WO2017203817A1 - Communication device and communication control method - Google Patents

Communication device and communication control method Download PDF

Info

Publication number
WO2017203817A1
WO2017203817A1 PCT/JP2017/011663 JP2017011663W WO2017203817A1 WO 2017203817 A1 WO2017203817 A1 WO 2017203817A1 JP 2017011663 W JP2017011663 W JP 2017011663W WO 2017203817 A1 WO2017203817 A1 WO 2017203817A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
unit
communication device
signal
received
Prior art date
Application number
PCT/JP2017/011663
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 雅典
伊東 克俊
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2017203817A1 publication Critical patent/WO2017203817A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This disclosure relates to a communication device and a communication control method.
  • wireless sensor networks for collecting information by wireless communication from terminals having a sensor function have attracted attention.
  • the wireless sensor network has a wide variety of uses, such as a purpose of confirming a position of an object of interest and a purpose of managing the behavior of the object of interest.
  • a base station such as a base station or an access point manages communication resources. For example, the master station periodically transmits a reference signal, determines a communication resource for the communication terminal on the slave station side, notifies the determined communication resource to the communication terminal according to a predetermined control protocol, Communication is performed using the reception result of the reference signal and the notified communication resource.
  • a predetermined control protocol a predetermined control protocol
  • H-ARQ Hybrid-ARQ
  • Hybrid-ARQ Hybrid-ARQ
  • cellular communication for example, as a technique for a communication terminal to perform long-distance transmission with low transmission power.
  • H-ARQ is a technique for improving reception sensitivity by repeatedly transmitting the same frame on the transmission side and combining a plurality of frames by signal processing on the reception side.
  • the present disclosure proposes a new and improved communication apparatus and communication control method capable of reducing power consumption for communication resource management in a system in which a plurality of received signals are combined.
  • an evaluation unit that evaluates the frequency of a carrier wave of a reception signal received from another communication device, and two or more reception signals are extracted from a plurality of reception signals based on the evaluation result by the evaluation unit
  • a synthesis processing unit that performs synthesis processing of the two or more received signals.
  • a processor evaluates the frequency of the carrier wave of the received signal received from the other communication apparatus, and extracts two or more received signals from a plurality of received signals based on the evaluation result. And a communication control method including combining the two or more received signals.
  • FIG. 2 is an explanatory diagram illustrating a configuration of a wireless communication system according to an embodiment of the present disclosure.
  • FIG. It is explanatory drawing which shows an example of the division of the communication resource on a time axis. It is explanatory drawing which shows the structural example of the flame
  • 2 is an explanatory diagram illustrating a configuration of a base station according to an embodiment of the present disclosure.
  • 5 is a flowchart illustrating an operation of a sensor terminal according to an embodiment of the present disclosure. 5 is a flowchart illustrating an operation of a base station according to an embodiment of the present disclosure.
  • a plurality of constituent elements having substantially the same functional configuration may be distinguished by adding different alphabets after the same reference numeral.
  • a plurality of configurations having substantially the same functional configuration or logical significance are distinguished as sensor terminals 20A, 20B, and 20C as necessary.
  • only the same reference numerals are given.
  • the sensor terminals 20A, 20B, and 20C they are simply referred to as the sensor terminal 20.
  • Embodiments of the present disclosure relate to a wireless communication system that forms a wireless sensor network. First, an overview of a wireless communication system according to an embodiment of the present disclosure will be described with reference to FIG.
  • FIG. 1 is an explanatory diagram illustrating a configuration of a wireless communication system according to an embodiment of the present disclosure.
  • the wireless communication system according to the embodiment of the present disclosure includes a plurality of base stations 10, a plurality of sensor terminals 20, and an application server 30.
  • the base station 10 is a communication device having a function of performing wireless communication with the sensor terminal 20 and a function of performing wired communication with the application server 30.
  • the base station 10 performs wireless communication with the sensor terminal 20 located in the cell.
  • the base station 10A performs wireless communication with the sensor terminals 20A, 20B, and 20C located in the cell of the base station 10A
  • the base station 10B is a sensor located in the cell of the base station 10B.
  • Wireless communication is performed with the terminals 20D, 20E, 20F, and 20G.
  • the base station 10 receives sensor data from the sensor terminal 20 and transmits the sensor data to the application server 30.
  • the sensor terminal 20 has a sensor function and a function of performing wireless communication with the base station 10.
  • the sensor function can be realized by various sensors such as an acceleration sensor, a gyro sensor, a temperature sensor, an atmospheric pressure sensor, a sound pressure sensor, a pulse sensor, or a GPS (Global Positioning System).
  • the sensor terminal 20 transmits the sensor data acquired by the sensor function to the base station 10.
  • the application server 30 receives the sensor data obtained by the sensor terminal 20 from the base station 10 and provides a service using the received sensor data.
  • a service for confirming the position of an object of interest and a service for managing the behavior of an object of interest.
  • the service for confirming the position of interest for example, an elderly person or a child wears the sensor terminal 20 having a GPS function, and the application server 30 acquires position information from the sensor terminal 20 via the base station 10.
  • the application server 30 acquires position information from the sensor terminal 20 via the base station 10.
  • the sensor terminal 20 having an acceleration sensor is attached to livestock such as cows and pigs, and the application server 30 receives information on the movement of livestock from the sensor terminal 20 via the base station 10. It is possible to manage the behavior of livestock on grazing land.
  • the sensor terminal 20 having a sensor function will be described as an example of a communication device.
  • the present embodiment can also be applied to a communication device having no sensor function.
  • the communication device may be supplied with data from an external device and transmit the supplied data to the base station 10.
  • the external device is a vending machine
  • the communication device may be supplied with sales data from the vending machine and transmit the sales data to the base station 10.
  • the base station 10 and the sensor terminal 20 share the start timing of each communication resource divided on the time axis.
  • the sharing can be realized, for example, when the base station 10 transmits a reference signal for time synchronization and the sensor terminal 20 receives the reference signal. However, when the sensor terminal 20 continuously receives the reference signal, corresponding power is consumed. For this reason, the base station 10 and the sensor terminal 20 may share the start timing of each communication resource based on the absolute time managed by each. For example, the sensor terminal 20 can acquire the absolute time by GPS reception processing.
  • FIG. 2 is an explanatory diagram showing an example of communication resource classification on the time axis.
  • communication resources on the time axis are divided into resource units called superframes.
  • ten superframes composed of superframes # 0 to # 9 are repeated.
  • the time width of each super frame is not particularly limited, and may be 6 seconds, for example. When the time width of each super frame is 6 seconds, the repetition period of the super frame is 1 minute.
  • the sensor terminal 20 transmits a frame including sensor data using any one of the super frames.
  • FIG. 3 is an explanatory diagram showing a configuration example of a frame transmitted by the sensor terminal 20.
  • the frame transmitted by the sensor terminal 20 includes a preamble 51, an SFD (Sync Frame Detector) 52, a terminal ID 53, data 54, a CRC (Cyclic Redundancy Check) 55, and a parity bit 56. And including.
  • SFD Synchronization Frame Detector
  • CRC Cyclic Redundancy Check
  • the preamble 51 is a signal pattern used for frame detection in the base station 10.
  • the SFD 52 is a signal pattern indicating the start position of the payload (terminal ID 53 to parity bit 56) within the frame.
  • the base station 10 detects the SFD 52 from the frame in which the preamble 51 is detected, thereby recognizing that the subsequent is the payload.
  • Terminal ID 53 is an ID of the sensor terminal 20 that transmits a frame.
  • the terminal ID 53 may be a unique number of the sensor terminal 20, for example.
  • the data 54 is data for use in the application server 30, and sensor data such as acceleration information and position information can be included in the data 54.
  • the CRC 55 is used to determine whether or not reception of the frame has been successful.
  • the parity bit 56 is a redundant bit generated according to the terminal ID 53, the data 54, and the CRC 55, and the frame reception success rate at the base station 10 is improved by using the parity bit.
  • H-ARQ Hybrid-ARQ
  • Hybrid-ARQ Hybrid-ARQ
  • H-ARQ is a technique for improving reception sensitivity by repeatedly transmitting the same frame on the transmission side and combining a plurality of frames by signal processing on the reception side.
  • the sensor terminal 20 receives the frame described with reference to FIG. 3 until reception confirmation (ACK) is received from the base station 10 or until the number of transmissions reaches an upper limit. Send repeatedly.
  • the base station 10 performs frame composition every time a new frame is received, and transmits ACK to the sensor terminal 20 when demodulation is successful.
  • communication for managing communication resources includes, for example, reception of a reference signal in a communication terminal and communication in accordance with a predetermined control protocol
  • power of the communication terminal is consumed.
  • the data transmitted by the sensor terminals belonging to the sensor network is a small amount of data of about several bytes.
  • the power consumed for management of communication resources is consumed for data transmission. The ratio to the power to be increased.
  • the present inventor came to create an embodiment of the present disclosure by focusing on the above circumstances. According to the embodiment of the present disclosure, it is possible to reduce power consumption for communication resource management in a system in which a plurality of frames are combined.
  • the configuration and operation of the embodiment of the present disclosure will be sequentially described in detail.
  • FIG. 4 is an explanatory diagram illustrating a configuration of the sensor terminal 20 according to the embodiment of the present disclosure.
  • the sensor terminal 20 according to the embodiment of the present disclosure includes a wireless communication unit 220, a sensor unit 230, a carrier wave generation unit 240, and a control unit 250.
  • the radio communication unit 220 performs reception processing of a radio signal transmitted from the base station 10 and transmission processing of a radio signal to the base station 10. More specifically, the radio communication unit 220 converts a radio signal (for example, a radio signal in a 920 MHz band) transmitted from the base station 10 into a high frequency reception signal by an antenna, and performs analog processing and downsampling on the high frequency reception signal. By performing the conversion, a baseband received signal is output. Also, the radio communication unit 220 up-converts the baseband transmission signal supplied from the control unit 250 into a high-frequency transmission signal in the carrier frequency band, and converts the high-frequency transmission signal obtained by the up-conversion into a radio signal using an antenna. Send. Note that the up-conversion to the high-frequency transmission signal and the down-conversion to the baseband reception signal are performed using the carrier wave generated by the carrier wave generation unit 240.
  • a radio signal for example, a radio signal in a 920 MHz band
  • the radio communication unit 220 up-convert
  • the sensor unit 230 includes one or more sensors.
  • a GPS processing unit 232 is shown as an example of a sensor.
  • the GPS processing unit 232 acquires position information and time information of the sensor terminal 20 by processing satellite signals transmitted from GPS satellites.
  • the sensor unit 230 may include other sensors such as an acceleration sensor, a gyro sensor, a temperature sensor, an atmospheric pressure sensor, a sound pressure sensor, and a pulse sensor in addition to the GPS processing unit 232 or instead of the GPS processing unit 232. Good.
  • the carrier generation unit 240 generates a carrier used for up-conversion from a baseband transmission signal to a high-frequency transmission signal and for down-conversion from a high-frequency reception signal to a baseband reception signal.
  • the carrier wave generation unit 240 generates a carrier wave by adjusting the frequency of a reference signal generated by an oscillator such as a crystal resonator, for example.
  • the control unit 250 controls overall communication in the sensor terminal 20. For example, the control unit 250 generates a frame including the sensor data obtained by the sensor unit 230 and causes the wireless communication unit 220 to repeatedly transmit the frame. The control unit 250 stops frame transmission when ACK is received from the base station 10 or when the number of repeated transmissions reaches the upper limit.
  • Base station configuration The configuration of the sensor terminal 20 according to the embodiment of the present disclosure has been described above. Next, the configuration of the base station 10 according to the embodiment of the present disclosure will be described with reference to FIG.
  • FIG. 5 is an explanatory diagram illustrating a configuration of the base station 10 according to the embodiment of the present disclosure.
  • the base station 10 according to the embodiment of the present disclosure includes a periodic signal generation unit 110, a wireless communication unit 120, an evaluation unit 130, a demodulation unit 140, a control unit 150, and a wired communication unit. 160.
  • Periodic signal generation section 110 generates a periodic signal used for up-conversion from baseband transmission signal to high-frequency transmission signal and down-conversion from high-frequency reception signal to baseband reception signal in radio communication section 120.
  • the periodic signal generation unit 110 generates the periodic signal by adjusting the frequency of a reference signal generated by an oscillator such as a crystal resonator, for example.
  • the wireless communication unit 120 performs reception processing of a wireless signal transmitted from the sensor terminal 20 and transmission processing of a wireless signal to the sensor terminal 20. More specifically, the wireless communication unit 120 converts the wireless signal transmitted from the sensor terminal 20 into a high frequency reception signal by an antenna, performs analog processing and down conversion on the high frequency reception signal, and thereby performs baseband reception. Output a signal. Also, the wireless communication unit 120 up-converts the baseband transmission signal supplied from the control unit 150 into a high-frequency transmission signal in the carrier frequency band, and converts the high-frequency transmission signal obtained by the up-conversion into a radio signal using an antenna. Send. Note that the up-conversion to the high-frequency transmission signal and the down-conversion to the baseband reception signal are performed using the periodic signal generated by the periodic signal generation unit 110.
  • the evaluation unit 130 evaluates the carrier wave of the received signal received from the sensor terminal 20. Specifically, the evaluation unit 130 detects a frequency error between the carrier wave of the reception signal received from the sensor terminal 20 and the periodic signal generated by the periodic signal generation unit 110.
  • the configuration of the evaluation unit 130 will be described in more detail with reference to FIG.
  • FIG. 6 is an explanatory diagram showing the configuration of the evaluation unit 130. As illustrated in FIG. 6, the evaluation unit 130 includes a plurality of correlation detection units 132 and a comparison unit 138.
  • the baseband received signal from the wireless communication unit 120 is input to the plurality of correlation detection units 132.
  • Each correlation detection unit 132 performs different adjustments on the frequency of the input baseband received signal, and detects the correlation between the preamble included in the adjusted baseband received signal and a predetermined comparison pattern.
  • each correlation detection unit 132 includes a plurality of phase adjusters r, a plurality of delay units d, a plurality of multipliers m, an addition unit 134, and a correlation output unit 136.
  • the phase adjusters r and the delay devices d are alternately arranged in series, and the multiplier m is arranged between the phase adjusters r and the delay devices d.
  • the phase adjuster r has a function of rotating the phase of the signal.
  • the amount by which each phase adjuster r rotates the phase varies depending on which correlation detector 132 includes the phase adjuster r. That is, each correlation detection unit 132 has a function of shifting the frequency of the baseband reception signal, and the amount of frequency shifted by each correlation detection unit 132 is different.
  • Each multiplier m receives an output from each phase adjuster r and an element signal of a comparison pattern corresponding to a preamble used by the sensor terminal 20, and each multiplier m receives a signal from each phase adjuster r. The output is multiplied by the conjugate of the component signal of the comparison pattern.
  • the addition unit 134 adds the multiplication results input from each multiplier m.
  • the correlation output unit 136 converts the complex signal obtained by the adding unit 134 into a power signal, and outputs the power signal as a correlation value.
  • the difference between the amount of the carrier frequency generated by the carrier generation unit 240 of the sensor terminal 20 and the frequency of the periodic signal generated by the periodic signal generation unit 110 of the base station 10 due to the individual difference of the oscillator ( Hereinafter referred to as a frequency error).
  • the maximum correlation value is output by the correlation detection unit 132 whose frequency shift amount is the same as the frequency error.
  • the comparison unit 138 compares the correlation value output from each correlation detection unit 132 with a threshold value, and detects a frequency shift amount by the correlation detection unit 132 that outputs a correlation value exceeding the threshold value as a frequency error. Since the frequency error may vary depending on the sensor terminal 20 that is the transmission source, it is possible to identify the sensor terminal 20 that is the transmission source of each received signal based on the frequency error.
  • the demodulator 140 extracts two or more received signals that are estimated to be the same from the source sensor terminal 20 based on the result of the evaluation performed by the evaluating unit 130, and performs a process of combining the extracted two or more received signals. It has the function of the synthesis processing unit to perform. Specifically, the demodulator 140 sequentially extracts received signals in which the same frequency error is detected by the evaluation unit 130, and cumulatively synthesizes the payloads of the extracted received signals. Then, the demodulation unit 140 attempts to demodulate the combined payload. Whether the demodulation is successful is confirmed using the CRC 55 included in the payload described with reference to FIG.
  • the control unit 150 controls the overall communication of the base station 10. For example, when the demodulation unit 140 succeeds in demodulating the payload, the control unit 150 controls the wireless communication unit 120 so that ACK is transmitted as a reception confirmation to the sensor terminal 20 that is the transmission source of the payload.
  • the wired communication unit 160 is an interface with the application server 30.
  • the wired communication unit 160 transmits the terminal ID and data included in the payload demodulated by the demodulation unit 140 to the application server 30.
  • FIG. 7 is a flowchart illustrating an operation of the sensor terminal 20 according to the embodiment of the present disclosure.
  • the control unit 250 of the sensor terminal 20 generates the frame described with reference to FIG. 3 (S410), and the wireless communication unit 220 transmits the frame as a wireless signal (S420).
  • the control unit 250 waits for reception of an ACK until a time-out, that is, until a predetermined waiting time elapses (S430 / NO, S450 / NO), and ends the transmission operation when an ACK is received (S450 / YES).
  • the control unit 250 determines whether or not the number of frame transmissions has reached the upper limit (S440). If the number of frame transmissions has not reached the upper limit (S440 / NO), the processing from S410 is repeated, and if the number of frame transmissions has reached the upper limit (S440 / YES), the transmission operation ends.
  • FIG. 8 is a flowchart illustrating an operation of the base station 10 according to the embodiment of the present disclosure.
  • the evaluation unit 130 calculates the frequency error based on the correlation detection process using the plurality of correlation detection units 132. It is detected (S504).
  • the demodulation unit 140 stores the payload cut out from the baseband received signal.
  • the payload is synthesized (S512).
  • the demodulation unit 140 performs demodulation processing on the combined payload (S516).
  • the demodulation unit 140 performs demodulation processing on the payload cut out from the baseband received signal. (S516).
  • the demodulator 140 When demodulation fails in S516 (S520 / NO), the demodulator 140 stores the payload subjected to demodulation processing in association with the frequency error detected in S504 (S524). On the other hand, when the demodulation is successful in S516 (S520 / YES), the control unit 150 confirms the terminal ID included in the payload, and causes the wireless communication unit 120 to transmit ACK to the sensor terminal 20 that is the transmission source of the wireless signal. (S528) The demodulator 140 deletes the payload stored in association with the frequency error detected in S504 (S532).
  • the base station 10 does not perform prior communication with the sensor terminal 20 for management of communication resources, but based on the frequency error of the carrier wave of each received signal. It is possible to identify the sensor terminal 20 that is the transmission source of each received signal. Accordingly, it is possible to reduce power consumption for managing communication resources.
  • the frequency error of the carrier waves of the received signals received from the plurality of sensor terminals 20 may be different due to the individual difference of the oscillators that each sensor terminal 20 has. However, it may happen that the frequency errors of the carrier waves of the received signals received from different sensor terminals 20 are the same. In this case, it is difficult to identify the sensor terminal 20 that is the transmission source of the received signal only from the frequency error. Therefore, some application examples that can further improve the discrimination power of the transmission source will be described below. In addition, each application example demonstrated below may be applied independently to embodiment mentioned above, and may be applied in combination.
  • the control unit 250 of the sensor terminal 20 determines a preamble pattern used for frame transmission. Specifically, the control unit 250 determines a preamble pattern using the terminal ID of the sensor terminal 20. For example, in the GOLD sequence generation method for obtaining an output by combining different M sequences shown in FIG. 9, the control unit 250 uses at least a part of the terminal ID as one M sequence, and uses the obtained GOLD sequence as a preamble pattern. May be determined as
  • the control unit 250 determines the preamble pattern using the entire terminal ID
  • the sensor terminal 20 can be uniquely identified from the preamble pattern.
  • the terminal ID is expressed by 24 bits or 32 bits.
  • the length of the preamble determined by using the entire terminal ID is 2 to the 24th power or 2 to the 32nd power. A long preamble is not preferable from the viewpoint of reducing power consumption.
  • the sensor terminal 20 can be determined by determining the preamble pattern using a part of the terminal ID as described above. It is possible to improve the discriminating power.
  • the control unit 250 may generate a GOLD sequence using the lower 12 bits of the terminal ID and determine the GOLD sequence as a preamble pattern.
  • the preambles of various patterns can be transmitted from the sensor terminal 20, so that the base station 10 performs the correlation detection process on the preambles of the patterns that may be transmitted from the sensor terminal 20. Do. This point will be described more specifically with reference to FIG.
  • FIG. 10 is an explanatory diagram showing the configuration of the evaluation unit 130 according to the first application example.
  • the evaluation unit 130 according to the first application example includes a plurality of sets S1 and S2 of the correlation detection unit 132, and each set S includes a plurality of correlation detection units 132.
  • the same comparison pattern C is applied to the correlation detection units 132 included in the same set S, and the comparison pattern C applied to each set S is different.
  • the comparison pattern C1 is applied to the set S1 illustrated in FIG. 10
  • the comparison pattern C2 is applied to the set S2.
  • the amount of frequency of the baseband reception signal shifted by each correlation detection unit 132 included in the same set S is different.
  • FIG. 10 shows two sets S1 and S2, the evaluation unit 130 can have more sets S.
  • the maximum correlation value is output by the correlation detection unit 132 to which the frequency shift amount is the same as the frequency error and the comparison pattern corresponding to the preamble transmitted from the sensor terminal 20 is applied. .
  • the comparison unit 138 compares the correlation value output from each correlation detection unit 132 with a threshold value, detects a frequency shift amount by the correlation detection unit 132 that outputs a correlation value exceeding the threshold value as a frequency error, and The comparison pattern applied to the correlation detection unit 132 is detected as the transmitted preamble.
  • the detected frequency error and preamble are used for identification of the sensor terminal 20.
  • the demodulator 140 sequentially extracts received signals in which the same frequency error and preamble are detected by the evaluating unit 130, and cumulatively synthesizes the payloads of the extracted received signals. Then, the demodulation unit 140 attempts to demodulate the combined payload.
  • FIG. 11 is a flowchart showing the operation of the sensor terminal 20 according to the first application example.
  • the control unit 250 of the sensor terminal 20 determines a preamble pattern using a part of the terminal ID (S402). Then, the control unit 250 generates a frame having the determined pattern preamble (S412), and the wireless communication unit 220 transmits the frame as a wireless signal (S422). Since the subsequent operation is as described with reference to FIG. 7, detailed description thereof is omitted.
  • FIG. 12 is a flowchart showing the operation of the base station 10 according to the first application example.
  • the radio communication unit 120 of the base station 10 receives a radio signal and outputs a baseband received signal to the evaluation unit 130
  • the evaluation unit 130 is based on correlation detection processing using a plurality of sets S of the correlation detection unit 132.
  • a frequency error and a preamble are detected (S506).
  • the demodulation unit 140 stores the payload cut out from the baseband received signal.
  • the existing payload is synthesized (S514).
  • the demodulation unit 140 performs demodulation processing on the combined payload (S518).
  • the demodulation unit 140 demodulates the payload extracted from the baseband received signal. (S518).
  • the demodulator 140 When demodulation fails in S518 (S522 / NO), the demodulator 140 stores the payload subjected to demodulation processing in association with the frequency error and preamble detected in S506 (S526). On the other hand, when the demodulation is successful in S518 (S522 / YES), the control unit 150 confirms the terminal ID included in the payload, and causes the wireless communication unit 120 to transmit ACK to the sensor terminal 20 that is the transmission source of the wireless signal. (S530) The demodulator 140 deletes the payload stored in association with the frequency error and preamble detected in S506 (S534).
  • received signals from the same sensor terminal 20 can be identified using the preamble pattern in addition to the frequency error. Therefore, compared with the case where only the frequency error is used for identification, it is possible to identify the received signals from the same sensor terminal 20 with higher accuracy.
  • the control unit 250 of the sensor terminal 20 determines a super frame for frame transmission. For example, the control unit 250 divides the terminal ID by the number of superframes for one cycle (10 in the example shown in FIG. 2), and determines a superframe having a remaining number as a superframe for transmission. May be. Then, the control unit 250 causes the wireless communication unit 220 to repeatedly transmit the frame in the determined superframe.
  • the evaluation unit 130 of the base station 10 detects the frequency error of the received signal as described in the embodiment of the present disclosure.
  • the demodulator 140 sequentially extracts received signals that have been detected in the same frequency error by the evaluating unit 130 and are received in the same superframe, which is the same time resource segment.
  • the received signal payloads are cumulatively synthesized. Then, the demodulation unit 140 attempts to demodulate the combined payload.
  • FIG. 13 is a flowchart showing the operation of the sensor terminal 20 according to the second application example.
  • the control unit 250 of the sensor terminal 20 determines a superframe for transmission using a part of the terminal ID (S404). Then, the control unit 250 generates a frame (S414), and the wireless communication unit 220 transmits the frame as a wireless signal in the determined superframe (S424). Since the subsequent operation is as described with reference to FIG. 7, detailed description thereof is omitted.
  • the demodulator 140 of the base station 10 sequentially extracts reception signals that are detected in the same superframe and are received signals in which the same frequency error is detected. Synthesize the payload cumulatively.
  • a received signal from the same sensor terminal 20 can be identified using the superframe in which the frame is transmitted. Therefore, compared with the case where only the frequency error is used for identification, it is possible to identify the received signals from the same sensor terminal 20 with higher accuracy.
  • Third application example> Furthermore, as a third application example, a mechanism for identifying the sensor terminal 20 as a transmission source from a hopping pattern of a frequency used in addition to a frequency error is proposed.
  • the control unit 250 of the sensor terminal 20 according to the third application example determines a frequency hopping pattern, and causes the wireless communication unit 220 to repeatedly transmit a frame according to the determined hopping pattern.
  • a frequency hopping pattern For example, specific examples of some hopping patterns will be described with reference to FIGS.
  • FIG. 14 is an explanatory diagram showing the hopping pattern 1.
  • the hopping pattern 1 is a pattern in which the four frequencies F0 to F4 are switched in the order of F0 ⁇ F2 ⁇ F1 ⁇ F3 ⁇ F0.
  • the controller 250 determines that the hopping pattern 1 is to be used, the first frame transmission is performed at the frequency F0, the second frame transmission is performed at the frequency F2, and the third frame transmission is performed. Is transmitted at the frequency F1, and the transmission of the fourth frame is performed at F3.
  • FIG. 15 is an explanatory diagram showing the hopping pattern 2.
  • the hopping pattern 2 is a pattern in which the four frequencies F0 to F4 are switched in the order of F2-> F3-> F0-> F1-> F2.
  • the control unit 250 determines that the hopping pattern 2 is to be used, the first frame transmission is performed at the frequency F2, the second frame transmission is performed at the frequency F3, and the third frame transmission is performed. Is transmitted at the frequency F0, and the transmission of the fourth frame is performed at F1.
  • FIG. 16 is an explanatory diagram showing the hopping pattern 3.
  • the hopping pattern 3 is a pattern in which the four frequencies F0 to F4 are switched in the order of F0 ⁇ F3 ⁇ F1 ⁇ F2 ⁇ F0.
  • the controller 250 determines that the hopping pattern 3 is to be used, the first frame is transmitted at the frequency F0, the second frame is transmitted at the frequency F3, and the third frame is transmitted. Is transmitted at the frequency F1, and the transmission of the fourth frame is performed at F2.
  • the control unit 250 may determine the hopping pattern to be used from the plurality of hopping patterns based on the terminal ID. For example, the control unit 250 can divide the terminal ID by the number of hopping patterns determined according to the number of usable frequencies and determine the hopping pattern according to the remaining value as a hopping pattern to be used. .
  • the evaluation unit 130 of the base station 10 evaluates the frequency error of the received signal and the frequency of the carrier wave of the received signal.
  • the demodulator 140 extracts two or more received signals whose carrier frequencies are switched according to one of the hopping patterns from the received signals having the same frequency error evaluated by the evaluating unit 130.
  • the demodulator 140 synthesizes the extracted received signal payloads cumulatively and attempts to demodulate the combined payload.
  • FIG. 17 is an explanatory diagram illustrating an example of a reception result by the base station 10.
  • FIG. 17 shows an example in which frames are received at frequencies F0 and F2 at time t1, and frames are received at frequencies F2 and F3 at time t2.
  • the frames transmitted from the same sensor terminal 20 can be identified based on the frequency errors.
  • the frequency of the frames received at each time is the same, it is difficult to identify the frames transmitted from the same sensor terminal 20 only from the frequency error.
  • the demodulator 140 identifies a frame transmitted from the same sensor terminal 20 in consideration of the hopping pattern in addition to the frequency error.
  • the frame (D3) is received at the frequency F2 at time t2.
  • the frequency at the time before the frequency F2 is the frequency F0
  • the frequency at the time before the frequency F2 is the frequency F1.
  • no frame is received at frequency F1 at time t1, which is the previous time. Therefore, the demodulator 140 transmits the frame (D3) according to the hopping pattern 1 and transmits the frame (D1) transmitted at the frequency F0 at the time t1 from the same sensor terminal 20 as the frame (D3). Can be identified. Accordingly, the demodulation unit 140 can also recognize that the other frame (D2) and the frame (D4) are frames transmitted from the same sensor terminal 20.
  • FIG. 18 is an explanatory diagram showing another example of a reception result by the base station 10.
  • FIG. 18 shows an example in which frames are received at frequencies F0 and F2 at time t3 and frames are received at frequencies F1 and F3 at time t4.
  • the frequency at the time before the frequency F3 is the frequency F2, and in the hopping pattern 3, at the time before the frequency F3. Is the frequency F0.
  • time t3 which is the previous time, a frame is received at both frequencies F0 and F2. For this reason, it is also difficult to uniquely identify the frame transmitted at the time t3 from the same sensor terminal 20 as the frame (D8).
  • the demodulator 140 identifies received signals transmitted from the same sensor terminal 20 based on both the frequency error and the hopping pattern. For this reason, as shown in FIG. 18, even if the reception result that is difficult to identify is obtained only from the hopping pattern, the same sensor terminal can be used as long as the frequency error of the frames received at each time is different. The received signal transmitted from 20 can be identified.
  • FIG. 19 is a flowchart showing the operation of the sensor terminal 20 according to the third application example.
  • the control unit 250 of the sensor terminal 20 determines a hopping pattern for transmission using the terminal ID (S406). Then, the control unit 250 generates a frame (S416), and the wireless communication unit 220 repeatedly transmits the frame according to the determined hopping pattern (S426). Since the subsequent operation is as described with reference to FIG. 7, detailed description thereof is omitted.
  • FIG. 20 is a flowchart showing the operation of the base station 10 according to the third application example.
  • the radio communication unit 120 of the base station 10 receives a radio signal and outputs a baseband received signal to the evaluation unit 130
  • the evaluation unit 130 detects a frequency error and a carrier frequency (S604).
  • the demodulation unit 140 identifies the frequency that would have been used in the previous section based on the predetermined hopping pattern and the frequency detected by the evaluation unit 130 (S608).
  • the demodulator 140 stores the payload cut out from the baseband received signal and stored.
  • the existing payload is synthesized (S616).
  • the demodulation unit 140 performs demodulation processing on the combined payload (S620).
  • the demodulator 140 performs a demodulation process on the payload extracted from the baseband received signal. Perform (S620).
  • the demodulation unit 140 stores the payload subjected to demodulation processing in association with the detected frequency error and the specified frequency (S628).
  • the control unit 150 confirms the terminal ID included in the payload, and causes the wireless communication unit 120 to transmit an ACK to the sensor terminal 20 that is the transmission source of the wireless signal. (S632)
  • the demodulator 140 deletes the payload stored in association with the detected frequency error and the identified frequency (S636).
  • received signals from the same sensor terminal 20 can be identified using a hopping pattern in addition to a frequency error. Therefore, compared with the case where only the frequency error is used for identification, it is possible to identify the received signals from the same sensor terminal 20 with higher accuracy.
  • the received signal can be identified.
  • FIG. 21 is an explanatory diagram showing a hardware configuration of the sensor terminal 20.
  • the sensor terminal 20 includes a CPU (Central Processing Unit) 201, a ROM (Read Only Memory) 202, a RAM (Random Access Memory) 203, an input device 208, an output device 210, A storage device 211 and a communication device 215 are provided.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the CPU 201 functions as an arithmetic processing unit and a control unit, and controls the overall operation in the sensor terminal 20 according to various programs. Further, the CPU 201 may be a microprocessor.
  • the ROM 202 stores programs used by the CPU 201, calculation parameters, and the like.
  • the RAM 203 temporarily stores programs used in the execution of the CPU 201, parameters that change as appropriate during the execution, and the like. These are connected to each other by a host bus including a CPU bus.
  • the functions of the control unit 250 (the functions of the evaluation unit 130, the demodulation unit 140, and the control unit 150 in the base station 10) are realized by the cooperation of the CPU 201, the ROM 202, the RAM 203, and the software.
  • the input device 208 includes input means for a user to input information, such as a mouse, keyboard, touch panel, button, microphone, switch, and lever, and an input control circuit that generates an input signal based on the input by the user and outputs the input signal to the CPU 201. Etc.
  • the user of the sensor terminal 20 can input various data and instruct processing operations to the sensor terminal 20 by operating the input device 208.
  • the output device 210 includes a display device such as a liquid crystal display (LCD) device, an OLED (Organic Light Emitting Diode) device, and a lamp. Furthermore, the output device 210 includes an audio output device such as a speaker and headphones. For example, the display device displays a captured image or a generated image. On the other hand, the audio output device converts audio data or the like into audio and outputs it.
  • a display device such as a liquid crystal display (LCD) device, an OLED (Organic Light Emitting Diode) device, and a lamp.
  • the output device 210 includes an audio output device such as a speaker and headphones.
  • the display device displays a captured image or a generated image.
  • the audio output device converts audio data or the like into audio and outputs it.
  • the storage device 211 is a data storage device configured as an example of a storage unit of the sensor terminal 20 according to the present embodiment.
  • the storage device 211 may include a storage medium, a recording device that records data on the storage medium, a reading device that reads data from the storage medium, a deletion device that deletes data recorded on the storage medium, and the like.
  • the storage device 211 stores programs executed by the CPU 201 and various data.
  • the communication device 215 is a communication interface configured with, for example, a communication device for connecting to the base station 10.
  • the base station 10 does not perform prior communication with the sensor terminal 20 for management of communication resources, but based on the frequency error of the carrier wave of each received signal. It is possible to identify the sensor terminal 20 that is the transmission source of each received signal. Accordingly, it is possible to reduce power consumption for managing communication resources.
  • each step in the processing of the base station 10 and the sensor terminal 20 in this specification does not necessarily have to be processed in time series in the order described as the flowchart.
  • each step in the processing of the base station 10 and the sensor terminal 20 may be processed in an order different from the order described as the flowchart, or may be processed in parallel.
  • An evaluation unit that evaluates the frequency of the carrier wave of the received signal received from another communication device; A plurality of received signals are extracted from a plurality of received signals based on a result of the evaluation by the evaluation unit, and a combining processing unit that combines the two or more received signals;
  • a communication device comprising: (2) The communication device An oscillator that generates a periodic signal; The said evaluation part is a communication apparatus as described in said (1) which evaluates the difference of the frequency of the carrier wave of the said received signal, and the frequency of the periodic signal produced
  • the evaluation unit includes a plurality of correlation detection units that execute a correlation detection process on a preamble included in the received signal in parallel.
  • the plurality of correlation detection units perform different adjustments on the frequency with respect to the preamble, and detects a correlation between the adjusted preamble and the comparison pattern,
  • the evaluation unit evaluates the amount of adjustment performed in the correlation detection unit that detects the correlation satisfying a predetermined condition as a difference between the frequency of the carrier wave of the received signal and the frequency of the periodic signal generated by the oscillator.
  • the evaluation unit has two or more sets of the plurality of correlation detection units, A different comparison pattern is applied to each set of the plurality of correlation detection units, The evaluation unit evaluates a comparison pattern applied to a correlation detection unit that detects a correlation satisfying a predetermined condition among two or more sets of the plurality of correlation detection units as a preamble included in the received signal;
  • the communication device according to (3).
  • the communication device according to (4), wherein the comparison pattern is a pattern generated using a part of identification information that the other communication device may have.
  • the synthesis processing unit extracts the two or more reception signals from which the same evaluation result is obtained by the evaluation unit from the plurality of reception signals, according to any one of (1) to (5). Communication equipment.
  • the evaluation unit evaluates a time resource classification in which the received signal is received;
  • the synthesis processing unit extracts the two or more received signals from the received signals evaluated by the evaluation unit when received in the same time resource section, any one of (1) to (6)
  • the communication apparatus as described in.
  • the other communication device transmits a signal while regularly switching the frequency of the carrier wave,
  • the combination processing unit receives two or more received signals whose carrier waves are switched according to a predetermined rule among the received signals having the same amount of adjustment performed in the correlation detecting unit that detects the correlation satisfying the predetermined condition.
  • the communication device according to (3), wherein the communication device is extracted.
  • the communication device A demodulator that demodulates a composite signal obtained by the synthesis of the synthesis processor; A communication unit that transmits a reception confirmation to a communication device having identification information included in a result of demodulation based on the demodulation unit succeeding in demodulating the combined signal;
  • the communication device according to any one of (1) to (8), comprising: (10) A processor evaluating a frequency of a carrier wave of a received signal received from another communication device; Extracting two or more received signals from a plurality of received signals based on an evaluation result, and performing a process of combining the two or more received signals; Including a communication control method.
  • control unit 10 base station 20 sensor terminal 30 application server 110 periodic signal generation unit 120 wireless communication unit 130 evaluation unit 132 correlation detection unit 134 addition unit 136 correlation output unit 138 comparison unit 140 demodulation unit 150 control unit 160 wired communication unit 220 wireless communication unit 230 Sensor unit 232 GPS processing unit 240 Carrier wave generation unit 250 Control unit 260 Control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Radio Transmission System (AREA)

Abstract

[Problem] To reduce the power consumed in order to manage communication resources in a system in which a plurality of reception signals are combined. [Solution] This communication device is provided with: an evaluation unit (130) for evaluating the frequencies of carrier waves of reception signals received from other communication devices; and a combination processing unit (140) which extracts, from the plurality of reception signals, two or more reception signals on the basis of the results of the evaluation performed by the evaluation unit, and executes combination processing on the two or more reception signals.

Description

通信装置および通信制御方法Communication apparatus and communication control method
 本開示は、通信装置および通信制御方法に関する。 This disclosure relates to a communication device and a communication control method.
 近年、センサ機能を有する端末から無線通信により情報を収集するための無線センサネットワークが注目されている。無線センサネットワークの用途は、興味対象の位置を確認する用途、および興味対象の行動を管理する用途など、多岐に渡る。 In recent years, wireless sensor networks for collecting information by wireless communication from terminals having a sensor function have attracted attention. The wireless sensor network has a wide variety of uses, such as a purpose of confirming a position of an object of interest and a purpose of managing the behavior of the object of interest.
 既存のセルラーシステムおよび無線LAN(Local Area Network)などの無線通信システムにおいては、基地局またはアクセスポイントのような親局が、通信リソースの管理を行う。例えば、親局は、定期的に基準信号を送信し、子局側の通信端末のための通信リソースを決定し、決定した通信リソースを所定の制御プロトコルに従って通信端末に通知し、通信端末は、基準信号の受信結果および通知された通信リソースを用いて通信を行う。当該管理により、複数の通信端末が行う通信間での干渉を回避または抑制することが可能である。上記の無線通信システムに関し、特許文献1には、受信されたプリアンブルの周波数オフセットに基づき、受信処理を継続するか否かを制御する技術が開示されている。 In a wireless communication system such as an existing cellular system and wireless LAN (Local Area Network), a base station such as a base station or an access point manages communication resources. For example, the master station periodically transmits a reference signal, determines a communication resource for the communication terminal on the slave station side, notifies the determined communication resource to the communication terminal according to a predetermined control protocol, Communication is performed using the reception result of the reference signal and the notified communication resource. By this management, it is possible to avoid or suppress interference between communications performed by a plurality of communication terminals. With regard to the above wireless communication system, Patent Document 1 discloses a technique for controlling whether or not to continue the reception process based on the frequency offset of the received preamble.
特開2000-4177号公報Japanese Unexamined Patent Publication No. 2000-4177
 上述した無線通信システムにおいて、利用可能な最大送信電力が制限されるように通信端末のハードウェアを設計することにより、端末のコストを下げることも可能である。しかし、送信電力が制限されると、通信可能な距離も制限される。この点に関し、通信端末が低送信電力で長距離伝送を行う技術として、例えばセルラー通信で採用されているH-ARQ(Hybrid-ARQ)が存在する。H-ARQは、送信側が同一フレームを繰り返し送信し、受信側が複数のフレームを信号処理により合成することで、受信感度を向上するための技術である。 In the wireless communication system described above, the cost of the terminal can be reduced by designing the hardware of the communication terminal so that the maximum available transmission power is limited. However, when the transmission power is limited, the communicable distance is also limited. In this regard, there is H-ARQ (Hybrid-ARQ) employed in cellular communication, for example, as a technique for a communication terminal to perform long-distance transmission with low transmission power. H-ARQ is a technique for improving reception sensitivity by repeatedly transmitting the same frame on the transmission side and combining a plurality of frames by signal processing on the reception side.
 H-ARQを複数の通信端末が存在し得るマルチアクセス環境に適用する場合、合成前に各受信信号の送信端末を識別することで、同一の通信端末からの受信信号を合成することが可能となる。上述したように、通信リソースの管理のための通信が事前に行われれば、各受信信号の送信端末の識別は容易である。 When H-ARQ is applied to a multi-access environment where a plurality of communication terminals may exist, it is possible to synthesize reception signals from the same communication terminal by identifying the transmission terminal of each reception signal before combining. Become. As described above, if communication for managing communication resources is performed in advance, identification of the transmission terminal of each received signal is easy.
 しかし、通信リソースの管理のための通信、すなわち、上述した基準信号の受信および所定の制御プロトコルに従った通信では、通信端末の電力が消費される。 However, in communication for management of communication resources, that is, in the communication according to the above-described reception of the reference signal and the predetermined control protocol, the power of the communication terminal is consumed.
 そこで、本開示では、複数の受信信号が合成されるシステムにおいて通信リソースの管理のための消費電力を低減することが可能な、新規かつ改良された通信装置および通信制御方法を提案する。 Therefore, the present disclosure proposes a new and improved communication apparatus and communication control method capable of reducing power consumption for communication resource management in a system in which a plurality of received signals are combined.
 本開示によれば、他の通信装置から受信された受信信号の搬送波の周波数を評価する評価部と、複数の受信信号から、前記評価部による評価の結果に基づいて2以上の受信信号を抽出し、前記2以上の受信信号の合成処理を行う合成処理部と、を備える、通信装置が提供される。 According to the present disclosure, an evaluation unit that evaluates the frequency of a carrier wave of a reception signal received from another communication device, and two or more reception signals are extracted from a plurality of reception signals based on the evaluation result by the evaluation unit And a synthesis processing unit that performs synthesis processing of the two or more received signals.
 また、本開示によれば、他の通信装置から受信された受信信号の搬送波の周波数をプロセッサが評価することと、複数の受信信号から、評価の結果に基づいて2以上の受信信号を抽出し、前記2以上の受信信号の合成処理を行うことと、を含む、通信制御方法が提供される。 Moreover, according to this indication, a processor evaluates the frequency of the carrier wave of the received signal received from the other communication apparatus, and extracts two or more received signals from a plurality of received signals based on the evaluation result. And a communication control method including combining the two or more received signals.
 以上説明したように本開示によれば、複数の受信信号が合成されるシステムにおいて通信リソースの管理のための消費電力を低減することが可能である。 As described above, according to the present disclosure, it is possible to reduce power consumption for managing communication resources in a system in which a plurality of received signals are combined.
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。 Note that the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
本開示の実施形態による無線通信システムの構成を示す説明図である。2 is an explanatory diagram illustrating a configuration of a wireless communication system according to an embodiment of the present disclosure. FIG. 時間軸上の通信リソースの区分の一例を示す説明図である。It is explanatory drawing which shows an example of the division of the communication resource on a time axis. センサ端末が送信するフレームの構成例を示す説明図である。It is explanatory drawing which shows the structural example of the flame | frame which a sensor terminal transmits. 本開示の実施形態によるセンサ端末の構成を示す説明図である。It is explanatory drawing which shows the structure of the sensor terminal by embodiment of this indication. 本開示の実施形態による基地局の構成を示す説明図である。2 is an explanatory diagram illustrating a configuration of a base station according to an embodiment of the present disclosure. FIG. 評価部の構成を示す説明図である。It is explanatory drawing which shows the structure of an evaluation part. 本開示の実施形態によるセンサ端末の動作を示すフローチャートである。5 is a flowchart illustrating an operation of a sensor terminal according to an embodiment of the present disclosure. 本開示の実施形態による基地局の動作を示すフローチャートである。5 is a flowchart illustrating an operation of a base station according to an embodiment of the present disclosure. GOLD系列の生成を示す説明図である。It is explanatory drawing which shows the production | generation of a GOLD series. 第1の応用例による評価部の構成を示す説明図である。It is explanatory drawing which shows the structure of the evaluation part by a 1st application example. 第1の応用例によるセンサ端末の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the sensor terminal by a 1st application example. 第1の応用例による基地局の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the base station by a 1st application example. 第2の応用例によるセンサ端末の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the sensor terminal by a 2nd application example. ホッピングパターンの具体例を示す説明図である。It is explanatory drawing which shows the specific example of a hopping pattern. ホッピングパターンの具体例を示す説明図である。It is explanatory drawing which shows the specific example of a hopping pattern. ホッピングパターンの具体例を示す説明図である。It is explanatory drawing which shows the specific example of a hopping pattern. 基地局による受信結果の一例を示す説明図である。It is explanatory drawing which shows an example of the reception result by a base station. 基地局による受信結果の他の例を示す説明図である。It is explanatory drawing which shows the other example of the reception result by a base station. 第3の応用例によるセンサ端末の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the sensor terminal by the 3rd application example. 第3の応用例による基地局の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the base station by the 3rd application example. センサ端末のハードウェア構成を示した説明図である。It is explanatory drawing which showed the hardware constitutions of the sensor terminal.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 また、本明細書及び図面において、実質的に同一の機能構成を有する複数の構成要素を、同一の符号の後に異なるアルファベットを付して区別する場合もある。例えば、実質的に同一の機能構成または論理的意義を有する複数の構成を、必要に応じてセンサ端末20A、20Bおよび20Cのように区別する。ただし、実質的に同一の機能構成を有する複数の構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。例えば、センサ端末20A、20Bおよび20Cを特に区別する必要が無い場合には、単にセンサ端末20と称する。 In the present specification and drawings, a plurality of constituent elements having substantially the same functional configuration may be distinguished by adding different alphabets after the same reference numeral. For example, a plurality of configurations having substantially the same functional configuration or logical significance are distinguished as sensor terminals 20A, 20B, and 20C as necessary. However, when it is not necessary to particularly distinguish each of a plurality of constituent elements having substantially the same functional configuration, only the same reference numerals are given. For example, when it is not necessary to distinguish the sensor terminals 20A, 20B, and 20C, they are simply referred to as the sensor terminal 20.
 また、以下に示す項目順序に従って本開示を説明する。
  1.無線通信システムの概要
  2.センサ端末の構成
  3.基地局の構成
  4.動作
  5.応用例
   5-1.第1の応用例
   5-2.第2の応用例
   5-3.第3の応用例
  6.ハードウェア構成
  7.むすび
Moreover, this indication is demonstrated according to the item order shown below.
1. 1. Overview of wireless communication system 2. Configuration of sensor terminal Configuration of base station 4. Operation 5. Application example 5-1. First application example 5-2. Second application example 5-3. Third application example 6. Hardware configuration Conclusion
  <<1.無線通信システムの概要>>
 本開示の実施形態は、無線センサネットワークを形成する無線通信システムに関する。まず、図1を参照し、本開示の実施形態による無線通信システムの概要を説明する。
<< 1. Overview of wireless communication system >>
Embodiments of the present disclosure relate to a wireless communication system that forms a wireless sensor network. First, an overview of a wireless communication system according to an embodiment of the present disclosure will be described with reference to FIG.
 (1-1.無線通信システムの構成)
 図1は、本開示の実施形態による無線通信システムの構成を示す説明図である。図1に示したように、本開示の実施形態による無線通信システムは、複数の基地局10と、複数のセンサ端末20と、アプリケーションサーバ30と、を備える。
(1-1. Configuration of Radio Communication System)
FIG. 1 is an explanatory diagram illustrating a configuration of a wireless communication system according to an embodiment of the present disclosure. As illustrated in FIG. 1, the wireless communication system according to the embodiment of the present disclosure includes a plurality of base stations 10, a plurality of sensor terminals 20, and an application server 30.
 基地局10は、センサ端末20と無線通信を行う機能、および、アプリケーションサーバ30と有線通信を行う機能を有する通信装置である。例えば、基地局10は、セル内に位置するセンサ端末20と無線通信を行う。図1に示した例では、基地局10Aは、基地局10Aのセル内に位置するセンサ端末20A、20Bおよび20Cと無線通信を行い、基地局10Bは、基地局10Bのセル内に位置するセンサ端末20D、20E、20Fおよび20Gと無線通信を行う。特に、本実施形態による基地局10は、センサ端末20からセンサデータを受信し、当該センサデータをアプリケーションサーバ30に送信する。 The base station 10 is a communication device having a function of performing wireless communication with the sensor terminal 20 and a function of performing wired communication with the application server 30. For example, the base station 10 performs wireless communication with the sensor terminal 20 located in the cell. In the example shown in FIG. 1, the base station 10A performs wireless communication with the sensor terminals 20A, 20B, and 20C located in the cell of the base station 10A, and the base station 10B is a sensor located in the cell of the base station 10B. Wireless communication is performed with the terminals 20D, 20E, 20F, and 20G. In particular, the base station 10 according to the present embodiment receives sensor data from the sensor terminal 20 and transmits the sensor data to the application server 30.
 センサ端末20は、センサ機能、および基地局10と無線通信を行う機能を有する。例えば、センサ機能は、加速度センサ、ジャイロセンサ、温度センサ、気圧センサ、音圧センサ、脈拍センサまたはGPS(Global Positioning System)などの、多様なセンサにより実現され得る。センサ端末20は、センサ機能により取得したセンサデータを基地局10に送信する。 The sensor terminal 20 has a sensor function and a function of performing wireless communication with the base station 10. For example, the sensor function can be realized by various sensors such as an acceleration sensor, a gyro sensor, a temperature sensor, an atmospheric pressure sensor, a sound pressure sensor, a pulse sensor, or a GPS (Global Positioning System). The sensor terminal 20 transmits the sensor data acquired by the sensor function to the base station 10.
 アプリケーションサーバ30は、センサ端末20により得られたセンサデータを基地局10から受信し、受信したセンサデータを用いたサービスを提供する。センサデータを用いたサービスは、興味対象の位置を確認するサービス、および興味対象の行動を管理するサービスなど、多岐に渡る。興味対象の位置を確認するサービスに関しては、例えば、GPS機能を有するセンサ端末20を高齢者や子供が装着し、アプリケーションサーバ30が基地局10を介してセンサ端末20から位置情報を取得しておくことにより、家族や行政に高齢者や子供の位置を提供することが可能である。興味対象の行動を管理するサービスに関しては、例えば、加速度センサを有するセンサ端末20を牛や豚などの家畜に装着させ、アプリケーションサーバ30が基地局10を介してセンサ端末20から家畜の動きに関する情報を取得することにより、放牧地での家畜の行動管理を行うことが可能である。 The application server 30 receives the sensor data obtained by the sensor terminal 20 from the base station 10 and provides a service using the received sensor data. There are a wide variety of services using sensor data, such as a service for confirming the position of an object of interest and a service for managing the behavior of an object of interest. Regarding the service for confirming the position of interest, for example, an elderly person or a child wears the sensor terminal 20 having a GPS function, and the application server 30 acquires position information from the sensor terminal 20 via the base station 10. Thus, it is possible to provide the positions of the elderly and children to the family and the administration. Regarding the service for managing the behavior of interest, for example, the sensor terminal 20 having an acceleration sensor is attached to livestock such as cows and pigs, and the application server 30 receives information on the movement of livestock from the sensor terminal 20 via the base station 10. It is possible to manage the behavior of livestock on grazing land.
 なお、本実施形態においては通信装置の一例としてセンサ機能を有するセンサ端末20を説明するが、センサ機能を有さない通信装置にも本実施形態を適用可能である。例えば、通信装置は、外部装置からデータを供給され、供給されたデータを基地局10に送信してもよい。外部装置が自動販売機である場合、通信装置は、自動販売機から売上げデータが供給され、売上げデータを基地局10に送信してもよい。 In the present embodiment, the sensor terminal 20 having a sensor function will be described as an example of a communication device. However, the present embodiment can also be applied to a communication device having no sensor function. For example, the communication device may be supplied with data from an external device and transmit the supplied data to the base station 10. When the external device is a vending machine, the communication device may be supplied with sales data from the vending machine and transmit the sales data to the base station 10.
 (1-2.無線通信の概要)
 以上、本開示の実施形態による無線通信システムの構成を説明した。続いて、無線通信システムにおける基地局10とセンサ端末20との無線通信の概要を説明する。
(1-2. Overview of wireless communication)
The configuration of the wireless communication system according to the embodiment of the present disclosure has been described above. Next, an outline of wireless communication between the base station 10 and the sensor terminal 20 in the wireless communication system will be described.
 -通信リソース
 基地局10とセンサ端末20は、時間軸上で区分された各通信リソースの開始タイミングを共有する。当該共有は、例えば、基地局10が時間同期のための基準信号を送信し、センサ端末20が当該基準信号を受信することで実現され得る。しかし、センサ端末20が当該基準信号の受信を継続的に行うと、相応の電力が消費される。このため、基地局10とセンサ端末20は、各々が管理する絶対時間に基づいて各通信リソースの開始タイミングを共有してもよい。センサ端末20は、例えば、上記絶対時間をGPSの受信処理により取得可能である。以下、図2を参照し、基地局10とセンサ端末20によりタイミングが共有される時間軸上の通信リソースの一例を説明する。
-Communication resource The base station 10 and the sensor terminal 20 share the start timing of each communication resource divided on the time axis. The sharing can be realized, for example, when the base station 10 transmits a reference signal for time synchronization and the sensor terminal 20 receives the reference signal. However, when the sensor terminal 20 continuously receives the reference signal, corresponding power is consumed. For this reason, the base station 10 and the sensor terminal 20 may share the start timing of each communication resource based on the absolute time managed by each. For example, the sensor terminal 20 can acquire the absolute time by GPS reception processing. Hereinafter, an example of communication resources on the time axis in which timing is shared by the base station 10 and the sensor terminal 20 will be described with reference to FIG.
 図2は、時間軸上の通信リソースの区分の一例を示す説明図である。本実施形態においては、時間軸上の通信リソースは、スーパーフレームと称されるリソース単位に区分される。図2に示した例では、スーパーフレーム#0~#9からなる10個のスーパーフレームが繰り返される。各スーパーフレームの時間幅は、特に限定されず、例えば、6秒であってもよい。各スーパーフレームの時間幅が6秒である場合、スーパーフレームの繰り返しの周期は1分となる。センサ端末20は、いずれかのスーパーフレームを利用して、センサデータを含むフレームを送信する。 FIG. 2 is an explanatory diagram showing an example of communication resource classification on the time axis. In the present embodiment, communication resources on the time axis are divided into resource units called superframes. In the example shown in FIG. 2, ten superframes composed of superframes # 0 to # 9 are repeated. The time width of each super frame is not particularly limited, and may be 6 seconds, for example. When the time width of each super frame is 6 seconds, the repetition period of the super frame is 1 minute. The sensor terminal 20 transmits a frame including sensor data using any one of the super frames.
 -フレーム構成
 図3は、センサ端末20が送信するフレームの構成例を示す説明図である。図3に示したように、センサ端末20が送信するフレームは、プリアンブル51と、SFD(Sync Frame Detector)52と、端末ID53と、データ54と、CRC(Cyclic Redundancy Check)55と、パリティビット56と、を含む。
Frame Configuration FIG. 3 is an explanatory diagram showing a configuration example of a frame transmitted by the sensor terminal 20. As shown in FIG. 3, the frame transmitted by the sensor terminal 20 includes a preamble 51, an SFD (Sync Frame Detector) 52, a terminal ID 53, data 54, a CRC (Cyclic Redundancy Check) 55, and a parity bit 56. And including.
 プリアンブル51は、基地局10においてフレームの検出のために用いられる信号パターンである。SFD52は、フレーム内でのペイロード(端末ID53~パリティビット56)の開始位置を示す信号パターンである。基地局10は、プリアンブル51が検出されたフレームから当該SFD52を検出することにより、以降がペイロードであることを認識する。 The preamble 51 is a signal pattern used for frame detection in the base station 10. The SFD 52 is a signal pattern indicating the start position of the payload (terminal ID 53 to parity bit 56) within the frame. The base station 10 detects the SFD 52 from the frame in which the preamble 51 is detected, thereby recognizing that the subsequent is the payload.
 端末ID53は、フレームを送信するセンサ端末20のIDである。当該端末ID53は、例えばセンサ端末20の固有の番号であってもよい。データ54は、アプリケーションサーバ30における利用のためのデータであり、加速度情報や位置情報などのセンサデータが当該データ54に含まれ得る。CRC55は、当該フレームの受信が成功したか否かの判断に用いられる。パリティビット56は、端末ID53、データ54およびCRC55に応じて生成される冗長ビットであり、当該パリティビットの利用により、基地局10でのフレームの受信成功率が向上する。 Terminal ID 53 is an ID of the sensor terminal 20 that transmits a frame. The terminal ID 53 may be a unique number of the sensor terminal 20, for example. The data 54 is data for use in the application server 30, and sensor data such as acceleration information and position information can be included in the data 54. The CRC 55 is used to determine whether or not reception of the frame has been successful. The parity bit 56 is a redundant bit generated according to the terminal ID 53, the data 54, and the CRC 55, and the frame reception success rate at the base station 10 is improved by using the parity bit.
 -長距離伝送
 無線通信システムをより低コストで実現するために、1つの基地局10がカバーするセルエリアを広くすること、すなわち、長距離伝送が有効である。長距離伝送では、無線通信システムを構成する基地局10の数を低減することが可能である。
-Long distance transmission In order to realize a wireless communication system at a lower cost, it is effective to widen a cell area covered by one base station 10, that is, long distance transmission. In long-distance transmission, it is possible to reduce the number of base stations 10 constituting the wireless communication system.
 また、利用可能な最大送信電力が制限されるようにセンサ端末20のハードウェアを設計することにより、センサ端末20のコストを下げることも可能である。しかし、送信電力が制限されると、通信可能な距離も制限される。この点に関し、センサ端末20が低送信電力で長距離伝送を行う技術として、例えばセルラー通信で採用されているH-ARQ(Hybrid-ARQ)が存在する。H-ARQは、送信側が同一フレームを繰り返し送信し、受信側が複数のフレームを信号処理により合成することで、受信感度を向上するための技術である。 Also, it is possible to reduce the cost of the sensor terminal 20 by designing the hardware of the sensor terminal 20 so that the maximum available transmission power is limited. However, when the transmission power is limited, the communicable distance is also limited. In this regard, there is H-ARQ (Hybrid-ARQ) employed in cellular communication, for example, as a technique in which the sensor terminal 20 performs long-distance transmission with low transmission power. H-ARQ is a technique for improving reception sensitivity by repeatedly transmitting the same frame on the transmission side and combining a plurality of frames by signal processing on the reception side.
 具体的には、H-ARQに従うセンサ端末20は、図3を参照して説明したフレームを、基地局10から受信確認(ACK)が受信されるまで、あるいは、送信回数が上限に達するまで、繰り返し送信する。基地局10は、新たなフレームが受信される度にフレーム合成を行い、復調に成功した場合にはセンサ端末20にACKを送信する。 Specifically, the sensor terminal 20 according to H-ARQ receives the frame described with reference to FIG. 3 until reception confirmation (ACK) is received from the base station 10 or until the number of transmissions reaches an upper limit. Send repeatedly. The base station 10 performs frame composition every time a new frame is received, and transmits ACK to the sensor terminal 20 when demodulation is successful.
 (1-3.背景)
 上述したH-ARQを複数の通信端末が存在し得るマルチアクセス環境に適用する場合、合成前に各フレームの送信端末を識別することで、同一の通信端末からのフレームを合成することが可能となる。セルラーシステムおよび無線LANなどの無線通信システムにおいては、基地局またはアクセスポイントのような親局が、通信端末との間で通信リソースの管理のための通信を行う。このような通信リソースの管理のための通信が事前に行われれば、各フレームの送信端末の識別は容易である。
(1-3. Background)
When the above-described H-ARQ is applied to a multi-access environment where a plurality of communication terminals can exist, it is possible to combine frames from the same communication terminal by identifying the transmitting terminal of each frame before combining. Become. In a wireless communication system such as a cellular system and a wireless LAN, a base station such as a base station or an access point performs communication for communication resource management with a communication terminal. If communication for management of such communication resources is performed in advance, the transmission terminal of each frame can be easily identified.
 しかし、通信リソースの管理のための通信は、例えば通信端末における基準信号の受信および所定の制御プロトコルに従った通信を含むので、通信端末の電力が消費される。特に、センサネットワークに属するセンサ端末が送信するデータは数byte程度の少量データである場合が想定され、この場合、通信リソースの管理のために消費される電力の、データの送信のために消費される電力に対する割合が大きくなってしまう。 However, since communication for managing communication resources includes, for example, reception of a reference signal in a communication terminal and communication in accordance with a predetermined control protocol, power of the communication terminal is consumed. In particular, it is assumed that the data transmitted by the sensor terminals belonging to the sensor network is a small amount of data of about several bytes. In this case, the power consumed for management of communication resources is consumed for data transmission. The ratio to the power to be increased.
 そこで、本件発明者は、上記事情に着眼して本開示の実施形態を創作するに至った。本開示の実施形態によれば、複数のフレームが合成されるシステムにおいて通信リソースの管理のための消費電力を低減することが可能である。以下、このような本開示の実施形態の構成および動作を順次詳細に説明する。 Therefore, the present inventor came to create an embodiment of the present disclosure by focusing on the above circumstances. According to the embodiment of the present disclosure, it is possible to reduce power consumption for communication resource management in a system in which a plurality of frames are combined. Hereinafter, the configuration and operation of the embodiment of the present disclosure will be sequentially described in detail.
  <<2.センサ端末の構成>>
 図4は、本開示の実施形態によるセンサ端末20の構成を示す説明図である。図4に示したように、本開示の実施形態によるセンサ端末20は、無線通信部220と、センサ部230と、搬送波生成部240と、制御部250と、を備える。
<< 2. Configuration of sensor terminal >>
FIG. 4 is an explanatory diagram illustrating a configuration of the sensor terminal 20 according to the embodiment of the present disclosure. As illustrated in FIG. 4, the sensor terminal 20 according to the embodiment of the present disclosure includes a wireless communication unit 220, a sensor unit 230, a carrier wave generation unit 240, and a control unit 250.
 (無線通信部)
 無線通信部220は、基地局10から送信された無線信号の受信処理、および基地局10への無線信号の送信処理を行う。より具体的に説明すると、無線通信部220は、基地局10から送信された無線信号(例えば、920MHz帯の無線信号)をアンテナにより高周波受信信号に変換し、当該高周波受信信号にアナログ処理およびダウンコンバージョンを施すことにより、ベースバンド受信信号を出力する。また、無線通信部220は、制御部250から供給されるベースバンド送信信号を搬送波周波数帯の高周波送信信号にアップコンバージョンし、アップコンバージョンにより得られた高周波送信信号をアンテナにより無線信号に変換して送信する。なお、高周波送信信号へのアップコンバージョンおよびベースバンド受信信号へのダウンコンバージョンは、搬送波生成部240により生成される搬送波を用いて行われる。
(Wireless communication part)
The radio communication unit 220 performs reception processing of a radio signal transmitted from the base station 10 and transmission processing of a radio signal to the base station 10. More specifically, the radio communication unit 220 converts a radio signal (for example, a radio signal in a 920 MHz band) transmitted from the base station 10 into a high frequency reception signal by an antenna, and performs analog processing and downsampling on the high frequency reception signal. By performing the conversion, a baseband received signal is output. Also, the radio communication unit 220 up-converts the baseband transmission signal supplied from the control unit 250 into a high-frequency transmission signal in the carrier frequency band, and converts the high-frequency transmission signal obtained by the up-conversion into a radio signal using an antenna. Send. Note that the up-conversion to the high-frequency transmission signal and the down-conversion to the baseband reception signal are performed using the carrier wave generated by the carrier wave generation unit 240.
 (センサ部)
 センサ部230は、1または2以上のセンサからなる。図4においては、センサの一例としてGPS処理部232を示している。GPS処理部232は、GPS衛星から送信される衛星信号を処理することにより、センサ端末20の位置情報および時間情報を取得する。センサ部230は、GPS処理部232に加えて、またはGPS処理部232に代えて、加速度センサ、ジャイロセンサ、温度センサ、気圧センサ、音圧センサおよび脈拍センサなどの他のセンサを有してもよい。
(Sensor part)
The sensor unit 230 includes one or more sensors. In FIG. 4, a GPS processing unit 232 is shown as an example of a sensor. The GPS processing unit 232 acquires position information and time information of the sensor terminal 20 by processing satellite signals transmitted from GPS satellites. The sensor unit 230 may include other sensors such as an acceleration sensor, a gyro sensor, a temperature sensor, an atmospheric pressure sensor, a sound pressure sensor, and a pulse sensor in addition to the GPS processing unit 232 or instead of the GPS processing unit 232. Good.
 (搬送波生成部)
 搬送波生成部240は、ベースバンド送信信号から高周波送信信号へのアップコンバージョン、および高周波受信信号からベースバンド受信信号へのダウンコンバージョンのために用いられる搬送波を生成する。搬送波生成部240は、例えば、水晶振動子のような発振器により生成された基準信号の周波数を調整することにより、搬送波を生成する。
(Carrier generation unit)
The carrier generation unit 240 generates a carrier used for up-conversion from a baseband transmission signal to a high-frequency transmission signal and for down-conversion from a high-frequency reception signal to a baseband reception signal. The carrier wave generation unit 240 generates a carrier wave by adjusting the frequency of a reference signal generated by an oscillator such as a crystal resonator, for example.
 (制御部)
 制御部250は、センサ端末20における通信全般を制御する。例えば、制御部250は、センサ部230により得られたセンサデータを含むフレームを生成し、当該フレームを無線通信部220に繰り返し送信させる。制御部250は、基地局10からACKが受信された場合、または、繰り返しの送信回数が上限に達した場合、フレームの送信を停止する。
(Control part)
The control unit 250 controls overall communication in the sensor terminal 20. For example, the control unit 250 generates a frame including the sensor data obtained by the sensor unit 230 and causes the wireless communication unit 220 to repeatedly transmit the frame. The control unit 250 stops frame transmission when ACK is received from the base station 10 or when the number of repeated transmissions reaches the upper limit.
  <<3.基地局の構成>>
 以上、本開示の実施形態によるセンサ端末20の構成を説明した。続いて、図5を参照し、本開示の実施形態による基地局10の構成を説明する。
<< 3. Base station configuration >>
The configuration of the sensor terminal 20 according to the embodiment of the present disclosure has been described above. Next, the configuration of the base station 10 according to the embodiment of the present disclosure will be described with reference to FIG.
 図5は、本開示の実施形態による基地局10の構成を示す説明図である。図5に示したように、本開示の実施形態による基地局10は、周期信号生成部110と、無線通信部120と、評価部130と、復調部140と、制御部150と、有線通信部160と、を備える。 FIG. 5 is an explanatory diagram illustrating a configuration of the base station 10 according to the embodiment of the present disclosure. As illustrated in FIG. 5, the base station 10 according to the embodiment of the present disclosure includes a periodic signal generation unit 110, a wireless communication unit 120, an evaluation unit 130, a demodulation unit 140, a control unit 150, and a wired communication unit. 160.
 (周期信号生成部)
 周期信号生成部110は、無線通信部120におけるベースバンド送信信号から高周波送信信号へのアップコンバージョン、および高周波受信信号からベースバンド受信信号へのダウンコンバージョンのために用いられる周期信号を生成する。周期信号生成部110は、例えば、水晶振動子のような発振器により生成された基準信号の周波数を調整することにより当該周期信号を生成する。
(Periodic signal generator)
Periodic signal generation section 110 generates a periodic signal used for up-conversion from baseband transmission signal to high-frequency transmission signal and down-conversion from high-frequency reception signal to baseband reception signal in radio communication section 120. The periodic signal generation unit 110 generates the periodic signal by adjusting the frequency of a reference signal generated by an oscillator such as a crystal resonator, for example.
 (無線通信部)
 無線通信部120は、センサ端末20から送信された無線信号の受信処理、およびセンサ端末20への無線信号の送信処理を行う。より具体的に説明すると、無線通信部120は、センサ端末20から送信された無線信号をアンテナにより高周波受信信号に変換し、当該高周波受信信号にアナログ処理およびダウンコンバージョンを施すことにより、ベースバンド受信信号を出力する。また、無線通信部120は、制御部150から供給されるベースバンド送信信号を搬送波周波数帯の高周波送信信号にアップコンバージョンし、アップコンバージョンにより得られた高周波送信信号をアンテナにより無線信号に変換して送信する。なお、高周波送信信号へのアップコンバージョンおよびベースバンド受信信号へのダウンコンバージョンは、周期信号生成部110により生成される周期信号を用いて行われる。
(Wireless communication part)
The wireless communication unit 120 performs reception processing of a wireless signal transmitted from the sensor terminal 20 and transmission processing of a wireless signal to the sensor terminal 20. More specifically, the wireless communication unit 120 converts the wireless signal transmitted from the sensor terminal 20 into a high frequency reception signal by an antenna, performs analog processing and down conversion on the high frequency reception signal, and thereby performs baseband reception. Output a signal. Also, the wireless communication unit 120 up-converts the baseband transmission signal supplied from the control unit 150 into a high-frequency transmission signal in the carrier frequency band, and converts the high-frequency transmission signal obtained by the up-conversion into a radio signal using an antenna. Send. Note that the up-conversion to the high-frequency transmission signal and the down-conversion to the baseband reception signal are performed using the periodic signal generated by the periodic signal generation unit 110.
 (評価部)
 評価部130は、センサ端末20から受信された受信信号の搬送波を評価する。具体的には、評価部130は、センサ端末20から受信された受信信号の搬送波と、周期信号生成部110により生成された周期信号との間の周波数誤差を検出する。以下、図6を参照し、評価部130の構成をより詳細に説明する。
(Evaluation Department)
The evaluation unit 130 evaluates the carrier wave of the received signal received from the sensor terminal 20. Specifically, the evaluation unit 130 detects a frequency error between the carrier wave of the reception signal received from the sensor terminal 20 and the periodic signal generated by the periodic signal generation unit 110. Hereinafter, the configuration of the evaluation unit 130 will be described in more detail with reference to FIG.
 図6は、評価部130の構成を示す説明図である。図6に示したように、評価部130は、複数の相関検出部132および比較部138を有する。 FIG. 6 is an explanatory diagram showing the configuration of the evaluation unit 130. As illustrated in FIG. 6, the evaluation unit 130 includes a plurality of correlation detection units 132 and a comparison unit 138.
 複数の相関検出部132には、無線通信部120からベースバンド受信信号が入力される。各相関検出部132は、入力されるベースバンド受信信号に対して周波数に関する異なる調整を施し、調整後のベースバンド受信信号に含まれるプリアンブルと所定の比較パターンとの相関を検出する。 The baseband received signal from the wireless communication unit 120 is input to the plurality of correlation detection units 132. Each correlation detection unit 132 performs different adjustments on the frequency of the input baseband received signal, and detects the correlation between the preamble included in the adjusted baseband received signal and a predetermined comparison pattern.
 具体的には、各相関検出部132は、複数の位相調整器r、複数の遅延器d、複数の乗算器m、加算部134および相関出力部136を有する。図6に示したように、位相調整器rと遅延器dは交互に直列に配置され、位相調整器rと遅延器dの間に乗算器mが配置される。 Specifically, each correlation detection unit 132 includes a plurality of phase adjusters r, a plurality of delay units d, a plurality of multipliers m, an addition unit 134, and a correlation output unit 136. As shown in FIG. 6, the phase adjusters r and the delay devices d are alternately arranged in series, and the multiplier m is arranged between the phase adjusters r and the delay devices d.
 位相調整器rは、信号の位相を回転させる機能を有する。ここで、各位相調整器rが位相を回転させる量は、位相調整器rがいずれの相関検出部132に含まれるかによって異なる。すなわち、各相関検出部132は、ベースバンド受信信号の周波数をシフトさせる機能を有し、各相関検出部132によってシフトされる周波数の量は異なる。 The phase adjuster r has a function of rotating the phase of the signal. Here, the amount by which each phase adjuster r rotates the phase varies depending on which correlation detector 132 includes the phase adjuster r. That is, each correlation detection unit 132 has a function of shifting the frequency of the baseband reception signal, and the amount of frequency shifted by each correlation detection unit 132 is different.
 各乗算器mには、各位相調整器rからの出力、および、センサ端末20が使用するプリアンブルに対応する比較パターンの要素信号が入力され、各乗算器mは、各位相調整器rからの出力と、比較パターンの要素信号の共役を乗算する。 Each multiplier m receives an output from each phase adjuster r and an element signal of a comparison pattern corresponding to a preamble used by the sensor terminal 20, and each multiplier m receives a signal from each phase adjuster r. The output is multiplied by the conjugate of the component signal of the comparison pattern.
 加算部134は、各乗算器mから入力される乗算の結果を加算する。相関出力部136は、加算部134により得られた複素信号を電力信号に変換し、当該電力信号を相関値として出力する。 The addition unit 134 adds the multiplication results input from each multiplier m. The correlation output unit 136 converts the complex signal obtained by the adding unit 134 into a power signal, and outputs the power signal as a correlation value.
 ここで、センサ端末20の搬送波生成部240が生成する搬送波の周波数と、基地局10の周期信号生成部110が生成する周期信号の周波数とには、発振器の個体差に起因した量の差分(以下、周波数誤差と称する)が生じ得る。そして、複数の相関検出部132のうちで、周波数のシフト量が周波数誤差と同一である相関検出部132により、最大の相関値が出力される。 Here, the difference between the amount of the carrier frequency generated by the carrier generation unit 240 of the sensor terminal 20 and the frequency of the periodic signal generated by the periodic signal generation unit 110 of the base station 10 due to the individual difference of the oscillator ( Hereinafter referred to as a frequency error). Then, among the plurality of correlation detection units 132, the maximum correlation value is output by the correlation detection unit 132 whose frequency shift amount is the same as the frequency error.
 このため、比較部138は、各相関検出部132から出力される相関値と閾値を比較し、閾値を上回る相関値を出力した相関検出部132による周波数のシフト量を、周波数誤差として検出する。当該周波数誤差は、送信元のセンサ端末20によって異なり得るので、当該周波数誤差に基づいて、各受信信号の送信元のセンサ端末20を識別することが可能である。 For this reason, the comparison unit 138 compares the correlation value output from each correlation detection unit 132 with a threshold value, and detects a frequency shift amount by the correlation detection unit 132 that outputs a correlation value exceeding the threshold value as a frequency error. Since the frequency error may vary depending on the sensor terminal 20 that is the transmission source, it is possible to identify the sensor terminal 20 that is the transmission source of each received signal based on the frequency error.
 (復調部)
 復調部140は、評価部130による評価の結果に基づいて、送信元のセンサ端末20が同一であると推定される2以上の受信信号を抽出し、抽出した2以上の受信信号の合成処理を行う合成処理部の機能を有する。具体的には、復調部140は、評価部130によって同一の周波数誤差が検出された受信信号を順次に抽出し、抽出した受信信号のペイロードを累積的に合成する。そして、復調部140は、合成後のペイロードの復調を試みる。復調が成功したか否かは、図3を参照して説明した、ペイロードに含まれるCRC55を用いて確認される。
(Demodulator)
The demodulator 140 extracts two or more received signals that are estimated to be the same from the source sensor terminal 20 based on the result of the evaluation performed by the evaluating unit 130, and performs a process of combining the extracted two or more received signals. It has the function of the synthesis processing unit to perform. Specifically, the demodulator 140 sequentially extracts received signals in which the same frequency error is detected by the evaluation unit 130, and cumulatively synthesizes the payloads of the extracted received signals. Then, the demodulation unit 140 attempts to demodulate the combined payload. Whether the demodulation is successful is confirmed using the CRC 55 included in the payload described with reference to FIG.
 制御部150は、基地局10の通信全般を制御する。例えば、制御部150は、復調部140がペイロードの復調に成功した場合、当該ペイロードの送信元のセンサ端末20に受信確認としてACKが送信されるよう、無線通信部120を制御する。 The control unit 150 controls the overall communication of the base station 10. For example, when the demodulation unit 140 succeeds in demodulating the payload, the control unit 150 controls the wireless communication unit 120 so that ACK is transmitted as a reception confirmation to the sensor terminal 20 that is the transmission source of the payload.
 有線通信部160は、アプリケーションサーバ30とのインタフェースである。有線通信部160は、復調部140により復調されたペイロードに含まれる端末IDおよびデータを、アプリケーションサーバ30に送信する。 The wired communication unit 160 is an interface with the application server 30. The wired communication unit 160 transmits the terminal ID and data included in the payload demodulated by the demodulation unit 140 to the application server 30.
  <<4.動作>>
 以上、本開示の実施形態による基地局10およびセンサ端末20の構成を説明した。続いて、図7および図8を参照し、本開示の実施形態による基地局10およびセンサ端末20の動作を整理する。
<< 4. Operation >>
The configurations of the base station 10 and the sensor terminal 20 according to the embodiment of the present disclosure have been described above. Subsequently, the operations of the base station 10 and the sensor terminal 20 according to the embodiment of the present disclosure are organized with reference to FIGS. 7 and 8.
 (センサ端末の動作)
 図7は、本開示の実施形態によるセンサ端末20の動作を示すフローチャートである。図7に示したように、まず、センサ端末20の制御部250が図3を参照して説明したフレームを生成し(S410)、無線通信部220が当該フレームを無線信号として送信する(S420)。その後、制御部250は、タイムアウトまで、すなわち所定の待機時間が経過するまでACKの受信を待機し(S430/NO、S450/NO)、ACKを受信した場合には送信動作を終了する(S450/YES)。
(Operation of sensor terminal)
FIG. 7 is a flowchart illustrating an operation of the sensor terminal 20 according to the embodiment of the present disclosure. As shown in FIG. 7, first, the control unit 250 of the sensor terminal 20 generates the frame described with reference to FIG. 3 (S410), and the wireless communication unit 220 transmits the frame as a wireless signal (S420). . Thereafter, the control unit 250 waits for reception of an ACK until a time-out, that is, until a predetermined waiting time elapses (S430 / NO, S450 / NO), and ends the transmission operation when an ACK is received (S450 / YES).
 一方、ACKが受信されないまま所定の待機時間が経過した場合(S430/YES)、制御部250は、フレームの送信回数が上限に達したか否かを判断する(S440)。フレームの送信回数が上限に達しっていない場合(S440/NO)、S410からの処理が繰り返され、フレームの送信回数が上限に達している場合(S440/YES)、送信動作が終了する。 On the other hand, when a predetermined standby time has elapsed without receiving an ACK (S430 / YES), the control unit 250 determines whether or not the number of frame transmissions has reached the upper limit (S440). If the number of frame transmissions has not reached the upper limit (S440 / NO), the processing from S410 is repeated, and if the number of frame transmissions has reached the upper limit (S440 / YES), the transmission operation ends.
 (基地局の動作)
 図8は、本開示の実施形態による基地局10の動作を示すフローチャートである。基地局10の無線通信部120が無線信号を受信してベースバンド受信信号を評価部130に出力すると、評価部130は、複数の相関検出部132を用いた相関検出処理に基づき、周波数誤差を検出する(S504)。
(Operation of base station)
FIG. 8 is a flowchart illustrating an operation of the base station 10 according to the embodiment of the present disclosure. When the radio communication unit 120 of the base station 10 receives the radio signal and outputs the baseband received signal to the evaluation unit 130, the evaluation unit 130 calculates the frequency error based on the correlation detection process using the plurality of correlation detection units 132. It is detected (S504).
 そして、復調部140は、評価部130により検出された周波数誤差と関連付けられて記憶されているペイロードがある場合には(S508/YES)、ベースバンド受信信号から切り出したペイロードと、記憶されているペイロードを合成する(S512)。そして、復調部140は、合成されたペイロードの復調処理を行う(S516)。一方、評価部130により検出された周波数誤差と関連付けられて記憶されているペイロードが無い場合には(S508/NO)、復調部140は、ベースバンド受信信号から切り出されたペイロードの復調処理を行う(S516)。 Then, when there is a payload stored in association with the frequency error detected by the evaluation unit 130 (S508 / YES), the demodulation unit 140 stores the payload cut out from the baseband received signal. The payload is synthesized (S512). Then, the demodulation unit 140 performs demodulation processing on the combined payload (S516). On the other hand, when there is no payload stored in association with the frequency error detected by the evaluation unit 130 (S508 / NO), the demodulation unit 140 performs demodulation processing on the payload cut out from the baseband received signal. (S516).
 S516において復調が失敗した場合(S520/NO)、復調部140は、復調処理の対象となったペイロードを、S504において検出された周波数誤差と関連付けて記憶する(S524)。一方、S516において復調が成功した場合(S520/YES)、制御部150は、ペイロードに含まれる端末IDを確認し、無線通信部120に、無線信号の送信元のセンサ端末20へACKを送信させ(S528)、復調部140が、S504において検出された周波数誤差と関連付けて記憶していたペイロードを削除する(S532)。 When demodulation fails in S516 (S520 / NO), the demodulator 140 stores the payload subjected to demodulation processing in association with the frequency error detected in S504 (S524). On the other hand, when the demodulation is successful in S516 (S520 / YES), the control unit 150 confirms the terminal ID included in the payload, and causes the wireless communication unit 120 to transmit ACK to the sensor terminal 20 that is the transmission source of the wireless signal. (S528) The demodulator 140 deletes the payload stored in association with the frequency error detected in S504 (S532).
 なお、S504においては複数の周波数誤差が検出されることも考えられる。S504において複数の周波数誤差が検出された場合、S508~S532の処理は各周波数誤差について実行される。 Note that a plurality of frequency errors may be detected in S504. When a plurality of frequency errors are detected in S504, the processing of S508 to S532 is executed for each frequency error.
 以上説明したように、本開示の実施形態によれば、基地局10は、センサ端末20と通信リソースの管理のための事前の通信をせずに、各受信信号の搬送波の周波数誤差に基づいて各受信信号の送信元のセンサ端末20を識別することが可能である。従って、通信リソースの管理のための消費電力を低減することが可能である。 As described above, according to the embodiment of the present disclosure, the base station 10 does not perform prior communication with the sensor terminal 20 for management of communication resources, but based on the frequency error of the carrier wave of each received signal. It is possible to identify the sensor terminal 20 that is the transmission source of each received signal. Accordingly, it is possible to reduce power consumption for managing communication resources.
  <<5.応用例>>
 上述したように、複数のセンサ端末20から受信された受信信号の搬送波の周波数誤差は、各センサ端末20が有する発振器の個体差に起因して異なり得る。しかし、異なるセンサ端末20から受信された受信信号の搬送波の周波数誤差が同一となる場合も起こり得る。この場合、周波数誤差のみからでは受信信号の送信元のセンサ端末20を識別することが困難である。そこで、送信元の識別力をさらに向上することが可能な幾つかの応用例を以下に説明する。なお、以下に説明する各応用例は、上述した実施形態に単独で適用されても良いし、組み合わせで適用されてもよい。
<< 5. Application example >>
As described above, the frequency error of the carrier waves of the received signals received from the plurality of sensor terminals 20 may be different due to the individual difference of the oscillators that each sensor terminal 20 has. However, it may happen that the frequency errors of the carrier waves of the received signals received from different sensor terminals 20 are the same. In this case, it is difficult to identify the sensor terminal 20 that is the transmission source of the received signal only from the frequency error. Therefore, some application examples that can further improve the discrimination power of the transmission source will be described below. In addition, each application example demonstrated below may be applied independently to embodiment mentioned above, and may be applied in combination.
   <5-1.第1の応用例>
 まず、第1の応用例として、周波数誤差に加え、プリアンブルのパターンから送信元のセンサ端末20を識別するための仕組みを説明する。
<5-1. First application example>
First, as a first application example, a mechanism for identifying the transmission source sensor terminal 20 from the preamble pattern in addition to the frequency error will be described.
 (構成)
 第1の応用例によるセンサ端末20の制御部250は、フレームの送信に用いられるプリアンブルのパターンを決定する。具体的には、制御部250は、センサ端末20の端末IDを用いてプリアンブルのパターンを決定する。例えば、制御部250は、図9に示した異なるM系列を組み合わせて出力を得るGOLD系列の生成方法において、一方のM系列として端末IDの少なくとも一部を用い、得られるGOLD系列をプリアンブルのパターンとして決定してもよい。
(Constitution)
The control unit 250 of the sensor terminal 20 according to the first application example determines a preamble pattern used for frame transmission. Specifically, the control unit 250 determines a preamble pattern using the terminal ID of the sensor terminal 20. For example, in the GOLD sequence generation method for obtaining an output by combining different M sequences shown in FIG. 9, the control unit 250 uses at least a part of the terminal ID as one M sequence, and uses the obtained GOLD sequence as a preamble pattern. May be determined as
 制御部250が端末IDの全体を用いてプリアンブルのパターンを決定すれば、プリアンブルのパターンからセンサ端末20を一意に識別することが可能である。しかし、端末IDは、24ビットまたは32ビットで表現されることが想定される。この場合、端末IDの全体を用いて決定されたプリアンブルの長さが、2の24乗、または2の32乗の長さになってしまう。プリアンブルが長いことは、低消費電力化の観点からは好ましくない。 If the control unit 250 determines the preamble pattern using the entire terminal ID, the sensor terminal 20 can be uniquely identified from the preamble pattern. However, it is assumed that the terminal ID is expressed by 24 bits or 32 bits. In this case, the length of the preamble determined by using the entire terminal ID is 2 to the 24th power or 2 to the 32nd power. A long preamble is not preferable from the viewpoint of reducing power consumption.
 この点に関し、第1の応用例では、センサ端末20の識別のために周波数誤差も用いられるので、上記のように端末IDの一部を用いてプリアンブルのパターンを決定することでも、センサ端末20の識別力を向上することが可能である。例えば、制御部250は、端末IDの下位12ビットを用いてGOLD系列を生成し、当該GOLD系列をプリアンブルのパターンとして決定してもよい。 In this regard, in the first application example, since the frequency error is also used for identifying the sensor terminal 20, the sensor terminal 20 can be determined by determining the preamble pattern using a part of the terminal ID as described above. It is possible to improve the discriminating power. For example, the control unit 250 may generate a GOLD sequence using the lower 12 bits of the terminal ID and determine the GOLD sequence as a preamble pattern.
 このように、第1の応用例ではセンサ端末20から多様なパターンのプリアンブルが送信され得るので、基地局10は、センサ端末20から送信される可能性がある各パターンのプリアンブルについて相関検出処理を行う。この点について、図10を参照してより具体的に説明する。 As described above, in the first application example, the preambles of various patterns can be transmitted from the sensor terminal 20, so that the base station 10 performs the correlation detection process on the preambles of the patterns that may be transmitted from the sensor terminal 20. Do. This point will be described more specifically with reference to FIG.
 図10は、第1の応用例による評価部130の構成を示す説明図である。図10に示したように、第1の応用例による評価部130は、相関検出部132の複数のセットS1およびS2を有し、各セットSは、複数の相関検出部132を有する。同一のセットSに含まれる相関検出部132には同一の比較パターンCが適用され、セットSごとに適用される比較パターンCが異なる。例えば、図10に示したセットS1には比較パターンC1が適用され、セットS2には比較パターンC2が適用される。また、図6を参照して説明したように、同一のセットSに含まれる各相関検出部132によってシフトされるベースバンド受信信号の周波数の量は異なる。なお、図10には2つのセットS1およびS2を示しているが、評価部130はより多くのセットSを有し得る。 FIG. 10 is an explanatory diagram showing the configuration of the evaluation unit 130 according to the first application example. As illustrated in FIG. 10, the evaluation unit 130 according to the first application example includes a plurality of sets S1 and S2 of the correlation detection unit 132, and each set S includes a plurality of correlation detection units 132. The same comparison pattern C is applied to the correlation detection units 132 included in the same set S, and the comparison pattern C applied to each set S is different. For example, the comparison pattern C1 is applied to the set S1 illustrated in FIG. 10, and the comparison pattern C2 is applied to the set S2. Further, as described with reference to FIG. 6, the amount of frequency of the baseband reception signal shifted by each correlation detection unit 132 included in the same set S is different. Although FIG. 10 shows two sets S1 and S2, the evaluation unit 130 can have more sets S.
 上記構成においては、周波数のシフト量が周波数誤差と同一であり、かつ、センサ端末20から送信されたプリアンブルに対応する比較パターンが適用された相関検出部132により、最大の相関値が出力される。 In the above configuration, the maximum correlation value is output by the correlation detection unit 132 to which the frequency shift amount is the same as the frequency error and the comparison pattern corresponding to the preamble transmitted from the sensor terminal 20 is applied. .
 このため、比較部138は、各相関検出部132から出力される相関値と閾値を比較し、閾値を上回る相関値を出力した相関検出部132による周波数のシフト量を周波数誤差として検出し、かつ、当該相関検出部132に適用された比較パターンを送信されたプリアンブルとして検出する。検出された周波数誤差およびプリアンブルは、センサ端末20の識別に用いられる。 Therefore, the comparison unit 138 compares the correlation value output from each correlation detection unit 132 with a threshold value, detects a frequency shift amount by the correlation detection unit 132 that outputs a correlation value exceeding the threshold value as a frequency error, and The comparison pattern applied to the correlation detection unit 132 is detected as the transmitted preamble. The detected frequency error and preamble are used for identification of the sensor terminal 20.
 復調部140は、評価部130によって同一の周波数誤差およびプリアンブルが検出された受信信号を順次に抽出し、抽出した受信信号のペイロードを累積的に合成する。そして、復調部140は、合成後のペイロードの復調を試みる。 The demodulator 140 sequentially extracts received signals in which the same frequency error and preamble are detected by the evaluating unit 130, and cumulatively synthesizes the payloads of the extracted received signals. Then, the demodulation unit 140 attempts to demodulate the combined payload.
 (動作)
 以上、第1の応用例の構成を説明した。続いて、図11および図12を参照して、第1の応用例の動作を整理する。
(Operation)
The configuration of the first application example has been described above. Subsequently, the operation of the first application example is organized with reference to FIGS. 11 and 12.
 図11は、第1の応用例によるセンサ端末20の動作を示すフローチャートである。図11に示したように、まず、センサ端末20の制御部250が、端末IDの一部を用いてプリアンブルのパターンを決定する(S402)。そして、制御部250は、決定したパターンのプリアンブルを有するフレームを生成し(S412)、無線通信部220が当該フレームを無線信号として送信する(S422)。以降の動作は、図7を参照して説明した通りであるので、詳細な説明を省略する。 FIG. 11 is a flowchart showing the operation of the sensor terminal 20 according to the first application example. As shown in FIG. 11, first, the control unit 250 of the sensor terminal 20 determines a preamble pattern using a part of the terminal ID (S402). Then, the control unit 250 generates a frame having the determined pattern preamble (S412), and the wireless communication unit 220 transmits the frame as a wireless signal (S422). Since the subsequent operation is as described with reference to FIG. 7, detailed description thereof is omitted.
 図12は、第1の応用例による基地局10の動作を示すフローチャートである。基地局10の無線通信部120が無線信号を受信してベースバンド受信信号を評価部130に出力すると、評価部130は、相関検出部132の複数のセットSを用いた相関検出処理に基づき、周波数誤差およびプリアンブルを検出する(S506)。 FIG. 12 is a flowchart showing the operation of the base station 10 according to the first application example. When the radio communication unit 120 of the base station 10 receives a radio signal and outputs a baseband received signal to the evaluation unit 130, the evaluation unit 130 is based on correlation detection processing using a plurality of sets S of the correlation detection unit 132. A frequency error and a preamble are detected (S506).
 そして、復調部140は、評価部130により検出された周波数誤差およびプリアンブルと関連付けられて記憶されているペイロードがある場合には(S510/YES)、ベースバンド受信信号から切り出したペイロードと、記憶されているペイロードを合成する(S514)。そして、復調部140は、合成されたペイロードの復調処理を行う(S518)。一方、評価部130により検出された周波数誤差およびプリアンブルと関連付けられて記憶されているペイロードが無い場合には(S510/NO)、復調部140は、ベースバンド受信信号から切り出されたペイロードの復調処理を行う(S518)。 Then, when there is a payload stored in association with the frequency error and preamble detected by the evaluation unit 130 (S510 / YES), the demodulation unit 140 stores the payload cut out from the baseband received signal. The existing payload is synthesized (S514). Then, the demodulation unit 140 performs demodulation processing on the combined payload (S518). On the other hand, when there is no payload stored in association with the frequency error and preamble detected by the evaluation unit 130 (S510 / NO), the demodulation unit 140 demodulates the payload extracted from the baseband received signal. (S518).
 S518において復調が失敗した場合(S522/NO)、復調部140は、復調処理の対象となったペイロードを、S506において検出された周波数誤差およびプリアンブルと関連付けて記憶する(S526)。一方、S518において復調が成功した場合(S522/YES)、制御部150は、ペイロードに含まれる端末IDを確認し、無線通信部120に、無線信号の送信元のセンサ端末20へACKを送信させ(S530)、復調部140が、S506において検出された周波数誤差およびプリアンブルと関連付けて記憶していたペイロードを削除する(S534)。 When demodulation fails in S518 (S522 / NO), the demodulator 140 stores the payload subjected to demodulation processing in association with the frequency error and preamble detected in S506 (S526). On the other hand, when the demodulation is successful in S518 (S522 / YES), the control unit 150 confirms the terminal ID included in the payload, and causes the wireless communication unit 120 to transmit ACK to the sensor terminal 20 that is the transmission source of the wireless signal. (S530) The demodulator 140 deletes the payload stored in association with the frequency error and preamble detected in S506 (S534).
 以上説明したように、第1の応用例によれば、周波数誤差に加え、プリアンブルのパターンを用いて同一のセンサ端末20からの受信信号を識別することができる。従って、周波数誤差のみを識別に用いる場合と比較してより高精度に同一のセンサ端末20からの受信信号を識別することが可能となる。 As described above, according to the first application example, received signals from the same sensor terminal 20 can be identified using the preamble pattern in addition to the frequency error. Therefore, compared with the case where only the frequency error is used for identification, it is possible to identify the received signals from the same sensor terminal 20 with higher accuracy.
   <5-2.第2の応用例>
 次に、第2の応用例として、周波数誤差に加え、フレームが送信されたスーパーフレームから送信元のセンサ端末20を識別するための仕組みを説明する。
<5-2. Second application example>
Next, as a second application example, a mechanism for identifying the transmission source sensor terminal 20 from the superframe in which the frame is transmitted in addition to the frequency error will be described.
 (構成)
 第2の応用例によるセンサ端末20の制御部250は、フレームの送信のためのスーパーフレームを決定する。例えば、制御部250は、端末IDを1周期分のスーパーフレーム数(図2に示した例では、10)で割り、得られる余りの番号を有するスーパーフレームを送信のためのスーパーフレームに決定してもよい。そして、制御部250は、決定したスーパーフレームにおいて、無線通信部220にフレームを繰り返し送信させる。
(Constitution)
The control unit 250 of the sensor terminal 20 according to the second application example determines a super frame for frame transmission. For example, the control unit 250 divides the terminal ID by the number of superframes for one cycle (10 in the example shown in FIG. 2), and determines a superframe having a remaining number as a superframe for transmission. May be. Then, the control unit 250 causes the wireless communication unit 220 to repeatedly transmit the frame in the determined superframe.
 基地局10の評価部130は、本開示の実施形態で説明したように、受信信号の周波数誤差を検出する。復調部140は、評価部130によって同一の周波数誤差が検出された受信信号であって、同一の時間リソースの区分である、同一のスーパーフレーム内で受信された受信信号を順次に抽出し、抽出した受信信号のペイロードを累積的に合成する。そして、復調部140は、合成後のペイロードの復調を試みる。 The evaluation unit 130 of the base station 10 detects the frequency error of the received signal as described in the embodiment of the present disclosure. The demodulator 140 sequentially extracts received signals that have been detected in the same frequency error by the evaluating unit 130 and are received in the same superframe, which is the same time resource segment. The received signal payloads are cumulatively synthesized. Then, the demodulation unit 140 attempts to demodulate the combined payload.
 (動作)
 図13は、第2の応用例によるセンサ端末20の動作を示すフローチャートである。図13に示したように、まず、センサ端末20の制御部250が、端末IDの一部を用いて送信のためのスーパーフレームを決定する(S404)。そして、制御部250は、フレームを生成し(S414)、無線通信部220が、決定されたスーパーフレームにおいて、当該フレームを無線信号として送信する(S424)。以降の動作は、図7を参照して説明した通りであるので、詳細な説明を省略する。
(Operation)
FIG. 13 is a flowchart showing the operation of the sensor terminal 20 according to the second application example. As shown in FIG. 13, first, the control unit 250 of the sensor terminal 20 determines a superframe for transmission using a part of the terminal ID (S404). Then, the control unit 250 generates a frame (S414), and the wireless communication unit 220 transmits the frame as a wireless signal in the determined superframe (S424). Since the subsequent operation is as described with reference to FIG. 7, detailed description thereof is omitted.
 基地局10の復調部140は、上述したように、同一の周波数誤差が検出された受信信号であって、同一のスーパーフレーム内で受信された受信信号を順次に抽出し、抽出した受信信号のペイロードを累積的に合成する。 As described above, the demodulator 140 of the base station 10 sequentially extracts reception signals that are detected in the same superframe and are received signals in which the same frequency error is detected. Synthesize the payload cumulatively.
 このように、第2の応用例によれば、周波数誤差に加え、フレームが送信されたスーパーフレームを用いて同一のセンサ端末20からの受信信号を識別することができる。従って、周波数誤差のみを識別に用いる場合と比較してより高精度に同一のセンサ端末20からの受信信号を識別することが可能となる。 Thus, according to the second application example, in addition to the frequency error, a received signal from the same sensor terminal 20 can be identified using the superframe in which the frame is transmitted. Therefore, compared with the case where only the frequency error is used for identification, it is possible to identify the received signals from the same sensor terminal 20 with higher accuracy.
   <5-3.第3の応用例>
 さらに、第3の応用例として、周波数誤差に加えて、利用されている周波数のホッピングパターンから送信元のセンサ端末20を識別するための仕組みを提案する。
<5-3. Third application example>
Furthermore, as a third application example, a mechanism for identifying the sensor terminal 20 as a transmission source from a hopping pattern of a frequency used in addition to a frequency error is proposed.
 (構成)
 第3の応用例によるセンサ端末20の制御部250は、周波数のホッピングパターンを決定し、決定したホッピングパターンに従って無線通信部220にフレームを繰り返し送信させる。ここで、図14~図16を参照し、幾つかのホッピングパターンの具体例を説明する。
(Constitution)
The control unit 250 of the sensor terminal 20 according to the third application example determines a frequency hopping pattern, and causes the wireless communication unit 220 to repeatedly transmit a frame according to the determined hopping pattern. Here, specific examples of some hopping patterns will be described with reference to FIGS.
 図14は、ホッピングパターン1を示す説明図である。図14に示したように、ホッピングパターン1は、4つの周波数F0~F4が、F0→F2→F1→F3→F0、という順序切り替えられるパターンである。制御部250が当該ホッピングパターン1を利用するホッピングパターンとして決定した場合、1回目のフレームの送信が周波数F0で行われ、2回目のフレームの送信が周波数F2で行われ、3回目のフレームの送信が周波数F1で行われ、4回目のフレームの送信がF3で行わる。 FIG. 14 is an explanatory diagram showing the hopping pattern 1. As shown in FIG. 14, the hopping pattern 1 is a pattern in which the four frequencies F0 to F4 are switched in the order of F0 → F2 → F1 → F3 → F0. When the controller 250 determines that the hopping pattern 1 is to be used, the first frame transmission is performed at the frequency F0, the second frame transmission is performed at the frequency F2, and the third frame transmission is performed. Is transmitted at the frequency F1, and the transmission of the fourth frame is performed at F3.
 図15は、ホッピングパターン2を示す説明図である。図15に示したように、ホッピングパターン2は、4つの周波数F0~F4が、F2→F3→F0→F1→F2、という順序切り替えられるパターンである。制御部250が当該ホッピングパターン2を利用するホッピングパターンとして決定した場合、1回目のフレームの送信が周波数F2で行われ、2回目のフレームの送信が周波数F3で行われ、3回目のフレームの送信が周波数F0で行われ、4回目のフレームの送信がF1で行わる。 FIG. 15 is an explanatory diagram showing the hopping pattern 2. As shown in FIG. 15, the hopping pattern 2 is a pattern in which the four frequencies F0 to F4 are switched in the order of F2-> F3-> F0-> F1-> F2. When the control unit 250 determines that the hopping pattern 2 is to be used, the first frame transmission is performed at the frequency F2, the second frame transmission is performed at the frequency F3, and the third frame transmission is performed. Is transmitted at the frequency F0, and the transmission of the fourth frame is performed at F1.
 図16は、ホッピングパターン3を示す説明図である。図16に示したように、ホッピングパターン3は、4つの周波数F0~F4が、F0→F3→F1→F2→F0、という順序切り替えられるパターンである。制御部250が当該ホッピングパターン3を利用するホッピングパターンとして決定した場合、1回目のフレームの送信が周波数F0で行われ、2回目のフレームの送信が周波数F3で行われ、3回目のフレームの送信が周波数F1で行われ、4回目のフレームの送信がF2で行わる。 FIG. 16 is an explanatory diagram showing the hopping pattern 3. As shown in FIG. 16, the hopping pattern 3 is a pattern in which the four frequencies F0 to F4 are switched in the order of F0 → F3 → F1 → F2 → F0. When the controller 250 determines that the hopping pattern 3 is to be used, the first frame is transmitted at the frequency F0, the second frame is transmitted at the frequency F3, and the third frame is transmitted. Is transmitted at the frequency F1, and the transmission of the fourth frame is performed at F2.
 制御部250は、このような複数のホッピングパターンから、利用するホッピングパターンを端末IDに基づいて決定してもよい。例えば、制御部250は、端末IDを、使用可能な周波数の数に応じて決まるホッピングパターンの数で割り、得られる余りの値に応じたホッピングパターンを、利用するホッピングパターンとして決定することができる。 The control unit 250 may determine the hopping pattern to be used from the plurality of hopping patterns based on the terminal ID. For example, the control unit 250 can divide the terminal ID by the number of hopping patterns determined according to the number of usable frequencies and determine the hopping pattern according to the remaining value as a hopping pattern to be used. .
 基地局10の評価部130は、受信信号の周波数誤差および受信信号の搬送波の周波数を評価する。復調部140は、評価部130により評価された周波数誤差が同一である受信信号のうちで、いずれかのホッピングパターンに従って搬送波の周波数が切り替えられた2以上の受信信号を抽出する。復調部140は、抽出した受信信号のペイロードを累積的に合成し、合成後のペイロードの復調を試みる。 The evaluation unit 130 of the base station 10 evaluates the frequency error of the received signal and the frequency of the carrier wave of the received signal. The demodulator 140 extracts two or more received signals whose carrier frequencies are switched according to one of the hopping patterns from the received signals having the same frequency error evaluated by the evaluating unit 130. The demodulator 140 synthesizes the extracted received signal payloads cumulatively and attempts to demodulate the combined payload.
 ここで、周波数誤差に加えてホッピングパターンを用いて受信信号を抽出、識別することについて、具体例を参照しながら説明を加える。 Here, the extraction and identification of the received signal using the hopping pattern in addition to the frequency error will be described with reference to a specific example.
 図17は、基地局10による受信結果の一例を示す説明図である。図17には、時間t1に周波数F0およびF2でフレームが受信され、時間t2に周波数F2およびF3でフレームが受信された例を示している。 FIG. 17 is an explanatory diagram illustrating an example of a reception result by the base station 10. FIG. 17 shows an example in which frames are received at frequencies F0 and F2 at time t1, and frames are received at frequencies F2 and F3 at time t2.
 ここで、各時間において受信されたフレームの周波数誤差が異なれば、周波数誤差に基づいて同一のセンサ端末20から送信されたフレームを識別することができる。しかし、各時間において受信されたフレームの周波数が同一であると、周波数誤差のみからでは同一のセンサ端末20から送信されたフレームを識別することは困難である。 Here, if the frequency errors of the frames received at each time are different, the frames transmitted from the same sensor terminal 20 can be identified based on the frequency errors. However, if the frequency of the frames received at each time is the same, it is difficult to identify the frames transmitted from the same sensor terminal 20 only from the frequency error.
 そこで、復調部140は、周波数誤差に加えてホッピングパターンも考慮して同一のセンサ端末20から送信されたフレームを識別する。図17に示した例では、時間t2に周波数F2でフレーム(D3)が受信されている。ホッピングパターン1では、周波数F2の前の時間での周波数は周波数F0であり、ホッピングパターン2または3では、周波数F2の前の時間での周波数は周波数F1である。しかし、前の時間である時間t1では周波数F1でフレームは受信されていない。このため、復調部140は、フレーム(D3)はホッピングパターン1に従って送信されたこと、および、時間t1に周波数F0で送信されたフレーム(D1)がフレーム(D3)と同一のセンサ端末20から送信されたフレームであることを識別可能である。これに伴い、復調部140は、他のフレーム(D2)およびフレーム(D4)が同一のセンサ端末20から送信されたフレームであることも認識できる。 Therefore, the demodulator 140 identifies a frame transmitted from the same sensor terminal 20 in consideration of the hopping pattern in addition to the frequency error. In the example shown in FIG. 17, the frame (D3) is received at the frequency F2 at time t2. In the hopping pattern 1, the frequency at the time before the frequency F2 is the frequency F0, and in the hopping pattern 2 or 3, the frequency at the time before the frequency F2 is the frequency F1. However, no frame is received at frequency F1 at time t1, which is the previous time. Therefore, the demodulator 140 transmits the frame (D3) according to the hopping pattern 1 and transmits the frame (D1) transmitted at the frequency F0 at the time t1 from the same sensor terminal 20 as the frame (D3). Can be identified. Accordingly, the demodulation unit 140 can also recognize that the other frame (D2) and the frame (D4) are frames transmitted from the same sensor terminal 20.
 図18は、基地局10による受信結果の他の例を示す説明図である。図18には、時間t3に周波数F0およびF2でフレームが受信され、時間t4に周波数F1およびF3でフレームが受信された例を示している。 FIG. 18 is an explanatory diagram showing another example of a reception result by the base station 10. FIG. 18 shows an example in which frames are received at frequencies F0 and F2 at time t3 and frames are received at frequencies F1 and F3 at time t4.
 この例では、ホッピングパターンのみから各受信信号の送信元のセンサ端末20を識別することは困難である。時間t4に周波数F1で送信されたフレーム(D7)について、ホッピングパターン1では、周波数F1の前の時間での周波数は周波数F2であり、ホッピングパターン2では、周波数F1の前の時間での周波数は周波数F0である。ここで、前の時間である時間t3には、周波数F0およびF2の双方でフレームが受信されている。このため、フレーム(D7)と同一のセンサ端末20から時間t3で送信されたフレームを一意に特定することは困難である。同様に、時間t4に周波数F3で送信されたフレーム(D8)について、ホッピングパターン2では、周波数F3の前の時間での周波数は周波数F2であり、ホッピングパターン3では、周波数F3の前の時間での周波数は周波数F0である。ここで、前の時間である時間t3には、周波数F0およびF2の双方でフレームが受信されている。このため、フレーム(D8)と同一のセンサ端末20から時間t3で送信されたフレームを一意に特定することも困難である。 In this example, it is difficult to identify the sensor terminal 20 that is the transmission source of each received signal only from the hopping pattern. For the frame (D7) transmitted at the frequency F1 at time t4, in the hopping pattern 1, the frequency at the time before the frequency F1 is the frequency F2, and in the hopping pattern 2, the frequency at the time before the frequency F1 is The frequency is F0. Here, at time t3, which is the previous time, a frame is received at both frequencies F0 and F2. For this reason, it is difficult to uniquely identify the frame transmitted at the time t3 from the same sensor terminal 20 as the frame (D7). Similarly, for the frame (D8) transmitted at the frequency F3 at time t4, in the hopping pattern 2, the frequency at the time before the frequency F3 is the frequency F2, and in the hopping pattern 3, at the time before the frequency F3. Is the frequency F0. Here, at time t3, which is the previous time, a frame is received at both frequencies F0 and F2. For this reason, it is also difficult to uniquely identify the frame transmitted at the time t3 from the same sensor terminal 20 as the frame (D8).
 しかし、第3の応用例による復調部140は、周波数誤差およびホッピングパターンの双方に基づいて同一のセンサ端末20から送信された受信信号を識別する。このため、図18に示したようにホッピングパターンのみからでは上記識別が困難な受信結果が得られた場合であっても、各時間において受信されたフレームの周波数誤差が異なれば、同一のセンサ端末20から送信された受信信号を識別することができる。 However, the demodulator 140 according to the third application example identifies received signals transmitted from the same sensor terminal 20 based on both the frequency error and the hopping pattern. For this reason, as shown in FIG. 18, even if the reception result that is difficult to identify is obtained only from the hopping pattern, the same sensor terminal can be used as long as the frequency error of the frames received at each time is different. The received signal transmitted from 20 can be identified.
 (動作)
 以上、第3の応用例の構成を説明した。続いて、図19および図20を参照して、第3の応用例の動作を整理する。
(Operation)
The configuration of the third application example has been described above. Subsequently, the operation of the third application example is organized with reference to FIGS. 19 and 20.
 図19は、第3の応用例によるセンサ端末20の動作を示すフローチャートである。図19に示したように、まず、センサ端末20の制御部250が、端末IDを用いて送信のためのホッピングパターンを決定する(S406)。そして、制御部250は、フレームを生成し(S416)、無線通信部220が、当該フレームを決定されたホッピングパターンに従って繰り返し送信する(S426)。以降の動作は、図7を参照して説明した通りであるので、詳細な説明を省略する。 FIG. 19 is a flowchart showing the operation of the sensor terminal 20 according to the third application example. As shown in FIG. 19, first, the control unit 250 of the sensor terminal 20 determines a hopping pattern for transmission using the terminal ID (S406). Then, the control unit 250 generates a frame (S416), and the wireless communication unit 220 repeatedly transmits the frame according to the determined hopping pattern (S426). Since the subsequent operation is as described with reference to FIG. 7, detailed description thereof is omitted.
 図20は、第3の応用例による基地局10の動作を示すフローチャートである。基地局10の無線通信部120が無線信号を受信してベースバンド受信信号を評価部130に出力すると、評価部130は、周波数誤差および搬送波の周波数を検出する(S604)。そして、復調部140は、既定のホッピングパターンおよび評価部130により検出された周波数に基づき、前区間で利用されたであろう周波数を特定する(S608)。 FIG. 20 is a flowchart showing the operation of the base station 10 according to the third application example. When the radio communication unit 120 of the base station 10 receives a radio signal and outputs a baseband received signal to the evaluation unit 130, the evaluation unit 130 detects a frequency error and a carrier frequency (S604). Then, the demodulation unit 140 identifies the frequency that would have been used in the previous section based on the predetermined hopping pattern and the frequency detected by the evaluation unit 130 (S608).
 続いて、復調部140は、検出された周波数誤差および特定された周波数と関連付けて記憶されているペイロードがある場合には(S612/YES)、ベースバンド受信信号から切り出したペイロードと、記憶されているペイロードを合成する(S616)。そして、復調部140は、合成されたペイロードの復調処理を行う(S620)。一方、検出された周波数誤差および特定された周波数と関連付けられて記憶されているペイロードが無い場合には(S612/NO)、復調部140は、ベースバンド受信信号から切り出されたペイロードの復調処理を行う(S620)。 Subsequently, when there is a payload stored in association with the detected frequency error and the identified frequency (S612 / YES), the demodulator 140 stores the payload cut out from the baseband received signal and stored. The existing payload is synthesized (S616). Then, the demodulation unit 140 performs demodulation processing on the combined payload (S620). On the other hand, when there is no payload stored in association with the detected frequency error and the identified frequency (S612 / NO), the demodulator 140 performs a demodulation process on the payload extracted from the baseband received signal. Perform (S620).
 S620において復調が失敗した場合(S624/NO)、復調部140は、復調処理の対象となったペイロードを、検出された周波数誤差および特定された周波数と関連付けて記憶する(S628)。一方、S620において復調が成功した場合(S624/YES)、制御部150は、ペイロードに含まれる端末IDを確認し、無線通信部120に、無線信号の送信元のセンサ端末20へACKを送信させ(S632)、復調部140が、検出された周波数誤差および特定された周波数と関連付けて記憶していたペイロードを削除する(S636)。 When demodulation fails in S620 (S624 / NO), the demodulation unit 140 stores the payload subjected to demodulation processing in association with the detected frequency error and the specified frequency (S628). On the other hand, when the demodulation is successful in S620 (S624 / YES), the control unit 150 confirms the terminal ID included in the payload, and causes the wireless communication unit 120 to transmit an ACK to the sensor terminal 20 that is the transmission source of the wireless signal. (S632) The demodulator 140 deletes the payload stored in association with the detected frequency error and the identified frequency (S636).
 以上説明したように、第3の応用例によれば、周波数誤差に加え、ホッピングパターンを用いて同一のセンサ端末20からの受信信号を識別することができる。従って、周波数誤差のみを識別に用いる場合と比較してより高精度に同一のセンサ端末20からの受信信号を識別することが可能となる。 As described above, according to the third application example, received signals from the same sensor terminal 20 can be identified using a hopping pattern in addition to a frequency error. Therefore, compared with the case where only the frequency error is used for identification, it is possible to identify the received signals from the same sensor terminal 20 with higher accuracy.
 なお、上記では1区間前の受信結果を参照してホッピングパターンに関する特定を行う例を説明したが、2区間以上の受信結果を参照することで、より多くのケースにおいて同一のセンサ端末20からの受信信号を識別することが可能となる。 In addition, although the example which performs the specification regarding the hopping pattern with reference to the reception result of the previous section has been described above, the reference from the same sensor terminal 20 in more cases by referring to the reception result of two or more sections. The received signal can be identified.
  <<6.ハードウェア構成>>
 以上、本開示の実施形態および応用例を説明した。上述した通信のための各情報処理は、ソフトウェアと、以下に説明するセンサ端末20のハードウェアとの協働により実現される。なお、以下に説明するハードウェア構成は基地局10にも適用可能である。
<< 6. Hardware configuration >>
The embodiments and application examples of the present disclosure have been described above. Each information processing for communication mentioned above is realized by cooperation of software and hardware of sensor terminal 20 explained below. Note that the hardware configuration described below is also applicable to the base station 10.
 図21は、センサ端末20のハードウェア構成を示した説明図である。図21に示したように、センサ端末20は、CPU(Central Processing Unit)201と、ROM(Read Only Memory)202と、RAM(Random Access Memory)203と、入力装置208と、出力装置210と、ストレージ装置211と、通信装置215とを備える。 FIG. 21 is an explanatory diagram showing a hardware configuration of the sensor terminal 20. As shown in FIG. 21, the sensor terminal 20 includes a CPU (Central Processing Unit) 201, a ROM (Read Only Memory) 202, a RAM (Random Access Memory) 203, an input device 208, an output device 210, A storage device 211 and a communication device 215 are provided.
 CPU201は、演算処理装置および制御装置として機能し、各種プログラムに従ってセンサ端末20内の動作全般を制御する。また、CPU201は、マイクロプロセッサであってもよい。ROM202は、CPU201が使用するプログラムや演算パラメータ等を記憶する。RAM203は、CPU201の実行において使用するプログラムや、その実行において適宜変化するパラメータ等を一時記憶する。これらはCPUバスなどから構成されるホストバスにより相互に接続されている。当該CPU201、ROM202およびRAM203とソフトウェアとの協働により、制御部250の機能(基地局10においては、評価部130、復調部140および制御部150の機能)が実現される。 The CPU 201 functions as an arithmetic processing unit and a control unit, and controls the overall operation in the sensor terminal 20 according to various programs. Further, the CPU 201 may be a microprocessor. The ROM 202 stores programs used by the CPU 201, calculation parameters, and the like. The RAM 203 temporarily stores programs used in the execution of the CPU 201, parameters that change as appropriate during the execution, and the like. These are connected to each other by a host bus including a CPU bus. The functions of the control unit 250 (the functions of the evaluation unit 130, the demodulation unit 140, and the control unit 150 in the base station 10) are realized by the cooperation of the CPU 201, the ROM 202, the RAM 203, and the software.
 入力装置208は、マウス、キーボード、タッチパネル、ボタン、マイクロフォン、スイッチおよびレバーなどユーザが情報を入力するための入力手段と、ユーザによる入力に基づいて入力信号を生成し、CPU201に出力する入力制御回路などから構成されている。センサ端末20のユーザは、該入力装置208を操作することにより、センサ端末20に対して各種のデータを入力したり処理動作を指示したりすることができる。 The input device 208 includes input means for a user to input information, such as a mouse, keyboard, touch panel, button, microphone, switch, and lever, and an input control circuit that generates an input signal based on the input by the user and outputs the input signal to the CPU 201. Etc. The user of the sensor terminal 20 can input various data and instruct processing operations to the sensor terminal 20 by operating the input device 208.
 出力装置210は、例えば、液晶ディスプレイ(LCD)装置、OLED(Organic Light Emitting Diode)装置およびランプなどの表示装置を含む。さらに、出力装置210は、スピーカおよびヘッドホンなどの音声出力装置を含む。例えば、表示装置は、撮像された画像や生成された画像などを表示する。一方、音声出力装置は、音声データ等を音声に変換して出力する。 The output device 210 includes a display device such as a liquid crystal display (LCD) device, an OLED (Organic Light Emitting Diode) device, and a lamp. Furthermore, the output device 210 includes an audio output device such as a speaker and headphones. For example, the display device displays a captured image or a generated image. On the other hand, the audio output device converts audio data or the like into audio and outputs it.
 ストレージ装置211は、本実施形態にかかるセンサ端末20の記憶部の一例として構成されたデータ格納用の装置である。ストレージ装置211は、記憶媒体、記憶媒体にデータを記録する記録装置、記憶媒体からデータを読み出す読出し装置および記憶媒体に記録されたデータを削除する削除装置などを含んでもよい。このストレージ装置211は、CPU201が実行するプログラムや各種データを格納する。 The storage device 211 is a data storage device configured as an example of a storage unit of the sensor terminal 20 according to the present embodiment. The storage device 211 may include a storage medium, a recording device that records data on the storage medium, a reading device that reads data from the storage medium, a deletion device that deletes data recorded on the storage medium, and the like. The storage device 211 stores programs executed by the CPU 201 and various data.
 通信装置215は、例えば、基地局10に接続するための通信デバイス等で構成された通信インタフェースである。 The communication device 215 is a communication interface configured with, for example, a communication device for connecting to the base station 10.
  <<7.むすび>>
 以上説明したように、本開示の実施形態によれば、基地局10は、センサ端末20と通信リソースの管理のための事前の通信をせずに、各受信信号の搬送波の周波数誤差に基づいて各受信信号の送信元のセンサ端末20を識別することが可能である。従って、通信リソースの管理のための消費電力を低減することが可能である。
<< 7. Conclusion >>
As described above, according to the embodiment of the present disclosure, the base station 10 does not perform prior communication with the sensor terminal 20 for management of communication resources, but based on the frequency error of the carrier wave of each received signal. It is possible to identify the sensor terminal 20 that is the transmission source of each received signal. Accordingly, it is possible to reduce power consumption for managing communication resources.
 さらに、周波数誤差に加えて、プリアンブル、スーパーフレームまたはホッピングパターンも加味することにより、送信元のセンサ端末20の識別力をさらに向上することが可能である。 Furthermore, in addition to the frequency error, it is possible to further improve the discriminating power of the source sensor terminal 20 by taking into account the preamble, superframe or hopping pattern.
 なお、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 In addition, although the preferred embodiment of this indication was described in detail, referring an accompanying drawing, the technical scope of this indication is not limited to this example. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.
 例えば、本明細書の基地局10およびセンサ端末20の処理における各ステップは、必ずしもフローチャートとして記載された順序に沿って時系列に処理する必要はない。例えば、基地局10およびセンサ端末20の処理における各ステップは、フローチャートとして記載した順序と異なる順序で処理されても、並列的に処理されてもよい。 For example, each step in the processing of the base station 10 and the sensor terminal 20 in this specification does not necessarily have to be processed in time series in the order described as the flowchart. For example, each step in the processing of the base station 10 and the sensor terminal 20 may be processed in an order different from the order described as the flowchart, or may be processed in parallel.
 また、基地局10およびセンサ端末20に内蔵されるCPU201、ROM202およびRAM203などのハードウェアに、上述した基地局10およびセンサ端末20の各構成と同等の機能を発揮させるためのコンピュータプログラムも作成可能である。また、該コンピュータプログラムを記憶させた記憶媒体も提供される。 It is also possible to create a computer program for causing hardware such as the CPU 201, the ROM 202, and the RAM 203 built in the base station 10 and the sensor terminal 20 to perform the same functions as the respective configurations of the base station 10 and the sensor terminal 20 described above. It is. A storage medium storing the computer program is also provided.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 In addition, the effects described in this specification are merely illustrative or illustrative, and are not limited. That is, the technology according to the present disclosure can exhibit other effects that are apparent to those skilled in the art from the description of the present specification in addition to or instead of the above effects.
 また、以下のような構成も本開示の技術的範囲に属する。
(1)
 他の通信装置から受信された受信信号の搬送波の周波数を評価する評価部と、
 複数の受信信号から、前記評価部による評価の結果に基づいて2以上の受信信号を抽出し、前記2以上の受信信号の合成処理を行う合成処理部と、
を備える、通信装置。
(2)
 前記通信装置は、
 周期信号を生成する発振器をさらに備え、
 前記評価部は、前記受信信号の搬送波の周波数と、前記発振器により生成された周期信号の周波数との差分を評価する、前記(1)に記載の通信装置。
(3)
 前記評価部は、前記受信信号に含まれるプリアンブルの相関検出処理を並列して実行する複数の相関検出部を有し、
 前記複数の相関検出部は、前記プリアンブルに対して周波数に関する異なる調整を施し、調整後のプリアンブルと比較パターンとの相関を検出し、
 前記評価部は、所定の条件を満たす相関を検出した相関検出部において行われた調整の量を、前記受信信号の搬送波の周波数と、前記発振器により生成された周期信号の周波数との差分として評価する、前記(2)に記載の通信装置。
(4)
 前記評価部は、前記複数の相関検出部の2以上のセットを有し、
 前記複数の相関検出部の各セットには、異なる比較パターンが適用され、
 前記評価部は、前記複数の相関検出部の2以上のセットのうちで所定の条件を満たす相関を検出した相関検出部に適用された比較パターンを前記受信信号に含まれるプリアンブルとして評価する、前記(3)に記載の通信装置。
(5)
 前記比較パターンは、前記他の通信装置が有し得る識別情報の一部を用いて生成されるパターンである、前記(4)に記載の通信装置。
(6)
 前記合成処理部は、前記複数の受信信号から、前記評価部により同一の評価結果が得られた前記2以上の受信信号を抽出する、前記(1)~(5)のいずれか一項に記載の通信装置。
(7)
 前記評価部は、前記受信信号が受信された時間リソースの区分を評価し、
 前記合成処理部は、同一の時間リソースの区分に受信されたと前記評価部により評価された受信信号から、前記2以上の受信信号を抽出する、前記(1)~(6)のいずれか一項に記載の通信装置。
(8)
 前記他の通信装置は、搬送波の周波数を規則的に従って切替えながら信号を送信し、
 前記合成処理部は、所定の条件を満たす相関を検出した相関検出部において行われた調整の量が同一である受信信号のうちで、所定の規則に従って搬送波が切り替えられた2以上の受信信号を抽出する、前記(3)に記載の通信装置。
(9)
 前記通信装置は、
 前記合成処理部の合成により得られた合成信号を復調する復調部と、
 前記復調部が前記合成信号の復調に成功したことに基づき、復調の結果に含まれる識別情報を有する通信装置に受信確認を送信する通信部と、
を備える、前記(1)~(8)のいずれか一項に記載の通信装置。
(10)
 他の通信装置から受信された受信信号の搬送波の周波数をプロセッサが評価することと、
 複数の受信信号から、評価の結果に基づいて2以上の受信信号を抽出し、前記2以上の受信信号の合成処理を行うことと、
を含む、通信制御方法。
The following configurations also belong to the technical scope of the present disclosure.
(1)
An evaluation unit that evaluates the frequency of the carrier wave of the received signal received from another communication device;
A plurality of received signals are extracted from a plurality of received signals based on a result of the evaluation by the evaluation unit, and a combining processing unit that combines the two or more received signals;
A communication device comprising:
(2)
The communication device
An oscillator that generates a periodic signal;
The said evaluation part is a communication apparatus as described in said (1) which evaluates the difference of the frequency of the carrier wave of the said received signal, and the frequency of the periodic signal produced | generated by the said oscillator.
(3)
The evaluation unit includes a plurality of correlation detection units that execute a correlation detection process on a preamble included in the received signal in parallel.
The plurality of correlation detection units perform different adjustments on the frequency with respect to the preamble, and detects a correlation between the adjusted preamble and the comparison pattern,
The evaluation unit evaluates the amount of adjustment performed in the correlation detection unit that detects the correlation satisfying a predetermined condition as a difference between the frequency of the carrier wave of the received signal and the frequency of the periodic signal generated by the oscillator. The communication device according to (2).
(4)
The evaluation unit has two or more sets of the plurality of correlation detection units,
A different comparison pattern is applied to each set of the plurality of correlation detection units,
The evaluation unit evaluates a comparison pattern applied to a correlation detection unit that detects a correlation satisfying a predetermined condition among two or more sets of the plurality of correlation detection units as a preamble included in the received signal; The communication device according to (3).
(5)
The communication device according to (4), wherein the comparison pattern is a pattern generated using a part of identification information that the other communication device may have.
(6)
The synthesis processing unit extracts the two or more reception signals from which the same evaluation result is obtained by the evaluation unit from the plurality of reception signals, according to any one of (1) to (5). Communication equipment.
(7)
The evaluation unit evaluates a time resource classification in which the received signal is received;
The synthesis processing unit extracts the two or more received signals from the received signals evaluated by the evaluation unit when received in the same time resource section, any one of (1) to (6) The communication apparatus as described in.
(8)
The other communication device transmits a signal while regularly switching the frequency of the carrier wave,
The combination processing unit receives two or more received signals whose carrier waves are switched according to a predetermined rule among the received signals having the same amount of adjustment performed in the correlation detecting unit that detects the correlation satisfying the predetermined condition. The communication device according to (3), wherein the communication device is extracted.
(9)
The communication device
A demodulator that demodulates a composite signal obtained by the synthesis of the synthesis processor;
A communication unit that transmits a reception confirmation to a communication device having identification information included in a result of demodulation based on the demodulation unit succeeding in demodulating the combined signal;
The communication device according to any one of (1) to (8), comprising:
(10)
A processor evaluating a frequency of a carrier wave of a received signal received from another communication device;
Extracting two or more received signals from a plurality of received signals based on an evaluation result, and performing a process of combining the two or more received signals;
Including a communication control method.
10 基地局
20 センサ端末
30 アプリケーションサーバ
110 周期信号生成部
120 無線通信部
130 評価部
132 相関検出部
134 加算部
136 相関出力部
138 比較部
140 復調部
150 制御部
160 有線通信部
220 無線通信部
230 センサ部
232 GPS処理部
240 搬送波生成部
250 制御部
260 制御部
10 base station 20 sensor terminal 30 application server 110 periodic signal generation unit 120 wireless communication unit 130 evaluation unit 132 correlation detection unit 134 addition unit 136 correlation output unit 138 comparison unit 140 demodulation unit 150 control unit 160 wired communication unit 220 wireless communication unit 230 Sensor unit 232 GPS processing unit 240 Carrier wave generation unit 250 Control unit 260 Control unit

Claims (10)

  1.  他の通信装置から受信された受信信号の搬送波の周波数を評価する評価部と、
     複数の受信信号から、前記評価部による評価の結果に基づいて2以上の受信信号を抽出し、前記2以上の受信信号の合成処理を行う合成処理部と、
    を備える、通信装置。
    An evaluation unit that evaluates the frequency of the carrier wave of the received signal received from another communication device;
    A plurality of received signals are extracted from a plurality of received signals based on a result of the evaluation by the evaluation unit, and a combining processing unit that combines the two or more received signals;
    A communication device comprising:
  2.  前記通信装置は、
     周期信号を生成する発振器をさらに備え、
     前記評価部は、前記受信信号の搬送波の周波数と、前記発振器により生成された周期信号の周波数との差分を評価する、請求項1に記載の通信装置。
    The communication device
    An oscillator that generates a periodic signal;
    The communication device according to claim 1, wherein the evaluation unit evaluates a difference between a frequency of a carrier wave of the reception signal and a frequency of a periodic signal generated by the oscillator.
  3.  前記評価部は、前記受信信号に含まれるプリアンブルの相関検出処理を並列して実行する複数の相関検出部を有し、
     前記複数の相関検出部は、前記プリアンブルに対して周波数に関する異なる調整を施し、調整後のプリアンブルと比較パターンとの相関を検出し、
     前記評価部は、所定の条件を満たす相関を検出した相関検出部において行われた調整の量を、前記受信信号の搬送波の周波数と、前記発振器により生成された周期信号の周波数との差分として評価する、請求項2に記載の通信装置。
    The evaluation unit includes a plurality of correlation detection units that execute a correlation detection process on a preamble included in the received signal in parallel.
    The plurality of correlation detection units perform different adjustments on the frequency with respect to the preamble, and detects a correlation between the adjusted preamble and the comparison pattern,
    The evaluation unit evaluates the amount of adjustment performed in the correlation detection unit that detects the correlation satisfying a predetermined condition as a difference between the frequency of the carrier wave of the received signal and the frequency of the periodic signal generated by the oscillator. The communication device according to claim 2.
  4.  前記評価部は、前記複数の相関検出部の2以上のセットを有し、
     前記複数の相関検出部の各セットには、異なる比較パターンが適用され、
     前記評価部は、前記複数の相関検出部の2以上のセットのうちで所定の条件を満たす相関を検出した相関検出部に適用された比較パターンを前記受信信号に含まれるプリアンブルとして評価する、請求項3に記載の通信装置。
    The evaluation unit has two or more sets of the plurality of correlation detection units,
    A different comparison pattern is applied to each set of the plurality of correlation detection units,
    The evaluation unit evaluates, as a preamble included in the received signal, a comparison pattern applied to a correlation detection unit that detects a correlation that satisfies a predetermined condition among two or more sets of the plurality of correlation detection units. Item 4. The communication device according to Item 3.
  5.  前記比較パターンは、前記他の通信装置が有し得る識別情報の一部を用いて生成されるパターンである、請求項4に記載の通信装置。 The communication device according to claim 4, wherein the comparison pattern is a pattern generated using a part of identification information that the other communication device may have.
  6.  前記合成処理部は、前記複数の受信信号から、前記評価部により同一の評価結果が得られた前記2以上の受信信号を抽出する、請求項1に記載の通信装置。 The communication device according to claim 1, wherein the synthesis processing unit extracts the two or more reception signals from which the same evaluation result is obtained by the evaluation unit from the plurality of reception signals.
  7.  前記評価部は、前記受信信号が受信された時間リソースの区分を評価し、
     前記合成処理部は、同一の時間リソースの区分に受信されたと前記評価部により評価された受信信号から、前記2以上の受信信号を抽出する、請求項1に記載の通信装置。
    The evaluation unit evaluates a time resource classification in which the received signal is received;
    The communication apparatus according to claim 1, wherein the synthesis processing unit extracts the two or more reception signals from the reception signals evaluated by the evaluation unit when received in the same time resource section.
  8.  前記他の通信装置は、搬送波の周波数を規則的に従って切替えながら信号を送信し、
     前記合成処理部は、所定の条件を満たす相関を検出した相関検出部において行われた調整の量が同一である受信信号のうちで、所定の規則に従って搬送波が切り替えられた2以上の受信信号を抽出する、請求項3に記載の通信装置。
    The other communication device transmits a signal while regularly switching the frequency of the carrier wave,
    The combination processing unit receives two or more received signals whose carrier waves are switched according to a predetermined rule among the received signals having the same amount of adjustment performed in the correlation detecting unit that detects the correlation satisfying the predetermined condition. The communication device according to claim 3, wherein the communication device is extracted.
  9.  前記通信装置は、
     前記合成処理部の合成により得られた合成信号を復調する復調部と、
     前記復調部が前記合成信号の復調に成功したことに基づき、復調の結果に含まれる識別情報を有する通信装置に受信確認を送信する通信部と、
    を備える、請求項1に記載の通信装置。
    The communication device
    A demodulator that demodulates a composite signal obtained by the synthesis of the synthesis processor;
    A communication unit that transmits a reception confirmation to a communication device having identification information included in a result of demodulation based on the demodulation unit succeeding in demodulating the combined signal;
    The communication apparatus according to claim 1, comprising:
  10.  他の通信装置から受信された受信信号の搬送波の周波数をプロセッサが評価することと、
     複数の受信信号から、評価の結果に基づいて2以上の受信信号を抽出し、前記2以上の受信信号の合成処理を行うことと、
    を含む、通信制御方法。
    A processor evaluating a frequency of a carrier wave of a received signal received from another communication device;
    Extracting two or more received signals from a plurality of received signals based on an evaluation result, and performing a process of combining the two or more received signals;
    Including a communication control method.
PCT/JP2017/011663 2016-05-25 2017-03-23 Communication device and communication control method WO2017203817A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016104620A JP6917682B2 (en) 2016-05-25 2016-05-25 Communication device and communication control method
JP2016-104620 2016-05-25

Publications (1)

Publication Number Publication Date
WO2017203817A1 true WO2017203817A1 (en) 2017-11-30

Family

ID=60412313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011663 WO2017203817A1 (en) 2016-05-25 2017-03-23 Communication device and communication control method

Country Status (2)

Country Link
JP (1) JP6917682B2 (en)
WO (1) WO2017203817A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7476891B2 (en) * 2019-06-03 2024-05-01 ソニーグループ株式会社 Information processing device and information processing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084213A (en) * 2000-06-20 2002-03-22 Matsushita Electric Ind Co Ltd Wireless communication system
WO2015045585A1 (en) * 2013-09-24 2015-04-02 三菱電機株式会社 Radio communication apparatus, transmission apparatus, and reception apparatus
JP2015154351A (en) * 2014-02-17 2015-08-24 沖電気工業株式会社 Communication device, communication system and communication method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084213A (en) * 2000-06-20 2002-03-22 Matsushita Electric Ind Co Ltd Wireless communication system
WO2015045585A1 (en) * 2013-09-24 2015-04-02 三菱電機株式会社 Radio communication apparatus, transmission apparatus, and reception apparatus
JP2015154351A (en) * 2014-02-17 2015-08-24 沖電気工業株式会社 Communication device, communication system and communication method

Also Published As

Publication number Publication date
JP6917682B2 (en) 2021-08-11
JP2017212605A (en) 2017-11-30

Similar Documents

Publication Publication Date Title
US8599824B2 (en) Method and system for bluetooth conditional synchronization
CN107548566A (en) Arrowband OFDM cell searching
CN111771346B (en) Conflict detection method
CN112368970A (en) Tag device, electronic device, communication method, and storage medium in wireless communication system
KR102422082B1 (en) Simultaneous Multi-Radio Receiver
JP2016509779A (en) System and method for using hierarchical time sources in near-medium network detection and synchronization
WO2017203817A1 (en) Communication device and communication control method
JP2017519468A (en) Wireless communication
US20110256840A1 (en) Synchronization device, reception device, synchronization method, and reception method
JP6740718B2 (en) Wireless device and control method
JP2018059919A (en) Process and system for determining distance between wearable object and base station
JP6450905B2 (en) Mobile radio apparatus, radio communication system including the same, and program executed in mobile radio apparatus
JP2007036593A (en) Radio receiver and radio-receiving method
JP2014169908A (en) Monitoring system, monitoring slave device, monitoring master device, monitoring method and monitoring program
US11425534B2 (en) Wireless contact tracking
JP2013072756A (en) Intrusion detection system, intrusion detection slave unit, intrusion detection master unit, intrusion detection method and intrusion detection program
WO2017208583A1 (en) Communication device, information processing device, communication method and information processing method
WO2017203820A1 (en) Communication device and communication control method
WO2018012126A1 (en) Communication device and communication method
JP4983834B2 (en) Base station equipment
JP4701924B2 (en) Radio receiving apparatus and radio receiving method
JP3983943B2 (en) Mobile radio terminal device
WO2018020820A1 (en) Wireless device, communication device, control method, and communication control method
Song et al. Research on Outage Performance Optimization of Cognitive Relay Network with Cooperative Sensing
JP3910951B2 (en) Distance difference detection method and system, and position detection method and system

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802419

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802419

Country of ref document: EP

Kind code of ref document: A1