T26.
  • two or more components having rotating tools T21 to T26, driven gears G11 to G16, idler gears G22 and G25, and planetary gear unit U1 are arranged, and a set to be used is selected by a link mechanism or the like.
  • the planetary gear 60 may be selectively meshed with the driven gear G10. It is also included in the present technology to selectively rotate the rotary tool in this way.
  • the angle formed between the virtual plane on which the planetary gear moves and the rotation tool axis direction is preferably 90 °, but may be, for example, less than 90 ° and 60 ° or more, and is not limited to 90 °.
  • the transmission gear that meshes directly or indirectly with each of the plurality of driven gears at different positions may be moved along an imaginary plane passing through the plurality of driven gears, and is not limited to a planetary gear.

Abstract

Provided is a machine tool capable of reducing the amount of heat generated while limiting increases in the size of the cutting tool holder in the axial direction of the rotating tool. The machine tool (1) is provided with a cutting tool holder (10) with a tool placement surface (50) on which multiple rotating tools (T2), which are rotated by a rotation-driving force (F1) that is transmitted to driven gears (G1), are disposed so as to project in the axial direction (D1) of the rotating tools. The cutting tool holder (10) comprises: a transmitting gear (60), which is capable of moving along an imaginary plane (PL1) that passes through the multiple driven gears (G1) and which meshes directly or indirectly with each of the multiple driven gears (G1) at different positions (P1-P6); a rotation-driving section (70) for meshing with the transmitting gear (60) to rotate the transmitting gear (60); and an object selection section (80) for moving the transmitting gear (60) along the imaginary plane (PL1) and positioning the transmitting gear (60) so as to mesh directly or indirectly with the driven gear (G10) to be driven that has been selected from the multiple driven gears (G1).

Description

工作機械Machine Tools
 本発明は、回転工具が回転工具軸方向へ突出した状態で複数配置される工具配置面を有する刃物台を備えた工作機械に関する。 The present invention relates to a machine tool including a tool post having a tool placement surface on which a plurality of rotary tools are arranged in a state of protruding in the axial direction of the rotary tool.
 工作機械として、ワークを把持する正面主軸及び背面主軸、正面加工用刃物台、並びに、背面加工用刃物台を備えた旋盤が知られている。刃物台は、従動歯車に伝えられる回転駆動力により回転する回転工具が同じ工具配置面に複数配置された状態で使用されることがある。この場合、複数の回転工具の軸方向は互いに平行であり、各回転工具は工具配置面から軸方向へ突出している。背面加工用刃物台の工具配置面は、例えば、背面主軸側に向けられる。この場合、背面加工用刃物台は、工具配置面とは反対側の面を正面加工用刃物台に向けて機械本体に配置される。
 回転工具を回転させるための駆動部は、背面加工用刃物台に装着された全ての回転工具を一緒に回転させている。
As machine tools, a front spindle and a rear spindle for gripping a workpiece, a front machining tool post, and a lathe equipped with a rear machining tool post are known. The turret may be used in a state in which a plurality of rotary tools that are rotated by the rotational driving force transmitted to the driven gear are arranged on the same tool arrangement surface. In this case, the axial directions of the plurality of rotary tools are parallel to each other, and each rotary tool protrudes in the axial direction from the tool placement surface. The tool placement surface of the back machining tool post is directed to the back spindle side, for example. In this case, the back machining tool post is arranged on the machine body with the surface opposite to the tool arrangement surface facing the front machining tool post.
The drive unit for rotating the rotary tool rotates all the rotary tools mounted on the back working tool post together.
 尚、特許文献1に開示された多軸加工ユニットは、ドリル加工やタップ加工を行うための加工ユニットであるが、ヘッド内に設けた複数のドライブシャフトに関連して、それぞれ軸方向に前進後退駆動し且つスピンドルを回転する作動軸を備えている。各ドライブシャフトは、ドライブスリーブに包まれている。複数のドライブスリーブのうち後退限にあるドライブスリーブは、非回転伝導手段に対向し、回転しない。従って、このドライブスリーブに対応する工具は、回転しない。一方、複数のドライブスリーブのうち前進しているドライブスリーブは、回転伝導手段により回転する。従って、このドライブスリーブに対応する工具は、回転する。 The multi-axis machining unit disclosed in Patent Document 1 is a machining unit for performing drilling and tapping, but in relation to a plurality of drive shafts provided in the head, each of them is moved forward and backward in the axial direction. An operating shaft for driving and rotating the spindle is provided. Each drive shaft is wrapped in a drive sleeve. Of the plurality of drive sleeves, the drive sleeve in the backward limit faces the non-rotating conduction means and does not rotate. Therefore, the tool corresponding to this drive sleeve does not rotate. On the other hand, the drive sleeve that is moving forward among the plurality of drive sleeves is rotated by the rotation conducting means. Therefore, the tool corresponding to this drive sleeve rotates.
特開平9-11014号公報Japanese Patent Laid-Open No. 9-11014
 背面加工用刃物台に装着された全ての回転工具を一緒に回転させると、その分の発熱が生じる。そこで、ワークの加工に使用する回転工具を選択的に回転させることができると、発熱量を低減させることができ、加工精度の安定性向上に繋がる。
 ただ、上述した背面加工用刃物台は、正面主軸側に正面加工用刃物台があるため、回転工具軸方向における寸法に制限がある。このため、特許文献1に開示されるドライブスリーブのように回転工具を選択的に回転させるために軸方向へ移動する機構を背面加工用刃物台に設けることは、困難である。
When all the rotary tools mounted on the back working tool post are rotated together, heat is generated accordingly. Therefore, if the rotary tool used for workpiece machining can be selectively rotated, the amount of heat generation can be reduced, leading to improved stability of machining accuracy.
However, since the above-described back working tool post has the front working tool post on the front main spindle side, there is a limitation in the dimension in the rotary tool axis direction. For this reason, it is difficult to provide the rear working tool post with a mechanism that moves in the axial direction in order to selectively rotate the rotary tool as in the drive sleeve disclosed in Patent Document 1.
 上述した問題は、背面加工用刃物台に限らず、正面加工用刃物台等についても存在することがある。 The above-mentioned problem may exist not only for the back working tool post but also for the front working tool post.
 本発明は、刃物台の回転工具軸方向への大型化を抑制しながら発熱量を低減可能な工作機械を提供する目的を有している。 The present invention has an object to provide a machine tool capable of reducing the amount of heat generation while suppressing an increase in the size of the tool post in the axial direction of the rotary tool.
 本発明は、従動歯車に伝えられる回転駆動力により回転する回転工具が回転工具軸方向へ突出した状態で複数配置される工具配置面を有する刃物台を備えた工作機械であって、
 前記刃物台は、
  前記複数の従動歯車を通る仮想の平面に沿って移動可能であり、前記複数の従動歯車のそれぞれに対して異なる位置で直接又は間接的に噛み合う伝達歯車と、
  該伝達歯車と噛み合い、該伝達歯車を回転させる回転駆動部と、
  前記仮想の平面に沿って前記伝達歯車を移動させ、該伝達歯車を前記複数の従動歯車から選ばれた駆動対象の従動歯車に直接又は間接的に噛み合う位置にする対象選択部と、を有する、態様を有する。
The present invention is a machine tool provided with a tool post having a tool placement surface on which a plurality of rotary tools rotated by a rotational driving force transmitted to a driven gear protrude in the axial direction of the rotary tool,
The tool post is
A transmission gear that is movable along an imaginary plane passing through the plurality of driven gears and meshes directly or indirectly with each of the plurality of driven gears at different positions;
A rotation drive unit that meshes with the transmission gear and rotates the transmission gear;
An object selection unit that moves the transmission gear along the virtual plane and places the transmission gear in a position that directly or indirectly meshes with a driven gear that is selected from the plurality of driven gears. It has an aspect.
 本発明によれば、刃物台の回転工具軸方向への大型化を抑制しながら発熱量を低減可能な工作機械を提供することができる。 According to the present invention, it is possible to provide a machine tool capable of reducing the amount of heat generation while suppressing the increase in the size of the tool post in the direction of the rotary tool axis.
旋盤の例を模式的に示す平面図である。It is a top view which shows the example of a lathe typically. 背面加工用刃物台の要部の例を模式的に示す斜視図である。It is a perspective view which shows typically the example of the principal part of the tool post for back processing. 従動歯車が設けられた回転工具の例を模式的に示す側面図である。It is a side view which shows typically the example of the rotary tool provided with the driven gear. 背面加工用刃物台のギヤ構造の例を模式的に示す斜視図である。It is a perspective view which shows typically the example of the gear structure of the tool post for back processing. 背面加工用刃物台の構成例を模式的に示す図である。It is a figure which shows typically the structural example of the tool post for back processing. 図6A及び図6Bは遊星歯車ユニットの例を模式的に示す斜視図である。6A and 6B are perspective views schematically showing examples of planetary gear units. 背面加工用刃物台の構成例を模式的に示す図である。It is a figure which shows typically the structural example of the tool post for back processing. 遊星歯車の位置を変えた例を模式的に示す斜視図である。It is a perspective view which shows typically the example which changed the position of the planetary gear. 比較例に係る背面加工用刃物台のギヤ構造を模式的に示す斜視図である。It is a perspective view which shows typically the gear structure of the tool post for back processing which concerns on a comparative example.
 以下、本発明の実施形態を説明する。むろん、以下の実施形態は本発明を例示するものに過ぎず、実施形態に示す特徴の全てが発明の解決手段に必須になるとは限らない。 Hereinafter, embodiments of the present invention will be described. Of course, the following embodiments are merely examples of the present invention, and all the features shown in the embodiments are not necessarily essential to the means for solving the invention.
(1)本発明に含まれる技術の概要:
 まず、図1~8に示される例を参照して本発明に含まれる技術の概要を説明する。図1等では主軸移動型旋盤1を工作機械の例として示している。尚、図1~8は模式的に示す図であり、これらの図に示される各方向の拡大率は異なることがあり、各図は整合していないことがある。
(1) Summary of technology included in the present invention:
First, the outline of the technology included in the present invention will be described with reference to the examples shown in FIGS. In FIG. 1 and the like, a spindle moving lathe 1 is shown as an example of a machine tool. FIGS. 1 to 8 are schematic views, and the enlargement ratios in the respective directions shown in these figures may be different, and the figures may not be consistent.
 図1~8に例示される本技術の工作機械(1)の刃物台10は、従動歯車G1に伝えられる回転駆動力F1により回転する回転工具T2が回転工具軸方向D1へ突出した状態で複数配置される工具配置面50を有し、さらに、伝達歯車(例えば遊星歯車60)、回転駆動部70、及び、対象選択部80を有する。伝達歯車(60)は、複数の従動歯車G1を通る仮想の平面PL1(図5参照)に沿って移動可能であり、複数の従動歯車G1のそれぞれに対して異なる位置(例えば位置P1~P6)で直接又は間接的に噛み合う。回転駆動部70は、伝達歯車(60)と噛み合い、該伝達歯車(60)を回転させる。対象選択部80は、仮想の平面PL1に沿って伝達歯車(60)を移動させ、該伝達歯車(60)を複数の従動歯車G1から選ばれた駆動対象の従動歯車G10に直接又は間接的に噛み合う位置にする。 The tool rest 10 of the machine tool (1) of the present technology illustrated in FIGS. 1 to 8 includes a plurality of rotating tools T2 that are rotated by the rotational driving force F1 transmitted to the driven gear G1 and project in the rotating tool axial direction D1. It has a tool placement surface 50 to be placed, and further has a transmission gear (for example, planetary gear 60), a rotation drive unit 70, and an object selection unit 80. The transmission gear (60) is movable along an imaginary plane PL1 (see FIG. 5) that passes through the plurality of driven gears G1, and has different positions (for example, positions P1 to P6) with respect to each of the plurality of driven gears G1. Mesh directly or indirectly. The rotation drive unit 70 meshes with the transmission gear (60) and rotates the transmission gear (60). The object selection unit 80 moves the transmission gear (60) along the virtual plane PL1, and directly or indirectly moves the transmission gear (60) to the driven gear G10 to be driven selected from the plurality of driven gears G1. Set to the meshing position.
 例えば、図1に例示されるように、正面主軸31を設けた正面主軸台21、ガイドブッシュ40、背面主軸32を設けた背面主軸台22、くし形刃物台11、背面加工用刃物台12、等が旋盤1に設けられているとする。図1において、正面主軸台21はZ1軸方向へ移動可能であり、背面主軸台22はZ2軸方向及びX2軸方向へ移動可能であり、くし形刃物台11はX1軸方向及びY1軸方向へ移動可能であり、背面加工用刃物台12はY2軸方向へ移動可能である。背面加工用刃物台12において背面主軸32と対向する側の工具配置面50には、図2に例示するように、上段に回転工具T22,T23,T24,T25が並べられ、回転工具T22の下に回転工具T21が配置され、回転工具T25の下に回転工具T26が配置されているものとする。尚、回転工具T21~T26を回転工具T2と総称する。背面加工用刃物台12がY2軸方向へ移動し、正面加工されたワークW2を把持した背面主軸32がX2軸方向へ移動することにより、回転工具T2のいずれか一つにワークW2を対向させることができる。 For example, as illustrated in FIG. 1, a front headstock 21 provided with a front main spindle 31, a guide bush 40, a rear headstock 22 provided with a rear main spindle 32, a comb tool post 11, a back processing tool post 12, Are provided on the lathe 1. In FIG. 1, the front headstock 21 is movable in the Z1 axis direction, the back mainstock 22 is movable in the Z2 axis direction and the X2 axis direction, and the comb tool post 11 is moved in the X1 axis direction and the Y1 axis direction. The back working tool post 12 is movable in the Y2 axis direction. As illustrated in FIG. 2, rotary tools T22, T23, T24, and T25 are arranged on the upper stage on the tool placement surface 50 on the side facing the back spindle 32 in the back machining tool post 12, and below the rotary tool T22. It is assumed that the rotary tool T21 is arranged at the bottom, and the rotary tool T26 is arranged below the rotary tool T25. The rotary tools T21 to T26 are collectively referred to as a rotary tool T2. The back machining tool post 12 moves in the Y2 axis direction, and the back spindle 32 that grips the workpiece W2 that has been machined in front moves in the X2 axis direction, so that the workpiece W2 faces one of the rotary tools T2. be able to.
 図9は、比較例に係る背面加工用刃物台のギヤ構造を模式的に示している。各回転工具T2は、回転工具T2の回転軸AX10(図2参照)を中心として回転可能な従動歯車G1が設けられ、従動歯車G1に伝えられる回転駆動力により回転する。6個の従動歯車G1の内、従動歯車G11,G12,G13にアイドラギヤ(idler gear)G91が噛み合い、従動歯車G14,G15,G16にアイドラギヤG92が噛み合っている。アイドラギヤG91,G92にはアイドラギヤG93が噛み合い、このアイドラギヤG93にはアイドラギヤG94が噛み合い、このアイドラギヤG94には駆動歯車G95が噛み合っている。図示しない回転工具駆動モータが駆動歯車G95を回転させると、アイドラギヤG94,G93を介してアイドラギヤG91,G92の両方に回転駆動力が伝えられる。アイドラギヤG91からは従動歯車G11,G12,G13の全てに回転駆動力が伝えられ、アイドラギヤG92からは従動歯車G14,G15,G16の全てに回転駆動力が伝えられる。従って、駆動歯車G95が回転すると、回転工具T21~T26の全てが回転する。 FIG. 9 schematically shows the gear structure of the back working tool post according to the comparative example. Each rotary tool T2 is provided with a driven gear G1 that is rotatable about a rotation axis AX10 (see FIG. 2) of the rotary tool T2, and rotates by a rotational driving force transmitted to the driven gear G1. Of the six driven gears G1, idler gears G91 mesh with the driven gears G11, G12, G13, and idler gears G92 mesh with the driven gears G14, G15, G16. The idler gears G91 and G92 mesh with an idler gear G93, the idler gear G93 meshes with an idler gear G94, and the idler gear G94 meshes with a drive gear G95. When a rotary tool drive motor (not shown) rotates the drive gear G95, the rotational drive force is transmitted to both the idler gears G91 and G92 via the idler gears G94 and G93. From the idler gear G91, the rotational driving force is transmitted to all of the driven gears G11, G12, G13, and from the idler gear G92, the rotational driving force is transmitted to all of the driven gears G14, G15, G16. Therefore, when the drive gear G95 rotates, all of the rotary tools T21 to T26 rotate.
 ここで、回転工具T21~T26が一緒に回転すると、回転工具の軸受け部と冷却油の封止材の摺動部における摩擦により、その分の発熱が生じる。この発熱が継続することにより刃物台本体が熱膨張する可能性があり、この熱膨張により工具の位置に誤差が生じて製品の仕上がり寸法にばらつきが生じる可能性がある。一方、回転工具に対して選択的に回転駆動力を伝えるためには、そのための選択機構が必要となる。しかし、図1に示す背面加工用刃物台12は、以下の理由により、選択機構を設けるために回転工具軸方向D1へ大きくすることができない。 Here, when the rotary tools T21 to T26 rotate together, heat is generated by friction between the bearing part of the rotary tool and the sliding part of the cooling oil sealant. If the heat generation continues, there is a possibility that the tool post body will thermally expand, and this thermal expansion may cause an error in the position of the tool and cause variations in the finished product dimensions. On the other hand, in order to selectively transmit the rotational driving force to the rotary tool, a selection mechanism for that purpose is required. However, the back working tool post 12 shown in FIG. 1 cannot be enlarged in the rotary tool axial direction D1 for providing the selection mechanism for the following reason.
 ガイドブッシュ40に把持されたワークW1は、くし形刃物台11に装着された工具T1で加工される。ガイドブッシュ40はZ1軸方向へ移動しないように支持台24に取り付けられているため、くし形刃物台11もZ1軸方向へは移動しないように基台2に取り付けられている。このくし形刃物台11に工具配置面50とは反対側の面51を向けて背面加工用刃物台12が配置されているため、背面加工用刃物台12の回転工具軸方向D1
における長さ(奥行きD)が制限される。
 また、くし形刃物台11の手前(+X1軸方向)には外装3があるため、背面加工用刃物台12の奥行きDを大きくするために背面加工用刃物台12をくし形刃物台11の手前に配置することもできない。
The workpiece W1 held by the guide bush 40 is processed by the tool T1 mounted on the comb tool post 11. Since the guide bush 40 is attached to the support base 24 so as not to move in the Z1 axis direction, the comb tool post 11 is also attached to the base 2 so as not to move in the Z1 axis direction. Since the back working tool post 12 is arranged on the comb tool post 11 with the surface 51 opposite to the tool placement surface 50 facing, the rotary tool axial direction D1 of the back working tool post 12 is set.
Is limited in length (depth D).
Further, since there is an exterior 3 in front of the comb tool post 11 (in the + X1 axis direction), the back working tool post 12 is placed in front of the comb tool post 11 in order to increase the depth D of the back processing tool post 12. Can not be placed in.
 図4~8に例示するように、本技術の上記態様では、複数の従動歯車G1のそれぞれに対して伝達歯車(60)が異なる位置(P1~P6)で直接又は間接的に噛み合うので、伝達歯車(60)と直接又は間接的に噛み合っていない従動歯車G1に回転駆動力F1が伝えられない。これにより、選択されていない回転工具が回転せず、発熱量が少なくなり、ひいては加工精度の安定性向上に繋がる。また、伝達歯車(60)は、複数の従動歯車G1を通る仮想の平面PL1に沿って移動する。これにより、回転工具T2を選択的に回転させるために伝達歯車(60)を回転工具軸方向D1へ移動させる必要が無くなる。従って、本態様は、刃物台の回転工具軸方向への大型化を抑制しながら発熱量を低減可能な工作機械を提供することができる。 As illustrated in FIGS. 4 to 8, in the above aspect of the present technology, the transmission gear (60) meshes with each of the plurality of driven gears G1 directly or indirectly at different positions (P1 to P6). The rotational driving force F1 is not transmitted to the driven gear G1 that is not directly or indirectly meshed with the gear (60). Thereby, the rotating tool which is not selected does not rotate, the amount of heat generation is reduced, and as a result, the stability of machining accuracy is improved. The transmission gear (60) moves along a virtual plane PL1 passing through the plurality of driven gears G1. This eliminates the need to move the transmission gear (60) in the rotary tool axial direction D1 in order to selectively rotate the rotary tool T2. Therefore, this aspect can provide a machine tool that can reduce the amount of heat generation while suppressing an increase in the size of the tool post in the direction of the rotary tool axis.
 ここで、従動歯車に伝達歯車が間接的に噛み合うことは、従動歯車と噛み合っているアイドラギヤ(idler gear)に伝達歯車が直接噛み合うこと、アイドラギヤの列に伝達歯車が直接噛み合うこと、等を含む。本技術は、一部の従動歯車が伝達歯車と直接噛み合って残部の従動歯車が伝達歯車と間接的に噛み合うこと、全ての従動歯車が伝達歯車と直接噛み合うこと、全ての従動歯車が伝達歯車と間接的に噛み合うこと、のいずれも含む。 Here, the indirect meshing of the transmission gear with the driven gear includes the direct meshing of the transmission gear with the idler gear meshing with the driven gear, the direct meshing of the transmission gear with the idler gear train, and the like. In this technology, some driven gears directly mesh with the transmission gear and the remaining driven gears mesh indirectly with the transmission gear, all the driven gears mesh directly with the transmission gear, and all the driven gears communicate with the transmission gear. Including indirect meshing.
 ところで、回転駆動部70は、伝達歯車(60)と噛み合い該伝達歯車(60)に回転駆動力F1を伝える太陽歯車71を有してもよい。伝達歯車(60)は、太陽歯車71の回転軸72を中心として回転動作可能な遊星キャリア62に対して回転動作可能に支持されてもよい。対象選択部80は、太陽歯車71の回転軸72を中心として遊星キャリア62を回転させ、伝達歯車(60)を駆動対象の従動歯車G10に直接又は間接的に噛み合う位置にしてもよい。本態様は、伝達歯車(60)が遊星歯車として機能するので、刃物台の回転工具軸方向への大型化を抑制しながら発熱量を低減させる好適な工作機械を提供することができる。 By the way, the rotational drive unit 70 may have a sun gear 71 that meshes with the transmission gear (60) and transmits the rotational driving force F1 to the transmission gear (60). The transmission gear (60) may be supported so as to be able to rotate with respect to the planet carrier 62 that can rotate around the rotation shaft 72 of the sun gear 71. The object selection unit 80 may rotate the planet carrier 62 around the rotation shaft 72 of the sun gear 71 and position the transmission gear (60) directly or indirectly in mesh with the driven gear G10 to be driven. In this aspect, since the transmission gear (60) functions as a planetary gear, it is possible to provide a suitable machine tool that reduces the amount of heat generation while suppressing an increase in the size of the tool rest in the direction of the rotary tool axis.
(2)工作機械の構成の具体例:
 図1は、工作機械の例として主軸移動型のNC(Numerical Control;数値制御)旋盤1を模式的に例示する平面図である。この旋盤1は、基台2の上に、正面主軸31を設けた正面主軸台21、ガイドブッシュ40、背面主軸32を設けた背面主軸台22、くし形刃物台11、背面加工用刃物台12、タレット13、等を有している。尚、正面主軸台21と背面主軸台22を主軸台20と総称し、正面主軸31と背面主軸32を主軸30と総称し、くし形刃物台11と背面加工用刃物台12とタレット13を刃物台10と総称する。図1には便宜上、主軸台20やガイドブッシュ40や刃物台10等の動作を数値制御するNC装置(数値制御装置)7も示しているが、NC装置7は図1に示す位置にあるとは限らない。
(2) Specific examples of machine tool configurations:
FIG. 1 is a plan view schematically illustrating a spindle moving NC (Numerical Control) lathe 1 as an example of a machine tool. The lathe 1 includes a front spindle 21 provided with a front spindle 31, a guide bush 40, a rear spindle 22 provided with a rear spindle 32, a comb tool post 11, and a back machining tool post 12 on a base 2. , Turrets 13 and the like. The front headstock 21 and the rear headstock 22 are collectively referred to as the headstock 20, the front main spindle 31 and the rear main spindle 32 are collectively referred to as the main spindle 30, and the comb tool post 11, the rear working tool post 12, and the turret 13 are used as the tool. Collectively referred to as table 10. For the sake of convenience, FIG. 1 also shows an NC device (numerical control device) 7 that numerically controls the operations of the headstock 20, guide bush 40, tool post 10 and the like, but the NC device 7 is in the position shown in FIG. Is not limited.
 図1において、正面主軸31は正面主軸台21とともにZ1軸方向へ移動可能であり、背面主軸32は背面主軸台22とともにZ2軸方向及びX2軸方向へ移動可能であり、くし形刃物台11はX1軸方向及びY1軸方向へ移動可能であり、背面加工用刃物台12はY2軸方向へ移動可能であり、タレット13はX3軸方向、Y3軸方向及びZ3軸方向へ移動可能である。尚、X1軸方向、X2軸方向及びX3軸方向は、同じ方向であり、X軸方向と総称する。Y1軸方向、Y2軸方向及びY3軸方向は、同じ方向であり、Y軸方向と総称する。Z1軸方向、Z2軸方向及びZ3軸方向は、同じ方向であり、Z軸方向と総称する。 In FIG. 1, the front spindle 31 is movable in the Z1 axis direction together with the front spindle stock 21, the back spindle 32 is movable in the Z2 axis direction and the X2 axis direction together with the rear spindle stock 22, and the comb tool post 11 is It can move in the X1 axis direction and the Y1 axis direction, the back working tool post 12 can move in the Y2 axis direction, and the turret 13 can move in the X3 axis direction, the Y3 axis direction, and the Z3 axis direction. The X1-axis direction, the X2-axis direction, and the X3-axis direction are the same direction, and are collectively referred to as the X-axis direction. The Y1-axis direction, the Y2-axis direction, and the Y3-axis direction are the same direction and are collectively referred to as the Y-axis direction. The Z1 axis direction, the Z2 axis direction, and the Z3 axis direction are the same direction and are collectively referred to as the Z axis direction.
 基台2は、ベッドやテーブル等とも呼ばれ、前述の各部10,20,40等を直接又は間接的に支持する土台部分を構成する。図1には、基台2が支持台24を介してガイドブッシュ40を支持していることが示されている。 The base 2 is also called a bed, a table, or the like, and constitutes a base part that directly or indirectly supports the above-described parts 10, 20, 40, and the like. FIG. 1 shows that the base 2 supports the guide bush 40 via the support base 24.
 主軸台20に設けられた主軸30は、長手方向へ挿入された円柱状(棒状)のワークW1を解放可能に把持し、ワークW1の長手方向に沿う主軸中心線AX1,AX2を中心としてワークW1を回転させる。ガイドブッシュ40は、正面主軸31をZ1軸方向へ貫通した長尺なワークW1をZ1軸方向へ摺動可能に支持し、正面主軸31と同期して主軸中心線AX1を中心として回転駆動される。これにより、細長いワークの撓みが抑制されて高精度の加工が行われる。ワークW1のうちガイドブッシュ40から+Z1軸方向へ出た部分は、くし形刃物台11やタレット13により正面加工される。背面主軸32は、正面加工されZ2軸方向へ挿入されたワークW2を解放可能に把持し、主軸中心線AX2を中心としてワークW1を回転させる。尚、正面加工されたワークW2の概念は、ワークW1の概念に含まれる。例えば工具T1に含まれる突っ切りバイトで突っ切られたワークW2を把持した背面主軸32は、X2軸方向へ移動して背面加工用刃物台12の回転工具T2
にワークW2を対向させることが可能である。
A spindle 30 provided on the spindle stock 20 releasably holds a columnar (rod-like) workpiece W1 inserted in the longitudinal direction, and the workpiece W1 around the spindle centerlines AX1 and AX2 along the longitudinal direction of the workpiece W1. Rotate. The guide bush 40 supports a long workpiece W1 penetrating the front main shaft 31 in the Z1 axis direction so as to be slidable in the Z1 axis direction, and is driven to rotate about the main shaft center line AX1 in synchronization with the front main shaft 31. . Thereby, bending of an elongate workpiece | work is suppressed and a highly accurate process is performed. A portion of the work W1 that protrudes from the guide bush 40 in the + Z1 axial direction is front-faced by the comb tool post 11 and the turret 13. The back spindle 32 releasably grips the workpiece W2 that has been processed in the front and inserted in the Z2 axis direction, and rotates the workpiece W1 about the spindle center line AX2. Note that the concept of the workpiece W2 that has been processed in front is included in the concept of the workpiece W1. For example, the back spindle 32 that grips the workpiece W2 cut off by the cutting tool included in the tool T1 moves in the X2 axis direction to rotate the rotary tool T2 of the back working tool post 12.
It is possible to make the workpiece W2 face each other.
 刃物台10には、回転ドリル等といった回転工具T2を含む各種工具T1が装着される。くし形刃物台11は、ガイドブッシュ40から+X1軸方向側に配置され、ガイドブッシュ40に把持されたワークW1に対して各種工具T1により正面加工を行うことが可能である。くし形刃物台11は、背面主軸32に把持されたワークW2に対して背面加工を行ってもよい。タレット13は、複数の工具T1が割り出し軸AX3を中心として放射状に装着され、割り出し軸AX3を中心として旋回可能であり、正面加工を行うことが可能である。タレット13も、背面加工を行ってもよい。背面加工用刃物台12は、くし形刃物台11から+Z1軸方向側に配置され、背面主軸32に把持されたワークW2に対して背面加工を行うことが可能である。 The tool post 10 is equipped with various tools T1 including a rotary tool T2 such as a rotary drill. The comb-shaped tool post 11 is arranged on the + X1 axial direction side from the guide bush 40, and can perform front machining on the workpiece W1 gripped by the guide bush 40 with various tools T1. The comb tool post 11 may perform back surface processing on the workpiece W <b> 2 gripped by the back main shaft 32. The turret 13 is mounted with a plurality of tools T1 radially about the indexing axis AX3, can turn about the indexing axis AX3, and can perform front machining. The turret 13 may also be subjected to back processing. The back working tool post 12 is arranged on the + Z1 axis direction side from the comb tool post 11 and can perform back working on the workpiece W2 held by the back main spindle 32.
 NC装置7は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、時計回路、インターフェイス(I/F)、等を有し、図示しない操作パネルや外部コンピュータから各種情報の入力を受け付けてNCプログラムを実行する。オペレータは、操作パネルや外部コンピュータを用いてNC装置7のRAMにNCプログラムを記憶させることが可能である。本具体例のNC装置7は、背面加工用刃物台12に装着された回転工具T2を選択的に回転させるように駆動モータ74,81(図5参照)の動作を制御可能である。 The NC device 7 includes a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), a clock circuit, an interface (I / F), and the like. An NC program is executed upon receiving information input. The operator can store the NC program in the RAM of the NC device 7 using an operation panel or an external computer. The NC device 7 of this specific example can control the operation of the drive motors 74 and 81 (see FIG. 5) so as to selectively rotate the rotary tool T2 mounted on the back surface processing tool post 12.
 図2は、背面加工用刃物台12の要部を模式的に例示している。背面加工用刃物台12に装着された回転工具T2は、背面主軸32と対向する側の工具配置面50に配置されている。図3に例示するように、各回転工具T2は、該回転工具T2の回転軸AX10を中心として回転可能な従動歯車G1が設けられ、従動歯車G1に伝えられる回転駆動力F1(図7参照)により回転軸AX10を中心として回転する。工具配置面50には、回転工具T2が回転工具軸方向D1へ突出した状態で複数配置される。 FIG. 2 schematically illustrates a main part of the back working tool post 12. The rotary tool T2 mounted on the back working tool post 12 is disposed on the tool placement surface 50 on the side facing the back main spindle 32. As illustrated in FIG. 3, each rotary tool T2 is provided with a driven gear G1 that is rotatable about a rotation axis AX10 of the rotary tool T2, and a rotational driving force F1 transmitted to the driven gear G1 (see FIG. 7). Rotates about the rotation axis AX10. A plurality of rotary tools T2 are arranged on the tool arrangement surface 50 in a state of protruding in the rotary tool axial direction D1.
 図4は、背面加工用刃物台12において工具配置面50とは反対側の面51の図示を省略して工具配置面50の裏面50bに配置されたギヤ構造を模式的に例示する斜視図である。図5は、背面加工用刃物台12の構成を+X1方向側から見る向きにおいて模式的に例示している。
 図4に示す従動歯車G11,G12,G13,G14,G15,G16は、それぞれ、回転工具T21,T22,T23,T24,T25,T26に設けられている。6個の従動歯車G1の内、従動歯車G12にアイドラギヤG22が噛み合い、従動歯車G15にアイドラギヤG25が噛み合っている。尚、アイドラギヤG22,G25をアイドラギヤG2と総称する。アイドラギヤは、駆動側歯車と駆動される側の歯車との間に配置される中間歯車でもあり、駆動側歯車以外から回転駆動力が加わらず、駆動側歯車からの回転駆動力を駆動される側の歯車に伝える。図4に示すアイドラギヤG2の回転軸の向きは、回転工具軸方向D1に沿った向きである。ここで、図5に示すように、歯車G11~G16,G22,G25を通る仮想の平面を平面PL1とする。この仮想の平面PL1は、回転工具軸方向D1と直交しているが、回転工具軸方向D1とずれていれば直交しない平面でもよい。尚、加工寸法の誤差等により仮想の平面が回転工具軸方向と直交する向きからずれることは、仮想の平面が回転工具軸方向と直交することに含まれる。
FIG. 4 is a perspective view schematically illustrating a gear structure arranged on the back surface 50b of the tool arrangement surface 50 with the illustration of the surface 51 opposite to the tool arrangement surface 50 in the back surface processing tool post 12 omitted. is there. FIG. 5 schematically illustrates the configuration of the back surface processing tool post 12 as viewed from the + X1 direction side.
The driven gears G11, G12, G13, G14, G15, and G16 shown in FIG. 4 are provided on the rotary tools T21, T22, T23, T24, T25, and T26, respectively. Of the six driven gears G1, the idler gear G22 meshes with the driven gear G12, and the idler gear G25 meshes with the driven gear G15. The idler gears G22 and G25 are collectively referred to as an idler gear G2. The idler gear is also an intermediate gear arranged between the driving side gear and the driven gear, and the side on which the rotational driving force from the driving side gear is driven without any rotational driving force from other than the driving side gear. Tell the gears. The direction of the rotating shaft of the idler gear G2 shown in FIG. 4 is the direction along the rotating tool axis direction D1. Here, as shown in FIG. 5, a virtual plane passing through the gears G11 to G16, G22, and G25 is defined as a plane PL1. The virtual plane PL1 is orthogonal to the rotary tool axis direction D1, but may be a plane that is not orthogonal as long as it is offset from the rotary tool axis direction D1. The fact that the virtual plane deviates from the direction orthogonal to the rotary tool axis direction due to an error in machining dimensions or the like is included in the fact that the virtual plane is orthogonal to the rotary tool axis direction.
 本具体例の背面加工用刃物台12は、従動歯車G11~G16の中から選択的に駆動対象の従動歯車G10に回転駆動力F1を伝えるための遊星歯車ユニットU1、ユニット駆動歯車82、歯車75,76,77の列、及び、駆動モータ74,81を有している。 The back working tool post 12 of this specific example includes a planetary gear unit U1, a unit driving gear 82, and a gear 75 for selectively transmitting the rotational driving force F1 to the driven gear G10 to be driven from the driven gears G11 to G16. , 76, 77 and drive motors 74, 81.
 図6Aは、遊星歯車ユニットU1の太陽歯車側を例示している。図6Bは、遊星歯車ユニットU1の遊星キャリア側を例示している。図6A及び図6Bに示す遊星歯車ユニットU1は、太陽歯車71、遊星キャリア(planet carrier)62、遊星歯車60(伝達歯車の例)、及び、ユニット従動歯車63を有している。太陽歯車71は、図5に示す仮想の平面PL1を通っており、遊星歯車60と噛み合い、図5に示す回転軸72を中心として回転可能である。図5に示す回転軸72は、回転工具軸方向D1に沿った向きであり、仮想の平面PL1と直交している。遊星キャリア62は、仮想の平面PL1よりも工具配置面50側にあり、太陽歯車71の回転軸72を中心として回転動作可能である。遊星歯車60は、仮想の平面PL1を通っており、太陽歯車71と噛み合った状態で遊星キャリア62に対して回転軸61を中心として回転可能に支持され、自転しながら仮想の平面PL1に沿って太陽歯車71の周りを円弧状に移動可能である。遊星歯車の回転軸61は、回転工具軸方向D1に沿った向きであり、仮想の平面PL1と直交している。ユニット従動歯車63は、太陽歯車71と遊星キャリア62との間にあり、遊星キャリア62に対して相対的に固定され、太陽歯車71の回転軸72を中心として回転動作可能である。 FIG. 6A illustrates the sun gear side of the planetary gear unit U1. FIG. 6B illustrates the planet carrier side of the planetary gear unit U1. The planetary gear unit U1 shown in FIGS. 6A and 6B has a sun gear 71, a planet carrier 62, a planetary gear 60 (an example of a transmission gear), and a unit driven gear 63. The sun gear 71 passes through an imaginary plane PL1 shown in FIG. 5, meshes with the planetary gear 60, and can rotate around the rotation shaft 72 shown in FIG. The rotating shaft 72 shown in FIG. 5 is oriented along the rotating tool axis direction D1, and is orthogonal to the virtual plane PL1. The planet carrier 62 is closer to the tool placement surface 50 than the virtual plane PL1, and can rotate around the rotation shaft 72 of the sun gear 71. The planetary gear 60 passes through an imaginary plane PL1, is supported so as to be rotatable about the rotation axis 61 with respect to the planet carrier 62 in a state of meshing with the sun gear 71, and rotates along the imaginary plane PL1. It can move around the sun gear 71 in an arc. The rotating shaft 61 of the planetary gear is oriented along the rotating tool axis direction D1, and is orthogonal to the virtual plane PL1. The unit driven gear 63 is located between the sun gear 71 and the planet carrier 62, is fixed relative to the planet carrier 62, and can rotate around the rotation shaft 72 of the sun gear 71.
 図7は、背面加工用刃物台12の構成を-Z1方向側から見る向きにおいて模式的に例示している。図7に示す遊星歯車60は、噛合位置P1で従動歯車G11と直接噛み合い、噛合位置P2でアイドラギヤG22と直接噛み合い、噛合位置P3で従動歯車G13と直接噛み合い、噛合位置P4で従動歯車G14と直接噛み合い、噛合位置P5でアイドラギヤG25と直接噛み合い、噛合位置P6で従動歯車G16と直接噛み合う。アイドラギヤG22は従動歯車G12と噛み合っているので、遊星歯車60は、噛合位置P2で従動歯車G12と間接的に噛み合うことになる。また、アイドラギヤG25は従動歯車G15と噛み合っているので、遊星歯車60は、噛合位置P5で従動歯車G15と間接的に噛み合うことになる。噛合位置P1~P6は互いに異なるので、遊星歯車60は、従動歯車G11~G16のそれぞれに対して異なる噛合位置P1~P6で直接又は間接的に噛み合うことになる。 FIG. 7 schematically illustrates the configuration of the back working tool post 12 as viewed from the −Z1 direction side. The planetary gear 60 shown in FIG. 7 directly meshes with the driven gear G11 at the meshing position P1, directly meshes with the idler gear G22 at the meshing position P2, directly meshes with the driven gear G13 at the meshing position P3, and directly meshes with the driven gear G14 at the meshing position P4. The meshing position directly meshes with the idler gear G25 at the meshing position P5, and meshes directly with the driven gear G16 at the meshing position P6. Since the idler gear G22 meshes with the driven gear G12, the planetary gear 60 meshes indirectly with the driven gear G12 at the meshing position P2. Since the idler gear G25 meshes with the driven gear G15, the planetary gear 60 meshes indirectly with the driven gear G15 at the meshing position P5. Since the meshing positions P1 to P6 are different from each other, the planetary gear 60 is meshed directly or indirectly with each of the driven gears G11 to G16 at different meshing positions P1 to P6.
 背面加工用刃物台12は、太陽歯車71の外周に沿って遊星歯車60を移動させる対象選択部80を有している。対象選択部80は、ユニット従動歯車63と噛み合ったユニット駆動歯車82、及び、このユニット駆動歯車82を回転させる遊星キャリア駆動モータ81を有している。この遊星キャリア駆動モータ81は、セルフロック機能を有するサーボモータであり、NC装置7からの指示に応じた回転位置で遊星キャリア62が回転しないようにユニット駆動歯車82及びユニット従動歯車63を介して固定することができる。例えば、NC装置7は、遊星歯車60が従動歯車G11に噛み合う位置P1でない場合にNCプログラムから回転工具T21を選択的に使用する指令を読み出した際、遊星キャリア62を噛合位置P1に応じた回転位置にする指示を遊星キャリア駆動モータ81に出す。この指示を受けた遊星キャリア駆動モータ81は、遊星歯車60を噛合位置P1にするように歯車82,63を介して遊星キャリア62を回転させ、噛合位置P1に応じた回転位置で歯車82,63を介して遊星キャリア62を固定する。図4は、駆動対象の従動歯車G10として従動歯車G11が選ばれ、この従動歯車G11に噛合位置P1の遊星歯車60が噛み合っていることが示されている。対象選択部80は、太陽歯車71の回転軸72を中心として噛合位置P1~P6のいずれかに遊星歯車60を移動させ、該遊星歯車60を駆動対象の従動歯車G10に直接又は間接的に噛み合う位置にする。 The back surface processing tool post 12 has a target selection unit 80 that moves the planetary gear 60 along the outer periphery of the sun gear 71. The object selection unit 80 includes a unit drive gear 82 that meshes with the unit driven gear 63, and a planet carrier drive motor 81 that rotates the unit drive gear 82. The planet carrier drive motor 81 is a servo motor having a self-locking function, and is connected via a unit drive gear 82 and a unit driven gear 63 so that the planet carrier 62 does not rotate at a rotation position according to an instruction from the NC device 7. Can be fixed. For example, when the NC device 7 reads a command to selectively use the rotary tool T21 from the NC program when the planetary gear 60 is not in the position P1 where the planetary gear 60 is engaged with the driven gear G11, the NC device 7 rotates the planetary carrier 62 according to the engagement position P1. An instruction to set the position is issued to the planetary carrier drive motor 81. Receiving this instruction, the planet carrier driving motor 81 rotates the planet carrier 62 through the gears 82 and 63 so that the planetary gear 60 is brought into the meshing position P1, and the gears 82 and 63 are rotated at the rotational positions corresponding to the meshing position P1. The planet carrier 62 is fixed via FIG. 4 shows that the driven gear G11 is selected as the driven gear G10 to be driven, and the planetary gear 60 at the meshing position P1 is meshed with the driven gear G11. The object selection unit 80 moves the planetary gear 60 to any of the meshing positions P1 to P6 around the rotation shaft 72 of the sun gear 71, and meshes the planetary gear 60 directly or indirectly with the driven gear G10 to be driven. To position.
 尚、遊星キャリア駆動モータ81の位置は、図7に示す位置に限定されず、適宜、変更可能である。例えば、図7において背面加工用刃物台12の右方に遊星キャリア駆動モータ81及びユニット駆動歯車82を配置し、このユニット駆動歯車82とユニット従動歯車63との間に回転力を伝える輪列(複数のアイドラギヤ)を配置してもよい。
 また、遊星キャリア62の固定には、遊星キャリア駆動モータ自体のセルフロック機能に限定されない。例えば、通電により発生する電磁力で動力伝達系を切り離す励磁作動形の電磁クラッチ(無励磁作動形の電磁ブレーキ)等をユニット駆動歯車82の回転軸、又は、ユニット従動歯車63の回転軸に設けてもよい。
The position of the planet carrier drive motor 81 is not limited to the position shown in FIG. 7 and can be changed as appropriate. For example, in FIG. 7, a planet carrier drive motor 81 and a unit drive gear 82 are arranged on the right side of the back working tool post 12, and a wheel train that transmits rotational force between the unit drive gear 82 and the unit driven gear 63 ( A plurality of idler gears) may be arranged.
Further, the fixing of the planet carrier 62 is not limited to the self-locking function of the planet carrier driving motor itself. For example, an excitation operation type electromagnetic clutch (non-excitation operation type electromagnetic brake) that disconnects the power transmission system by electromagnetic force generated by energization is provided on the rotation shaft of the unit drive gear 82 or the rotation shaft of the unit driven gear 63. May be.
 また、背面加工用刃物台12は、回転駆動力F1の伝達のために遊星歯車60を回転させる回転駆動力伝達系を有している。この回転駆動力伝達系は、太陽歯車71と噛み合ったアイドラギヤ77、このアイドラギヤ77と噛み合ったアイドラギヤ76、このアイドラギヤ76と噛み合った駆動歯車75、及び、この駆動歯車75を回転させる回転工具駆動モータ74を有している。この回転駆動力伝達系と太陽歯車71は、本具体例において回転駆動部70として機能する。NC装置7は、回転工具T21~T26から選ばれた駆動対象の回転工具を回転させる指令をNCプログラムから読み出した際、駆動歯車75を回転させる指示を回転工具駆動モータ74に出す。この指示を受けた回転工具駆動モータ74は、駆動歯車75を回転させ、アイドラギヤ76,77及び太陽歯車71を介して遊星歯車60を回転させ、最終的に駆動対象の従動歯車G10を介して駆動対象の回転工具を回転させる。このようにして、回転工具駆動モータ74からの回転駆動力F1は、少なくとも、駆動歯車75、アイドラギヤ76,77、太陽歯車71、及び、遊星歯車60を介して駆動対象の従動歯車G10に伝えられる。また、NC装置7が駆動歯車75の回転を停止させる指示を回転工具駆動モータ74に出すと、この指示を受けた回転工具駆動モータ74は、駆動歯車75の回転を停止させ、少なくとも、アイドラギヤ76,77、太陽歯車71、及び、遊星歯車60を介して駆動対象の従動歯車G10の回転を停止させる。
 尚、図4,5に示す歯車75,76,77,82の回転軸の向きも、回転工具軸方向D1に沿った向きである。
 また、遊星歯車60がある回転方向に回転するとき、アイドラギヤG22,G25と噛み合った従動歯車G12,G15が設けられた回転工具T22,T25と、従動歯車G11,G13,G14,G16が設けられた回転工具T21,T23,T24,T26とは、回転方向が逆となる。そこで、回転工具駆動モータ74の回転方向の制御は、遊星歯車60が噛合位置P2,P5にある場合と噛合位置P1,P3,P4,P6にある場合とで回転方向が逆となるようにすればよい。
Further, the back working tool post 12 has a rotational driving force transmission system for rotating the planetary gear 60 for transmission of the rotational driving force F1. The rotational driving force transmission system includes an idler gear 77 meshed with the sun gear 71, an idler gear 76 meshed with the idler gear 77, a drive gear 75 meshed with the idler gear 76, and a rotary tool drive motor 74 that rotates the drive gear 75. have. The rotational driving force transmission system and the sun gear 71 function as the rotational driving unit 70 in this specific example. The NC device 7 issues an instruction to rotate the drive gear 75 to the rotary tool drive motor 74 when a command to rotate the rotary tool to be driven selected from the rotary tools T21 to T26 is read from the NC program. Upon receiving this instruction, the rotary tool drive motor 74 rotates the drive gear 75, rotates the planetary gear 60 via the idler gears 76, 77 and the sun gear 71, and finally drives via the driven gear G10 to be driven. Rotate the target rotating tool. In this way, the rotational drive force F1 from the rotary tool drive motor 74 is transmitted to the driven gear G10 to be driven through at least the drive gear 75, the idler gears 76 and 77, the sun gear 71, and the planetary gear 60. . When the NC device 7 issues an instruction to stop the rotation of the drive gear 75 to the rotary tool drive motor 74, the rotary tool drive motor 74 that has received this instruction stops the rotation of the drive gear 75 and at least the idler gear 76. , 77, the sun gear 71, and the planetary gear 60, the rotation of the driven gear G10 to be driven is stopped.
In addition, the direction of the rotating shaft of the gears 75, 76, 77, 82 shown in FIGS. 4 and 5 is also the direction along the rotating tool axis direction D1.
Further, when the planetary gear 60 rotates in a certain rotation direction, rotary tools T22 and T25 provided with driven gears G12 and G15 meshed with idler gears G22 and G25 and driven gears G11, G13, G14 and G16 were provided. The rotation direction is opposite to that of the rotary tools T21, T23, T24, and T26. Therefore, the rotation direction of the rotary tool drive motor 74 is controlled so that the rotation direction is reversed between when the planetary gear 60 is in the meshing positions P2 and P5 and when the planetary gear 60 is in the meshing positions P1, P3, P4 and P6. That's fine.
(3)上記具体例の作用、及び、効果:
 次に、上記具体例の作用、及び、効果を説明する。
 例えば、遊星歯車60が図7に示す噛合位置P1にある場合、図4に示すように遊星歯車60が従動歯車G11(駆動対象の従動歯車G10)と直接噛み合っている。この場合、モータ74からの回転駆動力F1が歯車75,76,77,71,60を介して従動歯車G11に伝えられ、回転工具T21が回転する。このとき、従動歯車G12~G16には回転駆動力F1が伝えられず、回転工具T22~T26は回転しない。
(3) Actions and effects of the above specific examples:
Next, the operation and effect of the above specific example will be described.
For example, when the planetary gear 60 is in the meshing position P1 shown in FIG. 7, the planetary gear 60 is directly meshed with the driven gear G11 (driven gear G10) as shown in FIG. In this case, the rotational driving force F1 from the motor 74 is transmitted to the driven gear G11 via the gears 75, 76, 77, 71, 60, and the rotary tool T21 rotates. At this time, the rotational driving force F1 is not transmitted to the driven gears G12 to G16, and the rotary tools T22 to T26 do not rotate.
 ここで、回転工具T25を選択的に使用する指令に従ってNC装置7が遊星キャリア62を噛合位置P5に応じた回転位置にする指示を遊星キャリア駆動モータ81に出したとする。この指示を受けた遊星キャリア駆動モータ81は、遊星歯車60を噛合位置P1から噛合位置P5に移動させるようにユニット駆動歯車82及びユニット従動歯車63を介して遊星キャリア62を回転させ、噛合位置P5に応じた回転位置で歯車82,63を介して遊星キャリア62を固定する。図8は、駆動対象の従動歯車G10が従動歯車G15に切り替わり、この従動歯車G15に噛合位置P5の遊星歯車60が噛み合っていることが示されている。回転工具駆動モータ74は、NC装置7から駆動歯車75を回転させる指示を受けると、駆動歯車75を回転させ、アイドラギヤ76,77、太陽歯車71、遊星歯車60、アイドラギヤG25、及び、従動歯車G15を介して駆動対象の回転工具を回転させる。すなわち、回転工具駆動モータ74からの回転駆動力F1が歯車75,76,77,71,60,G25を介して従動歯車G15に伝えられ、回転工具T25が回転する。このとき、従動歯車G11~G14,G16には回転駆動力F1が伝えられず、回転工具T21~T24,T26は回転しない。 Here, it is assumed that the NC device 7 issues an instruction to the planetary carrier drive motor 81 to set the planetary carrier 62 to a rotational position corresponding to the meshing position P5 in accordance with a command to selectively use the rotary tool T25. Receiving this instruction, the planet carrier driving motor 81 rotates the planet carrier 62 via the unit driving gear 82 and the unit driven gear 63 so as to move the planet gear 60 from the meshing position P1 to the meshing position P5, and the meshing position P5. The planetary carrier 62 is fixed through the gears 82 and 63 at a rotational position corresponding to the above. FIG. 8 shows that the driven gear G10 to be driven is switched to the driven gear G15, and the planetary gear 60 at the meshing position P5 is engaged with the driven gear G15. Upon receiving an instruction to rotate the drive gear 75 from the NC device 7, the rotary tool drive motor 74 rotates the drive gear 75, and idler gears 76 and 77, sun gear 71, planetary gear 60, idler gear G25, and driven gear G15. The rotary tool to be driven is rotated via the. That is, the rotational drive force F1 from the rotary tool drive motor 74 is transmitted to the driven gear G15 via the gears 75, 76, 77, 71, 60, G25, and the rotary tool T25 rotates. At this time, the rotational driving force F1 is not transmitted to the driven gears G11 to G14 and G16, and the rotary tools T21 to T24 and T26 do not rotate.
 以上例示したように、従動歯車G11~G16のそれぞれに対して遊星歯車60が異なる噛合位置P1~P6で直接又は間接的に噛み合うので、遊星歯車60と直接又は間接的に噛み合っていない従動歯車に回転駆動力F1が伝えられない。これにより、選択されていない回転工具が回転せず、振動や騒音が低減され、消費エネルギーが少なくなるうえ、回転工具の軸受け部と冷却油の封止材の摺動部における摩擦による発熱量が少なくなる。その結果、刃物台本体の熱膨張が抑制され、加工精度の安定性が向上する。また、各回転工具の回転の頻度が低くなるので、回転工具の軸受けの摩耗が低減され、回転工具の寿命向上に繋がる。 As illustrated above, the planetary gear 60 meshes with each of the driven gears G11 to G16 directly or indirectly at different meshing positions P1 to P6, so that the driven gear that is not meshed directly or indirectly with the planetary gear 60 is used. The rotational driving force F1 cannot be transmitted. As a result, an unselected rotating tool does not rotate, vibration and noise are reduced, energy consumption is reduced, and the amount of heat generated by friction between the bearing portion of the rotating tool and the sliding portion of the cooling oil sealant is reduced. Less. As a result, the thermal expansion of the tool post body is suppressed, and the stability of processing accuracy is improved. Moreover, since the frequency of rotation of each rotary tool becomes low, the wear of the bearing of the rotary tool is reduced, leading to an improvement in the life of the rotary tool.
 また、遊星歯車60が従動歯車G11~G16を通る仮想の平面PL1に沿って移動するので、回転工具T2を選択的に回転させるために伝達歯車を回転工具軸方向D1へ移動させる必要が無くなる。背面加工用刃物台12から-Z軸方向にくし形刃物台11があり、且つ、手前に外装3があると背面加工用刃物台12の奥行きDが制限されるが、本具体例は、奥行きDを大きくする必要が無くなる。このため、図9で示した背面加工用刃物台の外観寸法のままで回転工具の切替機構を背面加工用刃物台に収めることができる。 Further, since the planetary gear 60 moves along the virtual plane PL1 passing through the driven gears G11 to G16, it is not necessary to move the transmission gear in the rotary tool axial direction D1 in order to selectively rotate the rotary tool T2. If there is a comb-shaped tool post 11 in the −Z-axis direction from the back working tool post 12 and the exterior 3 is in front, the depth D of the back working tool post 12 is limited. There is no need to increase D. For this reason, the rotary tool switching mechanism can be housed in the back working tool post with the external dimensions of the back working tool post shown in FIG.
 以上より、本具体例は、刃物台の回転工具軸方向への大型化を抑制しながら発熱量を低減可能な工作機械を提供することができる。 From the above, this example can provide a machine tool capable of reducing the amount of heat generation while suppressing the increase in the size of the tool post in the direction of the rotary tool axis.
(4)変形例:
 本技術は、種々の変形例が考えられる。
 例えば、本技術を適用可能な刃物台は、背面加工用刃物台に限定されず、回転工具を有しさえすれば、くし形刃物台11といった正面加工用刃物台等でもよい。また、本技術は、旋盤以外の工作機械にも適用可能である。
 工具配置面には、回転工具の他に、回転しない工具が配置されてもよい。
(4) Modification:
Various modifications can be considered for the present technology.
For example, the tool post to which the present technology can be applied is not limited to the back working tool post, and may be a front working tool post such as the comb tool post 11 as long as it has a rotary tool. Moreover, this technique is applicable also to machine tools other than a lathe.
In addition to the rotating tool, a tool that does not rotate may be arranged on the tool arrangement surface.
 工具配置面に対する回転工具の配置は、Y軸方向において回転工具を3個以上にしたりX軸方向において回転工具を5個以上にしたりする等、様々な設計が可能である。例えば、図2に示す工具配置面50において、回転工具T21の下に別の回転工具を配置し、回転工具T26の下に別の回転工具を配置してもよい。
 また、回転工具T21~T26、従動歯車G11~G16、アイドラギヤG22,G25、及び、遊星歯車ユニットU1を有する構成要素を2組以上配置し、使用する組をリンク機構等により選択したうえで駆動対象の従動歯車G10に対して選択的に遊星歯車60を噛み合わせてもよい。このようにして回転工具を選択的に回転させることも、本技術に含まれる。
The layout of the rotary tool with respect to the tool placement surface can be variously designed such that the number of rotary tools is three or more in the Y-axis direction and the number of rotary tools is five or more in the X-axis direction. For example, in the tool arrangement surface 50 shown in FIG. 2, another rotary tool may be arranged under the rotary tool T21, and another rotary tool may be arranged under the rotary tool T26.
Further, two or more components having rotating tools T21 to T26, driven gears G11 to G16, idler gears G22 and G25, and planetary gear unit U1 are arranged, and a set to be used is selected by a link mechanism or the like. The planetary gear 60 may be selectively meshed with the driven gear G10. It is also included in the present technology to selectively rotate the rotary tool in this way.
 遊星歯車が移動する仮想の平面と回転工具軸方向とのなす角度は、90°が好ましいものの、例えば90°未満で60°以上にしてもよく、90°に限定されない。
 さらに、複数の従動歯車のそれぞれに対して異なる位置で直接又は間接的に噛み合う伝達歯車は、複数の従動歯車を通る仮想の平面に沿って移動すればよく、遊星歯車に限定されない。
The angle formed between the virtual plane on which the planetary gear moves and the rotation tool axis direction is preferably 90 °, but may be, for example, less than 90 ° and 60 ° or more, and is not limited to 90 °.
Further, the transmission gear that meshes directly or indirectly with each of the plurality of driven gears at different positions may be moved along an imaginary plane passing through the plurality of driven gears, and is not limited to a planetary gear.
(5)結び:
 以上説明したように、本発明によると、種々の態様により、刃物台の回転工具軸方向への大型化を抑制しながら発熱量を低減可能な工作機械等の技術を提供することができる。むろん、従属請求項に係る構成要件を有しておらず独立請求項に係る構成要件のみからなる技術でも、上述した基本的な作用、効果が得られる。
 また、上述した例の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、公知技術及び上述した例の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、等も実施可能である。本発明は、これらの構成等も含まれる。
(5) Conclusion:
As described above, according to the present invention, according to various aspects, it is possible to provide a technology such as a machine tool that can reduce the amount of heat generation while suppressing the increase in the size of the tool post in the direction of the rotary tool axis. Needless to say, the above-described basic actions and effects can be obtained even with a technique that does not have the constituent elements according to the dependent claims but includes only the constituent elements according to the independent claims.
In addition, the configurations disclosed in the above-described examples are mutually replaced or the combination is changed, the known technology and the configurations disclosed in the above-described examples are mutually replaced or the combinations are changed. The configuration described above can also be implemented. The present invention includes these configurations and the like.
1…旋盤(工作機械の例)、2…基台、3…外装、7…数値制御装置、
10…刃物台、11…くし形刃物台、12…背面加工用刃物台、
13…タレット、
20…主軸台、21…正面主軸台、22…背面主軸台、24…支持台、
30…主軸、31…正面主軸、32…背面主軸、40…ガイドブッシュ、
50…工具配置面、50b…裏面、
60…遊星歯車(伝達歯車の例)、61…回転軸、62…遊星キャリア、
63…ユニット従動歯車、
70…回転駆動部、71…太陽歯車、72…回転軸、
74…回転工具駆動モータ、75…駆動歯車、76,77…アイドラギヤ、
80…対象選択部、81…遊星キャリア駆動モータ、
82…ユニット駆動歯車、
AX10…回転軸、D1…回転工具軸方向、F1…回転駆動力、
G1,G11~G16…従動歯車、G2,G22,G25…アイドラギヤ、
G10…駆動対象の従動歯車、
P1~P6…位置、PL1…平面、
T1…工具、T2,T21~T26…回転工具、
U1…遊星歯車ユニット、
W1…ワーク、W2…正面加工されたワーク。
DESCRIPTION OF SYMBOLS 1 ... Lathe (example of machine tool) 2 ... Base 3 ... Exterior, 7 ... Numerical control device,
10 ... Turret, 11 ... Comb turret, 12 ... Turret for back machining,
13 ... Turret,
20 ... headstock, 21 ... front headstock, 22 ... back headstock, 24 ... support base,
30 ... main shaft, 31 ... front main shaft, 32 ... back main shaft, 40 ... guide bush,
50 ... Tool placement surface, 50b ... Back side,
60 ... Planetary gear (example of transmission gear), 61 ... Rotating shaft, 62 ... Planetary carrier,
63 ... unit driven gear,
70 ... Rotation drive part, 71 ... Sun gear, 72 ... Rotation shaft,
74: Rotary tool drive motor, 75: Drive gear, 76, 77 ... Idler gear,
80 ... object selection unit, 81 ... planet carrier drive motor,
82: Unit drive gear,
AX10: Rotating shaft, D1: Rotating tool axial direction, F1: Rotational driving force,
G1, G11 to G16 ... driven gear, G2, G22, G25 ... idler gear,
G10: driven gear to be driven,
P1 to P6 ... position, PL1 ... plane,
T1, ... tool, T2, T21 to T26 ... rotating tool,
U1 ... Planetary gear unit,
W1 ... Work, W2 ... Work processed in front.

Claims (2)

  1.  従動歯車に伝えられる回転駆動力により回転する回転工具が回転工具軸方向へ突出した状態で複数配置される工具配置面を有する刃物台を備えた工作機械であって、
     前記刃物台は、
      前記複数の従動歯車を通る仮想の平面に沿って移動可能であり、前記複数の従動歯車のそれぞれに対して異なる位置で直接又は間接的に噛み合う伝達歯車と、
      該伝達歯車と噛み合い、該伝達歯車を回転させる回転駆動部と、
      前記仮想の平面に沿って前記伝達歯車を移動させ、該伝達歯車を前記複数の従動歯車から選ばれた駆動対象の従動歯車に直接又は間接的に噛み合う位置にする対象選択部と、を有する、工作機械。
    A machine tool including a tool post having a tool placement surface in which a plurality of rotary tools that rotate by a rotational driving force transmitted to a driven gear project in the axial direction of the rotary tool,
    The tool post is
    A transmission gear that is movable along an imaginary plane passing through the plurality of driven gears and meshes directly or indirectly with each of the plurality of driven gears at different positions;
    A rotation drive unit that meshes with the transmission gear and rotates the transmission gear;
    An object selection unit that moves the transmission gear along the virtual plane and places the transmission gear in a position that directly or indirectly meshes with a driven gear that is selected from the plurality of driven gears. Machine Tools.
  2.  前記回転駆動部は、前記伝達歯車と噛み合い該伝達歯車に前記回転駆動力を伝える太陽歯車を有し、
     前記伝達歯車は、前記太陽歯車の回転軸を中心として回転動作可能な遊星キャリアに対して回転動作可能に支持され、
     前記対象選択部は、前記太陽歯車の回転軸を中心として前記遊星キャリアを回転させ、前記伝達歯車を前記駆動対象の従動歯車に直接又は間接的に噛み合う位置にする、請求項1に記載の工作機械。
    The rotational drive unit includes a sun gear that meshes with the transmission gear and transmits the rotational driving force to the transmission gear;
    The transmission gear is supported so as to be able to rotate with respect to a planet carrier that can rotate around the rotation axis of the sun gear,
    2. The machine tool according to claim 1, wherein the object selection unit rotates the planet carrier around a rotation axis of the sun gear so that the transmission gear meshes directly or indirectly with the driven gear to be driven. machine.
PCT/JP2017/012798 2016-05-23 2017-03-29 Machine tool WO2017203824A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-102290 2016-05-23
JP2016102290A JP2017209737A (en) 2016-05-23 2016-05-23 Machine tool

Publications (1)

Publication Number Publication Date
WO2017203824A1 true WO2017203824A1 (en) 2017-11-30

Family

ID=60412315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012798 WO2017203824A1 (en) 2016-05-23 2017-03-29 Machine tool

Country Status (3)

Country Link
JP (1) JP2017209737A (en)
TW (1) TW201741052A (en)
WO (1) WO2017203824A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108213491A (en) * 2018-01-23 2018-06-29 上海更鑫机械制造有限公司 A kind of multistation hole machined function is bored
CN108620959A (en) * 2018-06-04 2018-10-09 津上精密机床(浙江)有限公司 Two-sided cutter head automatic machining lathe
CN111946778A (en) * 2020-08-17 2020-11-17 谭世昌 Four-shaft type output exchanging device for transmission linkage
CN113523354A (en) * 2021-07-21 2021-10-22 北京易思通信息技术有限公司 Intelligent automatic forming and processing equipment for case products
CN113523456A (en) * 2021-07-16 2021-10-22 山东瑞博电机有限公司 Tapping machine is used in asynchronous motor processing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7036662B2 (en) * 2018-05-15 2022-03-15 株式会社ツガミ Machine Tools
TWI751699B (en) * 2020-09-15 2022-01-01 惠亞工程股份有限公司 Drilling device
JP2022156082A (en) 2021-03-31 2022-10-14 スター精密株式会社 Machine tool

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037493A (en) * 1975-05-27 1977-07-26 Freer Edgar P Positioning and indexing apparatus
JPS63107507U (en) * 1986-12-29 1988-07-11
US4847960A (en) * 1987-07-09 1989-07-18 Index-Werke Kg Hahn & Tessky Tool turret
JPH0570809U (en) * 1992-02-28 1993-09-24 日立精機株式会社 Turret of compound NC lathe
JPH06226519A (en) * 1993-02-02 1994-08-16 Honda Motor Co Ltd Turret type machine tool
JPH0911014A (en) * 1995-06-22 1997-01-14 Sugino Mach Ltd Multi-shaft machining unit
US5768931A (en) * 1996-12-13 1998-06-23 Gombas; Laszlo A. Article processing machine
JP2011079085A (en) * 2009-10-07 2011-04-21 Sugino Machine Ltd Multiple-spindle head

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037493A (en) * 1975-05-27 1977-07-26 Freer Edgar P Positioning and indexing apparatus
JPS63107507U (en) * 1986-12-29 1988-07-11
US4847960A (en) * 1987-07-09 1989-07-18 Index-Werke Kg Hahn & Tessky Tool turret
JPH0570809U (en) * 1992-02-28 1993-09-24 日立精機株式会社 Turret of compound NC lathe
JPH06226519A (en) * 1993-02-02 1994-08-16 Honda Motor Co Ltd Turret type machine tool
JPH0911014A (en) * 1995-06-22 1997-01-14 Sugino Mach Ltd Multi-shaft machining unit
US5768931A (en) * 1996-12-13 1998-06-23 Gombas; Laszlo A. Article processing machine
JP2011079085A (en) * 2009-10-07 2011-04-21 Sugino Machine Ltd Multiple-spindle head

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108213491A (en) * 2018-01-23 2018-06-29 上海更鑫机械制造有限公司 A kind of multistation hole machined function is bored
CN108620959A (en) * 2018-06-04 2018-10-09 津上精密机床(浙江)有限公司 Two-sided cutter head automatic machining lathe
CN108620959B (en) * 2018-06-04 2024-02-06 津上精密机床(浙江)有限公司 Automatic machining lathe for double-sided tool bit
CN111946778A (en) * 2020-08-17 2020-11-17 谭世昌 Four-shaft type output exchanging device for transmission linkage
CN111946778B (en) * 2020-08-17 2022-11-15 南昌妆孜科技有限公司 Four-shaft type output exchanging device for transmission linkage
CN113523456A (en) * 2021-07-16 2021-10-22 山东瑞博电机有限公司 Tapping machine is used in asynchronous motor processing
CN113523354A (en) * 2021-07-21 2021-10-22 北京易思通信息技术有限公司 Intelligent automatic forming and processing equipment for case products

Also Published As

Publication number Publication date
TW201741052A (en) 2017-12-01
JP2017209737A (en) 2017-11-30

Similar Documents

Publication Publication Date Title
WO2017203824A1 (en) Machine tool
JP5831349B2 (en) Machine tools that can be fitted with rotating tool units
EP3195964B1 (en) Machine tool with tool rest
US7448304B2 (en) Lathe
JP4997240B2 (en) Automatic lathe with multiple turrets
WO2013069476A1 (en) Machine tool
US10252388B2 (en) Feed axis device of a machine tool
JP6105255B2 (en) Lathe and workpiece machining method
JP6011150B2 (en) Machine tool with turret
JP2013240848A (en) Machine tool
JP6968068B2 (en) A method for making or processing gears, and gear cutting machines designed for it.
JP4096187B2 (en) Machining machine
JPWO2016013307A1 (en) Machine tool, tool unit, and machining method
JP6781753B2 (en) Lathe including guide bush
JPH11254211A (en) Turret tool rest device
JP2019198909A (en) Machine tool
JP2009066725A (en) Combined lathe and its work machining method
US11123804B2 (en) Tool holder for lathe and lathe provided with the tool holder
JP2012161904A (en) Composite tool, machining method, and machine tool
JP4393477B2 (en) Double-sided lathe
JP2001129701A (en) Numerically controlled automatic lathe and method of machining workpiece by numerically controlled automatic lathe
JP2005125483A (en) Lathe
JP3159317B2 (en) Turret type numerical control lathe
US20160263661A1 (en) Boring machine
EP3696634A1 (en) Machine tool

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802426

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802426

Country of ref document: EP

Kind code of ref document: A1