WO2017203589A1 - Pressure control device and fuel supply device - Google Patents

Pressure control device and fuel supply device Download PDF

Info

Publication number
WO2017203589A1
WO2017203589A1 PCT/JP2016/065266 JP2016065266W WO2017203589A1 WO 2017203589 A1 WO2017203589 A1 WO 2017203589A1 JP 2016065266 W JP2016065266 W JP 2016065266W WO 2017203589 A1 WO2017203589 A1 WO 2017203589A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
valve body
pressure control
control device
main body
Prior art date
Application number
PCT/JP2016/065266
Other languages
French (fr)
Japanese (ja)
Inventor
伸一郎 堀底
孝夫 鵤木
直樹 竹内
真輝 下川
Original Assignee
株式会社ミツバ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツバ filed Critical 株式会社ミツバ
Priority to PCT/JP2016/065266 priority Critical patent/WO2017203589A1/en
Publication of WO2017203589A1 publication Critical patent/WO2017203589A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages

Definitions

  • the present invention relates to a pressure control device and a fuel supply device.
  • a so-called in-tank type fuel supply device in which a fuel pump is disposed in a fuel tank is often used as a fuel supply device for a motorcycle or a four-wheeled vehicle.
  • a pressure control device is used to prevent the fuel pressure from becoming excessive.
  • a valve-type pressure regulator As a pressure control device, a valve-type pressure regulator is known.
  • the pressure regulator described in Patent Document 1 includes a small-diameter channel having a fluid inlet and a large-diameter channel communicating with the small-diameter channel and having a fluid outlet, and includes a small-diameter channel and a large-diameter channel.
  • the conventional pressure control device when the valve body is lifted from the opening, not only the opening is opened and closed by moving in the direction along the flow path, but also the valve body is moved in the direction intersecting the direction along the flow path. there's a possibility that. For this reason, a collision between the valve body and the housing may occur, and a collision sound may be generated. Therefore, the conventional pressure control device has a problem in that the generation of abnormal noise is suppressed.
  • the present invention provides a pressure control device and a fuel supply device in which the occurrence of abnormal noise is suppressed.
  • the pressure control device includes a case body, a flow path portion formed in the case body and having a fluid inflow port, a fluid outflow port, and a main body flow channel portion, and the case body.
  • a valve body that is provided and capable of opening and closing the fluid inlet by moving in a predetermined direction along the main body flow path portion; and an elastic member that biases the valve body in a direction to close the fluid inlet.
  • the valve body includes a seal portion that closes the fluid inlet, and a main body portion provided with the seal portion, and the valve body is in a direction intersecting the predetermined direction of the main body portion of the valve body.
  • a movement restricting structure for restricting movement is provided.
  • the movement of the valve body in the direction intersecting the predetermined direction is restricted by the movement restricting structure, so when the fluid passes through the gap between the valve body and the case body, The rolling of the valve body can be suppressed.
  • production of a collision sound is suppressed. Therefore, a pressure control device in which the generation of abnormal noise is suppressed can be obtained.
  • the valve body includes a support protrusion that protrudes along the predetermined direction
  • the movement restricting structure includes: A support protrusion and the case body are provided.
  • the movement restricting structure includes a support protrusion that protrudes along a predetermined direction of the valve body and a case body. Therefore, the simple structure ensures the roll of the valve body. In the suppressed state, the fluid inlet can be opened and closed by the valve body. Therefore, an inexpensive pressure control device in which the occurrence of abnormal noise is reliably suppressed can be obtained.
  • a support side surface portion is formed on a side surface of the valve body, and the movement restricting structure includes the support side surface portion. And the main body flow path portion.
  • the movement restricting structure includes a supporting side surface portion formed on the side surface of the valve body and a main body flow path portion, so that the rolling of the valve body is ensured with a simple structure.
  • the fluid inflow port can be opened and closed by the valve body in a state of being suppressed to the above. Therefore, an inexpensive pressure control device in which the occurrence of abnormal noise is reliably suppressed can be obtained.
  • the diameter of the fluid inlet is the main body flow path portion.
  • the seal portion is formed so as to be able to abut on a step surface between the fluid inlet and the main body flow passage portion, and a buffer member is disposed in the seal portion.
  • a fluid inflow port can be obstruct
  • an annular groove is formed on the outer peripheral side of the contact surface of the valve body of the step surface.
  • the case body is formed of a resin material.
  • a fuel supply device includes the pressure control device according to any one of the first to sixth aspects of the present invention, and the fuel tank disposed in the fuel tank.
  • a fuel pump that pumps up the fuel inside and pumps the fuel to the internal combustion engine; and an exterior body that is attached to the wall surface of the fuel tank and supports the fuel pump, and the pressure control device is attached to the exterior body.
  • the exterior body and at least a part of the case body are integrally formed of a resin material.
  • the movement of the main body portion of the valve body in the direction intersecting the predetermined direction is restricted by the movement restriction structure, so when the fluid passes through the gap between the valve body and the case main body, The rolling of the valve body can be suppressed.
  • production of a collision sound is suppressed. Therefore, a pressure control device in which the generation of abnormal noise is suppressed can be obtained.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG. It is explanatory drawing of a pressure regulator and is an enlarged view of the A section of FIG. It is explanatory drawing of a pressure regulator and is an enlarged view of the A section of FIG. It is explanatory drawing of the fuel supply apparatus of the modification of 1st Embodiment, and is sectional drawing in the part corresponded to the II-II line of FIG. It is explanatory drawing of the 1st modification of a movement control structure, and is an enlarged view of the part corresponded to the A section of FIG.
  • FIG. 7 is a sectional view taken along line VII-VII in FIG. 6.
  • FIG. 10 is a cross-sectional view taken along line XX in FIG. 9.
  • the in-tank type fuel supply apparatus has an upper type attached to the upper part of the fuel tank and a lower type attached to the bottom of the fuel tank.
  • the lower type is used as an example.
  • axial direction the relative positions in the direction along the axis of the fuel pump
  • FIG. 1 is a perspective view of the fuel supply apparatus according to the first embodiment.
  • 2 is a cross-sectional view taken along line II-II in FIG.
  • the fuel supply device 1 is inserted from an opening 2 a formed in the bottom wall 2 b of the fuel tank 2 and attached to the bottom wall 2 b of the fuel tank 2.
  • the fuel supply device 1 includes a fuel pump 3 that is disposed in the fuel tank 2 and pumps the fuel in the fuel tank 2 and pumps it to the internal combustion engine, and an exterior body 5 that contains the fuel pump 3.
  • the exterior body 5 includes an upper cup 25 that is externally attached to the fuel pump 3, and a flange unit 4 that is attached to the bottom wall 2 b of the fuel tank 2 and supports the fuel pump 3.
  • the fuel pump 3 is formed in a substantially cylindrical shape.
  • the fuel pump 3 includes a motor unit 30 disposed on the upper side of the fuel pump 3 and a pump unit 40 disposed on the lower side of the fuel pump 3.
  • a motor unit 30 for example, a DC motor 30a with a brush (not shown) is used.
  • An output shaft 30 b is disposed at the center of the motor unit 30.
  • the output shaft 30b is pivotally supported by the upper side of the motor unit 30 and the lower side of the pump unit 40. Note that a D-cut surface (not shown) for position regulation described later is formed on the pump portion 40 side of the output shaft 30b.
  • a pair of motor terminals 32 is provided on the upper side of the motor unit 30 along the axis O (see FIG. 2) of the fuel pump 3 on the upper side of the fuel pump 3.
  • the pair of motor terminals 32 are electrically joined to the brush.
  • the harness 6 is connected to the pair of motor terminals 32.
  • electric power for driving the DC motor 30 a is supplied from the external power supply to the pair of motor terminals 32.
  • the upper part of the motor unit 30 is slightly reduced in diameter than other parts of the motor unit 30.
  • a step portion 30 c is formed on the upper portion of the motor portion 30. An upper end of a housing case 20 described later is crimped to the stepped portion 30c.
  • a discharge port 31 for discharging fuel and a check valve 74 communicating with the discharge port 31 are provided on the upper side of the motor unit 30, a discharge port 31 for discharging fuel and a check valve 74 communicating with the discharge port 31 are provided.
  • the discharge port 31 and the check valve 74 are connected to a fuel flow path portion 52 described later, and communicate with the fuel flow path portion 52.
  • the check valve 74 prevents the fuel discharged from the discharge port 31 from flowing backward from the fuel flow path portion 52 into the fuel pump 3.
  • the pump unit 40 is a non-volumetric pump having an impeller 47.
  • the pump unit 40 includes an impeller 47 and a pump case 45 formed so as to cover the entire impeller 47.
  • the impeller 47 is made of a resin material.
  • the impeller 47 is a member formed in a substantially disc shape.
  • An insertion hole 47 c is formed in the approximate center of the impeller 47.
  • the output shaft 30b of the DC motor 30a is inserted through the insertion hole 47c. For example, a D-cut surface is formed on the insertion hole 47c of the impeller 47 and the impeller 47 side of the output shaft 30b.
  • the output shaft 30b is inserted into the insertion hole 47c of the impeller 47 while aligning the insertion hole 47c and the D cut surface of the output shaft 30b.
  • the impeller 47 is driven by the DC motor 30a of the motor unit 30, the relative rotation between the output shaft 30b of the DC motor 30a and the impeller 47 is restricted by the insertion hole 47c and the D cut surface of the output shaft 30b.
  • a plurality of blade portions are formed on the outer peripheral side of the upper surface and the lower surface of the impeller 47. Between the plurality of blade portions, the lower surface and the upper surface of the impeller 47 are penetrated. Further, a fuel flow path hole (not shown) that penetrates the lower surface and the upper surface of the impeller 47 is formed between the insertion hole 47 c and the blade portion in the radial direction of the impeller 47.
  • the pump case 45 that covers the entire impeller 47 includes a lower case 42, an upper case 43, and a middle case 44. Specifically, the pump case 45 covers the entire impeller 47 by sandwiching the middle case 44 in which the impeller 47 is disposed on the inner side between the lower case 42 and the upper case 43.
  • the lower case 42, the upper case 43, and the middle case 44 are provided along the axis O in the order of the lower case 42, the middle case 44, and the upper case 43 from the lower side to the upper side.
  • Each of the lower case 42, the upper case 43, and the middle case 44 is formed of a resin having oil resistance.
  • Each of the lower case 42, the upper case 43, and the middle case 44 is formed by, for example, injection molding.
  • the lower case 42 is a disk-shaped member having substantially the same outer diameter as the motor unit 30.
  • a shaft support portion 42c that supports the output shaft 30b of the DC motor 30a is formed at substantially the center of the lower case 42.
  • the shaft support 42c is a hole with a bottom, and a thrust plate (not shown) is disposed on the bottom surface. The thrust plate receives the load in the axial direction of the output shaft 30b and reduces the sliding resistance of the output shaft 30b.
  • a fuel inlet 41 protruding downward is formed on the outer peripheral side of the lower surface 42b of the lower case 42.
  • the fuel inlet 41 is formed in a cylindrical shape.
  • the inside of the fuel inlet 41 is a fuel passage.
  • the outside of the fuel inlet 41 is fitted into a flange unit 4 described later.
  • the fuel inlet 41 communicates with a filter discharge pipe 51 formed in the flange unit 4 and a filter unit (not shown) provided separately from the fuel supply device 1.
  • a stepped portion 48 is formed at the edge of the lower surface 42b of the lower case 42.
  • the stepped portion 48 is formed by reducing the diameter of the lower surface 42 b side of the lower case 42.
  • a square ring 46 as a sealing member is attached to the stepped portion 48 so as to be in contact with the bottom of the stepped portion 48. The corner ring 46 will be described later.
  • a substantially C-shaped groove (not shown) is formed on the upper surface 42a of the lower case 42 when viewed in the axial direction.
  • a fuel channel hole (not shown) that penetrates the lower surface 42b and the upper surface 42a of the lower case 42 is formed on one end side of the groove portion.
  • the fuel passage hole of the lower case 42 communicates with the fuel inlet 41. The fuel sucked from the fuel suction port 41 passes through the fuel flow path hole of the lower case 42.
  • the upper case 43 is a disk-shaped member having substantially the same outer diameter as that of the motor unit 30, similarly to the lower case 42.
  • An insertion hole 43 c is formed in the approximate center of the upper case 43.
  • the output shaft 30b of the DC motor 30a is inserted through the insertion hole 43c.
  • a fuel flow path hole (not shown) that penetrates the lower surface 43b and the upper surface 43a of the upper case 43 is formed on the outer peripheral side of the insertion hole 43c.
  • the fuel passage hole of the upper case 43 communicates with the motor unit 30. The fuel pumped from the impeller 47 passes through the fuel passage hole of the upper case 43.
  • the middle case 44 is a ring-shaped member having substantially the same outer diameter as the motor unit 30. Inside the middle case 44, the impeller 47 is arranged in a state where the central axis of the middle case 44 and the central axis of the impeller 47 coincide.
  • the inner diameter of the middle case 44 is formed to be slightly larger than the outer diameter of the impeller 47.
  • a clearance is formed between the inner surface 44 a of the middle case 44 (that is, the inner surface 44 a of the pump case) and the outer peripheral surface of the impeller 47.
  • the efficiency of the fuel pump 3 depends on the clearance between the pump case 45 and the impeller 47. Therefore, the clearance between the inner surface 44 a of the middle case 44 and the outer peripheral surface of the impeller 47 is set to a predetermined value according to the required efficiency of the fuel pump 3.
  • the middle case 44 is disposed between the upper case 43 and the lower case 42.
  • the thickness of the middle case 44 in the axial direction is formed to be substantially the same as or slightly thicker than the impeller 47 described above. That is, the middle case 44 serves as a spacer that prevents contact between the upper surface 47 a of the impeller 47 and the lower surface 43 b of the upper case 43 and between the lower surface 47 b of the impeller 47 and the upper surface 42 a of the lower case 42.
  • a clearance is formed between the upper surface 47 a of the impeller 47 and the lower surface 43 b of the upper case 43, and between the lower surface 47 b of the impeller 47 and the upper surface 42 a of the lower case 42.
  • the housing case 20 is made of iron or the like.
  • the housing case 20 is a substantially cylindrical member.
  • the housing case 20 is formed by cutting a seamless tube, for example.
  • the upper end portion of the housing case 20 is a crimping portion 22.
  • the upper end portion of the housing case 20 is crimped with respect to a step portion 30 c formed in the motor portion 30.
  • the housing case 20 has a flange 21 that bends and extends inward from the lower end of the housing case 20.
  • the flange portion 21 is formed so as to overlap the stepped portion 48 of the lower case 42 when viewed from the axial direction.
  • a square ring 46 is provided between the stepped portion 48 and the flange portion 21.
  • the square ring 46 has a substantially rectangular cross section.
  • the square ring 46 is a member formed of a material excellent in oil resistance such as fluoro rubber. The square ring 46 is slightly squeezed and pinched by the step portion 48 and the flange portion 21. Thereby, the sealing performance between the housing case 20 and the pump part 40 is ensured.
  • the upper cup 25 that is externally attached to the fuel pump 3 is formed of a resin material that is excellent in oil resistance.
  • the upper cup 25 is formed in a bottomed cylindrical shape.
  • the upper cup 25 is formed by, for example, injection molding.
  • a mounting portion 61 of the liquid level detector 60 is formed on the upper side of the upper cup 25.
  • the attachment portion 61 is formed in a plate shape that extends outward in the radial direction.
  • the mounting portion 61 is molded by injection at the same time.
  • the liquid level detector 60 is fixed to the mounting portion 61 by a snap fit or the like.
  • the upper cup 25 has a cylindrical portion 24 that is externally inserted into the fuel pump 3.
  • the cylindrical portion 24 includes a large diameter portion 26 disposed on the lower side and a small diameter portion 27 disposed on the upper side.
  • An engaging convex portion 25 a is formed on the outer peripheral surface of the large diameter portion 26 of the cylindrical portion 24.
  • the engagement convex portion 25 a is formed at a position corresponding to the engagement hole of the engagement piece 15 a provided in the flange unit 4.
  • the engagement convex portion 25a of the upper cup 25 and the engagement piece 15a of the flange unit 4 are snap-fitted together so that the upper cup 25 and the flange unit 4 are integrated.
  • a fuel flow path portion 52 is formed inside the cylindrical portion 24 of the upper cup 25 along the outer surface of the upper cup 25.
  • the fuel flow path portion 52 includes a first flow path 52a formed on the upper side of the discharge port 31, a second flow path 52b extending from the upper end of the first flow path 52a to both sides along the radial direction, and a second flow path.
  • the third flow path 52c extends downward from the one end (left side in FIG. 2) of the line 52b along the axial direction.
  • the first flow path 52a is formed along the axis O.
  • the first flow path 52 a communicates with a check valve 74 provided in the fuel pump 3.
  • the fuel discharged from the discharge port 31 of the fuel pump 3 flows into the first flow path 52a through the check valve 74.
  • the second flow path 52 b is formed so as to protrude from the upper surface of the small diameter portion 27.
  • the third flow path 52c is formed in a tubular shape.
  • the upper end of a fuel take-out pipe 57 to be described later is fitted inside the lower end of the third flow path 52c.
  • a pressure regulator 76 (pressure control device) is provided at the other end (the right side in FIG. 2) of the second flow path 52b.
  • the pressure regulator 76 keeps the fuel pressure in the fuel flow path portion 52 constant.
  • the pressure regulator 76 discharges the fuel in the fuel flow path 52 to the reservoir section 11 described later when an excessive fuel pressure is generated in the fuel flow path 52.
  • FIG. 3 is an explanatory diagram of the pressure regulator, and is an enlarged view of a portion A in FIG.
  • the pressure regulator 76 includes a case body 77, a flow path portion 79 formed in the case body 77, and a valve body 91 provided in the case body 77.
  • FIG. 3 shows a state in which the valve body 91 closes the fluid inlet 83.
  • the case body 77 includes a housing 81 and a retainer 88.
  • the housing 81 is made of a resin material.
  • the housing 81 is integrally formed with the upper cup 25 (see FIG. 2).
  • the flow path part 79 is a main body flow path part 82, a fluid inlet 83 formed at the upper part of the main body flow path part 82, and a fluid flow formed at the lower part of the main body flow path part 82 and communicating with the fluid inlet 83.
  • an outlet 84 is provided.
  • the main body flow channel portion 82 is formed along the axial direction upward from the lower end surface of the housing 81.
  • the main body channel portion 82 is formed in a circular shape when viewed from the axial direction.
  • the lower end opening of the main body channel portion 82 is a fluid outlet 84 connected to the reservoir portion 11 (see FIG. 2).
  • the fluid inflow port 83 is formed along the axial direction upward from the upper end surface of the main body flow path portion 82.
  • the fluid inflow port 83 is formed in a circular shape when viewed from the axial direction, and is coaxial with the main body channel portion 82.
  • the inner diameter of the fluid inlet 83 is set to be smaller than the inner diameter of the main body flow path portion 82.
  • an annular step surface 82 a is formed on the upper end surface of the main body flow channel portion 82 when viewed from the axial direction.
  • the stepped surface 82a is formed with an abutting surface 82b that is located on the inner peripheral side and is in contact with the valve body 91, and an annular groove 86 that is located on the outer peripheral side of the abutting surface 82b and viewed from the axial direction.
  • the depth of the groove 86 in the axial direction is set to be approximately the same as the width of the groove 86.
  • a small-diameter channel 85 is formed along the axial direction in the upper wall portion 81a of the housing 81 formed in the upper part of the fluid inlet 83.
  • the small-diameter channel 85 allows the second channel 52b (see FIG. 2) and the fluid inlet 83 to communicate with each other.
  • a housing through hole 81b coaxial with the main body flow path portion 82 is formed in the upper wall portion 81a along the axial direction.
  • the valve body 91 provided in the flow path part 79 opens and closes the fluid inlet 83 by moving in the axial direction (predetermined direction).
  • the valve body 91 is made of, for example, a resin material or a metal material.
  • the valve body 91 is integrally formed by a main body 92, an upper support protrusion 93 formed at the upper end, and a lower support protrusion 94 formed at the lower end.
  • the main body portion 92 is formed in a disk shape that is coaxial with the main body flow path portion 82.
  • the outer diameter of the main body portion 92 is set smaller than the inner diameter of the main body flow path portion 82.
  • the upper support protrusion 93 is formed in a columnar shape.
  • the upper support protrusion 93 protrudes upward along the axial direction from the upper surface of the main body 92.
  • the upper support protrusion 93 is coaxial with the main body 92.
  • the outer diameter of the upper support protrusion 93 is set to be slightly smaller than the inner diameter of the housing through hole 81 b formed in the upper wall portion 81 a of the housing 81.
  • the upper support protrusion 93 is inserted into the housing through hole 81 b of the housing 81.
  • the upper support protrusion 93 is slidably supported along the axial direction with respect to the upper wall portion 81a.
  • the upper support protrusion 93 and the housing through hole 81 b of the case body 77 constitute a movement restricting structure 90 that restricts the movement of the valve body 91 in the direction intersecting the axial direction of the main body 92.
  • the lower support protrusion 94 is formed in a cylindrical shape.
  • the lower support protrusion 94 protrudes downward from the lower surface of the main body 92 along the axial direction.
  • the lower support protrusion 94 is coaxial with the main body 92.
  • a flat seal portion 92 a is provided around the upper support protrusion 93 on the upper surface of the main body portion 92.
  • An annular plate-shaped buffer member 95 is disposed on the seal portion 92a.
  • the buffer member 95 is formed of a material having elasticity, and for example, rubber or the like is suitable.
  • the seal portion 92 a closes the fluid inflow port 83 by contacting the inner peripheral contact surface 82 b of the step surface 82 a of the main body flow passage portion 82 via the buffer member 95.
  • a retainer 88 is fitted into the lower end opening of the main body flow path portion 82.
  • the retainer 88 is formed in a bottomed cylindrical shape.
  • the retainer 88 is arranged so that its bottom portion 88a is located on the upper side.
  • the retainer 88 is formed with a plurality of flow holes 88b in the cylindrical peripheral wall that communicate the inner peripheral surface with the outer peripheral surface and the upper surface.
  • the retainer 88 allows the fuel (fluid) to flow from the inside of the main body flow path portion 82 to the outside (reservoir section 11) through the flow holes 88b when fitted in the lower end opening of the main body flow path portion 82.
  • a retainer through hole 88c penetrating in the axial direction is formed in the bottom 88a of the retainer 88.
  • the retainer through-hole 88 c is formed coaxially with the main body flow path portion 82.
  • the inner diameter of the retainer through-hole 88c is set larger than the outer diameter of the lower support protrusion 94 of the valve body 91.
  • a lower support protrusion 94 is inserted through the retainer through hole 88c.
  • the lower support protrusion 94 is supported so as to be slidable along the axial direction with respect to the retainer 88.
  • the lower support protrusion 94 has, together with the retainer through hole 88c, a movement restricting structure 90 that restricts the movement of the valve body 91 in the direction intersecting the axial direction of the main body 92, similarly to the upper support protrusion 93 and the housing through hole 81b. It is composed.
  • An elastic member 89 is interposed between the main body 92 of the valve body 91 and the retainer 88.
  • the elastic member 89 urges the valve body 91 in a direction (upward) for closing the fluid inflow port 83.
  • the elastic member 89 is a coil spring, and the lower support protrusion 94 of the valve body 91 is inserted inside the elastic member 89.
  • the elastic member 89 In the compressed state, the elastic member 89 has an upper end in contact with the lower surface of the main body 92 of the valve body 91 and a lower end in contact with the upper surface of the bottom 88 a of the retainer 88.
  • the elastic member 89 urges the valve body 91 movable in the axial direction upward. As a result, the seal portion 92 a of the valve body 91 closes the fluid inflow port 83.
  • the fuel supply device 1 includes a flange unit 4 attached to the bottom wall 2 b of the fuel tank 2.
  • the flange unit 4 is disposed below the fuel pump 3.
  • the flange unit 4 is formed of a resin having excellent oil resistance.
  • the flange unit 4 is formed by, for example, injection molding or the like.
  • the flange unit 4 includes a substantially disc-shaped flange portion 12, an engagement portion 15 formed on the upper side of the flange portion 12, and a unit main body 10 formed on the lower side of the flange portion 12.
  • An annular portion 13 is formed in the flange portion 12 at a portion corresponding to the opening 2 a of the fuel tank 2.
  • an engaging portion 15 that engages with an engaging convex portion 25a formed on the upper cup 25 is provided.
  • the engaging portion 15 is formed in a substantially circular shape when viewed from the axial direction. As shown in FIG. 1, a plurality of engaging pieces 15 a protruding upward are formed on the periphery of the engaging portion 15 (four in this embodiment).
  • the engagement piece 15a is formed so as to be elastically deformable in the direction in which the distal end side expands in diameter. Further, the engagement piece 15a is formed with an engagement hole that can be engaged with the engagement convex portion 25a formed in the upper cup 25.
  • the flange unit 4 and the upper cup 25 are fixed by snap-fitting the engaging portion 15 to the upper cup 25.
  • the unit main body 10 is formed in a bottomed cylindrical shape.
  • the unit main body 10 is extrapolated to the fuel pump 3 from the lower side of the fuel pump 3.
  • the inner peripheral surface 10 a of the unit body 10 is set to have a larger diameter than the outer diameter of the fuel pump 3.
  • a clearance is formed between the inner peripheral surface 10 a of the unit body 10 and the outer peripheral surface of the fuel pump 3. This clearance forms a fuel return flow path that allows the pressure regulator 76 and the reservoir portion 11 to communicate with each other.
  • a connector 14 is formed integrally with the unit body 10.
  • the connector 14 is formed in a bottomed cylindrical shape.
  • the connector 14 has a connector fitting surface that opens radially outward.
  • a connector terminal 34 is provided inside the connector 14.
  • One end side 34 a of the connector 14 protrudes inside the connector 14.
  • An external connector (not shown) electrically connected to an external power source (not shown) is fitted to one end side 34a of the connector terminal 34.
  • the other end side 34 b of the connector terminal 34 protrudes above the flange portion 12.
  • the harness 6 is connected to the other end side 34 b of the connector terminal 34, and power is supplied from the external power source to the motor unit 30 and the liquid level detector 60.
  • a space is formed inside the unit body 10 by an inner peripheral surface 10a and a bottom surface 10b of the unit body 10. This space functions as a reservoir portion 11 in which fuel is stored. Further, on the outside of the unit main body 10, a filter introduction pipe, a filter discharge pipe 51, and a fuel extraction pipe 57 (not shown) that are in communication with the reservoir portion 11 and serve as a fuel flow path are formed.
  • the filter introduction pipe and the filter discharge pipe 51 communicate with a filter unit (not shown) provided separately from the fuel supply device 1.
  • the fuel stored in the reservoir 11 is introduced into the filter unit through the filter introduction pipe, filtered, and then discharged. Thereafter, the fuel pump 3 pumps fuel from the fuel suction port 41 of the pump unit 40 through the filter discharge pipe 51.
  • the fuel passes through the pump case 45 and is pumped to the upper side of the motor unit 30, passes through the fuel flow path unit 52, and then is transported to the internal combustion engine (not shown) through the fuel extraction pipe 57.
  • FIG. 4 is an explanatory diagram of the pressure regulator, and is an enlarged view of a portion A in FIG. FIG. 4 shows a state in which the valve body 91 opens the fluid inlet 83.
  • the pressure in the fuel in the fluid inlet 83 also increases. Then, the fuel in the fluid inflow port 83 presses the valve body 91 in a direction (downward) against the urging force of the elastic member 89.
  • valve body 91 moves downward, and a gap is formed between the step surface 82a and the seal portion 92a. At this time, the valve body 91 moves downward along the axial direction in a state where movement in the direction intersecting the axial direction is restricted by the movement restricting structure 90.
  • the fuel in the fluid inflow port 83 flows along the arrow F and passes through the gap between the seal portion 92a and the step surface 82a.
  • the fuel that has passed through the gap between the seal portion 92a and the stepped surface 82a is divided into a flow F1 toward the fluid outlet 84 and a flow F2 toward the groove 86.
  • the fuel flowing along the arrow F ⁇ b> 1 reaches the fluid outlet 84 through the main body flow path portion 82 and is returned to the reservoir portion 11.
  • the valve body 91 moves upward by the urging force of the elastic member 89 and closes the fluid inlet 83.
  • the fuel pressure in the fuel flow path 52 is maintained at a predetermined value.
  • the pressure regulator 76 of the present embodiment includes the case body 77, the flow path portion 79 formed in the case body 77, including the fluid inflow port 83, the fluid outflow port 84, and the main body flow path portion 82, and the case body. 77, a valve body 91 that can open and close the fluid inlet 83 by moving in the axial direction, and an elastic member 89 that urges the valve body 91 in a direction to close the fluid inlet 83.
  • the valve body 91 includes a seal portion 92a that closes the fluid inlet 83, and a main body portion 92 provided with the seal portion 92a.
  • the pressure regulator 76 includes a movement restricting structure 90 that restricts the movement of the main body 92 of the valve body 91 in the direction intersecting the axial direction. According to this configuration, the movement of the main body 92 of the valve body 91 in the direction intersecting the axial direction is restricted by the movement restricting structure 90, so that the fuel passes through the gap between the valve body 91 and the case body 77. Moreover, the rolling of the valve body 91 can be suppressed. Thereby, since it can suppress that the valve body 91 collides with the case body 77 by rolling, generation
  • the movement restricting structure 90 includes an upper support protrusion 93 that protrudes along the axial direction of the valve body 91, and a housing through hole 81 b of the case body 77. Further, the movement restricting structure 90 includes a lower support protrusion 94 that protrudes along the axial direction of the valve body 91, and a retainer through hole 88 c of the case body 77. For this reason, the fluid inflow port 83 can be opened and closed by the valve body 91 in a state where the rolling of the valve body 91 is reliably suppressed by a simple structure. Therefore, an inexpensive pressure regulator 76 in which the occurrence of abnormal noise is reliably suppressed can be obtained.
  • the wear of the housing 81 can be suppressed. That is, the life of the pressure regulator 76 can be extended only by replacing only the retainer 88 that deteriorates over time.
  • the seal portion 92a of the valve body 91 is formed so as to be able to come into contact with a step surface 82a between the fluid inlet 83 and the main body flow passage portion 82, and a buffer member 95 is disposed on the seal portion 92a.
  • the buffer member 95 is disposed in the seal portion 92a, the collision between the valve body 91 and the stepped surface 82a due to the vibration of the valve body 91 is absorbed by the buffer member 95, and the generation of the collision noise is suppressed. Is done.
  • the buffer member 95 is elastically deformed so as to cover the step surface 82a by contact pressure.
  • the fluid inflow port 83 can be closed by the valve body 91 without increasing the processing accuracy of the stepped surface 82a. Therefore, the case body 77 (housing 81) can be formed of an inexpensive resin material that is difficult to precisely process, and can be manufactured by a simple processing process, so that the pressure regulator 76 can be manufactured at a low cost.
  • An annular groove 86 is formed on the outer peripheral side of the contact surface 82b of the valve body 91 of the step surface 82a.
  • the fuel that flows along the arrow F and passes through the gap between the seal portion 92 a (buffer member 95) and the step surface 82 a flows into the fluid outlet 84 and flows toward the groove 86. Divide into F2. For this reason, even when a large pressure is applied to the fuel located at the fluid inflow port 83, a part of the fuel that has passed through the gap between the seal portion 92a and the stepped surface 82a can be released to the groove 86 along the arrow F2. it can. Thereby, the rapid change of the flow velocity can be buffered, and the fluid sound can be suppressed. Therefore, the pressure regulator 76 in which the generation of abnormal noise is suppressed is obtained.
  • the fuel supply device 1 includes a pressure regulator 76, a fuel pump 3, and an exterior body 5. According to this configuration, since the pressure regulator 76 is provided, the fuel supply device 1 in which the generation of abnormal noise is suppressed can be obtained.
  • the exterior body 5 upper cup 25
  • the case body 77 housing 81
  • the number of parts can be reduced.
  • FIG. 5 is an explanatory diagram of a fuel supply apparatus according to a modification of the first embodiment, and is a cross-sectional view taken along the line II-II in FIG.
  • the pressure regulator 76 is press-fitted into the upper cup 25 with an O-ring 78 interposed therebetween. That is, the housing 81 of the pressure regulator 76 is formed separately from the upper cup 25.
  • the housing 81 may be made of the same material as the upper cup 25 or may be made of a different material.
  • FIG. 6 is an explanatory view of a first modification of the movement restricting structure, and is an enlarged view of a portion corresponding to part A of FIG. 7 is a cross-sectional view taken along line VII-VII in FIG.
  • the same reference numerals are given to the same aspects as those in the first embodiment, and the description thereof is omitted.
  • the valve body 191 includes a disc-shaped main body 192 and a supporting side surface 197 formed on the side surface (outer peripheral surface) of the main body 192.
  • the outer diameter of the main body portion 192 is set slightly smaller than the inner diameter of the main body flow path portion 82.
  • the support side surface portion 197 and the inner wall of the main body flow path portion 82 constitute a movement restricting structure 190 that restricts the movement of the valve body 191 in the direction intersecting the axial direction of the main body portion 192.
  • a plurality (five in this modification) of arc-shaped notches 192b are formed at equal intervals along the circumferential direction on the outer peripheral portion of the main body 192.
  • the notch 192b allows the fluid in the main body flow path portion 82 to pass from the upper side to the lower side across the main body portion 192.
  • the movement restricting structure 190 includes the support side surface portion 197 formed on the side surface of the valve body 191 and the main body flow path portion 82.
  • the fluid inlet 83 can be opened and closed by the valve body 191 in a state in which the roll of the body 191 is reliably suppressed. Therefore, an inexpensive pressure regulator 176 in which the occurrence of abnormal noise is reliably suppressed can be obtained.
  • FIG. 8 is an explanatory diagram of a second modification of the movement restricting structure, and is an enlarged view of a portion corresponding to part A of FIG.
  • the pressure regulator 276 includes a case body 277 and a flow path portion 79 formed in the case body 277.
  • the case body 277 includes a housing 281 and a pedestal portion 287.
  • the housing 281 is formed in a bottomed cylindrical shape.
  • the inside of the housing 281 is a main body flow channel portion 82 of the flow channel portion 79.
  • a fluid outlet 84 is formed in the bottom wall portion 281a of the housing 281 so as to penetrate the bottom wall portion 281a in the axial direction.
  • the fluid outlet 84 is formed coaxially with the main body flow path portion 82.
  • the pedestal portion 287 is formed in a cylindrical shape.
  • the pedestal portion 287 is press-fitted into the upper end opening of the housing 281 with the upper portion protruding from the housing 281.
  • the inside of the pedestal portion 287 is a fluid inlet 83.
  • the pressure regulator 276 includes a valve body 291 that opens and closes the fluid inflow port 83, and a guide member 296 that is interposed between the valve body 291 and the elastic member 89.
  • the valve body 291 includes a spherical main body portion 292, a disk-shaped support plate 293 attached to the main body portion 292, and a support side surface portion 297 formed on the side surface (outer peripheral surface) of the support plate 293.
  • the outer diameter of the main body 292 is set to be larger than the inner diameter of the fluid inflow port 83 and smaller than the inner diameter of the main body flow path portion 82.
  • the outer diameter of the support plate 293 is set slightly smaller than the inner diameter of the main body flow path portion 82.
  • valve body 291 is slidable in the axial direction along the inner wall of the main body flow path portion 82.
  • the support side surface portion 297 functions as a movement restricting structure 290 that restricts the movement of the valve body 291 in the direction intersecting the axial direction of the main body portion 292 together with the inner wall of the main body flow path portion 82.
  • a plurality of notch portions are formed side by side in the circumferential direction on the outer peripheral portion of the support plate 293. By this cutout portion, the fluid in the main body flow path portion 82 can pass from the upper side to the lower side across the support plate 293.
  • the valve body 291 is urged upward by an elastic member 89 via a guide member 296 disposed below the valve body 291. Accordingly, the main body 292 of the valve body 291 abuts on the lower end opening edge 83a of the fluid inlet 83 and closes the fluid inlet 83.
  • the pressure regulator 276 described above is press-fitted into the upper cup 25 with the O-ring 78 interposed between the upper end edge of the housing 281 and the outer peripheral surface of the base portion 287.
  • the pressure regulator 276 shown in FIG. 8 is press-fitted into the upper cup 25, the pressure regulator 276 is not limited to this, and the pressure regulator 276 may be formed integrally with the upper cup 25.
  • the housing 281 and the pedestal 287 are integrally formed with the upper cup 25.
  • the bottom wall portion 281a of the housing 281 is provided separately.
  • the valve body 291, the guide member 296, and the elastic member 89 can be disposed in the main body flow path portion 82.
  • FIG. 9 is a perspective view of the fuel supply device of the second embodiment. 10 is a cross-sectional view taken along line XX of FIG.
  • the fuel supply device 101 is inserted into an opening 2 a formed in the upper wall 2 c of the fuel tank 2 and attached to the upper wall 2 c of the fuel tank 2.
  • the fuel supply device 101 includes a fuel pump 3 disposed in the fuel tank 2 and an exterior body 5 that contains the fuel pump 3.
  • the exterior body 5 is extrapolated to the fuel pump 3.
  • the exterior body 5 includes a lower cup 100 that supports the fuel pump 3, and a flange unit 4 that is attached to the upper wall 2 c of the fuel tank 2.
  • the fuel supply device 101 is disposed on the upper side of the fuel pump 3.
  • the fuel supply device 101 includes a flange unit 4 attached to the upper wall 2c of the fuel tank 2.
  • An annular portion 13 is formed in the flange portion 12 at a portion corresponding to the opening 2 a of the fuel tank 2.
  • An engaging portion 15 that engages with an engaging convex portion 25a described later formed on the lower cup 100 is provided below the flange portion 12.
  • a plurality of engaging pieces 15 a projecting downward are formed on the periphery of the engaging portion 15.
  • the flange 15 and the lower cup 100 are fixed by snap-fitting the engaging portion 15 to the lower cup 100.
  • the unit body 10 is formed in a bottomed cylindrical shape.
  • the unit body 10 is externally inserted into the fuel pump 3 from above the fuel pump 3.
  • a fuel flow path 52 is formed inside the unit body 10.
  • the fuel flow passage 52 communicates with the pressure regulator 76, the check valve 74, and the fuel take-out pipe 57.
  • the lower cup 100 is formed in a bottomed cylindrical shape with a resin material having excellent oil resistance.
  • the lower cup 100 is formed by, for example, injection molding or the like.
  • the lower cup 100 is extrapolated to the lower side of the fuel pump 3.
  • a mounting portion 61 of the liquid level detector 60 is formed on the radially outer side of the lower cup 100.
  • the attachment portion 61 is formed in a plate shape that extends outward in the radial direction. When the upper cup 25 is formed, the mounting portion 61 is molded by injection at the same time.
  • a filter unit 110 is attached to the lower side of the lower cup 100.
  • the filter unit 110 communicates with the fuel inlet 41 via the filter discharge pipe 51.
  • the fuel in the fuel tank 2 is introduced into the fuel inlet 41 of the pump unit 40 via the filter unit 110 and the filter discharge pipe 51.
  • the fuel passes through the pump case 45 and is pumped to the upper side of the motor unit 30, passes through the fuel flow path unit 52, and then is transported to the internal combustion engine (not shown) through the fuel extraction pipe 57.
  • the pressure regulator 76 described above is applied to the so-called top-fitting type fuel supply device 101 attached to the upper wall 2c of the fuel tank 2.
  • an upper type fuel supply apparatus 101 in which the generation of abnormal noise is suppressed is obtained.
  • the present invention is not limited to the above-described embodiment described with reference to the drawings, and various modifications can be considered within the technical scope thereof.
  • the pressure regulator is arranged to be branched from the fuel flow path portion that pumps the fuel in the fuel tank of the vehicle to the internal combustion engine by the fuel pump.
  • the present invention is not limited to this, and can be applied to various hydraulic circuits.
  • the fluid to be pressure-regulated is fuel and the fuel of the vehicle has been described.
  • the present invention is not limited to this, and is applicable to water, air, hydraulic circuit hydraulic oil, and the like. be able to.
  • the movement of the main body portion of the valve body in the direction intersecting the predetermined direction is restricted by the movement restriction structure, so when the fluid passes through the gap between the valve body and the case main body, The rolling of the valve body can be suppressed.
  • production of a collision sound is suppressed. Therefore, a pressure control device in which the generation of abnormal noise is suppressed can be obtained.

Abstract

A pressure regulator (76) is provided with: a case (77); a flow channel part (79) that is formed in the case (77) and that has a fluid inflow port (83), a fluid outflow port (84), and a main body flow channel part (82); a valve body (91) that is provided inside the case (77) and that is capable of opening and closing the fluid inflow port (83) by moving in an axial direction; and an elastic member (89) that biases the valve body (91) in a direction of closing the fluid inflow port (83). The valve body (91) is provided with a seal part (92a) that closes the fluid inflow port (83), and a main body part (92) to which the seal part (92a) is provided. The pressure regulator (76) is provided with a movement-regulating structure (90) that regulates the movement of the main body part (92) of the valve body (91) in a direction intersecting the axial direction.

Description

圧力制御装置および燃料供給装置Pressure control device and fuel supply device
 本発明は、圧力制御装置および燃料供給装置に関するものである。 The present invention relates to a pressure control device and a fuel supply device.
 一般に、自動二輪車や四輪車の車両用の燃料供給装置として、燃料タンク内に燃料ポンプを配設する、いわゆるインタンク式の燃料供給装置を用いる場合が多い。この種の燃料供給装置には、燃料の圧力が過大になるのを防止するため圧力制御装置が用いられている。 Generally, a so-called in-tank type fuel supply device in which a fuel pump is disposed in a fuel tank is often used as a fuel supply device for a motorcycle or a four-wheeled vehicle. In this type of fuel supply device, a pressure control device is used to prevent the fuel pressure from becoming excessive.
 圧力制御装置としては、バルブ式のプレッシャレギュレータが知られている。特許文献1に記載のプレッシャレギュレータは、流体流入口を備えた小径流路と小径流路に連通するとともに流体流出口を備えた大径流路とを有し、小径流路と大径流路との境界部に大径流路に臨んで小径流路の開口部が形成されたハウジングと、大径流路内に配置され、開口部の周縁部に当接することにより小径流路を閉鎖する弁体と、大径流路内に配置され、弁体を周縁部に圧接させる弾性部材と、を備えている。
 この種の圧力制御装置では、小径流路に所定以上の圧力がかかると、弁体が弾性部材の付勢力に抗して開口部の周縁から浮き上がり、この際に生じる開口部と弁体との隙間から燃料が漏出する。これにより、小径流路の圧力が所定値よりも下回り、燃料の圧力が過大になるのが防止される。
As a pressure control device, a valve-type pressure regulator is known. The pressure regulator described in Patent Document 1 includes a small-diameter channel having a fluid inlet and a large-diameter channel communicating with the small-diameter channel and having a fluid outlet, and includes a small-diameter channel and a large-diameter channel. A housing in which a small-diameter channel opening is formed facing the large-diameter channel at the boundary, and a valve body that is disposed in the large-diameter channel and closes the small-diameter channel by contacting the peripheral edge of the opening; And an elastic member that is disposed in the large-diameter channel and presses the valve body against the peripheral portion.
In this type of pressure control device, when a pressure greater than a predetermined value is applied to the small-diameter flow path, the valve body rises from the periphery of the opening against the urging force of the elastic member, and the opening and the valve body generated at this time Fuel leaks from the gap. As a result, the pressure in the small-diameter flow path is less than a predetermined value, and the fuel pressure is prevented from becoming excessive.
特開2010-138704号公報JP 2010-138704 A
 従来の圧力制御装置では、弁体が開口部から浮き上がる際、流路に沿う方向に移動することにより開口部を開閉するだけでなく、弁体が流路に沿う方向に交差する方向へも移動する可能性がある。このため、弁体とハウジングとの衝突が生じて衝突音が発生する可能性がある。したがって、従来の圧力制御装置においては、異音の発生を抑制するという点で課題がある。 In the conventional pressure control device, when the valve body is lifted from the opening, not only the opening is opened and closed by moving in the direction along the flow path, but also the valve body is moved in the direction intersecting the direction along the flow path. there's a possibility that. For this reason, a collision between the valve body and the housing may occur, and a collision sound may be generated. Therefore, the conventional pressure control device has a problem in that the generation of abnormal noise is suppressed.
 本発明は、異音の発生が抑制された圧力制御装置および燃料供給装置を提供する。 The present invention provides a pressure control device and a fuel supply device in which the occurrence of abnormal noise is suppressed.
 本発明の第1の態様によれば、圧力制御装置は、ケース体と、前記ケース体に形成され、流体流入口、流体流出口および本体流路部を有する流路部と、前記ケース体内に設けられ、前記本体流路部に沿う所定方向に移動することにより前記流体流入口を開閉可能な弁体と、前記流体流入口を閉塞する方向に向かって前記弁体を付勢する弾性部材と、を備え、前記弁体は、前記流体流入口を閉塞するシール部と、前記シール部が設けられた本体部と、を備え、前記弁体の前記本体部の前記所定方向に交差する方向に対する移動を規制する移動規制構造を備える。
 上記のように構成することで、弁体の本体部は移動規制構造により所定方向に交差する方向に対する移動が規制されているため、弁体とケース本体との隙間を流体が通過する際に、弁体の横揺れを抑制できる。これにより、弁体が横揺れによってケース本体に対して衝突することを抑制できるため、衝突音の発生が抑制される。したがって、異音の発生が抑制された圧力制御装置が得られる。
According to the first aspect of the present invention, the pressure control device includes a case body, a flow path portion formed in the case body and having a fluid inflow port, a fluid outflow port, and a main body flow channel portion, and the case body. A valve body that is provided and capable of opening and closing the fluid inlet by moving in a predetermined direction along the main body flow path portion; and an elastic member that biases the valve body in a direction to close the fluid inlet. The valve body includes a seal portion that closes the fluid inlet, and a main body portion provided with the seal portion, and the valve body is in a direction intersecting the predetermined direction of the main body portion of the valve body. A movement restricting structure for restricting movement is provided.
By configuring as described above, the movement of the valve body in the direction intersecting the predetermined direction is restricted by the movement restricting structure, so when the fluid passes through the gap between the valve body and the case body, The rolling of the valve body can be suppressed. Thereby, since it can suppress that a valve body collides with a case main body by rolling, generation | occurrence | production of a collision sound is suppressed. Therefore, a pressure control device in which the generation of abnormal noise is suppressed can be obtained.
 本発明の第2の態様によれば、本発明の第1の態様に係る圧力制御装置において、前記弁体は、前記所定方向に沿って突出する支持突起を備え、前記移動規制構造は、前記支持突起と、前記ケース体と、を備える。
 上記のように構成することで、移動規制構造は、弁体の所定方向に沿って突出する支持突起と、ケース体と、を備えているため、簡素な構造により弁体の横揺れを確実に抑制した状態で、弁体により流体流入口を開閉することができる。したがって、異音の発生が確実に抑制された安価な圧力制御装置が得られる。
According to a second aspect of the present invention, in the pressure control device according to the first aspect of the present invention, the valve body includes a support protrusion that protrudes along the predetermined direction, and the movement restricting structure includes: A support protrusion and the case body are provided.
By configuring as described above, the movement restricting structure includes a support protrusion that protrudes along a predetermined direction of the valve body and a case body. Therefore, the simple structure ensures the roll of the valve body. In the suppressed state, the fluid inlet can be opened and closed by the valve body. Therefore, an inexpensive pressure control device in which the occurrence of abnormal noise is reliably suppressed can be obtained.
 本発明の第3の態様によれば、本発明の第1の態様に係る圧力制御装置において、前記弁体の側面には、支持側面部が形成され、前記移動規制構造は、前記支持側面部と、前記本体流路部と、を備える。
 上記のように構成することで、移動規制構造は、弁体の側面に形成された支持側面部と、本体流路部と、を備えているため、簡素な構造により弁体の横揺れを確実に抑制した状態で、弁体により流体流入口を開閉することができる。したがって、異音の発生が確実に抑制された安価な圧力制御装置が得られる。
According to a third aspect of the present invention, in the pressure control device according to the first aspect of the present invention, a support side surface portion is formed on a side surface of the valve body, and the movement restricting structure includes the support side surface portion. And the main body flow path portion.
By configuring as described above, the movement restricting structure includes a supporting side surface portion formed on the side surface of the valve body and a main body flow path portion, so that the rolling of the valve body is ensured with a simple structure. The fluid inflow port can be opened and closed by the valve body in a state of being suppressed to the above. Therefore, an inexpensive pressure control device in which the occurrence of abnormal noise is reliably suppressed can be obtained.
 本発明の第4の態様によれば、本発明の第1の態様から第3の態様のいずれか一の態様に係る圧力制御装置において、少なくとも前記流体流入口の径は、前記本体流路部の径よりも小さく設定されており、前記シール部は、前記流体流入口と前記本体流路部との段差面に当接可能に形成され、前記シール部には、緩衝部材が配置されている。
 上記のように構成することで、シール部に緩衝部材が配置されているため、弁体の振動による弁体と段差面との衝突が緩衝部材により吸収され、衝突音の発生が抑制される。
 さらに、弁体が段差面に押圧された状態では、緩衝部材が接圧によって段差面を覆うように弾性変形する。これにより、段差面の加工精度を高めることなく、弁体により流体流入口を閉塞することができる。したがって、ケース本体を精密加工が困難な樹脂材料により形成することが可能となるとともに、簡易な加工工程により製造できるため、低コストな圧力制御装置とすることができる。
According to a fourth aspect of the present invention, in the pressure control device according to any one of the first to third aspects of the present invention, at least the diameter of the fluid inlet is the main body flow path portion. The seal portion is formed so as to be able to abut on a step surface between the fluid inlet and the main body flow passage portion, and a buffer member is disposed in the seal portion. .
With the configuration described above, since the buffer member is disposed in the seal portion, the collision between the valve body and the stepped surface due to the vibration of the valve body is absorbed by the buffer member, and the occurrence of the collision noise is suppressed.
Furthermore, in a state where the valve body is pressed against the step surface, the buffer member is elastically deformed so as to cover the step surface by contact pressure. Thereby, a fluid inflow port can be obstruct | occluded with a valve body, without raising the processing precision of a level | step difference surface. Therefore, the case main body can be formed of a resin material that is difficult to precisely process, and can be manufactured by a simple processing process, so that a low-cost pressure control device can be obtained.
 本発明の第5の態様によれば、本発明の第4の態様に係る圧力制御装置において、前記段差面の前記弁体の当接面よりも外周側には、環状の溝が形成されている。
 上記のように構成することで、シール部と段差面との隙間を通過する流体は、流体流出口に向かう流れと、溝に向かう流れと、に分流する。このため、流体流入口に位置する流体に大きな圧力が作用した場合でも、シール部と段差面との隙間を通過した流体の一部を溝に逃がすことができる。これにより、流速の急激な変化を緩衝することができ、流体音を抑制することができる。したがって、異音の発生が抑制された圧力制御装置が得られる。
According to the fifth aspect of the present invention, in the pressure control device according to the fourth aspect of the present invention, an annular groove is formed on the outer peripheral side of the contact surface of the valve body of the step surface. Yes.
By configuring as described above, the fluid passing through the gap between the seal portion and the stepped surface is divided into a flow toward the fluid outlet and a flow toward the groove. For this reason, even when a large pressure is applied to the fluid located at the fluid inflow port, a part of the fluid that has passed through the gap between the seal portion and the step surface can be released to the groove. Thereby, the rapid change of the flow velocity can be buffered, and the fluid sound can be suppressed. Therefore, a pressure control device in which the generation of abnormal noise is suppressed can be obtained.
 本発明の第6の態様によれば、本発明の第1の態様から第5の態様のいずれか一の態様に係る圧力制御装置において、前記ケース体は、樹脂材料により形成されている。
 上記のように構成することで、ケース体を金属材料と比較して安価な樹脂材料により形成しているため、低コストな圧力制御装置とすることができる。
According to a sixth aspect of the present invention, in the pressure control device according to any one of the first to fifth aspects of the present invention, the case body is formed of a resin material.
By comprising as mentioned above, since the case body is formed with the cheap resin material compared with the metal material, it can be set as a low-cost pressure control apparatus.
 本発明の第7の態様によれば、燃料供給装置は、本発明の第1の態様から第6の態様のいずれか一の態様に係る圧力制御装置と、燃料タンク内に配置され該燃料タンク内の燃料を汲み上げて内燃機関へと圧送する燃料ポンプと、前記燃料タンクの壁面に取り付けられ、前記燃料ポンプを支持する外装体と、を備え、前記外装体に前記圧力制御装置が取り付けられている。
 上記のように構成することで、上述の圧力制御装置を備えているため、異音の発生が抑制された燃料供給装置が得られる。
According to a seventh aspect of the present invention, a fuel supply device includes the pressure control device according to any one of the first to sixth aspects of the present invention, and the fuel tank disposed in the fuel tank. A fuel pump that pumps up the fuel inside and pumps the fuel to the internal combustion engine; and an exterior body that is attached to the wall surface of the fuel tank and supports the fuel pump, and the pressure control device is attached to the exterior body. Yes.
By comprising as mentioned above, since the above-mentioned pressure control apparatus is provided, the fuel supply apparatus with which generation | occurrence | production of abnormal noise was suppressed is obtained.
 本発明の第8の態様によれば、本発明の第7の態様に係る燃料供給装置において、前記外装体と前記ケース体の少なくとも一部とが、樹脂材料により一体形成されている。
 上記のように構成することで、外装体とケース体の少なくとも一部とが一体形成されているため、部品点数を削減できる。また、従来の燃料供給装置のように、圧力制御装置を外装体に圧入固定する必要がなくなり、燃料供給装置の製造時における作業工程を削減できる。
According to the eighth aspect of the present invention, in the fuel supply device according to the seventh aspect of the present invention, the exterior body and at least a part of the case body are integrally formed of a resin material.
By comprising as mentioned above, since an exterior body and at least one part of a case body are integrally formed, the number of parts can be reduced. Further, unlike the conventional fuel supply device, it is not necessary to press-fit and fix the pressure control device to the exterior body, and the work process during the manufacture of the fuel supply device can be reduced.
 上記の圧力制御装置によれば、弁体の本体部は移動規制構造により所定方向に交差する方向に対する移動が規制されているため、弁体とケース本体との隙間を流体が通過する際に、弁体の横揺れを抑制できる。これにより、弁体が横揺れによってケース本体に対して衝突することを抑制できるため、衝突音の発生が抑制される。したがって、異音の発生が抑制された圧力制御装置が得られる。 According to the above pressure control device, the movement of the main body portion of the valve body in the direction intersecting the predetermined direction is restricted by the movement restriction structure, so when the fluid passes through the gap between the valve body and the case main body, The rolling of the valve body can be suppressed. Thereby, since it can suppress that a valve body collides with a case main body by rolling, generation | occurrence | production of a collision sound is suppressed. Therefore, a pressure control device in which the generation of abnormal noise is suppressed can be obtained.
第1実施形態の燃料供給装置の斜視図である。It is a perspective view of the fuel supply apparatus of a 1st embodiment. 図1のII-II線における断面図である。FIG. 2 is a cross-sectional view taken along line II-II in FIG. プレッシャレギュレータの説明図であり、図2のA部の拡大図である。It is explanatory drawing of a pressure regulator and is an enlarged view of the A section of FIG. プレッシャレギュレータの説明図であり、図2のA部の拡大図である。It is explanatory drawing of a pressure regulator and is an enlarged view of the A section of FIG. 第1実施形態の変形例の燃料供給装置の説明図であり、図1のII-II線に相当する部分における断面図である。It is explanatory drawing of the fuel supply apparatus of the modification of 1st Embodiment, and is sectional drawing in the part corresponded to the II-II line of FIG. 移動規制構造の第1変形例の説明図であり、図2のA部に相当する部分の拡大図である。It is explanatory drawing of the 1st modification of a movement control structure, and is an enlarged view of the part corresponded to the A section of FIG. 図6のVII-VII線における断面図である。FIG. 7 is a sectional view taken along line VII-VII in FIG. 6. 移動規制構造の第2変形例の説明図であり、図2のA部に相当する部分の拡大図である。It is explanatory drawing of the 2nd modification of a movement control structure, and is an enlarged view of the part corresponded to the A section of FIG. 第2実施形態の燃料供給装置の斜視図である。It is a perspective view of the fuel supply apparatus of 2nd Embodiment. 図9のX-X線における断面図である。FIG. 10 is a cross-sectional view taken along line XX in FIG. 9.
 以下、本発明の実施形態を図面に基づいて説明する。
[第1実施形態]
 最初に、第1実施形態の燃料供給装置および圧力制御装置について説明する。なお、インタンク式の燃料供給装置は、燃料タンクの上部に取り付けられる上付けタイプと、燃料タンクの底部に取り付けられる下付けタイプとが存在するが、第1実施形態では、下付けタイプを例に説明する。また、燃料ポンプの軸心に沿う方向(以下、「軸方向」という。)の相対位置を単に上側、下側と表現している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[First Embodiment]
First, the fuel supply device and the pressure control device of the first embodiment will be described. The in-tank type fuel supply apparatus has an upper type attached to the upper part of the fuel tank and a lower type attached to the bottom of the fuel tank. In the first embodiment, the lower type is used as an example. Explained. Further, the relative positions in the direction along the axis of the fuel pump (hereinafter referred to as “axial direction”) are simply expressed as the upper side and the lower side.
(燃料供給装置)
 図1は、第1実施形態の燃料供給装置の斜視図である。図2は、図1のII-II線における断面図である。
 図1および図2に示すように、燃料供給装置1は、燃料タンク2の底壁2bに形成されている開口部2aから挿入され、燃料タンク2の底壁2bに取り付けられている。燃料供給装置1は、燃料タンク2内に配置され燃料タンク2内の燃料を汲み上げて内燃機関へと圧送する燃料ポンプ3と、燃料ポンプ3を内包する外装体5と、を備えている。外装体5は、燃料ポンプ3に外挿されるアッパーカップ25と、燃料タンク2の底壁2bに取り付けられ、燃料ポンプ3を支持するフランジユニット4と、を備えている。
(Fuel supply device)
FIG. 1 is a perspective view of the fuel supply apparatus according to the first embodiment. 2 is a cross-sectional view taken along line II-II in FIG.
As shown in FIGS. 1 and 2, the fuel supply device 1 is inserted from an opening 2 a formed in the bottom wall 2 b of the fuel tank 2 and attached to the bottom wall 2 b of the fuel tank 2. The fuel supply device 1 includes a fuel pump 3 that is disposed in the fuel tank 2 and pumps the fuel in the fuel tank 2 and pumps it to the internal combustion engine, and an exterior body 5 that contains the fuel pump 3. The exterior body 5 includes an upper cup 25 that is externally attached to the fuel pump 3, and a flange unit 4 that is attached to the bottom wall 2 b of the fuel tank 2 and supports the fuel pump 3.
(燃料ポンプ)
 図2に示すように、燃料ポンプ3は、略円柱形状に形成されている。燃料ポンプ3は、燃料ポンプ3の上側に配設されたモータ部30と、燃料ポンプ3の下側に配設されたポンプ部40と、を有している。
 モータ部30には、例えば、ブラシ(不図示)付きの直流モータ30aが使用される。モータ部30の中央には出力軸30bが配置されている。出力軸30bは、モータ部30の上側と、ポンプ部40の下側とにより回動自在に軸支されている。なお、出力軸30bのポンプ部40側には、後述する位置規制用のDカット面(不図示)が形成されている。
(Fuel pump)
As shown in FIG. 2, the fuel pump 3 is formed in a substantially cylindrical shape. The fuel pump 3 includes a motor unit 30 disposed on the upper side of the fuel pump 3 and a pump unit 40 disposed on the lower side of the fuel pump 3.
For the motor unit 30, for example, a DC motor 30a with a brush (not shown) is used. An output shaft 30 b is disposed at the center of the motor unit 30. The output shaft 30b is pivotally supported by the upper side of the motor unit 30 and the lower side of the pump unit 40. Note that a D-cut surface (not shown) for position regulation described later is formed on the pump portion 40 side of the output shaft 30b.
 図1に示すように、モータ部30の上側には、一対のモータ端子32が、燃料ポンプ3の上側において燃料ポンプ3の軸心O(図2参照)に沿って設けられている。一対のモータ端子32は、ブラシと電気的に接合している。一対のモータ端子32には、ハーネス6が接続されている。ハーネス6により外部電源とモータ部30とが電気的に接続されることで、一対のモータ端子32には、外部電源から直流モータ30aを駆動するための電力が供給される。
 図2に示すように、モータ部30の上部は、モータ部30の他の部分よりも若干縮径されている。モータ部30の上部には、段部30cが形成されている。段部30cには、後述するハウジングケース20の上端がカシメられている。
As shown in FIG. 1, a pair of motor terminals 32 is provided on the upper side of the motor unit 30 along the axis O (see FIG. 2) of the fuel pump 3 on the upper side of the fuel pump 3. The pair of motor terminals 32 are electrically joined to the brush. The harness 6 is connected to the pair of motor terminals 32. When the external power supply and the motor unit 30 are electrically connected by the harness 6, electric power for driving the DC motor 30 a is supplied from the external power supply to the pair of motor terminals 32.
As shown in FIG. 2, the upper part of the motor unit 30 is slightly reduced in diameter than other parts of the motor unit 30. A step portion 30 c is formed on the upper portion of the motor portion 30. An upper end of a housing case 20 described later is crimped to the stepped portion 30c.
 モータ部30の上側には、燃料を排出する排出ポート31と、排出ポート31と連通するチェックバルブ74と、が設けられている。排出ポート31およびチェックバルブ74は、後述する燃料流路部52に接続され、燃料流路部52と連通している。チェックバルブ74は、排出ポート31から排出された燃料が、燃料流路部52から燃料ポンプ3内に逆流することを抑制する。 On the upper side of the motor unit 30, a discharge port 31 for discharging fuel and a check valve 74 communicating with the discharge port 31 are provided. The discharge port 31 and the check valve 74 are connected to a fuel flow path portion 52 described later, and communicate with the fuel flow path portion 52. The check valve 74 prevents the fuel discharged from the discharge port 31 from flowing backward from the fuel flow path portion 52 into the fuel pump 3.
(ポンプ部)
 ポンプ部40は、インペラ47を有する非容積型のポンプが用いられている。ポンプ部40は、インペラ47と、インペラ47の全体を覆うように形成されたポンプケース45と、により構成されている。
 インペラ47は、樹脂材料により形成されている。インペラ47は、略円板状に形成された部材である。インペラ47の略中央には、挿通孔47cが形成されている。挿通孔47cには、直流モータ30aの出力軸30bが挿通される。インペラ47の挿通孔47cおよび出力軸30bのインペラ47側には、例えばDカット面が形成されている。そして、挿通孔47cおよび出力軸30bのDカット面を合わせつつ、インペラ47の挿通孔47cに出力軸30bが挿通されている。挿通孔47cおよび出力軸30bのDカット面により、モータ部30の直流モータ30aによりインペラ47が駆動された際に、直流モータ30aの出力軸30bとインペラ47との相対回転を規制している。
(Pump part)
The pump unit 40 is a non-volumetric pump having an impeller 47. The pump unit 40 includes an impeller 47 and a pump case 45 formed so as to cover the entire impeller 47.
The impeller 47 is made of a resin material. The impeller 47 is a member formed in a substantially disc shape. An insertion hole 47 c is formed in the approximate center of the impeller 47. The output shaft 30b of the DC motor 30a is inserted through the insertion hole 47c. For example, a D-cut surface is formed on the insertion hole 47c of the impeller 47 and the impeller 47 side of the output shaft 30b. The output shaft 30b is inserted into the insertion hole 47c of the impeller 47 while aligning the insertion hole 47c and the D cut surface of the output shaft 30b. When the impeller 47 is driven by the DC motor 30a of the motor unit 30, the relative rotation between the output shaft 30b of the DC motor 30a and the impeller 47 is restricted by the insertion hole 47c and the D cut surface of the output shaft 30b.
 インペラ47の上面および下面における外周側には、複数の羽根部(不図示)が形成されている。複数の羽根部の間は、インペラ47の下面と上面とを貫通している。また、インペラ47の径方向における挿通孔47cと羽根部との間には、インペラ47の下面と上面とを貫通する燃料流路孔(不図示)が形成されている。直流モータ30aが駆動されてインペラ47が回転すると、燃料は、燃料流路孔を通過し、インペラ47の下側から上側に向かって圧送される。 A plurality of blade portions (not shown) are formed on the outer peripheral side of the upper surface and the lower surface of the impeller 47. Between the plurality of blade portions, the lower surface and the upper surface of the impeller 47 are penetrated. Further, a fuel flow path hole (not shown) that penetrates the lower surface and the upper surface of the impeller 47 is formed between the insertion hole 47 c and the blade portion in the radial direction of the impeller 47. When the DC motor 30a is driven and the impeller 47 rotates, the fuel passes through the fuel passage hole and is pumped from the lower side to the upper side of the impeller 47.
(ポンプケース)
 インペラ47の全体を覆うポンプケース45は、ロワケース42とアッパーケース43とミドルケース44とにより構成されている。具体的に、ポンプケース45は、インペラ47が内側に配置されたミドルケース44を、ロワケース42とアッパーケース43とで挟持することにより、インペラ47の全体を覆う。そして、ロワケース42、アッパーケース43およびミドルケース44は、軸心Oに沿うように、下側から上側に向かってロワケース42、ミドルケース44、アッパーケース43の順に並んで設けられている。
 ロワケース42、アッパーケース43およびミドルケース44の各ケースは、いずれも耐油性を有する樹脂により形成されている。ロワケース42、アッパーケース43およびミドルケース44の各ケースは、例えばインジェクション成型等により形成される。
(Pump case)
The pump case 45 that covers the entire impeller 47 includes a lower case 42, an upper case 43, and a middle case 44. Specifically, the pump case 45 covers the entire impeller 47 by sandwiching the middle case 44 in which the impeller 47 is disposed on the inner side between the lower case 42 and the upper case 43. The lower case 42, the upper case 43, and the middle case 44 are provided along the axis O in the order of the lower case 42, the middle case 44, and the upper case 43 from the lower side to the upper side.
Each of the lower case 42, the upper case 43, and the middle case 44 is formed of a resin having oil resistance. Each of the lower case 42, the upper case 43, and the middle case 44 is formed by, for example, injection molding.
 ロワケース42は、モータ部30と略同一の外径を有した円盤状の部材である。ロワケース42の略中央には、直流モータ30aの出力軸30bを支持する軸支部42cが形成されている。軸支部42cは有底の孔であり、底面には不図示のスラストプレートが配置されている。スラストプレートは、出力軸30bの軸方向の荷重を受けるとともに、出力軸30bの摺動抵抗を低減している。 The lower case 42 is a disk-shaped member having substantially the same outer diameter as the motor unit 30. A shaft support portion 42c that supports the output shaft 30b of the DC motor 30a is formed at substantially the center of the lower case 42. The shaft support 42c is a hole with a bottom, and a thrust plate (not shown) is disposed on the bottom surface. The thrust plate receives the load in the axial direction of the output shaft 30b and reduces the sliding resistance of the output shaft 30b.
 ロワケース42の下面42bの外周側には、下側に突出した燃料吸入口41が形成されている。燃料吸入口41は筒状に形成されている。燃料吸入口41の内側は、燃料の通路となる。燃料吸入口41の外側は、後述するフランジユニット4に嵌合されている。これにより、燃料吸入口41は、フランジユニット4に形成されたフィルタ排出管51、および燃料供給装置1とは別に設けられたフィルタユニット(不図示)と連通している。 A fuel inlet 41 protruding downward is formed on the outer peripheral side of the lower surface 42b of the lower case 42. The fuel inlet 41 is formed in a cylindrical shape. The inside of the fuel inlet 41 is a fuel passage. The outside of the fuel inlet 41 is fitted into a flange unit 4 described later. Thus, the fuel inlet 41 communicates with a filter discharge pipe 51 formed in the flange unit 4 and a filter unit (not shown) provided separately from the fuel supply device 1.
 また、ロワケース42の下面42bの縁部には、段差部48が形成されている。段差部48は、ロワケース42の下面42b側を縮径させることにより形成される。段差部48には、シール部材としての角リング46が、段差部48の底部と接するように装着される。角リング46については後述する。 Further, a stepped portion 48 is formed at the edge of the lower surface 42b of the lower case 42. The stepped portion 48 is formed by reducing the diameter of the lower surface 42 b side of the lower case 42. A square ring 46 as a sealing member is attached to the stepped portion 48 so as to be in contact with the bottom of the stepped portion 48. The corner ring 46 will be described later.
 ロワケース42の上面42aには、軸方向から見て略C字状の溝部(不図示)が形成されている。溝部の一端側には、ロワケース42の下面42bと上面42aとを貫通する燃料流路孔(不図示)が形成されている。ロワケース42の燃料流路孔は、燃料吸入口41と連通している。ロワケース42の燃料流路孔には、燃料吸入口41から吸入された燃料が通過する。 A substantially C-shaped groove (not shown) is formed on the upper surface 42a of the lower case 42 when viewed in the axial direction. A fuel channel hole (not shown) that penetrates the lower surface 42b and the upper surface 42a of the lower case 42 is formed on one end side of the groove portion. The fuel passage hole of the lower case 42 communicates with the fuel inlet 41. The fuel sucked from the fuel suction port 41 passes through the fuel flow path hole of the lower case 42.
 アッパーケース43は、ロワケース42と同様に、モータ部30と略同一の外径を有した円盤状の部材である。アッパーケース43の略中央には挿通孔43cが形成されている。挿通孔43cには、直流モータ30aの出力軸30bが挿通される。また、挿通孔43cの外周側には、アッパーケース43の下面43bと上面43aとを貫通する燃料流路孔(不図示)が形成されている。アッパーケース43の燃料流路孔はモータ部30と連通している。アッパーケース43の燃料流路孔には、インペラ47から圧送された燃料が通過する。 The upper case 43 is a disk-shaped member having substantially the same outer diameter as that of the motor unit 30, similarly to the lower case 42. An insertion hole 43 c is formed in the approximate center of the upper case 43. The output shaft 30b of the DC motor 30a is inserted through the insertion hole 43c. A fuel flow path hole (not shown) that penetrates the lower surface 43b and the upper surface 43a of the upper case 43 is formed on the outer peripheral side of the insertion hole 43c. The fuel passage hole of the upper case 43 communicates with the motor unit 30. The fuel pumped from the impeller 47 passes through the fuel passage hole of the upper case 43.
 ミドルケース44は、モータ部30と略同一の外径を有したリング状の部材である。ミドルケース44の内側には、ミドルケース44の中心軸とインペラ47の中心軸とが一致した状態で、インペラ47が配置される。ミドルケース44の内径は、インペラ47の外径よりも若干大きくなるように形成されている。ミドルケース44の内面44a(すなわちポンプケースの内面44a)とインペラ47の外周面との間には、クリアランスが形成される。ここで、燃料ポンプ3の効率は、ポンプケース45とインペラ47とのクリアランスに依存する。したがって、ミドルケース44の内面44aとインペラ47の外周面との間のクリアランスは、要求される燃料ポンプ3の効率に応じて、所定値に設定される。 The middle case 44 is a ring-shaped member having substantially the same outer diameter as the motor unit 30. Inside the middle case 44, the impeller 47 is arranged in a state where the central axis of the middle case 44 and the central axis of the impeller 47 coincide. The inner diameter of the middle case 44 is formed to be slightly larger than the outer diameter of the impeller 47. A clearance is formed between the inner surface 44 a of the middle case 44 (that is, the inner surface 44 a of the pump case) and the outer peripheral surface of the impeller 47. Here, the efficiency of the fuel pump 3 depends on the clearance between the pump case 45 and the impeller 47. Therefore, the clearance between the inner surface 44 a of the middle case 44 and the outer peripheral surface of the impeller 47 is set to a predetermined value according to the required efficiency of the fuel pump 3.
 ミドルケース44は、アッパーケース43とロワケース42との間に配置される。ここで、ミドルケース44の軸方向の厚さは、上述のインペラ47と略同一か、若干厚くなるように形成されている。すなわち、ミドルケース44は、インペラ47の上面47aとアッパーケース43の下面43b、およびインペラ47の下面47bとロワケース42の上面42aとの接触を防止するスペーサの役割をしている。そして、インペラ47の上面47aとアッパーケース43の下面43bとの間、およびインペラ47の下面47bとロワケース42の上面42aとの間に、クリアランスが形成される。これらのクリアランスは、上述のミドルケース44の内面44aとインペラ47の外周面との間のクリアランスと同様に、要求される燃料ポンプ3の効率に応じて、所定値に設定される。 The middle case 44 is disposed between the upper case 43 and the lower case 42. Here, the thickness of the middle case 44 in the axial direction is formed to be substantially the same as or slightly thicker than the impeller 47 described above. That is, the middle case 44 serves as a spacer that prevents contact between the upper surface 47 a of the impeller 47 and the lower surface 43 b of the upper case 43 and between the lower surface 47 b of the impeller 47 and the upper surface 42 a of the lower case 42. A clearance is formed between the upper surface 47 a of the impeller 47 and the lower surface 43 b of the upper case 43, and between the lower surface 47 b of the impeller 47 and the upper surface 42 a of the lower case 42. These clearances are set to predetermined values in accordance with the required efficiency of the fuel pump 3 as with the clearance between the inner surface 44a of the middle case 44 and the outer peripheral surface of the impeller 47 described above.
 ここで、上述のモータ部30およびポンプ部40は、ハウジングケース20により覆われている。ハウジングケース20は、鉄等により形成されている。ハウジングケース20は、略円筒状の部材である。ハウジングケース20は、例えばシームレス管を切断することにより形成される。
 ハウジングケース20の上側端部はカシメ部22となる。ハウジングケース20の上側端部は、モータ部30に形成された段部30cに対してカシメられている。
Here, the motor unit 30 and the pump unit 40 described above are covered with the housing case 20. The housing case 20 is made of iron or the like. The housing case 20 is a substantially cylindrical member. The housing case 20 is formed by cutting a seamless tube, for example.
The upper end portion of the housing case 20 is a crimping portion 22. The upper end portion of the housing case 20 is crimped with respect to a step portion 30 c formed in the motor portion 30.
 ハウジングケース20は、ハウジングケース20の下端部から内側に向かって屈曲延出する鍔部21を有している。鍔部21は、軸方向から見てロワケース42の段差部48と重なるように形成されている。段差部48と鍔部21との間には、角リング46が設けられている。角リング46は、断面が略矩形状に形成されている。角リング46は、フッ素ゴム等の耐油性に優れた材料により形成されている部材である。そして、角リング46は、段差部48と鍔部21とにより、若干押し潰されて挟持された状態になる。これにより、ハウジングケース20とポンプ部40との間のシール性が確保されている。 The housing case 20 has a flange 21 that bends and extends inward from the lower end of the housing case 20. The flange portion 21 is formed so as to overlap the stepped portion 48 of the lower case 42 when viewed from the axial direction. A square ring 46 is provided between the stepped portion 48 and the flange portion 21. The square ring 46 has a substantially rectangular cross section. The square ring 46 is a member formed of a material excellent in oil resistance such as fluoro rubber. The square ring 46 is slightly squeezed and pinched by the step portion 48 and the flange portion 21. Thereby, the sealing performance between the housing case 20 and the pump part 40 is ensured.
(アッパーカップ)
 燃料ポンプ3に外挿されるアッパーカップ25は、耐油性に優れた樹脂材料により形成されている。アッパーカップ25は、有底筒状に形成されている。アッパーカップ25は、例えばインジェクション成型等により形成される。
 図1に示すように、アッパーカップ25の上側には、液面検出器60の取付部61が形成されている。取付部61は、径方向外側に向かって延出形成された板状に形成されている。取付部61は、アッパーカップ25を形成する際、同時にインジェクションにより成型される。液面検出器60は、取付部61にスナップフィット等により固定される。
(Upper cup)
The upper cup 25 that is externally attached to the fuel pump 3 is formed of a resin material that is excellent in oil resistance. The upper cup 25 is formed in a bottomed cylindrical shape. The upper cup 25 is formed by, for example, injection molding.
As shown in FIG. 1, a mounting portion 61 of the liquid level detector 60 is formed on the upper side of the upper cup 25. The attachment portion 61 is formed in a plate shape that extends outward in the radial direction. When the upper cup 25 is formed, the mounting portion 61 is molded by injection at the same time. The liquid level detector 60 is fixed to the mounting portion 61 by a snap fit or the like.
 アッパーカップ25は、燃料ポンプ3に外挿される筒部24を有している。筒部24は、下側に配置された大径部26と、上側に配置された小径部27と、を備えている。
 筒部24の大径部26の外周面には、係合凸部25aが形成されている。係合凸部25aは、フランジユニット4に設けられた係合片15aの係合孔に対応する位置に形成されている。アッパーカップ25の係合凸部25aと、フランジユニット4の係合片15aとによって、両者がスナップフィットし、アッパーカップ25とフランジユニット4とが一体化される。
The upper cup 25 has a cylindrical portion 24 that is externally inserted into the fuel pump 3. The cylindrical portion 24 includes a large diameter portion 26 disposed on the lower side and a small diameter portion 27 disposed on the upper side.
An engaging convex portion 25 a is formed on the outer peripheral surface of the large diameter portion 26 of the cylindrical portion 24. The engagement convex portion 25 a is formed at a position corresponding to the engagement hole of the engagement piece 15 a provided in the flange unit 4. The engagement convex portion 25a of the upper cup 25 and the engagement piece 15a of the flange unit 4 are snap-fitted together so that the upper cup 25 and the flange unit 4 are integrated.
 図2に示すように、アッパーカップ25の筒部24の内側には、アッパーカップ25の外面に沿って、燃料流路部52が形成されている。燃料流路部52は、排出ポート31の上側に形成された第1流路52aと、第1流路52aの上端から径方向に沿って両側に延びる第2流路52bと、第2流路52bの一端(図2における左側)から軸方向に沿って下方に延びる第3流路52cと、により構成されている。 As shown in FIG. 2, a fuel flow path portion 52 is formed inside the cylindrical portion 24 of the upper cup 25 along the outer surface of the upper cup 25. The fuel flow path portion 52 includes a first flow path 52a formed on the upper side of the discharge port 31, a second flow path 52b extending from the upper end of the first flow path 52a to both sides along the radial direction, and a second flow path. The third flow path 52c extends downward from the one end (left side in FIG. 2) of the line 52b along the axial direction.
 第1流路52aは、軸心Oに沿って形成されている。第1流路52aは、燃料ポンプ3に設けられたチェックバルブ74と連通している。第1流路52aには、チェックバルブ74を介して燃料ポンプ3の排出ポート31から排出された燃料が流入するようになる。
 第2流路52bは、小径部27の上面から突出するように形成されている。
 第3流路52cは、管状に形成されている。第3流路52cの下端の内側には、後述する燃料取出管57の上端が嵌め込まれている。これにより、排出ポート31から吐出され燃料流路部52を流れた燃料は、燃料取出管57へ送られる。
The first flow path 52a is formed along the axis O. The first flow path 52 a communicates with a check valve 74 provided in the fuel pump 3. The fuel discharged from the discharge port 31 of the fuel pump 3 flows into the first flow path 52a through the check valve 74.
The second flow path 52 b is formed so as to protrude from the upper surface of the small diameter portion 27.
The third flow path 52c is formed in a tubular shape. The upper end of a fuel take-out pipe 57 to be described later is fitted inside the lower end of the third flow path 52c. As a result, the fuel discharged from the discharge port 31 and flowing through the fuel flow path portion 52 is sent to the fuel extraction pipe 57.
(プレッシャレギュレータ)
 第2流路52bの他端(図2における右側)には、プレッシャレギュレータ76(圧力制御装置)が設けられている。プレッシャレギュレータ76は、燃料流路部52内の燃圧を一定に保つ。プレッシャレギュレータ76は、燃料流路部52内に余剰な燃圧が発生した場合に、燃料流路部52内の燃料を後述するリザーバ部11に排出している。
(Pressure regulator)
A pressure regulator 76 (pressure control device) is provided at the other end (the right side in FIG. 2) of the second flow path 52b. The pressure regulator 76 keeps the fuel pressure in the fuel flow path portion 52 constant. The pressure regulator 76 discharges the fuel in the fuel flow path 52 to the reservoir section 11 described later when an excessive fuel pressure is generated in the fuel flow path 52.
 図3は、プレッシャレギュレータの説明図であり、図2のA部の拡大図である。
 図3に示すように、プレッシャレギュレータ76は、ケース体77と、ケース体77に形成された流路部79と、ケース体77内に設けられた弁体91と、を備えている。なお、図3では、弁体91が流体流入口83を閉塞した状態を示している。
FIG. 3 is an explanatory diagram of the pressure regulator, and is an enlarged view of a portion A in FIG.
As shown in FIG. 3, the pressure regulator 76 includes a case body 77, a flow path portion 79 formed in the case body 77, and a valve body 91 provided in the case body 77. FIG. 3 shows a state in which the valve body 91 closes the fluid inlet 83.
 ケース体77は、ハウジング81と、リテーナ88と、を有する。ハウジング81は、樹脂材料により形成されている。ハウジング81は、アッパーカップ25と一体形成されている(図2参照)。
 流路部79は、本体流路部82と、本体流路部82の上部に形成された流体流入口83と、本体流路部82の下部に形成され、流体流入口83と連通する流体流出口84と、を有する。本体流路部82は、ハウジング81の下端面から上方に向かって軸方向に沿って形成されている。本体流路部82は、軸方向から見て円形状に形成されている。本体流路部82の下端開口部は、リザーバ部11(図2参照)と接続する流体流出口84である。
The case body 77 includes a housing 81 and a retainer 88. The housing 81 is made of a resin material. The housing 81 is integrally formed with the upper cup 25 (see FIG. 2).
The flow path part 79 is a main body flow path part 82, a fluid inlet 83 formed at the upper part of the main body flow path part 82, and a fluid flow formed at the lower part of the main body flow path part 82 and communicating with the fluid inlet 83. And an outlet 84. The main body flow channel portion 82 is formed along the axial direction upward from the lower end surface of the housing 81. The main body channel portion 82 is formed in a circular shape when viewed from the axial direction. The lower end opening of the main body channel portion 82 is a fluid outlet 84 connected to the reservoir portion 11 (see FIG. 2).
 流体流入口83は、本体流路部82の上端面から上方に向かって軸方向に沿って形成されている。流体流入口83は、軸方向から見て円形状に形成され、本体流路部82と同軸となる。流体流入口83の内径は、本体流路部82の内径よりも小さく設定されている。これにより、本体流路部82の上端面には、軸方向から見て円環状の段差面82aが形成されている。段差面82aには、内周側に位置し、弁体91が当接する当接面82bと、当接面82bの外周側に位置し、軸方向から見て円環状の溝86と、が形成されている。溝86の軸方向における深さは、溝86の幅と同程度に設定されている。 The fluid inflow port 83 is formed along the axial direction upward from the upper end surface of the main body flow path portion 82. The fluid inflow port 83 is formed in a circular shape when viewed from the axial direction, and is coaxial with the main body channel portion 82. The inner diameter of the fluid inlet 83 is set to be smaller than the inner diameter of the main body flow path portion 82. Thereby, an annular step surface 82 a is formed on the upper end surface of the main body flow channel portion 82 when viewed from the axial direction. The stepped surface 82a is formed with an abutting surface 82b that is located on the inner peripheral side and is in contact with the valve body 91, and an annular groove 86 that is located on the outer peripheral side of the abutting surface 82b and viewed from the axial direction. Has been. The depth of the groove 86 in the axial direction is set to be approximately the same as the width of the groove 86.
 流体流入口83の上部に形成されたハウジング81の上壁部81aには、小径流路85が軸方向に沿って形成されている。小径流路85は、第2流路52b(図2参照)と流体流入口83とを連通させる。また、上壁部81aには、本体流路部82と同軸のハウジング貫通孔81bが軸方向に沿って形成されている。 A small-diameter channel 85 is formed along the axial direction in the upper wall portion 81a of the housing 81 formed in the upper part of the fluid inlet 83. The small-diameter channel 85 allows the second channel 52b (see FIG. 2) and the fluid inlet 83 to communicate with each other. In addition, a housing through hole 81b coaxial with the main body flow path portion 82 is formed in the upper wall portion 81a along the axial direction.
 流路部79内に設けられた弁体91は、軸方向(所定方向)に移動することにより流体流入口83を開閉する。弁体91は、例えば樹脂材料や金属材料等により形成されている。弁体91は、本体部92と、上端に形成された上側支持突起93と、下端に形成された下側支持突起94と、により一体形成されている。
 本体部92は、本体流路部82と同軸の円盤状に形成されている。本体部92の外径は、本体流路部82の内径よりも小さく設定されている。
The valve body 91 provided in the flow path part 79 opens and closes the fluid inlet 83 by moving in the axial direction (predetermined direction). The valve body 91 is made of, for example, a resin material or a metal material. The valve body 91 is integrally formed by a main body 92, an upper support protrusion 93 formed at the upper end, and a lower support protrusion 94 formed at the lower end.
The main body portion 92 is formed in a disk shape that is coaxial with the main body flow path portion 82. The outer diameter of the main body portion 92 is set smaller than the inner diameter of the main body flow path portion 82.
 上側支持突起93は、円柱状に形成されている。上側支持突起93は、本体部92の上面から、軸方向に沿って上方に向かって突出している。上側支持突起93は、本体部92と同軸となる。上側支持突起93の外径は、ハウジング81の上壁部81aに形成されたハウジング貫通孔81bの内径よりも僅かに小さく設定されている。上側支持突起93は、ハウジング81のハウジング貫通孔81bに挿入されている。上側支持突起93は、上壁部81aに対して軸方向に沿ってスライド移動自在に支持されている。これにより、上側支持突起93は、ケース体77のハウジング貫通孔81bとともに、弁体91の本体部92の軸方向に交差する方向に対する移動を規制する移動規制構造90を構成している。
 下側支持突起94は、円柱状に形成されている。下側支持突起94は、本体部92の下面から軸方向に沿って下方に向かって突出している。下側支持突起94は、本体部92と同軸となる。
The upper support protrusion 93 is formed in a columnar shape. The upper support protrusion 93 protrudes upward along the axial direction from the upper surface of the main body 92. The upper support protrusion 93 is coaxial with the main body 92. The outer diameter of the upper support protrusion 93 is set to be slightly smaller than the inner diameter of the housing through hole 81 b formed in the upper wall portion 81 a of the housing 81. The upper support protrusion 93 is inserted into the housing through hole 81 b of the housing 81. The upper support protrusion 93 is slidably supported along the axial direction with respect to the upper wall portion 81a. As a result, the upper support protrusion 93 and the housing through hole 81 b of the case body 77 constitute a movement restricting structure 90 that restricts the movement of the valve body 91 in the direction intersecting the axial direction of the main body 92.
The lower support protrusion 94 is formed in a cylindrical shape. The lower support protrusion 94 protrudes downward from the lower surface of the main body 92 along the axial direction. The lower support protrusion 94 is coaxial with the main body 92.
 本体部92の上面における上側支持突起93の周囲には、平面状のシール部92aが設けられている。シール部92aには、円環板状の緩衝部材95が配置されている。緩衝部材95は、弾性を有する材料により形成され、例えばゴム等が好適である。シール部92aは、緩衝部材95を介して本体流路部82の段差面82aにおける内周側の当接面82bに当接することで流体流入口83を閉塞する。 A flat seal portion 92 a is provided around the upper support protrusion 93 on the upper surface of the main body portion 92. An annular plate-shaped buffer member 95 is disposed on the seal portion 92a. The buffer member 95 is formed of a material having elasticity, and for example, rubber or the like is suitable. The seal portion 92 a closes the fluid inflow port 83 by contacting the inner peripheral contact surface 82 b of the step surface 82 a of the main body flow passage portion 82 via the buffer member 95.
 本体流路部82の下端開口には、リテーナ88が嵌合されている。リテーナ88は、有底円筒状に形成されている。リテーナ88は、その底部88aが上側に位置するように配置されている。リテーナ88には、その内周面と外周面および上面とを連通する通流孔88bが、円筒状の周壁に複数形成されている。リテーナ88は、本体流路部82の下端開口に嵌合された状態において、通流孔88bにより燃料(流体)が本体流路部82内から外部(リザーバ部11)に通流可能としている。 A retainer 88 is fitted into the lower end opening of the main body flow path portion 82. The retainer 88 is formed in a bottomed cylindrical shape. The retainer 88 is arranged so that its bottom portion 88a is located on the upper side. The retainer 88 is formed with a plurality of flow holes 88b in the cylindrical peripheral wall that communicate the inner peripheral surface with the outer peripheral surface and the upper surface. The retainer 88 allows the fuel (fluid) to flow from the inside of the main body flow path portion 82 to the outside (reservoir section 11) through the flow holes 88b when fitted in the lower end opening of the main body flow path portion 82.
 ここで、リテーナ88の底部88aには、軸方向に貫通するリテーナ貫通孔88cが形成されている。リテーナ貫通孔88cは、本体流路部82と同軸に形成されている。リテーナ貫通孔88cの内径は、弁体91の下側支持突起94の外径よりも大きく設定されている。リテーナ貫通孔88cには、下側支持突起94が挿通されている。これにより、下側支持突起94は、リテーナ88に対して軸方向に沿ってスライド移動自在に支持されている。下側支持突起94は、リテーナ貫通孔88cとともに、上側支持突起93およびハウジング貫通孔81bと同様に、弁体91の本体部92の軸方向に交差する方向に対する移動を規制する移動規制構造90を構成している。 Here, a retainer through hole 88c penetrating in the axial direction is formed in the bottom 88a of the retainer 88. The retainer through-hole 88 c is formed coaxially with the main body flow path portion 82. The inner diameter of the retainer through-hole 88c is set larger than the outer diameter of the lower support protrusion 94 of the valve body 91. A lower support protrusion 94 is inserted through the retainer through hole 88c. Thus, the lower support protrusion 94 is supported so as to be slidable along the axial direction with respect to the retainer 88. The lower support protrusion 94 has, together with the retainer through hole 88c, a movement restricting structure 90 that restricts the movement of the valve body 91 in the direction intersecting the axial direction of the main body 92, similarly to the upper support protrusion 93 and the housing through hole 81b. It is composed.
 弁体91の本体部92とリテーナ88との間には、弾性部材89が介在している。弾性部材89は、流体流入口83を閉塞する方向(上方)に向かって弁体91を付勢する。弾性部材89は、コイルバネであって、その内側に弁体91の下側支持突起94が挿通されている。弾性部材89は、圧縮された状態で、上端が弁体91の本体部92の下面に当接するとともに、下端がリテーナ88の底部88aの上面に当接している。弾性部材89は、軸方向に沿って移動可能な弁体91を上方に向かって付勢している。これにより弁体91のシール部92aは、流体流入口83を閉塞している。 An elastic member 89 is interposed between the main body 92 of the valve body 91 and the retainer 88. The elastic member 89 urges the valve body 91 in a direction (upward) for closing the fluid inflow port 83. The elastic member 89 is a coil spring, and the lower support protrusion 94 of the valve body 91 is inserted inside the elastic member 89. In the compressed state, the elastic member 89 has an upper end in contact with the lower surface of the main body 92 of the valve body 91 and a lower end in contact with the upper surface of the bottom 88 a of the retainer 88. The elastic member 89 urges the valve body 91 movable in the axial direction upward. As a result, the seal portion 92 a of the valve body 91 closes the fluid inflow port 83.
(フランジユニット)
 図2に示すように、燃料供給装置1は、燃料タンク2の底壁2bに取り付けられるフランジユニット4を備えている。フランジユニット4は、燃料ポンプ3の下側に配置されている。フランジユニット4は、耐油性に優れた樹脂等により形成されている。フランジユニット4は、例えばインジェクション成型等により形成される。
 フランジユニット4は、略円盤形状のフランジ部12と、フランジ部12の上側に形成された係合部15と、フランジ部12の下側に形成されたユニット本体10と、により構成されている。
(Flange unit)
As shown in FIG. 2, the fuel supply device 1 includes a flange unit 4 attached to the bottom wall 2 b of the fuel tank 2. The flange unit 4 is disposed below the fuel pump 3. The flange unit 4 is formed of a resin having excellent oil resistance. The flange unit 4 is formed by, for example, injection molding or the like.
The flange unit 4 includes a substantially disc-shaped flange portion 12, an engagement portion 15 formed on the upper side of the flange portion 12, and a unit main body 10 formed on the lower side of the flange portion 12.
 フランジ部12には、燃料タンク2の開口部2aに対応する部位に、環状部13が形成されている。燃料タンク2にフランジ部12を取付けることにより、フランジ部12よりも下側が燃料タンク2の外部に露出した状態になる。また、フランジ部12よりも上側が燃料タンク2内の燃料に浸漬された状態になる。なお、フランジ部12と燃料タンク2の底壁2bとの間には、ゴム等からなるシール部材(不図示)が設けられている。これにより、燃料供給装置1と燃料タンク2との間のシール性が確実に確保されている。 An annular portion 13 is formed in the flange portion 12 at a portion corresponding to the opening 2 a of the fuel tank 2. By attaching the flange portion 12 to the fuel tank 2, the lower side of the flange portion 12 is exposed to the outside of the fuel tank 2. Further, the upper side of the flange portion 12 is immersed in the fuel in the fuel tank 2. A seal member (not shown) made of rubber or the like is provided between the flange portion 12 and the bottom wall 2b of the fuel tank 2. Thereby, the sealing property between the fuel supply apparatus 1 and the fuel tank 2 is ensured reliably.
 フランジ部12の上側には、アッパーカップ25に形成された係合凸部25aと係合する係合部15が設けられている。係合部15は、軸方向から見て略円形状に形成されている。図1に示すように、係合部15の周縁には、上側に突出する係合片15aが複数個所(本実施形態では4箇所)形成されている。係合片15aは、先端側が拡径する方向に向かって弾性変形可能に形成されている。また、係合片15aには、アッパーカップ25に形成されている係合凸部25aと係合可能な係合孔が形成されている。アッパーカップ25に係合部15をスナップフィットさせることにより、フランジユニット4とアッパーカップ25とを固定している。 On the upper side of the flange portion 12, an engaging portion 15 that engages with an engaging convex portion 25a formed on the upper cup 25 is provided. The engaging portion 15 is formed in a substantially circular shape when viewed from the axial direction. As shown in FIG. 1, a plurality of engaging pieces 15 a protruding upward are formed on the periphery of the engaging portion 15 (four in this embodiment). The engagement piece 15a is formed so as to be elastically deformable in the direction in which the distal end side expands in diameter. Further, the engagement piece 15a is formed with an engagement hole that can be engaged with the engagement convex portion 25a formed in the upper cup 25. The flange unit 4 and the upper cup 25 are fixed by snap-fitting the engaging portion 15 to the upper cup 25.
 図2に示すように、ユニット本体10は有底筒状に形成されている。ユニット本体10は、燃料ポンプ3の下側から燃料ポンプ3に外挿される。ユニット本体10の内周面10aは、燃料ポンプ3の外径よりも大径となるように設定されている。ユニット本体10の内周面10aと燃料ポンプ3の外周面との間には、クリアランスが形成される。このクリアランスにより、プレッシャレギュレータ76とリザーバ部11とを連通する、燃料のリターン流路が形成される。 As shown in FIG. 2, the unit main body 10 is formed in a bottomed cylindrical shape. The unit main body 10 is extrapolated to the fuel pump 3 from the lower side of the fuel pump 3. The inner peripheral surface 10 a of the unit body 10 is set to have a larger diameter than the outer diameter of the fuel pump 3. A clearance is formed between the inner peripheral surface 10 a of the unit body 10 and the outer peripheral surface of the fuel pump 3. This clearance forms a fuel return flow path that allows the pressure regulator 76 and the reservoir portion 11 to communicate with each other.
 図1に示すように、ユニット本体10には、コネクタ14が一体的に成形されている。コネクタ14は、有底筒状に形成されている。コネクタ14は、径方向外側に開口するコネクタ嵌合面を有している。
 コネクタ14の内部にはコネクタ端子34が設けられている。コネクタ14の一端側34aは、コネクタ14の内側に突出している。コネクタ端子34の一端側34aには、外部電源(不図示)に電気的に接続された外部コネクタ(不図示)が嵌着される。
 また、コネクタ端子34の他端側34bは、フランジ部12の上側に突出している。コネクタ端子34の他端側34bにはハーネス6が接続され、外部電源からモータ部30および液面検出器60に対して電力が供給される。
As shown in FIG. 1, a connector 14 is formed integrally with the unit body 10. The connector 14 is formed in a bottomed cylindrical shape. The connector 14 has a connector fitting surface that opens radially outward.
A connector terminal 34 is provided inside the connector 14. One end side 34 a of the connector 14 protrudes inside the connector 14. An external connector (not shown) electrically connected to an external power source (not shown) is fitted to one end side 34a of the connector terminal 34.
The other end side 34 b of the connector terminal 34 protrudes above the flange portion 12. The harness 6 is connected to the other end side 34 b of the connector terminal 34, and power is supplied from the external power source to the motor unit 30 and the liquid level detector 60.
 図2に示すように、ユニット本体10の内側には、ユニット本体10の内周面10aと底面10bとによりスペースが形成されている。このスペースは、燃料が貯留されるリザーバ部11として機能している。また、ユニット本体10の外側には、リザーバ部11と連通し、燃料の流路となる不図示のフィルタ導入管、フィルタ排出管51および燃料取出管57が形成されている。 As shown in FIG. 2, a space is formed inside the unit body 10 by an inner peripheral surface 10a and a bottom surface 10b of the unit body 10. This space functions as a reservoir portion 11 in which fuel is stored. Further, on the outside of the unit main body 10, a filter introduction pipe, a filter discharge pipe 51, and a fuel extraction pipe 57 (not shown) that are in communication with the reservoir portion 11 and serve as a fuel flow path are formed.
 フィルタ導入管およびフィルタ排出管51は、燃料供給装置1とは別に設けられた不図示のフィルタユニットと連通している。リザーバ部11内に貯留された燃料は、フィルタ導入管を通じて、フィルタユニットに導入され、濾過された後に排出される。
 その後、燃料ポンプ3は、フィルタ排出管51を通じて、ポンプ部40の燃料吸入口41から燃料を汲み上げる。そして、燃料は、ポンプケース45内を通過してモータ部30の上側に圧送され、燃料流路部52を通った後、燃料取出管57を通って内燃機関(不図示)に搬送される。
The filter introduction pipe and the filter discharge pipe 51 communicate with a filter unit (not shown) provided separately from the fuel supply device 1. The fuel stored in the reservoir 11 is introduced into the filter unit through the filter introduction pipe, filtered, and then discharged.
Thereafter, the fuel pump 3 pumps fuel from the fuel suction port 41 of the pump unit 40 through the filter discharge pipe 51. The fuel passes through the pump case 45 and is pumped to the upper side of the motor unit 30, passes through the fuel flow path unit 52, and then is transported to the internal combustion engine (not shown) through the fuel extraction pipe 57.
(プレッシャレギュレータの作用)
 以下、本実施形態のプレッシャレギュレータ76の作用について、図3および図4を用いて説明する。
 図4は、プレッシャレギュレータの説明図であり、図2のA部の拡大図である。図4では、弁体91が流体流入口83を開放した状態を示している。
 燃料タンク2内の燃料が燃料ポンプ3の駆動によって燃料流路部52を介して内燃機関へ圧送される際に、燃料流路部52内に余剰な燃圧が発生すると、小径流路85を通じて、流体流入口83内の燃料も圧力が上昇する。すると、流体流入口83内の燃料は、弁体91を弾性部材89の付勢力に抗する方向(下方)に向かって押圧する。流体流入口83内の燃圧が所定値を超えると、弁体91は下方に移動し、段差面82aとシール部92aとの間に隙間が形成される。この際、弁体91は、移動規制構造90により、軸方向に交差する方向の移動が規制された状態で軸方向に沿って下方に移動する。
(Operation of pressure regulator)
Hereinafter, the operation of the pressure regulator 76 of the present embodiment will be described with reference to FIGS. 3 and 4.
FIG. 4 is an explanatory diagram of the pressure regulator, and is an enlarged view of a portion A in FIG. FIG. 4 shows a state in which the valve body 91 opens the fluid inlet 83.
When excessive fuel pressure is generated in the fuel flow path 52 when the fuel in the fuel tank 2 is pumped to the internal combustion engine via the fuel flow path 52 by driving the fuel pump 3, The pressure in the fuel in the fluid inlet 83 also increases. Then, the fuel in the fluid inflow port 83 presses the valve body 91 in a direction (downward) against the urging force of the elastic member 89. When the fuel pressure in the fluid inflow port 83 exceeds a predetermined value, the valve body 91 moves downward, and a gap is formed between the step surface 82a and the seal portion 92a. At this time, the valve body 91 moves downward along the axial direction in a state where movement in the direction intersecting the axial direction is restricted by the movement restricting structure 90.
 段差面82aとシール部92aとの間に隙間が形成されると、流体流入口83内の燃料は矢印Fに沿って流れ、シール部92aと段差面82aとの隙間を通過する。シール部92aと段差面82aとの隙間を通過した燃料は、流体流出口84に向かう流れF1と、溝86に向かう流れF2と、に分流する。矢印F1に沿って流れる燃料は、本体流路部82を通って流体流出口84に達し、リザーバ部11へ戻される。そして、流体流入口83内の燃圧が低下して所定値を下回ると、弁体91は弾性部材89の付勢力により上方に移動し、流体流入口83を閉塞する。以上の動作が繰り返されることにより、燃料流路部52内の燃圧が所定値に保持される。 When a gap is formed between the step surface 82a and the seal portion 92a, the fuel in the fluid inflow port 83 flows along the arrow F and passes through the gap between the seal portion 92a and the step surface 82a. The fuel that has passed through the gap between the seal portion 92a and the stepped surface 82a is divided into a flow F1 toward the fluid outlet 84 and a flow F2 toward the groove 86. The fuel flowing along the arrow F <b> 1 reaches the fluid outlet 84 through the main body flow path portion 82 and is returned to the reservoir portion 11. When the fuel pressure in the fluid inlet 83 decreases and falls below a predetermined value, the valve body 91 moves upward by the urging force of the elastic member 89 and closes the fluid inlet 83. By repeating the above operation, the fuel pressure in the fuel flow path 52 is maintained at a predetermined value.
 このように、本実施形態のプレッシャレギュレータ76は、ケース体77と、ケース体77に形成され、流体流入口83、流体流出口84および本体流路部82を有する流路部79と、ケース体77内に設けられ、軸方向に移動することにより流体流入口83を開閉可能な弁体91と、流体流入口83を閉塞する方向に向かって弁体91を付勢する弾性部材89と、を備えている。弁体91は、流体流入口83を閉塞するシール部92aと、シール部92aが設けられた本体部92と、を備えている。プレッシャレギュレータ76は、弁体91の本体部92の軸方向に交差する方向に対する移動を規制する移動規制構造90を備えている。
 この構成によれば、弁体91の本体部92は移動規制構造90により軸方向に交差する方向に対する移動が規制されているため、弁体91とケース体77との隙間を燃料が通過する際に、弁体91の横揺れを抑制できる。これにより、弁体91が横揺れによってケース体77に対して衝突することを抑制できるため、衝突音の発生が抑制される。したがって、異音の発生が抑制されたプレッシャレギュレータ76が得られる。
As described above, the pressure regulator 76 of the present embodiment includes the case body 77, the flow path portion 79 formed in the case body 77, including the fluid inflow port 83, the fluid outflow port 84, and the main body flow path portion 82, and the case body. 77, a valve body 91 that can open and close the fluid inlet 83 by moving in the axial direction, and an elastic member 89 that urges the valve body 91 in a direction to close the fluid inlet 83. I have. The valve body 91 includes a seal portion 92a that closes the fluid inlet 83, and a main body portion 92 provided with the seal portion 92a. The pressure regulator 76 includes a movement restricting structure 90 that restricts the movement of the main body 92 of the valve body 91 in the direction intersecting the axial direction.
According to this configuration, the movement of the main body 92 of the valve body 91 in the direction intersecting the axial direction is restricted by the movement restricting structure 90, so that the fuel passes through the gap between the valve body 91 and the case body 77. Moreover, the rolling of the valve body 91 can be suppressed. Thereby, since it can suppress that the valve body 91 collides with the case body 77 by rolling, generation | occurrence | production of a collision sound is suppressed. Therefore, the pressure regulator 76 in which the generation of abnormal noise is suppressed is obtained.
 また、移動規制構造90は、弁体91の軸方向に沿って突出する上側支持突起93と、ケース体77のハウジング貫通孔81bと、を備えている。さらに、移動規制構造90は、弁体91の軸方向に沿って突出する下側支持突起94と、ケース体77のリテーナ貫通孔88cと、を備えている。このため、簡素な構造により弁体91の横揺れを確実に抑制した状態で、弁体91により流体流入口83を開閉することができる。したがって、異音の発生が確実に抑制された安価なプレッシャレギュレータ76が得られる。 The movement restricting structure 90 includes an upper support protrusion 93 that protrudes along the axial direction of the valve body 91, and a housing through hole 81 b of the case body 77. Further, the movement restricting structure 90 includes a lower support protrusion 94 that protrudes along the axial direction of the valve body 91, and a retainer through hole 88 c of the case body 77. For this reason, the fluid inflow port 83 can be opened and closed by the valve body 91 in a state where the rolling of the valve body 91 is reliably suppressed by a simple structure. Therefore, an inexpensive pressure regulator 76 in which the occurrence of abnormal noise is reliably suppressed can be obtained.
 また、ハウジング81に嵌合されるリテーナ88により下側支持突起94を支持しているため、ハウジング81の摩耗を抑制できる。すなわち、経年劣化するリテーナ88のみを交換するだけでプレッシャレギュレータ76を延命化できる。 Further, since the lower support protrusion 94 is supported by the retainer 88 fitted to the housing 81, the wear of the housing 81 can be suppressed. That is, the life of the pressure regulator 76 can be extended only by replacing only the retainer 88 that deteriorates over time.
 また、弁体91のシール部92aは、流体流入口83と本体流路部82との段差面82aに当接可能に形成され、シール部92aには、緩衝部材95が配置されている。
 この構成によれば、シール部92aに緩衝部材95が配置されているため、弁体91の振動による弁体91と段差面82aとの衝突が緩衝部材95により吸収され、衝突音の発生が抑制される。
 さらに、弁体91が段差面82aに押圧された状態では、緩衝部材95が接圧によって段差面82aを覆うように弾性変形する。これにより、段差面82aの加工精度を高めることなく、弁体91により流体流入口83を閉塞することができる。したがって、ケース体77(ハウジング81)を精密加工が困難で安価な樹脂材料により形成することが可能となるとともに、簡易な加工工程により製造できるため、低コストなプレッシャレギュレータ76とすることができる。
Further, the seal portion 92a of the valve body 91 is formed so as to be able to come into contact with a step surface 82a between the fluid inlet 83 and the main body flow passage portion 82, and a buffer member 95 is disposed on the seal portion 92a.
According to this configuration, since the buffer member 95 is disposed in the seal portion 92a, the collision between the valve body 91 and the stepped surface 82a due to the vibration of the valve body 91 is absorbed by the buffer member 95, and the generation of the collision noise is suppressed. Is done.
Furthermore, in a state where the valve body 91 is pressed against the step surface 82a, the buffer member 95 is elastically deformed so as to cover the step surface 82a by contact pressure. Thereby, the fluid inflow port 83 can be closed by the valve body 91 without increasing the processing accuracy of the stepped surface 82a. Therefore, the case body 77 (housing 81) can be formed of an inexpensive resin material that is difficult to precisely process, and can be manufactured by a simple processing process, so that the pressure regulator 76 can be manufactured at a low cost.
 また、段差面82aの弁体91の当接面82bよりも外周側には、環状の溝86が形成されている。
 図4に示すように、矢印Fに沿って流れ、シール部92a(緩衝部材95)と段差面82aとの隙間を通過する燃料は、流体流出口84に向かう流れF1と、溝86に向かう流れF2と、に分流する。このため、流体流入口83に位置する燃料に大きな圧力が作用した場合でも、シール部92aと段差面82aとの隙間を通過した燃料の一部を矢印F2に沿うように溝86に逃がすことができる。これにより、流速の急激な変化を緩衝することができ、流体音を抑制することができる。したがって、異音の発生が抑制されたプレッシャレギュレータ76が得られる。
An annular groove 86 is formed on the outer peripheral side of the contact surface 82b of the valve body 91 of the step surface 82a.
As shown in FIG. 4, the fuel that flows along the arrow F and passes through the gap between the seal portion 92 a (buffer member 95) and the step surface 82 a flows into the fluid outlet 84 and flows toward the groove 86. Divide into F2. For this reason, even when a large pressure is applied to the fuel located at the fluid inflow port 83, a part of the fuel that has passed through the gap between the seal portion 92a and the stepped surface 82a can be released to the groove 86 along the arrow F2. it can. Thereby, the rapid change of the flow velocity can be buffered, and the fluid sound can be suppressed. Therefore, the pressure regulator 76 in which the generation of abnormal noise is suppressed is obtained.
 本実施形態の燃料供給装置1は、プレッシャレギュレータ76と、燃料ポンプ3と、外装体5と、を備えている。
 この構成によれば、プレッシャレギュレータ76を備えているため、異音の発生が抑制された燃料供給装置1が得られる。
The fuel supply device 1 according to the present embodiment includes a pressure regulator 76, a fuel pump 3, and an exterior body 5.
According to this configuration, since the pressure regulator 76 is provided, the fuel supply device 1 in which the generation of abnormal noise is suppressed can be obtained.
 また、外装体5(アッパーカップ25)とケース体77(ハウジング81)とが、樹脂材料により一体形成されているため、部品点数を削減できる。また、従来の燃料供給装置のように、プレッシャレギュレータを外装体に圧入固定する必要がなくなり、燃料供給装置1の製造時における作業工程を削減できる。 Further, since the exterior body 5 (upper cup 25) and the case body 77 (housing 81) are integrally formed of a resin material, the number of parts can be reduced. In addition, unlike the conventional fuel supply device, it is not necessary to press-fit and fix the pressure regulator to the exterior body, and the work process at the time of manufacturing the fuel supply device 1 can be reduced.
 なお、本実施形態では、プレッシャレギュレータ76のハウジング81がアッパーカップ25と一体形成されていたが、これに限定されるものではない。
 図5は、第1実施形態の変形例の燃料供給装置の説明図であり、図1のII-II線に相当する部分における断面図である。
In the present embodiment, the housing 81 of the pressure regulator 76 is integrally formed with the upper cup 25, but the present invention is not limited to this.
FIG. 5 is an explanatory diagram of a fuel supply apparatus according to a modification of the first embodiment, and is a cross-sectional view taken along the line II-II in FIG.
 図5に示すように、プレッシャレギュレータ76は、Oリング78を挟んだ状態でアッパーカップ25に圧入されている。すなわち、プレッシャレギュレータ76のハウジング81は、アッパーカップ25と別体で形成されている。ハウジング81は、アッパーカップ25と同じ材料により形成されてもよいし、異なる材料で形成されてもよい。 As shown in FIG. 5, the pressure regulator 76 is press-fitted into the upper cup 25 with an O-ring 78 interposed therebetween. That is, the housing 81 of the pressure regulator 76 is formed separately from the upper cup 25. The housing 81 may be made of the same material as the upper cup 25 or may be made of a different material.
 なお、移動規制構造90は、上述の形態に限定されるものではない。以下、移動規制構造の変形例について説明する。
(移動規制構造の第1変形例)
 図6は、移動規制構造の第1変形例の説明図であり、図2のA部に相当する部分の拡大図である。図7は、図6のVII-VII線における断面図である。なお、以下の変形例において、前述の第1実施形態と同一態様には、同一符号を付して説明を省略する。
The movement restricting structure 90 is not limited to the above-described form. Hereinafter, modified examples of the movement restriction structure will be described.
(First Modification of Movement Restricting Structure)
FIG. 6 is an explanatory view of a first modification of the movement restricting structure, and is an enlarged view of a portion corresponding to part A of FIG. 7 is a cross-sectional view taken along line VII-VII in FIG. In the following modified example, the same reference numerals are given to the same aspects as those in the first embodiment, and the description thereof is omitted.
 図6および図7に示すように、弁体191は、円盤状の本体部192と、本体部192の側面(外周面)に形成された支持側面部197と、を有する。本体部192の外径は、本体流路部82の内径よりも僅かに小さく設定されている。これにより、弁体191は、本体流路部82の内壁に沿って、軸方向にスライド移動自在となる。そして、支持側面部197は、本体流路部82の内壁とともに、弁体191の本体部192の軸方向に交差する方向に対する移動を規制する移動規制構造190を構成している。
 また、本体部192の外周部には、複数(本変形例では5個)の円弧状の切欠き部192bが周方向に沿って等間隔に形成されている。切欠き部192bにより、本体流路部82内の流体は、本体部192を挟んだ上側から下側へ通過可能となる。
As shown in FIGS. 6 and 7, the valve body 191 includes a disc-shaped main body 192 and a supporting side surface 197 formed on the side surface (outer peripheral surface) of the main body 192. The outer diameter of the main body portion 192 is set slightly smaller than the inner diameter of the main body flow path portion 82. Thus, the valve body 191 is slidable in the axial direction along the inner wall of the main body flow path portion 82. The support side surface portion 197 and the inner wall of the main body flow path portion 82 constitute a movement restricting structure 190 that restricts the movement of the valve body 191 in the direction intersecting the axial direction of the main body portion 192.
In addition, a plurality (five in this modification) of arc-shaped notches 192b are formed at equal intervals along the circumferential direction on the outer peripheral portion of the main body 192. The notch 192b allows the fluid in the main body flow path portion 82 to pass from the upper side to the lower side across the main body portion 192.
 このように、本変形例によれば、移動規制構造190は、弁体191の側面に形成された支持側面部197と、本体流路部82と、を備えているため、簡素な構造により弁体191の横揺れを確実に抑制した状態で、弁体191により流体流入口83を開閉することができる。したがって、異音の発生が確実に抑制された安価なプレッシャレギュレータ176が得られる。 As described above, according to the present modification, the movement restricting structure 190 includes the support side surface portion 197 formed on the side surface of the valve body 191 and the main body flow path portion 82. The fluid inlet 83 can be opened and closed by the valve body 191 in a state in which the roll of the body 191 is reliably suppressed. Therefore, an inexpensive pressure regulator 176 in which the occurrence of abnormal noise is reliably suppressed can be obtained.
(移動規制構造の第2変形例)
 図8は、移動規制構造の第2変形例の説明図であり、図2のA部に相当する部分の拡大図である。
 図8に示すように、プレッシャレギュレータ276は、ケース体277と、ケース体277に形成された流路部79と、を有する。ケース体277は、ハウジング281と、台座部287と、を備えている。ハウジング281は、有底筒状に形成されている。ハウジング281の内側は、流路部79の本体流路部82とされている。ハウジング281の底壁部281aには、底壁部281aを軸方向に貫通する流体流出口84が形成されている。流体流出口84は、本体流路部82と同軸に形成されている。台座部287は、円筒状に形成されている。台座部287は、その上部がハウジング281から突出した状態で、ハウジング281の上端開口内に圧入されている。台座部287の内側は、流体流入口83とされている。
(Second modification of the movement restriction structure)
FIG. 8 is an explanatory diagram of a second modification of the movement restricting structure, and is an enlarged view of a portion corresponding to part A of FIG.
As shown in FIG. 8, the pressure regulator 276 includes a case body 277 and a flow path portion 79 formed in the case body 277. The case body 277 includes a housing 281 and a pedestal portion 287. The housing 281 is formed in a bottomed cylindrical shape. The inside of the housing 281 is a main body flow channel portion 82 of the flow channel portion 79. A fluid outlet 84 is formed in the bottom wall portion 281a of the housing 281 so as to penetrate the bottom wall portion 281a in the axial direction. The fluid outlet 84 is formed coaxially with the main body flow path portion 82. The pedestal portion 287 is formed in a cylindrical shape. The pedestal portion 287 is press-fitted into the upper end opening of the housing 281 with the upper portion protruding from the housing 281. The inside of the pedestal portion 287 is a fluid inlet 83.
 また、プレッシャレギュレータ276は、流体流入口83を開閉する弁体291と、弁体291と弾性部材89との間に介在するガイド部材296と、を有する。弁体291は、球状の本体部292と、本体部292に取り付けられた円盤状の支持板293と、支持板293の側面(外周面)に形成された支持側面部297と、を有する。本体部292の外径は、流体流入口83の内径よりも大きく、かつ本体流路部82の内径よりも小さく設定されている。支持板293の外径は、本体流路部82の内径よりも僅かに小さく設定されている。これにより弁体291は、本体流路部82の内壁に沿って、軸方向にスライド移動自在となる。そして、支持側面部297は、本体流路部82の内壁とともに、弁体291の本体部292の軸方向に交差する方向に対する移動を規制する移動規制構造290として機能している。また、支持板293の外周部には、図示しない複数の切欠き部が周方向に並んで形成されている。この切欠き部により、本体流路部82内の流体は、支持板293を挟んだ上側から下側へ通過可能となる。この弁体291は、その下方に配置されたガイド部材296を介して弾性部材89により上方に向かって付勢されている。これにより弁体291の本体部292は、流体流入口83の下端開口縁83aに当接し、流体流入口83を閉塞している。 The pressure regulator 276 includes a valve body 291 that opens and closes the fluid inflow port 83, and a guide member 296 that is interposed between the valve body 291 and the elastic member 89. The valve body 291 includes a spherical main body portion 292, a disk-shaped support plate 293 attached to the main body portion 292, and a support side surface portion 297 formed on the side surface (outer peripheral surface) of the support plate 293. The outer diameter of the main body 292 is set to be larger than the inner diameter of the fluid inflow port 83 and smaller than the inner diameter of the main body flow path portion 82. The outer diameter of the support plate 293 is set slightly smaller than the inner diameter of the main body flow path portion 82. Thus, the valve body 291 is slidable in the axial direction along the inner wall of the main body flow path portion 82. The support side surface portion 297 functions as a movement restricting structure 290 that restricts the movement of the valve body 291 in the direction intersecting the axial direction of the main body portion 292 together with the inner wall of the main body flow path portion 82. In addition, a plurality of notch portions (not shown) are formed side by side in the circumferential direction on the outer peripheral portion of the support plate 293. By this cutout portion, the fluid in the main body flow path portion 82 can pass from the upper side to the lower side across the support plate 293. The valve body 291 is urged upward by an elastic member 89 via a guide member 296 disposed below the valve body 291. Accordingly, the main body 292 of the valve body 291 abuts on the lower end opening edge 83a of the fluid inlet 83 and closes the fluid inlet 83.
 上述したプレッシャレギュレータ276は、ハウジング281の上端縁と、台座部287の外周面と、の段差部において、Oリング78を挟んだ状態でアッパーカップ25に圧入されている。 The pressure regulator 276 described above is press-fitted into the upper cup 25 with the O-ring 78 interposed between the upper end edge of the housing 281 and the outer peripheral surface of the base portion 287.
 なお、図8に示すプレッシャレギュレータ276は、アッパーカップ25に圧入されているが、これに限定されず、プレッシャレギュレータ276は、アッパーカップ25と一体に形成されてもよい。具体的に、ハウジング281と台座部287とが、アッパーカップ25と一体形成されている。このとき、ハウジング281の底壁部281aは、別体で設ける。これにより、本体流路部82内に、弁体291、ガイド部材296および弾性部材89を配設することが可能となる。 Although the pressure regulator 276 shown in FIG. 8 is press-fitted into the upper cup 25, the pressure regulator 276 is not limited to this, and the pressure regulator 276 may be formed integrally with the upper cup 25. Specifically, the housing 281 and the pedestal 287 are integrally formed with the upper cup 25. At this time, the bottom wall portion 281a of the housing 281 is provided separately. As a result, the valve body 291, the guide member 296, and the elastic member 89 can be disposed in the main body flow path portion 82.
[第2実施形態]
 次に、第2実施形態について、図9および図10を用いて説明する。第1実施形態では、燃料タンク2の底部に取り付ける、いわゆる下付けタイプの燃料供給装置1に本発明を適用した場合について説明した。これに対して第2実施形態では、燃料タンク2の上部に取り付ける、いわゆる上付きタイプの燃料供給装置1に本発明を適用した場合について説明する点で、第1実施形態とは異なる。なお、第1実施形態と同様の構成部分については、詳細な説明を省略する。
[Second Embodiment]
Next, 2nd Embodiment is described using FIG. 9 and FIG. In the first embodiment, the case in which the present invention is applied to the so-called under-installed fuel supply device 1 attached to the bottom of the fuel tank 2 has been described. On the other hand, the second embodiment differs from the first embodiment in that the case where the present invention is applied to a so-called superscript type fuel supply apparatus 1 attached to the upper part of the fuel tank 2 will be described. Note that detailed description of the same components as those in the first embodiment is omitted.
 図9は、第2実施形態の燃料供給装置の斜視図である。図10は、図9のX-X線における断面図である。
 図8および図9に示すように、燃料供給装置101は、燃料タンク2の上壁2cに形成されている開口部2aに挿入され、燃料タンク2の上壁2cに取り付けられている。燃料供給装置101は、燃料タンク2内に配置される燃料ポンプ3と、燃料ポンプ3を内包する外装体5と、を備えている。外装体5は、燃料ポンプ3に外挿されている。外装体5は、燃料ポンプ3を支持するロワーカップ100と、燃料タンク2の上壁2cに取り付けられるフランジユニット4と、を備えている。
FIG. 9 is a perspective view of the fuel supply device of the second embodiment. 10 is a cross-sectional view taken along line XX of FIG.
As shown in FIGS. 8 and 9, the fuel supply device 101 is inserted into an opening 2 a formed in the upper wall 2 c of the fuel tank 2 and attached to the upper wall 2 c of the fuel tank 2. The fuel supply device 101 includes a fuel pump 3 disposed in the fuel tank 2 and an exterior body 5 that contains the fuel pump 3. The exterior body 5 is extrapolated to the fuel pump 3. The exterior body 5 includes a lower cup 100 that supports the fuel pump 3, and a flange unit 4 that is attached to the upper wall 2 c of the fuel tank 2.
(フランジユニット)
 燃料供給装置101は、燃料ポンプ3の上側に配置されている。燃料供給装置101は、燃料タンク2の上壁2cに取り付けられるフランジユニット4を備えている。
 フランジ部12には、燃料タンク2の開口部2aに対応する部位に、環状部13が形成されている。燃料タンク2にフランジ部12を取付けることにより、フランジ部12よりも上側が燃料タンク2の外部に露出した状態になる。また、フランジ部12よりも下側が燃料タンク2内の燃料に浸漬された状態になる。
(Flange unit)
The fuel supply device 101 is disposed on the upper side of the fuel pump 3. The fuel supply device 101 includes a flange unit 4 attached to the upper wall 2c of the fuel tank 2.
An annular portion 13 is formed in the flange portion 12 at a portion corresponding to the opening 2 a of the fuel tank 2. By attaching the flange portion 12 to the fuel tank 2, the upper side of the flange portion 12 is exposed to the outside of the fuel tank 2. Further, the lower side of the flange portion 12 is immersed in the fuel in the fuel tank 2.
 フランジ部12の下側には、ロワーカップ100に形成された後述する係合凸部25aと係合する係合部15が設けられている。係合部15の周縁には、下側に突出する係合片15aが複数個所(本実施形態では4箇所)形成されている。ロワーカップ100に係合部15をスナップフィットさせて、フランジユニット4とロワーカップ100とを固定している。 An engaging portion 15 that engages with an engaging convex portion 25a described later formed on the lower cup 100 is provided below the flange portion 12. A plurality of engaging pieces 15 a projecting downward (four in the present embodiment) are formed on the periphery of the engaging portion 15. The flange 15 and the lower cup 100 are fixed by snap-fitting the engaging portion 15 to the lower cup 100.
 ユニット本体10は有底筒状に形成されている。ユニット本体10は、燃料ポンプ3の上側から燃料ポンプ3に外挿されている。ユニット本体10の内側には、燃料流路部52が形成されている。燃料流路部52は、プレッシャレギュレータ76、チェックバルブ74および燃料取出管57と連通している。 The unit body 10 is formed in a bottomed cylindrical shape. The unit body 10 is externally inserted into the fuel pump 3 from above the fuel pump 3. A fuel flow path 52 is formed inside the unit body 10. The fuel flow passage 52 communicates with the pressure regulator 76, the check valve 74, and the fuel take-out pipe 57.
(ロワーカップ)
 ロワーカップ100は、耐油性に優れた樹脂材料により有底筒状に形成されている。ロワーカップ100は、例えばインジェクション成型等により形成される。ロワーカップ100は、燃料ポンプ3の下側に外挿されている。
 ロワーカップ100の径方向外側には、液面検出器60の取付部61が形成されている。取付部61は、径方向外側に向かって延出形成された板状に形成されている。取付部61は、アッパーカップ25を形成する際、同時にインジェクションにより成型される。
(Lower cup)
The lower cup 100 is formed in a bottomed cylindrical shape with a resin material having excellent oil resistance. The lower cup 100 is formed by, for example, injection molding or the like. The lower cup 100 is extrapolated to the lower side of the fuel pump 3.
A mounting portion 61 of the liquid level detector 60 is formed on the radially outer side of the lower cup 100. The attachment portion 61 is formed in a plate shape that extends outward in the radial direction. When the upper cup 25 is formed, the mounting portion 61 is molded by injection at the same time.
 また、ロワーカップ100の下側には、フィルタユニット110が取り付けられている。フィルタユニット110は、フィルタ排出管51を介して、燃料吸入口41と連通している。燃料タンク2内の燃料は、フィルタユニット110およびフィルタ排出管51を介して、ポンプ部40の燃料吸入口41に導入される。そして、燃料は、ポンプケース45内を通過してモータ部30の上側に圧送され、燃料流路部52を通った後、燃料取出管57を通って内燃機関(不図示)に搬送される。 Also, a filter unit 110 is attached to the lower side of the lower cup 100. The filter unit 110 communicates with the fuel inlet 41 via the filter discharge pipe 51. The fuel in the fuel tank 2 is introduced into the fuel inlet 41 of the pump unit 40 via the filter unit 110 and the filter discharge pipe 51. The fuel passes through the pump case 45 and is pumped to the upper side of the motor unit 30, passes through the fuel flow path unit 52, and then is transported to the internal combustion engine (not shown) through the fuel extraction pipe 57.
 このように、本実施形態によれば、燃料タンク2の上壁2cに取り付けられる、いわゆる上付けタイプの燃料供給装置101に、上述のプレッシャレギュレータ76を適用している。これにより、異音の発生が抑制された上付けタイプの燃料供給装置101が得られる。 Thus, according to the present embodiment, the pressure regulator 76 described above is applied to the so-called top-fitting type fuel supply device 101 attached to the upper wall 2c of the fuel tank 2. As a result, an upper type fuel supply apparatus 101 in which the generation of abnormal noise is suppressed is obtained.
 なお、本発明は、図面を参照して説明した上述の実施形態に限定されるものではなく、その技術的範囲において様々な変形例が考えられる。
 例えば、上述の各実施形態では、プレッシャレギュレータは、車両の燃料タンク内の燃料を燃料ポンプによって内燃機関に圧送する燃料流路部から分岐して配設されるものである場合について説明したが、これに限られるものではなく、種々の油圧回路に適用可能である。
 さらに、上述の実施形態では、調圧対象となる流体が燃料で車両の燃料である場合について説明したが、これに限られるものではなく、水や空気、油圧回路の作動油などにも適用することができる。
The present invention is not limited to the above-described embodiment described with reference to the drawings, and various modifications can be considered within the technical scope thereof.
For example, in each of the above-described embodiments, the case where the pressure regulator is arranged to be branched from the fuel flow path portion that pumps the fuel in the fuel tank of the vehicle to the internal combustion engine by the fuel pump is described. The present invention is not limited to this, and can be applied to various hydraulic circuits.
Furthermore, in the above-described embodiment, the case where the fluid to be pressure-regulated is fuel and the fuel of the vehicle has been described. However, the present invention is not limited to this, and is applicable to water, air, hydraulic circuit hydraulic oil, and the like. be able to.
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。 In addition, it is possible to appropriately replace the constituent elements in the above-described embodiments with known constituent elements without departing from the spirit of the present invention.
 上記の圧力制御装置によれば、弁体の本体部は移動規制構造により所定方向に交差する方向に対する移動が規制されているため、弁体とケース本体との隙間を流体が通過する際に、弁体の横揺れを抑制できる。これにより、弁体が横揺れによってケース本体に対して衝突することを抑制できるため、衝突音の発生が抑制される。したがって、異音の発生が抑制された圧力制御装置が得られる。 According to the above pressure control device, the movement of the main body portion of the valve body in the direction intersecting the predetermined direction is restricted by the movement restriction structure, so when the fluid passes through the gap between the valve body and the case main body, The rolling of the valve body can be suppressed. Thereby, since it can suppress that a valve body collides with a case main body by rolling, generation | occurrence | production of a collision sound is suppressed. Therefore, a pressure control device in which the generation of abnormal noise is suppressed can be obtained.
 1 燃料供給装置
 2 燃料タンク
 3 燃料ポンプ
 5 外装体
 76,176,276 プレッシャレギュレータ(圧力制御装置)
 77 ケース体
 79 流路部
 82 本体流路部
 82a 段差面
 82b 当接面
 83 流体流入口
 84 流体流出口
 86 溝
 90,190,290 移動規制構造
 91,191,291 弁体
 92a シール部
 93 上側支持突起(支持突起)
 94 下側支持突起(支持突起)
 95 緩衝部材
 197,297 支持側面部
DESCRIPTION OF SYMBOLS 1 Fuel supply apparatus 2 Fuel tank 3 Fuel pump 5 Exterior body 76,176,276 Pressure regulator (pressure control apparatus)
77 Case body 79 Channel portion 82 Main body channel portion 82a Stepped surface 82b Abutting surface 83 Fluid inlet 84 Fluid outlet 86 Groove 90, 190, 290 Movement restricting structure 91, 191, 291 Valve body 92a Seal portion 93 Upper support Protrusion (supporting protrusion)
94 Lower support protrusion (support protrusion)
95 Buffer member 197,297 Support side surface

Claims (8)

  1.  ケース体と、
     前記ケース体に形成され、流体流入口、流体流出口および本体流路部を有する流路部と、
     前記ケース体内に設けられ、前記本体流路部に沿う所定方向に移動することにより前記流体流入口を開閉可能な弁体と、
     前記流体流入口を閉塞する方向に向かって前記弁体を付勢する弾性部材と、
     を備え、
     前記弁体は、
      前記流体流入口を閉塞するシール部と、
      前記シール部が設けられた本体部と、
     を備え、
     前記弁体の前記本体部の前記所定方向に交差する方向に対する移動を規制する移動規制構造を備える圧力制御装置。
    The case body,
    A channel portion formed in the case body and having a fluid inlet, a fluid outlet, and a body channel portion;
    A valve body provided in the case body and capable of opening and closing the fluid inlet by moving in a predetermined direction along the main body flow path portion;
    An elastic member that biases the valve body in a direction to close the fluid inlet;
    With
    The valve body is
    A seal that closes the fluid inlet;
    A main body provided with the seal part;
    With
    A pressure control device comprising a movement restricting structure that restricts movement of the valve body in a direction intersecting the predetermined direction.
  2.  請求項1に記載の圧力制御装置において、
     前記弁体は、前記所定方向に沿って突出する支持突起を備え、
     前記移動規制構造は、前記支持突起と、前記ケース体と、を備える圧力制御装置。
    The pressure control device according to claim 1,
    The valve body includes a support protrusion protruding along the predetermined direction,
    The movement control structure is a pressure control device including the support protrusion and the case body.
  3.  請求項1に記載の圧力制御装置において、
     前記弁体の側面には、支持側面部が形成され、
     前記移動規制構造は、前記支持側面部と、前記本体流路部と、を備える圧力制御装置。
    The pressure control device according to claim 1,
    A support side surface is formed on the side surface of the valve body,
    The said movement control structure is a pressure control apparatus provided with the said support side part and the said main body flow-path part.
  4.  請求項1から請求項3のいずれか1項に記載の圧力制御装置において、
     少なくとも前記流体流入口の径は、前記本体流路部の径よりも小さく設定されており、
     前記シール部は、前記流体流入口と前記本体流路部との段差面に当接可能に形成され、
     前記シール部には、緩衝部材が配置されている圧力制御装置。
    In the pressure control device according to any one of claims 1 to 3,
    At least the diameter of the fluid inlet is set to be smaller than the diameter of the main body flow path section,
    The seal part is formed so as to be able to abut on a step surface between the fluid inlet and the main body channel part,
    A pressure control device in which a buffer member is disposed in the seal portion.
  5.  請求項4に記載の圧力制御装置において、
     前記段差面の前記弁体の当接面よりも外周側には、環状の溝が形成されている圧力制御装置。
    The pressure control device according to claim 4.
    A pressure control device in which an annular groove is formed on an outer peripheral side of the step surface with respect to the contact surface of the valve body.
  6.  請求項1から請求項5のいずれか1項に記載の圧力制御装置において、
     前記ケース体は、樹脂材料により形成されている圧力制御装置。
    In the pressure control device according to any one of claims 1 to 5,
    The case body is a pressure control device formed of a resin material.
  7.  請求項1から請求項6のいずれか1項に記載の圧力制御装置と、
     燃料タンク内に配置され該燃料タンク内の燃料を汲み上げて内燃機関へと圧送する燃料ポンプと、
     前記燃料タンクの壁面に取り付けられ、前記燃料ポンプを支持する外装体と、
     を備え、
     前記外装体に前記圧力制御装置が取り付けられている燃料供給装置。
    The pressure control device according to any one of claims 1 to 6,
    A fuel pump that is disposed in the fuel tank and pumps the fuel in the fuel tank and pumps it to the internal combustion engine;
    An exterior body attached to a wall surface of the fuel tank and supporting the fuel pump;
    With
    A fuel supply device in which the pressure control device is attached to the exterior body.
  8.  請求項7に記載の燃料供給装置において、
     前記外装体と前記ケース体の少なくとも一部とが、樹脂材料により一体形成されている燃料供給装置。
    The fuel supply device according to claim 7, wherein
    A fuel supply device in which the exterior body and at least a part of the case body are integrally formed of a resin material.
PCT/JP2016/065266 2016-05-24 2016-05-24 Pressure control device and fuel supply device WO2017203589A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/065266 WO2017203589A1 (en) 2016-05-24 2016-05-24 Pressure control device and fuel supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/065266 WO2017203589A1 (en) 2016-05-24 2016-05-24 Pressure control device and fuel supply device

Publications (1)

Publication Number Publication Date
WO2017203589A1 true WO2017203589A1 (en) 2017-11-30

Family

ID=60412656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065266 WO2017203589A1 (en) 2016-05-24 2016-05-24 Pressure control device and fuel supply device

Country Status (1)

Country Link
WO (1) WO2017203589A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317377U (en) * 1989-06-28 1991-02-20
JPH0744361U (en) * 1993-10-21 1995-11-14 サイエンス株式会社 Check valve
JP2006077757A (en) * 2004-09-07 2006-03-23 Hyundai Motor Co Ltd Fuel return valve structure for engine
JP2009235942A (en) * 2008-03-26 2009-10-15 Keihin Corp Fuel supply module
JP2011064246A (en) * 2009-09-16 2011-03-31 Denso Corp Regulating valve and fuel injection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317377U (en) * 1989-06-28 1991-02-20
JPH0744361U (en) * 1993-10-21 1995-11-14 サイエンス株式会社 Check valve
JP2006077757A (en) * 2004-09-07 2006-03-23 Hyundai Motor Co Ltd Fuel return valve structure for engine
JP2009235942A (en) * 2008-03-26 2009-10-15 Keihin Corp Fuel supply module
JP2011064246A (en) * 2009-09-16 2011-03-31 Denso Corp Regulating valve and fuel injection device

Similar Documents

Publication Publication Date Title
JP6423747B2 (en) Pressure control device and fuel supply device
JP6391814B2 (en) Blow-off valve for an internal combustion engine compressor
US8939736B2 (en) Fuel pump assembly
JP6593102B2 (en) solenoid valve
US7318422B2 (en) Fluid pump assembly
JP4842361B2 (en) High pressure fuel pump
US10139009B2 (en) Electromagnetic valve
WO2012086634A1 (en) Fuel supply device
CN108474374B (en) Magnetic actuator for a conveying mechanism
JP2014224523A (en) Valve device and high-pressure pump using this valve device
JP5575109B2 (en) Fuel supply device
US20200340462A1 (en) Electromotive oil pump comprising a non-return valve
JPWO2007034767A1 (en) Pressure control device and fuel supply device using the same
WO2017203589A1 (en) Pressure control device and fuel supply device
CN109424484B (en) Pressure regulating device
JP6979798B2 (en) Fuel pump and fuel supply system
JP2012215241A (en) Check valve, hydraulic control device, brake hydraulic control device for vehicle, and method of manufacturing the check valve
WO2018037963A1 (en) Relief valve device and high-pressure pump
JP6373488B2 (en) Valve device
US20030051757A1 (en) Check valve for fuel pump
KR20130111346A (en) Fuel system valve assembly
JP2019015268A (en) Pressure control device and fuel supply device
JP6793792B1 (en) Pump device
JP6558160B2 (en) solenoid valve
JP4200871B2 (en) Piston pump

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903071

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16903071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP