WO2017203807A1 - Braking system and electric brake driving device - Google Patents

Braking system and electric brake driving device Download PDF

Info

Publication number
WO2017203807A1
WO2017203807A1 PCT/JP2017/010673 JP2017010673W WO2017203807A1 WO 2017203807 A1 WO2017203807 A1 WO 2017203807A1 JP 2017010673 W JP2017010673 W JP 2017010673W WO 2017203807 A1 WO2017203807 A1 WO 2017203807A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage device
power storage
wiring
brake
Prior art date
Application number
PCT/JP2017/010673
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 貴人
隆規 水崎
小西 泰史
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2017203807A1 publication Critical patent/WO2017203807A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems

Definitions

  • the present invention relates to a brake system and an electric brake driving device for applying a braking force to a vehicle such as an automobile.
  • Patent Document 1 As a brake system for applying a braking force to a vehicle such as an automobile, a configuration in which the braking force is generated by an electric brake actuator is known (Patent Document 1).
  • Patent Document 1 when the remaining power of the main power source is reduced, power is supplied from the auxiliary power source to the control device of the brake actuator, and when the remaining power is further reduced, the brake actuator is also supplied with power from the auxiliary power source.
  • the supply configuration is described.
  • the power consumption of the auxiliary power source may increase.
  • An object of the present invention is to provide a brake system and an electric brake driving device capable of suppressing power consumption of a second power storage device (second power source) serving as an auxiliary power source.
  • a brake system includes a brake device having an electric motor that generates a braking force of the vehicle and a control device that controls the electric motor, and a brake device that is provided in the vehicle and connected to a starter. Output when the voltage of the first power storage device, the second power storage device provided in the vehicle separately from the first power storage device, and the voltage of the first power storage device become a predetermined value or less.
  • a power supply unit that switches electric power from the first power storage device to the second power storage device, and the electric motor is connected to the first power storage device by a first wiring connected to the first power storage device. Electric power is supplied from the power storage device, and the control device is configured to supply electric power from the power supply unit through a second wiring connected to the power supply unit.
  • a brake system includes a brake device that includes an electric motor that generates a braking force of the vehicle and a control device that controls the electric motor, and a first device that is provided in the vehicle and connected to a starter.
  • a power supply unit including a second power storage device provided in the vehicle separately from the first power storage device, and when the voltage of the first power storage device becomes a predetermined value or less, the control device And a power supply unit configured to switch the supply source of power to be output from the first power storage device to the second power storage device. Electric power is supplied to the electric motor from the first power storage device through the first wiring connected to the first power storage device, and the voltage of the first power storage device is equal to or lower than a predetermined value to the control device. Sometimes, power is supplied from the power supply unit through the second wiring connected to the power supply unit.
  • an electric brake driving device includes a power element that supplies electric power to a motor that generates a braking force of the vehicle, and an arithmetic element that controls the power element.
  • the electric brake driving device is provided in the vehicle and supplies power to devices in the vehicle.
  • the electric brake drive device is provided in the vehicle separately from the first power source.
  • a second power source for supplying power to the device.
  • the power element is not electrically connected to the second power source, but is electrically connected to the first power source, and the arithmetic element is electrically connected to the first power source and the second power source.
  • the brake system and the electric brake drive device according to the embodiment of the present invention can suppress the power consumption of the second power storage device (second power source).
  • the flowchart which shows the control processing by the control apparatus in FIG. The block diagram which shows the brake system by 11th Embodiment.
  • the flowchart which shows the control processing by the control apparatus in FIG. A block diagram showing a brake system by a 15th embodiment.
  • FIG. 1 shows a first embodiment.
  • a brake system 1 mounted on a vehicle includes a brake device 2, a first power storage device 12 serving as a first power source (main power source), and a second power different from the first power source.
  • the brake device 2 is provided in the vehicle and applies braking force to the vehicle.
  • the brake device 2 is configured as an electric booster (electric booster), for example.
  • the electric booster electrically controls brake fluid pressure generated by a master cylinder (not shown) for supplying brake fluid to a wheel cylinder (not shown) of the vehicle.
  • the wheel cylinder corresponds to, for example, a brake cylinder such as a disc brake or a drum brake provided on the wheel side of the vehicle.
  • the brake device 2 as an electric booster supplies the brake fluid pressure to the wheel cylinder by generating the brake fluid pressure in the master cylinder based on the driver's operation of the brake pedal or the like.
  • the wheel cylinder is a disc brake
  • a braking force is applied to the vehicle by pressing the pad against the disc.
  • the wheel cylinder is a drum brake, a braking force is applied to the vehicle by pressing the shoe against the drum.
  • the brake device 2 includes an electric motor 3 that generates a braking force of the vehicle, a control device 8 that controls the electric motor 3, and a safe switch 10 that cuts off power supply to the electric motor 3 when the brake device 2 is abnormal.
  • the electric motor 3 includes a motor 4 serving as an electric actuator and an inverter circuit 5 serving as a power element.
  • the brake device 2 is integrally configured as one assembly (unit) including at least the electric motor 3 and the control device 8.
  • the brake device 2 is provided with connectors 2A and 2B that serve as terminals for connection to a power source.
  • the brake device 2 is provided with two connectors 2A and 2B including a first connector 2A and a second connector 2B.
  • the motor 4 is configured as an electric motor such as a DC brushless motor, for example.
  • the motor 4 is driven to rotate according to a braking request signal based on a driver's depression of a brake pedal (not shown) or a braking request signal from an automatic brake control device (not shown), etc. Is generated.
  • the rotation of the motor 4 is converted into a linear movement displacement (axial displacement) of a piston (power pinston) via a speed reduction mechanism such as a belt transmission (not shown) and a rotation / linear motion conversion mechanism such as a ball screw.
  • a brake fluid pressure is generated in the master cylinder based on the displacement of the piston, whereby the brake fluid pressure is supplied to the wheel cylinder and a braking force is applied to the vehicle.
  • the inverter circuit 5 supplies necessary power to the motor 4.
  • the inverter circuit 5 is electrically connected to the motor 4 via the motor power line 6. Further, the inverter circuit 5 is electrically connected to the first power storage device 12 via a first wiring 25 described later.
  • a plurality of switching elements are accommodated in the inverter circuit 5. On / off (open) of the switching element is controlled by the control device 8. For this purpose, the inverter circuit 5 and the control device 8 are connected via the first signal line 7.
  • the control device 8 is configured to include a microcomputer as an arithmetic element. That is, the control device 8 includes a circuit for performing other necessary calculations, control, communication and the like in addition to the CPU and the memory.
  • the control device 8 and the inverter circuit 5 constitute an electric brake drive device for driving the motor 4, that is, an ECU 9 called an electronic control device (Electronic Control Unit).
  • the ECU 9 is connected to the first power storage device 12 and the second power storage device 15.
  • the control device 8 controls (drive control, rotation control) the motor 4 by controlling (switching control) the inverter circuit 5 as a power element.
  • a stroke sensor (not shown) for detecting an operation amount (displacement amount, stepping amount) of the brake pedal by the driver is connected to the control device 8 via a signal line (not shown).
  • the detection signal of the stroke sensor is input to the control device 8 as a braking request signal for the brake device 2.
  • the control device 8 is connected to various electronic devices (various ECUs) including an automatic brake control device via a vehicle data bus (not shown) constituting a CAN (Controller (Area (Network).
  • the automatic brake command of the automatic brake control device is input to the control device 8 as a braking request signal for the brake device 2.
  • the safe switch 10 is connected to the control device 8 via the second signal line 11.
  • the safe switch 10 is constituted by, for example, an electromagnetic relay and becomes a fail-safe relay.
  • the safe switch 10 is cut off based on an OFF command from the control device 8. Thereby, the electric power supply with respect to the electric motor 3 is interrupted
  • the first power storage device 12 is provided in the vehicle.
  • the first power storage device 12 is a first power source (vehicle power source) that supplies power to devices in the vehicle.
  • the first power storage device 12 serves as a main power source of various electric devices (electrical components) mounted on the vehicle, and is configured as a chargeable / dischargeable battery, for example.
  • the first power storage device 12 (positive electrode thereof) is electrically connected to various electric devices including the brake device 2, the starter device 13, and the power supply unit 16.
  • the first power storage device 12 is connected to a generator (not shown) that generates electric power by being rotationally driven by a vehicle engine (not shown).
  • the first power storage device 12 stores the power generated by the generator. That is, the generator is electrically connected to various electric devices including the first power storage device 12. While the engine is being driven (during rotation or operation), the generated power can be supplied from the generator to various electric devices including the first power storage device 12. Therefore, the first power storage device 12 serves as a main power source when the generator is not generating power, such as when the engine is stopped.
  • the first power storage device 12 is connected to a starting device 13 for starting the engine via a starting power line 14.
  • the starter 13 is a starter motor that rotates when the engine is started, and rotationally drives the crankshaft of the engine.
  • the starter 13 is operated when the driver operates an engine start switch (ignition switch) (not shown), more specifically, when a key of a key switch is operated to a start position, or a start switch (power Rotates when the switch is turned on.
  • the starter 13 performs an operation (start start operation) for starting the vehicle (for example, depressing the brake pedal). When it is released, when the clutch pedal is depressed, the steering wheel is squeezed) and it rotates.
  • the starter 13 rotates when electric power is supplied from the first power storage device 12 via the start power supply line 14 when starting the engine.
  • the second power storage device 15 is provided in the vehicle separately from the first power storage device 12.
  • the second power storage device 15 is a second power source (sub power source) that supplies power to devices in the vehicle as the voltage of the first power storage device 12 decreases. That is, the second power storage device 15 serves as an auxiliary power source for the control device 8 of the brake device 2 when, for example, the generator does not generate power and the voltage of the first power storage device 12 decreases.
  • the second power storage device 15 (the positive electrode thereof) is electrically connected to the control device 8 of the brake device 2.
  • the second power storage device 15 has a capacity smaller than that of the first power storage device 12, for example, and stores the power from the generator and the first power storage device 12.
  • Voltage V2 of second power storage device 15 can be set to be equal to or lower than voltage V1 of first power storage device 12 (V2 ⁇ V1).
  • the second power storage device 15 is not only the control device 8 of the brake device 2 but also an electrical device (for example, a hydraulic pressure) that needs to secure a voltage (power supply) as in the control device 8 of the brake device 2.
  • You may comprise as an auxiliary power supply of the control apparatus for supply apparatuses. In this case, it is necessary not only to connect the second power storage device 15 to the control device 8 of the brake device 2 but also to ensure a voltage (power supply) as with the control device 8 of the brake device 2. Electrically connect to the equipment.
  • the power supply unit 16 is provided in the vehicle.
  • the power supply unit 16 is connected to the first power storage device 12 via a supply unit power line 17.
  • the power supply unit 16 is connected to the control device 8 of the brake device 2 through a second wiring 26 described later.
  • the power supply unit 16 can switch the output power from the first power storage device 12 to the second power storage device 15 when the voltage of the first power storage device 12 becomes a predetermined value or less.
  • the power supply unit 16 includes a second power storage device 15 and a charging circuit 18.
  • the charging circuit 18 is connected to the power supply line 17 for supply unit through the first supply unit line 19.
  • the charging circuit 18 is connected to the second power storage device 15 via the second supply unit line 20.
  • the charging circuit 18 is a circuit that performs step-up / step-down adjustment when the voltage of the second power storage device 15 is different from the rated voltage. That is, the charging circuit 18 is a circuit for preventing overvoltage and overcharging of the second power storage device 15.
  • the charging circuit 18 includes, for example, a DC-DC converter.
  • the second power storage device 15 is connected to the second wiring 26 via the third supply line 21.
  • the second power storage device 15 is connected to the control device 8 of the brake device 2 via the third supply line 21 and the second wiring 26.
  • the first supply line 19 and the third supply line 21 are connected via a fourth supply line 22. That is, the first supply section line 19 is branched from the middle of the fourth supply section line 22, and the fourth supply section line 22 is connected to the third supply section line 21.
  • one end side of the fourth supply unit line 22 is connected to an intermediate portion of the first supply unit line 19, and the other end side of the fourth supply unit line 22 is connected to the third supply unit line 21. It is connected to the middle part.
  • the fourth supply unit line 22 is a third wiring for supplying power from the first power storage device 12 to the control device 8 of the brake device 2, and is provided in the power supply unit 16.
  • the second power storage device 15 to the brake device between the second power storage device 15 and the connection portion of the third supply portion line 21 with the other end side of the fourth supply portion line 22.
  • a first diode 23 that allows current in the direction toward the second control device 8 and blocks current in the reverse direction.
  • a second diode 24 that allows a current in the direction from the first power storage device 12 to the control device 8 of the brake device 2 and cuts off a reverse current. Is provided.
  • the first diode 23 and the second diode 24 are backflow prevention devices that prevent backflow of current, and are provided in the power supply unit 16.
  • the electric power having the higher voltage of the first power storage device 12 and the second power storage device 15 is supplied to the control device 8. That is, when the voltage of the first power storage device 12 is equal to or higher than the voltage of the second power storage device 15, the power supply line 17 for supply unit, the fourth supply unit line 22, and a second power source described later. Electric power is supplied to the control device 8 through the wiring 26. On the other hand, when the voltage of the first power storage device 12 is equal to or lower than the voltage of the second power storage device 15, the control device 8 is connected from the second power storage device 15 via the third supply line 21 and the second wiring 26. Is supplied with power.
  • the power supply unit 16 supplies the output power from the first power storage device 12 to the second power storage device 12. Switching to the power storage device 15 is possible. Therefore, even when the voltage of the first power storage device 12 temporarily drops below the voltage of the second power storage device 15 due to the driving of the starter 13, the control device 8 is provided with a second wiring 26 described later. The voltage of the 2nd electrical storage apparatus 15 is applied through. Thereby, it can suppress that the control apparatus 8 is reset by a low voltage.
  • the predetermined value (the voltage of the second power storage device 15) conforms to the specification of the control device 8, the specification of the vehicle, etc. so that the control device 8 can be stably operated (not reset). Set accordingly.
  • the brake device needs two power lines, that is, a power supply for the control device and a power supply for the motor.
  • a case is considered where the voltage (remaining amount of power) of the main power source serving as the vehicle power source is reduced due to the start of the engine which is an internal combustion engine.
  • the power consumption of the auxiliary power source is increased in the case of switching the power supply of both power supply lines from the main power source to the auxiliary power source. . That is, the power consumption of the auxiliary power source increases as the power supply to the two power supply lines increases.
  • the auxiliary power supply it is necessary for the auxiliary power supply to supply electric power to in-vehicle devices (electric devices mounted on the vehicle) other than the brake device. For this reason, in the case of the prior art, it is necessary to increase the capacity of the auxiliary power source in order to ensure the rated voltage of each in-vehicle device including the brake device. In addition, as the capacity of the auxiliary power source is changed, it is necessary to change the circuit and control related to the auxiliary power source. This may increase the cost.
  • the electric motor 3 of the brake device 2 and the first power storage device 12 are connected via the first wiring 25 serving as the electric motor wiring.
  • the control device 8 of the brake device 2 and the power supply unit 16 are connected via a second wiring 26 serving as a control device wiring. Accordingly, electric power is supplied from the first power storage device 12 to the electric motor 3 through the first wiring 25 connected to the first power storage device 12.
  • the control device 8 is supplied with power from the power supply unit 16 through the second wiring 26 connected to the power supply unit 16.
  • the inverter circuit 5 is not electrically connected to the second power storage device 15, but is electrically connected to the first power storage device 12, and the control device 8 includes the first power storage device 12 and the second power storage device 12.
  • the power storage device 15 is electrically connected.
  • the first wiring 25 includes a first external wiring 25 ⁇ / b> A connecting the first power storage device 12 and the first connector 2 ⁇ / b> A of the brake device 2, and the first connector 2 ⁇ / b> A and the electric motor 3. And a first internal wiring 25B that connects the two.
  • the second wiring 26 connects the power supply unit 16 and the second connector 2B of the brake device 2 with the second external wiring 26A, and connects the second connector 2B and the control device 8 with the second wiring 26A. 2 internal wirings 26B.
  • a current in a direction from the power supply unit 16 toward the control device 8 of the brake device 2 is allowed, and the reverse A third diode 27 is provided to cut off the directional current.
  • the third diode 27 is a backflow prevention device that prevents backflow of current, and is provided in the brake device 2.
  • the brake system 1 for a four-wheeled vehicle has the above-described configuration, and the operation thereof will be described next.
  • the control device 8 of the brake device 2 drives the motor 4 of the electric motor 3 according to the amount of depression of the brake pedal, and generates brake fluid pressure in the master cylinder.
  • the brake fluid pressure generated in the master cylinder is supplied to the wheel cylinder (front wheel side brake, rear wheel side brake).
  • the motor 4 of the electric motor 3 rotates in the direction opposite to that at the time of depression, and the brake fluid returns from the wheel cylinder to the master cylinder. As a result, the application of the braking force is released.
  • the engine when the vehicle running is decelerated or stopped by depressing the brake pedal or the like, and when a predetermined time elapses in an extremely low speed or stopped state, the engine is stopped by the idling stop function. When the engine stops, power generation by the generator stops. At this time, when the voltage of the first power storage device 12 is higher than the voltage of the second power storage device 15, power is supplied from the first power storage device 12 to both the motor 3 and the control device 8 of the brake device 2. Supplied. That is, when the voltage of the first power storage device 12 is higher than the voltage of the second power storage device 15, the power of the first power storage device 12 is supplied to the control device 8 via the power supply unit 16.
  • the voltage of the first power storage device 12 is applied to the motor 3 of the brake device 2 via the first wiring 25, and the control device 8 of the brake device 2 is connected to the motor 3 of the brake device 2 via the second wiring 26.
  • the voltage of the first power storage device 12 is applied.
  • the voltage of the first power storage device 12 is applied to the motor 3 of the brake device 2 via the first wiring 25, and the voltage of the second power storage device 15 is not applied. That is, the electric power of the second power storage device 15 is not supplied to the electric motor 3 of the brake device 2 even when the voltage of the first power storage device 12 is lower than the voltage of the second power storage device 15. For this reason, the power consumption of the 2nd electrical storage apparatus 15 can be suppressed.
  • the electric motor 3 is supplied with electric power from the first power storage device 12 through the first wiring 25, and the control device 8 is supplied with electric power from the power supply unit 16 through the second wiring 26.
  • the inverter circuit 5 is not electrically connected to the second power storage device 15, but is electrically connected to the first power storage device 12, and the control device 8 is connected to the first power storage device 12 and the second power storage device 12. It is electrically connected to the device 15.
  • the 1st electrical storage apparatus 12 is enough (when it is higher than the voltage of the 2nd electrical storage apparatus 15 which is a predetermined value)
  • the 1st electrical storage apparatus is supplied from the power supply part 16 to the control apparatus 8. 12 electric power is supplied through the second wiring 26.
  • the starter 13 when the engine (internal combustion engine) provided in the vehicle is started by the starter 13, for example, the voltage of the first power storage device 12 decreases due to the start of the engine (the second power storage device 15 having a predetermined value).
  • the power output from the power supply unit 16 is switched to the second power storage device 15, and the control device 8 receives the second power from the power supply unit 16 to the second power storage device 15. Is supplied via the wiring 26.
  • the control device 8 is supplied with power from the first power storage device 12 through the fourth supply unit line 22 serving as the third wiring. For this reason, when the voltage of the first power storage device 12 is sufficient (when the voltage of the second power storage device 15 is higher), the fourth supply line 22 is connected from the first power storage device 12 to the control device 8. Thus, power can be supplied stably.
  • the power supply unit 16 directly connects the first supply unit line 19 and the third supply unit line 21 via the fourth supply unit line 22, and
  • the first diode 23 is provided in the middle of the supply unit line 21, and the second diode 24 is provided in the middle of the fourth supply unit line 22.
  • the output power from the power supply unit 16 can be switched seamlessly (without interruption) from the first power storage device 12 to the second power storage device 15.
  • the wiring which connects the 1st electrical storage apparatus 12 and the control apparatus 8 to the exterior of the power supply part 16 is unnecessary, and can reduce a number of parts.
  • FIG. 2 shows a second embodiment.
  • a feature of the second embodiment is that the first power storage device and the control device are connected by a third wiring provided outside the power supply unit.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the brake device 2 is provided with a third connector 2C in addition to the first connector 2A and the second connector 2B. That is, in the second embodiment, three connectors 2A, 2B, and 2C are provided in the brake device 2.
  • the power supply unit 31 switches the output power from the first power storage device 12 to the second power storage device 15 when the voltage of the first power storage device 12 becomes a predetermined value or less (detects that). Can do.
  • the power supply unit 31 includes the second power storage device 15, the charging circuit 18, and the changeover switch 32.
  • the changeover switch 32 connects the second wiring 26 to the first power storage device 12 or the second power storage device 15 in accordance with the voltage of the first power storage device 12.
  • the changeover switch 32 is connected to the first supply unit line 19 via the fifth supply unit line 33 and connected to the second power storage device 15 via the sixth supply unit line 34. It is connected to the second wiring 26 through the seventh supply line 35.
  • one end side of the fifth supply unit line 33 is connected to the intermediate portion of the first supply unit line 19, and the other end side of the fifth supply unit line 33 is connected to the changeover switch 32. . That is, the first supply section line 19 is branched from the fifth supply section line 33 from the middle thereof.
  • the switch 32 connects the fifth supply line 33 and the seventh supply line 35 when the voltage of the first power storage device 12 is high (exceeds a predetermined value).
  • the changeover switch 32 switches between the sixth supply line 34 and the seventh supply line 35 as shown in FIG. Connect.
  • the changeover switch 32 is switched by a command from a power supply control unit (not shown) provided in the power supply unit 31.
  • a voltage detection sensor (not shown) that detects the voltage of the first power storage device 12 is connected to the power supply controller.
  • the power supply control unit sets the changeover switch 32 to the changeover position shown in FIG.
  • the predetermined value is set according to the specification of the control device 8, the specification of the vehicle, and the like so as to be a voltage value at which the control device 8 can be stably operated (not reset).
  • the power supply unit control device may be configured to acquire the voltage of the first power storage device 12 from the vehicle data bus that constitutes the CAN.
  • the third wiring 36 is a wiring different from the first wiring 25 and the second wiring 26, and is provided outside the power supply unit 31.
  • the third wiring 36 supplies power from the first power storage device 12 to the control device 8 of the brake device 2.
  • the third wiring 36 is connected to the first power storage device 12 and the control device 8 of the brake device 2 outside the power supply unit 31. That is, one end side of the third wiring 36 is connected to the first power storage device 12 outside the brake device 2, and the other end side of the third wiring 36 is connected to the control device 8 inside the brake device 2. ing. More specifically, the other end of the third wiring 36 is connected in the middle of the second wiring 26, that is, between the third diode 27 and the control device 8 in the second internal wiring 26 ⁇ / b> B. ing.
  • the third wiring 36 includes a third external wiring 36A connecting the first power storage device 12 and the third connector 2C of the brake device 2, and the third connector 2C and the second internal wiring.
  • a third internal wiring 36B connecting the wiring 26B is included. Then, in the middle of the third wiring 36 (third internal wiring 36B), a current in a direction from the first power storage device 12 toward the control device 8 of the brake device 2 is allowed, and a current in the reverse direction is cut off.
  • a fourth diode 37 is provided.
  • the fourth diode 37 is a backflow prevention device that prevents backflow of current, and is provided in the brake device 2.
  • the power output from the power supply unit 31 is switched between the first power storage device 12 and the second power storage device 15 by switching the changeover switch 32 as described above. There is no particular difference from that according to the first embodiment.
  • a changeover switch 32 for switching the output voltage from the first power storage device 12 to the second power storage device 15 is provided in the power supply unit 31.
  • a third wiring 36 connected to the first power storage device 12 and the control device 8 of the brake device 2 is provided outside the power supply unit 31. Therefore, when the power output from the power supply unit 31 is switched from the first power storage device 12 (or the second power storage device 15) to the second power storage device 15 (or the first power storage device 12). Even if the output voltage is temporarily (instantaneously) interrupted (interrupted) by switching the changeover switch 32, power is continuously supplied from the first power storage device 12 to the control device 8 through the third wiring. Can do. Thereby, even when the power output from the power supply unit 31 is switched between the first power storage device 12 and the second power storage device 15, power can be stably supplied to the control device 8. .
  • FIG. 3 shows a third embodiment.
  • the third wiring is configured to be branched from the first wiring in the brake device and connected to the control device. Note that in the third embodiment, the same components as those in the second embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the brake device 2 is provided with two connectors 2A and 2B, similarly to the brake device 2 of the first embodiment.
  • Third wiring 41 is provided inside brake device 2 and supplies power from first power storage device 12 to control device 8. That is, the third wiring 41 connects the first power storage device 12 and the control device 8 in the brake device 2.
  • the third wiring 41 branches from the first wiring 25 in the brake device 2 and is connected to the control device 8. That is, one end side of the third wiring 41 is connected in the middle of the first wiring 25, more specifically, in the middle of the first internal wiring 25B.
  • the other end side of the third wiring 41 is connected in the middle of the second wiring 26, that is, between the third diode 27 and the control device 8 in the second internal wiring 26 ⁇ / b> B.
  • the third wiring 41 is an internal wiring of the brake device 2, and a fourth diode 37 is provided in the middle of the third wiring 41.
  • the third embodiment electric power is supplied from the first power storage device 12 to the control device 8 through the third wiring 41 as described above, and the basic operation is exceptionally different from that in the second embodiment. There is no difference.
  • the third wiring 41 is provided in the brake device 2, the number of connectors 2C of the brake device 2 can be reduced as compared with the second embodiment.
  • one wire harness (only the first wiring 25) for connecting the first power storage device 12 and the brake device 2 can be provided. Thereby, the connection operation
  • FIG. 4 shows a fourth embodiment.
  • a feature of the fourth embodiment is that the power output to the control device is switched from the first power storage device to the second power storage device without including the power supply unit used in the first to third embodiments.
  • the configuration is such that it can be used. Note that in the fourth embodiment, the same components as those in the second embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the power supply units 16 and 31 used in the first to third embodiments are not provided.
  • the first power storage device 12 and the charging circuit 18 are connected by the first charging line 51.
  • the charging circuit 18 and the second power storage device 15 are connected by a second charging line 52.
  • the second power storage device 15 and the control device are connected by a second wiring 53.
  • the second wiring 53 is provided between the second external wiring 53A that connects the second power storage device 15 and the second connector 2B of the brake device 2, and between the second connector 2B and the control device 8.
  • the second internal wiring 53B to be connected is included.
  • a third diode 27 is provided in the middle of the second internal wiring 53B.
  • the control device 8 is connected to the second power storage device 15 via the second wiring 53 and is connected to the first power storage device 12 via the third wiring 36.
  • a third diode 27 is provided in the second wiring 53 (second internal wiring 53B), and a fourth diode 37 is provided in the third wiring 36.
  • the control device 8 includes the first power storage device 12 by the second wiring 53 connected to the second power storage device 15 and the third wiring 36 connected to the first power storage device 12.
  • power is supplied from the second power storage device 15 (a power storage device having a high output voltage).
  • power is supplied from the first power storage device 12 or the second power storage device 15 to the control device 8 by the third wiring 36 and the second wiring 53 as described above.
  • the basic action is not different from that according to the second embodiment.
  • the electric motor 3 is supplied with electric power from the first power storage device 12 through the first wiring 25, and the control device 8 is supplied from the second power storage device 15 through the second wiring 53.
  • power is supplied from the first power storage device 12 through the third wiring 36. That is, the inverter circuit 5 is not electrically connected to the second power storage device 15, but is electrically connected to the first power storage device 12, and the control device 8 is connected to the first power storage device 12 and the second power storage device 12. It is electrically connected to the device 15.
  • the control device 8 when the voltage of the first power storage device 12 is sufficient (when the voltage is higher than the voltage of the second power storage device 15), the control device 8 is connected to the control device 8 via the third wiring 36. Power is supplied. On the other hand, when the voltage of the first power storage device 12 decreases (below the voltage of the second power storage device 15) due to the start of the engine or the like, the control device 8 receives the second power storage device 15 from the second power storage device 15. Electric power is supplied through the second wiring 53. Thereby, even if the voltage of the 1st electrical storage apparatus 12 falls, the voltage of the control apparatus 8 can be ensured and it can suppress that the control apparatus 8 becomes a low voltage and is reset (restarted).
  • FIG. 5 shows a fifth embodiment.
  • a feature of the fifth embodiment resides in that the third wiring is branched from the first wiring in the brake device and connected to the control device.
  • the same components as those in the fourth embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the brake device 2 is provided with two connectors 2A and 2B, similarly to the brake device 2 of the first embodiment.
  • the third wiring 61 branches from the first wiring 25 in the brake device 2 and is connected to the control device 8.
  • a fourth diode 37 is provided in the middle of the third wiring 61.
  • the fifth embodiment electric power is supplied from the first power storage device 12 to the control device 8 through the third wiring 61 as described above, and the basic operation is exceptionally different from that in the fourth embodiment. There is no difference.
  • the third wiring 61 is provided in the brake device 2, the number of connectors 2C of the brake device 2 can be reduced compared to the fourth embodiment.
  • one wire harness (only the first wiring 25) for connecting the first power storage device 12 and the brake device 2 can be provided.
  • FIG. 6 and FIG. 7 show a sixth embodiment.
  • the brake device includes a cutoff device that cuts off or connects the power supply from the second power storage device to the control device.
  • the same components as those in the second embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the brake device 2 has a shut-off device 71 inside.
  • the shut-off device 71 is provided in the brake device 2 in the middle of the second wiring 26, more specifically, between the second connector 2B of the brake device 2 and the third diode 27 in the second internal wiring 26B. It is provided in between.
  • the shut-off device 71 shuts off or connects the power supply from the power supply unit 31 (more specifically, the second power storage device 15) to the control device 8.
  • the blocking device 71 is controlled to be blocked and connected by the control device 8.
  • the shutoff device 71 is connected to the control device 8 via the signal line 72.
  • blocking apparatus 71 can be comprised by switches, such as an electromagnetic relay, for example.
  • blocking apparatus 71 When the voltage of the 1st electrical storage apparatus 12 becomes below a predetermined value, the interruption
  • FIG. On the other hand, when the voltage of the first power storage device 12 is higher than a predetermined value, the cutoff device 71 enters a cutoff state in which power supply from the second power storage device 15 to the control device 8 is cut off.
  • the control device 8 acquires the voltage of the first power storage device 12 from, for example, a vehicle data bus that constitutes the CAN.
  • the predetermined value is set according to the specification of the control device 8, the specification of the vehicle, and the like so as to be a voltage value that allows the control device 8 to operate stably (not reset).
  • the predetermined value of the voltage for switching the shut-off device 71 may be the same as or different from the predetermined value of the voltage for switching the changeover switch 32 of the power supply unit 31 (for example, from the predetermined value of the changeover switch 32). Alternatively, the predetermined value of the blocking device 71 may be lowered).
  • FIG. 7 shows a control process performed by the control device 8.
  • the control device 8 repeatedly executes the control process shown in FIG. 7 at a predetermined control cycle.
  • S1 it is determined whether or not the voltage of the first power storage device 12 is equal to or lower than a predetermined value. For this determination, the voltage of the first power storage device 12 acquired from the vehicle data bus can be used. If “YES” in S1, that is, if it is determined that the voltage of the first power storage device 12 is equal to or lower than the predetermined value, the process proceeds to S2.
  • the shut-off device 71 is set in a connected state. That is, the control device 8 outputs a connection command to the blocking device 71.
  • the process returns (returns to the start via the return, and repeats the processes after S1).
  • the process proceeds to S3.
  • the shut-off device 71 is put into a shut-off state. That is, the control device 8 outputs a cutoff command to the cutoff device 71. If the shut-off device 71 is put into a shut-off state in S3, the process returns.
  • the breaking device 71 is provided in the brake device 2 as described above, and the basic action is not different from that in the second embodiment.
  • the control device 8 and the second power storage device 15 can be disconnected or connected by the blocking device 71 in the brake device 2. Thereby, for example, even when the power output from the power supply unit 31 is the power of the second power storage device 15, the power of the first power storage device 12 is cut off by turning off the shut-off device 71. Can be supplied to. Thereby, the power consumption of the 2nd electrical storage apparatus 15 can be suppressed.
  • the shut-off device 71 is connected to connect the power supply from the second power storage device 15 to the control device 8 when the voltage of the first power storage device 12 becomes a predetermined value or less. Become. For this reason, when the voltage of the 1st electrical storage apparatus 12 becomes below a predetermined value, electric power can be stably supplied from the 2nd electrical storage apparatus 15 to the control apparatus 8.
  • FIG. 1st electrical storage apparatus 12 becomes below a predetermined value, electric power can be stably supplied from the 2nd electrical storage apparatus 15 to the control apparatus 8.
  • a blocking device 71 is provided in the brake device 2 of the third embodiment shown in FIG.
  • a breaking device 71 is provided in the brake device 2 of the fourth embodiment shown in FIG.
  • it may be configured as in the ninth embodiment shown in FIG.
  • a breaking device 71 is provided in the brake device 2 of the fifth embodiment shown in FIG.
  • the control device 8 and the second power storage device 15 may be disconnected or connected by the disconnection device 71 in the brake device 2. it can. Further, even when the voltage of the first power storage device 12 becomes a predetermined value or less, it is possible to stably supply power to the control device 8.
  • FIGS. 11 and 12 show a tenth embodiment.
  • a feature of the tenth embodiment is that a shut-off device is connected when the internal combustion engine is started. Note that in the tenth embodiment, identical symbols are assigned to components identical to those in the second and sixth embodiments and descriptions thereof are omitted.
  • the brake device 2 has the interruption
  • the shutoff device 71 is connected from the second power storage device 15 to the control device 8 when the engine 81 that is an internal combustion engine is started, that is, when the engine 81 is started. A connection state for connecting the power supply is established.
  • the shut-off device 71 is It will be in the interruption
  • the control device 8 acquires cranking information of the engine 81 (for example, information that the crankshaft of the engine 81 is rotationally driven by the starter 13) from, for example, the vehicle data bus 82 that constitutes the CAN. To do.
  • the control device 8 determines that the engine 81 is started based on the cranking information acquired from the vehicle data bus 82.
  • FIG. 11 and FIGS. 13 to 15 to be described later, the engine 81 and the starter 13 are illustrated separately from each other in order to avoid complication of the drawings. 81 is provided.
  • FIG. 12 shows a control process performed by the control device 8.
  • the control device 8 repeatedly executes the control process shown in FIG. 12 at a predetermined control cycle.
  • the engine 81 is determined to be started in S11. That is, in S11, it is determined whether or not the engine 81 is cranked by the starter 13. This determination can use cranking information acquired from the vehicle data bus. If “YES” in S11, that is, if it is determined that the engine 81 is started, the process proceeds to S12, the shut-off device 71 is connected, and the process returns. On the other hand, if “NO” in S11, that is, if it is determined that the engine 81 is not being started, the process proceeds to S13, where the shutoff device 71 is shut off and the process returns.
  • the start of the engine 81 is determined from the cranking information (rotation information of the starter 13) has been described as an example.
  • the present invention is not limited to this, for example, using idling stop information, engine speed information, vehicle speed information, position information (GPS information), brake operation information, etc. together with or instead of cranking information,
  • the start of the engine 81 may be determined.
  • the blocking device 71 is brought into a connected state using the above-described cranking information and the like, and the basic action is not particularly different from that in the second embodiment.
  • the control device 8 and the second power storage device 15 can be blocked or connected by the blocking device 71 in the brake device 2.
  • the interrupting device 71 is connected. Thereby, electric power can be stably supplied from second power storage device 15 to control device 8 while engine 81 is started.
  • the brake device 2 of the third embodiment shown in FIG. 3 is provided with a cutoff device 71, and the cutoff device 71 is connected when the engine 81 is started.
  • the brake device 2 of the fourth embodiment shown in FIG. 4 is provided with a cutoff device 71, and the cutoff device 71 is connected when the engine 81 is started.
  • the control device 8 and the second power storage device 15 may be disconnected or connected by the disconnection device 71 in the brake device 2. it can.
  • FIGS. 16 and 17 show a fourteenth embodiment.
  • the feature of the fourteenth embodiment is that the power supply from the second power storage device to the control device is cut off when the backflow prevention function diagnosis unit detects an abnormality in the backflow prevention device.
  • identical components to those in the second and sixth embodiments are assigned the same reference numerals, and descriptions thereof are omitted.
  • the brake device 2 has the interruption
  • the third diode 27 is provided in the middle of the second wiring 26 (second internal wiring 26B).
  • the third diode 27 allows a current in a direction from the power supply unit 31 toward the control device 8 of the brake device 2 and blocks a current in the reverse direction.
  • the fourth diode 37 is provided in the middle of the third wiring 36 (third internal wiring 36B).
  • the fourth diode 37 allows current in the direction from the first power storage device 12 to the control device 8 of the brake device 2 and blocks current in the reverse direction.
  • the first backflow prevention function diagnosis unit 91 is provided in the third wiring 36 (third internal wiring 36B).
  • the first backflow prevention function diagnosis unit 91 diagnoses that the fourth diode 37 is functioning. That is, in the first backflow prevention function diagnosis unit 91, a current in a direction from the first power storage device 12 to the control device 8 of the brake device 2 flows through the third wiring 36 (normal: the fourth diode 37). Or whether a current in the opposite direction is flowing (abnormal: the fourth diode 37 is not functioning).
  • the first backflow prevention function diagnosis unit 91 is connected to the control device 8 via the third signal line 93.
  • the first backflow prevention function diagnosis unit 91 outputs the diagnosis result (normal or abnormal) of the fourth diode 37 to the control device 8 via the third signal line 93.
  • the second backflow prevention function diagnosis unit 92 is provided in the second wiring 26 (second internal wiring 26B).
  • the second backflow prevention function diagnosis unit 92 diagnoses that the third diode 27 is functioning. That is, in the second backflow prevention function diagnosis unit 92, a current in the direction from the power supply unit 31 to the control device 8 of the brake device 2 flows through the second wiring 26 (normal: the third diode 27 functions). Or a current in the opposite direction flows (abnormal: the third diode 27 is not functioning).
  • the second backflow prevention function diagnostic unit 92 is connected to the control device 8 via the fourth signal line 94.
  • the second backflow prevention function diagnosis unit 92 outputs the diagnosis result (normal or abnormal) of the third diode 27 to the control device 8 via the fourth signal line 94.
  • the control device 8 receives the diagnosis result of the first backflow prevention function diagnosis unit 91 and the diagnosis result of the second backflow prevention function diagnosis unit 92.
  • the control device 8 shuts off the power supply from the second power storage device 15 to the control device 8 by setting the shut-off device 71 to the shut-off state.
  • the control device 8 sets the shut-off device 71 in a shut-off state, thereby supplying power from the second power storage device 15 to the control device 8. Cut off.
  • FIG. 17 shows a control process performed by the control device 8.
  • the control device 8 repeatedly executes the control process shown in FIG. 17 at a predetermined control cycle.
  • S21 it is determined whether or not an abnormality of the backflow prevention device is detected. That is, in S21, the abnormality of the third diode 27 and the abnormality of the fourth diode 37 are determined. Specifically, in S21, it is determined whether or not an abnormality is detected by the first backflow prevention function diagnosis unit 91 and whether or not an abnormality is detected by the second backflow prevention function diagnosis unit 92.
  • the cutoff device 71 when an abnormality is detected by the first backflow prevention function diagnosis unit 91 and the second backflow prevention function diagnosis unit 92 as described above, the cutoff device 71 is put into a cutoff state.
  • the second embodiment there is no particular difference between the second embodiment and the third embodiment.
  • the interruption device 71 in the brake device 2 is brought into the interruption state. , Current backflow can be prevented.
  • the brake device 2 of the third embodiment shown in FIG. 3 is provided with a shut-off device 71 and backflow prevention function diagnosis units 91 and 92, and when an abnormality occurs in the diodes 27 and 37, the shut-off device 71 is put into a cut-off state.
  • the brake device 2 of the fourth embodiment shown in FIG. 4 is provided with a cutoff device 71 and backflow prevention function diagnosis units 91 and 92, and when an abnormality occurs in the diodes 27 and 37, the cutoff device 71 is put into a cut-off state.
  • the brake device 2 of the fifth embodiment shown in FIG. 5 is provided with a cutoff device 71 and backflow prevention function diagnosis units 91 and 92, and when an abnormality occurs in the diodes 27 and 37, the cutoff device 71 is put into a cut-off state.
  • the control device 8 and the second power storage device 15 may be disconnected or connected by the disconnection device 71 in the brake device 2. it can.
  • the reverse flow of the current can be prevented by setting the interruption device 71 in the interruption state.
  • the electric booster has been described as an example of the brake device 2.
  • the brake device uses various brake devices such as a hydraulic pressure supply device (ESC), an electric brake, an electric parking brake, and the like that generate braking force on the vehicle by controlling the electric motor with the control device. Can do.
  • ESC hydraulic pressure supply device
  • an electric brake an electric parking brake
  • an electric parking brake and the like that generate braking force on the vehicle by controlling the electric motor with the control device. Can do.
  • each embodiment is an exemplification, and needless to say, partial replacement or combination of the configurations shown in different embodiments is possible.
  • the power consumption of the second power storage device (second power supply) can be suppressed.
  • a brake system As a first aspect, a brake system is provided.
  • the brake system includes a brake device having an electric motor that generates a braking force of the vehicle, a control device that controls the electric motor, a first power storage device that is provided in the vehicle and is connected to a starter, A power supply unit including a second power storage device provided in the vehicle separately from the power storage device, wherein a power supply source to be output to the control device when the voltage of the first power storage device becomes a predetermined value or less And a power supply unit configured to switch from the first power storage device to the second power storage device.
  • Electric power is supplied to the electric motor from the first power storage device through the first wiring connected to the first power storage device, and the voltage of the first power storage device is equal to or lower than a predetermined value to the control device.
  • power is supplied from the power supply unit through the second wiring connected to the power supply unit.
  • the power output from the power supply unit is changed to the second power storage device.
  • the power of the second power storage device is supplied from the power supply unit to the control device via the second wiring.
  • the electric power is not supplied from the power supply unit. That is, even if the power output from the power supply unit is switched to the second power storage device, the power of the second power storage device is not supplied to the electric motor.
  • the power consumption of the second power storage device can be suppressed.
  • capacitance of a 2nd electrical storage apparatus can be reduced, for example, the existing auxiliary power supply can be used as it is as a 2nd electrical storage apparatus.
  • the countermeasure for the low voltage reset of the control device due to the voltage drop of the first power storage device with reduced cost.
  • the control device uses a third wiring different from the first wiring and the second wiring. Electric power is supplied from the first power storage device.
  • the voltage of the first power storage device when the voltage of the first power storage device is sufficient, it is possible to stably supply power from the first power storage device to the control device via the third wiring.
  • the third wiring is connected to the first power storage device and the control device.
  • the third aspect when the power output from the power supply unit is switched from the first power storage device (or the second power storage device) to the second power storage device (or the first power storage device).
  • the output voltage is temporarily (instantaneously) interrupted (interrupted)
  • power can be continuously supplied from the first power storage device to the control device through the third wiring.
  • the third wiring is branched from the first wiring and connected to the control device in the brake device.
  • one wire harness (only the first wiring) for connecting the first power storage device and the brake device can be provided.
  • work of a wire harness can be simplified and a reduction in cost can be aimed at.
  • the brake device is provided with a cutoff device that cuts off or allows power supply from the second power storage device to the control device.
  • the device is configured to be controlled by a control device.
  • the control device and the second power storage device can be disconnected or connected in the brake device.
  • the power of the first power storage device can be supplied to the control device by shutting off the shut-off device. it can.
  • the power consumption of the second power storage device can be suppressed.
  • the cutoff device allows power supply from the second power storage device to the control device when the voltage of the first power storage device becomes a predetermined value or less. It is said.
  • the sixth aspect when the voltage of the first power storage device becomes a predetermined value or less, it is possible to stably supply power from the second power storage device to the control device.
  • the second power storage device controls the second wiring. Power is supplied to the device.
  • the seventh aspect when the internal combustion engine is started, that is, when power is supplied from the first power storage device to the starter, power is stably supplied from the second power storage device to the control device. can do.
  • a backflow prevention device for preventing a backflow of current in the brake device, and a backflow prevention function diagnosis for diagnosing that the backflow prevention device is functioning
  • a shut-off device that cuts off or allows power supply from the second power storage device to the control device, and the shut-off device is controlled from the second power storage device when the backflow prevention function diagnosis unit detects an abnormality. The power supply to the device is cut off.
  • the backflow of current can be prevented by shutting off the shutoff device in the brake device.
  • a brake device having an electric motor that generates a braking force of the vehicle and a control device that controls the electric motor, a first power storage device provided in the vehicle and connected to a starter, and a first power storage device And a second power storage device provided in the vehicle, wherein the electric motor is supplied with electric power from the first power storage device through the first wiring, and the control device is provided with the second power storage device through the second wiring. From or from the first power storage device through the third wiring.
  • the ninth aspect when the voltage of the first power storage device is sufficient, power is supplied to the control device from the first power storage device via the third wiring.
  • the control device receives power from the second power storage device via the second wiring. Supplied. Thereby, even if the voltage of the first power storage device decreases, the voltage of the control device can be secured, and the control device can be suppressed from being reset (restarted) due to a low voltage.
  • the electric motor is not supplied with power from the second power storage device. For this reason, the power consumption of the second power storage device can be suppressed.
  • a tenth aspect includes a power element that supplies electric power to a motor that generates a braking force of the vehicle, and an arithmetic element that controls the power element, and is provided in the vehicle and supplies electric power to devices in the vehicle.
  • the electric brake drive device is provided in the vehicle separately from the first power source and the first power source, and is connected to a second power source that supplies power to devices in the vehicle as the voltage of the first power source decreases.
  • the power element is not electrically connected to the second power source, but is electrically connected to the first power source, and the arithmetic element is electrically connected to the first power source and the second power source.
  • the tenth aspect when the voltage of the first power supply is sufficient, power is supplied from the first power supply to the arithmetic element that controls the power element.
  • the voltage of the first power supply decreases due to the start of the internal combustion engine or the like, power is supplied to the arithmetic element from the second power supply.
  • the power element that supplies power to the motor is not supplied with power from the second power source. For this reason, the power consumption of the second power source can be suppressed.
  • capacitance of a 2nd power supply can be reduced, for example, the existing auxiliary power supply can be used as it is as a 2nd power supply.
  • the existing auxiliary power supply can be used as it is as a 2nd power supply.

Abstract

Provided are a braking system capable of minimizing the power consumption of a second electricity storage device (second power supply) serving as an auxiliary power source, and an electric brake driving device. This braking system comprises: a braking device which has an electric motor that generates the braking force of a vehicle and a control device that controls the electric motor; and a power supply unit comprising a first electricity storage device that is provided on the vehicle and connected to a starting device and a second electricity storage device that is provided on the vehicle separately from the first electricity storage device, and which is configured such that the source of power to the control device is switched from the first electricity storage device to the second electricity storage device when the voltage of the first electricity storage device becomes a predetermined value or less. Power is supplied to the electric motor from the first electricity storage device through a first wire that is connected to the first electricity storage device. When the voltage of the first electricity storage device becomes the predetermined value or less, power is supplied to the control device from the power supply unit through a second wire that is connected to the power supply unit.

Description

ブレーキシステムおよび電動ブレーキ駆動装置Brake system and electric brake drive device
 本発明は、自動車等の車両に制動力を付与するブレーキシステムおよび電動ブレーキ駆動装置に関する。 The present invention relates to a brake system and an electric brake driving device for applying a braking force to a vehicle such as an automobile.
 自動車等の車両に制動力を付与するブレーキシステムとして、電動式のブレーキアクチュエータにより制動力を発生させる構成としたものが知られている(特許文献1)。ここで、特許文献1には、主電源の電力残量が低下すると、補助電源からブレーキアクチュエータの制御装置に電力を供給し、さらに電力残量が低下すると、ブレーキアクチュエータにも補助電源から電力を供給する構成が記載されている。 As a brake system for applying a braking force to a vehicle such as an automobile, a configuration in which the braking force is generated by an electric brake actuator is known (Patent Document 1). Here, in Patent Document 1, when the remaining power of the main power source is reduced, power is supplied from the auxiliary power source to the control device of the brake actuator, and when the remaining power is further reduced, the brake actuator is also supplied with power from the auxiliary power source. The supply configuration is described.
特開2010-120624号公報JP 2010-120624 A
 しかし、補助電源からブレーキアクチュエータの制御装置とブレーキアクチュエータとの両方に電力を供給する構成の場合、補助電源の消費電力が増大する可能性がある。 However, in a configuration in which power is supplied from the auxiliary power source to both the brake actuator control device and the brake actuator, the power consumption of the auxiliary power source may increase.
 本発明の目的は、補助電源となる第2の蓄電装置(第2の電源)の消費電力を抑制することができるブレーキシステムおよび電動ブレーキ駆動装置を提供することにある。 An object of the present invention is to provide a brake system and an electric brake driving device capable of suppressing power consumption of a second power storage device (second power source) serving as an auxiliary power source.
 上述した課題を解決するため、本発明の一実施形態によるブレーキシステムは、車両の制動力を発生させる電動機および前記電動機を制御する制御装置を有するブレーキ装置と、車両に設けられ、始動装置に接続される第1の蓄電装置と、前記第1の蓄電装置とは別に前記車両に設けられる第2の蓄電装置と、前記第1の蓄電装置の電圧が所定値以下になったときに、出力する電力を前記第1の蓄電装置から前記第2の蓄電装置に切換える電源供給部とを有し、前記電動機は、前記第1の蓄電装置に接続している第1の配線によって、前記第1の蓄電装置から電力が供給され、前記制御装置は、前記電源供給部に接続している第2の配線によって、前記電源供給部から電力が供給される構成としている。 In order to solve the above-described problems, a brake system according to an embodiment of the present invention includes a brake device having an electric motor that generates a braking force of the vehicle and a control device that controls the electric motor, and a brake device that is provided in the vehicle and connected to a starter. Output when the voltage of the first power storage device, the second power storage device provided in the vehicle separately from the first power storage device, and the voltage of the first power storage device become a predetermined value or less. A power supply unit that switches electric power from the first power storage device to the second power storage device, and the electric motor is connected to the first power storage device by a first wiring connected to the first power storage device. Electric power is supplied from the power storage device, and the control device is configured to supply electric power from the power supply unit through a second wiring connected to the power supply unit.
 また、本発明の一実施形態によるブレーキシステムは、車両の制動力を発生させる電動機と、電動機を制御する制御装置と、を有するブレーキ装置と、車両に設けられ、始動装置に接続される第1の蓄電装置と、第1の蓄電装置とは別に車両に設けられる第2の蓄電装置を備える電源供給部であって、第1の蓄電装置の電圧が所定値以下になったときに、制御装置へ出力する電力の供給源を第1の蓄電装置から第2の蓄電装置に切換えるように構成された電源供給部とを備える。電動機には、第1の蓄電装置に接続している第1の配線によって、第1の蓄電装置から電力が供給され、制御装置には、第1の蓄電装置の電圧が所定値以下になったときに、電源供給部に接続している第2の配線によって、電源供給部から電力が供給される。 In addition, a brake system according to an embodiment of the present invention includes a brake device that includes an electric motor that generates a braking force of the vehicle and a control device that controls the electric motor, and a first device that is provided in the vehicle and connected to a starter. A power supply unit including a second power storage device provided in the vehicle separately from the first power storage device, and when the voltage of the first power storage device becomes a predetermined value or less, the control device And a power supply unit configured to switch the supply source of power to be output from the first power storage device to the second power storage device. Electric power is supplied to the electric motor from the first power storage device through the first wiring connected to the first power storage device, and the voltage of the first power storage device is equal to or lower than a predetermined value to the control device. Sometimes, power is supplied from the power supply unit through the second wiring connected to the power supply unit.
 さらに、本発明の一実施形態による電動ブレーキ駆動装置は、車両の制動力を発生させるモータに電力を供給するパワー素子と、パワー素子を制御する演算素子と、を備える。電動ブレーキ駆動装置は、車両に設けられ該車両内の機器に電力を供給する第1の電源と、第1の電源とは別に車両に設けられ第1の電源の電圧低下に伴って該車両内の機器に電力を供給する第2の電源と、に接続される。パワー素子は、第2の電源と電気的に接続されず、第1の電源と電気的に接続され、演算素子は、第1の電源および第2の電源と電気的に接続される。 Furthermore, an electric brake driving device according to an embodiment of the present invention includes a power element that supplies electric power to a motor that generates a braking force of the vehicle, and an arithmetic element that controls the power element. The electric brake driving device is provided in the vehicle and supplies power to devices in the vehicle. The electric brake drive device is provided in the vehicle separately from the first power source. And a second power source for supplying power to the device. The power element is not electrically connected to the second power source, but is electrically connected to the first power source, and the arithmetic element is electrically connected to the first power source and the second power source.
 本発明のの一実施形態によるブレーキシステムおよび電動ブレーキ駆動装置は、第2の蓄電装置(第2の電源)の消費電力を抑制することができる。 The brake system and the electric brake drive device according to the embodiment of the present invention can suppress the power consumption of the second power storage device (second power source).
第1の実施形態によるブレーキシステムを示すブロック図。The block diagram which shows the brake system by 1st Embodiment. 第2の実施形態によるブレーキシステムを示すブロック図。The block diagram which shows the brake system by 2nd Embodiment. 第3の実施形態によるブレーキシステムを示すブロック図。The block diagram which shows the brake system by 3rd Embodiment. 第4の実施形態によるブレーキシステムを示すブロック図。The block diagram which shows the brake system by 4th Embodiment. 第5の実施形態によるブレーキシステムを示すブロック図。The block diagram which shows the brake system by 5th Embodiment. 第6の実施形態によるブレーキシステムを示すブロック図。The block diagram which shows the brake system by 6th Embodiment. 図6中の制御装置による制御処理を示す流れ図。The flowchart which shows the control processing by the control apparatus in FIG. 第7の実施形態によるブレーキシステムを示すブロック図。The block diagram which shows the brake system by 7th Embodiment. 第8の実施形態によるブレーキシステムを示すブロック図。The block diagram which shows the brake system by 8th Embodiment. 第9の実施形態によるブレーキシステムを示すブロック図。The block diagram which shows the brake system by 9th Embodiment. 第10の実施形態によるブレーキシステムを示すブロック図。The block diagram which shows the brake system by 10th Embodiment. 図11中の制御装置による制御処理を示す流れ図。The flowchart which shows the control processing by the control apparatus in FIG. 第11の実施形態によるブレーキシステムを示すブロック図。The block diagram which shows the brake system by 11th Embodiment. 第12の実施形態によるブレーキシステムを示すブロック図。The block diagram which shows the brake system by 12th Embodiment. 第13の実施形態によるブレーキシステムを示すブロック図。The block diagram which shows the brake system by 13th Embodiment. 第14の実施形態によるブレーキシステムを示すブロック図。The block diagram which shows the brake system by 14th Embodiment. 図16中の制御装置による制御処理を示す流れ図。The flowchart which shows the control processing by the control apparatus in FIG. 第15の実施形態によるブレーキシステムを示すブロック図。A block diagram showing a brake system by a 15th embodiment. 第16の実施形態によるブレーキシステムを示すブロック図。A block diagram showing a brake system by a 16th embodiment. 第17の実施形態によるブレーキシステムを示すブロック図。A block diagram showing a brake system by a 17th embodiment.
 以下、実施形態によるブレーキシステムおよび電動ブレーキ駆動装置を、4輪自動車に搭載した場合を例に挙げ、添付図面に従って説明する。 Hereinafter, a case where the brake system and the electric brake drive device according to the embodiment are mounted on a four-wheeled vehicle will be described as an example and described with reference to the accompanying drawings.
 図1は、第1の実施形態を示している。図1において、車両(自動車)に搭載されるブレーキシステム1は、ブレーキ装置2と、第1の電源(主電源)となる第1の蓄電装置12と、第1の電源とは別の第2の電源(補助電源)となる第2の蓄電装置15と、該第2の蓄電装置15を含んで構成される電源供給部16と、第1の配線25と、第2の配線26とを備えている。 FIG. 1 shows a first embodiment. In FIG. 1, a brake system 1 mounted on a vehicle (automobile) includes a brake device 2, a first power storage device 12 serving as a first power source (main power source), and a second power different from the first power source. A second power storage device 15 serving as a power source (auxiliary power source), a power supply unit 16 including the second power storage device 15, a first wiring 25, and a second wiring 26. ing.
 ブレーキ装置2は、車両に設けられ、車両に制動力を付与する。実施形態では、ブレーキ装置2は、例えば、電動倍力装置(電動ブースタ)として構成されている。電動倍力装置は、車両のホイルシリンダ(図示せず)にブレーキ液を供給するためのマスタシリンダ(図示せず)で発生させるブレーキ液圧を電気的に制御するものである。この場合、ホイルシリンダは、例えば、車両の車輪側に設けられたディスクブレーキやドラムブレーキ等のブレーキシリンダに対応する。 The brake device 2 is provided in the vehicle and applies braking force to the vehicle. In the embodiment, the brake device 2 is configured as an electric booster (electric booster), for example. The electric booster electrically controls brake fluid pressure generated by a master cylinder (not shown) for supplying brake fluid to a wheel cylinder (not shown) of the vehicle. In this case, the wheel cylinder corresponds to, for example, a brake cylinder such as a disc brake or a drum brake provided on the wheel side of the vehicle.
 即ち、電動倍力装置としてのブレーキ装置2は、運転者のブレーキペダルの操作等に基づいて、マスタシリンダでブレーキ液圧を発生させることにより、ホイルシリンダにブレーキ液圧を供給する。このとき、ホイルシリンダがディスクブレーキの場合には、パッドがディスクに押付けられることにより、車両に制動力が付与される。また、ホイルシリンダがドラムブレーキの場合には、シューがドラムに押付けられることにより車両に制動力が付与される。 That is, the brake device 2 as an electric booster supplies the brake fluid pressure to the wheel cylinder by generating the brake fluid pressure in the master cylinder based on the driver's operation of the brake pedal or the like. At this time, when the wheel cylinder is a disc brake, a braking force is applied to the vehicle by pressing the pad against the disc. When the wheel cylinder is a drum brake, a braking force is applied to the vehicle by pressing the shoe against the drum.
 ここで、ブレーキ装置2は、車両の制動力を発生させる電動機3と、該電動機3を制御する制御装置8と、ブレーキ装置2の異常時に電動機3に対する電力供給を遮断するセーフスイッチ10とを備えている。電動機3は、電動アクチュエータとなるモータ4と、パワー素子としてのインバータ回路5とを含んで構成されている。この場合、ブレーキ装置2は、少なくとも電動機3と制御装置8とを含む一つの組立体(ユニット)として一体的に構成されている。そして、ブレーキ装置2には、電源と接続するための端子となるコネクタ2A,2Bが設けられている。第1の実施形態では、ブレーキ装置2に第1のコネクタ2Aと第2のコネクタ2Bとの2つのコネクタ2A,2Bが設けられている。 Here, the brake device 2 includes an electric motor 3 that generates a braking force of the vehicle, a control device 8 that controls the electric motor 3, and a safe switch 10 that cuts off power supply to the electric motor 3 when the brake device 2 is abnormal. ing. The electric motor 3 includes a motor 4 serving as an electric actuator and an inverter circuit 5 serving as a power element. In this case, the brake device 2 is integrally configured as one assembly (unit) including at least the electric motor 3 and the control device 8. The brake device 2 is provided with connectors 2A and 2B that serve as terminals for connection to a power source. In the first embodiment, the brake device 2 is provided with two connectors 2A and 2B including a first connector 2A and a second connector 2B.
 モータ4は、例えば、DCブラシレスモータ等の電動モータとして構成されている。モータ4は、運転者によるブレーキペダル(図示せず)の踏込みに基づく制動要求信号や自動ブレーキ制御装置(図示せず)等からの制動要求信号に応じて回転駆動することにより、車両の制動力を発生させる。この場合、モータ4の回転は、図示しないベルト変速機等の減速機構、ボールネジ等の回転直動変換機構を介してピストン(パワーピンストン)の直動変位(軸方向変位)に変換される。そして、ピストンの変位に基づいて、マスタシリンダ内でブレーキ液圧が発生することにより、ホイルシリンダにブレーキ液圧が供給され、車両に制動力が付与される。 The motor 4 is configured as an electric motor such as a DC brushless motor, for example. The motor 4 is driven to rotate according to a braking request signal based on a driver's depression of a brake pedal (not shown) or a braking request signal from an automatic brake control device (not shown), etc. Is generated. In this case, the rotation of the motor 4 is converted into a linear movement displacement (axial displacement) of a piston (power pinston) via a speed reduction mechanism such as a belt transmission (not shown) and a rotation / linear motion conversion mechanism such as a ball screw. A brake fluid pressure is generated in the master cylinder based on the displacement of the piston, whereby the brake fluid pressure is supplied to the wheel cylinder and a braking force is applied to the vehicle.
 インバータ回路5は、モータ4に必要な電力を供給するものである。インバータ回路5は、モータ電力線6を介してモータ4と電気的に接続されている。また、インバータ回路5は、後述の第1の配線25を介して、第1の蓄電装置12と電気的に接続されている。インバータ回路5内には、例えば、複数のスイッチング素子が収容されている。スイッチング素子のオン(閉)/オフ(開)は、制御装置8によって制御される。このために、インバータ回路5と制御装置8は、第1の信号線7を介して接続されている。 The inverter circuit 5 supplies necessary power to the motor 4. The inverter circuit 5 is electrically connected to the motor 4 via the motor power line 6. Further, the inverter circuit 5 is electrically connected to the first power storage device 12 via a first wiring 25 described later. For example, a plurality of switching elements are accommodated in the inverter circuit 5. On / off (open) of the switching element is controlled by the control device 8. For this purpose, the inverter circuit 5 and the control device 8 are connected via the first signal line 7.
 制御装置8は、演算素子となるマイクロコンピュータを含んで構成されている。即ち、制御装置8は、CPU、メモリに加え、その他の必要な演算、制御、通信等を行うための回路を含んで構成されている。この場合、制御装置8とインバータ回路5は、モータ4を駆動するための電動ブレーキ駆動装置、即ち、電子制御装置(Electronic Control Unit)と呼ばれるECU9を構成している。後述するように、ECU9は、第1の蓄電装置12と第2の蓄電装置15とに接続されている。 The control device 8 is configured to include a microcomputer as an arithmetic element. That is, the control device 8 includes a circuit for performing other necessary calculations, control, communication and the like in addition to the CPU and the memory. In this case, the control device 8 and the inverter circuit 5 constitute an electric brake drive device for driving the motor 4, that is, an ECU 9 called an electronic control device (Electronic Control Unit). As will be described later, the ECU 9 is connected to the first power storage device 12 and the second power storage device 15.
 ここで、演算素子としての制御装置8は、パワー素子としてのインバータ回路5を制御(スイッチング制御)することにより、モータ4を制御(駆動制御、回転制御)する。制御装置8には、例えば、運転者によるブレーキペダルの操作量(変位量、踏込み量)を検出するストロークセンサ(図示せず)が信号線(図示せず)を介して接続されている。ストロークセンサの検出信号は、ブレーキ装置2の制動要求信号として制御装置8に入力される。また、制御装置8は、CAN(Controller Area Network)を構成する車両データバス(図示せず)を介して自動ブレーキ制御装置を含む各種の電子機器(各種のECU)に接続されている。この場合、自動ブレーキ制御装置の自動ブレーキ指令は、ブレーキ装置2の制動要求信号として制御装置8に入力される。 Here, the control device 8 as an arithmetic element controls (drive control, rotation control) the motor 4 by controlling (switching control) the inverter circuit 5 as a power element. For example, a stroke sensor (not shown) for detecting an operation amount (displacement amount, stepping amount) of the brake pedal by the driver is connected to the control device 8 via a signal line (not shown). The detection signal of the stroke sensor is input to the control device 8 as a braking request signal for the brake device 2. The control device 8 is connected to various electronic devices (various ECUs) including an automatic brake control device via a vehicle data bus (not shown) constituting a CAN (Controller (Area (Network). In this case, the automatic brake command of the automatic brake control device is input to the control device 8 as a braking request signal for the brake device 2.
 セーフスイッチ10は、第2の信号線11を介して制御装置8と接続されている。セーフスイッチ10は、例えば、電磁リレーにより構成され、フェイルセーフリレーとなるものである。セーフスイッチ10は、例えば、ブレーキ装置2の異常時に、制御装置8からのOFF指令に基づいて遮断状態となる。これにより、電動機3に対する電力供給が遮断され、電動機3の予期せぬ動作を抑制することができる。 The safe switch 10 is connected to the control device 8 via the second signal line 11. The safe switch 10 is constituted by, for example, an electromagnetic relay and becomes a fail-safe relay. For example, when the brake device 2 is abnormal, the safe switch 10 is cut off based on an OFF command from the control device 8. Thereby, the electric power supply with respect to the electric motor 3 is interrupted | blocked, and the unexpected operation | movement of the electric motor 3 can be suppressed.
 第1の蓄電装置12は、車両に設けられている。第1の蓄電装置12は、車両内の機器に電力を供給する第1の電源(車両電源)である。即ち、第1の蓄電装置12は、車両に搭載された各種の電気機器(電装品)の主電源となるもので、例えば、充放電可能なバッテリとして構成されている。このために、第1の蓄電装置12(の正極)は、ブレーキ装置2、始動装置13、電源供給部16を含む各種の電気機器と電気的に接続されている。ここで、第1の蓄電装置12は、車両のエンジン(図示せず)により回転駆動されることにより発電を行うジェネレータ(図示せず)と接続されている。 The first power storage device 12 is provided in the vehicle. The first power storage device 12 is a first power source (vehicle power source) that supplies power to devices in the vehicle. In other words, the first power storage device 12 serves as a main power source of various electric devices (electrical components) mounted on the vehicle, and is configured as a chargeable / dischargeable battery, for example. For this purpose, the first power storage device 12 (positive electrode thereof) is electrically connected to various electric devices including the brake device 2, the starter device 13, and the power supply unit 16. Here, the first power storage device 12 is connected to a generator (not shown) that generates electric power by being rotationally driven by a vehicle engine (not shown).
 第1の蓄電装置12は、ジェネレータの発電電力を蓄電する。即ち、ジェネレータは、第1の蓄電装置12を含む各種の電気機器と電気的に接続されている。エンジンの駆動中(回転中、運転中)は、第1の蓄電装置12を含む各種の電気機器にジェネレータから発電電力を供給することができる。従って、第1の蓄電装置12は、エンジンが停止しているとき等、ジェネレータが発電していないときの主電源となるものである。 The first power storage device 12 stores the power generated by the generator. That is, the generator is electrically connected to various electric devices including the first power storage device 12. While the engine is being driven (during rotation or operation), the generated power can be supplied from the generator to various electric devices including the first power storage device 12. Therefore, the first power storage device 12 serves as a main power source when the generator is not generating power, such as when the engine is stopped.
 また、第1の蓄電装置12は、エンジンを始動する始動装置13と始動用電源ライン14を介して接続されている。始動装置13は、スタータモータであり、エンジンを始動するときに回転し、エンジンのクランク軸を回転駆動する。例えば、始動装置13は、運転者がエンジン始動スイッチ(イグニッションスイッチ)(図示しない)を操作したとき、より具体的には、キースイッチのキーをスタート位置に操作したとき、または、起動スイッチ(パワースイッチ)をON操作したときに、回転する。 The first power storage device 12 is connected to a starting device 13 for starting the engine via a starting power line 14. The starter 13 is a starter motor that rotates when the engine is started, and rotationally drives the crankshaft of the engine. For example, the starter 13 is operated when the driver operates an engine start switch (ignition switch) (not shown), more specifically, when a key of a key switch is operated to a start position, or a start switch (power Rotates when the switch is turned on.
 また、始動装置13は、アイドリング停止機能(アイドルストップ制御)によりエンジンが停止しているときに、運転者が車両を発進させるため操作(始動開始操作)を行うと(例えば、ブレーキペダルの踏込みを解除すると、クラッチペダルを踏込むと、ステアリングホイールを強く握ると)、回転する。始動装置13は、エンジンを始動するときに、第1の蓄電装置12から始動用電源ライン14を介して電力が供給されることにより回転する。エンジンの始動が完了しエンジンが駆動状態となると、始動装置13に対する電力の供給が断たれ、始動装置13の回転は停止する。 In addition, when the engine is stopped by the idling stop function (idle stop control), the starter 13 performs an operation (start start operation) for starting the vehicle (for example, depressing the brake pedal). When it is released, when the clutch pedal is depressed, the steering wheel is squeezed) and it rotates. The starter 13 rotates when electric power is supplied from the first power storage device 12 via the start power supply line 14 when starting the engine. When the start of the engine is completed and the engine is in a driving state, the power supply to the starter 13 is cut off and the rotation of the starter 13 is stopped.
 第2の蓄電装置15は、第1の蓄電装置12とは別に車両に設けられている。第2の蓄電装置15は、第1の蓄電装置12の電圧低下に伴って車両内の機器に電力を供給する第2の電源(サブ電源)である。即ち、第2の蓄電装置15は、例えば、ジェネレータが発電してなく、かつ、第1の蓄電装置12の電圧が低下したときに、ブレーキ装置2の制御装置8の補助電源となるもので、例えば、充放電可能なバッテリまたはキャパシタとして構成されている。このために、第2の蓄電装置15(の正極)は、ブレーキ装置2の制御装置8と電気的に接続されている。第2の蓄電装置15は、例えば、第1の蓄電装置12の容量よりも小さい容量を有し、ジェネレータおよび第1の蓄電装置12からの電力を蓄電する。第2の蓄電装置15の電圧V2は、第1の蓄電装置12の電圧V1以下(V2≦V1)に設定することができる。 The second power storage device 15 is provided in the vehicle separately from the first power storage device 12. The second power storage device 15 is a second power source (sub power source) that supplies power to devices in the vehicle as the voltage of the first power storage device 12 decreases. That is, the second power storage device 15 serves as an auxiliary power source for the control device 8 of the brake device 2 when, for example, the generator does not generate power and the voltage of the first power storage device 12 decreases. For example, it is configured as a chargeable / dischargeable battery or capacitor. For this purpose, the second power storage device 15 (the positive electrode thereof) is electrically connected to the control device 8 of the brake device 2. The second power storage device 15 has a capacity smaller than that of the first power storage device 12, for example, and stores the power from the generator and the first power storage device 12. Voltage V2 of second power storage device 15 can be set to be equal to or lower than voltage V1 of first power storage device 12 (V2 ≦ V1).
 なお、第2の蓄電装置15は、ブレーキ装置2の制御装置8だけでなく、ブレーキ装置2の制御装置8と同様に電圧(電力の供給)を確保する必要がある電気機器(例えば、液圧供給装置用制御装置)の補助電源として構成してもよい。この場合には、第2の蓄電装置15を、ブレーキ装置2の制御装置8と接続させるだけでなく、ブレーキ装置2の制御装置8と同様に電圧(電力の供給)を確保する必要がある電気機器にも電気的に接続する。 Note that the second power storage device 15 is not only the control device 8 of the brake device 2 but also an electrical device (for example, a hydraulic pressure) that needs to secure a voltage (power supply) as in the control device 8 of the brake device 2. You may comprise as an auxiliary power supply of the control apparatus for supply apparatuses. In this case, it is necessary not only to connect the second power storage device 15 to the control device 8 of the brake device 2 but also to ensure a voltage (power supply) as with the control device 8 of the brake device 2. Electrically connect to the equipment.
 電源供給部16は、車両に設けられている。電源供給部16は、第1の蓄電装置12と供給部用電源ライン17を介して接続されている。また、電源供給部16は、後述の第2の配線26を介して、ブレーキ装置2の制御装置8と接続されている。電源供給部16は、第1の蓄電装置12の電圧が所定値以下になったときに、出力する電力を第1の蓄電装置12から第2の蓄電装置15に切換えることができる。 The power supply unit 16 is provided in the vehicle. The power supply unit 16 is connected to the first power storage device 12 via a supply unit power line 17. The power supply unit 16 is connected to the control device 8 of the brake device 2 through a second wiring 26 described later. The power supply unit 16 can switch the output power from the first power storage device 12 to the second power storage device 15 when the voltage of the first power storage device 12 becomes a predetermined value or less.
 このために、電源供給部16は、第2の蓄電装置15と、充電回路18とを含んで構成されている。充電回路18は、第1の供給部ライン19を介して供給部用電源ライン17と接続されている。また、充電回路18は、第2の供給部ライン20を介して第2の蓄電装置15と接続されている。 For this purpose, the power supply unit 16 includes a second power storage device 15 and a charging circuit 18. The charging circuit 18 is connected to the power supply line 17 for supply unit through the first supply unit line 19. In addition, the charging circuit 18 is connected to the second power storage device 15 via the second supply unit line 20.
 充電回路18は、第2の蓄電装置15の電圧が定格電圧と異なった場合に、昇圧/降圧の調整を行う回路である。即ち、充電回路18は、第2の蓄電装置15の過電圧、過充電を防ぐための回路である。充電回路18は、例えば、DC-DCコンバータを含んで構成されている。 The charging circuit 18 is a circuit that performs step-up / step-down adjustment when the voltage of the second power storage device 15 is different from the rated voltage. That is, the charging circuit 18 is a circuit for preventing overvoltage and overcharging of the second power storage device 15. The charging circuit 18 includes, for example, a DC-DC converter.
 第2の蓄電装置15は、第3の供給部ライン21を介して第2の配線26に接続されている。これにより、第2の蓄電装置15は、第3の供給部ライン21および第2の配線26を介してブレーキ装置2の制御装置8と接続されている。また、第1の供給部ライン19と第3の供給部ライン21は、第4の供給部ライン22を介しての接続されている。即ち、第1の供給部ライン19は、その途中から第4の供給部ライン22が分岐し、第4の供給部ライン22は、第3の供給部ライン21の途中に接続されている。換言すれば、第4の供給部ライン22の一端側は、第1の供給部ライン19の中間部に接続され、第4の供給部ライン22の他端側は、第3の供給部ライン21の中間部に接続されている。第4の供給部ライン22は、第1の蓄電装置12からブレーキ装置2の制御装置8に電力を供給するための第3の配線となるもので、電源供給部16内に設けられている。 The second power storage device 15 is connected to the second wiring 26 via the third supply line 21. Thus, the second power storage device 15 is connected to the control device 8 of the brake device 2 via the third supply line 21 and the second wiring 26. The first supply line 19 and the third supply line 21 are connected via a fourth supply line 22. That is, the first supply section line 19 is branched from the middle of the fourth supply section line 22, and the fourth supply section line 22 is connected to the third supply section line 21. In other words, one end side of the fourth supply unit line 22 is connected to an intermediate portion of the first supply unit line 19, and the other end side of the fourth supply unit line 22 is connected to the third supply unit line 21. It is connected to the middle part. The fourth supply unit line 22 is a third wiring for supplying power from the first power storage device 12 to the control device 8 of the brake device 2, and is provided in the power supply unit 16.
 ここで、第3の供給部ライン21のうち、第4の供給部ライン22の他端側との接続部と第2の蓄電装置15との間には、第2の蓄電装置15からブレーキ装置2の制御装置8に向かう方向の電流を許容し、逆方向の電流を遮断する第1のダイオード23が設けられている。また、第4の供給部ライン22の途中には、第1の蓄電装置12からブレーキ装置2の制御装置8に向かう方向の電流を許容し、逆方向の電流を遮断する第2のダイオード24が設けられている。第1のダイオード23および第2のダイオード24は、電流の逆流を防止する逆流防止装置であり、電源供給部16内に設けられている。 Here, the second power storage device 15 to the brake device between the second power storage device 15 and the connection portion of the third supply portion line 21 with the other end side of the fourth supply portion line 22. There is provided a first diode 23 that allows current in the direction toward the second control device 8 and blocks current in the reverse direction. Further, in the middle of the fourth supply line 22, there is a second diode 24 that allows a current in the direction from the first power storage device 12 to the control device 8 of the brake device 2 and cuts off a reverse current. Is provided. The first diode 23 and the second diode 24 are backflow prevention devices that prevent backflow of current, and are provided in the power supply unit 16.
 これにより、制御装置8には、第1の蓄電装置12と第2の蓄電装置15とのうち、電圧の高い方の電力が供給される。即ち、第1の蓄電装置12の電圧が第2の蓄電装置15の電圧以上のときは、第1の蓄電装置12から供給部用電源ライン17、第4の供給部ライン22、後述の第2の配線26を介して制御装置8に電力が供給される。一方、第1の蓄電装置12の電圧が第2の蓄電装置15の電圧以下のときは、第2の蓄電装置15から第3の供給部ライン21、第2の配線26を介して制御装置8に電力が供給される。 Thereby, the electric power having the higher voltage of the first power storage device 12 and the second power storage device 15 is supplied to the control device 8. That is, when the voltage of the first power storage device 12 is equal to or higher than the voltage of the second power storage device 15, the power supply line 17 for supply unit, the fourth supply unit line 22, and a second power source described later. Electric power is supplied to the control device 8 through the wiring 26. On the other hand, when the voltage of the first power storage device 12 is equal to or lower than the voltage of the second power storage device 15, the control device 8 is connected from the second power storage device 15 via the third supply line 21 and the second wiring 26. Is supplied with power.
 このように、電源供給部16は、第1の蓄電装置12の電圧が、所定値となる第2の蓄電装置15の電圧以下になると、出力する電力を第1の蓄電装置12から第2の蓄電装置15に切換えることができる。従って、始動装置13の駆動によって、一時的に第1の蓄電装置12の電圧が第2の蓄電装置15の電圧よりも低下したときでも、制御装置8には、後述の第2の配線26を介して第2の蓄電装置15の電圧が印加される。これにより、制御装置8が低電圧によりリセットされることを抑制できる。なお、所定値(第2の蓄電装置15の電圧)は、制御装置8を安定して動作させることができる(リセットされない)電圧値となるように、制御装置8の仕様、車両の仕様等に応じて設定する。 As described above, when the voltage of the first power storage device 12 is equal to or lower than the voltage of the second power storage device 15 having a predetermined value, the power supply unit 16 supplies the output power from the first power storage device 12 to the second power storage device 12. Switching to the power storage device 15 is possible. Therefore, even when the voltage of the first power storage device 12 temporarily drops below the voltage of the second power storage device 15 due to the driving of the starter 13, the control device 8 is provided with a second wiring 26 described later. The voltage of the 2nd electrical storage apparatus 15 is applied through. Thereby, it can suppress that the control apparatus 8 is reset by a low voltage. Note that the predetermined value (the voltage of the second power storage device 15) conforms to the specification of the control device 8, the specification of the vehicle, etc. so that the control device 8 can be stably operated (not reset). Set accordingly.
 ところで、ブレーキ装置は、制御装置用電源と電動機用電源との2系統の電源ラインが必要になる。ここで、内燃機関であるエンジンの始動等により車両電源となる主電源の電圧(電力残量)が低下した場合を考える。このとき、前述の特許文献1に記載された従来技術のように、2系統の電源ラインの両方の電力の供給を主電源から補助電源に切換える構成の場合は、補助電源の消費電力が増大する。即ち、補助電源の消費電力は、2系統の電源ラインへの電力供給が増大することに伴って増大する。 By the way, the brake device needs two power lines, that is, a power supply for the control device and a power supply for the motor. Here, a case is considered where the voltage (remaining amount of power) of the main power source serving as the vehicle power source is reduced due to the start of the engine which is an internal combustion engine. At this time, as in the prior art described in Patent Document 1, the power consumption of the auxiliary power source is increased in the case of switching the power supply of both power supply lines from the main power source to the auxiliary power source. . That is, the power consumption of the auxiliary power source increases as the power supply to the two power supply lines increases.
 一方、補助電源は、ブレーキ装置以外の車載装置(車両に搭載された電気機器)にも電力を供給する必要がある。このため、従来技術の場合は、ブレーキ装置を含む各車載装置の定格電圧を確保するために、補助電源の容量を増やすことが必要になる。しかも、補助電源の容量を変更することに伴って、補助電源に関する回路や制御の変更も必要になる。これにより、コストが増大するおそれがある。 On the other hand, it is necessary for the auxiliary power supply to supply electric power to in-vehicle devices (electric devices mounted on the vehicle) other than the brake device. For this reason, in the case of the prior art, it is necessary to increase the capacity of the auxiliary power source in order to ensure the rated voltage of each in-vehicle device including the brake device. In addition, as the capacity of the auxiliary power source is changed, it is necessary to change the circuit and control related to the auxiliary power source. This may increase the cost.
 これに対して、第1の実施形態では、ブレーキ装置2の電動機3と第1の蓄電装置12とが電動機用配線となる第1の配線25を介して接続されている。また、ブレーキ装置2の制御装置8と電源供給部16とが制御装置用配線となる第2の配線26を介して接続されている。これにより、電動機3は、第1の蓄電装置12に接続している第1の配線25によって、第1の蓄電装置12から電力が供給される。一方、制御装置8は、電源供給部16に接続している第2の配線26によって、電源供給部16から電力が供給される。換言すれば、インバータ回路5は、第2の蓄電装置15に電気的に接続されず、第1の蓄電装置12と電気的に接続され、制御装置8は、第1の蓄電装置12および第2の蓄電装置15と電気的に接続されている。 On the other hand, in the first embodiment, the electric motor 3 of the brake device 2 and the first power storage device 12 are connected via the first wiring 25 serving as the electric motor wiring. In addition, the control device 8 of the brake device 2 and the power supply unit 16 are connected via a second wiring 26 serving as a control device wiring. Accordingly, electric power is supplied from the first power storage device 12 to the electric motor 3 through the first wiring 25 connected to the first power storage device 12. On the other hand, the control device 8 is supplied with power from the power supply unit 16 through the second wiring 26 connected to the power supply unit 16. In other words, the inverter circuit 5 is not electrically connected to the second power storage device 15, but is electrically connected to the first power storage device 12, and the control device 8 includes the first power storage device 12 and the second power storage device 12. The power storage device 15 is electrically connected.
 この場合、第1の配線25は、第1の蓄電装置12とブレーキ装置2の第1のコネクタ2Aとの間を繋ぐ第1の外部配線25Aと、該第1のコネクタ2Aと電動機3との間を繋ぐ第1の内部配線25Bとを含んで構成されている。第2の配線26は、電源供給部16とブレーキ装置2の第2のコネクタ2Bとの間を繋ぐ第2の外部配線26Aと、該第2のコネクタ2Bと制御装置8との間を繋ぐ第2の内部配線26Bとを含んで構成されている。また、第2の配線26の途中(より具体的には、第2の内部配線26Bの途中)には、電源供給部16からブレーキ装置2の制御装置8に向かう方向の電流を許容し、逆方向の電流を遮断する第3のダイオード27が設けられている。第3のダイオード27は、電流の逆流を防止する逆流防止装置であり、ブレーキ装置2内に設けられている。 In this case, the first wiring 25 includes a first external wiring 25 </ b> A connecting the first power storage device 12 and the first connector 2 </ b> A of the brake device 2, and the first connector 2 </ b> A and the electric motor 3. And a first internal wiring 25B that connects the two. The second wiring 26 connects the power supply unit 16 and the second connector 2B of the brake device 2 with the second external wiring 26A, and connects the second connector 2B and the control device 8 with the second wiring 26A. 2 internal wirings 26B. Further, in the middle of the second wiring 26 (more specifically, in the middle of the second internal wiring 26B), a current in a direction from the power supply unit 16 toward the control device 8 of the brake device 2 is allowed, and the reverse A third diode 27 is provided to cut off the directional current. The third diode 27 is a backflow prevention device that prevents backflow of current, and is provided in the brake device 2.
 実施形態による4輪自動車のブレーキシステム1は、上述の如き構成を有するもので、次に、その作動について説明する。 The brake system 1 for a four-wheeled vehicle according to the embodiment has the above-described configuration, and the operation thereof will be described next.
 車両の運転者がブレーキペダルを踏込み操作すると、ブレーキ装置2の制御装置8は、ブレーキペダルの踏込み量に応じて電動機3のモータ4を駆動し、マスタシリンダ内にブレーキ液圧を発生させる。マスタシリンダ内で発生したブレーキ液圧は、ホイルシリンダ(前輪側ブレーキ、後輪側ブレーキ)に供給される。これにより左,右の前輪と左,右の後輪とに制動力が付与される。一方、運転者がブレーキペダルの踏込みを解除すると、電動機3のモータ4が踏込み時とは逆方向に回転し、ホイルシリンダからマスタシリンダにブレーキ液が戻る。これにより、制動力の付与が解除される。 When the driver of the vehicle depresses the brake pedal, the control device 8 of the brake device 2 drives the motor 4 of the electric motor 3 according to the amount of depression of the brake pedal, and generates brake fluid pressure in the master cylinder. The brake fluid pressure generated in the master cylinder is supplied to the wheel cylinder (front wheel side brake, rear wheel side brake). As a result, braking force is applied to the left and right front wheels and the left and right rear wheels. On the other hand, when the driver releases the depression of the brake pedal, the motor 4 of the electric motor 3 rotates in the direction opposite to that at the time of depression, and the brake fluid returns from the wheel cylinder to the master cylinder. As a result, the application of the braking force is released.
 ここで、ブレーキペダルの踏込み等により走行中の車両を減速ないし停止させ、かつ、極低速ないし停止した状態で所定時間経過すると、アイドリング停止機能によりエンジンが停止する。エンジンが停止すると、ジェネレータによる発電が停止する。このとき、第1の蓄電装置12の電圧が第2の蓄電装置15の電圧よりも高いときは、ブレーキ装置2の電動機3と制御装置8との両方に、第1の蓄電装置12から電力が供給される。即ち、第1の蓄電装置12の電圧が第2の蓄電装置15の電圧よりも高いときは、電源供給部16を介して第1の蓄電装置12の電力が制御装置8に供給される。換言すれば、ブレーキ装置2の電動機3には、第1の配線25を介して第1の蓄電装置12の電圧が印加され、ブレーキ装置2の制御装置8には、第2の配線26を介して第1の蓄電装置12の電圧が印加される。 Here, when the vehicle running is decelerated or stopped by depressing the brake pedal or the like, and when a predetermined time elapses in an extremely low speed or stopped state, the engine is stopped by the idling stop function. When the engine stops, power generation by the generator stops. At this time, when the voltage of the first power storage device 12 is higher than the voltage of the second power storage device 15, power is supplied from the first power storage device 12 to both the motor 3 and the control device 8 of the brake device 2. Supplied. That is, when the voltage of the first power storage device 12 is higher than the voltage of the second power storage device 15, the power of the first power storage device 12 is supplied to the control device 8 via the power supply unit 16. In other words, the voltage of the first power storage device 12 is applied to the motor 3 of the brake device 2 via the first wiring 25, and the control device 8 of the brake device 2 is connected to the motor 3 of the brake device 2 via the second wiring 26. Thus, the voltage of the first power storage device 12 is applied.
 この状態で、運転者が車両を発進させるため操作(例えば、ブレーキペダルの踏込みの解除)を行うと、第1の蓄電装置12から始動装置13に電力が供給さる。これにより、始動装置13が回転し、エンジンの始動が行われる。このとき、第1の蓄電装置12から始動装置13への電力の供給に伴って、第1の蓄電装置12の電圧が第2の蓄電装置15の電圧よりも低くなる可能性がある。この場合には、電源供給部16から出力される電力が、第1の蓄電装置12から第2の蓄電装置15に切換わる。これにより、ブレーキ装置2の制御装置8には、第2の配線26を介して第2の蓄電装置15の電圧が印加される。このため、第1の蓄電装置12の電圧が低下しても、制御装置8が低電圧となってリセット(再起動)されることを抑制できる。 In this state, when the driver performs an operation to start the vehicle (for example, release of depression of the brake pedal), electric power is supplied from the first power storage device 12 to the starting device 13. Thereby, the starting device 13 rotates and the engine is started. At this time, the voltage of the first power storage device 12 may be lower than the voltage of the second power storage device 15 as power is supplied from the first power storage device 12 to the starter device 13. In this case, the power output from power supply unit 16 is switched from first power storage device 12 to second power storage device 15. As a result, the voltage of the second power storage device 15 is applied to the control device 8 of the brake device 2 via the second wiring 26. For this reason, even if the voltage of the 1st electrical storage apparatus 12 falls, it can suppress that the control apparatus 8 becomes a low voltage and is reset (restarted).
 一方、ブレーキ装置2の電動機3には、第1の配線25を介して第1の蓄電装置12の電圧が印加され、第2の蓄電装置15の電圧は印加されない。即ち、ブレーキ装置2の電動機3には、第1の蓄電装置12の電圧が第2の蓄電装置15の電圧より低くなっても、第2の蓄電装置15の電力が供給されない。このため、第2の蓄電装置15の消費電力を抑制することができる。 On the other hand, the voltage of the first power storage device 12 is applied to the motor 3 of the brake device 2 via the first wiring 25, and the voltage of the second power storage device 15 is not applied. That is, the electric power of the second power storage device 15 is not supplied to the electric motor 3 of the brake device 2 even when the voltage of the first power storage device 12 is lower than the voltage of the second power storage device 15. For this reason, the power consumption of the 2nd electrical storage apparatus 15 can be suppressed.
 かくして、第1の実施形態では、電動機3は、第1の配線25によって第1の蓄電装置12から電力が供給され、制御装置8は、第2の配線26によって電源供給部16から電力が供給される。即ち、インバータ回路5は、第2の蓄電装置15と電気的に接続されず、第1の蓄電装置12と電気的に接続され、制御装置8は、第1の蓄電装置12および第2の蓄電装置15と電気的に接続される。このため、第1の蓄電装置12の電圧が十分なとき(所定値である第2の蓄電装置15の電圧よりも高いとき)は、制御装置8に、電源供給部16から第1の蓄電装置12の電力が第2の配線26を介して供給される。 Thus, in the first embodiment, the electric motor 3 is supplied with electric power from the first power storage device 12 through the first wiring 25, and the control device 8 is supplied with electric power from the power supply unit 16 through the second wiring 26. Is done. That is, the inverter circuit 5 is not electrically connected to the second power storage device 15, but is electrically connected to the first power storage device 12, and the control device 8 is connected to the first power storage device 12 and the second power storage device 12. It is electrically connected to the device 15. For this reason, when the voltage of the 1st electrical storage apparatus 12 is enough (when it is higher than the voltage of the 2nd electrical storage apparatus 15 which is a predetermined value), the 1st electrical storage apparatus is supplied from the power supply part 16 to the control apparatus 8. 12 electric power is supplied through the second wiring 26.
 一方、車両に設けられたエンジン(内燃機関)を始動装置13により始動するときに、例えば、エンジンの始動により第1の蓄電装置12の電圧が低下する(所定値である第2の蓄電装置15の電圧以下になる)と、電源供給部16から出力される電力が第2の蓄電装置15に切換わり、制御装置8には、電源供給部16から第2の蓄電装置15の電力が第2の配線26を介して供給される。これにより、第1の蓄電装置12の電圧が低下しても、制御装置8の電圧を確保することができ、制御装置8が低電圧となってリセット(再起動)されることを抑制できる。 On the other hand, when the engine (internal combustion engine) provided in the vehicle is started by the starter 13, for example, the voltage of the first power storage device 12 decreases due to the start of the engine (the second power storage device 15 having a predetermined value). The power output from the power supply unit 16 is switched to the second power storage device 15, and the control device 8 receives the second power from the power supply unit 16 to the second power storage device 15. Is supplied via the wiring 26. Thereby, even if the voltage of the 1st electrical storage apparatus 12 falls, the voltage of the control apparatus 8 can be ensured and it can suppress that the control apparatus 8 becomes a low voltage and is reset (restarted).
 一方、電動機3(インバータ回路5)は、電源供給部16から電力が供給されない。即ち、電源供給部16から出力される電力が第2の蓄電装置15に切換わっても、電動機3には、第2の蓄電装置15の電力が供給されない。換言すれば、制御装置8に供給される電力のみが第1の蓄電装置12から第2の蓄電装置15に切換わる。このため、第2の蓄電装置15の消費電力を抑制することができる。これにより、第2の蓄電装置15の容量を低減することができ、例えば、既存の補助電源を第2の蓄電装置15としてそのまま使用することができる。この結果、第1の蓄電装置12の電圧低下による制御装置8の低電圧リセット対策を、コストを抑えて実現することができる。 On the other hand, electric power is not supplied from the power supply unit 16 to the electric motor 3 (inverter circuit 5). That is, even if the power output from the power supply unit 16 is switched to the second power storage device 15, the power of the second power storage device 15 is not supplied to the electric motor 3. In other words, only the power supplied to the control device 8 is switched from the first power storage device 12 to the second power storage device 15. For this reason, the power consumption of the 2nd electrical storage apparatus 15 can be suppressed. Thereby, the capacity | capacitance of the 2nd electrical storage apparatus 15 can be reduced, for example, the existing auxiliary power supply can be used as the 2nd electrical storage apparatus 15 as it is. As a result, it is possible to implement a countermeasure for low voltage resetting of the control device 8 due to a voltage drop of the first power storage device 12 at a reduced cost.
 第1の実施形態では、制御装置8は、第3の配線となる第4の供給部ライン22によって、第1の蓄電装置12から電力が供給される。このため、第1の蓄電装置12の電圧が十分なとき(第2の蓄電装置15の電圧よりも高いとき)は、第1の蓄電装置12から制御装置8に第4の供給部ライン22を介して安定して電力を供給することができる。 In the first embodiment, the control device 8 is supplied with power from the first power storage device 12 through the fourth supply unit line 22 serving as the third wiring. For this reason, when the voltage of the first power storage device 12 is sufficient (when the voltage of the second power storage device 15 is higher), the fourth supply line 22 is connected from the first power storage device 12 to the control device 8. Thus, power can be supplied stably.
 第1の実施形態では、電源供給部16は、第1の供給部ライン19と第3の供給部ライン21とを第4の供給部ライン22を介して直接的に接続すると共に、第3の供給部ライン21の途中に第1のダイオード23を設け、第4の供給部ライン22の途中に第2のダイオード24を設ける構成としている。このため、電源供給部16からの出力電力を第1の蓄電装置12から第2の蓄電装置15にシームレスに(断続なく)切換えることができる。このため、電源供給部16の外部に第1の蓄電装置12と制御装置8とを接続する配線が必要なく、部品点数を少なくすることができる。 In the first embodiment, the power supply unit 16 directly connects the first supply unit line 19 and the third supply unit line 21 via the fourth supply unit line 22, and The first diode 23 is provided in the middle of the supply unit line 21, and the second diode 24 is provided in the middle of the fourth supply unit line 22. For this reason, the output power from the power supply unit 16 can be switched seamlessly (without interruption) from the first power storage device 12 to the second power storage device 15. For this reason, the wiring which connects the 1st electrical storage apparatus 12 and the control apparatus 8 to the exterior of the power supply part 16 is unnecessary, and can reduce a number of parts.
 次に、図2は、第2の実施形態を示している。第2の実施形態の特徴は、第1の蓄電装置と制御装置とが電源供給部の外部に設けた第3の配線によって接続される構成としたことにある。なお、第2の実施形態では、第1の実施形態と同一の構成要素に同一の符号を付し、その説明を省略する。 Next, FIG. 2 shows a second embodiment. A feature of the second embodiment is that the first power storage device and the control device are connected by a third wiring provided outside the power supply unit. In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 ブレーキ装置2には、第1のコネクタ2Aと第2のコネクタ2Bとに加え、第3のコネクタ2Cが設けられている。即ち、第2の実施形態では、3つのコネクタ2A,2B,2Cがブレーキ装置2に設けられている。 The brake device 2 is provided with a third connector 2C in addition to the first connector 2A and the second connector 2B. That is, in the second embodiment, three connectors 2A, 2B, and 2C are provided in the brake device 2.
 電源供給部31は、第1の蓄電装置12の電圧が所定値以下になった(ことを検知した)ときに、出力する電力を第1の蓄電装置12から第2の蓄電装置15に切換えることができる。このために、電源供給部31は、第2の蓄電装置15と、充電回路18と、切換スイッチ32とを含んで構成されている。切換スイッチ32は、第1の蓄電装置12の電圧に応じて、第2の配線26を第1の蓄電装置12または第2の蓄電装置15に接続させるものである。 The power supply unit 31 switches the output power from the first power storage device 12 to the second power storage device 15 when the voltage of the first power storage device 12 becomes a predetermined value or less (detects that). Can do. For this purpose, the power supply unit 31 includes the second power storage device 15, the charging circuit 18, and the changeover switch 32. The changeover switch 32 connects the second wiring 26 to the first power storage device 12 or the second power storage device 15 in accordance with the voltage of the first power storage device 12.
 このために、切換スイッチ32は、第5の供給部ライン33を介して第1の供給部ライン19に接続され、第6の供給部ライン34を介して第2の蓄電装置15と接続され、第7の供給部ライン35を介して第2の配線26に接続されている。この場合、第5の供給部ライン33の一端側は、第1の供給部ライン19の中間部に接続され、第5の供給部ライン33の他端側は、切換スイッチ32に接続されている。即ち、第1の供給部ライン19は、その途中から第5の供給部ライン33が分岐している。 For this purpose, the changeover switch 32 is connected to the first supply unit line 19 via the fifth supply unit line 33 and connected to the second power storage device 15 via the sixth supply unit line 34. It is connected to the second wiring 26 through the seventh supply line 35. In this case, one end side of the fifth supply unit line 33 is connected to the intermediate portion of the first supply unit line 19, and the other end side of the fifth supply unit line 33 is connected to the changeover switch 32. . That is, the first supply section line 19 is branched from the fifth supply section line 33 from the middle thereof.
 切換スイッチ32は、第1の蓄電装置12の電圧が高い(所定値を超えている)ときは、第5の供給部ライン33と第7の供給部ライン35とを接続させる。これに対して、第1の蓄電装置12の電圧が所定値以下のときは、図2に示すように、切換スイッチ32は、第6の供給部ライン34と第7の供給部ライン35とを接続させる。切換スイッチ32は、例えば、電源供給部31に設けられた電源供給部用制御装置(図示せず)からの指令により切換えられる。電源供給部用制御装置には、例えば、第1の蓄電装置12の電圧を検出する電圧検出センサ(図示せず)が接続されている。電源供給部用制御装置は、電圧検出センサの検出値が所定値以下になると、切換スイッチ32を図2に示す切換え位置にする。所定値は、制御装置8を安定して動作させることができる(リセットされない)電圧値となるように、制御装置8の仕様、車両の仕様等に応じて設定する。なお、電源供給部用制御装置は、第1の蓄電装置12の電圧を、CANを構成する車両データバスから取得する構成といてもよい。 The switch 32 connects the fifth supply line 33 and the seventh supply line 35 when the voltage of the first power storage device 12 is high (exceeds a predetermined value). On the other hand, when the voltage of the first power storage device 12 is equal to or lower than the predetermined value, the changeover switch 32 switches between the sixth supply line 34 and the seventh supply line 35 as shown in FIG. Connect. For example, the changeover switch 32 is switched by a command from a power supply control unit (not shown) provided in the power supply unit 31. For example, a voltage detection sensor (not shown) that detects the voltage of the first power storage device 12 is connected to the power supply controller. When the detection value of the voltage detection sensor becomes equal to or lower than the predetermined value, the power supply control unit sets the changeover switch 32 to the changeover position shown in FIG. The predetermined value is set according to the specification of the control device 8, the specification of the vehicle, and the like so as to be a voltage value at which the control device 8 can be stably operated (not reset). Note that the power supply unit control device may be configured to acquire the voltage of the first power storage device 12 from the vehicle data bus that constitutes the CAN.
 第3の配線36は、第1の配線25および第2の配線26とは異なる配線であり、電源供給部31の外部に設けられている。第3の配線36は、第1の蓄電装置12からブレーキ装置2の制御装置8に電力を供給する。第3の配線36は、電源供給部31外で、第1の蓄電装置12とブレーキ装置2の制御装置8とに接続している。即ち、第3の配線36の一端側は、ブレーキ装置2外で、第1の蓄電装置12に接続され、第3の配線36の他端側は、ブレーキ装置2内で制御装置8に接続されている。より具体的には、第3の配線36の他端側は、第2の配線26の途中、即ち、第2の内部配線26Bのうち第3のダイオード27と制御装置8との間に接続されている。この場合、第3の配線36は、第1の蓄電装置12とブレーキ装置2の第3のコネクタ2Cとの間を繋ぐ第3の外部配線36Aと、該第3のコネクタ2Cと第2の内部配線26Bとの間を繋ぐ第3の内部配線36Bとを含んで構成されている。そして、第3の配線36(第3の内部配線36B)の途中には、第1の蓄電装置12からブレーキ装置2の制御装置8に向かう方向の電流を許容し、逆方向の電流を遮断する第4のダイオード37が設けられている。第4のダイオード37は、電流の逆流を防止する逆流防止装置であり、ブレーキ装置2内に設けられている。 The third wiring 36 is a wiring different from the first wiring 25 and the second wiring 26, and is provided outside the power supply unit 31. The third wiring 36 supplies power from the first power storage device 12 to the control device 8 of the brake device 2. The third wiring 36 is connected to the first power storage device 12 and the control device 8 of the brake device 2 outside the power supply unit 31. That is, one end side of the third wiring 36 is connected to the first power storage device 12 outside the brake device 2, and the other end side of the third wiring 36 is connected to the control device 8 inside the brake device 2. ing. More specifically, the other end of the third wiring 36 is connected in the middle of the second wiring 26, that is, between the third diode 27 and the control device 8 in the second internal wiring 26 </ b> B. ing. In this case, the third wiring 36 includes a third external wiring 36A connecting the first power storage device 12 and the third connector 2C of the brake device 2, and the third connector 2C and the second internal wiring. A third internal wiring 36B connecting the wiring 26B is included. Then, in the middle of the third wiring 36 (third internal wiring 36B), a current in a direction from the first power storage device 12 toward the control device 8 of the brake device 2 is allowed, and a current in the reverse direction is cut off. A fourth diode 37 is provided. The fourth diode 37 is a backflow prevention device that prevents backflow of current, and is provided in the brake device 2.
 第2の実施形態は、上述の如き切換スイッチ32の切換えにより電源供給部31から出力する電力を第1の蓄電装置12と第2の蓄電装置15との間で切換えるもので、その基本的作用については、第1の実施形態によるものと格別差異はない。 In the second embodiment, the power output from the power supply unit 31 is switched between the first power storage device 12 and the second power storage device 15 by switching the changeover switch 32 as described above. There is no particular difference from that according to the first embodiment.
 特に、第2の実施形態では、電源供給部31内に、出力する電圧を第1の蓄電装置12から第2の蓄電装置15に切換えるための切換スイッチ32を設けている。これと共に、電源供給部31外に、第1の蓄電装置12とブレーキ装置2の制御装置8とに接続する第3の配線36を設けている。このため、電源供給部31から出力される電力が、第1の蓄電装置12(または第2の蓄電装置15)から第2の蓄電装置15(または第1の蓄電装置12)に切換わるときに、切換スイッチ32の切換えによって出力電圧が一時的(瞬間的)に途切れる(断続する)ことがあっても、第1の蓄電装置12から第3の配線を通じて制御装置8に電力を供給し続けることができる。これにより、電源供給部31から出力される電力が第1の蓄電装置12と第2の蓄電装置15との間で切換わるときにも、制御装置8に安定して電力を供給することができる。 In particular, in the second embodiment, a changeover switch 32 for switching the output voltage from the first power storage device 12 to the second power storage device 15 is provided in the power supply unit 31. At the same time, a third wiring 36 connected to the first power storage device 12 and the control device 8 of the brake device 2 is provided outside the power supply unit 31. Therefore, when the power output from the power supply unit 31 is switched from the first power storage device 12 (or the second power storage device 15) to the second power storage device 15 (or the first power storage device 12). Even if the output voltage is temporarily (instantaneously) interrupted (interrupted) by switching the changeover switch 32, power is continuously supplied from the first power storage device 12 to the control device 8 through the third wiring. Can do. Thereby, even when the power output from the power supply unit 31 is switched between the first power storage device 12 and the second power storage device 15, power can be stably supplied to the control device 8. .
 次に、図3は、第3の実施形態を示している。第3の実施形態の特徴は、第3の配線がブレーキ装置内で第1の配線から分岐して制御装置に接続される構成としたことにある。なお、第3の実施形態では、第2の実施形態と同一の構成要素に同一の符号を付し、その説明を省略する。 Next, FIG. 3 shows a third embodiment. A feature of the third embodiment is that the third wiring is configured to be branched from the first wiring in the brake device and connected to the control device. Note that in the third embodiment, the same components as those in the second embodiment are denoted by the same reference numerals, and description thereof is omitted.
 ブレーキ装置2には、第1の実施形態のブレーキ装置2と同様に、2つのコネクタ2A,2Bが設けられている。第3の配線41は、ブレーキ装置2の内部に設けられ、第1の蓄電装置12から制御装置8に電力を供給する。即ち、第3の配線41は、ブレーキ装置2内で、第1の蓄電装置12と制御装置8とを接続するものである。この場合、第3の配線41は、ブレーキ装置2内で、第1の配線25から分岐して制御装置8に接続されている。即ち、第3の配線41の一端側は、第1の配線25の途中、より具体的には、第1の内部配線25Bの途中に接続されている。第3の配線41の他端側は、第2の配線26の途中、即ち、第2の内部配線26Bのうち第3のダイオード27と制御装置8との間に接続されている。第3の配線41は、ブレーキ装置2の内部配線となっており、第3の配線41の途中には、第4のダイオード37が設けられている。 The brake device 2 is provided with two connectors 2A and 2B, similarly to the brake device 2 of the first embodiment. Third wiring 41 is provided inside brake device 2 and supplies power from first power storage device 12 to control device 8. That is, the third wiring 41 connects the first power storage device 12 and the control device 8 in the brake device 2. In this case, the third wiring 41 branches from the first wiring 25 in the brake device 2 and is connected to the control device 8. That is, one end side of the third wiring 41 is connected in the middle of the first wiring 25, more specifically, in the middle of the first internal wiring 25B. The other end side of the third wiring 41 is connected in the middle of the second wiring 26, that is, between the third diode 27 and the control device 8 in the second internal wiring 26 </ b> B. The third wiring 41 is an internal wiring of the brake device 2, and a fourth diode 37 is provided in the middle of the third wiring 41.
 第3の実施形態は、上述の如き第3の配線41により第1の蓄電装置12から制御装置8に電力を供給するもので、その基本的作用については、第2の実施形態によるものと格別差異はない。特に、第3の実施形態では、ブレーキ装置2内に第3の配線41を設けているため、第2の実施形態と比較して、ブレーキ装置2のコネクタ2Cを少なくできる。これに加えて、第1の蓄電装置12とブレーキ装置2との間を接続するワイヤーハーネスを1本(第1の配線25のみ)にできる。これにより、ワイヤーハーネスの接続作業の簡素化、延いては、コストの低減を図ることができる。 In the third embodiment, electric power is supplied from the first power storage device 12 to the control device 8 through the third wiring 41 as described above, and the basic operation is exceptionally different from that in the second embodiment. There is no difference. In particular, in the third embodiment, since the third wiring 41 is provided in the brake device 2, the number of connectors 2C of the brake device 2 can be reduced as compared with the second embodiment. In addition to this, one wire harness (only the first wiring 25) for connecting the first power storage device 12 and the brake device 2 can be provided. Thereby, the connection operation | work of a wire harness can be simplified and a reduction in cost can be aimed at.
 次に、図4は、第4の実施形態を示している。第4の実施形態の特徴は、第1~第3の実施形態で用いたような電源供給部を備えずに、制御装置に出力する電力を第1の蓄電装置から第2の蓄電装置に切換えることができる構成としたことにある。なお、第4の実施形態では、第2の実施形態と同一の構成要素に同一の符号を付し、その説明を省略する。 Next, FIG. 4 shows a fourth embodiment. A feature of the fourth embodiment is that the power output to the control device is switched from the first power storage device to the second power storage device without including the power supply unit used in the first to third embodiments. The configuration is such that it can be used. Note that in the fourth embodiment, the same components as those in the second embodiment are denoted by the same reference numerals, and description thereof is omitted.
 第4の実施形態では、第1~第3の実施形態で用いたような電源供給部16,31(図1~図3)を備えていない。第4の実施形態では、第1の蓄電装置12と充電回路18とを、第1の充電ライン51により接続している。また、充電回路18と第2の蓄電装置15とを、第2の充電ライン52により接続している。さらに、第2の蓄電装置15と制御装置とを第2の配線53により接続している。第2の配線53は、第2の蓄電装置15とブレーキ装置2の第2のコネクタ2Bとの間を繋ぐ第2の外部配線53Aと、該第2のコネクタ2Bと制御装置8との間を繋ぐ第2の内部配線53Bとを含んで構成されている。第2の内部配線53Bの途中には、第3のダイオード27が設けられている。 In the fourth embodiment, the power supply units 16 and 31 (FIGS. 1 to 3) used in the first to third embodiments are not provided. In the fourth embodiment, the first power storage device 12 and the charging circuit 18 are connected by the first charging line 51. In addition, the charging circuit 18 and the second power storage device 15 are connected by a second charging line 52. Further, the second power storage device 15 and the control device are connected by a second wiring 53. The second wiring 53 is provided between the second external wiring 53A that connects the second power storage device 15 and the second connector 2B of the brake device 2, and between the second connector 2B and the control device 8. The second internal wiring 53B to be connected is included. A third diode 27 is provided in the middle of the second internal wiring 53B.
 第4の実施形態では、制御装置8は、第2の配線53を介して第2の蓄電装置15と接続され、第3の配線36を介して第1の蓄電装置12と接続されている。この場合、第2の配線53(第2の内部配線53B)には、第3のダイオード27が設けられており、第3の配線36には、第4のダイオード37が設けられている。これにより、第1の蓄電装置12の電圧が所定値以下(即ち、第2の蓄電装置15の電圧以下)になったときに、制御装置8に出力する電力を第1の蓄電装置12から第2の蓄電装置15に切換えることができる。 In the fourth embodiment, the control device 8 is connected to the second power storage device 15 via the second wiring 53 and is connected to the first power storage device 12 via the third wiring 36. In this case, a third diode 27 is provided in the second wiring 53 (second internal wiring 53B), and a fourth diode 37 is provided in the third wiring 36. Thereby, when the voltage of the first power storage device 12 becomes equal to or lower than a predetermined value (that is, the voltage of the second power storage device 15 or lower), the power output to the control device 8 is transmitted from the first power storage device 12 to the first power storage device 12. 2 power storage devices 15 can be switched.
 このような、第4の実施形態では、電動機3は、第1の蓄電装置12に接続している第1の配線25によって、第1の蓄電装置12から電力が供給される。一方、制御装置8は、第2の蓄電装置15に接続している第2の配線53と、第1の蓄電装置12に接続している第3の配線36とによって、第1の蓄電装置12または第2の蓄電装置15(のうち出力電圧が大きい蓄電装置)から電力が供給される。 In such a fourth embodiment, electric power is supplied from the first power storage device 12 to the electric motor 3 through the first wiring 25 connected to the first power storage device 12. On the other hand, the control device 8 includes the first power storage device 12 by the second wiring 53 connected to the second power storage device 15 and the third wiring 36 connected to the first power storage device 12. Alternatively, power is supplied from the second power storage device 15 (a power storage device having a high output voltage).
 第4の実施形態は、上述の如き第3の配線36と第2の配線53とによって、第1の蓄電装置12または第2の蓄電装置15から制御装置8に電力を供給するもので、その基本的作用については、第2の実施形態によるものと格別差異はない。 In the fourth embodiment, power is supplied from the first power storage device 12 or the second power storage device 15 to the control device 8 by the third wiring 36 and the second wiring 53 as described above. The basic action is not different from that according to the second embodiment.
 即ち、第4の実施形態では、電動機3は、第1の配線25によって第1の蓄電装置12から電力が供給され、制御装置8は、第2の配線53によって第2の蓄電装置15から、または、第3の配線36によって第1の蓄電装置12から電力が供給される。即ち、インバータ回路5は、第2の蓄電装置15と電気的に接続されず、第1の蓄電装置12と電気的に接続され、制御装置8は、第1の蓄電装置12および第2の蓄電装置15と電気的に接続される。 That is, in the fourth embodiment, the electric motor 3 is supplied with electric power from the first power storage device 12 through the first wiring 25, and the control device 8 is supplied from the second power storage device 15 through the second wiring 53. Alternatively, power is supplied from the first power storage device 12 through the third wiring 36. That is, the inverter circuit 5 is not electrically connected to the second power storage device 15, but is electrically connected to the first power storage device 12, and the control device 8 is connected to the first power storage device 12 and the second power storage device 12. It is electrically connected to the device 15.
 このため、第1の蓄電装置12の電圧が十分なとき(第2の蓄電装置15の電圧よりも高いとき)は、制御装置8に第1の蓄電装置12から第3の配線36を介して電力が供給される。これに対して、エンジンの始動等により第1の蓄電装置12の電圧が低下する(第2の蓄電装置15の電圧以下になる)と、制御装置8には、第2の蓄電装置15から第2の配線53を介して電力が供給される。これにより、第1の蓄電装置12の電圧が低下しても、制御装置8の電圧を確保することができ、制御装置8が低電圧となってリセット(再起動)されることを抑制できる。一方、電動機3(インバータ回路5)は、第2の蓄電装置15から電力が供給されない。このため、第2の蓄電装置15の消費電力を抑制することができる。これにより、第2の蓄電装置15の容量を低減することができる。 Therefore, when the voltage of the first power storage device 12 is sufficient (when the voltage is higher than the voltage of the second power storage device 15), the control device 8 is connected to the control device 8 via the third wiring 36. Power is supplied. On the other hand, when the voltage of the first power storage device 12 decreases (below the voltage of the second power storage device 15) due to the start of the engine or the like, the control device 8 receives the second power storage device 15 from the second power storage device 15. Electric power is supplied through the second wiring 53. Thereby, even if the voltage of the 1st electrical storage apparatus 12 falls, the voltage of the control apparatus 8 can be ensured and it can suppress that the control apparatus 8 becomes a low voltage and is reset (restarted). On the other hand, electric power is not supplied from the second power storage device 15 to the motor 3 (inverter circuit 5). For this reason, the power consumption of the 2nd electrical storage apparatus 15 can be suppressed. Thereby, the capacity | capacitance of the 2nd electrical storage apparatus 15 can be reduced.
 次に、図5は、第5の実施形態を示している。第5の実施形態の特徴は、第3の配線がブレーキ装置内で第1の配線から分岐して制御装置に接続される構成としたことにある。なお、第5の実施形態では、第4の実施形態と同一の構成要素に同一の符号を付し、その説明を省略する。 Next, FIG. 5 shows a fifth embodiment. A feature of the fifth embodiment resides in that the third wiring is branched from the first wiring in the brake device and connected to the control device. In the fifth embodiment, the same components as those in the fourth embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 ブレーキ装置2には、第1の実施形態のブレーキ装置2と同様に、2つのコネクタ2A,2Bが設けられている。第3の配線61は、ブレーキ装置2内で、第1の配線25から分岐して制御装置8に接続されている。第3の配線61の途中には、第4のダイオード37が設けられている。 The brake device 2 is provided with two connectors 2A and 2B, similarly to the brake device 2 of the first embodiment. The third wiring 61 branches from the first wiring 25 in the brake device 2 and is connected to the control device 8. A fourth diode 37 is provided in the middle of the third wiring 61.
 第5の実施形態は、上述の如き第3の配線61により第1の蓄電装置12から制御装置8に電力を供給するもので、その基本的作用については、第4の実施形態によるものと格別差異はない。特に、第5の実施形態では、ブレーキ装置2内に第3の配線61を設けているため、第4の実施形態と比較して、ブレーキ装置2のコネクタ2Cを少なくできる。これに加えて、第1の蓄電装置12とブレーキ装置2との間を接続するワイヤーハーネスを1本(第1の配線25のみ)にできる。 In the fifth embodiment, electric power is supplied from the first power storage device 12 to the control device 8 through the third wiring 61 as described above, and the basic operation is exceptionally different from that in the fourth embodiment. There is no difference. In particular, in the fifth embodiment, since the third wiring 61 is provided in the brake device 2, the number of connectors 2C of the brake device 2 can be reduced compared to the fourth embodiment. In addition to this, one wire harness (only the first wiring 25) for connecting the first power storage device 12 and the brake device 2 can be provided.
 次に、図6および図7は、第6の実施形態を示している。第6の実施形態の特徴は、ブレーキ装置内に第2の蓄電装置から制御装置への電力供給を遮断または接続する遮断装置を有する構成としたことにある。なお、第6の実施形態では、第2の実施形態と同一の構成要素に同一の符号を付し、その説明を省略する。 Next, FIG. 6 and FIG. 7 show a sixth embodiment. A feature of the sixth embodiment resides in that the brake device includes a cutoff device that cuts off or connects the power supply from the second power storage device to the control device. In the sixth embodiment, the same components as those in the second embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 ブレーキ装置2は、その内部に遮断装置71を有している。遮断装置71は、ブレーキ装置2内で、第2の配線26の途中、より具体的には、第2の内部配線26Bのうちブレーキ装置2の第2のコネクタ2Bと第3のダイオード27との間に設けられている。遮断装置71は、電源供給部31(より具体的には、第2の蓄電装置15)から制御装置8への電力供給を遮断または接続する。遮断装置71は、制御装置8により遮断と接続とが制御される。このために、遮断装置71は、制御装置8と信号線72を介して接続されている。遮断装置71は、例えば、電磁リレー等のスイッチにより構成することができる。 The brake device 2 has a shut-off device 71 inside. The shut-off device 71 is provided in the brake device 2 in the middle of the second wiring 26, more specifically, between the second connector 2B of the brake device 2 and the third diode 27 in the second internal wiring 26B. It is provided in between. The shut-off device 71 shuts off or connects the power supply from the power supply unit 31 (more specifically, the second power storage device 15) to the control device 8. The blocking device 71 is controlled to be blocked and connected by the control device 8. For this purpose, the shutoff device 71 is connected to the control device 8 via the signal line 72. The interruption | blocking apparatus 71 can be comprised by switches, such as an electromagnetic relay, for example.
 遮断装置71は、第1の蓄電装置12の電圧が所定値以下になったときに、第2の蓄電装置15から制御装置8への電力供給を接続する接続状態となる。一方、第1の蓄電装置12の電圧が所定値よりも高いときは、遮断装置71は、第2の蓄電装置15から制御装置8への電力供給を遮断する遮断状態となる。制御装置8は、第1の蓄電装置12の電圧を、例えば、CANを構成する車両データバスから取得する。なお、所定値は、制御装置8を安定して動作させることができる(リセットされない)電圧値となるように、制御装置8の仕様、車両の仕様等に応じて設定する。また、遮断装置71を切換える電圧の所定値は、電源供給部31の切換スイッチ32を切換える電圧の所定値と同じにしてもよいし、異ならせてもよい(例えば、切換スイッチ32の所定値よりも遮断装置71の所定値を低くしてもよい)。 When the voltage of the 1st electrical storage apparatus 12 becomes below a predetermined value, the interruption | blocking apparatus 71 will be in the connection state which connects the electric power supply from the 2nd electrical storage apparatus 15 to the control apparatus 8. FIG. On the other hand, when the voltage of the first power storage device 12 is higher than a predetermined value, the cutoff device 71 enters a cutoff state in which power supply from the second power storage device 15 to the control device 8 is cut off. The control device 8 acquires the voltage of the first power storage device 12 from, for example, a vehicle data bus that constitutes the CAN. The predetermined value is set according to the specification of the control device 8, the specification of the vehicle, and the like so as to be a voltage value that allows the control device 8 to operate stably (not reset). Further, the predetermined value of the voltage for switching the shut-off device 71 may be the same as or different from the predetermined value of the voltage for switching the changeover switch 32 of the power supply unit 31 (for example, from the predetermined value of the changeover switch 32). Alternatively, the predetermined value of the blocking device 71 may be lowered).
 図7は、制御装置8により行われる制御処理を示している。制御装置8は、図7に示す制御処理を、所定の制御周期で繰り返し実行する。図7の制御処理が開始されると、S1では、第1の蓄電装置12の電圧が所定値以下であるか否かを判定する。この判定は、車両データバスから取得される第1の蓄電装置12の電圧を用いることができる。S1で「YES」、即ち、第1の蓄電装置12の電圧が所定値以下であると判定された場合は、S2に進む。 FIG. 7 shows a control process performed by the control device 8. The control device 8 repeatedly executes the control process shown in FIG. 7 at a predetermined control cycle. When the control process of FIG. 7 is started, in S1, it is determined whether or not the voltage of the first power storage device 12 is equal to or lower than a predetermined value. For this determination, the voltage of the first power storage device 12 acquired from the vehicle data bus can be used. If “YES” in S1, that is, if it is determined that the voltage of the first power storage device 12 is equal to or lower than the predetermined value, the process proceeds to S2.
 S2では、遮断装置71を接続状態とする。即ち、制御装置8は、遮断装置71に対して接続の指令を出力する。S2で、遮断装置71を接続状態にしたら、リターンする(リターンを介してスタートに戻り、S1以降の処理を繰り返す)。一方、S1で「NO」、即ち、第1の蓄電装置12の電圧が所定値を超えていると判定された場合は、S3に進む。S3では、遮断装置71を遮断状態とする。即ち、制御装置8は、遮断装置71に対して遮断の指令を出力する。S3で、遮断装置71を遮断状態にしたら、リターンする。 In S2, the shut-off device 71 is set in a connected state. That is, the control device 8 outputs a connection command to the blocking device 71. When the shut-off device 71 is in the connected state in S2, the process returns (returns to the start via the return, and repeats the processes after S1). On the other hand, if “NO” in S1, that is, if it is determined that the voltage of the first power storage device 12 exceeds the predetermined value, the process proceeds to S3. In S3, the shut-off device 71 is put into a shut-off state. That is, the control device 8 outputs a cutoff command to the cutoff device 71. If the shut-off device 71 is put into a shut-off state in S3, the process returns.
 第6の実施形態は、上述の如き遮断装置71をブレーキ装置2内に設けたもので、その基本的作用については、第2の実施形態によるものと格別差異はない。特に、第6の実施形態では、ブレーキ装置2内で、遮断装置71により制御装置8と第2の蓄電装置15との間を遮断または接続することができる。これにより、例えば、電源供給部31から出力される電力が第2の蓄電装置15の電力のときにも、遮断装置71を遮断にすることにより、第1の蓄電装置12の電力を制御装置8に供給することができる。これにより、第2の蓄電装置15の消費電力を抑制することができる。 In the sixth embodiment, the breaking device 71 is provided in the brake device 2 as described above, and the basic action is not different from that in the second embodiment. In particular, in the sixth embodiment, the control device 8 and the second power storage device 15 can be disconnected or connected by the blocking device 71 in the brake device 2. Thereby, for example, even when the power output from the power supply unit 31 is the power of the second power storage device 15, the power of the first power storage device 12 is cut off by turning off the shut-off device 71. Can be supplied to. Thereby, the power consumption of the 2nd electrical storage apparatus 15 can be suppressed.
 第6の実施形態では、遮断装置71は、第1の蓄電装置12の電圧が所定値以下になったときに、第2の蓄電装置15から制御装置8への電力供給を接続する接続状態となる。このため、第1の蓄電装置12の電圧が所定値以下になったときに、第2の蓄電装置15から制御装置8に安定して電力を供給することができる。 In the sixth embodiment, the shut-off device 71 is connected to connect the power supply from the second power storage device 15 to the control device 8 when the voltage of the first power storage device 12 becomes a predetermined value or less. Become. For this reason, when the voltage of the 1st electrical storage apparatus 12 becomes below a predetermined value, electric power can be stably supplied from the 2nd electrical storage apparatus 15 to the control apparatus 8. FIG.
 なお、図8に示す第7の実施形態のように構成してもよい。第7の実施形態は、図3に示す第3の実施形態のブレーキ装置2に遮断装置71を設けたものである。また、図9に示す第8の実施形態のように構成してもよい。第8の実施形態は、図4に示す第4の実施形態のブレーキ装置2に遮断装置71を設けたものである。さらに、図10に示す第9の実施形態のように構成してもよい。第9の実施形態は、図5に示す第5の実施形態のブレーキ装置2に遮断装置71を設けたものである。これら第7~第9の実施形態についても、第6の実施形態と同様に、ブレーキ装置2内で遮断装置71により制御装置8と第2の蓄電装置15との間を遮断または接続することができる。また、第1の蓄電装置12の電圧が所定値以下になったときにも、制御装置8に安定して電力を供給することができる。 In addition, you may comprise like 7th Embodiment shown in FIG. In the seventh embodiment, a blocking device 71 is provided in the brake device 2 of the third embodiment shown in FIG. Moreover, you may comprise like 8th Embodiment shown in FIG. In the eighth embodiment, a breaking device 71 is provided in the brake device 2 of the fourth embodiment shown in FIG. Furthermore, it may be configured as in the ninth embodiment shown in FIG. In the ninth embodiment, a breaking device 71 is provided in the brake device 2 of the fifth embodiment shown in FIG. In the seventh to ninth embodiments, as in the sixth embodiment, the control device 8 and the second power storage device 15 may be disconnected or connected by the disconnection device 71 in the brake device 2. it can. Further, even when the voltage of the first power storage device 12 becomes a predetermined value or less, it is possible to stably supply power to the control device 8.
 次に、図11および図12は、第10の実施形態を示している。第10の実施形態の特徴は、内燃機関を始動するときに遮断装置を接続する構成としたことにある。なお、第10の実施形態では、第2の実施形態および第6の実施形態と同一の構成要素に同一の符号を付し、その説明を省略する。 Next, FIGS. 11 and 12 show a tenth embodiment. A feature of the tenth embodiment is that a shut-off device is connected when the internal combustion engine is started. Note that in the tenth embodiment, identical symbols are assigned to components identical to those in the second and sixth embodiments and descriptions thereof are omitted.
 ブレーキ装置2は、第6の実施形態と同様に、その内部に遮断装置71を有している。ここで、第10の実施形態では、遮断装置71は、内燃機関であるエンジン81の始動時、即ち、エンジン81の始動を行っているときに、第2の蓄電装置15から制御装置8への電力供給を接続する接続状態となる。一方、エンジン81の始動時ではない時、即ち、エンジン81の始動を行っていないとき(例えば、エンジン駆動中のとき、エンジン停止中でアクセサリONのとき)は、遮断装置71は、第2の蓄電装置15から制御装置8への電力供給を遮断する遮断状態となる。 The brake device 2 has the interruption | blocking apparatus 71 in the inside similarly to 6th Embodiment. Here, in the tenth embodiment, the shutoff device 71 is connected from the second power storage device 15 to the control device 8 when the engine 81 that is an internal combustion engine is started, that is, when the engine 81 is started. A connection state for connecting the power supply is established. On the other hand, when the engine 81 is not started, that is, when the engine 81 is not started (for example, when the engine is being driven, when the engine is stopped and the accessory is ON), the shut-off device 71 is It will be in the interruption | blocking state which interrupts | blocks the electric power supply from the electrical storage apparatus 15 to the control apparatus 8. FIG.
 ここで、制御装置8は、エンジン81のクランキング情報(例えば、始動装置13によってエンジン81のクランク軸が回転駆動されている旨の情報)を、例えば、CANを構成する車両データバス82から取得する。制御装置8は、車両データバス82から取得するクランキング情報に基づいて、エンジン81の始動を行っていることを判定する。なお、図11(および後述する図13ないし図15)では、図面が複雑になることを避けるために、エンジン81と始動装置13とを離して図示しているが、通常、始動装置13はエンジン81に設けられている。 Here, the control device 8 acquires cranking information of the engine 81 (for example, information that the crankshaft of the engine 81 is rotationally driven by the starter 13) from, for example, the vehicle data bus 82 that constitutes the CAN. To do. The control device 8 determines that the engine 81 is started based on the cranking information acquired from the vehicle data bus 82. In FIG. 11 (and FIGS. 13 to 15 to be described later), the engine 81 and the starter 13 are illustrated separately from each other in order to avoid complication of the drawings. 81 is provided.
 図12は、制御装置8により行われる制御処理を示している。制御装置8は、図12に示す制御処理を、所定の制御周期で繰り返し実行する。図12の制御処理が開始されると、S11では、エンジン81の始動を判定する。即ち、S11では、始動装置13によりエンジン81をクランキングしているか否かを判定する。この判定は、車両データバスから取得されるクランキング情報を用いることができる。S11で「YES」、即ち、エンジン81を始動しているときと判定された場合は、S12に進み、遮断装置71を接続状態とし、リターンする。一方、S11で「NO」、即ち、エンジン81を始動しているときではないと判定された場合は、S13に進み、遮断装置71を遮断状態とし、リターンする。 FIG. 12 shows a control process performed by the control device 8. The control device 8 repeatedly executes the control process shown in FIG. 12 at a predetermined control cycle. When the control process of FIG. 12 is started, the engine 81 is determined to be started in S11. That is, in S11, it is determined whether or not the engine 81 is cranked by the starter 13. This determination can use cranking information acquired from the vehicle data bus. If “YES” in S11, that is, if it is determined that the engine 81 is started, the process proceeds to S12, the shut-off device 71 is connected, and the process returns. On the other hand, if “NO” in S11, that is, if it is determined that the engine 81 is not being started, the process proceeds to S13, where the shutoff device 71 is shut off and the process returns.
 なお、第10の実施形態では、エンジン81の始動を、クランキング情報(始動装置13の回転情報)から判定する場合を例に挙げて説明した。しかし、これに限らず、例えば、クランキング情報と共に、または、クランキング情報に代えて、アイドリングストップ情報、エンジン回転数情報、車速情報、位置情報(GPS情報)、ブレーキ操作情報等を用いて、エンジン81の始動を判定してもよい。 In the tenth embodiment, the case where the start of the engine 81 is determined from the cranking information (rotation information of the starter 13) has been described as an example. However, the present invention is not limited to this, for example, using idling stop information, engine speed information, vehicle speed information, position information (GPS information), brake operation information, etc. together with or instead of cranking information, The start of the engine 81 may be determined.
 第10の実施形態は、上述の如きクランキング情報等を用いて遮断装置71を接続状態とするもので、その基本的作用については、第2の実施形態によるものと格別差異はない。特に、第10の実施形態では、第6の実施形態と同様に、ブレーキ装置2内で、遮断装置71により制御装置8と第2の蓄電装置15との間を遮断または接続することができる。これに加えて、第10の実施形態では、エンジン81の始動中(始動動作中)、即ち、第1の蓄電装置12から始動装置13に電力が供給されることにより第1の蓄電装置12の電圧が低下するときに、遮断装置71が接続状態となる。これにより、エンジン81の始動中に第2の蓄電装置15から制御装置8に安定して電力を供給することができる。 In the tenth embodiment, the blocking device 71 is brought into a connected state using the above-described cranking information and the like, and the basic action is not particularly different from that in the second embodiment. In particular, in the tenth embodiment, as in the sixth embodiment, the control device 8 and the second power storage device 15 can be blocked or connected by the blocking device 71 in the brake device 2. In addition, in the tenth embodiment, when the engine 81 is being started (starting operation), that is, when power is supplied from the first power storage device 12 to the starter 13, When the voltage decreases, the interrupting device 71 is connected. Thereby, electric power can be stably supplied from second power storage device 15 to control device 8 while engine 81 is started.
 なお、図13に示す第11の実施形態のように構成してもよい。第11の実施形態は、図3に示す第3の実施形態のブレーキ装置2に遮断装置71を設けると共に、エンジン81を始動しているときに遮断装置71を接続状態にするものである。また、図14に示す第12の実施形態のように構成してもよい。第12の実施形態は、図4に示す第4の実施形態のブレーキ装置2に遮断装置71を設けると共に、エンジン81を始動しているときに遮断装置71を接続状態にするものである。さらに、図15に示す第13の実施形態のように構成してもよい。第13の実施形態は、図5に示す第5の実施形態のブレーキ装置2に遮断装置71を設けると共に、エンジン81を始動しているときに遮断装置71を接続状態にするものである。これら第11~第13の実施形態についても、第6の実施形態と同様に、ブレーキ装置2内で遮断装置71により制御装置8と第2の蓄電装置15との間を遮断または接続することができる。これに加えて、第10の実施形態と同様に、エンジン81の始動中に制御装置8に安定して電力を供給することができる。 In addition, you may comprise like 11th Embodiment shown in FIG. In the eleventh embodiment, the brake device 2 of the third embodiment shown in FIG. 3 is provided with a cutoff device 71, and the cutoff device 71 is connected when the engine 81 is started. Moreover, you may comprise like the 12th Embodiment shown in FIG. In the twelfth embodiment, the brake device 2 of the fourth embodiment shown in FIG. 4 is provided with a cutoff device 71, and the cutoff device 71 is connected when the engine 81 is started. Furthermore, it may be configured as in the thirteenth embodiment shown in FIG. In the thirteenth embodiment, the brake device 2 of the fifth embodiment shown in FIG. 5 is provided with a cutoff device 71, and the cutoff device 71 is connected when the engine 81 is started. In the eleventh to thirteenth embodiments, as in the sixth embodiment, the control device 8 and the second power storage device 15 may be disconnected or connected by the disconnection device 71 in the brake device 2. it can. In addition, similarly to the tenth embodiment, it is possible to stably supply power to the control device 8 while the engine 81 is starting.
 次に、図16および図17は、第14の実施形態を示している。第14の実施形態の特徴は、逆流防止機能診断部が逆流防止装置の異常を検出したときに、第2の蓄電装置から制御装置への電力供給を遮断する構成としたことにある。なお、第14の実施形態では、第2の実施形態および第6の実施形態と同一の構成要素に同一の符号を付し、その説明を省略する。 Next, FIGS. 16 and 17 show a fourteenth embodiment. The feature of the fourteenth embodiment is that the power supply from the second power storage device to the control device is cut off when the backflow prevention function diagnosis unit detects an abnormality in the backflow prevention device. Note that in the fourteenth embodiment, identical components to those in the second and sixth embodiments are assigned the same reference numerals, and descriptions thereof are omitted.
 ブレーキ装置2は、第6の実施形態と同様に、その内部に遮断装置71を有している。また、ブレーキ装置2内には、電流の逆流を防止する逆流防止装置としての第3のダイオード27と第4のダイオード37とが設けられている。第3のダイオード27は、第2の配線26(第2の内部配線26B)の途中に設けられている。第3のダイオード27は、電源供給部31からブレーキ装置2の制御装置8に向かう方向の電流を許容し、逆方向の電流を遮断する。第4のダイオード37は、第3の配線36(第3の内部配線36B)の途中に設けられている。第4のダイオード37は、第1の蓄電装置12からブレーキ装置2の制御装置8に向かう方向の電流を許容し、逆方向の電流を遮断する。 The brake device 2 has the interruption | blocking apparatus 71 in the inside similarly to 6th Embodiment. Further, the brake device 2 is provided with a third diode 27 and a fourth diode 37 as a backflow prevention device for preventing a backflow of current. The third diode 27 is provided in the middle of the second wiring 26 (second internal wiring 26B). The third diode 27 allows a current in a direction from the power supply unit 31 toward the control device 8 of the brake device 2 and blocks a current in the reverse direction. The fourth diode 37 is provided in the middle of the third wiring 36 (third internal wiring 36B). The fourth diode 37 allows current in the direction from the first power storage device 12 to the control device 8 of the brake device 2 and blocks current in the reverse direction.
 第1の逆流防止機能診断部91は、第3の配線36(第3の内部配線36B)に設けられている。第1の逆流防止機能診断部91は、第4のダイオード37が機能していることを診断する。即ち、第1の逆流防止機能診断部91は、第3の配線36に第1の蓄電装置12からブレーキ装置2の制御装置8に向かう方向の電流が流れている(正常:第4のダイオード37が機能している)か、これとは逆方向の電流が流れている(異常:第4のダイオード37が機能していない)か、を検出する。第1の逆流防止機能診断部91は、制御装置8と第3の信号線93を介して接続されている。第1の逆流防止機能診断部91は、第3の信号線93を介して制御装置8に、第4のダイオード37の診断結果(正常、異常)を出力する。 The first backflow prevention function diagnosis unit 91 is provided in the third wiring 36 (third internal wiring 36B). The first backflow prevention function diagnosis unit 91 diagnoses that the fourth diode 37 is functioning. That is, in the first backflow prevention function diagnosis unit 91, a current in a direction from the first power storage device 12 to the control device 8 of the brake device 2 flows through the third wiring 36 (normal: the fourth diode 37). Or whether a current in the opposite direction is flowing (abnormal: the fourth diode 37 is not functioning). The first backflow prevention function diagnosis unit 91 is connected to the control device 8 via the third signal line 93. The first backflow prevention function diagnosis unit 91 outputs the diagnosis result (normal or abnormal) of the fourth diode 37 to the control device 8 via the third signal line 93.
 第2の逆流防止機能診断部92は、第2の配線26(第2の内部配線26B)に設けられている。第2の逆流防止機能診断部92は、第3のダイオード27が機能していることを診断する。即ち、第2の逆流防止機能診断部92は、第2の配線26に電源供給部31からブレーキ装置2の制御装置8に向かう方向の電流が流れている(正常:第3のダイオード27が機能している)か、これとは逆方向の電流が流れている(異常:第3のダイオード27が機能していない)か、を検出する。第2の逆流防止機能診断部92は、制御装置8と第4の信号線94を介して接続されている。第2の逆流防止機能診断部92は、第4の信号線94を介して制御装置8に、第3のダイオード27の診断結果(正常、異常)を出力する。 The second backflow prevention function diagnosis unit 92 is provided in the second wiring 26 (second internal wiring 26B). The second backflow prevention function diagnosis unit 92 diagnoses that the third diode 27 is functioning. That is, in the second backflow prevention function diagnosis unit 92, a current in the direction from the power supply unit 31 to the control device 8 of the brake device 2 flows through the second wiring 26 (normal: the third diode 27 functions). Or a current in the opposite direction flows (abnormal: the third diode 27 is not functioning). The second backflow prevention function diagnostic unit 92 is connected to the control device 8 via the fourth signal line 94. The second backflow prevention function diagnosis unit 92 outputs the diagnosis result (normal or abnormal) of the third diode 27 to the control device 8 via the fourth signal line 94.
 制御装置8には、第1の逆流防止機能診断部91の診断結果と第2の逆流防止機能診断部92の診断結果とが入力される。制御装置8は、第1の逆流防止機能診断部91が異常を検出したときに、遮断装置71を遮断状態にすることにより、第2の蓄電装置15から制御装置8への電力供給を遮断する。また、制御装置8は、第2の逆流防止機能診断部92が異常を検出したときに、遮断装置71を遮断状態にすることにより、第2の蓄電装置15から制御装置8への電力供給を遮断する。 The control device 8 receives the diagnosis result of the first backflow prevention function diagnosis unit 91 and the diagnosis result of the second backflow prevention function diagnosis unit 92. When the first backflow prevention function diagnosis unit 91 detects an abnormality, the control device 8 shuts off the power supply from the second power storage device 15 to the control device 8 by setting the shut-off device 71 to the shut-off state. . Further, when the second backflow prevention function diagnosis unit 92 detects an abnormality, the control device 8 sets the shut-off device 71 in a shut-off state, thereby supplying power from the second power storage device 15 to the control device 8. Cut off.
 図17は、制御装置8により行われる制御処理を示している。制御装置8は、図17に示す制御処理を、所定の制御周期で繰り返し実行する。図17の制御処理が開始されると、S21では、逆流防止装置の異常を検出したか否かを判定する。即ち、S21では、第3のダイオード27の異常および第4のダイオード37の異常を判定する。具体的には、S21では、第1の逆流防止機能診断部91で異常が検出されたか否か、および、第2の逆流防止機能診断部92で異常が検出されたか否かを判定する。S21で「YES」、即ち、第3のダイオード27と第4のダイオード37とのうちの少なくとも一方に異常があると判定された場合は、S22に進み、遮断装置71を遮断状態とし、リターンする。一方、S21で「NO」、即ち、第3のダイオード27および第4のダイオード37が異常でない(正常である)と判定された場合は、S23に進み、遮断装置71を接続状態とし、リターンする。 FIG. 17 shows a control process performed by the control device 8. The control device 8 repeatedly executes the control process shown in FIG. 17 at a predetermined control cycle. When the control process of FIG. 17 is started, in S21, it is determined whether or not an abnormality of the backflow prevention device is detected. That is, in S21, the abnormality of the third diode 27 and the abnormality of the fourth diode 37 are determined. Specifically, in S21, it is determined whether or not an abnormality is detected by the first backflow prevention function diagnosis unit 91 and whether or not an abnormality is detected by the second backflow prevention function diagnosis unit 92. If “YES” in S21, that is, if it is determined that there is an abnormality in at least one of the third diode 27 and the fourth diode 37, the process proceeds to S22 to set the shut-off device 71 in the shut-off state and return. . On the other hand, if “NO” is determined in S21, that is, if it is determined that the third diode 27 and the fourth diode 37 are not abnormal (normal), the process proceeds to S23, the shutoff device 71 is set in the connected state, and the process returns. .
 第14の実施形態は、上述の如き第1の逆流防止機能診断部91および第2の逆流防止機能診断部92により異常を検出したときに、遮断装置71を遮断状態とするもので、その基本的作用については、第6の実施形態によるものと格別差異はない。特に、第14の実施形態では、第3のダイオード27と第4のダイオード37とのうちの少なくとも一方に異常が発生したときにも、ブレーキ装置2内の遮断装置71を遮断状態にすることにより、電流の逆流を防止することができる。 In the fourteenth embodiment, when an abnormality is detected by the first backflow prevention function diagnosis unit 91 and the second backflow prevention function diagnosis unit 92 as described above, the cutoff device 71 is put into a cutoff state. There is no particular difference between the second embodiment and the third embodiment. In particular, in the fourteenth embodiment, when the abnormality occurs in at least one of the third diode 27 and the fourth diode 37, the interruption device 71 in the brake device 2 is brought into the interruption state. , Current backflow can be prevented.
 なお、図18に示す第15の実施形態のように構成してもよい。第15の実施形態は、図3に示す第3の実施形態のブレーキ装置2に遮断装置71および逆流防止機能診断部91,92を設けると共に、ダイオード27,37に異常が発生したときに遮断装置71を遮断状態にするものである。また、図19に示す第16の実施形態のように構成してもよい。第16の実施形態は、図4に示す第4の実施形態のブレーキ装置2に遮断装置71および逆流防止機能診断部91,92を設けると共に、ダイオード27,37に異常が発生したときに遮断装置71を遮断状態にするものである。さらに、図20に示す第17の実施形態のように構成してもよい。第17の実施形態は、図5に示す第5の実施形態のブレーキ装置2に遮断装置71および逆流防止機能診断部91,92を設けると共に、ダイオード27,37に異常が発生したときに遮断装置71を遮断状態にするものである。これら第15~第17の実施形態についても、第6の実施形態と同様に、ブレーキ装置2内で遮断装置71により制御装置8と第2の蓄電装置15との間を遮断または接続することができる。これに加えて、第14の実施形態と同様に、ダイオード27,37に異常が発生したときにも、遮断装置71を遮断状態にすることにより、電流の逆流を防止することができる。 In addition, you may comprise like 15th Embodiment shown in FIG. In the fifteenth embodiment, the brake device 2 of the third embodiment shown in FIG. 3 is provided with a shut-off device 71 and backflow prevention function diagnosis units 91 and 92, and when an abnormality occurs in the diodes 27 and 37, the shut-off device 71 is put into a cut-off state. Moreover, you may comprise like 16th Embodiment shown in FIG. In the sixteenth embodiment, the brake device 2 of the fourth embodiment shown in FIG. 4 is provided with a cutoff device 71 and backflow prevention function diagnosis units 91 and 92, and when an abnormality occurs in the diodes 27 and 37, the cutoff device 71 is put into a cut-off state. Furthermore, it may be configured as in the seventeenth embodiment shown in FIG. In the seventeenth embodiment, the brake device 2 of the fifth embodiment shown in FIG. 5 is provided with a cutoff device 71 and backflow prevention function diagnosis units 91 and 92, and when an abnormality occurs in the diodes 27 and 37, the cutoff device 71 is put into a cut-off state. In the fifteenth to seventeenth embodiments, as in the sixth embodiment, the control device 8 and the second power storage device 15 may be disconnected or connected by the disconnection device 71 in the brake device 2. it can. In addition to this, as in the fourteenth embodiment, even when an abnormality occurs in the diodes 27 and 37, the reverse flow of the current can be prevented by setting the interruption device 71 in the interruption state.
 上述した各実施形態では、ブレーキ装置2として電動倍力装置を例に挙げて説明した。しかし、これに限らず、ブレーキ装置は、液圧供給装置(ESC)、電動ブレーキ、電動駐車ブレーキ等、制御装置により電動機を制御することにより車両に制動力を発生させる各種のブレーキ装置を用いることができる。 In each of the above-described embodiments, the electric booster has been described as an example of the brake device 2. However, the present invention is not limited to this, and the brake device uses various brake devices such as a hydraulic pressure supply device (ESC), an electric brake, an electric parking brake, and the like that generate braking force on the vehicle by controlling the electric motor with the control device. Can do.
 さらに、各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。 Furthermore, each embodiment is an exemplification, and needless to say, partial replacement or combination of the configurations shown in different embodiments is possible.
 以上の実施形態によれば、第2の蓄電装置(第2の電源)の消費電力を抑制することができる。 According to the above embodiment, the power consumption of the second power storage device (second power supply) can be suppressed.
 以上説明した実施形態に基づくブレーキシステム及び電動ブレーキ駆動装置として、例えば下記に述べる態様のものが考えられる。
 (1).第1の態様としては、ブレーキシステムが提供される。このブレーキシステムは、車両の制動力を発生させる電動機と、電動機を制御する制御装置と、を有するブレーキ装置と、車両に設けられ、始動装置に接続される第1の蓄電装置と、第1の蓄電装置とは別に車両に設けられる第2の蓄電装置を備える電源供給部であって、第1の蓄電装置の電圧が所定値以下になったときに、制御装置へ出力する電力の供給源を第1の蓄電装置から第2の蓄電装置に切換えるように構成された電源供給部と、を備える。電動機には、第1の蓄電装置に接続している第1の配線によって、第1の蓄電装置から電力が供給され、制御装置には、第1の蓄電装置の電圧が所定値以下になったときに、電源供給部に接続している第2の配線によって、電源供給部から電力が供給される。
As the brake system and the electric brake drive device based on the embodiment described above, for example, the following modes can be considered.
(1). As a first aspect, a brake system is provided. The brake system includes a brake device having an electric motor that generates a braking force of the vehicle, a control device that controls the electric motor, a first power storage device that is provided in the vehicle and is connected to a starter, A power supply unit including a second power storage device provided in the vehicle separately from the power storage device, wherein a power supply source to be output to the control device when the voltage of the first power storage device becomes a predetermined value or less And a power supply unit configured to switch from the first power storage device to the second power storage device. Electric power is supplied to the electric motor from the first power storage device through the first wiring connected to the first power storage device, and the voltage of the first power storage device is equal to or lower than a predetermined value to the control device. Sometimes, power is supplied from the power supply unit through the second wiring connected to the power supply unit.
 この第1の態様によれば、例えば、内燃機関の始動等により第1の蓄電装置の電圧が低下する(所定値以下になる)と、電源供給部から出力される電力が第2の蓄電装置に切換わり、制御装置には、電源供給部から第2の蓄電装置の電力が第2の配線を介して供給される。これにより、第1の蓄電装置の電圧が低下しても、制御装置の電圧を確保することができ、制御装置が低電圧となってリセット(再起動)されることを抑制できる。一方、電動機は、電源供給部から電力が供給されない。即ち、電源供給部から出力される電力が第2の蓄電装置に切換わっても、電動機には、第2の蓄電装置の電力が供給されない。このため、第2の蓄電装置の消費電力を抑制することができる。これにより、第2の蓄電装置の容量を低減することができ、例えば、既存の補助電源を第2の蓄電装置としてそのまま使用することができる。この結果、第1の蓄電装置の電圧低下による制御装置の低電圧リセット対策を、コストを抑えて実現することができる。 According to the first aspect, for example, when the voltage of the first power storage device decreases (below a predetermined value) due to the start of the internal combustion engine or the like, the power output from the power supply unit is changed to the second power storage device. The power of the second power storage device is supplied from the power supply unit to the control device via the second wiring. Thereby, even if the voltage of the first power storage device decreases, the voltage of the control device can be secured, and the control device can be suppressed from being reset (restarted) due to a low voltage. On the other hand, the electric power is not supplied from the power supply unit. That is, even if the power output from the power supply unit is switched to the second power storage device, the power of the second power storage device is not supplied to the electric motor. For this reason, the power consumption of the second power storage device can be suppressed. Thereby, the capacity | capacitance of a 2nd electrical storage apparatus can be reduced, for example, the existing auxiliary power supply can be used as it is as a 2nd electrical storage apparatus. As a result, it is possible to realize the countermeasure for the low voltage reset of the control device due to the voltage drop of the first power storage device with reduced cost.
 (2).第2の態様としては、第1の態様において、制御装置は、第1の蓄電装置の電圧が所定値よりも大きいときに、第1の配線および第2の配線とは異なる第3の配線によって、第1の蓄電装置から電力が供給される。 (2). As a second aspect, in the first aspect, when the voltage of the first power storage device is larger than a predetermined value, the control device uses a third wiring different from the first wiring and the second wiring. Electric power is supplied from the first power storage device.
 この第2の態様によれば、第1の蓄電装置の電圧が十分なときは、第1の蓄電装置から制御装置に第3の配線を介して安定して電力を供給することができる。 According to the second aspect, when the voltage of the first power storage device is sufficient, it is possible to stably supply power from the first power storage device to the control device via the third wiring.
 (3).第3の態様としては、第2の態様において、第3の配線は、第1の蓄電装置と制御装置とに接続している。 (3). As a third aspect, in the second aspect, the third wiring is connected to the first power storage device and the control device.
 この第3の態様によれば、電源供給部から出力される電力が、第1の蓄電装置(または第2の蓄電装置)から第2の蓄電装置(または第1の蓄電装置)に切換わるときに、出力電圧が一時的(瞬間的)に途切れる(断続する)ことがあっても、第1の蓄電装置から第3の配線を通じて制御装置に電力を供給し続けることができる。これにより、電源供給部から出力される電力が第1の蓄電装置と第2の蓄電装置との間で切換わるときにも、制御装置に安定して電力を供給することができる。 According to the third aspect, when the power output from the power supply unit is switched from the first power storage device (or the second power storage device) to the second power storage device (or the first power storage device). In addition, even when the output voltage is temporarily (instantaneously) interrupted (interrupted), power can be continuously supplied from the first power storage device to the control device through the third wiring. Thereby, even when the power output from the power supply unit is switched between the first power storage device and the second power storage device, the power can be stably supplied to the control device.
 (4).第4の態様としては、第2の態様において、第3の配線は、ブレーキ装置内で、第1の配線から分岐して制御装置に接続されている。 (4). As a fourth aspect, in the second aspect, the third wiring is branched from the first wiring and connected to the control device in the brake device.
 この第4の態様によれば、第1の蓄電装置とブレーキ装置との間を接続するワイヤーハーネスを1本(第1の配線のみ)にできる。これにより、ワイヤーハーネスの接続作業の簡素化、延いては、コストの低減を図ることができる。 According to the fourth aspect, one wire harness (only the first wiring) for connecting the first power storage device and the brake device can be provided. Thereby, the connection operation | work of a wire harness can be simplified and a reduction in cost can be aimed at.
 (5).第5の態様としては、第2、第3または第4の態様において、ブレーキ装置内には、第2の蓄電装置から制御装置への電力供給を遮断または許容する遮断装置が設けられ、該遮断装置は、制御装置により制御される構成としている。 (5). As a fifth aspect, in the second, third, or fourth aspect, the brake device is provided with a cutoff device that cuts off or allows power supply from the second power storage device to the control device. The device is configured to be controlled by a control device.
 この第5の態様によれば、ブレーキ装置内で、制御装置と第2の蓄電装置との間を遮断または接続することができる。これにより、例えば、電源供給部から出力される電力が第2の蓄電装置の電力のときにも、遮断装置を遮断にすることにより、第1の蓄電装置の電力を制御装置に供給することができる。この結果、この面からも、第2の蓄電装置の消費電力を抑制することができる。 According to the fifth aspect, the control device and the second power storage device can be disconnected or connected in the brake device. Thereby, for example, even when the power output from the power supply unit is the power of the second power storage device, the power of the first power storage device can be supplied to the control device by shutting off the shut-off device. it can. As a result, also from this aspect, the power consumption of the second power storage device can be suppressed.
 (6).第6の態様としては、第5の態様において、遮断装置は、第1の蓄電装置の電圧が所定値以下になったときに、第2の蓄電装置から制御装置への電力供給を許容する構成としている。 (6). As a sixth aspect, in the fifth aspect, the cutoff device allows power supply from the second power storage device to the control device when the voltage of the first power storage device becomes a predetermined value or less. It is said.
 この第6の態様によれば、第1の蓄電装置の電圧が所定値以下になったときに、第2の蓄電装置から制御装置に安定して電力を供給することができる。 According to the sixth aspect, when the voltage of the first power storage device becomes a predetermined value or less, it is possible to stably supply power from the second power storage device to the control device.
 (7).第7の態様としては、第2,第3,第4または第5の態様において、車両に設けられた内燃機関を始動装置により始動するときに、第2の蓄電装置から第2の配線によって制御装置へ電力が供給される構成としている。 (7). As a seventh aspect, in the second, third, fourth, or fifth aspect, when the internal combustion engine provided in the vehicle is started by the starting device, the second power storage device controls the second wiring. Power is supplied to the device.
 この第7の態様によれば、内燃機関の始動中、即ち、第1の蓄電装置から始動装置に電力が供給されているときに、第2の蓄電装置から制御装置に安定して電力を供給することができる。 According to the seventh aspect, when the internal combustion engine is started, that is, when power is supplied from the first power storage device to the starter, power is stably supplied from the second power storage device to the control device. can do.
 (8).第8の態様として、第2,第3または第4の態様において、ブレーキ装置内に、電流の逆流を防止する逆流防止装置と、逆流防止装置が機能していることを診断する逆流防止機能診断部と、第2の蓄電装置から制御装置への電力供給を遮断または許容する遮断装置とを備え、遮断装置は、逆流防止機能診断部が異常を検出したときに、第2の蓄電装置から制御装置への電力供給を遮断する構成としている。 (8). As an eighth aspect, in the second, third or fourth aspect, a backflow prevention device for preventing a backflow of current in the brake device, and a backflow prevention function diagnosis for diagnosing that the backflow prevention device is functioning And a shut-off device that cuts off or allows power supply from the second power storage device to the control device, and the shut-off device is controlled from the second power storage device when the backflow prevention function diagnosis unit detects an abnormality. The power supply to the device is cut off.
 この第8の態様によれば、逆流防止装置の機能に異常が発生したときにも、ブレーキ装置内の遮断装置を遮断にすることにより、電流の逆流を防止することができる。 According to the eighth aspect, even when an abnormality occurs in the function of the backflow prevention device, the backflow of current can be prevented by shutting off the shutoff device in the brake device.
 (9).第9の態様として、車両の制動力を発生させる電動機および電動機を制御する制御装置を有するブレーキ装置と、車両に設けられ、始動装置に接続される第1の蓄電装置と、第1の蓄電装置とは別に車両に設けられる第2の蓄電装置とを有し、電動機は、第1の配線によって第1の蓄電装置から電力が供給され、制御装置は、第2の配線によって第2の蓄電装置から、または、第3の配線によって第1の蓄電装置から電力が供給される。 (9). As a ninth aspect, a brake device having an electric motor that generates a braking force of the vehicle and a control device that controls the electric motor, a first power storage device provided in the vehicle and connected to a starter, and a first power storage device And a second power storage device provided in the vehicle, wherein the electric motor is supplied with electric power from the first power storage device through the first wiring, and the control device is provided with the second power storage device through the second wiring. From or from the first power storage device through the third wiring.
 この第9の態様によれば、第1の蓄電装置の電圧が十分なときは、制御装置に第1の蓄電装置から第3の配線を介して電力が供給される。これに対して、内燃機関の始動等により第1の蓄電装置の電圧が低下する(所定値以下になる)と、制御装置には、第2の蓄電装置から第2の配線を介して電力が供給される。これにより、第1の蓄電装置の電圧が低下しても、制御装置の電圧を確保することができ、制御装置が低電圧となってリセット(再起動)されることを抑制できる。一方、電動機は、第2の蓄電装置から電力が供給されない。このため、第2の蓄電装置の消費電力を抑制することができる。これにより、第2の蓄電装置の容量を低減することができ、例えば、既存の補助電源を第2の蓄電装置としてそのまま使用することができる。この結果、第1の蓄電装置の電圧低下による制御装置の低電圧リセット対策を、コストを抑えて実現することができる。 According to the ninth aspect, when the voltage of the first power storage device is sufficient, power is supplied to the control device from the first power storage device via the third wiring. On the other hand, when the voltage of the first power storage device decreases (below a predetermined value) due to the start of the internal combustion engine or the like, the control device receives power from the second power storage device via the second wiring. Supplied. Thereby, even if the voltage of the first power storage device decreases, the voltage of the control device can be secured, and the control device can be suppressed from being reset (restarted) due to a low voltage. On the other hand, the electric motor is not supplied with power from the second power storage device. For this reason, the power consumption of the second power storage device can be suppressed. Thereby, the capacity | capacitance of a 2nd electrical storage apparatus can be reduced, for example, the existing auxiliary power supply can be used as it is as a 2nd electrical storage apparatus. As a result, it is possible to realize the countermeasure for the low voltage reset of the control device due to the voltage drop of the first power storage device with reduced cost.
 (10).第10の態様として、車両の制動力を発生させるモータに電力を供給するパワー素子と、パワー素子を制御する演算素子とを有し、車両に設けられ該車両内の機器に電力を供給する第1の電源と第1の電源とは別に車両に設けられ第1の電源の電圧低下に伴って該車両内の機器に電力を供給する第2の電源とに接続される電動ブレーキ駆動装置であって、パワー素子は、第2の電源と電気的に接続されず、第1の電源と電気的に接続され、演算素子は、第1の電源および第2の電源と電気的に接続される。 (10). A tenth aspect includes a power element that supplies electric power to a motor that generates a braking force of the vehicle, and an arithmetic element that controls the power element, and is provided in the vehicle and supplies electric power to devices in the vehicle. The electric brake drive device is provided in the vehicle separately from the first power source and the first power source, and is connected to a second power source that supplies power to devices in the vehicle as the voltage of the first power source decreases. Thus, the power element is not electrically connected to the second power source, but is electrically connected to the first power source, and the arithmetic element is electrically connected to the first power source and the second power source.
 この第10の態様によれば、第1の電源の電圧が十分なときは、パワー素子を制御する演算素子に、第1の電源から電力が供給される。これに対して、内燃機関の始動等により第1の電源の電圧が低下すると、演算素子には、第2の電源から電力が供給される。これにより、第1の電源の電圧が低下しても、演算素子の電圧を確保することができ、演算素子が低電圧となってリセット(再起動)されることを抑制できる。一方、モータに電力を供給するパワー素子は、第2の電源から電力が供給されない。このため、第2の電源の消費電力を抑制することができる。これにより、第2の電源の容量を低減することができ、例えば、既存の補助電源を第2の電源としてそのまま使用することができる。この結果、第1の電源の電圧低下による演算素子の低電圧リセット対策を、コストを抑えて実現することができる。 According to the tenth aspect, when the voltage of the first power supply is sufficient, power is supplied from the first power supply to the arithmetic element that controls the power element. On the other hand, when the voltage of the first power supply decreases due to the start of the internal combustion engine or the like, power is supplied to the arithmetic element from the second power supply. Thereby, even if the voltage of the first power supply decreases, the voltage of the arithmetic element can be secured, and the arithmetic element can be suppressed from being reset (restarted) due to a low voltage. On the other hand, the power element that supplies power to the motor is not supplied with power from the second power source. For this reason, the power consumption of the second power source can be suppressed. Thereby, the capacity | capacitance of a 2nd power supply can be reduced, for example, the existing auxiliary power supply can be used as it is as a 2nd power supply. As a result, it is possible to realize a low-voltage resetting measure for the arithmetic element due to the voltage drop of the first power supply with reduced cost.
 以上、本発明のいくつかの実施形態について説明してきたが、上述した発明の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその均等物が含まれる。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、省略が可能である。 Although several embodiments of the present invention have been described above, the above-described embodiments of the present invention are intended to facilitate understanding of the present invention and are not intended to limit the present invention. The present invention can be changed and improved without departing from the spirit thereof, and the present invention includes equivalents thereof. In addition, any combination or omission of each constituent element described in the claims and the specification is possible within a range where at least a part of the above-described problems can be solved or a range where at least a part of the effect is achieved. It is.
 本願は、2016年5月26日出願の日本特許出願番号2016-105120号に基づく優先権を主張する。2016年5月26日出願の日本特許出願番号2016-105120号の明細書、特許請求の範囲、図面及び要約書を含む全ての開示内容は、参照により全体として本願に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2016-105120 filed on May 26, 2016. The entire disclosure including the specification, claims, drawings and abstract of Japanese Patent Application No. 2016-105120 filed on May 26, 2016 is incorporated herein by reference in its entirety.
 1 ブレーキシステム、 2 ブレーキ装置、 3 電動機、 4 モータ、 5 インバータ回路(パワー素子)、 8 制御装置(演算素子)、 9 ECU(電動ブレーキ駆動装置)、 12 第1の蓄電装置(第1の電源)、 13 始動装置、 15 第2の蓄電装置(第2の電源)、 16,31 電源供給部、 22 第4の供給部ライン(第3の配線)、 25 第1の配線、 26,53 第2の配線、 27 第3のダイオード(逆流防止装置)、 36,41,61 第3の配線、 37 第4のダイオード(逆流防止装置)、 71 遮断装置、 81 エンジン、 91 第1の逆流防止機能診断部、 92 第2の逆流防止機能診断部 1 brake system, 2 brake device, 3 electric motor, 4 motor, 5 inverter circuit (power element), 8 control device (arithmetic element), 9 ECU (electric brake drive device), 12 1st power storage device (first power supply) ), 13 starter, 15 second power storage device (second power supply), 16, 31 power supply section, 22 fourth supply section line (third wiring), 25 first wiring, 26, 53 th 2 wiring, 27 3rd diode (backflow prevention device), 36, 41, 61 3rd wiring, 37 4th diode (backflow prevention device), 71 cutoff device, 81 engine, 91 1st backflow prevention function Diagnosis section, 92 Second backflow prevention function diagnosis section

Claims (10)

  1.  ブレーキシステムであって、
     車両の制動力を発生させる電動機と、前記電動機を制御する制御装置と、を有するブレーキ装置と、
     前記車両に設けられ、始動装置に接続される第1の蓄電装置と、
     前記第1の蓄電装置とは別に前記車両に設けられる第2の蓄電装置を備える電源供給部であって、前記第1の蓄電装置の電圧が所定値以下になったときに、前記制御装置へ出力する電力の供給源を前記第1の蓄電装置から前記第2の蓄電装置に切換えるように構成された電源供給部と
     を備え、
     前記電動機には、前記第1の蓄電装置に接続している第1の配線によって、前記第1の蓄電装置から電力が供給され、
     前記制御装置には、前記第1の蓄電装置の電圧が所定値以下になったときに、前記電源供給部に接続している第2の配線によって、前記電源供給部から電力が供給される
     ブレーキシステム。
    A brake system,
    A brake device comprising: an electric motor that generates a braking force of the vehicle; and a control device that controls the electric motor;
    A first power storage device provided in the vehicle and connected to a starting device;
    A power supply unit including a second power storage device provided in the vehicle separately from the first power storage device, and when the voltage of the first power storage device becomes a predetermined value or less, to the control device A power supply unit configured to switch a supply source of power to be output from the first power storage device to the second power storage device,
    Electric power is supplied to the electric motor from the first power storage device through a first wiring connected to the first power storage device,
    When the voltage of the first power storage device becomes equal to or lower than a predetermined value, the control device is supplied with electric power from the power supply unit by the second wiring connected to the power supply unit. system.
  2.  請求項1に記載のブレーキシステムであって、
     前記制御装置には、前記第1の蓄電装置の電圧が所定値よりも大きいときに、前記第1の配線および前記第2の配線とは異なる第3の配線によって、前記第1の蓄電装置から電力が供給される
     ブレーキシステム。
    The brake system according to claim 1,
    When the voltage of the first power storage device is greater than a predetermined value, the control device is connected to the first power storage device by a third wiring different from the first wiring and the second wiring. A brake system to which power is supplied.
  3.  請求項2に記載のブレーキシステムであって、
     前記第3の配線は、前記第1の蓄電装置と前記制御装置とに接続している
     ブレーキシステム。
    The brake system according to claim 2,
    The third wiring is connected to the first power storage device and the control device. Brake system.
  4.  請求項2に記載のブレーキシステムであって、
     前記第3の配線は、前記ブレーキ装置内で、前記第1の配線から分岐して前記制御装置に接続される
     ブレーキシステム。
    The brake system according to claim 2,
    The third wiring is branched from the first wiring and connected to the control device in the brake device.
  5.  請求項2,3または4に記載のブレーキシステムであって、
     前記ブレーキ装置内には、前記第2の蓄電装置から前記制御装置への電力供給を遮断または許容する遮断装置が設けられ、該遮断装置は、前記制御装置により制御される
     ブレーキシステム。
    The brake system according to claim 2, 3 or 4,
    The brake device is provided with a cutoff device that cuts off or allows power supply from the second power storage device to the control device, and the cutoff device is controlled by the control device.
  6.  請求項5に記載のブレーキシステムであって、
     前記遮断装置は、前記第1の蓄電装置の電圧が所定値以下になったときに、前記第2の蓄電装置から前記制御装置への電力供給を許容する
     ブレーキシステム。
    The brake system according to claim 5, wherein
    The shut-off device allows a power supply from the second power storage device to the control device when a voltage of the first power storage device becomes a predetermined value or less. Brake system.
  7.  請求項2,3,4または5に記載のブレーキシステムであって、
     前記制御装置には、前記車両に設けられた内燃機関を前記始動装置により始動するときに、前記第2の蓄電装置から前記第2の配線によって電力が供給される
     ブレーキシステム。
    The brake system according to claim 2, 3, 4 or 5,
    The control system is supplied with electric power from the second power storage device through the second wiring when an internal combustion engine provided in the vehicle is started by the starter.
  8.  請求項2,3または4に記載のブレーキシステムであって、
     電流の逆流を防止する逆流防止装置と、
     前記逆流防止装置が機能していることを診断する逆流防止機能診断部と、
     前記第2の蓄電装置から前記制御装置への電力供給を遮断または許容する遮断装置と
     を前記ブレーキ装置内に備え、
     前記遮断装置は、前記逆流防止機能診断部が異常を検出したときに、前記第2の蓄電装置から前記制御装置への電力供給を遮断する
     ブレーキシステム。
    The brake system according to claim 2, 3 or 4,
    A backflow prevention device for preventing backflow of current;
    A backflow prevention function diagnostic unit for diagnosing that the backflow prevention device is functioning;
    A breaking device that cuts off or allows power supply from the second power storage device to the control device; and
    The shut-off device shuts off power supply from the second power storage device to the control device when the backflow prevention function diagnosis unit detects an abnormality.
  9.  ブレーキシステムであって、
     車両の制動力を発生させる電動機と、前記電動機を制御する制御装置と、を有するブレーキ装置と、
     前記車両に設けられ、始動装置に接続される第1の蓄電装置と、
     前記第1の蓄電装置とは別に前記車両に設けられる第2の蓄電装置と
     を備え、
     前記電動機には、前記第1の蓄電装置に接続している第1の配線によって、前記第1の蓄電装置から電力が供給され、
     前記制御装置には、前記第2の蓄電装置に接続している第2の配線と、前記第1の蓄電装置に接続している第3の配線と、によって、前記第1の蓄電装置または前記第2の蓄電装置のうち出力電圧が大きい蓄電装置から電力が供給される
     ブレーキシステム。
    A brake system,
    A brake device comprising: an electric motor that generates a braking force of the vehicle; and a control device that controls the electric motor;
    A first power storage device provided in the vehicle and connected to a starting device;
    A second power storage device provided in the vehicle separately from the first power storage device,
    Electric power is supplied to the electric motor from the first power storage device through a first wiring connected to the first power storage device,
    The control device includes the first power storage device or the second wiring connected to the second power storage device and the third wiring connected to the first power storage device. A brake system in which electric power is supplied from a power storage device having a large output voltage among the second power storage devices.
  10.  電動ブレーキ駆動装置であって、
     車両の制動力を発生させるモータに電力を供給するパワー素子と、
     前記パワー素子を制御する演算素子と
     を備え、
     前記電動ブレーキ駆動装置は、前記車両に設けられ該車両内の機器に電力を供給する第1の電源と、前記第1の電源とは別に前記車両に設けられ前記第1の電源の電圧低下に伴って該車両内の機器に電力を供給する第2の電源と、に接続され、
     前記パワー素子は、前記第2の電源と電気的に接続されず、前記第1の電源と電気的に接続され、
     前記演算素子は、前記第1の電源および前記第2の電源と電気的に接続される
     電動ブレーキ駆動装置。
    An electric brake driving device,
    A power element that supplies electric power to a motor that generates a braking force of the vehicle;
    An arithmetic element for controlling the power element,
    The electric brake driving device is provided in the vehicle to reduce the voltage of the first power source provided in the vehicle separately from the first power source provided in the vehicle and supplying power to devices in the vehicle. And a second power source for supplying power to the equipment in the vehicle.
    The power element is not electrically connected to the second power source and is electrically connected to the first power source;
    The arithmetic element is electrically connected to the first power source and the second power source.
PCT/JP2017/010673 2016-05-26 2017-03-16 Braking system and electric brake driving device WO2017203807A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016105120A JP2019130924A (en) 2016-05-26 2016-05-26 Brake system and electric brake drive device
JP2016-105120 2016-05-26

Publications (1)

Publication Number Publication Date
WO2017203807A1 true WO2017203807A1 (en) 2017-11-30

Family

ID=60412439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010673 WO2017203807A1 (en) 2016-05-26 2017-03-16 Braking system and electric brake driving device

Country Status (2)

Country Link
JP (1) JP2019130924A (en)
WO (1) WO2017203807A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110391472A (en) * 2018-04-19 2019-10-29 中兴通讯股份有限公司 A kind of cell managing device and mobile terminal
CN111788094A (en) * 2018-03-27 2020-10-16 日立汽车系统株式会社 Brake device, electric brake device, and motor control device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021010411A1 (en) 2019-07-16 2021-01-21 株式会社Ihi Control system
JP7151695B2 (en) 2019-12-17 2022-10-12 株式会社デンソー Electronic control unit and power system
WO2021235239A1 (en) * 2020-05-22 2021-11-25 株式会社デンソー Power supply system
JP7276291B2 (en) * 2020-05-22 2023-05-18 株式会社デンソー power system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028908A (en) * 2003-07-08 2005-02-03 Matsushita Electric Ind Co Ltd Power supply device for vehicle
JP2006298240A (en) * 2005-04-22 2006-11-02 Toyota Motor Corp Power control device for vehicle
JP2012244826A (en) * 2011-05-23 2012-12-10 Panasonic Corp Power storage apparatus
JP2014121913A (en) * 2012-12-20 2014-07-03 Advics Co Ltd Load drive device having troubleshooting function
JP2015018838A (en) * 2013-07-08 2015-01-29 木谷電器株式会社 Fault detector of backflow prevention diode for solar cell, fault detection system of backflow prevention diode for solar cell, and fault detection method of backflow prevention diode for solar cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028908A (en) * 2003-07-08 2005-02-03 Matsushita Electric Ind Co Ltd Power supply device for vehicle
JP2006298240A (en) * 2005-04-22 2006-11-02 Toyota Motor Corp Power control device for vehicle
JP2012244826A (en) * 2011-05-23 2012-12-10 Panasonic Corp Power storage apparatus
JP2014121913A (en) * 2012-12-20 2014-07-03 Advics Co Ltd Load drive device having troubleshooting function
JP2015018838A (en) * 2013-07-08 2015-01-29 木谷電器株式会社 Fault detector of backflow prevention diode for solar cell, fault detection system of backflow prevention diode for solar cell, and fault detection method of backflow prevention diode for solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111788094A (en) * 2018-03-27 2020-10-16 日立汽车系统株式会社 Brake device, electric brake device, and motor control device
CN110391472A (en) * 2018-04-19 2019-10-29 中兴通讯股份有限公司 A kind of cell managing device and mobile terminal

Also Published As

Publication number Publication date
JP2019130924A (en) 2019-08-08

Similar Documents

Publication Publication Date Title
WO2017203807A1 (en) Braking system and electric brake driving device
JP4258534B2 (en) Power system
JP5669846B2 (en) Method and apparatus for operating a hybrid vehicle in the event of an energy system failure
US11325500B2 (en) On-board electrical network for a motor vehicle
RU2651405C1 (en) Vehicle
JP6098138B2 (en) Electric brake control device
JP4947127B2 (en) Vehicle power circuit
US20200189395A1 (en) Power supply system for vehicle
KR20180085766A (en) Brake devices and vehicles
CN109789870A (en) For motor vehicle backup unit
JP2015209058A (en) Power supply device
JP4203362B2 (en) Electric brake device
JP2018523053A (en) Integration of starter current controller and in-vehicle electrical system disconnect switch
JP6920914B2 (en) Vehicle power supply
JP2018061304A (en) Backup device for vehicle
JP7172499B2 (en) electronic controller
WO2019003966A1 (en) Power supply control device and battery unit
WO2018016427A1 (en) Electric brake apparatus and electric brake system
JP5930794B2 (en) Starter drive
JP6151944B2 (en) Power supply system
JP7147691B2 (en) electronic controller
JP4872678B2 (en) Power control system
EP2743480B1 (en) Vehicle control apparatus, vehicle, and vehicle control method
JP7066408B2 (en) Electric linear actuator and electric brake device
JP2005065392A (en) Charge controller of vehicle

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802409

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP