WO2018020820A1 - Wireless device, communication device, control method, and communication control method - Google Patents

Wireless device, communication device, control method, and communication control method Download PDF

Info

Publication number
WO2018020820A1
WO2018020820A1 PCT/JP2017/020219 JP2017020219W WO2018020820A1 WO 2018020820 A1 WO2018020820 A1 WO 2018020820A1 JP 2017020219 W JP2017020219 W JP 2017020219W WO 2018020820 A1 WO2018020820 A1 WO 2018020820A1
Authority
WO
WIPO (PCT)
Prior art keywords
reception
signal
timing
transmission
sensor terminal
Prior art date
Application number
PCT/JP2017/020219
Other languages
French (fr)
Japanese (ja)
Inventor
公也 加藤
佐藤 雅典
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2018529392A priority Critical patent/JP7056561B2/en
Publication of WO2018020820A1 publication Critical patent/WO2018020820A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to a wireless device, a communication device, a control method, and a communication control method.
  • wireless sensor networks for collecting information by wireless communication from terminals having a sensor function have attracted attention.
  • the wireless sensor network has a wide variety of uses, such as a purpose of confirming a position of an object of interest and a purpose of managing the behavior of the object of interest.
  • a base station such as a base station or an access point manages communication resources. For example, the master station periodically transmits a reference signal, determines a communication resource for the communication terminal on the slave station side, notifies the determined communication resource to the slave station according to a predetermined control protocol, Communication is performed using the reception result of the reference signal and the notified communication resource. By this management, it is possible to avoid or suppress interference between communications performed by a plurality of communication terminals.
  • Patent Document 1 discloses a communication method that can appropriately control a reception standby period of a slave station and reduce power consumed for reception. In this method, the master station can grasp the next reception standby period by transmitting a signal including the next reception standby period information (control information) in the payload to the slave station. Reception processing can be avoided.
  • a master station transmits a signal including a reception waiting period in a payload to a slave station.
  • the power of the slave station is consumed to receive the signal.
  • the data transmitted by the communication device (terminal) belonging to the sensor network is a small amount of data of about several bytes.
  • the power consumed for transmitting the control information is for data transmission. The ratio with respect to the electric power consumed will increase.
  • the reception waiting period information is included in the payload, limited radio resources are consumed.
  • the present disclosure has been made in view of the above problems, and an object of the present disclosure is to provide a new and improved wireless device and communication device capable of realizing more efficient wireless communication. Another object is to provide a control method and a communication control method.
  • a reception unit that receives a reception confirmation response transmitted by a communication device, a reception standby period is set based on a timing at which the reception confirmation response is received, and the reception is performed in the reception standby period.
  • a control unit that causes the unit to wait for signal reception.
  • a reception waiting period is set based on the reception of the reception confirmation response transmitted by the communication device, and the timing at which the reception confirmation response is received.
  • a control method is provided comprising: waiting for reception.
  • a transmission unit that transmits a reception confirmation response to the wireless device, and a transmission timing of the signal with the transmission timing of the reception confirmation response as a starting point, the transmission timing of the signal
  • a control unit that causes the transmission unit to transmit the signal.
  • a transmission confirmation response is transmitted to a wireless device, a transmission timing of a signal is set based on a transmission timing of the reception confirmation response, and the signal is transmitted at the transmission timing of the signal.
  • a communication control method is provided.
  • FIG. 1 is a diagram illustrating a wireless communication system according to an embodiment of the present disclosure. It is a figure which shows UL data frame which a sensor terminal transmits. It is a figure which shows the reception confirmation response (ACK) frame which a base station transmits. It is a figure which shows the detection of the ACK frame by a sensor terminal. It is a figure which shows the detection of the ACK frame by a sensor terminal. It is a figure which shows the function structure of the sensor terminal which concerns on embodiment of this indication.
  • 2 is a diagram illustrating a functional configuration of a base station according to an embodiment of the present disclosure. FIG. It is a flowchart which shows the operation
  • Embodiments of the present disclosure relate to a wireless communication system that forms a wireless sensor network. First, an overview of a wireless communication system according to an embodiment of the present disclosure will be described with reference to FIG.
  • FIG. 1 is a diagram illustrating a wireless communication system according to an embodiment of the present disclosure.
  • the wireless communication system according to the embodiment of the present disclosure includes a plurality of base stations 200, a plurality of sensor terminals 100, and an application server 300.
  • the base station 200 has a function of performing wireless communication with the sensor terminal 100 and a function of performing wired communication with the application server 300.
  • the base station 200 performs wireless communication with the sensor terminal 100 located in the cell.
  • the base station 200A performs wireless communication with the sensor terminals 100A, 100B, and 100C that are located in the cell of the base station 200A
  • the base station 200B is a sensor that is located in the cell of the base station 200B.
  • Wireless communication is performed with terminals 100D, 100E, 100F, and 100G.
  • the base station 200 receives sensor data from the sensor terminal 100 and transmits the sensor data to the application server 300.
  • the sensor terminal 100 has a sensor function and a function of performing wireless communication with the base station 200.
  • the sensor function can be realized by various sensors such as an acceleration sensor, a gyro sensor, a temperature sensor, an atmospheric pressure sensor, a sound pressure sensor, a pulse sensor, or a GPS (Global Positioning System).
  • the sensor terminal 100 transmits the sensor data acquired by the sensor function to the base station 200.
  • the application server 300 receives the sensor data obtained by the sensor terminal 100 from the base station 200 and provides a service using the received sensor data.
  • a service for confirming the position of an object of interest and a service for managing the behavior of an object of interest.
  • the service for confirming the position of interest for example, an elderly person or a child wears the sensor terminal 100 having a GPS function, and the application server 300 acquires position information from the sensor terminal 100 via the base station 200.
  • the application server 300 acquires position information from the sensor terminal 100 via the base station 200.
  • the sensor terminal 100 having an acceleration sensor is attached to livestock such as cows and pigs, and the application server 300 receives information on the movement of livestock from the sensor terminal 100 via the base station 200. It is possible to manage the behavior of livestock on grazing land.
  • the sensor terminal 100 having a sensor function will be described as an example of a wireless device.
  • the present embodiment can also be applied to a wireless device having no sensor function.
  • the wireless device may be supplied with data from an external device and transmit the supplied data to the base station 200.
  • the external device is a vending machine
  • the wireless device may be supplied with sales data from the vending machine and transmit the sales data to the base station 200.
  • the base station 200 will be described as an example of a communication device.
  • the base station 200 and the sensor terminal 100 share the start timing of each communication resource divided on the time axis.
  • the sharing can be realized, for example, when the base station 200 transmits a reference signal for time synchronization and the sensor terminal 100 receives the reference signal. However, when the sensor terminal 100 continuously receives the reference signal, corresponding power is consumed. For this reason, the base station 200 and the sensor terminal 100 may share the start timing of each communication resource based on the absolute time managed by each. For example, the sensor terminal 100 can acquire the absolute time by GPS reception processing.
  • H-ARQ Hybrid-ARQ
  • Hybrid-ARQ Hybrid-ARQ
  • H-ARQ is a technique for improving reception sensitivity by repeatedly transmitting the same frame on the transmission side and combining a plurality of frames by signal processing on the reception side.
  • the sensor terminal 100 conforming to H-ARQ until a reception confirmation response (hereinafter referred to as “ACK”) frame is received from the base station 200 or until the number of transmissions reaches an upper limit.
  • ACK reception confirmation response
  • the base station 200 performs frame synthesis every time a new frame is received, and transmits an ACK frame to the sensor terminal 100 when demodulation is successful.
  • a wireless communication system according to the H-ARQ will be described. However, this is an example, and the present disclosure can be applied to various communication schemes.
  • FIG. 2 is an explanatory diagram showing frames that the sensor terminal 100 transmits to the base station 200.
  • the frame transmitted by the sensor terminal 100 includes a preamble 10, an SFD (Sync Frame Detector) 11, a terminal ID 12, data 13, a CRC (Cyclic Redundancy Check) 14, a parity bit 15, and the like. ,including.
  • the preamble 10 is a signal pattern used for frame detection in the base station 200.
  • the SFD 11 is a signal pattern indicating the start position of the payload (terminal ID 12 to parity bit 15) in the frame.
  • the base station 200 detects the SFD 11 from the frame in which the preamble 10 is detected, thereby recognizing that the subsequent is the payload.
  • the terminal ID 12 is an ID of the sensor terminal 100 that transmits a frame.
  • the ID may be a unique number of the sensor terminal 100, for example.
  • the data 13 is data for use in the application server 300, and sensor data such as acceleration information and position information can be included in the data 13.
  • the CRC 14 is used to determine whether or not reception of the frame has been successful.
  • the parity bit 15 is a redundant bit generated according to the terminal ID 12, the data 13, and the CRC 14, and the use success of the parity bit 15 improves the frame reception success rate at the base station 200.
  • FIG. 3 is a diagram illustrating an ACK frame transmitted from the base station 200 to the sensor terminal 100.
  • a code sequence 21 is generated by performing cyclic shift on a predetermined code sequence 20, and the code sequence 21 is used as a preamble.
  • the ACK frame is composed only of the preamble and does not include a payload.
  • the cyclic shift is a process of shifting the code constituting the frame in one direction (in the present embodiment, the direction from the beginning to the end of the frame).
  • the code a that is the head of the code sequence 20 is shifted toward the end in the code sequence 21.
  • the code b which is the end of the code sequence 20, circulates to the top in the code sequence 21, and further shifts toward the end.
  • the cyclic shift amount is determined by a part of the terminal ID that is identification information of the sensor terminal 100 that is the destination of the ACK frame.
  • the cyclic shift amount is obtained by multiplying a value corresponding to the decimal number of the lower 5 bits of the terminal ID (0 to 31; hereinafter referred to as “terminal ID” for convenience) by a variable D. This is the value obtained.
  • the base station 200 can indicate the destination of the ACK frame by the cyclic shift amount.
  • the base station 200 can distinguish 32 sensor terminals 100 by the cyclic shift amount.
  • the variable D is a value set so that the amount of shift on the time axis caused by the D-bit cyclic shift is larger than the maximum propagation delay amount in the wireless communication system. The effect of this will be described later.
  • the code sequence used in the ACK frame is arbitrary as long as the code sequence has low or zero autocorrelation and cross-correlation.
  • an M series or a Zadoff-Chu series that is a type of CAZAC (Constant Amplitude Zero Auto-Correlation) series may be used.
  • FIG. 4 and FIG. 4 and 5 are diagrams illustrating detection of an ACK frame by the sensor terminal 100.
  • FIG. 4 and 5 are diagrams illustrating detection of an ACK frame by the sensor terminal 100.
  • the base station 200 generates an ACK frame by performing a cyclic shift based on the terminal ID of the sensor terminal 100 that is the destination of the ACK frame.
  • an ACK frame (hereinafter referred to as “ACK_A”) addressed to the sensor terminal 100 ⁇ / b> A whose terminal ID is 1 is D-bit cyclically shifted and the terminal ID is 3.
  • An ACK frame addressed to the sensor terminal 100B (hereinafter referred to as “ACK_B”) is cyclically shifted by 3D bits.
  • the sensor terminal 100 outputs a baseband received signal by converting a radio signal including an ACK frame into an electric signal by an antenna and performing analog processing and down conversion on the electric signal. Then, the sensor terminal 100 detects the ACK frame by obtaining the correlation between the reference signal and the received signal.
  • the reference signal is a preamble that is the same code sequence as that used by the base station 200 and has not been cyclically shifted.
  • the sensor terminal 100 multiplies the discrete Fourier transform of the received signal and the complex conjugate discrete Fourier transform of the reference signal for each sample as shown in Equation (1). Then, CORR [k] is calculated as the multiplication result.
  • RX [k] in equation (1) is the result of the discrete Fourier transform of the received signal
  • REF * [k] is the result of the discrete Fourier transform of the complex conjugate of the reference signal
  • L is the discrete Fourier transform It represents the number of samples of interest.
  • the sensor terminal 100 performs a discrete inverse Fourier transform on CORR [k] that is a multiplication result, and calculates corr [n] as a result.
  • a correlation value is calculated by converting a complex signal into a power signal, and a peak of the correlation value is searched. Similar to Equation (1), L represents the number of samples subject to discrete Fourier transform.
  • the sensor terminal 100 may search for the peak of the correlation value by calculating the correlation value with the received signal while shifting the reference signal on the frequency axis.
  • FIG. 5 shows the correlation value peaks of ACK_A and ACK_B detected by the sensor terminal 100. Due to the cyclic shift, a time difference occurs from the timing when the head of the ACK frame is received by the sensor terminal 100 to the timing when the peak of the correlation value is detected. For example, for ACK_A in FIG. 5, the time difference of the shift amount on the time axis caused by the D-bit cyclic shift from the timing when the head of ACK_A is received by the sensor terminal 100 ⁇ / b> A to the timing when the peak of the correlation value is detected. (Hereinafter, sometimes referred to as “time difference of D” for convenience) has occurred. As for ACK_B, a 3D time difference occurs from the timing when the head of ACK_B is received by the sensor terminal 100A to the timing when the peak of the correlation value is detected.
  • the sensor terminal 100A Since the sensor terminal 100A knows the terminal ID of its own terminal, it can specify the cyclic shift amount corresponding to the ACK frame addressed to its own terminal. Then, the sensor terminal 100A transmits an ACK frame to its own terminal because the correlation value peak is included in the time corresponding to the identified cyclic shift amount (hereinafter referred to as “detection window”). Judge that The sensor terminal 100B determines that the ACK frame is transmitted to the own terminal in the same manner. In the example shown in FIG. 5, the sensor terminal 100A uses D to 2D on the time axis as detection windows, and the sensor terminal 100B uses 3D to 4D on the time axis as detection windows.
  • variable D is set so that the amount of shift on the time axis caused by the cyclic shift of D bits is larger than the maximum propagation delay amount. Therefore, it is possible to prevent a situation in which the peak of the correlation value occurs outside the detection window of the sensor terminal 100 that is the destination of the ACK frame due to the influence of the propagation delay.
  • the base station 200 can specify the destination of the ACK frame by cyclic shift, and the sensor terminal 100 can specify the ACK frame addressed to the terminal itself.
  • the sensor terminal 100 may cyclically shift the reference signal in advance based on the terminal ID of the own terminal, and obtain the correlation with the received signal using the reference signal after the cyclic shift.
  • a time difference due to the cyclic shift does not occur between the timing when the head of the ACK is received by the sensor terminal 100A and the timing when the peak of the correlation value is detected. For example, for ACK_A in FIG. 5, there is no time difference of D due to the cyclic shift.
  • the cyclic shift can be performed based on information other than the terminal ID as long as it is any information that can identify the sensor terminal 100.
  • the frequency of the carrier wave generated by the oscillator of the sensor terminal 100 includes a frequency error due to individual differences between the oscillators.
  • Base station 200 may perform cyclic shift based on this frequency error. Since the sensor terminal 100 grasps the frequency error of its own terminal, it can specify the detection window.
  • the base station 200 may specify the destination of the ACK frame by a method other than the cyclic shift.
  • the base station 200 may specify the destination according to the type of code sequence used for generating the ACK frame. More specifically, the base station 200 generates an ACK frame using a different code sequence for each destination sensor terminal 100. The sensor terminal 100 knows the code sequence for the terminal itself, and can detect the ACK frame by obtaining the correlation between the reference signal generated based on the code sequence and the received signal.
  • the technique of intermittent reception is effective.
  • the intermittent reception is a technique for realizing a reduction in power consumption of the sensor terminal 100 by not performing reception standby constantly but only during a necessary period.
  • the sensor terminal 100 in order for the sensor terminal 100 to perform intermittent reception, the sensor terminal 100 needs to grasp the timing at which a signal is transmitted by some method. For example, a method in which the sensor terminal 100 grasps the transmission timing by the base station 200 transmitting control information including the signal transmission timing to the sensor terminal 100 is conceivable.
  • the sensor terminal 100 it is not preferable for the sensor terminal 100 to process a long wireless frame because the power consumption of the sensor terminal 100 increases. Further, in an environment where radio resources are limited, it is not preferable that radio resources be devoted to transmission of control information.
  • the present disclosure person has created the embodiment of the present disclosure by paying attention to the above circumstances.
  • the sensor terminal 100 sets the reception waiting period for receiving other data frames (hereinafter referred to as “DL data frames”) from the timing of receiving the ACK frame as a starting point. Set and receive the DL data frame within this reception waiting period.
  • base station 200 sets the transmission timing of the DL data frame starting from the timing at which the ACK frame is transmitted, and transmits the DL data frame at the transmission timing.
  • transmission and reception of the DL data frame is controlled based on the ACK frame, so that more efficient wireless communication can be realized.
  • the configuration and operation of the embodiment of the present disclosure will be sequentially described in detail.
  • FIG. 6 is a diagram illustrating a functional configuration of the sensor terminal 100 according to the embodiment of the present disclosure.
  • the sensor terminal 100 includes a communication unit 110, an information providing unit 120, a detection unit 130, a signal processing unit 140, a storage unit 150, and a control unit 160.
  • the communication unit 110 includes a transmission unit 111 and a reception unit 112.
  • the transmission unit 111 transmits a radio signal to the base station 200. More specifically, the transmission unit 111 up-converts a baseband transmission signal provided from the control unit 160, converts an electric signal obtained by the up-conversion into a radio signal by an antenna, and transmits the radio signal.
  • the information providing unit 120 includes one or more sensors and provides data for transmission to the base station 200. More specifically, the information providing unit 120 includes sensors such as a position sensor, an acceleration sensor, a gyro sensor, a temperature sensor, an atmospheric pressure sensor, a sound pressure sensor, and a pulse sensor, and the timing at which the value of the sensor data is changed, Alternatively, the sensor data is provided to the control unit 160 at a periodic timing.
  • sensors such as a position sensor, an acceleration sensor, a gyro sensor, a temperature sensor, an atmospheric pressure sensor, a sound pressure sensor, and a pulse sensor, and the timing at which the value of the sensor data is changed, Alternatively, the sensor data is provided to the control unit 160 at a periodic timing.
  • the receiving unit 112 receives a radio signal transmitted from the base station 200. More specifically, the receiving unit 112 converts a radio signal transmitted from the base station 200 into an electric signal by an antenna, performs analog processing and down-conversion on the electric signal, and thereby converts a baseband received signal. Output. The reception unit 112 provides this reception signal to the detection unit 130.
  • the receiving unit 112 receives an ACK frame or a DL data frame from the base station 200.
  • the method for receiving the ACK frame is as described above.
  • the reception unit 112 realizes intermittent reception by performing reception standby during a reception standby period that is set based on the timing at which the ACK frame is received.
  • the sensor terminal 100 since the sensor terminal 100 knows the terminal ID of its own terminal, it can grasp the cyclic shift amount of the ACK frame. Therefore, the sensor terminal 100 can calculate the timing at which the head of the ACK frame reaches the sensor terminal 100 by back-calculating the time difference due to the cyclic shift from the timing when the peak of the correlation value of the ACK frame is observed. Then, the sensor terminal 100 sets a period after a predetermined time has elapsed from the timing at which the head of the ACK frame is received by the sensor terminal 100 as a reception standby period, and receives a DL data frame during this reception standby period. I do. For example, the sensor terminal 100 may set a period 100 milliseconds after the timing when the head of the ACK frame is received by the sensor terminal 100 as the reception standby period.
  • the detection unit 130 detects an ACK frame from the reception signal provided from the reception unit 112 by the method described above.
  • the DL data frame detection method is the same as the ACK frame detection method.
  • the detection unit 130 extracts a payload from the DL data frame based on the timing at which the correlation value peak is detected, and provides the payload to the signal processing unit 140.
  • the signal processing unit 140 performs demodulation and error correction decoding on the payload provided from the detection unit 130. Whether or not the demodulation is successful is confirmed using a CRC included in the radio frame.
  • the storage unit 150 stores the demodulated data provided by the signal processing unit 140.
  • the control unit 160 controls transmission / reception of the sensor terminal 100. More specifically, regarding the transmission, the control unit 160 generates a baseband signal for transmission using the sensor data provided from the information providing unit 120 and provides the baseband signal to the transmission unit 111. To do. Further, when an ACK frame addressed to the terminal itself is detected, the control unit 160 stops the transmission process by stopping the generation of the baseband signal. Regarding reception, the control unit 160 realizes intermittent reception by setting a reception standby period starting from the timing at which the ACK frame is received.
  • FIG. 7 is a diagram illustrating a functional configuration of the base station 200 according to the embodiment of the present disclosure.
  • the base station 200 includes a communication unit 210, a detection unit 220, a signal processing unit 230, a storage unit 240, a control unit 250, and a wired communication unit 260.
  • the communication unit 210 includes a transmission unit 211 and a reception unit 212.
  • the receiving unit 212 receives a radio signal transmitted from the sensor terminal 100. More specifically, the receiving unit 212 converts a radio signal transmitted from the base station 200 into an electric signal by an antenna, performs analog processing and down-conversion on the electric signal, and thereby converts a baseband received signal. Output. The reception unit 212 provides this reception signal to the detection unit 220.
  • the detection unit 220 detects a data frame including sensor data acquired by the sensor terminal 100 (hereinafter referred to as “UL data frame”) from the reception signal provided from the reception unit 212.
  • the detection method of the UL data frame is the same as the detection method by the detection unit 130 of the sensor terminal 100.
  • the detection unit 220 cuts out the payload from the UL data frame and provides this payload to the signal processing unit 230.
  • the signal processing unit 230 functions as a demodulation unit, and performs demodulation and error correction decoding on the payload provided by the detection unit 220.
  • the signal processing unit 230 since the sensor terminal 100 repeatedly transmits wireless signals corresponding to the same sensor data, the signal processing unit 230 combines the payloads of a plurality of wireless signals repeatedly transmitted from the same sensor terminal 100. Attempt to demodulate the combined payload.
  • the signal processing unit 230 uses the CRC 14 included in the payload to check whether demodulation is successful.
  • the signal processing unit 230 provides the control unit 250 with information regarding the transmission source of the UL data frame that has been successfully demodulated. Then, the control unit 250 transmits an ACK frame to the sensor terminal 100 that is the transmission source.
  • the storage unit 240 stores the demodulated data provided by the signal processing unit 230.
  • the transmission unit 211 transmits a wireless signal to the sensor terminal 100. More specifically, the transmission unit 211 up-converts the baseband transmission signal provided from the control unit 250, converts the electrical signal obtained by the up-conversion into a radio signal by the antenna, and transmits the radio signal.
  • Control part When the demodulation by the signal processing unit 230 is successful, the control unit 250 generates an ACK frame and provides it to the transmission unit 211. As described above, the control unit 250 determines the cyclic shift amount using a part of the terminal ID of the sensor terminal 100 that is the destination of the ACK frame.
  • control unit 250 generates a DL data frame and provides it to the transmission unit 211.
  • the control unit 250 controls the transmission unit 211 so that the DL data frame is transmitted at a timing after a predetermined time has elapsed from the transmission timing of the ACK frame.
  • the control unit 250 may control the transmission unit 211 to transmit the DL data frame 100 milliseconds after the transmission timing of the ACK frame.
  • the wired communication unit 260 transmits the sensor data and the like included in the payload demodulated by the signal processing unit 230 to the application server 300. Thereby, the application server 300 can provide a service using sensor data.
  • FIG. 8 is a flowchart illustrating an operation in which the sensor terminal 100 transmits a UL data frame and receives a DL data frame.
  • step S1000 the information providing unit 120 of the sensor terminal 100 provides sensor data to the control unit 160, and the control unit 160 generates a UL data frame using the sensor data.
  • step S1004 the transmission unit 111 transmits a UL data frame to the base station 200.
  • step S1008 the receiving unit 112 receives an ACK frame until a predetermined time has elapsed.
  • step S1012 when the detection unit 130 detects an ACK frame addressed to the terminal itself (step S1012 / Yes), the reception unit 112 pauses reception until a reception standby period set based on the reception timing of the ACK frame. (Step S1016).
  • step S1020 the reception unit 112 receives the DL data frame during the reception standby period.
  • step S1012 when an ACK frame addressed to the own terminal is not detected (step S1012 / No), the control unit 160 checks the number of times that a UL data frame including the same sensor data is repeatedly transmitted. If the number of times of transmission has reached the upper limit (step S1024 / Yes), the UL data frame transmission process ends. If the number of transmissions has not reached the upper limit (step S1024 / No), in step S1004, the transmission unit 111 transmits a UL data frame (step S1028).
  • FIG. 9 is a flowchart illustrating an operation in which the base station 200 receives a UL data frame and transmits a DL data frame.
  • step S1100 the reception unit 212 of the base station 200 receives a radio signal, and the detection unit 220 detects a UL data frame.
  • step S1104 the detection unit 220 acquires a payload from the UL data frame, and the signal processing unit 230 synthesizes a payload including the same data.
  • step S1108, the signal processing unit 230 performs reception signal processing on the combined payload.
  • Received signal processing refers to the above-described demodulation and error correction decoding processes.
  • step S1112 When the signal processing unit 230 confirms the failure of demodulation using the CRC 14 (step S1112 / No), the processing ends with the payload held (step S1116). The held payload is then used for the payload synthesis process in step S1104 when repeated transmission is performed.
  • step S1112 when the signal processing unit 230 confirms the success of demodulation using the CRC 14 (step S1112 / Yes), in step S1120, the control unit 250 sets the timing for transmitting the DL data frame to the sensor terminal 100. decide. In the present embodiment, the control unit 250 operates so that the DL data frame is transmitted at a timing after a predetermined time has elapsed from the transmission timing of the ACK frame.
  • step S1124 the control unit 250 generates an ACK frame.
  • step S1128 the transmission unit 211 transmits an ACK frame to the sensor terminal 100.
  • step S1132 the payload held for demodulation is deleted.
  • step S1136 the control unit 250 generates a DL data frame.
  • step S1140 the transmission unit 211 transmits a DL data frame to the sensor terminal 100, and the process ends.
  • the reception standby period is a period after a predetermined time has elapsed from the reception timing of the ACK frame.
  • the reception standby period is dynamically set with the reception timing of the ACK frame as a starting point.
  • FIG. 10 is a diagram showing an outline of the offset in the first modification.
  • the base station 200, the sensor terminal 100A, and the sensor terminal 100B perform signal transmission / reception based on a time interval called a time slot.
  • One time slot may include a UL data frame, a UL data frame and an ACK frame, and a DL data frame.
  • the offset is an interval length from when the base station 200 transmits an ACK frame to a certain sensor terminal 100 to when a DL data frame is transmitted to the sensor terminal 100, and is represented by the number of time slots.
  • the offset shown in FIG. 10 is an offset corresponding to the sensor terminal 100A, and the offset in this case is 2.
  • the sensor terminal 100A and the sensor terminal 100B transmit UL data frames without leaving time slot intervals.
  • the sensor terminal 100 may transmit UL data frames with appropriate time slot intervals.
  • the base station 200 sets an offset based on the reception status of the UL data frame. More specifically, the base station 200 determines in step S1120 “Determination of DL data frame transmission timing” in FIG. 9 a sensor terminal 100 other than the sensor terminal 100 that is the transmission destination of the ACK frame (hereinafter “other data”). It is confirmed whether or not the payload transmitted from the sensor terminal 100 ”is held. When the payload is held, the base station 200 determines that a UL data frame is being received from another sensor terminal 100, and when the payload is not held, the base station 200 It is determined that no UL data frame is being received from terminal 100.
  • the base station 200 transmits the DL data frame in the time slot immediately after the time slot in which the ACK frame is transmitted by setting the offset to 0.
  • the base station 200 predicts, for each sensor terminal 100, the remaining number of receptions necessary until the demodulation of the payload included in the currently received UL data frame is successful, The maximum value is set as an offset. Details of the offset setting method will be described later.
  • FIG. 11 is a diagram illustrating an ACK frame transmitted by the base station 200.
  • the cyclic shift amount is determined according to the destination and offset of the ACK frame.
  • base station 200 calculates a value obtained by multiplying offset (0 to 7) by variable D as the first cyclic shift amount, and performs cyclic shift on predetermined code sequence 30.
  • the code sequence 31 is generated.
  • the base station 200 sets the total number of offsets (8 in total) and the variable to a value (0 to 7; hereinafter referred to as “terminal ID” for convenience) corresponding to the decimal number of the lower 3 bits of the terminal ID.
  • a value obtained by multiplying D is calculated as the second cyclic shift amount, and the code sequence 32 is generated by cyclically shifting the code sequence 31.
  • the code sequence 32 is used as a preamble, and the ACK frame includes only the preamble and does not include a payload.
  • FIGS. 12 and 13 are diagrams illustrating detection of an ACK frame by the sensor terminal 100.
  • FIG. 12 and 13 are diagrams illustrating detection of an ACK frame by the sensor terminal 100.
  • ACK_A addressed to the sensor terminal 100A having an offset of 2 and a terminal ID of 1 is shown. Since the first cyclic shift amount is 2D bits and the second cyclic shift amount is 8D bits by the above-described method, a total of 10D bit cyclic shifts are performed.
  • FIG. 13 shows the result of the detection unit 130 of the sensor terminal 100 calculating the correlation between the reference signal and the received signal. Due to the cyclic shift, a time difference of 10D occurs between the timing when the head of ACK_A is received by the sensor terminal 100A and the timing when the peak of the correlation value is detected.
  • the sensor terminal 100A Since the sensor terminal 100A knows the terminal ID of the terminal and the total number of offsets, the sensor terminal 100A can identify the detection window. Since the detection window includes the peak of the correlation value, the ACK frame is addressed to the terminal. Judge that it was sent. Further, the sensor terminal 100A can specify the offset based on the time within the detection window where the peak is included. More specifically, when calculating the second cyclic shift amount, a window for designating an offset in the detection window is generated by multiplying the total number of offsets. For example, in the example shown in FIG. 13, eight windows for designating offsets are generated in the detection windows 8D to 16D of the sensor terminal 100A. In the example shown in FIG. 13, the sensor terminal 100A can specify that the offset is 2 based on the fact that the peaks are included in 10D to 11D.
  • the sensor terminal 100 receives the DL data frame based on the offset specified by the ACK frame. More specifically, the sensor terminal 100 sets, as a reception standby period, one time slot after an interval corresponding to the offset from the time slot in which the ACK frame is detected as a starting point.
  • the sensor terminal 100 sets a plurality of time slots as reception standby periods after a time slot after an interval corresponding to an offset, or before and after the time slot in which an ACK frame is detected. May be.
  • FIG. 14 is a flowchart illustrating an operation in which the base station 200 determines the transmission timing of the DL data frame.
  • step S1200 the control unit 250 of the base station 200 determines whether or not a UL data frame from another sensor terminal 100 is being received.
  • the control unit 250 determines that the UL data frame from the other sensor terminal 100 is not being received (step S1200 / No)
  • the control unit 250 sets the offset to 0 in step S1204.
  • the control unit 250 determines that the UL data frame from another sensor terminal 100 is being received (step S1200 / Yes)
  • the control unit 250 detects the UL data frame being received in step S1208. Number of times (hereinafter referred to as “Ndet”).
  • step S1212 the control unit 250 acquires an average value of SINR (Signal to Interference plus Noise Ratio) of the UL data frame being received.
  • SINR Signal to Interference plus Noise Ratio
  • step S1216 control unit 250 estimates the number of payload combinations (hereinafter referred to as “Ncomb”) necessary for demodulation based on the average value of SINR.
  • the control unit 250 performs the processing from step S1208 to step S1220 for each sensor terminal 100 that is the transmission source of the currently received UL data frame, and sets the maximum value of Nts as an offset (step S1224).
  • the time slot in which the DL data frame is transmitted and the time slot in which the UL data frame is received are less likely to overlap. Therefore, it is possible to reduce the possibility of radio signal interference.
  • the base station 200 may specify the offset by a method other than the cyclic shift.
  • the base station 200 may specify an offset according to the type of code sequence used for generating an ACK frame. More specifically, a different code sequence is prepared for each offset, and the base station 200 performs a cyclic shift based on the terminal ID on the code sequence corresponding to the offset calculated by the above-described method, and ACK Generate a frame.
  • the sensor terminal 100 can detect the ACK frame and specify the offset by obtaining the correlation between each reference signal generated based on the code sequence corresponding to each offset and the received signal.
  • FIG. 15 is a diagram illustrating an ACK frame transmitted by the base station 200.
  • the cyclic shift amount is determined by the destination of the ACK frame and the presence / absence of transmission of the DL data frame.
  • the base station 200 multiplies a value corresponding to whether or not a DL data frame is transmitted (0 to 1. As an example, 1 indicates transmission and 0 indicates no transmission) by a variable D.
  • the value obtained in this way is calculated as the first cyclic shift amount, and the code sequence 41 is generated by cyclically shifting the predetermined code sequence 40.
  • the base station 200 sets the number of DL data frame transmission presence / absence patterns to a value corresponding to the decimal number of the lower 4 bits of the terminal ID (0 to 15; hereinafter referred to as “terminal ID” for convenience) ( A value obtained by multiplying the variable D) and a variable D is calculated as a second cyclic shift amount, and the code sequence 42 is generated by performing a cyclic shift on the code sequence 41.
  • the code sequence 42 is used as a preamble, and the ACK frame includes only the preamble and does not include a payload.
  • FIGS. 16 and 17 are diagrams illustrating detection of an ACK frame by the sensor terminal 100.
  • FIG. 16 and 17 are diagrams illustrating detection of an ACK frame by the sensor terminal 100.
  • ACK_A addressed to the sensor terminal 100 ⁇ / b> A whose DL data frame is transmitted and whose terminal ID is 1 is shown.
  • the first cyclic shift amount is 1D bits
  • the second cyclic shift amount is 2D bits. Therefore, a total of 3D bit cyclic shifts are performed.
  • FIG. 17 shows the result of the detection unit 130 of the sensor terminal 100 calculating the correlation between the reference signal and the received signal. Due to the cyclic shift, a 3D time difference occurs from the timing when the head of ACK_A is received by the sensor terminal 100A to the timing when the peak of the correlation value is detected.
  • the detection terminal 100A Since the sensor terminal 100A knows the terminal ID of the own terminal, the detection terminal can be specified, and the peak of the correlation value is included in the detection window, so that it is determined that the ACK frame is transmitted to the own terminal. To do. Also, the sensor terminal 100A can specify whether or not to transmit a DL data frame based on the time within the detection window including the peak. More specifically, a window for designating the presence / absence of DL data frame transmission within the detection window by multiplying the total number of DL data frame transmission / non-transmission patterns in the calculation of the second cyclic shift amount. Is generated. For example, in the example shown in FIG.
  • two windows for designating whether or not to transmit a DL data frame are generated in the detection windows 2D to 4D of the sensor terminal 100A.
  • the sensor terminal 100A can specify that the DL data frame is transmitted based on the fact that the peak is included in 3D to 4D.
  • the sensor terminal 100A When the sensor terminal 100A specifies that the DL data frame is transmitted, the sensor terminal 100A implements intermittent reception by performing reception standby during a reception standby period set with the timing at which the ACK frame is received as a starting point. More specifically, the sensor terminal 100A sets a period after a predetermined time has elapsed from the timing at which the head of the ACK frame is received by the sensor terminal 100 as a reception standby period, and DL Wait for data frame reception. On the other hand, if the sensor terminal 100A specifies that no DL data frame is transmitted, the sensor terminal 100A does not set the reception standby period.
  • the first modification it is possible to specify whether or not to transmit a DL data frame.
  • the fact that the correlation value peak is included in the period (15D to 16D) corresponding to the offset 7 in FIG. 13 may mean that no DL data frame is transmitted.
  • the sensor terminal 100 does not set the reception standby period when the correlation value peak is included in the period (15D to 16D) corresponding to the offset 7.
  • the sensor terminal 100 sets the reception standby period based on the offset in the same manner as in the first modification. Set.
  • the base station 200 can share the transmission presence / absence of the DL data frame and the offset to the sensor terminal 100 using the ACK frame.
  • the base station 200 may specify whether or not to transmit the DL data frame by a method other than the cyclic shift.
  • the base station 200 may specify whether or not to transmit a DL data frame depending on the type of code sequence used for generating an ACK frame. More specifically, different code sequences are prepared for a case where a DL data frame is transmitted and a case where a DL data frame is not transmitted, and the base station 200 uses a code sequence used depending on whether or not a DL data frame is transmitted. To decide. Then, the base station 200 performs a cyclic shift based on the terminal ID for the code sequence to generate an ACK frame.
  • the sensor terminal 100 obtains an ACK frame by obtaining a correlation between each received reference signal and a received signal based on a code sequence corresponding to a case where a DL data frame is transmitted and a case where a DL data frame is not transmitted. It is possible to detect and specify whether or not a DL data frame is transmitted.
  • FIG. 18 is a diagram illustrating a hardware configuration of the sensor terminal 100 and the base station 200 according to the embodiment of the present disclosure.
  • the sensor terminal 100 and the base station 200 include a CPU (Central Processing Unit) 901, a ROM (Read Only Memory) 902, a RAM (Random Access Memory) 903, an input device 908, and an output device. 910, a storage device 911, and a transmission / reception device 915.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the CPU 901 functions as an arithmetic processing unit and a control unit, and controls the overall operation within the sensor terminal 100 and the base station 200 according to various programs. Further, the CPU 901 may be a microprocessor.
  • the ROM 902 stores programs used by the CPU 901, calculation parameters, and the like.
  • the RAM 903 temporarily stores programs used in the execution of the CPU 901, parameters that change as appropriate during the execution, and the like. These are connected to each other by a host bus including a CPU bus.
  • the information providing unit 120, the detection unit 130, the signal processing unit 140, the control unit 160 of the sensor terminal 100, the detection unit 220 of the base station 200, the signal processing unit 230, and the control The function of the unit 250 is realized.
  • the input device 908 includes input means for inputting information such as a mouse, keyboard, touch panel, button, microphone, switch, and lever, and an input control circuit that generates an input signal based on the input by the user and outputs the input signal to the CPU 901. Etc.
  • the administrator of the sensor terminal 100 and the base station 200 can input various data and instruct processing operations to the sensor terminal 100 and the base station 200 by operating the input device 908.
  • the output device 910 includes a display device such as a liquid crystal display (LCD) device, an OLED (Organic Light Emitting Diode) device, and a lamp. Furthermore, the output device 910 includes an audio output device such as a speaker and headphones. For example, the display device displays a captured image or a generated image. On the other hand, the audio output device converts audio data or the like into audio and outputs it.
  • a display device such as a liquid crystal display (LCD) device, an OLED (Organic Light Emitting Diode) device, and a lamp.
  • the output device 910 includes an audio output device such as a speaker and headphones.
  • the display device displays a captured image or a generated image.
  • the audio output device converts audio data or the like into audio and outputs it.
  • the storage device 911 is a device for storing data.
  • the storage device 911 may include a storage medium, a recording device that records data on the storage medium, a reading device that reads data from the storage medium, a deletion device that deletes data recorded on the storage medium, and the like.
  • the storage device 911 stores programs executed by the CPU 901 and various data. Further, the storage device 911 implements the functions of the storage unit 150 of the sensor terminal 100 and the storage unit 240 of the base station 200.
  • the transmission / reception device 915 is a communication interface configured by, for example, a communication device for connecting to the sensor terminal 100 and the base station 200.
  • the transmission / reception device 915 implements the functions of the communication unit 110 of the sensor terminal 100, the communication unit 210 of the base station 200, and the wired communication unit 260.
  • each step in the processing of the sensor terminal 100 or the base station 200 in the present specification does not necessarily have to be processed in time series in the order described in the flowchart.
  • each step in the processing of the sensor terminal 100 or the base station 200 may be processed in an order different from the order described as the flowchart, or may be processed in parallel.
  • Step S1120 “Determination of DL Data Frame Transmission Timing” in FIG. 9 may be performed in parallel with Steps S1124 to S1136, or may be performed between these processes.
  • step S1132 “deletion of held payload” may be performed in parallel with steps S1120 to S1140, or may be performed between these processes.
  • step S1136 “DL data frame generation” in FIG. 9 may be performed in parallel with steps S1120 to S1132, or between these processes.
  • a receiving unit for receiving a reception confirmation response transmitted by the communication device A control unit that sets a reception standby period starting from the timing at which the reception confirmation response is received, and causes the reception unit to wait for signal reception in the reception standby period.
  • Wireless device The control unit sets a period after a predetermined time has elapsed from the timing when the reception confirmation response is received as the reception waiting period.
  • the wireless device includes: A detection unit that detects a correlation between the reception confirmation response received by the reception unit and a reference signal; The control unit specifies an interval length according to the timing of the correlation peak, and sets a period after the interval length has elapsed from a timing when the reception confirmation response is received as the reception waiting period.
  • the wireless device according to (1) The detection unit detects the reception confirmation response based on identification information of the wireless device; The wireless device according to (3).
  • the detection unit identifies a period for detecting the reception confirmation response based on the identification information, and detects the reception confirmation response based on the fact that the correlation peak is included in the period.
  • the control unit predicts a reception timing of a signal necessary for the demodulation processing to be successful for a payload included in an already detected signal, and sets a time point later than the reception timing as a transmission timing of the signal.
  • the communication device according to (9).
  • the control unit acquires the number of times of synthesis necessary for the demodulation process to be successful and the number of times of synthesis actually performed for each of the plurality of wireless devices, and the actual number of times obtained from the required number of synthesis Calculating the maximum value obtained by subtracting the number of synthesis, and predicting the reception timing based on the maximum value;
  • the communication device 10).
  • the control unit determines a change amount of a phase of the reception confirmation response based on identification information of a wireless device that is a transmission destination of the reception confirmation response, or information on transmission of the signal.
  • the communication device according to any one of (7) to (11).
  • the information regarding the transmission of the signal is information regarding the presence or absence of the transmission of the signal or the transmission timing of the signal.
  • the communication device according to (12). (14) Sending an acknowledgment to the wireless device; Setting the transmission timing of a signal based on the transmission timing of the reception confirmation response, and causing the signal to be transmitted at the transmission timing of the signal, Communication control method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

[Problem] To make possible the realization of more efficient wireless communication. [Solution] Provided is a wireless device comprising a reception unit that receives a reception confirmation response transmitted by a communication device, and a control unit that sets a reception stand-by period starting from the time when the reception confirmation response was received, and makes the reception unit stand by for signal reception during the reception standby period.

Description

無線装置、通信装置、制御方法および通信制御方法Wireless device, communication device, control method, and communication control method
 本開示は、無線装置、通信装置、制御方法および通信制御方法に関する。 The present disclosure relates to a wireless device, a communication device, a control method, and a communication control method.
 近年、センサ機能を有する端末から無線通信により情報を収集するための無線センサネットワークが注目されている。無線センサネットワークの用途は、興味対象の位置を確認する用途、および興味対象の行動を管理する用途など、多岐に渡る。 In recent years, wireless sensor networks for collecting information by wireless communication from terminals having a sensor function have attracted attention. The wireless sensor network has a wide variety of uses, such as a purpose of confirming a position of an object of interest and a purpose of managing the behavior of the object of interest.
 既存のセルラーシステムおよび無線LAN(Local Area Network)などの無線通信システムにおいては、基地局またはアクセスポイントのような親局が、通信リソースの管理を行う。例えば、親局は、定期的に基準信号を送信し、子局側の通信端末のための通信リソースを決定し、決定した通信リソースを所定の制御プロトコルに従って子局に通知し、子局は、基準信号の受信結果および通知された通信リソースを用いて通信を行う。当該管理により、複数の通信端末が行う通信間での干渉を回避または抑制することが可能である。特許文献1には、子局の受信待機期間を適切に制御し、受信のために消費される電力を削減できる通信方式が開示されている。この方式では、親局が、次回の受信待機期間情報(制御情報)をペイロードに含む信号を子局へ送信することによって、子局が次回の受信待機期間を把握することができるため、無駄な受信処理が回避され得る。 In a wireless communication system such as an existing cellular system and wireless LAN (Local Area Network), a base station such as a base station or an access point manages communication resources. For example, the master station periodically transmits a reference signal, determines a communication resource for the communication terminal on the slave station side, notifies the determined communication resource to the slave station according to a predetermined control protocol, Communication is performed using the reception result of the reference signal and the notified communication resource. By this management, it is possible to avoid or suppress interference between communications performed by a plurality of communication terminals. Patent Document 1 discloses a communication method that can appropriately control a reception standby period of a slave station and reduce power consumed for reception. In this method, the master station can grasp the next reception standby period by transmitting a signal including the next reception standby period information (control information) in the payload to the slave station. Reception processing can be avoided.
特開2007-181094号公報JP 2007-181094 A
 しかし、無線通信システムにおいて、親局が、受信待機期間をペイロードに含む信号を子局へ送信することは、必ずしも効率的ではない。例えば、当該信号を受信するために、子局の電力が消費される。特に、センサネットワークに属する通信装置(端末)が送信するデータは数byte程度の少量データである場合が想定され、この場合、制御情報の送信のために消費される電力の、データの送信のために消費される電力に対する割合が大きくなってしまう。また、ペイロードに受信待機期間情報を含ませるために、限りある無線資源が消費されることになる。 However, in a wireless communication system, it is not always efficient for a master station to transmit a signal including a reception waiting period in a payload to a slave station. For example, the power of the slave station is consumed to receive the signal. In particular, it is assumed that the data transmitted by the communication device (terminal) belonging to the sensor network is a small amount of data of about several bytes. In this case, the power consumed for transmitting the control information is for data transmission. The ratio with respect to the electric power consumed will increase. Further, since the reception waiting period information is included in the payload, limited radio resources are consumed.
 そこで、本開示は、上記問題に鑑みてなされたものであり、本開示の目的とするところは、より効率的な無線通信を実現することが可能な、新規かつ改良された無線装置、通信装置、制御方法および通信制御方法を提供することにある。 Accordingly, the present disclosure has been made in view of the above problems, and an object of the present disclosure is to provide a new and improved wireless device and communication device capable of realizing more efficient wireless communication. Another object is to provide a control method and a communication control method.
 本開示によれば、通信装置によって送信される受信確認応答を受信する受信部と、前記受信確認応答が受信されたタイミングを起点にして受信待機期間を設定し、前記受信待機期間にて前記受信部に信号受信を待機させる制御部と、を備える、無線装置が提供される。 According to the present disclosure, a reception unit that receives a reception confirmation response transmitted by a communication device, a reception standby period is set based on a timing at which the reception confirmation response is received, and the reception is performed in the reception standby period. And a control unit that causes the unit to wait for signal reception.
 また、本開示によれば、通信装置によって送信される受信確認応答を受信することと、前記受信確認応答が受信されたタイミングを起点にして受信待機期間を設定し、当該受信待機期間にて信号受信を待機させることと、を有する、制御方法が提供される。 Further, according to the present disclosure, a reception waiting period is set based on the reception of the reception confirmation response transmitted by the communication device, and the timing at which the reception confirmation response is received. A control method is provided comprising: waiting for reception.
 また、本開示によれば、無線装置に対して受信確認応答を送信する送信部と、前記受信確認応答の送信タイミングを起点にして信号の送信タイミングを設定し、前記信号の送信タイミングにて前記送信部に前記信号を送信させる制御部と、を備える、通信装置が提供される。 Further, according to the present disclosure, a transmission unit that transmits a reception confirmation response to the wireless device, and a transmission timing of the signal with the transmission timing of the reception confirmation response as a starting point, the transmission timing of the signal And a control unit that causes the transmission unit to transmit the signal.
 また、本開示によれば、無線装置に対して受信確認応答を送信することと、前記受信確認応答の送信タイミングを起点にして信号の送信タイミングを設定し、前記信号の送信タイミングにて前記信号を送信させることと、を有する、通信制御方法が提供される。 Further, according to the present disclosure, a transmission confirmation response is transmitted to a wireless device, a transmission timing of a signal is set based on a transmission timing of the reception confirmation response, and the signal is transmitted at the transmission timing of the signal. A communication control method is provided.
 以上説明したように本開示によれば、より効率的な無線通信を実現することが可能である。 As described above, according to the present disclosure, more efficient wireless communication can be realized.
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。 Note that the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
本開示の実施形態に係る無線通信システムを示す図である。1 is a diagram illustrating a wireless communication system according to an embodiment of the present disclosure. センサ端末が送信するULデータフレームを示す図である。It is a figure which shows UL data frame which a sensor terminal transmits. 基地局が送信する受信確認応答(ACK)フレームを示す図である。It is a figure which shows the reception confirmation response (ACK) frame which a base station transmits. センサ端末によるACKフレームの検出を示す図である。It is a figure which shows the detection of the ACK frame by a sensor terminal. センサ端末によるACKフレームの検出を示す図である。It is a figure which shows the detection of the ACK frame by a sensor terminal. 本開示の実施形態に係るセンサ端末の機能構成を示す図である。It is a figure which shows the function structure of the sensor terminal which concerns on embodiment of this indication. 本開示の実施形態に係る基地局の機能構成を示す図である。2 is a diagram illustrating a functional configuration of a base station according to an embodiment of the present disclosure. FIG. センサ端末がULデータフレームを送信し、DLデータフレームを受信する動作を示すフローチャートである。It is a flowchart which shows the operation | movement which a sensor terminal transmits a UL data frame and receives a DL data frame. 基地局がULデータフレームを受信し、DLデータフレームを送信する動作を示すフローチャートである。It is a flowchart which shows the operation | movement which a base station receives UL data frame and transmits DL data frame. オフセットの概要を示す図である。It is a figure which shows the outline | summary of offset. 基地局が送信するACKフレームを示す図である。It is a figure which shows the ACK frame which a base station transmits. センサ端末によるACKフレームの検出を示す図である。It is a figure which shows the detection of the ACK frame by a sensor terminal. センサ端末によるACKフレームの検出を示す図である。It is a figure which shows the detection of the ACK frame by a sensor terminal. 基地局がDLデータフレームの送信タイミングを決定する動作を示すフローチャートである。It is a flowchart which shows the operation | movement which a base station determines the transmission timing of DL data frame. 基地局が送信するACKフレームを示す図である。It is a figure which shows the ACK frame which a base station transmits. センサ端末によるACKフレームの検出を示す図である。It is a figure which shows the detection of the ACK frame by a sensor terminal. センサ端末によるACKフレームの検出を示す図である。It is a figure which shows the detection of the ACK frame by a sensor terminal. 本開示の実施形態に係るセンサ端末と基地局のハードウェア構成を示す図である。It is a figure which shows the hardware constitutions of the sensor terminal and base station which concern on embodiment of this indication.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.
 なお、説明は以下の順序で行うものとする。
 1.無線通信システムの概要
 2.各装置の構成
 3.各装置の動作
 4.第1の変形例
 5.第2の変形例
 6.ハードウェア構成
The description will be made in the following order.
1. 1. Overview of wireless communication system 2. Configuration of each device Operation of each device 4. First modified example 5. Second modified example 6. Hardware configuration
  <1.無線通信システムの概要>
 本開示の実施形態は、無線センサネットワークを形成する無線通信システムに関する。まず、図1を参照し、本開示の実施形態による無線通信システムの概要を説明する。
<1. Overview of Wireless Communication System>
Embodiments of the present disclosure relate to a wireless communication system that forms a wireless sensor network. First, an overview of a wireless communication system according to an embodiment of the present disclosure will be described with reference to FIG.
 (1-1.無線通信システムの構成)
 図1は、本開示の実施形態に係る無線通信システムを示す図である。図1に示すように、本開示の実施形態による無線通信システムは、複数の基地局200と、複数のセンサ端末100と、アプリケーションサーバ300と、を備える。
(1-1. Configuration of Radio Communication System)
FIG. 1 is a diagram illustrating a wireless communication system according to an embodiment of the present disclosure. As illustrated in FIG. 1, the wireless communication system according to the embodiment of the present disclosure includes a plurality of base stations 200, a plurality of sensor terminals 100, and an application server 300.
 基地局200は、センサ端末100と無線通信を行う機能、および、アプリケーションサーバ300と有線通信を行う機能を有する。例えば、基地局200は、セル内に位置するセンサ端末100と無線通信を行う。図1に示した例では、基地局200Aは、基地局200Aのセル内に位置するセンサ端末100A、100Bおよび100Cと無線通信を行い、基地局200Bは、基地局200Bのセル内に位置するセンサ端末100D、100E、100Fおよび100Gと無線通信を行う。特に、本実施形態による基地局200は、センサ端末100からセンサデータを受信し、当該センサデータをアプリケーションサーバ300に送信する。 The base station 200 has a function of performing wireless communication with the sensor terminal 100 and a function of performing wired communication with the application server 300. For example, the base station 200 performs wireless communication with the sensor terminal 100 located in the cell. In the example illustrated in FIG. 1, the base station 200A performs wireless communication with the sensor terminals 100A, 100B, and 100C that are located in the cell of the base station 200A, and the base station 200B is a sensor that is located in the cell of the base station 200B. Wireless communication is performed with terminals 100D, 100E, 100F, and 100G. In particular, the base station 200 according to the present embodiment receives sensor data from the sensor terminal 100 and transmits the sensor data to the application server 300.
 センサ端末100は、センサ機能、および基地局200と無線通信を行う機能を有する。例えば、センサ機能は、加速度センサ、ジャイロセンサ、温度センサ、気圧センサ、音圧センサ、脈拍センサまたはGPS(Global Positioning System)などの、多様なセンサにより実現され得る。センサ端末100は、センサ機能により取得したセンサデータを基地局200に送信する。 The sensor terminal 100 has a sensor function and a function of performing wireless communication with the base station 200. For example, the sensor function can be realized by various sensors such as an acceleration sensor, a gyro sensor, a temperature sensor, an atmospheric pressure sensor, a sound pressure sensor, a pulse sensor, or a GPS (Global Positioning System). The sensor terminal 100 transmits the sensor data acquired by the sensor function to the base station 200.
 アプリケーションサーバ300は、センサ端末100により得られたセンサデータを基地局200から受信し、受信したセンサデータを用いたサービスを提供する。センサデータを用いたサービスは、興味対象の位置を確認するサービス、および興味対象の行動を管理するサービスなど、多岐に渡る。興味対象の位置を確認するサービスに関しては、例えば、GPS機能を有するセンサ端末100を高齢者や子供が装着し、アプリケーションサーバ300が基地局200を介してセンサ端末100から位置情報を取得しておくことにより、家族や行政に高齢者や子供の位置を提供することが可能である。興味対象の行動を管理するサービスに関しては、例えば、加速度センサを有するセンサ端末100を牛や豚などの家畜に装着させ、アプリケーションサーバ300が基地局200を介してセンサ端末100から家畜の動きに関する情報を取得することにより、放牧地での家畜の行動管理を行うことが可能である。 The application server 300 receives the sensor data obtained by the sensor terminal 100 from the base station 200 and provides a service using the received sensor data. There are a wide variety of services using sensor data, such as a service for confirming the position of an object of interest and a service for managing the behavior of an object of interest. Regarding the service for confirming the position of interest, for example, an elderly person or a child wears the sensor terminal 100 having a GPS function, and the application server 300 acquires position information from the sensor terminal 100 via the base station 200. Thus, it is possible to provide the positions of the elderly and children to the family and the administration. Regarding the service for managing the behavior of interest, for example, the sensor terminal 100 having an acceleration sensor is attached to livestock such as cows and pigs, and the application server 300 receives information on the movement of livestock from the sensor terminal 100 via the base station 200. It is possible to manage the behavior of livestock on grazing land.
 なお、本実施形態においては無線装置の一例としてセンサ機能を有するセンサ端末100を説明するが、センサ機能を有さない無線装置にも本実施形態を適用可能である。例えば、無線装置は、外部装置からデータを供給され、供給されたデータを基地局200に送信してもよい。外部装置が自動販売機である場合、無線装置は、自動販売機から売上げデータが供給され、売上げデータを基地局200に送信してもよい。なお、本実施形態においては通信装置の一例として基地局200を説明する。 In the present embodiment, the sensor terminal 100 having a sensor function will be described as an example of a wireless device. However, the present embodiment can also be applied to a wireless device having no sensor function. For example, the wireless device may be supplied with data from an external device and transmit the supplied data to the base station 200. When the external device is a vending machine, the wireless device may be supplied with sales data from the vending machine and transmit the sales data to the base station 200. In the present embodiment, the base station 200 will be described as an example of a communication device.
 (1-2.無線通信の概要)
 以上、本開示の実施形態による無線通信システムの構成を説明した。続いて、無線通信システムにおける基地局200とセンサ端末100との無線通信の概要を説明する。
(1-2. Overview of wireless communication)
The configuration of the wireless communication system according to the embodiment of the present disclosure has been described above. Next, an outline of wireless communication between the base station 200 and the sensor terminal 100 in the wireless communication system will be described.
 -通信リソース
 基地局200とセンサ端末100は、時間軸上で区分された各通信リソースの開始タイミングを共有する。当該共有は、例えば、基地局200が時間同期のための基準信号を送信し、センサ端末100が当該基準信号を受信することで実現され得る。しかし、センサ端末100が当該基準信号の受信を継続的に行うと、相応の電力が消費される。このため、基地局200とセンサ端末100は、各々が管理する絶対時刻に基づいて各通信リソースの開始タイミングを共有してもよい。センサ端末100は、例えば、上記絶対時刻をGPSの受信処理により取得可能である。
-Communication resource The base station 200 and the sensor terminal 100 share the start timing of each communication resource divided on the time axis. The sharing can be realized, for example, when the base station 200 transmits a reference signal for time synchronization and the sensor terminal 100 receives the reference signal. However, when the sensor terminal 100 continuously receives the reference signal, corresponding power is consumed. For this reason, the base station 200 and the sensor terminal 100 may share the start timing of each communication resource based on the absolute time managed by each. For example, the sensor terminal 100 can acquire the absolute time by GPS reception processing.
 -長距離伝送
 無線通信システムをより低コストで実現するために、1つの基地局200がカバーするセルエリアを広くすること、すなわち、長距離伝送が有効である。長距離伝送では、無線通信システムを構成する基地局200の数を低減することが可能である。
-Long distance transmission In order to realize a wireless communication system at a lower cost, it is effective to widen a cell area covered by one base station 200, that is, long distance transmission. In long-distance transmission, the number of base stations 200 constituting the wireless communication system can be reduced.
 また、利用可能な最大送信電力が制限されるようにセンサ端末100のハードウェアを設計することにより、センサ端末100のコストを下げることも可能である。しかし、送信電力が制限されると、通信可能な距離も制限される。この点に関し、センサ端末100が低送信電力で長距離伝送を行う技術として、例えばセルラー通信で採用されているH-ARQ(Hybrid-ARQ)が存在する。H-ARQは、送信側が同一フレームを繰り返し送信し、受信側が複数のフレームを信号処理により合成することで、受信感度を向上するための技術である。 Also, it is possible to reduce the cost of the sensor terminal 100 by designing the hardware of the sensor terminal 100 so that the maximum available transmission power is limited. However, when the transmission power is limited, the communicable distance is also limited. In this regard, there is H-ARQ (Hybrid-ARQ) employed in cellular communication, for example, as a technique in which the sensor terminal 100 performs long-distance transmission with low transmission power. H-ARQ is a technique for improving reception sensitivity by repeatedly transmitting the same frame on the transmission side and combining a plurality of frames by signal processing on the reception side.
 より具体的に説明すると、H-ARQに従うセンサ端末100は、基地局200から受信確認応答(以降、「ACK」と呼称する)フレームが受信されるまで、あるいは、送信回数が上限に達するまで、フレームを繰り返し送信する。基地局200は、新たなフレームが受信される度にフレーム合成を行い、復調に成功した場合にはセンサ端末100にACKフレームを送信する。本書においては、このH-ARQに従う無線通信システムについて説明するが、これは一例であり、本開示は様々な通信方式に適用され得る。 More specifically, the sensor terminal 100 conforming to H-ARQ until a reception confirmation response (hereinafter referred to as “ACK”) frame is received from the base station 200 or until the number of transmissions reaches an upper limit. Send the frame repeatedly. The base station 200 performs frame synthesis every time a new frame is received, and transmits an ACK frame to the sensor terminal 100 when demodulation is successful. In this document, a wireless communication system according to the H-ARQ will be described. However, this is an example, and the present disclosure can be applied to various communication schemes.
 -フレーム構成
 図2は、センサ端末100が基地局200へ送信するフレームを示す説明図である。図2に示すように、センサ端末100が送信するフレームは、プリアンブル10と、SFD(Sync Frame Detector)11と、端末ID12と、データ13と、CRC(Cyclic Redundancy Check)14と、パリティビット15と、を含む。
Frame Configuration FIG. 2 is an explanatory diagram showing frames that the sensor terminal 100 transmits to the base station 200. As shown in FIG. 2, the frame transmitted by the sensor terminal 100 includes a preamble 10, an SFD (Sync Frame Detector) 11, a terminal ID 12, data 13, a CRC (Cyclic Redundancy Check) 14, a parity bit 15, and the like. ,including.
 プリアンブル10は、基地局200においてフレームの検出のために用いられる信号パターンである。SFD11は、フレーム内でのペイロード(端末ID12~パリティビット15)の開始位置を示す信号パターンである。基地局200は、プリアンブル10が検出されたフレームから当該SFD11を検出することにより、以降がペイロードであることを認識する。 The preamble 10 is a signal pattern used for frame detection in the base station 200. The SFD 11 is a signal pattern indicating the start position of the payload (terminal ID 12 to parity bit 15) in the frame. The base station 200 detects the SFD 11 from the frame in which the preamble 10 is detected, thereby recognizing that the subsequent is the payload.
 端末ID12は、フレームを送信するセンサ端末100のIDである。当該IDは、例えばセンサ端末100の固有の番号であってもよい。データ13は、アプリケーションサーバ300における利用のためのデータであり、加速度情報や位置情報などのセンサデータが当該データ13に含まれ得る。CRC14は、当該フレームの受信が成功したか否かの判断に用いられる。パリティビット15は、端末ID12、データ13およびCRC14に応じて生成される冗長ビットであり、当該パリティビット15の利用により、基地局200でのフレームの受信成功率が向上する。 The terminal ID 12 is an ID of the sensor terminal 100 that transmits a frame. The ID may be a unique number of the sensor terminal 100, for example. The data 13 is data for use in the application server 300, and sensor data such as acceleration information and position information can be included in the data 13. The CRC 14 is used to determine whether or not reception of the frame has been successful. The parity bit 15 is a redundant bit generated according to the terminal ID 12, the data 13, and the CRC 14, and the use success of the parity bit 15 improves the frame reception success rate at the base station 200.
 続いて、図3は、基地局200がセンサ端末100へ送信するACKフレームを示す図である。まず、所定の符号系列20に対して巡回シフトが行われることによって符号系列21が生成され、当該符号系列21がプリアンブルとして用いられる。そして、ACKフレームは、当該プリアンブルのみによって構成され、ペイロードを含まない。巡回シフトとは、フレームを構成する符号を一方向(本実施形態においては、フレームの先頭から末尾に向かう方向)にずらす処理である。図3に示すように、符号系列20に対して巡回シフトが行われることによって、符号系列20の先頭である符号aは、符号系列21において、末尾方向へシフトしている。また、符号系列20の末尾である符号bは、符号系列21において、先頭へ巡回し、さらに、末尾方向へシフトしている。 Subsequently, FIG. 3 is a diagram illustrating an ACK frame transmitted from the base station 200 to the sensor terminal 100. First, a code sequence 21 is generated by performing cyclic shift on a predetermined code sequence 20, and the code sequence 21 is used as a preamble. The ACK frame is composed only of the preamble and does not include a payload. The cyclic shift is a process of shifting the code constituting the frame in one direction (in the present embodiment, the direction from the beginning to the end of the frame). As shown in FIG. 3, by performing a cyclic shift on the code sequence 20, the code a that is the head of the code sequence 20 is shifted toward the end in the code sequence 21. In addition, the code b, which is the end of the code sequence 20, circulates to the top in the code sequence 21, and further shifts toward the end.
 本実施形態においては、巡回シフト量は、ACKフレームの宛先であるセンサ端末100の識別情報である端末IDの一部によって決定される。一例として図3では、巡回シフト量は、端末IDの下位5ビットの10進数に相当する値(0~31。以降、便宜的に「端末ID」と呼称する)に、変数Dを乗算して得られる値である。これにより、基地局200は、ACKフレームの宛先を巡回シフト量で示すことができる。例えば図3では、基地局200は、32台のセンサ端末100を巡回シフト量で区別することができる。ここで、変数Dは、Dビットの巡回シフトによって生じる時間軸上の変移量が無線通信システムにおける最大伝搬遅延量よりも大きくなるように設定される値である。これによる効果については後述する。 In this embodiment, the cyclic shift amount is determined by a part of the terminal ID that is identification information of the sensor terminal 100 that is the destination of the ACK frame. As an example, in FIG. 3, the cyclic shift amount is obtained by multiplying a value corresponding to the decimal number of the lower 5 bits of the terminal ID (0 to 31; hereinafter referred to as “terminal ID” for convenience) by a variable D. This is the value obtained. Thereby, the base station 200 can indicate the destination of the ACK frame by the cyclic shift amount. For example, in FIG. 3, the base station 200 can distinguish 32 sensor terminals 100 by the cyclic shift amount. Here, the variable D is a value set so that the amount of shift on the time axis caused by the D-bit cyclic shift is larger than the maximum propagation delay amount in the wireless communication system. The effect of this will be described later.
 ACKフレームに用いられる符号系列は、自己相関および相互相関が低い、またはゼロである符号系列であれば任意である。例えばM系列、または、CAZAC(Constant Amplitude Zero Auto-Correlation)系列の一種であるZadoff-Chu系列等が使用されてもよい。 The code sequence used in the ACK frame is arbitrary as long as the code sequence has low or zero autocorrelation and cross-correlation. For example, an M series or a Zadoff-Chu series that is a type of CAZAC (Constant Amplitude Zero Auto-Correlation) series may be used.
 -ACKフレームの受信方法
 続いて、図4および図5を参照して、センサ端末100が、基地局200によって送信されたACKフレームを受信する方法について説明する。図4および図5は、センサ端末100によるACKフレームの検出を示す図である。
-Method for Receiving ACK Frame Next, a method for the sensor terminal 100 to receive an ACK frame transmitted by the base station 200 will be described with reference to FIG. 4 and FIG. 4 and 5 are diagrams illustrating detection of an ACK frame by the sensor terminal 100. FIG.
 上述のとおり、基地局200は、ACKフレームの宛先であるセンサ端末100の端末IDに基づいて巡回シフトを行うことによってACKフレームを生成する。図4に示した例では、端末IDが1であるセンサ端末100A宛のACKフレーム(以降、「ACK_A」と呼称する)は、Dビットの巡回シフトが行われており、端末IDが3であるセンサ端末100B宛のACKフレーム(以降、「ACK_B」と呼称する)は、3Dビットの巡回シフトが行われている。 As described above, the base station 200 generates an ACK frame by performing a cyclic shift based on the terminal ID of the sensor terminal 100 that is the destination of the ACK frame. In the example illustrated in FIG. 4, an ACK frame (hereinafter referred to as “ACK_A”) addressed to the sensor terminal 100 </ b> A whose terminal ID is 1 is D-bit cyclically shifted and the terminal ID is 3. An ACK frame addressed to the sensor terminal 100B (hereinafter referred to as “ACK_B”) is cyclically shifted by 3D bits.
 センサ端末100は、ACKフレームが含まれる無線信号をアンテナにより電気信号に変換し、当該電気信号にアナログ処理およびダウンコンバージョンを施すことにより、ベースバンドの受信信号を出力する。そして、センサ端末100は、参照信号と受信信号との相関を求めることによってACKフレームを検出する。ここで、参照信号とは、基地局200が用いた符号系列と同一の符号系列であり、巡回シフトが行われていないプリアンブルである。 The sensor terminal 100 outputs a baseband received signal by converting a radio signal including an ACK frame into an electric signal by an antenna and performing analog processing and down conversion on the electric signal. Then, the sensor terminal 100 detects the ACK frame by obtaining the correlation between the reference signal and the received signal. Here, the reference signal is a preamble that is the same code sequence as that used by the base station 200 and has not been cyclically shifted.
 受信信号と参照信号との相関の算出方法について、センサ端末100は、式(1)に示すように、受信信号の離散フーリエ変換と、参照信号の複素共役の離散フーリエ変換とをサンプル毎に乗算し、乗算結果としてCORR[k]を算出する。式(1)におけるRX[k]は、受信信号が離散フーリエ変換された結果であり、REF[k]は、参照信号の複素共役が離散フーリエ変換された結果であり、Lは離散フーリエ変換対象のサンプル数を表している。
Figure JPOXMLDOC01-appb-M000001
As for the calculation method of the correlation between the received signal and the reference signal, the sensor terminal 100 multiplies the discrete Fourier transform of the received signal and the complex conjugate discrete Fourier transform of the reference signal for each sample as shown in Equation (1). Then, CORR [k] is calculated as the multiplication result. RX [k] in equation (1) is the result of the discrete Fourier transform of the received signal, REF * [k] is the result of the discrete Fourier transform of the complex conjugate of the reference signal, and L is the discrete Fourier transform It represents the number of samples of interest.
Figure JPOXMLDOC01-appb-M000001
 そして、センサ端末100は、式(2)に示すように、乗算結果であるCORR[k]に対して離散逆フーリエ変換を行い、その結果としてcorr[n]を算出する。複素信号を電力信号に変換することで相関値を算出し、相関値のピークを探索する。式(1)と同様に、Lは離散フーリエ変換対象のサンプル数を表している。
Figure JPOXMLDOC01-appb-M000002
Then, as shown in Expression (2), the sensor terminal 100 performs a discrete inverse Fourier transform on CORR [k] that is a multiplication result, and calculates corr [n] as a result. A correlation value is calculated by converting a complex signal into a power signal, and a peak of the correlation value is searched. Similar to Equation (1), L represents the number of samples subject to discrete Fourier transform.
Figure JPOXMLDOC01-appb-M000002
 また、センサ端末100は、参照信号を周波数軸上でシフトさせながら受信信号との相関値を算出することで、相関値のピークを探索してもよい。 Further, the sensor terminal 100 may search for the peak of the correlation value by calculating the correlation value with the received signal while shifting the reference signal on the frequency axis.
 図5には、センサ端末100によって検出された、ACK_AおよびACK_Bの相関値のピークが示されている。巡回シフトによって、ACKフレームの先頭がセンサ端末100に受信されたタイミングから、相関値のピークが検出されるタイミングまでに時間差が発生する。例えば、図5のACK_Aについては、ACK_Aの先頭がセンサ端末100Aに受信されたタイミングから、相関値のピークが検出されるタイミングまでに、Dビットの巡回シフトによって生じる時間軸上の変移量程の時間差(以降、便宜的に「~Dの時間差」と呼称する場合がある)が発生している。ACK_Bについては、ACK_Bの先頭がセンサ端末100Aに受信されたタイミングから、相関値のピークが検出されるタイミングまでに、3Dの時間差が発生している。 FIG. 5 shows the correlation value peaks of ACK_A and ACK_B detected by the sensor terminal 100. Due to the cyclic shift, a time difference occurs from the timing when the head of the ACK frame is received by the sensor terminal 100 to the timing when the peak of the correlation value is detected. For example, for ACK_A in FIG. 5, the time difference of the shift amount on the time axis caused by the D-bit cyclic shift from the timing when the head of ACK_A is received by the sensor terminal 100 </ b> A to the timing when the peak of the correlation value is detected. (Hereinafter, sometimes referred to as “time difference of D” for convenience) has occurred. As for ACK_B, a 3D time difference occurs from the timing when the head of ACK_B is received by the sensor terminal 100A to the timing when the peak of the correlation value is detected.
 センサ端末100Aは、自端末の端末IDを把握しているため、自端末宛のACKフレームに対応する巡回シフト量を特定できる。そして、センサ端末100Aは、特定した巡回シフト量に対応する時間(以降、「検出窓」と呼称する)に、相関値のピークが含まれていることにより、自端末宛にACKフレームが送信されたと判断する。センサ端末100Bも同様の方法で、自端末宛にACKフレームが送信されたと判断する。図5に示した例では、センサ端末100Aは、時間軸上のD~2Dを検出窓とし、センサ端末100Bは、時間軸上の3D~4Dを検出窓としている。 Since the sensor terminal 100A knows the terminal ID of its own terminal, it can specify the cyclic shift amount corresponding to the ACK frame addressed to its own terminal. Then, the sensor terminal 100A transmits an ACK frame to its own terminal because the correlation value peak is included in the time corresponding to the identified cyclic shift amount (hereinafter referred to as “detection window”). Judge that The sensor terminal 100B determines that the ACK frame is transmitted to the own terminal in the same manner. In the example shown in FIG. 5, the sensor terminal 100A uses D to 2D on the time axis as detection windows, and the sensor terminal 100B uses 3D to 4D on the time axis as detection windows.
 また、上述のとおり、変数Dは、Dビットの巡回シフトによって生じる時間軸上の変移量が最大伝搬遅延量よりも大きくなるように設定される。これにより、相関値のピークが、伝搬遅延の影響により、ACKフレームの宛先であるセンサ端末100の検出窓外に発生するという事態を防ぐことができる。以上により、基地局200は、巡回シフトによってACKフレームの宛先を指定することができ、センサ端末100は、自端末宛のACKフレームを特定することができる。 Also, as described above, the variable D is set so that the amount of shift on the time axis caused by the cyclic shift of D bits is larger than the maximum propagation delay amount. Thereby, it is possible to prevent a situation in which the peak of the correlation value occurs outside the detection window of the sensor terminal 100 that is the destination of the ACK frame due to the influence of the propagation delay. As described above, the base station 200 can specify the destination of the ACK frame by cyclic shift, and the sensor terminal 100 can specify the ACK frame addressed to the terminal itself.
 ここで、センサ端末100は、自端末の端末IDに基づいて、予め参照信号を巡回シフトし、巡回シフト後の参照信号を用いて受信信号との相関を求めてもよい。この場合、ACKの先頭がセンサ端末100Aに受信されたタイミングから、相関値のピークが検出されるタイミングまでに、巡回シフトを起因とした時間差が発生しない。例えば、図5のACK_Aについては、巡回シフトを起因とするDの時間差がなくなる。 Here, the sensor terminal 100 may cyclically shift the reference signal in advance based on the terminal ID of the own terminal, and obtain the correlation with the received signal using the reference signal after the cyclic shift. In this case, a time difference due to the cyclic shift does not occur between the timing when the head of the ACK is received by the sensor terminal 100A and the timing when the peak of the correlation value is detected. For example, for ACK_A in FIG. 5, there is no time difference of D due to the cyclic shift.
 また、巡回シフトは、センサ端末100を識別できる何らかの情報であれば、端末ID以外の情報に基づいて行われることも可能である。例えば、センサ端末100の発振器によって生成される搬送波の周波数には、発振器の個体差に起因する周波数誤差が含まれる。基地局200は、この周波数誤差に基づいて巡回シフトを行ってもよい。センサ端末100は、自端末の周波数誤差を把握しているため、検出窓を特定することができる。 In addition, the cyclic shift can be performed based on information other than the terminal ID as long as it is any information that can identify the sensor terminal 100. For example, the frequency of the carrier wave generated by the oscillator of the sensor terminal 100 includes a frequency error due to individual differences between the oscillators. Base station 200 may perform cyclic shift based on this frequency error. Since the sensor terminal 100 grasps the frequency error of its own terminal, it can specify the detection window.
 また、基地局200は、巡回シフト以外の方法によってACKフレームの宛先を指定してもよい。例えば、基地局200は、ACKフレームの生成に利用される符号系列の種類によって、宛先を指定してもよい。より具体的に説明すると、基地局200は、宛先であるセンサ端末100毎に異なる符号系列を用いてACKフレームを生成する。センサ端末100は、自端末用の符号系列を把握しており、当該符号系列を元に生成された参照信号と、受信信号との相関を求めることで、ACKフレームを検出することができる。 Further, the base station 200 may specify the destination of the ACK frame by a method other than the cyclic shift. For example, the base station 200 may specify the destination according to the type of code sequence used for generating the ACK frame. More specifically, the base station 200 generates an ACK frame using a different code sequence for each destination sensor terminal 100. The sensor terminal 100 knows the code sequence for the terminal itself, and can detect the ACK frame by obtaining the correlation between the reference signal generated based on the code sequence and the received signal.
 (1-3.背景)
 無線センサネットワークにおいては、センサ端末100の消費電力を低下させることが重要である。多数のセンサ端末100の各々に対して電池交換または充電を行うことによって大きな作業負荷が発生し、センサ端末100の設置場所によっては、電池交換等を行うことが難しい場合も起こり得るからである。
(1-3. Background)
In a wireless sensor network, it is important to reduce the power consumption of the sensor terminal 100. This is because a large work load is generated by performing battery replacement or charging for each of a large number of sensor terminals 100, and depending on the installation location of the sensor terminal 100, it may be difficult to perform battery replacement or the like.
 ここで、センサ端末100の消費電力を低下させるためには、間欠受信という手法が有効である。間欠受信とは、受信待機が常時行われるのではなく、必要な期間にだけ行われることによって、センサ端末100の低消費電力化を実現する手法である。 Here, in order to reduce the power consumption of the sensor terminal 100, the technique of intermittent reception is effective. The intermittent reception is a technique for realizing a reduction in power consumption of the sensor terminal 100 by not performing reception standby constantly but only during a necessary period.
 無線センサネットワークにおいて、センサ端末100が間欠受信を行うためには、センサ端末100は、何らかの方法で信号が送信されるタイミングを把握する必要がある。例えば、基地局200が、信号の送信タイミングが含まれる制御情報をセンサ端末100に送信しておくことによって、センサ端末100が送信タイミングを把握する方法が考えられる。 In the wireless sensor network, in order for the sensor terminal 100 to perform intermittent reception, the sensor terminal 100 needs to grasp the timing at which a signal is transmitted by some method. For example, a method in which the sensor terminal 100 grasps the transmission timing by the base station 200 transmitting control information including the signal transmission timing to the sensor terminal 100 is conceivable.
 しかし、この方法は、公衆網規格である3GPP HSDPA(Third Generation Partnership Project High Speed Downlink Packet Access)またはLTE(Long Term Evolution)等のシステムを想定しているため、下り回線の無線フレームが十分に長く、ペイロードに多くの制御情報を含めることができることを前提にしている。 However, since this method assumes a system such as 3GPP HSDPA (Third Generation Partnership Project High Speed Speed Packet Access) or LTE (Long Term Evolution), which is a public network standard, is sufficiently long in the downlink. It is assumed that a lot of control information can be included in the payload.
 一方、無線センサネットワークにおいて、センサ端末100が長い無線フレームを処理することは、センサ端末100の消費電力が増加するため、好ましくない。また、無線資源が限られた環境では、制御情報の伝送に無線資源が割かれることは好ましくない。 On the other hand, in the wireless sensor network, it is not preferable for the sensor terminal 100 to process a long wireless frame because the power consumption of the sensor terminal 100 increases. Further, in an environment where radio resources are limited, it is not preferable that radio resources be devoted to transmission of control information.
 そこで、本件の開示者は、上記事情に着眼して本開示の実施形態を創作するに至った。本開示の実施形態によれば、センサ端末100は、ACKフレームを受信したタイミングを起点にして、その他のデータフレーム(以降、「DLデータフレーム」と呼称する)の受信のための受信待機期間を設定し、この受信待機期間内でDLデータフレームを受信する。一方、基地局200は、ACKフレームを送信したタイミングを起点にして、DLデータフレームの送信タイミングを設定し、当該送信タイミングにDLデータフレームを送信する。このように、ACKフレームに基づいてDLデータフレームの送受信が制御されることにより、より効率的な無線通信を実現することが可能である。以下、このような本開示の実施形態の構成および動作を順次詳細に説明する。 Accordingly, the present disclosure person has created the embodiment of the present disclosure by paying attention to the above circumstances. According to the embodiment of the present disclosure, the sensor terminal 100 sets the reception waiting period for receiving other data frames (hereinafter referred to as “DL data frames”) from the timing of receiving the ACK frame as a starting point. Set and receive the DL data frame within this reception waiting period. On the other hand, base station 200 sets the transmission timing of the DL data frame starting from the timing at which the ACK frame is transmitted, and transmits the DL data frame at the transmission timing. As described above, transmission and reception of the DL data frame is controlled based on the ACK frame, so that more efficient wireless communication can be realized. Hereinafter, the configuration and operation of the embodiment of the present disclosure will be sequentially described in detail.
  <2.各装置の構成>
 上記では、無線通信システムの概要について説明した。続いて、図6および図7を参照して、無線通信システムを構成する各装置の構成について説明する。
<2. Configuration of each device>
The outline of the wireless communication system has been described above. Subsequently, with reference to FIG. 6 and FIG. 7, the configuration of each device constituting the wireless communication system will be described.
 (2-1.センサ端末の構成)
 まず、図6を参照しながらセンサ端末100の構成について説明する。図6は、本開示の実施形態に係るセンサ端末100の機能構成を示す図である。センサ端末100は、通信部110と、情報提供部120と、検出部130と、信号処理部140と、記憶部150と、制御部160と、を備える。通信部110は、送信部111と、受信部112と、を備える。
(2-1. Configuration of sensor terminal)
First, the configuration of the sensor terminal 100 will be described with reference to FIG. FIG. 6 is a diagram illustrating a functional configuration of the sensor terminal 100 according to the embodiment of the present disclosure. The sensor terminal 100 includes a communication unit 110, an information providing unit 120, a detection unit 130, a signal processing unit 140, a storage unit 150, and a control unit 160. The communication unit 110 includes a transmission unit 111 and a reception unit 112.
 (送信部)
 送信部111は、基地局200への無線信号の送信を行う。より具体的に説明すると、送信部111は、制御部160から提供されるベースバンドの送信信号をアップコンバージョンし、アップコンバージョンにより得られた電気信号をアンテナにより無線信号に変換して送信する。
(Transmitter)
The transmission unit 111 transmits a radio signal to the base station 200. More specifically, the transmission unit 111 up-converts a baseband transmission signal provided from the control unit 160, converts an electric signal obtained by the up-conversion into a radio signal by an antenna, and transmits the radio signal.
 (情報提供部)
 情報提供部120は、1または2以上のセンサからなり、基地局200へ送信するためのデータを提供する。より具体的に説明すると、情報提供部120は、位置センサ、加速度センサ、ジャイロセンサ、温度センサ、気圧センサ、音圧センサおよび脈拍センサなどのセンサを有し、センサデータの値が変更したタイミング、または周期的なタイミングでセンサデータを制御部160へ提供する。
(Information provision department)
The information providing unit 120 includes one or more sensors and provides data for transmission to the base station 200. More specifically, the information providing unit 120 includes sensors such as a position sensor, an acceleration sensor, a gyro sensor, a temperature sensor, an atmospheric pressure sensor, a sound pressure sensor, and a pulse sensor, and the timing at which the value of the sensor data is changed, Alternatively, the sensor data is provided to the control unit 160 at a periodic timing.
 (受信部)
 受信部112は、基地局200から送信される無線信号の受信を行う。より具体的に説明すると、受信部112は、基地局200から送信された無線信号をアンテナにより電気信号に変換し、当該電気信号にアナログ処理およびダウンコンバージョンを施すことにより、ベースバンドの受信信号を出力する。受信部112は、この受信信号を検出部130へ提供する。
(Receiver)
The receiving unit 112 receives a radio signal transmitted from the base station 200. More specifically, the receiving unit 112 converts a radio signal transmitted from the base station 200 into an electric signal by an antenna, performs analog processing and down-conversion on the electric signal, and thereby converts a baseband received signal. Output. The reception unit 112 provides this reception signal to the detection unit 130.
 受信部112は、基地局200からACKフレーム、または、DLデータフレームを受信する。ACKフレームの受信方法については、上述のとおりである。一方、DLデータフレームの受信方法については、受信部112は、ACKフレームが受信されたタイミングを起点にして設定される受信待機期間に受信待機を行うことで、間欠受信を実現する。 The receiving unit 112 receives an ACK frame or a DL data frame from the base station 200. The method for receiving the ACK frame is as described above. On the other hand, with respect to the DL data frame reception method, the reception unit 112 realizes intermittent reception by performing reception standby during a reception standby period that is set based on the timing at which the ACK frame is received.
 より具体的に説明すると、センサ端末100は、自端末の端末IDを把握しているため、ACKフレームの巡回シフト量を把握できる。したがって、センサ端末100は、ACKフレームの相関値のピークが観測されたタイミングから、巡回シフトによる時間差を逆算することによって、ACKフレームの先頭がセンサ端末100に到達したタイミングを算出することができる。そして、センサ端末100は、ACKフレームの先頭がセンサ端末100に受信されたタイミングから、所定の時間が経過した後の期間を受信待機期間として設定し、この受信待機期間にDLデータフレームの受信待機を行う。例えば、センサ端末100は、ACKフレームの先頭がセンサ端末100に受信されたタイミングから、100ミリ秒後の期間を受信待機期間として設定してもよい。 More specifically, since the sensor terminal 100 knows the terminal ID of its own terminal, it can grasp the cyclic shift amount of the ACK frame. Therefore, the sensor terminal 100 can calculate the timing at which the head of the ACK frame reaches the sensor terminal 100 by back-calculating the time difference due to the cyclic shift from the timing when the peak of the correlation value of the ACK frame is observed. Then, the sensor terminal 100 sets a period after a predetermined time has elapsed from the timing at which the head of the ACK frame is received by the sensor terminal 100 as a reception standby period, and receives a DL data frame during this reception standby period. I do. For example, the sensor terminal 100 may set a period 100 milliseconds after the timing when the head of the ACK frame is received by the sensor terminal 100 as the reception standby period.
 これにより、基地局200が、受信待機期間を共有するための制御情報をセンサ端末100へ送信する必要がない。また、ACKフレームがペイロードを含まないことにより、無線資源を節約することができ、ACKフレームのフレーム長が短いため、センサ端末100がACKフレームを処理するための消費電力を低下させることができる。 This eliminates the need for the base station 200 to transmit control information for sharing the reception standby period to the sensor terminal 100. Further, since the ACK frame does not include a payload, radio resources can be saved, and since the frame length of the ACK frame is short, power consumption for the sensor terminal 100 to process the ACK frame can be reduced.
 (検出部)
 検出部130は、受信部112から提供される受信信号から、上述の方法により、ACKフレームを検出する。また、DLデータフレームの検出方法も、ACKフレームの検出方法と同様である。DLデータフレームが検出された時には、検出部130は、相関値のピークが検出されたタイミングに基づいてDLデータフレームからペイロードを切り出し、このペイロードを信号処理部140へ提供する。
(Detection unit)
The detection unit 130 detects an ACK frame from the reception signal provided from the reception unit 112 by the method described above. The DL data frame detection method is the same as the ACK frame detection method. When a DL data frame is detected, the detection unit 130 extracts a payload from the DL data frame based on the timing at which the correlation value peak is detected, and provides the payload to the signal processing unit 140.
 (信号処理部)
 信号処理部140は、検出部130から提供されたペイロードに対して復調および誤り訂正復号を行う。復調が成功したか否かは、無線フレームに含まれるCRCを用いて確認される。
(Signal processing part)
The signal processing unit 140 performs demodulation and error correction decoding on the payload provided from the detection unit 130. Whether or not the demodulation is successful is confirmed using a CRC included in the radio frame.
 (記憶部)
 記憶部150は、信号処理部140によって提供された復調後のデータを記憶する。
(Memory part)
The storage unit 150 stores the demodulated data provided by the signal processing unit 140.
 (制御部)
 制御部160は、センサ端末100の送受信を制御する。より具体的に説明すると、送信に関しては、制御部160は、情報提供部120から提供されるセンサデータを用いて、送信用のベースバンド信号を生成し、このベースバンド信号を送信部111へ提供する。また、自端末宛のACKフレームが検出された場合、制御部160は、ベースバンド信号の生成を停止することで送信処理を停止する。また、受信に関しては、制御部160は、ACKフレームが受信されたタイミングを起点にして受信待機期間を設定することで、間欠受信を実現する。
(Control part)
The control unit 160 controls transmission / reception of the sensor terminal 100. More specifically, regarding the transmission, the control unit 160 generates a baseband signal for transmission using the sensor data provided from the information providing unit 120 and provides the baseband signal to the transmission unit 111. To do. Further, when an ACK frame addressed to the terminal itself is detected, the control unit 160 stops the transmission process by stopping the generation of the baseband signal. Regarding reception, the control unit 160 realizes intermittent reception by setting a reception standby period starting from the timing at which the ACK frame is received.
 (2-2.基地局の構成)
 以上では、センサ端末100の構成について説明した。続いて、図7を参照しながら基地局200の構成について説明する。図7は、本開示の実施形態に係る基地局200の機能構成を示す図である。基地局200は、通信部210と、検出部220と、信号処理部230と、記憶部240と、制御部250と、有線通信部260と、を備える。通信部210は、送信部211と、受信部212と、を備える。
(2-2. Configuration of base station)
The configuration of the sensor terminal 100 has been described above. Next, the configuration of the base station 200 will be described with reference to FIG. FIG. 7 is a diagram illustrating a functional configuration of the base station 200 according to the embodiment of the present disclosure. The base station 200 includes a communication unit 210, a detection unit 220, a signal processing unit 230, a storage unit 240, a control unit 250, and a wired communication unit 260. The communication unit 210 includes a transmission unit 211 and a reception unit 212.
 (受信部)
 受信部212は、センサ端末100から送信される無線信号の受信を行う。より具体的に説明すると、受信部212は、基地局200から送信された無線信号をアンテナにより電気信号に変換し、当該電気信号にアナログ処理およびダウンコンバージョンを施すことにより、ベースバンドの受信信号を出力する。受信部212は、この受信信号を検出部220へ提供する。
(Receiver)
The receiving unit 212 receives a radio signal transmitted from the sensor terminal 100. More specifically, the receiving unit 212 converts a radio signal transmitted from the base station 200 into an electric signal by an antenna, performs analog processing and down-conversion on the electric signal, and thereby converts a baseband received signal. Output. The reception unit 212 provides this reception signal to the detection unit 220.
 (検出部)
 検出部220は、受信部212から提供される受信信号から、センサ端末100によって取得されたセンサデータが含まれるデータフレーム(以降、「ULデータフレーム」と呼称する)を検出する。ULデータフレームの検出方法は、センサ端末100の検出部130による検出方法と同様である。検出部220は、ULデータフレームからペイロードを切り出し、このペイロードを信号処理部230へ提供する。
(Detection unit)
The detection unit 220 detects a data frame including sensor data acquired by the sensor terminal 100 (hereinafter referred to as “UL data frame”) from the reception signal provided from the reception unit 212. The detection method of the UL data frame is the same as the detection method by the detection unit 130 of the sensor terminal 100. The detection unit 220 cuts out the payload from the UL data frame and provides this payload to the signal processing unit 230.
 (信号処理部)
 信号処理部230は、復調部として機能し、検出部220によって提供されたペイロードに対して復調および誤り訂正復号を行う。本実施形態においては、センサ端末100が同一のセンサデータに対応する無線信号を繰り返し送信するので、信号処理部230は、同一のセンサ端末100から繰り返し送信された複数の無線信号のペイロードを合成し、合成後のペイロードの復調を試みる。信号処理部230は、ペイロードに含まれるCRC14を用いて、復調が成功したか否かを確認する。復調が成功した場合、信号処理部230は、復調に成功したULデータフレームの送信元に関する情報を制御部250へ提供する。そして、制御部250は、当該送信元であるセンサ端末100へACKフレームを送信する。
(Signal processing part)
The signal processing unit 230 functions as a demodulation unit, and performs demodulation and error correction decoding on the payload provided by the detection unit 220. In this embodiment, since the sensor terminal 100 repeatedly transmits wireless signals corresponding to the same sensor data, the signal processing unit 230 combines the payloads of a plurality of wireless signals repeatedly transmitted from the same sensor terminal 100. Attempt to demodulate the combined payload. The signal processing unit 230 uses the CRC 14 included in the payload to check whether demodulation is successful. When the demodulation is successful, the signal processing unit 230 provides the control unit 250 with information regarding the transmission source of the UL data frame that has been successfully demodulated. Then, the control unit 250 transmits an ACK frame to the sensor terminal 100 that is the transmission source.
 (記憶部)
 記憶部240は、信号処理部230によって提供された復調後のデータを記憶する。
(Memory part)
The storage unit 240 stores the demodulated data provided by the signal processing unit 230.
 (送信部)
 送信部211は、センサ端末100への無線信号の送信を行う。より具体的に説明すると、送信部211は、制御部250から提供されるベースバンドの送信信号をアップコンバージョンし、アップコンバージョンにより得られた電気信号をアンテナにより無線信号に変換して送信する。
(Transmitter)
The transmission unit 211 transmits a wireless signal to the sensor terminal 100. More specifically, the transmission unit 211 up-converts the baseband transmission signal provided from the control unit 250, converts the electrical signal obtained by the up-conversion into a radio signal by the antenna, and transmits the radio signal.
 (制御部)
 制御部250は、信号処理部230による復調が成功した場合、ACKフレームを生成し送信部211へ提供する。上述のとおり、制御部250は、ACKフレームの宛先であるセンサ端末100の端末IDの一部を用いて巡回シフト量を決定する。
(Control part)
When the demodulation by the signal processing unit 230 is successful, the control unit 250 generates an ACK frame and provides it to the transmission unit 211. As described above, the control unit 250 determines the cyclic shift amount using a part of the terminal ID of the sensor terminal 100 that is the destination of the ACK frame.
 また、制御部250は、DLデータフレームを生成し送信部211へ提供する。制御部250は、このDLデータフレームがACKフレームの送信タイミングから所定の時間が経過した後のタイミングに送信されるように送信部211を制御する。例えば、制御部250は、ACKフレームの送信タイミングから100ミリ秒後にDLデータフレームを送信するように送信部211を制御してもよい。 Further, the control unit 250 generates a DL data frame and provides it to the transmission unit 211. The control unit 250 controls the transmission unit 211 so that the DL data frame is transmitted at a timing after a predetermined time has elapsed from the transmission timing of the ACK frame. For example, the control unit 250 may control the transmission unit 211 to transmit the DL data frame 100 milliseconds after the transmission timing of the ACK frame.
 (有線通信部)
 有線通信部260は、信号処理部230により復調されたペイロードに含まれるセンサデータ等を、アプリケーションサーバ300に送信する。これにより、アプリケーションサーバ300は、センサデータを用いたサービスを提供することができる。
(Wired Communication Department)
The wired communication unit 260 transmits the sensor data and the like included in the payload demodulated by the signal processing unit 230 to the application server 300. Thereby, the application server 300 can provide a service using sensor data.
  <3.各装置の動作>
 上記では、各装置の構成について説明した。続いて、図8および図9を参照して、各装置の動作について説明する。
<3. Operation of each device>
The configuration of each device has been described above. Subsequently, the operation of each apparatus will be described with reference to FIGS. 8 and 9.
 (3-1.センサ端末の動作)
 まず、図8を参照して、センサ端末100の動作について説明する。図8は、センサ端末100がULデータフレームを送信し、DLデータフレームを受信する動作を示すフローチャートである。
(3-1. Operation of sensor terminal)
First, the operation of the sensor terminal 100 will be described with reference to FIG. FIG. 8 is a flowchart illustrating an operation in which the sensor terminal 100 transmits a UL data frame and receives a DL data frame.
 まず、ステップS1000では、センサ端末100の情報提供部120がセンサデータを制御部160へ提供し、制御部160が当該センサデータを用いてULデータフレームを生成する。ステップS1004では、送信部111がULデータフレームを基地局200へ送信する。ステップS1008では、受信部112は、所定の時間が経過するまでACKフレームを受信する。ステップS1012にて、検出部130が自端末宛のACKフレームを検出した場合(ステップS1012/Yes)、受信部112は、ACKフレームの受信タイミングを起点にして設定される受信待機期間まで受信を休止する(ステップS1016)。そして、ステップS1020では、受信部112が、受信待機期間中に、DLデータフレームを受信する。 First, in step S1000, the information providing unit 120 of the sensor terminal 100 provides sensor data to the control unit 160, and the control unit 160 generates a UL data frame using the sensor data. In step S1004, the transmission unit 111 transmits a UL data frame to the base station 200. In step S1008, the receiving unit 112 receives an ACK frame until a predetermined time has elapsed. In step S1012, when the detection unit 130 detects an ACK frame addressed to the terminal itself (step S1012 / Yes), the reception unit 112 pauses reception until a reception standby period set based on the reception timing of the ACK frame. (Step S1016). In step S1020, the reception unit 112 receives the DL data frame during the reception standby period.
 ステップS1012にて、自端末宛のACKフレームが検出されなかった場合(ステップS1012/No)、制御部160が、同一のセンサデータを含むULデータフレームが繰り返し送信された回数を確認する。この送信回数が上限に達している場合(ステップS1024/Yes)、ULデータフレームの送信処理が終了する。送信回数が上限に達していない場合(ステップS1024/No)、ステップS1004にて、送信部111がULデータフレームを送信する(ステップS1028)。 In step S1012, when an ACK frame addressed to the own terminal is not detected (step S1012 / No), the control unit 160 checks the number of times that a UL data frame including the same sensor data is repeatedly transmitted. If the number of times of transmission has reached the upper limit (step S1024 / Yes), the UL data frame transmission process ends. If the number of transmissions has not reached the upper limit (step S1024 / No), in step S1004, the transmission unit 111 transmits a UL data frame (step S1028).
 (3-2.基地局の動作)
 以上では、センサ端末100の動作について説明した。続いて、図9を参照して、基地局200の動作について説明する。図9は、基地局200がULデータフレームを受信し、DLデータフレームを送信する動作を示すフローチャートである。
(3-2. Operation of base station)
The operation of the sensor terminal 100 has been described above. Next, the operation of the base station 200 will be described with reference to FIG. FIG. 9 is a flowchart illustrating an operation in which the base station 200 receives a UL data frame and transmits a DL data frame.
 まず、ステップS1100では、基地局200の受信部212が無線信号を受信し、検出部220がULデータフレームを検出する。ステップS1104では、検出部220がULデータフレームからペイロードを取得し、信号処理部230が、同一データが含まれるペイロードを合成する。ステップS1108では、信号処理部230が、合成後のペイロードに対して受信信号処理を行う。受信信号処理とは、上述の復調および誤り訂正復号の処理を指す。 First, in step S1100, the reception unit 212 of the base station 200 receives a radio signal, and the detection unit 220 detects a UL data frame. In step S1104, the detection unit 220 acquires a payload from the UL data frame, and the signal processing unit 230 synthesizes a payload including the same data. In step S1108, the signal processing unit 230 performs reception signal processing on the combined payload. Received signal processing refers to the above-described demodulation and error correction decoding processes.
 信号処理部230が、CRC14を用いて、復調の失敗を確認した場合(ステップS1112/No)、ペイロードを保持(ステップS1116)した状態で処理が終了される。保持されたペイロードは、その後、繰り返し送信が行われた場合において、ステップS1104のペイロード合成処理に使用される。 When the signal processing unit 230 confirms the failure of demodulation using the CRC 14 (step S1112 / No), the processing ends with the payload held (step S1116). The held payload is then used for the payload synthesis process in step S1104 when repeated transmission is performed.
 ステップS1112において、信号処理部230が、CRC14を用いて復調の成功を確認した場合(ステップS1112/Yes)、ステップS1120にて、制御部250は、DLデータフレームをセンサ端末100へ送信するタイミングを決定する。本実施形態においては、制御部250は、ACKフレームの送信タイミングから所定の時間が経過した後のタイミングに、DLデータフレームが送信されるように動作する。 In step S1112, when the signal processing unit 230 confirms the success of demodulation using the CRC 14 (step S1112 / Yes), in step S1120, the control unit 250 sets the timing for transmitting the DL data frame to the sensor terminal 100. decide. In the present embodiment, the control unit 250 operates so that the DL data frame is transmitted at a timing after a predetermined time has elapsed from the transmission timing of the ACK frame.
 ステップS1124では、制御部250がACKフレームを生成する。ステップS1128では、送信部211がACKフレームをセンサ端末100へ送信する。ステップS1132では、復調のために保持されていたペイロードが消去される。ステップS1136では、制御部250が、DLデータフレームを生成する。ステップS1140では、送信部211がDLデータフレームをセンサ端末100へ送信し、処理が終了される。 In step S1124, the control unit 250 generates an ACK frame. In step S1128, the transmission unit 211 transmits an ACK frame to the sensor terminal 100. In step S1132, the payload held for demodulation is deleted. In step S1136, the control unit 250 generates a DL data frame. In step S1140, the transmission unit 211 transmits a DL data frame to the sensor terminal 100, and the process ends.
  <4.第1の変形例>
 以上では、無線通信システムの各装置の動作について説明した。続いて、図10~図14を参照して、本開示の実施形態における第1の変形例について説明する。
<4. First Modification>
The operation of each device in the wireless communication system has been described above. Subsequently, a first modification example of the embodiment of the present disclosure will be described with reference to FIGS. 10 to 14.
 上述の実施形態においては、受信待機期間は、ACKフレームの受信タイミングから所定の時間が経過した後の期間である旨を説明した。第1の変形例においては、受信待機期間が、ACKフレームの受信タイミングを起点にして動的に設定される。 In the above-described embodiment, it has been described that the reception standby period is a period after a predetermined time has elapsed from the reception timing of the ACK frame. In the first modification, the reception standby period is dynamically set with the reception timing of the ACK frame as a starting point.
 まず、図10を参照して、オフセットという概念について説明する。図10は、第1の変形例におけるオフセットの概要を示す図である。図10に示すように、第1の変形例において、基地局200、センサ端末100Aおよびセンサ端末100Bは、タイムスロットと呼ばれる時間区間に基づいて信号の送受信を行う。1つのタイムスロットには、ULデータフレーム、ULデータフレームおよびACKフレーム、DLデータフレームが含まれ得る。 First, the concept of offset will be described with reference to FIG. FIG. 10 is a diagram showing an outline of the offset in the first modification. As shown in FIG. 10, in the first modified example, the base station 200, the sensor terminal 100A, and the sensor terminal 100B perform signal transmission / reception based on a time interval called a time slot. One time slot may include a UL data frame, a UL data frame and an ACK frame, and a DL data frame.
 ここで、オフセットとは、基地局200が、あるセンサ端末100へACKフレームを送信してから、このセンサ端末100へDLデータフレームを送信するまで間隔長であり、タイムスロット数で表される。図10に示されたオフセットは、センサ端末100Aに対応するオフセットであり、この場合のオフセットは2である。 Here, the offset is an interval length from when the base station 200 transmits an ACK frame to a certain sensor terminal 100 to when a DL data frame is transmitted to the sensor terminal 100, and is represented by the number of time slots. The offset shown in FIG. 10 is an offset corresponding to the sensor terminal 100A, and the offset in this case is 2.
 図10では、センサ端末100Aおよびセンサ端末100Bは、タイムスロットの間隔を空けずにULデータフレームを送信している。しかし、これは一例であり、センサ端末100は、タイムスロットの間隔を適宜空けてULデータフレームを送信してもよい。 In FIG. 10, the sensor terminal 100A and the sensor terminal 100B transmit UL data frames without leaving time slot intervals. However, this is only an example, and the sensor terminal 100 may transmit UL data frames with appropriate time slot intervals.
 ここで、基地局200は、ULデータフレームの受信状況に基づいてオフセットを設定する。より具体的に説明すると、基地局200は、図9のステップS1120「DLデータフレームの送信タイミングの決定」において、ACKフレームの送信先となるセンサ端末100以外のセンサ端末100(以降、「他のセンサ端末100」と呼称する)から送信されたペイロードが保持されているか否かを確認する。そして、基地局200は、このペイロードが保持されている場合には、他のセンサ端末100からULデータフレームを受信中であると判断し、このペイロードが保持されていない場合には、他のセンサ端末100からULデータフレームを受信中でないと判断する。 Here, the base station 200 sets an offset based on the reception status of the UL data frame. More specifically, the base station 200 determines in step S1120 “Determination of DL data frame transmission timing” in FIG. 9 a sensor terminal 100 other than the sensor terminal 100 that is the transmission destination of the ACK frame (hereinafter “other data”). It is confirmed whether or not the payload transmitted from the sensor terminal 100 ”is held. When the payload is held, the base station 200 determines that a UL data frame is being received from another sensor terminal 100, and when the payload is not held, the base station 200 It is determined that no UL data frame is being received from terminal 100.
 ULデータフレームを受信中でない場合、基地局200は、オフセットを0に設定することで、ACKフレームが送信されたタイムスロットの直後のタイムスロットでDLデータフレームを送信する。一方、ULデータフレームを受信中である場合、基地局200は、受信中のULデータフレームに含まれるペイロードの復調が成功するまでに必要な残りの受信回数を、センサ端末100毎に予測し、その最大値をオフセットとして設定する。オフセットの設定方法の詳細については後述する。 When the UL data frame is not being received, the base station 200 transmits the DL data frame in the time slot immediately after the time slot in which the ACK frame is transmitted by setting the offset to 0. On the other hand, when the UL data frame is being received, the base station 200 predicts, for each sensor terminal 100, the remaining number of receptions necessary until the demodulation of the payload included in the currently received UL data frame is successful, The maximum value is set as an offset. Details of the offset setting method will be described later.
 次に、図11を参照して、第1の変形例におけるACKフレームについて説明する。図11は、基地局200が送信するACKフレームを示す図である。 Next, the ACK frame in the first modification will be described with reference to FIG. FIG. 11 is a diagram illustrating an ACK frame transmitted by the base station 200.
 上述のとおり、第1の変形例においては、巡回シフト量は、ACKフレームの宛先およびオフセットに応じて決定される。一例として図11では、基地局200は、オフセット(0~7)に変数Dを乗算して得られる値を1回目の巡回シフト量として算出し、所定の符号系列30に対して巡回シフトを行うことで符号系列31を生成する。さらに、基地局200は、端末IDの下位3ビットの10進数に相当する値(0~7。以降、便宜的に「端末ID」と呼称する)に、全オフセット数(全8個)および変数Dを乗算して得られる値を2回目の巡回シフト量として算出し、符号系列31に対して巡回シフトを行うことで符号系列32を生成する。そして、当該符号系列32はプリアンブルとして用いられ、ACKフレームは、当該プリアンブルのみによって構成され、ペイロードを含まない。 As described above, in the first modification, the cyclic shift amount is determined according to the destination and offset of the ACK frame. As an example, in FIG. 11, base station 200 calculates a value obtained by multiplying offset (0 to 7) by variable D as the first cyclic shift amount, and performs cyclic shift on predetermined code sequence 30. Thus, the code sequence 31 is generated. Further, the base station 200 sets the total number of offsets (8 in total) and the variable to a value (0 to 7; hereinafter referred to as “terminal ID” for convenience) corresponding to the decimal number of the lower 3 bits of the terminal ID. A value obtained by multiplying D is calculated as the second cyclic shift amount, and the code sequence 32 is generated by cyclically shifting the code sequence 31. The code sequence 32 is used as a preamble, and the ACK frame includes only the preamble and does not include a payload.
 続いて、図12および図13を参照して、センサ端末100によるACKフレームの検出について説明する。図12および図13は、センサ端末100によるACKフレームの検出を示す図である。 Subsequently, detection of an ACK frame by the sensor terminal 100 will be described with reference to FIGS. 12 and 13. 12 and 13 are diagrams illustrating detection of an ACK frame by the sensor terminal 100. FIG.
 図12に示した例では、オフセットが2であり、端末IDが1であるセンサ端末100A宛のACK_Aが示されている。上述の方法によって、1回目の巡回シフト量は2Dビットであり、2回目の巡回シフト量は8Dビットであるため、計10Dビットの巡回シフトが行われる。 In the example shown in FIG. 12, ACK_A addressed to the sensor terminal 100A having an offset of 2 and a terminal ID of 1 is shown. Since the first cyclic shift amount is 2D bits and the second cyclic shift amount is 8D bits by the above-described method, a total of 10D bit cyclic shifts are performed.
 図13には、センサ端末100の検出部130が、参照信号と受信信号との相関を演算した結果が示されている。巡回シフトによって、ACK_Aの先頭がセンサ端末100Aに受信されたタイミングから、相関値のピークが検出されるタイミングまでに10Dの時間差が発生する。 FIG. 13 shows the result of the detection unit 130 of the sensor terminal 100 calculating the correlation between the reference signal and the received signal. Due to the cyclic shift, a time difference of 10D occurs between the timing when the head of ACK_A is received by the sensor terminal 100A and the timing when the peak of the correlation value is detected.
 センサ端末100Aは、自端末の端末IDおよび全オフセット数を把握しているため、検出窓を特定でき、この検出窓に相関値のピークが含まれていることにより、自端末宛にACKフレームが送信されたと判断する。また、センサ端末100Aは、ピークが含まれる、検出窓内の時間に基づいてオフセットを特定することができる。より具体的に説明すると、2回目の巡回シフト量の算出にあたり、全オフセット数が乗算されることによって、検出窓内にオフセットを指定するための窓が生成される。例えば、図13に示した例では、センサ端末100Aの検出窓である8D~16Dの中に、オフセットを指定するための窓が8個生成される。図13に示した例では、ピークが10D~11Dに含まれていることに基づいて、センサ端末100Aは、オフセットが2であることを特定することができる。 Since the sensor terminal 100A knows the terminal ID of the terminal and the total number of offsets, the sensor terminal 100A can identify the detection window. Since the detection window includes the peak of the correlation value, the ACK frame is addressed to the terminal. Judge that it was sent. Further, the sensor terminal 100A can specify the offset based on the time within the detection window where the peak is included. More specifically, when calculating the second cyclic shift amount, a window for designating an offset in the detection window is generated by multiplying the total number of offsets. For example, in the example shown in FIG. 13, eight windows for designating offsets are generated in the detection windows 8D to 16D of the sensor terminal 100A. In the example shown in FIG. 13, the sensor terminal 100A can specify that the offset is 2 based on the fact that the peaks are included in 10D to 11D.
 第1の変形例において、センサ端末100は、ACKフレームによって特定されたオフセットに基づいてDLデータフレームを受信する。より具体的に説明すると、センサ端末100は、ACKフレームが検出されたタイムスロットを起点に、オフセット分の間隔を空けた後の1タイムスロットを受信待機期間として設定する。ここで、受信待機期間として設定されるタイムスロットは複数あってもよい。例えば、センサ端末100は、ACKフレームが検出されたタイムスロットを起点に、オフセット分の間隔を空けた後のタイムスロットの後、または、前後に亘って複数のタイムスロットを受信待機期間として設定してもよい。 In the first modification, the sensor terminal 100 receives the DL data frame based on the offset specified by the ACK frame. More specifically, the sensor terminal 100 sets, as a reception standby period, one time slot after an interval corresponding to the offset from the time slot in which the ACK frame is detected as a starting point. Here, there may be a plurality of time slots set as the reception standby period. For example, the sensor terminal 100 sets a plurality of time slots as reception standby periods after a time slot after an interval corresponding to an offset, or before and after the time slot in which an ACK frame is detected. May be.
 これにより、基地局200が、受信待機期間を共有するための制御情報をセンサ端末100へ送信する必要がない。また、ACKフレームがペイロードを含まないことにより、無線資源を節約することができ、ACKフレームのフレーム長が短いため、センサ端末100がACKフレームを処理するための消費電力を低下させることができる。 This eliminates the need for the base station 200 to transmit control information for sharing the reception standby period to the sensor terminal 100. Further, since the ACK frame does not include a payload, radio resources can be saved, and since the frame length of the ACK frame is short, power consumption for the sensor terminal 100 to process the ACK frame can be reduced.
 続いて、第1の変形例における、基地局200の動作について説明する。基地局200の動作は、図9のステップS1120「DLデータフレームの送信タイミングの決定」以外は、図9と同一である。以降では、図14を参照して、第1の変形例における、DLデータフレームの送信タイミングの決定動作について説明する。図14は、基地局200がDLデータフレームの送信タイミングを決定する動作を示すフローチャートである。 Subsequently, the operation of the base station 200 in the first modification will be described. The operation of the base station 200 is the same as that in FIG. 9 except for step S1120 “Determination of DL data frame transmission timing” in FIG. Hereinafter, with reference to FIG. 14, an operation for determining the transmission timing of the DL data frame in the first modification will be described. FIG. 14 is a flowchart illustrating an operation in which the base station 200 determines the transmission timing of the DL data frame.
 まず、ステップS1200では、基地局200の制御部250が、他のセンサ端末100からのULデータフレームが受信されている途中か否かを判定する。制御部250が、他のセンサ端末100からのULデータフレームを受信中ではないと判定した場合(ステップS1200/No)、ステップS1204にて、制御部250はオフセットを0とする。制御部250が、他のセンサ端末100からのULデータフレームを受信中であると判定した場合(ステップS1200/Yes)、ステップS1208にて、制御部250は、受信中のULデータフレームが検出された回数(以降、「Ndet」と呼称する)を取得する。 First, in step S1200, the control unit 250 of the base station 200 determines whether or not a UL data frame from another sensor terminal 100 is being received. When the control unit 250 determines that the UL data frame from the other sensor terminal 100 is not being received (step S1200 / No), the control unit 250 sets the offset to 0 in step S1204. When the control unit 250 determines that the UL data frame from another sensor terminal 100 is being received (step S1200 / Yes), the control unit 250 detects the UL data frame being received in step S1208. Number of times (hereinafter referred to as “Ndet”).
 ステップS1212では、制御部250が、受信中のULデータフレームのSINR(Signal to Interference plus Noise Ratio)の平均値を取得する。ステップS1216では、制御部250が、SINRの平均値に基づいて復調に必要な、ペイロードの合成回数(以降、「Ncomb」と呼称する)を推定する。ステップS1220では、制御部250が、復調に必要な残りのタイムスロット数(以降、「Nts」と呼称する)を、Nts=Ncomb-Ndetという計算式を用いて算出する。制御部250は、ステップS1208~ステップS1220の処理を、受信中のULデータフレームの送信元であるセンサ端末100毎に実施し、Ntsの最大値をオフセットとする(ステップS1224)。 In step S1212, the control unit 250 acquires an average value of SINR (Signal to Interference plus Noise Ratio) of the UL data frame being received. In step S1216, control unit 250 estimates the number of payload combinations (hereinafter referred to as “Ncomb”) necessary for demodulation based on the average value of SINR. In step S1220, control unit 250 calculates the number of remaining time slots necessary for demodulation (hereinafter referred to as “Nts”) using the calculation formula Nts = Ncomb−Ndet. The control unit 250 performs the processing from step S1208 to step S1220 for each sensor terminal 100 that is the transmission source of the currently received UL data frame, and sets the maximum value of Nts as an offset (step S1224).
 上述の方法によりオフセットが設定されることで、DLデータフレームの送信が行われるタイムスロットと、ULデータフレームの受信が行われるタイムスロットが重複しにくくなる。したがって、無線信号の干渉が発生する可能性を低減させることができる。 By setting the offset by the above method, the time slot in which the DL data frame is transmitted and the time slot in which the UL data frame is received are less likely to overlap. Therefore, it is possible to reduce the possibility of radio signal interference.
 また、基地局200は、巡回シフト以外の方法によってオフセットを指定してもよい。例えば、基地局200は、ACKフレームの生成に利用される符号系列の種類によって、オフセットを指定してもよい。より具体的に説明すると、オフセット毎に異なる符号系列が用意されており、基地局200は、上述の方法により算出されたオフセットに対応する符号系列に対して端末IDに基づく巡回シフトを施し、ACKフレームを生成する。センサ端末100は、各オフセットに対応する符号系列を元に生成された各参照信号と、受信信号との相関を求めることで、ACKフレームを検出し、オフセットを特定することができる。 Also, the base station 200 may specify the offset by a method other than the cyclic shift. For example, the base station 200 may specify an offset according to the type of code sequence used for generating an ACK frame. More specifically, a different code sequence is prepared for each offset, and the base station 200 performs a cyclic shift based on the terminal ID on the code sequence corresponding to the offset calculated by the above-described method, and ACK Generate a frame. The sensor terminal 100 can detect the ACK frame and specify the offset by obtaining the correlation between each reference signal generated based on the code sequence corresponding to each offset and the received signal.
  <5.第2の変形例>
 以上では、第1の変形例について説明した。続いて、図15~図17を参照して、本開示の実施形態における第2の変形例について説明する。まず、図15を参照して、第2の変形例におけるACKフレームについて説明する。図15は、基地局200が送信するACKフレームを示す図である。
<5. Second Modification>
The first modification has been described above. Subsequently, a second modification example of the embodiment of the present disclosure will be described with reference to FIGS. 15 to 17. First, the ACK frame in the second modification will be described with reference to FIG. FIG. 15 is a diagram illustrating an ACK frame transmitted by the base station 200.
 第2の変形例においては、巡回シフト量は、ACKフレームの宛先およびDLデータフレームの送信有無によって決定される。一例として図15では、基地局200は、DLデータフレームの送信有無に対応する値(0~1。一例として、1が送信有りを示し、0が送信無しを示すとする)に変数Dを乗算して得られる値を1回目の巡回シフト量として算出し、所定の符号系列40に対して巡回シフトを行うことで符号系列41を生成する。さらに、基地局200は、端末IDの下位4ビットの10進数に相当する値(0~15。以降、便宜的に「端末ID」と呼称する)に、DLデータフレームの送信有無のパターン数(送信有り、送信無しの2パターン)および変数Dを乗算して得られる値を2回目の巡回シフト量として算出し、符号系列41に対して巡回シフトを行うことで符号系列42を生成する。そして、当該符号系列42はプリアンブルとして用いられ、ACKフレームは、当該プリアンブルのみによって構成され、ペイロードを含まない。 In the second modification, the cyclic shift amount is determined by the destination of the ACK frame and the presence / absence of transmission of the DL data frame. As an example, in FIG. 15, the base station 200 multiplies a value corresponding to whether or not a DL data frame is transmitted (0 to 1. As an example, 1 indicates transmission and 0 indicates no transmission) by a variable D. The value obtained in this way is calculated as the first cyclic shift amount, and the code sequence 41 is generated by cyclically shifting the predetermined code sequence 40. Furthermore, the base station 200 sets the number of DL data frame transmission presence / absence patterns to a value corresponding to the decimal number of the lower 4 bits of the terminal ID (0 to 15; hereinafter referred to as “terminal ID” for convenience) ( A value obtained by multiplying the variable D) and a variable D is calculated as a second cyclic shift amount, and the code sequence 42 is generated by performing a cyclic shift on the code sequence 41. The code sequence 42 is used as a preamble, and the ACK frame includes only the preamble and does not include a payload.
 続いて、図16および図17を参照して、センサ端末100によるACKフレームの検出について説明する。図16および図17は、センサ端末100によるACKフレームの検出を示す図である。 Subsequently, detection of an ACK frame by the sensor terminal 100 will be described with reference to FIGS. 16 and 17. 16 and 17 are diagrams illustrating detection of an ACK frame by the sensor terminal 100. FIG.
 図16に示した例では、DLデータフレームの送信が有り、端末IDが1であるセンサ端末100A宛のACK_Aが示されている。ACK_Aは、1回目の巡回シフト量は1Dビットであり、2回目の巡回シフト量は2Dビットであるため、計3Dビットの巡回シフトが行われる。 In the example shown in FIG. 16, ACK_A addressed to the sensor terminal 100 </ b> A whose DL data frame is transmitted and whose terminal ID is 1 is shown. In ACK_A, the first cyclic shift amount is 1D bits, and the second cyclic shift amount is 2D bits. Therefore, a total of 3D bit cyclic shifts are performed.
 図17には、センサ端末100の検出部130が、参照信号と受信信号との相関を演算した結果が示されている。巡回シフトによって、ACK_Aの先頭がセンサ端末100Aに受信されたタイミングから、相関値のピークが検出されるタイミングまでに3Dの時間差が発生する。 FIG. 17 shows the result of the detection unit 130 of the sensor terminal 100 calculating the correlation between the reference signal and the received signal. Due to the cyclic shift, a 3D time difference occurs from the timing when the head of ACK_A is received by the sensor terminal 100A to the timing when the peak of the correlation value is detected.
 センサ端末100Aは、自端末の端末IDを把握しているため、検出窓を特定でき、この検出窓に相関値のピークが含まれていることにより、自端末宛にACKフレームが送信されたと判断する。また、センサ端末100Aは、ピークが含まれる、検出窓内の時間に基づいてDLデータフレームの送信有無を特定することができる。より具体的に説明すると、2回目の巡回シフト量の算出にあたり、DLデータフレームの送信有無の全パターン数が乗算されることによって、検出窓内にDLデータフレームの送信有無を指定するための窓が生成される。例えば、図17に示した例では、センサ端末100Aの検出窓である2D~4Dの中に、DLデータフレームの送信有無を指定するための窓が2個生成される。図17に示した例では、ピークが3D~4Dに含まれていることに基づいて、センサ端末100Aは、DLデータフレームが送信されることを特定することができる。 Since the sensor terminal 100A knows the terminal ID of the own terminal, the detection terminal can be specified, and the peak of the correlation value is included in the detection window, so that it is determined that the ACK frame is transmitted to the own terminal. To do. Also, the sensor terminal 100A can specify whether or not to transmit a DL data frame based on the time within the detection window including the peak. More specifically, a window for designating the presence / absence of DL data frame transmission within the detection window by multiplying the total number of DL data frame transmission / non-transmission patterns in the calculation of the second cyclic shift amount. Is generated. For example, in the example shown in FIG. 17, two windows for designating whether or not to transmit a DL data frame are generated in the detection windows 2D to 4D of the sensor terminal 100A. In the example shown in FIG. 17, the sensor terminal 100A can specify that the DL data frame is transmitted based on the fact that the peak is included in 3D to 4D.
 センサ端末100Aは、DLデータフレームの送信が有ることを特定すると、ACKフレームが受信されたタイミングを起点にして設定される受信待機期間に受信待機を行うことで、間欠受信を実現する。より具体的に説明すると、センサ端末100Aは、ACKフレームの先頭がセンサ端末100に受信されたタイミングから、所定の時間が経過した後の期間を受信待機期間として設定し、この受信待機期間にDLデータフレームの受信待機を行う。一方、センサ端末100Aは、DLデータフレームの送信が無いことを特定すると、受信待機期間を設定しない。 When the sensor terminal 100A specifies that the DL data frame is transmitted, the sensor terminal 100A implements intermittent reception by performing reception standby during a reception standby period set with the timing at which the ACK frame is received as a starting point. More specifically, the sensor terminal 100A sets a period after a predetermined time has elapsed from the timing at which the head of the ACK frame is received by the sensor terminal 100 as a reception standby period, and DL Wait for data frame reception. On the other hand, if the sensor terminal 100A specifies that no DL data frame is transmitted, the sensor terminal 100A does not set the reception standby period.
 これにより、基地局200が、DLデータフレームの送信有無および受信待機期間を共有するための制御情報をセンサ端末100へ送信する必要がない。また、ACKフレームがペイロードを含まないことにより、無線資源を節約することができ、ACKフレームのフレーム長が短いため、センサ端末100がACKフレームを処理するための消費電力を低下させることができる。 This eliminates the need for the base station 200 to transmit to the sensor terminal 100 control information for sharing the presence / absence of transmission of the DL data frame and the reception standby period. Further, since the ACK frame does not include a payload, radio resources can be saved, and since the frame length of the ACK frame is short, power consumption for the sensor terminal 100 to process the ACK frame can be reduced.
 また、第1の変形例を応用することで、DLデータフレームの送信有無を指定することも可能である。例えば、図13のオフセット7に対応する期間(15D~16D)に相関値のピークが含まれることが、DLデータフレームの送信が無いことを意味してもよい。センサ端末100は、オフセット7に対応する期間(15D~16D)に相関値のピークが含まれる場合、受信待機期間を設定しない。一方、オフセット1~6に対応する期間(8D~15D)に相関値のピークが含まれる場合、センサ端末100は、第1の変形例と同様の方法で、当該オフセットに基づいて受信待機期間を設定する。この方法により、基地局200は、ACKフレームを用いて、DLデータフレームの送信有無およびオフセットをセンサ端末100へ共有することができる。 Also, by applying the first modification, it is possible to specify whether or not to transmit a DL data frame. For example, the fact that the correlation value peak is included in the period (15D to 16D) corresponding to the offset 7 in FIG. 13 may mean that no DL data frame is transmitted. The sensor terminal 100 does not set the reception standby period when the correlation value peak is included in the period (15D to 16D) corresponding to the offset 7. On the other hand, when the correlation value peak is included in the periods (8D to 15D) corresponding to the offsets 1 to 6, the sensor terminal 100 sets the reception standby period based on the offset in the same manner as in the first modification. Set. By this method, the base station 200 can share the transmission presence / absence of the DL data frame and the offset to the sensor terminal 100 using the ACK frame.
 また、基地局200は、巡回シフト以外の方法によってDLデータフレームの送信有無を指定してもよい。例えば、基地局200は、ACKフレームの生成に利用される符号系列の種類によって、DLデータフレームの送信有無を指定してもよい。より具体的に説明すると、DLデータフレームが送信される場合と、送信されない場合について、互いに異なる符号系列が用意されており、基地局200は、DLデータフレームの送信有無に応じて使用する符号系列を決定する。そして、基地局200は、当該符号系列に対して端末IDに基づく巡回シフトを施し、ACKフレームを生成する。センサ端末100は、DLデータフレームが送信される場合と、送信されない場合の其々に対応する符号系列を元に生成された各参照信号と、受信信号との相関を求めることで、ACKフレームを検出し、DLデータフレームの送信有無を特定することができる。 In addition, the base station 200 may specify whether or not to transmit the DL data frame by a method other than the cyclic shift. For example, the base station 200 may specify whether or not to transmit a DL data frame depending on the type of code sequence used for generating an ACK frame. More specifically, different code sequences are prepared for a case where a DL data frame is transmitted and a case where a DL data frame is not transmitted, and the base station 200 uses a code sequence used depending on whether or not a DL data frame is transmitted. To decide. Then, the base station 200 performs a cyclic shift based on the terminal ID for the code sequence to generate an ACK frame. The sensor terminal 100 obtains an ACK frame by obtaining a correlation between each received reference signal and a received signal based on a code sequence corresponding to a case where a DL data frame is transmitted and a case where a DL data frame is not transmitted. It is possible to detect and specify whether or not a DL data frame is transmitted.
  <6.ハードウェア構成>
 以上、本開示の実施形態および変形例を説明した。上述した送受信処理などは、ソフトウェアと、以下に説明するセンサ端末100および基地局200のハードウェアとの協働により実現される。
<6. Hardware configuration>
Heretofore, embodiments and modifications of the present disclosure have been described. The above-described transmission / reception processing and the like are realized by cooperation of software and hardware of the sensor terminal 100 and the base station 200 described below.
 図18は、本開示の実施形態に係るセンサ端末100および基地局200のハードウェア構成を示す図である。図18に示すように、センサ端末100および基地局200は、CPU(Central Processing Unit)901と、ROM(Read Only Memory)902と、RAM(Random Access Memory)903と、入力装置908と、出力装置910と、ストレージ装置911と、送受信装置915とを備える。 FIG. 18 is a diagram illustrating a hardware configuration of the sensor terminal 100 and the base station 200 according to the embodiment of the present disclosure. As shown in FIG. 18, the sensor terminal 100 and the base station 200 include a CPU (Central Processing Unit) 901, a ROM (Read Only Memory) 902, a RAM (Random Access Memory) 903, an input device 908, and an output device. 910, a storage device 911, and a transmission / reception device 915.
 CPU901は、演算処理装置および制御装置として機能し、各種プログラムに従ってセンサ端末100および基地局200内の動作全般を制御する。また、CPU901は、マイクロプロセッサであってもよい。ROM902は、CPU901が使用するプログラムや演算パラメータ等を記憶する。RAM903は、CPU901の実行において使用するプログラムや、その実行において適宜変化するパラメータ等を一時記憶する。これらはCPUバスなどから構成されるホストバスにより相互に接続されている。当該CPU901、ROM902およびRAM903とソフトウェアとの協働により、センサ端末100の情報提供部120、検出部130、信号処理部140、制御部160および基地局200の検出部220、信号処理部230、制御部250の機能が実現される。 The CPU 901 functions as an arithmetic processing unit and a control unit, and controls the overall operation within the sensor terminal 100 and the base station 200 according to various programs. Further, the CPU 901 may be a microprocessor. The ROM 902 stores programs used by the CPU 901, calculation parameters, and the like. The RAM 903 temporarily stores programs used in the execution of the CPU 901, parameters that change as appropriate during the execution, and the like. These are connected to each other by a host bus including a CPU bus. In cooperation with the CPU 901, ROM 902 and RAM 903 and software, the information providing unit 120, the detection unit 130, the signal processing unit 140, the control unit 160 of the sensor terminal 100, the detection unit 220 of the base station 200, the signal processing unit 230, and the control The function of the unit 250 is realized.
 入力装置908は、マウス、キーボード、タッチパネル、ボタン、マイクロフォン、スイッチおよびレバーなどユーザが情報を入力するための入力手段と、ユーザによる入力に基づいて入力信号を生成し、CPU901に出力する入力制御回路などから構成されている。センサ端末100および基地局200の管理者は、該入力装置908を操作することにより、センサ端末100および基地局200に対して各種のデータを入力したり処理動作を指示したりすることができる。 The input device 908 includes input means for inputting information such as a mouse, keyboard, touch panel, button, microphone, switch, and lever, and an input control circuit that generates an input signal based on the input by the user and outputs the input signal to the CPU 901. Etc. The administrator of the sensor terminal 100 and the base station 200 can input various data and instruct processing operations to the sensor terminal 100 and the base station 200 by operating the input device 908.
 出力装置910は、例えば、液晶ディスプレイ(LCD)装置、OLED(Organic Light Emitting Diode)装置およびランプなどの表示装置を含む。さらに、出力装置910は、スピーカおよびヘッドホンなどの音声出力装置を含む。例えば、表示装置は、撮像された画像や生成された画像などを表示する。一方、音声出力装置は、音声データ等を音声に変換して出力する。 The output device 910 includes a display device such as a liquid crystal display (LCD) device, an OLED (Organic Light Emitting Diode) device, and a lamp. Furthermore, the output device 910 includes an audio output device such as a speaker and headphones. For example, the display device displays a captured image or a generated image. On the other hand, the audio output device converts audio data or the like into audio and outputs it.
 ストレージ装置911はデータ格納用の装置である。ストレージ装置911は、記憶媒体、記憶媒体にデータを記録する記録装置、記憶媒体からデータを読み出す読出し装置および記憶媒体に記録されたデータを削除する削除装置などを含んでもよい。このストレージ装置911は、CPU901が実行するプログラムや各種データを格納する。また、このストレージ装置911は、センサ端末100の記憶部150、および、基地局200の記憶部240の機能を実現する。 The storage device 911 is a device for storing data. The storage device 911 may include a storage medium, a recording device that records data on the storage medium, a reading device that reads data from the storage medium, a deletion device that deletes data recorded on the storage medium, and the like. The storage device 911 stores programs executed by the CPU 901 and various data. Further, the storage device 911 implements the functions of the storage unit 150 of the sensor terminal 100 and the storage unit 240 of the base station 200.
 送受信装置915は、例えば、センサ端末100および基地局200に接続するための通信デバイス等で構成された通信インタフェースである。この送受信装置915は、センサ端末100の通信部110、基地局200の通信部210および有線通信部260の機能を実現する。 The transmission / reception device 915 is a communication interface configured by, for example, a communication device for connecting to the sensor terminal 100 and the base station 200. The transmission / reception device 915 implements the functions of the communication unit 110 of the sensor terminal 100, the communication unit 210 of the base station 200, and the wired communication unit 260.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.
 例えば、本明細書のセンサ端末100または基地局200の処理における各ステップは、必ずしもフローチャートとして記載された順序に沿って時系列に処理する必要はない。例えば、センサ端末100または基地局200の処理における各ステップは、フローチャートとして記載した順序と異なる順序で処理されても、並列的に処理されてもよい。 For example, each step in the processing of the sensor terminal 100 or the base station 200 in the present specification does not necessarily have to be processed in time series in the order described in the flowchart. For example, each step in the processing of the sensor terminal 100 or the base station 200 may be processed in an order different from the order described as the flowchart, or may be processed in parallel.
 例えば、図9のステップS1120「DLデータフレームの送信タイミングの決定」は、ステップS1124~ステップS1136と並列的に行われても良いし、これらの処理と処理の間に行われてもよい。また、ステップS1132「保持していたペイロードの消去」は、ステップS1120~ステップS1140と並列的に行われても良いし、これらの処理と処理の間に行われてもよい。また、図9のステップS1136「DLデータフレームの生成」は、ステップS1120~ステップS1132と並列的に行われても良いし、これらの処理と処理の間に行われてもよい。 For example, Step S1120 “Determination of DL Data Frame Transmission Timing” in FIG. 9 may be performed in parallel with Steps S1124 to S1136, or may be performed between these processes. Further, step S1132 “deletion of held payload” may be performed in parallel with steps S1120 to S1140, or may be performed between these processes. Also, step S1136 “DL data frame generation” in FIG. 9 may be performed in parallel with steps S1120 to S1132, or between these processes.
 また、センサ端末100または基地局200に内蔵されるCPU901、ROM902およびRAM903などのハードウェアに、上述したセンサ端末100または基地局200の各構成と同等の機能を発揮させるためのコンピュータプログラムも作成可能である。また、該コンピュータプログラムを記憶させた記憶媒体も提供される。 It is also possible to create a computer program for causing hardware such as the CPU 901, ROM 902 and RAM 903 built in the sensor terminal 100 or the base station 200 to perform the same functions as the components of the sensor terminal 100 or the base station 200 described above. It is. A storage medium storing the computer program is also provided.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 In addition, the effects described in this specification are merely illustrative or illustrative, and are not limited. That is, the technology according to the present disclosure can exhibit other effects that are apparent to those skilled in the art from the description of the present specification in addition to or instead of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 通信装置によって送信される受信確認応答を受信する受信部と、
 前記受信確認応答が受信されたタイミングを起点にして受信待機期間を設定し、前記受信待機期間にて前記受信部に信号受信を待機させる制御部と、を備える、
 無線装置。
(2)
 前記制御部は、前記受信確認応答が受信されたタイミングから所定の時間が経過した後の期間を前記受信待機期間として設定する、
 前記(1)に記載の無線装置。
(3)
 前記無線装置は、
 前記受信部により受信された前記受信確認応答と参照信号との相関を検出する検出部とさらに備え、
 前記制御部は、前記相関のピークのタイミングに応じた間隔長を特定し、前記受信確認応答が受信されたタイミングから前記間隔長が経過した後の期間を前記受信待機期間として設定する、
 前記(1)に記載の無線装置。
(4)
 前記検出部は、前記無線装置の識別情報に基づいて前記受信確認応答を検出する、
 前記(3)に記載の無線装置。
(5)
 前記検出部は、前記識別情報に基づいて前記受信確認応答を検出するための期間を特定し、前記相関のピークが前記期間内に含まれることに基づいて前記受信確認応答を検出する、
 前記(4)に記載の無線装置。
(6)
 通信装置によって送信される受信確認応答を受信することと、
 前記受信確認応答が受信されたタイミングを起点にして受信待機期間を設定し、当該受信待機期間にて信号受信を待機させることと、を有する、
 制御方法。
(7)
 無線装置に対して受信確認応答を送信する送信部と、
 前記受信確認応答の送信タイミングを起点にして信号の送信タイミングを設定し、前記信号の送信タイミングにて前記送信部に前記信号を送信させる制御部と、を備える、
 通信装置。
(8)
 前記制御部は、前記受信確認応答の送信タイミングから所定の時間が経過した後の時点を前記信号の送信タイミングとして設定する、
 前記(7)に記載の通信装置。
(9)
 前記無線装置によって複数回送信される、同一データを含む信号の検出を行う検出部と、
 検出された前記信号からペイロードを取得し、前記ペイロードを合成し、合成後のペイロードに対して復調処理を行う復調部と、をさらに備える、
 前記(7)に記載の通信装置。
(10)
 前記制御部は、既に検出された信号に含まれるペイロードに対する前記復調処理が成功するために必要な信号の受信タイミングを予測し、前記受信タイミングより後の時点を前記信号の送信タイミングとして設定する、
 前記(9)に記載の通信装置。
(11)
 前記制御部は、前記復調処理が成功するために必要な合成回数と、実際に行われた合成回数を、複数の前記無線装置毎に取得し、前記必要な合成回数から前記実際に行われた合成回数を引いて得られる値の最大値を算出し、前記最大値に基づいて前記受信タイミングを予測する、
 前記(10)に記載の通信装置。
(12)
 前記制御部は、前記受信確認応答の送信先である無線装置の識別情報、または、前記信号の送信に関する情報に基づいて、前記受信確認応答の位相の変化量を決定する、
 前記(7)から(11)のいずれか1項に記載の通信装置。
(13)
 前記信号の送信に関する情報は、前記信号の送信の有無、または、前記信号の送信タイミングに関する情報である、
 前記(12)に記載の通信装置。
(14)
 無線装置に対して受信確認応答を送信することと、
 前記受信確認応答の送信タイミングを起点にして信号の送信タイミングを設定し、前記信号の送信タイミングにて前記信号を送信させることと、を有する、
 通信制御方法。
The following configurations also belong to the technical scope of the present disclosure.
(1)
A receiving unit for receiving a reception confirmation response transmitted by the communication device;
A control unit that sets a reception standby period starting from the timing at which the reception confirmation response is received, and causes the reception unit to wait for signal reception in the reception standby period.
Wireless device.
(2)
The control unit sets a period after a predetermined time has elapsed from the timing when the reception confirmation response is received as the reception waiting period.
The wireless device according to (1).
(3)
The wireless device includes:
A detection unit that detects a correlation between the reception confirmation response received by the reception unit and a reference signal;
The control unit specifies an interval length according to the timing of the correlation peak, and sets a period after the interval length has elapsed from a timing when the reception confirmation response is received as the reception waiting period.
The wireless device according to (1).
(4)
The detection unit detects the reception confirmation response based on identification information of the wireless device;
The wireless device according to (3).
(5)
The detection unit identifies a period for detecting the reception confirmation response based on the identification information, and detects the reception confirmation response based on the fact that the correlation peak is included in the period.
The wireless device according to (4).
(6)
Receiving a receipt acknowledgment sent by the communication device;
Setting a reception waiting period starting from the timing at which the reception confirmation response is received, and waiting for signal reception in the reception waiting period.
Control method.
(7)
A transmission unit that transmits a reception confirmation response to the wireless device;
A control unit that sets a signal transmission timing starting from the transmission timing of the reception confirmation response, and causes the transmission unit to transmit the signal at the signal transmission timing;
Communication device.
(8)
The control unit sets a time after a predetermined time has elapsed from the transmission timing of the reception confirmation response as the transmission timing of the signal;
The communication device according to (7).
(9)
A detection unit for detecting a signal including the same data transmitted a plurality of times by the wireless device;
A demodulator that obtains a payload from the detected signal, synthesizes the payload, and demodulates the combined payload; and
The communication device according to (7).
(10)
The control unit predicts a reception timing of a signal necessary for the demodulation processing to be successful for a payload included in an already detected signal, and sets a time point later than the reception timing as a transmission timing of the signal.
The communication device according to (9).
(11)
The control unit acquires the number of times of synthesis necessary for the demodulation process to be successful and the number of times of synthesis actually performed for each of the plurality of wireless devices, and the actual number of times obtained from the required number of synthesis Calculating the maximum value obtained by subtracting the number of synthesis, and predicting the reception timing based on the maximum value;
The communication device according to (10).
(12)
The control unit determines a change amount of a phase of the reception confirmation response based on identification information of a wireless device that is a transmission destination of the reception confirmation response, or information on transmission of the signal.
The communication device according to any one of (7) to (11).
(13)
The information regarding the transmission of the signal is information regarding the presence or absence of the transmission of the signal or the transmission timing of the signal.
The communication device according to (12).
(14)
Sending an acknowledgment to the wireless device;
Setting the transmission timing of a signal based on the transmission timing of the reception confirmation response, and causing the signal to be transmitted at the transmission timing of the signal,
Communication control method.
 100  センサ端末
 110  通信部
 120  情報提供部
 130  検出部
 140  信号処理部
 150  記憶部
 160  制御部
 200  基地局
 210  通信部
 220  検出部
 230  信号処理部
 240  記憶部
 250  制御部
 260  有線通信部
 300  アプリケーションサーバ
DESCRIPTION OF SYMBOLS 100 Sensor terminal 110 Communication part 120 Information provision part 130 Detection part 140 Signal processing part 150 Storage part 160 Control part 200 Base station 210 Communication part 220 Detection part 230 Signal processing part 240 Storage part 250 Control part 260 Wired communication part 300 Application server

Claims (14)

  1.  通信装置によって送信される受信確認応答を受信する受信部と、
     前記受信確認応答が受信されたタイミングを起点にして受信待機期間を設定し、前記受信待機期間にて前記受信部に信号受信を待機させる制御部と、を備える、
     無線装置。
    A receiving unit for receiving a reception confirmation response transmitted by the communication device;
    A control unit that sets a reception standby period starting from the timing at which the reception confirmation response is received, and causes the reception unit to wait for signal reception in the reception standby period.
    Wireless device.
  2.  前記制御部は、前記受信確認応答が受信されたタイミングから所定の時間が経過した後の期間を前記受信待機期間として設定する、
     請求項1に記載の無線装置。
    The control unit sets a period after a predetermined time has elapsed from the timing when the reception confirmation response is received as the reception waiting period.
    The wireless device according to claim 1.
  3.  前記無線装置は、
     前記受信部により受信された前記受信確認応答と参照信号との相関を検出する検出部とさらに備え、
     前記制御部は、前記相関のピークのタイミングに応じた間隔長を特定し、前記受信確認応答が受信されたタイミングから前記間隔長が経過した後の期間を前記受信待機期間として設定する、
     請求項1に記載の無線装置。
    The wireless device includes:
    A detection unit that detects a correlation between the reception confirmation response received by the reception unit and a reference signal;
    The control unit specifies an interval length according to the timing of the correlation peak, and sets a period after the interval length has elapsed from a timing when the reception confirmation response is received as the reception waiting period.
    The wireless device according to claim 1.
  4.  前記検出部は、前記無線装置の識別情報に基づいて前記受信確認応答を検出する、
     請求項3に記載の無線装置。
    The detection unit detects the reception confirmation response based on identification information of the wireless device;
    The wireless device according to claim 3.
  5.  前記検出部は、前記識別情報に基づいて前記受信確認応答を検出するための期間を特定し、前記相関のピークが前記期間内に含まれることに基づいて前記受信確認応答を検出する、
     請求項4に記載の無線装置。
    The detection unit identifies a period for detecting the reception confirmation response based on the identification information, and detects the reception confirmation response based on the fact that the correlation peak is included in the period.
    The wireless device according to claim 4.
  6.  通信装置によって送信される受信確認応答を受信することと、
     前記受信確認応答が受信されたタイミングを起点にして受信待機期間を設定し、当該受信待機期間にて信号受信を待機させることと、を有する、
     制御方法。
    Receiving a receipt acknowledgment sent by the communication device;
    Setting a reception waiting period starting from the timing at which the reception confirmation response is received, and waiting for signal reception in the reception waiting period.
    Control method.
  7.  無線装置に対して受信確認応答を送信する送信部と、
     前記受信確認応答の送信タイミングを起点にして信号の送信タイミングを設定し、前記信号の送信タイミングにて前記送信部に前記信号を送信させる制御部と、を備える、
     通信装置。
    A transmission unit that transmits a reception confirmation response to the wireless device;
    A control unit that sets a signal transmission timing starting from the transmission timing of the reception confirmation response, and causes the transmission unit to transmit the signal at the signal transmission timing;
    Communication device.
  8.  前記制御部は、前記受信確認応答の送信タイミングから所定の時間が経過した後の時点を前記信号の送信タイミングとして設定する、
     請求項7に記載の通信装置。
    The control unit sets a time after a predetermined time has elapsed from the transmission timing of the reception confirmation response as the transmission timing of the signal;
    The communication device according to claim 7.
  9.  前記無線装置によって複数回送信される、同一データを含む信号の検出を行う検出部と、
     検出された前記信号からペイロードを取得し、前記ペイロードを合成し、合成後のペイロードに対して復調処理を行う復調部と、をさらに備える、
     請求項7に記載の通信装置。
    A detection unit for detecting a signal including the same data transmitted a plurality of times by the wireless device;
    A demodulator that obtains a payload from the detected signal, synthesizes the payload, and demodulates the combined payload; and
    The communication device according to claim 7.
  10.  前記制御部は、既に検出された信号に含まれるペイロードに対する前記復調処理が成功するために必要な信号の受信タイミングを予測し、前記受信タイミングより後の時点を前記信号の送信タイミングとして設定する、
     請求項9に記載の通信装置。
    The control unit predicts a reception timing of a signal necessary for the demodulation processing to be successful for a payload included in an already detected signal, and sets a time point later than the reception timing as a transmission timing of the signal.
    The communication apparatus according to claim 9.
  11.  前記制御部は、前記復調処理が成功するために必要な合成回数と、実際に行われた合成回数を、複数の前記無線装置毎に取得し、前記必要な合成回数から前記実際に行われた合成回数を引いて得られる値の最大値を算出し、前記最大値に基づいて前記受信タイミングを予測する、
     請求項10に記載の通信装置。
    The control unit acquires the number of times of synthesis necessary for the demodulation process to be successful and the number of times of synthesis actually performed for each of the plurality of wireless devices, and the actual number of times obtained from the required number of synthesis Calculating the maximum value obtained by subtracting the number of synthesis, and predicting the reception timing based on the maximum value;
    The communication device according to claim 10.
  12.  前記制御部は、前記受信確認応答の送信先である無線装置の識別情報、または、前記信号の送信に関する情報に基づいて、前記受信確認応答の位相の変化量を決定する、
     請求項7に記載の通信装置。
    The control unit determines a change amount of a phase of the reception confirmation response based on identification information of a wireless device that is a transmission destination of the reception confirmation response, or information on transmission of the signal.
    The communication device according to claim 7.
  13.  前記信号の送信に関する情報は、前記信号の送信の有無、または、前記信号の送信タイミングに関する情報である、
     請求項12に記載の通信装置。
    The information regarding the transmission of the signal is information regarding the presence or absence of the transmission of the signal or the transmission timing of the signal.
    The communication device according to claim 12.
  14.  無線装置に対して受信確認応答を送信することと、
     前記受信確認応答の送信タイミングを起点にして信号の送信タイミングを設定し、前記信号の送信タイミングにて前記信号を送信させることと、を有する、
     通信制御方法。
    Sending an acknowledgment to the wireless device;
    Setting the transmission timing of a signal based on the transmission timing of the reception confirmation response, and causing the signal to be transmitted at the transmission timing of the signal,
    Communication control method.
PCT/JP2017/020219 2016-07-26 2017-05-31 Wireless device, communication device, control method, and communication control method WO2018020820A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018529392A JP7056561B2 (en) 2016-07-26 2017-05-31 Wireless device, communication device, control method and communication control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016146491 2016-07-26
JP2016-146491 2016-07-26

Publications (1)

Publication Number Publication Date
WO2018020820A1 true WO2018020820A1 (en) 2018-02-01

Family

ID=61016748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020219 WO2018020820A1 (en) 2016-07-26 2017-05-31 Wireless device, communication device, control method, and communication control method

Country Status (2)

Country Link
JP (1) JP7056561B2 (en)
WO (1) WO2018020820A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014525716A (en) * 2011-08-31 2014-09-29 クゥアルコム・インコーポレイテッド Power saving using data fetch time, data end instruction, and more data acknowledgment
WO2015130605A1 (en) * 2014-02-27 2015-09-03 Qualcomm Incorporated Method and apparatus for power efficient downstream communication in sensor networks
WO2016047012A1 (en) * 2014-09-25 2016-03-31 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Communication apparatus, transmission method and reception method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014525716A (en) * 2011-08-31 2014-09-29 クゥアルコム・インコーポレイテッド Power saving using data fetch time, data end instruction, and more data acknowledgment
WO2015130605A1 (en) * 2014-02-27 2015-09-03 Qualcomm Incorporated Method and apparatus for power efficient downstream communication in sensor networks
WO2016047012A1 (en) * 2014-09-25 2016-03-31 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Communication apparatus, transmission method and reception method

Also Published As

Publication number Publication date
JPWO2018020820A1 (en) 2019-05-09
JP7056561B2 (en) 2022-04-19

Similar Documents

Publication Publication Date Title
KR102664935B1 (en) Optimized transmission for single-sided/double-sided bidirectional ranging between multiple devices
CN109716694B (en) Transmission method of HARQ-ACK feedback information and related device
EP2524570B1 (en) Method and apparatus for providing machine-to-machine communication in a wireless network
US8712483B2 (en) Wake-up radio system
US20210320749A1 (en) Sequence generation method, signal receiving method, apparatus, and terminal
US20140269667A1 (en) Method and apparatus for dynamic configuration of packet preambles for synchronization-based transmissions
WO2020063228A1 (en) Signal sending method and receiving method and sending device and receiving device
US20210226832A1 (en) Non-coherent backscatter communications over ambient-based wireless source
KR101245679B1 (en) System and method to implement synchronous channel timing in a wireless communications network
JP7306266B2 (en) Wireless communication device, wireless communication method and wireless communication system
WO2017208594A1 (en) Wireless device, communication device, control method, and wireless control method
CN107211351B (en) Quick initial link circuit establishes discovery (FD) frame transmission
CN107113118B (en) Response message transmission method and network equipment
EP3780458B1 (en) Uplink transmission method and terminal
WO2018020820A1 (en) Wireless device, communication device, control method, and communication control method
JP4455541B2 (en) Mobile station apparatus, base station apparatus, and uplink user synchronization method
JP7280368B2 (en) Data scheduling method, apparatus and system
JPWO2011093123A1 (en) Wireless base station, transmission method, program
JP6743497B2 (en) Communication device, communication method, program, and communication system
WO2019096074A1 (en) Communication method and device
JP6859610B2 (en) Communication device, information processing device, communication method and information processing method
CN106330407A (en) Information transmitting method and system, transmitting equipment and receiving equipment
WO2017203820A1 (en) Communication device and communication control method
CN113381846B (en) Communication method, device and terminal equipment
JP2007187513A (en) Position estimation system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018529392

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833831

Country of ref document: EP

Kind code of ref document: A1