WO2017203454A1 - Method for obtaining an extract of azadirachta indica - Google Patents

Method for obtaining an extract of azadirachta indica Download PDF

Info

Publication number
WO2017203454A1
WO2017203454A1 PCT/IB2017/053073 IB2017053073W WO2017203454A1 WO 2017203454 A1 WO2017203454 A1 WO 2017203454A1 IB 2017053073 W IB2017053073 W IB 2017053073W WO 2017203454 A1 WO2017203454 A1 WO 2017203454A1
Authority
WO
WIPO (PCT)
Prior art keywords
extract
cells
neem
process according
extraction
Prior art date
Application number
PCT/IB2017/053073
Other languages
Spanish (es)
French (fr)
Inventor
Fernando OROZCO SÁNCHEZ
Rodrigo Alberto HOYOS SÁNCHEZ
Anny Daniela MARTÍNEZ MIRA
Juan David LÓPEZ TABORDA
Juan Carlos OVIEDO RAMIREZ
Original Assignee
Universidad Nacional De Colombia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Nacional De Colombia filed Critical Universidad Nacional De Colombia
Publication of WO2017203454A1 publication Critical patent/WO2017203454A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention is in the field of biotechnology, particularly in processes for obtaining extracts from vegetative cells and their agrochemical compositions for pest control. DESCRIPTION OF THE STATE OF THE TECHNIQUE
  • limonoids produced by the Neem tree (Azadirachta indica), native to India and Pakistan. These types of compounds are considered environmentally friendly and have an antialimentary effect on many species of insect pests and on some gram-positive bacteria, nematodes, molluscs and harmful fungi, including species of Aspergilius sp. Aflatoxin producers.
  • biocomposites based on limonoids can be carried out by an extraction process from the semilias of the Neem tree (Azadirachta indica), which does not generate heterogeneity in the content of limonoids due to genetic, climatic and geographical variations (Sidhu , Kumar, & Behl, 2003). That is why we have designed processes to obtain a bioreactor scale from in vitro cultures of cells and hairy roots of Neem (Azadirachta indica).
  • Neem hairy roots to produce limonoids brings with it many difficulties in scaling and industrialization, while the use of suspended cells allows processes to be developed in bioreactors with specific conditions of mixing, aeration, agglomerate formation, and in general, more appropriate conditions for scaling (Prakash & Srivastava, 2007).
  • variables such as the composition of the culture medium, the modification of the nutritional requirements of the cells and the supply of precursors and elicitors have been optimized that improve cell growth and secondary metabolite production (Linden, Haigh, Mirjalili, & Phisaphalong, 2001).
  • azadirachtin is mainly obtained from the seeds of the Neem tree (Azadirachta indica). Azadirachtin has a high aggregate value and is used commercially as an agent for the control of broad-spectrum insect populations. Since its discovery, research has focused on its activity and processes to increase its production (Srivastava & Srivastava, 2013) (Singh & Chaturvedi, 2013). However, azadirachtin is not the only limonoid identified in Neem, other related limonoids such as nimbin.
  • Document IN00148DE2010A describes a procedure for transforming Neem cells and forming hairy roots. The document discloses the growth media and the technical characteristics for the production of azadirachtin.
  • Document CN103493844A illustrates a procedure for the production of Neem mutant cells, the means for the culture of calluses and cells in suspension and the production of azadirachtin, as well as the details of lyophilization and extraction with solvents at laboratory level for analysis. of azadirachtin.
  • the invention relates to a process for obtaining an extract from a culture of Neem cells (Azadirachta indica) in suspension and agrochemical compositions comprising said extract.
  • the process involves the culture of the cells and their subsequent extraction with solvents and / or adsorption resins.
  • the extract obtained comprises active compounds such as azadiractins and Terpenoids, the four can be used to control pests in various crops.
  • FIG. 1 Process diagram for the production and separation of limonoids from Neem cells (based on water vaporization and ethanol extraction).
  • FIG. 2 Diagram of the process for the production and separation of limonoids from Neem cells (based on adsorption resins and extraction with ethanol).
  • FIG. 3 Graph of the kinetics of Neem cell production using the MS medium and the cell propagation medium (modified MS) in a stirred tank bioreactor.
  • FiG 4. Graphs of the kinetics of viable biomass production (live cells ⁇ , non-viable biomass (dead cells), limonoids (extract) and sugar consumption in a Neem cell culture in a stirred tank bioreactor.
  • Stage 1 culture in the cell propagation medium - modified MS.
  • Stage 2 culture in the production medium.
  • FIG. 5 Graph of Concentration vs. Time of the methanolic extract obtained in the Neem cell culture in a stirred tank bioreactor with the limonoid production medium (clear points). Black dots represent the extract in a reference MS medium.
  • FSG 6 Bioactivity test of the extracts obtained in the Neem cell cultures in the Erienmeyer flask and in a stirred tank bioreactor. (6A) Photograph of the affected leaves without the extract. (6B) Graph of the percentage of anti-food index.
  • FSG 7. Graph of the concentration of the ethanol extract obtained from Neem cell cultures using the extraction process 1 (water vaporization + ethanolic extraction) and the extraction process 2 (XAD resins + ethanolic extraction).
  • FIG. 8 Photograph of the trial evaluating the effectiveness of Composition A under laboratory conditions. Choice test on corn discs with larvae of Spodoptera frugiperda or corn worm cogollero.
  • FSG 9. Graph of the effectiveness of Composition A on larvae of Spodoptera frugiperda at the laboratory level. A) Percentage of leaf area affected. B) Amphibious effect.
  • Treatments with equal tetras do not show significant differences according to the F ⁇ sher LSD test.
  • the anti-food effect of the chemical insecticide is equal zero (0) because the larvae die inside the Petri dish, without feeding on the control treatment (leaf disc without insecticide).
  • FIG. 10 Graph of the percentage of affected leaf area of Composition A at field level. The percentages of affected leaf area of the treatments with equal letters do not show significant differences according to Fisher's LSD test.
  • FIG. 11 Photograph of the degree of involvement of the corn leaves by Spodoptera frugiperda in a bioassay in the field with Composition A.
  • a) Commercial chemical insecticide b) Water, c) Base emulsion.
  • d) Extract e) Composition A.
  • the process involves, as an initial stage, the in-vitous culture of Neem leaf or seed cells (Azadirachta indica) in a suitable supplanted culture medium with specific growth conditions, so that the cells grow in shape dedifferentiated and calluses form after several weeks, which for the purposes of the process of the invention is called the propagation stage.
  • the cells obtained can be broken down by agitation to obtain a suspension cell culture, the viability of which can be verified using an exclusion dye (e.g. Evans Blue).
  • the suspension cell culture is subjected to cellular stress under conditions that favor the production of active metabolites, and subsequently these metabolites are extracted by processes involving centrifugation, lysis, biomass filtration and solvent extraction.
  • an extract of Neem (Azadirachta indica) is obtained, which can be used in agrochemical formulations as controlling agents for populations of insect pests.
  • the culture step can be carried out in an appropriate container and employ a culture medium with salts of Murashigue and Skook, MS (commercial composition), supplemented with sucrose, indo acid! butyric acid (IBA) and benzyl amine purine (BAP), and provide adequate conditions of agitation, pH, temperature and absence of light.
  • the culture stage is carried out in a bioreactor with suppressed MS medium, stirring between 100 and 150 rpm, pH between 5.0 and 6.0, temperature between 20 ° C and 35 ° C with absence of light.
  • the cells are exposed to a second culture medium with salts of Murashigue and Skook, MS, characterized by having MSx1.5 suppressed with sucrose, indolbutyric acid. benzilarninopurine and sodium acetate.
  • the conditions of pH, temperature, dissolved oxygen, agitation and absence of light are adapted to favor cell propagation.
  • the propagation stage is carried out in a bioreactor with a supplemented MSx1.5 medium, pH between 5.0 and 7.0, in the dark, stirring between 100 and 120 rpm and with oxygen control between 20 and 40%.
  • the cultures of suspended plant cells obtained in the propagation stage have a water content between 90 and 95%.
  • the culture medium with cells of the propagation stage can be concentrated by centrifugation and the cells subjected to cell lysis by mechanical disruption.
  • the dry biomass obtained is subjected to cell lysis with a cell disruption system and subsequently the extraction is carried out with an organic solvent selected from methane !, ethanol, isopropanol, chloroform and mixtures thereof, depending on the polarity of the extract that is desired obtain.
  • an organic solvent selected from methane !, ethanol, isopropanol, chloroform and mixtures thereof, depending on the polarity of the extract that is desired obtain.
  • the cells Prior to the production and extraction of the bioactive compounds with organic solvents, the cells can be centrifuged and then the biomass can be lyophilized under vacuum conditions and at temperatures below 40'C.
  • the cell debris is filtered and the liquid is passed through a polymeric adsorption resin, preferably an Amberlite XAD-7HP resin. Subsequently and to separate the active metabolites adsorbed by the resin, an extraction is carried out with organic solvents selected from methane !, ethanol, isopropanol, chloroform and mixtures thereof, with ethanol being the most preferred.
  • a polymeric adsorption resin preferably an Amberlite XAD-7HP resin.
  • the cell debris or filter cake resulting from the previous step can also be subjected to solvent extraction, preferably with the same solvent, to ensure a total extraction of the produced active metaboits.
  • the two ethanol streams resulting from this stage of the process are concentrated at low pressure and temperatures between 30 and 40 ° C to obtain the concentrated extract containing the active metabolites.
  • Nuclear magnetic resonance imaging also identified the presence of stigmasterol and ⁇ -sitosterol.
  • the HPLC analyzes allowed confirming the presence of azadirachtin in the extract, although it is not its main compound.
  • HPLC-MS mass spectrometry
  • different molecular ions were identified in the extract, which allow presuming that there are terpenoids and limonoids presented in Table 2.
  • agrochemical compositions can be designed (eg soluble solutions, emulsions, suspensions and granules) by the addition of additives, adjuvants and agrochemically acceptable vehicles, considering for this the physicochemical properties of each of them , such as solubility and polarity.
  • the agrochemical compositions can be applied either alone or together with other biocidal agents for the control of insect populations.
  • the present invention will be presented in detail through the following Examples, which are provided for illustrative purposes only and not for the purpose of limiting its scope.
  • IBA indole butyric acid
  • BAP benzyl amino purine
  • the cells By stirring between 100 and 120 rpm, 28 ° C and darkness, the cells are disintegrated and the suspension cell culture is obtained after several weeks.
  • the viability of the cells can be verified periodically using an exclusion dye such as Evans blue.
  • EXAMPLE 2 Propagation of Neem cells A medium with 6.6 g / L of salts from Murashigue and Skook, MS, sucrose 45 g / L, indoi butyric acid (IBA) 4 mg / l, benzii amino purine ( BAP) 1 mg / l, pH 5.8, 0.1 g / L sodium acetate, 25 ° C, in the dark, to allow for greater cell growth (FIG. 3).
  • C.S. It corresponds to dry cells. At the level of flasks the cells can be grown at 100-120 rpm in darkness or light. At the agitated tank bioreactor level, these can be grown with speeds of 200 to 450 rpm - depending on the impeller used and with oxygen control between 20 and 40%.
  • a bioreactor was conditioned with an internal filter to retain the cells obtained according to Example 2, such that more than 50% of the spent culture medium was removed, thus concentrating the cells therein. Then, a second stage was performed by refilling the reactor with a modified culture medium containing inorganic salts, sucrose 40-60 g / l, salicylic acid 137.3 mg / l, jasmonic acid 2.9 mg / l, chitosan 18 , 5 mg / l, pH 5.8, with a speed of 200 to 450 rpm and with oxygen control between 80 and 90%. Using the conditions indicated in Example 2, the production of bioactive compounds was increased, as shown in FIG.
  • FIG. 4 kinetics in the cell propagation medium and in the production medium
  • FIG 5 complete production kinetics of the extract in the two-stage culture.
  • the bioactive properties of the extract were preserved when the process was scaled to a stirred tank bioreactor (FIG. 6).
  • Neem cells suspension obtained according to Example 2, was taken with a concentration of 12-15 g dry cells / L. These cells were filtered and lyophilized. The dried biomass was mechanically lysed and extracted 3 times with ethanoi. AND! Solvent was evaporated to dryness to obtain the extract of the water + extraction vaporization process.
  • composition A which includes commercial chemical compounds as additives.
  • Composition B which includes less toxic and environmentally friendly organic compound additives. Table 3.
  • composition A the extract, the protectors of the extract (photoprotector, stabilizers) are mixed with the oil, given their hydrophobic character. Once the components have dissolved, the surfactant is added to the oil phase and the mixture is stirred. Slowly, water is added to the previous preparation, constantly stirring until an oil / water type emulsion is obtained. This procedure is known as the phase inversion method (Adamson and Gast, 1997).
  • composition B For stirring the emulsions, a blender or immersion mixer operated at the minimum speed was used. To obtain Composition B, the extract is mixed with the oil and then the surfactant is added to the oil phase and the mixture is stirred. Separately, the water is mixed with the corresponding photoprotector and stabilizer. Slowly the aqueous phase is incorporated into the oil phase, constantly stirring until an emulsion is obtained.
  • Compositions A and B can be diluted 50 times with water for field applications, depending on the crop and pests to be controlled (Tables 5 and 8),
  • a foliar adherent eg, INEX-A®
  • INEX-A® a foliar adherent
  • the effectiveness of the treatments was evaluated at 98 hours, determining their anti-food index and the percentage of leaf area affected in the corn leaf discs (Capataz-Tafur, Orozco-Sánchez, Vergara-Ruiz, & Hoyos-Sánchez, 2007) .
  • the anti-food index (EAA) was calculated using the formula proposed by Kerney el al, (Keamey, Allan, Hooker, & Mordue (Luntz), 1994)
  • a ground was prepared using a chisel plow and rotary harrow to polish it, depending on the characteristics of the soil.
  • a seed of the ICA V109 variety is deposited per site at a distance of 0.80 meters between rows and 0.12 meters between plants.
  • the reseeding can be carried out one week after the sowing. After eight days of the emergence of the corn, the crop is thinned leaving approximately 4 plants per linear meter. Diluted formulations can be applied weekly, also depending on the environmental conditions and the culture. The affected follicle area, the physiological state of the plants and the amount of corn collected at the end of the harvest can be monitored.
  • compositions A and B of Example 5 were evaluated on corn crops planted at the Cotové Agricultural Center of the National University of Colombia, Medellin Headquarters.
  • the area of life of the place is that of the tropical dry forest (bs-T), which is located at an approximate height of 540 m.a.s.l., average annual rainfall of 1031 mm and average temperature between 23 ° C and 33 ° C.
  • ES land was previously subjected to a chisel plow and rotary harrow to polish it. Sowing was done using a Super Tatu seeder model PS0T2. A seed of the fCA V109 variety was deposited per site at a distance of 0.80 meters between rows and 0.12 meters between plants.
  • Re-seeding was carried out manually one week after sowing. After eight days of the emergence of corn, the crop was thinned leaving approximately 4 plants per linear meter. Given the continuous rains that took place during the experiment, it was not necessary to install any artificial irrigation system.
  • the land was divided into three blocks of 60 m 2 for a total of 180m 2 treated and evaluated, although in total 550m 2 were sown. In turn, the blocks were divided into 15 spaces of 4 m 2 and in each one the application of a treatment was made.
  • compositions A and B were applied.
  • the treatments administered are mixed with INEX-A®.
  • the application process began 20 days after the emergence of the plants and lasted 15 days. Spraying was done with a ROYAL CARDEN CONDOR sprinkler with 1.8 L of adjustable nozzle with 200 / mm hole.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • Agronomy & Crop Science (AREA)
  • Mycology (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

The invention relates to a method for obtaining an extract from a cell culture of Neem (Azadirachta indica). The suspended cell culture is subjected to cellular stress under conditions that promote the production of active metabolites such as azadirachtins and terpenoids, which are subsequently extracted with solvents and/or adsorption resins. The extract obtained, whether alone or incorporated into an agrochemical composition, can be used for pest control in different crops.

Description

PROCESO PARA LA OBTENCIÓN DE UN EXTRACTO BE Azadirachta indica  PROCESS FOR OBTAINING AN EXTRACT BE Azadirachta indica
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La presente invención se encuentra en el campo de la biotecnología, particularmente en procesos de obtención efe extractos a partir de células vegetases y a sus composiciones agroquimicas para el control de plagas. DESCRIPCIÓN DEL ESTADO DE LA TECNICA The present invention is in the field of biotechnology, particularly in processes for obtaining extracts from vegetative cells and their agrochemical compositions for pest control. DESCRIPTION OF THE STATE OF THE TECHNIQUE
Entre los agentes más estudiados para el contral de poblaciones de insectos se encuentran los limonoides producidos por el árboi de Neem (Azadirachta indica), originario de India y Pakistán. Este tipo de compuestos se consideran ambientalmente amigables y tienen efecto antialimentario en muchas especies de insectos plagas y sobre algunas bacterias gram positivas, nemátodos, moluscos y hongos nocivos, incluyendo especies de Aspergilius sp. productores de aflatoxinas. La producción de biocompuestos con base en limonoidas se puede realizar por un proceso de extracción a partir de las semílías del árbol de Neem (Azadirachta indica), el cual no genera heterogeneidad en el contenido de limonoides debido a variaciones genéticas, climáticas y geográficas (Sidhu, Kumar, & Behl, 2003). Es por ello que se han diseñado procesos cíe obtención a escaía de biorreactores a partir de cultivos in vitro de células y de raices peludas (hairy roots) de Neem (Azadirachta indica). Among the most studied agents for the control of insect populations are the limonoids produced by the Neem tree (Azadirachta indica), native to India and Pakistan. These types of compounds are considered environmentally friendly and have an antialimentary effect on many species of insect pests and on some gram-positive bacteria, nematodes, molluscs and harmful fungi, including species of Aspergilius sp. Aflatoxin producers. The production of biocomposites based on limonoids can be carried out by an extraction process from the semilias of the Neem tree (Azadirachta indica), which does not generate heterogeneity in the content of limonoids due to genetic, climatic and geographical variations (Sidhu , Kumar, & Behl, 2003). That is why we have designed processes to obtain a bioreactor scale from in vitro cultures of cells and hairy roots of Neem (Azadirachta indica).
El empleo de raices peludas de Neem para producir limonoides trae consigo muchas dificultades en el escalado e industrialización, en tanto que el uso de células en suspensión permite desarrollar procesos en biorreactores con condiciones específicas de mezclado, aireación, formación de aglomerados, y en general, condiciones más apropiadas para el escalado (Prakash & Srivastava, 2007). The use of Neem hairy roots to produce limonoids brings with it many difficulties in scaling and industrialization, while the use of suspended cells allows processes to be developed in bioreactors with specific conditions of mixing, aeration, agglomerate formation, and in general, more appropriate conditions for scaling (Prakash & Srivastava, 2007).
Para incrementar la producción de las células en suspensión, se han optimizado variables como la composición del medio de cultivo, la modificación de ios requisitos nutricionales de las células y el suministro de precursores y elicitores que mejoren el crecimiento celular y la producción de metabolitos secundarios (Linden, Haigh, Mirjalili, & Phisaphalong, 2001). To increase the production of the cells in suspension, variables such as the composition of the culture medium, the modification of the nutritional requirements of the cells and the supply of precursors and elicitors have been optimized that improve cell growth and secondary metabolite production (Linden, Haigh, Mirjalili, & Phisaphalong, 2001).
Uno de los compuestos limonoides más estudiados, la azadiractina, se obtiene principalmente de las semillas del árbol de Neem (Azadirachta indica). La Azadiractina tiene un alto vaior agregado y se utiliza comercialmente como un agente para el control de poblaciones de insectos de amplio espectro. Desde su descubrimiento, las investigaciones se han centrado en su actividad y en procesos para aumentar su producción (Srivastava & Srivastava, 2013) (Singh & Chaturvedi, 2013). Sin embargo, azadiractina no es el único limonoide identificado en Neem, otros limonoides relacionados como nimbin. salannina, isonimbinolide, entre otros, también presentan una actividad significativa contra varias especies de insectos (Simmonds, Jarvis, Johnson, Jones, & Morgan, 2004). El documento IN00148DE2010A describe un procedimiento para transformar células de Neem y formar raices peludas. El documento divulga los medios de crecimiento y las características técnicas para la producción de azadiractina. El documento CN103493844A ilustra un procedimiento para la producción de células mutantes de Neem, los medios para el cultivo de callos y células en suspensión y la producción de azadiractina, asi como los detalles de la liofilización y extracción con solventes a nivel de laboratorio para el análisis de la azadiractina. One of the most studied limonoid compounds, azadirachtin, is mainly obtained from the seeds of the Neem tree (Azadirachta indica). Azadirachtin has a high aggregate value and is used commercially as an agent for the control of broad-spectrum insect populations. Since its discovery, research has focused on its activity and processes to increase its production (Srivastava & Srivastava, 2013) (Singh & Chaturvedi, 2013). However, azadirachtin is not the only limonoid identified in Neem, other related limonoids such as nimbin. Salannina, isonimbinolide, among others, also show significant activity against several insect species (Simmonds, Jarvis, Johnson, Jones, & Morgan, 2004). Document IN00148DE2010A describes a procedure for transforming Neem cells and forming hairy roots. The document discloses the growth media and the technical characteristics for the production of azadirachtin. Document CN103493844A illustrates a procedure for the production of Neem mutant cells, the means for the culture of calluses and cells in suspension and the production of azadirachtin, as well as the details of lyophilization and extraction with solvents at laboratory level for analysis. of azadirachtin.
Si bien en el estado de la técnica se encuentran divulgados varios procesos para obtener compuestos biocidas a partir del árbol de Neem, es necesario el desarrollo de procesos que optimicen la producción de extractos y metabolitos activos que sean fácilmente escalables a nivel industrial y que no generen prácticas destructivas como tala de árboles y deforestación. Asimismo, es necesario desarrollar formulaciones a partir de dichos extractos para usarlos en agricultura como agentes controladores de insectos y otras plagas. Although several processes for obtaining biocidal compounds from the Neem tree are disclosed in the state of the art, it is necessary to develop processes that optimize the production of extracts and active metabolites that are easily scalable at the industrial level and that do not generate destructive practices such as tree felling and deforestation. It is also necessary to develop formulations from these extracts for use in agriculture as controlling agents for insects and other pests.
BREVE DESCRIPCION DE LA INVENCION BRIEF DESCRIPTION OF THE INVENTION
La invención se refiere a un proceso para obtener un extracto a partir de un cultivo de células de Neem (Azadirachta indica) en suspensión y composiciones agroquimicas que comprenden dicho extracto. El proceso involucra el cultivo de las células y su posterior extracción con solventes y/o resinas de adsorción. El extracto obtenido comprende compuestos activos tales como azadiractinas y terpenoides, los cuates pueden ser empleados para el control de plagas en diversos cultivos. The invention relates to a process for obtaining an extract from a culture of Neem cells (Azadirachta indica) in suspension and agrochemical compositions comprising said extract. The process involves the culture of the cells and their subsequent extraction with solvents and / or adsorption resins. The extract obtained comprises active compounds such as azadiractins and Terpenoids, the four can be used to control pests in various crops.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
FIG. 1. Diagrama del proceso para la producción y separación de limonoides a partir de células de Neem (basado en vaporización de agua y extracción con etanol). FIG. 1. Process diagram for the production and separation of limonoids from Neem cells (based on water vaporization and ethanol extraction).
FIG. 2, Diagrama del proceso para la producción y separación de limonoides a partir de células de Neem (basado en resinas de adsorción y extracción con etanol). FIG. 2, Diagram of the process for the production and separation of limonoids from Neem cells (based on adsorption resins and extraction with ethanol).
FIG, 3. Gráfica de la cinética de producción de células de Neem utilizando el medio MS y el medio de propagación de células (MS modificado) en un biorreactor de tanque agitado. FiG, 4. Gráficas de la cinética de producción de biomasa viable (células vivas}, biomasa no viable (células muertas), limonoides (extracto) y consumo de azúcar en un cultivo de células de Neem en un biorreactor de tanque agitado. (4A) Etapa 1 : cultivo en el medio de propagación de células - MS modificado. (4B) Etapa 2: cultivo en el medio de producción. FIG, 3. Graph of the kinetics of Neem cell production using the MS medium and the cell propagation medium (modified MS) in a stirred tank bioreactor. FiG, 4. Graphs of the kinetics of viable biomass production (live cells}, non-viable biomass (dead cells), limonoids (extract) and sugar consumption in a Neem cell culture in a stirred tank bioreactor. (4A ) Stage 1: culture in the cell propagation medium - modified MS. (4B) Stage 2: culture in the production medium.
FIG. 5. Gráfica de Concentración vs Tiempo del extracto metanólico obtenido en el cultivo de células de Neem en un biorreactor de tanque agitado con el medio de producción de limonoides (puntos claros). Puntos negros representan el extracto en un medio MS de referencia. FIG. 5. Graph of Concentration vs. Time of the methanolic extract obtained in the Neem cell culture in a stirred tank bioreactor with the limonoid production medium (clear points). Black dots represent the extract in a reference MS medium.
FSG. 6. Prueba de bioactividad de los extractos obtenidos en los cultivos de células de Neem en matraz Eríenmeyer y en biorreactor de tanque agitado. (6A) Fotografía de las hojas afectadas sin el extracto. (6B) Gráfica del porcentaje de índice antialimentario. FSG 6. Bioactivity test of the extracts obtained in the Neem cell cultures in the Erienmeyer flask and in a stirred tank bioreactor. (6A) Photograph of the affected leaves without the extract. (6B) Graph of the percentage of anti-food index.
FSG, 7. Gráfica de la concentración del extracto etanólico obtenido a partir de cultivos de células de Neem utilizando el proceso de extracción 1 (vaporización con agua + extracción etanólica) y el proceso de extracción 2 (resinas XAD + extracción etanólica). FIG. 8, Fotografía del ensayo de evaluación de la efectividad de la Composición A bajo condiciones de laboratorio. Ensayo de escogencia sobre discos de maíz con larvas de Spodoptera frugiperda o gusano cogollero del maíz. FSG. 9. Gráfica de la efectividad de la Composición A sobre larvas de Spodoptera frugiperda a nivel de laboratorio. A) Porcentaje de área foliar afectada. B) Efecto anfíalimentario. FSG, 7. Graph of the concentration of the ethanol extract obtained from Neem cell cultures using the extraction process 1 (water vaporization + ethanolic extraction) and the extraction process 2 (XAD resins + ethanolic extraction). FIG. 8, Photograph of the trial evaluating the effectiveness of Composition A under laboratory conditions. Choice test on corn discs with larvae of Spodoptera frugiperda or corn worm cogollero. FSG 9. Graph of the effectiveness of Composition A on larvae of Spodoptera frugiperda at the laboratory level. A) Percentage of leaf area affected. B) Amphibious effect.
Los tratamientos con tetras iguales no presentan diferencias significativas de acuerdo con el test LSD de Físher. El efecto antiaiimentarío del insecticida químico es igual cero (0) debido a que las larvas se mueren dentro de la caja de Petri, sin alimentarse del tratamiento control (disco de hoja sin insecticida). Treatments with equal tetras do not show significant differences according to the Físher LSD test. The anti-food effect of the chemical insecticide is equal zero (0) because the larvae die inside the Petri dish, without feeding on the control treatment (leaf disc without insecticide).
FIG. 10, Gráfica del porcentaje de área foliar afectada de la Composición A a nivel de campo. Los porcentajes de área foliar afectada de los tratamientos con letras iguales no presentan diferencias significativas de acuerdo con el test LSD de Fisher. FIG. 10, Graph of the percentage of affected leaf area of Composition A at field level. The percentages of affected leaf area of the treatments with equal letters do not show significant differences according to Fisher's LSD test.
FIG. 11. Fotografía del grado de afectación de las hojas de maiz por Spodoptera frugiperda en un bioensayo en el campo con la Composición A. a) Insecticida químico comercial, b) Agua, c) Emulsión base. d) Extracto, e) Composición A. FIG. 11. Photograph of the degree of involvement of the corn leaves by Spodoptera frugiperda in a bioassay in the field with Composition A. a) Commercial chemical insecticide, b) Water, c) Base emulsion. d) Extract, e) Composition A.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
Ei proceso involucra, como etapa inicial, el cultivo en condiciones in vito de las células de hojas o semillas de Neem (Azadirachta indica) en un medio de cultivo adecuado supíementado y con condiciones de crecimiento específicas, de forma tai que las células crezcan en forma desdiferenciada y formen los callos después de varias semanas, lo que para efectos del proceso de la invención se denomina etapa de propagación. Las células obtenidas pueden disgregarse mediante agitación para obtener un cultivo de células en suspensión, cuya viabilidad se puede verificar empleando un colorante de exclusión (v.g. Azul de Evans). The process involves, as an initial stage, the in-vitous culture of Neem leaf or seed cells (Azadirachta indica) in a suitable supplanted culture medium with specific growth conditions, so that the cells grow in shape dedifferentiated and calluses form after several weeks, which for the purposes of the process of the invention is called the propagation stage. The cells obtained can be broken down by agitation to obtain a suspension cell culture, the viability of which can be verified using an exclusion dye (e.g. Evans Blue).
Eí cultivo de células en suspensión se somete a un estrés celular bajo condiciones que favorecen la producción de metabolitos activos, y posteriormente estos metabofitos son extraídos por procesos que involucran centrifugación, lisis, filtración de la biomasa y extracción con solventes. Como resultado, se obtiene un extracto de Neem (Azadirachta indica) que puede ser utilizado en formulaciones agroquimicas como agentes controladores de poblaciones de insectos plagas. The suspension cell culture is subjected to cellular stress under conditions that favor the production of active metabolites, and subsequently these metabolites are extracted by processes involving centrifugation, lysis, biomass filtration and solvent extraction. As a result, an extract of Neem (Azadirachta indica) is obtained, which can be used in agrochemical formulations as controlling agents for populations of insect pests.
La etapa de cultivo se puede realizar en un contenedor apropiado y emplear un medio de cultivo con sales de Murashigue y Skook, MS (composición comercial), supíementado con sacarosa, ácido indo! butírico (IBA) y benzil amina purina (BAP), y propiciar condiciones adecuadas de agitación, pH, temperatura y ausencia de luz. En una modalidad preferida del proceso de la invención, ía etapa de cultivo se lleva a cabo en un biorreactor con medio MS supíementado, agitación entre 100 y 150 rpm, pH entre 5,0 y 6,0, temperatura entre 20°C y 35°C con ausencia de luz. The culture step can be carried out in an appropriate container and employ a culture medium with salts of Murashigue and Skook, MS (commercial composition), supplemented with sucrose, indo acid! butyric acid (IBA) and benzyl amine purine (BAP), and provide adequate conditions of agitation, pH, temperature and absence of light. In a preferred embodiment of the process of the invention, the culture stage is carried out in a bioreactor with suppressed MS medium, stirring between 100 and 150 rpm, pH between 5.0 and 6.0, temperature between 20 ° C and 35 ° C with absence of light.
En !a etapa de propagación, las células son expuestas a un segundo medio de cultivo con sales de Murashigue y Skook, MS, caracterizado por tener MSx1.5 supíementado con sacarosa, ácido indolbutírico. bencilarninopurina y acetato de sodio. Se adecuan las condiciones de pH, temperatura, oxígeno disuelto, agitación y ausencia de luz para favorecer ¡a propagación celular. En una modalidad preferida, la etapa de propagación se lleva a cabo en un biorreactor con un medio MSx1.5 suplementado, pH entre 5,0 y 7,0, en oscuridad, agitación entre 100 y 120 rpm y con control de oxígeno entre 20 y 40%. Los cultivos de células vegetales en suspensión obtenidas en la etapa de propagación tienen un contenido de agua entre el 90 y 95%. Alternativamente y para disminuir los costos asociados a la vaporización del agua, el medio de cultivo con células de la etapa de propagación puede concentrarse mediante centrifugación y las células someterse a lisis celular mediante disrupción mecánica. In the propagation stage, the cells are exposed to a second culture medium with salts of Murashigue and Skook, MS, characterized by having MSx1.5 suppressed with sucrose, indolbutyric acid. benzilarninopurine and sodium acetate. The conditions of pH, temperature, dissolved oxygen, agitation and absence of light are adapted to favor cell propagation. In a preferred embodiment, the propagation stage is carried out in a bioreactor with a supplemented MSx1.5 medium, pH between 5.0 and 7.0, in the dark, stirring between 100 and 120 rpm and with oxygen control between 20 and 40%. The cultures of suspended plant cells obtained in the propagation stage have a water content between 90 and 95%. Alternatively and to decrease the costs associated with water vaporization, the culture medium with cells of the propagation stage can be concentrated by centrifugation and the cells subjected to cell lysis by mechanical disruption.
La biomasa seca obtenida se somete a lisis celular con un sistema de disrupción celular y posteriormente se realiza la extracción con un solvente orgánico seleccionado de metano!, etanol, isopropanol, cloroformo y mezclas de los mismos, dependiendo de la polaridad del extracto que se desea obtener. Previo a la producción y extracción de los compuestos bioactivos con solventes orgánicos, las células pueden centrifugarse y luego la biomasa se puede liofilszar en condiciones de vacío y a temperaturas inferiores a 40'C. The dry biomass obtained is subjected to cell lysis with a cell disruption system and subsequently the extraction is carried out with an organic solvent selected from methane !, ethanol, isopropanol, chloroform and mixtures thereof, depending on the polarity of the extract that is desired obtain. Prior to the production and extraction of the bioactive compounds with organic solvents, the cells can be centrifuged and then the biomass can be lyophilized under vacuum conditions and at temperatures below 40'C.
Los residuos celulares se filtran y el liquido se hace pasar por una resina polimérica de adsorción, preferiblemente una resina tipo Amberlite XAD-7HP. Posteriormente y para separar los metabolitos activos adsorbidos por la resina, se realiza una extracción con solventes orgánicos seleccionados de metano!, etanol, isopropanol, cloroformo y mezclas de los mismos, siendo el etanol el más preferido. The cell debris is filtered and the liquid is passed through a polymeric adsorption resin, preferably an Amberlite XAD-7HP resin. Subsequently and to separate the active metabolites adsorbed by the resin, an extraction is carried out with organic solvents selected from methane !, ethanol, isopropanol, chloroform and mixtures thereof, with ethanol being the most preferred.
Los residuos celulares o torta de filtración resultantes de la etapa anterior pueden ser también sometidos a extracción con solventes, preferiblemente con el mismo solvente, para garantizar una total extracción de ios metaboütos activos producidos. Las dos corrientes de etanol resultantes de esta etapa del proceso, se concentran a baja presión y temperaturas entre 30 y 40°C para obtener el extracto concentrado que contiene los metabolitos activos. The cell debris or filter cake resulting from the previous step can also be subjected to solvent extraction, preferably with the same solvent, to ensure a total extraction of the produced active metaboits. The two ethanol streams resulting from this stage of the process are concentrated at low pressure and temperatures between 30 and 40 ° C to obtain the concentrated extract containing the active metabolites.
Posterior a la extracción y concentración de los meíabolitos, éstos se pueden identificar mediante técnicas como cromatografía. Se puede detectar la presencia de ácidos grasos, fitoesteroles, triterpenos, azadiracíinas, limonoides y oíros terpenoides en el extracto resultante del proceso. La Tabla 1 presenta las fracciones obtenidas a partir del extracto y Sos posibles compuestos químicos presentes en cada fracción. A medida que se desciende en la Tabla, aumenta la polaridad de los compuestos presentes en cada fracción, iniciando con compuestos poco polares (solubles en 95:5 v/v hexano/acetato de etilo), como los ácidos grasos, y finalizando con compuestos polares (solubles en metanol) que podrían incluir terpenoides altamente oxigenados. After the extraction and concentration of the meíabolitos, these can be identified by means of techniques such as chromatography. It is possible to detect the presence of fatty acids, phytosterols, triterpenes, azadirazines, limonoids and other terpenoids in the extract resulting from the process. Table 1 presents the fractions obtained from the extract and Sos possible chemical compounds present in each fraction. As it is lowered in the Table, the polarity of the compounds present in each fraction increases, starting with low polar compounds (soluble in 95: 5 v / v hexane / ethyl acetate), such as fatty acids, and ending with polar compounds (soluble in methanol) that could include highly oxygenated terpenoids.
Tabla 1. Fracciones químicas separadas del extracto obtenido. a partir de cultivos de células de Neem Table 1. Separated chemical fractions of the extract obtained. from Neem cell cultures
Figure imgf000009_0001
Figure imgf000009_0001
Mediante resonancia magnética nuclear (RMN) se identificó además la presencia de estigmasterol y α-sitosterol. Los análisis por HPLC permitieron confirmar la presencia de azadiractina en el extracto, aunque no es su principal compuesto. Mediante HPLC acoplada a espectrometría de masas (HPLC-MS), se identificaron en el extracto diferentes iones moleculares, que permiten presumir que existen los terpenoides y limonoides presentados en la Tabla 2. Tabla 2. Compuestos presentes en cultivos de células de Aleen? según las masas de los iones obtenidos por HPLC-MS.
Figure imgf000010_0001
Figure imgf000011_0001
Nuclear magnetic resonance imaging (NMR) also identified the presence of stigmasterol and α-sitosterol. The HPLC analyzes allowed confirming the presence of azadirachtin in the extract, although it is not its main compound. By means of HPLC coupled to mass spectrometry (HPLC-MS), different molecular ions were identified in the extract, which allow presuming that there are terpenoids and limonoids presented in Table 2. Table 2. Compounds present in Aleen cell cultures? according to the masses of the ions obtained by HPLC-MS.
Figure imgf000010_0001
Figure imgf000011_0001
ND. No disponible. Aza, Isómeros de azadiractina. C1 , C2, compuestos 1 y 2 observados en espectro de Aza. Exp, Vaior experimental. (*) Masa del compuesto obtenida mediante la expresión "masa del compuesto = masa del ión + 17". ND Not available. Aza, azadirachtin isomers. C1, C2, compounds 1 and 2 observed in the Aza spectrum. Exp, experimental Vaior. (*) Mass of the compound obtained by the expression "mass of the compound = mass of the ion + 17".
Con el extracto obtenido según el proceso de la invención, se pueden diseñar composiciones agroquimicas (v.g. soluciones, emulsiones, suspensiones y granulados solubles) mediante la adición de aditivos, coadyuvantes y vehículos agroquímicamente aceptables, considerando para ello las propiedades fisicoquímicas de cada uno de ellos, tales como solubilidad y polaridad. Las composiciones agroquimicas pueden aplicadas bien sea solas o junto con otros agentes biocidas para el control de poblaciones de insectos. La presente invención será presentada en detalle a través de los siguientes Ejemplos, ¡os cuales son suministrados solamente con propósitos ilustrativos y no con el objetivo de limitar su alcance. With the extract obtained according to the process of the invention, agrochemical compositions can be designed (eg soluble solutions, emulsions, suspensions and granules) by the addition of additives, adjuvants and agrochemically acceptable vehicles, considering for this the physicochemical properties of each of them , such as solubility and polarity. The agrochemical compositions can be applied either alone or together with other biocidal agents for the control of insect populations. The present invention will be presented in detail through the following Examples, which are provided for illustrative purposes only and not for the purpose of limiting its scope.
EJEMPLOS. EXAMPLES
EJEMPLO 1. Establecimiento del cultivo in vitro y cultivo de las células de Neem EXAMPLE 1. Establishment of in vitro culture and culture of Neem cells
Un medio con sales de Murashigue y Skook, MS (composición comercial), sacarosa 30g/L, ácido indol butírico (IBA) 4 mg/l, benzil amino purina (BAP) 1 mg/l, pH 5,8, Phytagel 2g/l, 25ºC, en condiciones de oscuridad, permite la obtención de los callos en periodos entre 2 y 4 meses. A su vez, estos callos pueden adicionarse a medios líquidos sin el agente gelificante, conteniendo las sales MS, sacarosa, con ¡os reguladores IBA y BAP definidos anteriormente. A medium with salts of Murashigue and Skook, MS (commercial composition), sucrose 30g / L, indole butyric acid (IBA) 4 mg / l, benzyl amino purine (BAP) 1 mg / l, pH 5.8, Phytagel 2g / l, 25ºC, in dark conditions, allows calluses to be obtained in periods between 2 and 4 months. In turn, these calluses can be added to liquid media without the gelling agent, containing the MS salts, sucrose, with the IBA and BAP regulators defined above.
Mediante agitación entre 100 y 120 rpm, 28ºC y oscuridad, se disgregan las células y se obtiene el cultivo de células en suspensión después de varias semanas. La viabilidad de las células puede verificarse periódicamente utilizando un colorante de exclusión como el azul de Evans. By stirring between 100 and 120 rpm, 28 ° C and darkness, the cells are disintegrated and the suspension cell culture is obtained after several weeks. The viability of the cells can be verified periodically using an exclusion dye such as Evans blue.
EJEMPLO 2. Propagación de las células de Neem Se empleó un medio con 6,6 g/L de sales de Murashigue y Skook, MS, sacarosa 45 g/L, ácido indoi butírico (IBA) 4 mg/l, benzii amino purina (BAP) 1 mg/l, pH 5,8, acetato de sodio 0,1 g/L, 25°C, en oscuridad, para permitir un mayor crecimiento de las células (FIG. 3). C.S. corresponde a las células secas. A nivel de matraces las células pueden cultivarse a 100 - 120 rpm en oscuridad o luz. A nivel de biorreactor de tanque agitado, estas pueden cultivarse con velocidades de 200 a 450 rpm - dependiendo del impulsor utilizado y con control de oxigeno entre 20 y 40 %. EXAMPLE 2. Propagation of Neem cells A medium with 6.6 g / L of salts from Murashigue and Skook, MS, sucrose 45 g / L, indoi butyric acid (IBA) 4 mg / l, benzii amino purine ( BAP) 1 mg / l, pH 5.8, 0.1 g / L sodium acetate, 25 ° C, in the dark, to allow for greater cell growth (FIG. 3). C.S. It corresponds to dry cells. At the level of flasks the cells can be grown at 100-120 rpm in darkness or light. At the agitated tank bioreactor level, these can be grown with speeds of 200 to 450 rpm - depending on the impeller used and with oxygen control between 20 and 40%.
EJEMPLO 3. Producción de metabolitos activos EXAMPLE 3. Production of active metabolites
Se acondicionó un biorreactor con un filtro interno para retener las células obtenidas según el Ejemplo 2, de forma tal que se retiró más del 50 % del medio de cultivo agotado, concentrando asi las células en su interior. Luego, se realizó una segunda etapa llenando nuevamente el reactor con un medio de cultivo modificado que contiene sales inorgánicas, sacarosa 40 - 60 g/l, ácido salicíllco 137,3 mg/l, ácido jasmónico 2,9 mg/l, quitosano 18,5 mg/l, pH 5,8, con velocidad de 200 a 450 rpm y con control de oxígeno entre 80 y 90 %. Utilizando las condiciones indicadas en el Ejemplo 2 se incrementó la producción de compuestos bioactivos, tal como se muestra en la FIG. 4 (cinética en el medio de propagación de células y en el medio de producción) y FIG 5 (cinética completa de producción del extracto en el cultivo en dos etapas). Además, se conservaron las propiedades bioactivas del extracto cuando se escaló el proceso a un biorreactor de tanque agitado (FIG. 6). A bioreactor was conditioned with an internal filter to retain the cells obtained according to Example 2, such that more than 50% of the spent culture medium was removed, thus concentrating the cells therein. Then, a second stage was performed by refilling the reactor with a modified culture medium containing inorganic salts, sucrose 40-60 g / l, salicylic acid 137.3 mg / l, jasmonic acid 2.9 mg / l, chitosan 18 , 5 mg / l, pH 5.8, with a speed of 200 to 450 rpm and with oxygen control between 80 and 90%. Using the conditions indicated in Example 2, the production of bioactive compounds was increased, as shown in FIG. 4 (kinetics in the cell propagation medium and in the production medium) and FIG 5 (complete production kinetics of the extract in the two-stage culture). In addition, the bioactive properties of the extract were preserved when the process was scaled to a stirred tank bioreactor (FIG. 6).
EJEMPLO 4. Extracción y purificación parcial del extracto EXAMPLE 4. Extraction and partial purification of the extract
Se tomó 1 Litro de suspensión de células de Neem, obtenidas según el Ejemplo 2, con una concentración de 12 - 15 g células secas/L. Estas células se filtraron y liofilizaron. La biomasa seca se lisó mecánicamente y se extrajo 3 veces con etanoi. E! solvente se evaporizó hasta sequedad para obtener el extracto del proceso de vaporización agua + extracción. 1 Liter of Neem cells suspension, obtained according to Example 2, was taken with a concentration of 12-15 g dry cells / L. These cells were filtered and lyophilized. The dried biomass was mechanically lysed and extracted 3 times with ethanoi. AND! Solvent was evaporated to dryness to obtain the extract of the water + extraction vaporization process.
Paralelamente se tomó 1 Litro de la misma suspensión de células de Neern, la biomasa se lisó mecánicamente y luego se filtró. El liquido filtrado se hace pasar por un lecho de adsorción que contiene 100 g de resina Amberlite XAD-7HP y luego la resina se desorbió con etanoi. La biomasa filtrada se desorbió a su vez con etanoi. Las dos soluciones de etanoi obtenidas se evaporaron hasta sequedad para obtener así el extracto con los compuestos bioactivos del proceso resina + extracción, En cada caso se obtuvieron entre 8,3 y 6,8 g de extracto. Aunque no hay diferencias significativas en la cantidad obtenida entre ambos procesos, el proceso resina + extracción es más eficiente por no requerir de vaporización del agua (FIG. 7). EJEMPLO 5. Composiciones Agroquímicas del Extracto da Neem In parallel, 1 L of the same Neern cell suspension was taken, the biomass was mechanically lysed and then filtered. The filtered liquid is passed through an adsorption bed containing 100 g of Amberlite XAD-7HP resin and then the resin is desorbed with ethanoi. The filtered biomass was desorbed in turn with etanoi. The two ethanoi solutions obtained were evaporated to dryness to obtain the extract with the bioactive compounds of the resin + extraction process. In each case, between 8.3 and 6.8 g of extract were obtained. Although there are no significant differences in the amount obtained between both processes, the resin + extraction process is more efficient because it does not require water vaporization (FIG. 7). EXAMPLE 5. Agrochemical Compositions of Neem Extract
A partir del Extracto obtenido según el Ejemplo 4, se prepararon composiciones agroquímicas tipo emulsión. En la Tabla 3 se describe la composición A, que incluye como aditivos compuestos químicos comerciales. La Tabla 4, describe la Composición B que incluye aditivos compuestos orgánicos menos tóxicos y amigables con el medio ambiente. Tabla 3. Composición A From the Extract obtained according to Example 4, emulsion-type agrochemical compositions were prepared. Table 3 describes composition A, which includes commercial chemical compounds as additives. Table 4 describes Composition B which includes less toxic and environmentally friendly organic compound additives. Table 3. Composition A
Figure imgf000015_0001
Para obtener la Composición A, se mezclan el extracto, los protectores del extracto (fotoprotector, estabilizadores) con el aceite, dado el carácter hidrofóbico de los mismos. Una vez disueltos los componentes, se agrega el tensoactivo a la fase oleosa y se agita la mezcla. Lentamente, se adiciona agua a la preparación anterior, agitando constantemente hasta obtener una emulsión del tipo aceite/agua. Este procedimiento se conoce como método de inversión de fases (Adamson y Gast, 1997).
Figure imgf000015_0001
To obtain Composition A, the extract, the protectors of the extract (photoprotector, stabilizers) are mixed with the oil, given their hydrophobic character. Once the components have dissolved, the surfactant is added to the oil phase and the mixture is stirred. Slowly, water is added to the previous preparation, constantly stirring until an oil / water type emulsion is obtained. This procedure is known as the phase inversion method (Adamson and Gast, 1997).
Para la agitación de las emulsiones, se empleó una batidora o mezcladora de inmersión operada a la velocidad mínima. Para obtener la Composición B, se mezclan el extracto con el aceite y luego se agrega el tensoactivo a la fase oleosa y se agita la mezcla. Por separado, se mezcla el agua con el fotoprotector y estabilizador correspondiente. Lentamente se incorpora la fase acuosa a la fase oleosa, agitando constantemente hasta obtener una emulsión. Las composiciones A y B pueden diluirse unas 50 veces con agua para aplicaciones en e\ campo, dependiendo del cultivo y las plagas a controlar (Tablas 5 y 8), For stirring the emulsions, a blender or immersion mixer operated at the minimum speed was used. To obtain Composition B, the extract is mixed with the oil and then the surfactant is added to the oil phase and the mixture is stirred. Separately, the water is mixed with the corresponding photoprotector and stabilizer. Slowly the aqueous phase is incorporated into the oil phase, constantly stirring until an emulsion is obtained. Compositions A and B can be diluted 50 times with water for field applications, depending on the crop and pests to be controlled (Tables 5 and 8),
Tabla 5. Composición A diluida Table 5. Diluted Composition A
Figure imgf000016_0001
Al efectuar la aplicación en campo de las composiciones A y B, se puede agregar un adherente foliar (v.g, INEX-A®) para aumentar la adherencia foliar de la composición. Se recomienda seguir las recomendaciones de uso del producto comercial.
Figure imgf000016_0001
Upon application in the field of compositions A and B, a foliar adherent (eg, INEX-A®) can be added to increase the foliar adhesion of the composition. It is recommended to follow the recommendations for the use of the commercial product.
EJEHPLO 8, Evaluación del efecto biocida de ¡as Composiciones Agroquimicas EXAMPLE 8, Evaluation of the biocidal effect of the Agrochemical Compositions
Para evaluar el efecto de las composiciones obtenidas según el Ejemplo 5, se emplearon larvas del segundo instar de Spodoptera frugiperda sometidas a 6 horas de ayuno antes de los experimentos. El montaje consistió en una caja de Petri plástica de 5 cm de diámetro con una película de agar-agar en su interior. Sobre el agar se dispuso dos discos de hoja de maiz de 1 ,5 cm de diámetro, de los cuales, uno se impregnaron con el tratamiento y el otro actúa como control. Además de los discos, sobre el agar se depositó una larva de S. frugiperda del segundo instar (F!G 8), To evaluate the effect of the compositions obtained according to Example 5, larvae of the second instar of Spodoptera frugiperda were subjected to fasting 6 hours before the experiments. The assembly consisted of a 5 cm diameter plastic Petri dish with an agar-agar film inside. Two corn leaf discs of 1.5 cm in diameter were placed on the agar, of which one was impregnated with the treatment and the other acts as a control. In addition to the discs, a larva of S. frugiperda from the second instar (F! G 8) was deposited on the agar,
La efectividad de los tratamientos se evaluó a las 98 horas, determinando su índice antialimentario y el porcentaje de área foliar afectada en los discos de hoja de maíz (Capataz-Tafur, Orozco-Sánchez, Vergara-Ruiz, & Hoyos-Sánchez, 2007). El índice antialimentario (E.A.A) se calculó con la fórmula propuesta por Kerney el al, (Keamey, Allan, Hooker, & Mordue (Luntz), 1994)
Figure imgf000017_0001
The effectiveness of the treatments was evaluated at 98 hours, determining their anti-food index and the percentage of leaf area affected in the corn leaf discs (Capataz-Tafur, Orozco-Sánchez, Vergara-Ruiz, & Hoyos-Sánchez, 2007) . The anti-food index (EAA) was calculated using the formula proposed by Kerney el al, (Keamey, Allan, Hooker, & Mordue (Luntz), 1994)
Figure imgf000017_0001
Para determinar el área consumida en los discos de hoja, se tomaron fotografías del experimento y se analizaron con ef programa !mage J 1.44 (FIG. 9). To determine the area consumed in the leaf disks, photographs of the experiment were taken and analyzed with the program! Mage J 1.44 (FIG. 9).
Para ios bioensayos en el campo se preparó un terreno mediante arado de cincel y grada rotativa para pulirlo, dependiendo de las características del suelo. Para cultivos de maíz, por sitio se deposita una semilla de la variedad ICA V109 a una distancia de 0,80 metros entre surcos y 0,12 metros entre plantas. For the bioassays in the field, a ground was prepared using a chisel plow and rotary harrow to polish it, depending on the characteristics of the soil. For corn crops, a seed of the ICA V109 variety is deposited per site at a distance of 0.80 meters between rows and 0.12 meters between plants.
La resiembra se puede llevar a cabo una semana después de la siembra. Al cabo de ocho días de la emergencia del maiz, se ralea el cultivo dejando aproximadamente 4 plantas por metro lineal. Las formulaciones diluidas se pueden aplicar semanalmente, dependiendo también de ías condiciones ambientales y del cultivo. Puede hacerse seguimiento del área follar afectada, del estado fisiológico de !as plantas y la cantidad de maíz colectado al final de la cosecha. The reseeding can be carried out one week after the sowing. After eight days of the emergence of the corn, the crop is thinned leaving approximately 4 plants per linear meter. Diluted formulations can be applied weekly, also depending on the environmental conditions and the culture. The affected follicle area, the physiological state of the plants and the amount of corn collected at the end of the harvest can be monitored.
EJEMPLO 7, Bioensayos con fas formulaciones a nivel de campo EXAMPLE 7, Bioassays with fas field level formulations
Las Composiciones A y B del Ejemplo 5 se evaluaron sobre cultivos de maiz sembrados en el Centro Agropecuario Cotové de la Universidad Nacional de Colombia Sede Medellin. La zona de vida del lugar es la del bosque seco tropical (bs-T), el cual está ubicado a una altura aproximada de 540 m.s.n.m., precipitación anual promedio de 1031 mm y temperatura promedio entre 23°C y 33°C. Compositions A and B of Example 5 were evaluated on corn crops planted at the Cotové Agricultural Center of the National University of Colombia, Medellin Headquarters. The area of life of the place is that of the tropical dry forest (bs-T), which is located at an approximate height of 540 m.a.s.l., average annual rainfall of 1031 mm and average temperature between 23 ° C and 33 ° C.
ES terreno fue sometido previamente a un arado de cincel y grada rotativa para pulirlo. La siembra se realizó empleando una sembradora Super Tatu modelo PS0T2. Por sitio se depositó una semilla de la variedad fCA V109 a una distancia de 0,80 metros entre surcos y 0,12 metros entre plantas. ES land was previously subjected to a chisel plow and rotary harrow to polish it. Sowing was done using a Super Tatu seeder model PS0T2. A seed of the fCA V109 variety was deposited per site at a distance of 0.80 meters between rows and 0.12 meters between plants.
La resiembra se llevó a cabo manualmente una semana después de la siembra. Al cabo de ocho días de la emergencia del maíz, se raleó el cultivo dejando aproximadamente 4 plantas por metro lineal. Dadas las continuas lluvias que tuvieron lugar durante el experimento, no fue necesaria la instalación de ningún sistema artificial de riego. El terreno fue dividido en tres bloques de 60 m2 para un total de 180m2 tratados y evaluados, aunque en total se sembraron 550m2. A su vez, los bloques fueron fraccionados en 15 espacios de 4 m2 y en cada uno se hizo la aplicación de un tratamiento. Re-seeding was carried out manually one week after sowing. After eight days of the emergence of corn, the crop was thinned leaving approximately 4 plants per linear meter. Given the continuous rains that took place during the experiment, it was not necessary to install any artificial irrigation system. The land was divided into three blocks of 60 m 2 for a total of 180m 2 treated and evaluated, although in total 550m 2 were sown. In turn, the blocks were divided into 15 spaces of 4 m 2 and in each one the application of a treatment was made.
Una vez por semana se aplicaron 150 mL de las composiciones A y B diluidas. Para mejorar su adherencia a las hojas, los tratamientos administrados se mezclados con INEX-A®. El proceso de aplicación inició 20 días después de la emergencia de las plantas y tuvo una duración de 15 días. La aspersión se realizó con una aspersora ROYAL CARDEN CONDOR de 1 ,8 L de boquilla ajustable con orificio 200/mm. Once a week, 150 mL of diluted compositions A and B were applied. To improve its adhesion to the leaves, the treatments administered are mixed with INEX-A®. The application process began 20 days after the emergence of the plants and lasted 15 days. Spraying was done with a ROYAL CARDEN CONDOR sprinkler with 1.8 L of adjustable nozzle with 200 / mm hole.
Para la evaluación a las 96 horas después de la última aplicación, se tomaron al azar tres hojas de la planta seleccionada. Con el fin de eliminar los efectos de borde que pudieran generarse, la unidad elegida correspondía a la planta sembrada en el centro de las subdivisiones de 4m2. En cada caso se tomó una fotografía para determinar el área consumida por los insectos (mediante el uso del programa Image J 1.44) y de ésta forma se pudo calcular el porcentaje de área foliar afectada (FIG. 10 y FIG. 11). For the evaluation at 96 hours after the last application, three leaves of the selected plant were taken at random. In order to eliminate edge effects that could be generated, corresponding to the selected unit planted in the center of the subdivisions of 4m 2 floor. In each case a photograph was taken to determine the area consumed by insects (by using the Image J program 1.44) and in this way the percentage of affected leaf area could be calculated (FIG. 10 and FIG. 11).
REFERENCIAS REFERENCES
[1] M. W. Aktar, D. Sengupta, and A. Chowdhury, "Impact of pesticides use in agriculture: their benefiís and hazards.," interdiscip. Toxico!., vo!. 2, no. 1 , pp. 1-12, 2009. [1] M. W. Aktar, D. Sengupta, and A. Chowdhury, "Impact of pesticides use in agriculture: their benefits and hazards.," Interdiscip. Toxic!, Vo !. 2 no. 1, pp. 1-12, 2009.
[2] S. J. Boeke, M. G. Boersma, G. M. Alink, J. J. A. Van Loon, A. Van Huis, M.  [2] S. J. Boeke, M. G. Boersma, G. M. Alink, J. J. A. Van Loon, A. Van Huis, M.
Dicke, and I. M. C. M. Rietjens, "Safety evaluation of Neem (Azadirachta indica) derived pesticides.," J. Ethnopharmacol., vo!. 94, no. 1 , pp. 25-41 , 2004.  Dicke, and I. M. C. M. Rietjens, "Safety evaluation of Neem (Azadirachta indica) derived pesticides.," J. Ethnopharmacol., Vo !. 94, no. 1, pp. 25-41, 2004.
[3] S. Srivastava and A, K. Srivastava, "Production of the biopesticide azadirachtin by hairy root cultivation of Azadirachta indica in liquid-phase bioreactors.," Appl. Biochem. Biotechnol., vol. 171 , no. 8, pp. 1351-1381 , 2013. [3] S. Srivastava and A, K. Srivastava, "Production of the biopesticide azadirachtin by hairy root cultivation of Azadirachta indica in liquid-phase bioreactors.," Appl. Biochem Biotechnol., Vol. 171, no. 8, pp. 1351-1381, 2013.
[4] M. Singh and R. Chaíurvedi, "Sustainable producíion of azadirachtin from differentiated in vitro celi iines of Neem (Azadirachta índica)," AoB Plants, vol. 5, p. plt034. 2013.  [4] M. Singh and R. Chaíurvedi, "Sustainable production of azadirachtin from differentiated in vitro celi iines of Neem (Azadirachta indica)," AoB Plants, vol. 5 p. plt034. 2013
[5] M. S. J. Simmonds, A. P. Jarvis, S. Johnson, G, R. Jones, and E. D. [5] M. S. J. Simmonds, A. P. Jarvis, S. Johnson, G, R. Jones, and E. D.
Morgan, "Comparison of anti-feedant and insecticidal activify of nimbin and salannin photo-oxidation producís with Neem (Azadirachta indica) limonoids.," Pest Manag. Se/,, vol. 80, no. 5, pp. 459-484, May 2004.  Morgan, "Comparison of anti-feedant and insecticidal activify of nimbin and salannin photo-oxidation producís with Neem (Azadirachta indica) limonoids.," Pest Manag. Se / ,, vol. 80, no. 5, pp. 459-484, May 2004.
[8] O. P. Sidhu, V. Kumar, and H. M. Behi, "Variability in Neem (Azadirachta indica) with respect to azadirachtin content.," J. Agric. Food Chem., vol. 51 , no. 4, pp. 910-915, 2003.  [8] O. P. Sidhu, V. Kumar, and H. M. Behi, "Variability in Neem (Azadirachta indica) with respect to azadirachtin content.," J. Agric. Food Chem., Vol. 51, no. 4, pp. 910-915, 2003.
[7] G. Prakash and A. K. Srivastava, "Producíion of biopesticides in an in situ cell retention bioreactor,," Αρρl. Biochem. Biotechnol., vol. 151 , no. 2-3, pp.[7] G. Prakash and A. K. Srivastava, "Production of biopesticides in an in situ cell retention bioreactor ,," Αρρl. Biochem Biotechnol., Vol. 151, no. 2-3, pp.
307-318, 2008. 307-318, 2008.
[8] R. K. Satdive, D. P. Fu!zele, and S. Eapen, "Enhanced producíion of azadirachtin by hairy root cultures of Azadirachta indica A. Juss by elicitation and media opíimizaííon," J. Biotechnol., vol. 128, no. 2, pp. 281-289, Feb. 2007,  [8] R. K. Satdive, D. P. Fu! Zele, and S. Eapen, "Enhanced production of azadirachtin by hairy root cultures of Azadirachta indicates A. Juss by elicitation and media opimimization," J. Biotechnol., Vol. 128, no. 2, pp. 281-289, Feb. 2007,
[9] S. Srivastava and A. K. Srivastava, "Effect of elicitors and precursors on azadirachtin producíion in hairy root culture of Azadirachta indica.," Appl. [9] S. Srivastava and A. K. Srivastava, "Effect of elicitors and precursors on azadirachtin production in hairy root culture of Azadirachta indica.," Appl.
Biochem. Biotechnol., vol, 172, no. 4, pp. 2286-2297, 2014. Biochem Biotechnol., Vol, 172, no. 4, pp. 2286-2297, 2014.
[10] S. Jayaram, "Bioreactor And Uses Thereof," IN00148DE2010A, 2010. [10] S. Jayaram, "Bioreactor And Uses Thereof," IN00148DE2010A, 2010.
[11] G. Prakash and A. K. Srivastava, "Azadirachtin production in stirred tank reactors by Azadirachta indica suspension culture," Process Biochem., vol.[11] G. Prakash and A. K. Srivastava, "Azadirachtin production in stirred tank reactors by Azadirachta indica suspension culture," Process Biochem., Vol.
42, no. 1 , pp. 93-97, 2007. [12] J. C. Linden, J. R. Haigh, N. Mirjalili, and M. Phisaphalong, "Gas conceníration effects on secondary meíaboliíe production by píant cell cultures.," Adv. Biochem. Eng. Biotechnol., vol. 72, pp. 27-62, 2001. 42, no. 1, pp. 93-97, 2007. [12] JC Linden, JR Haigh, N. Mirjalili, and M. Phisaphalong, "Gas Concentration Effects on Secondary Production by Pious Cell Cultures.," Adv. Biochem Eng. Biotechnol., Vol. 72, pp. 27-62, 2001.
[13] F. Orozco-Sánchez, "Efecto de la oferta oxigeno sobre el crecimiento y la producción de terpenoides con células de Azadirachta Indica en un biorreactor," instituto Politécnico Nacional, 2009.  [13] F. Orozco-Sánchez, "Effect of oxygen supply on the growth and production of terpenoids with Azadirachta Indica cells in a bioreactor," National Polytechnic Institute, 2009.
[14] P. Dayanandan and J. Ponsamuel, "Ulltrastructure of terpenoid secretory cells of Neem (Azadirachta indica A. Juss)," in Electron Microscopy in Medicine and Biology , no. 18, P, D. Gupta and H. Yamamoto, Eds. New Delhi: Oxford & IBH Publishing Co. Pvt. Ltd., 2000, pp. 179-195.  [14] P. Dayanandan and J. Ponsamuel, "Ulltrastructure of terpenoid secretory cells of Neem (Azadirachta indica A. Juss)," in Electron Microscopy in Medicine and Biology, no. 18, P, D. Gupta and H. Yamamoto, Eds. New Delhi: Oxford & IBH Publishing Co. Pvt. Ltd., 2000, pp. 179-195.
[15] A. W. Adamson and A. P. Gast, Physica! Chemistry of Suríaces, Sixth Edit.  [15] A. W. Adamson and A. P. Gast, Physica! Chemistry of Suríaces, Sixth Edit.
1997,  1997,
[18] J. Capataz-Tafur, F. Orozco-Sánchez, R. Vergara-Ruiz, and R. Hoyos- Sánchez, "Antifeedant effect of cell suspensión exíracts of Azadirachta indica on Spodoptera frugiperda J. E. Smith under laboratory conditions," Rev. Fac. Nac. Agron. Medellín, vol. 80, no. 1 , pp. 3703-3715, 2007.  [18] J. Capataz-Tafur, F. Orozco-Sánchez, R. Vergara-Ruiz, and R. Hoyos- Sánchez, "Antifeedant effect of cell suspension exíracts of Azadirachta indica on Spodoptera frugiperda JE Smith under laboratory conditions," Rev. Fac. Nac. Agron. Medellin, vol. 80, no. 1, pp. 3703-3715, 2007.
[17] M.-L. Kearney, E. J. Allan, J. E. Hooker, and A. J. Mordue (Luntz), "Antifeedant effects of in vitro culture extracts of the Neem tree, Azadirachta indica against the desert locust (Schistocerca gregaria (Forskál))," Plant Cell. Tissue Organ Cult, vol. 37, no. 1 , pp. 87-71 , 1994.  [17] M.-L. Kearney, E. J. Allan, J. E. Hooker, and A. J. Mordue (Luntz), "Antifeedant effects of in vitro culture extracts of the Neem tree, Azadirachta indica against the desert locust (Schistocerca gregaria (Forskál))," Plant Cell. Tissue Organ Cult, vol. 37, no. 1, pp. 87-71, 1994.

Claims

REIVINDICACIONES
1. Un proceso obtener un extracto a partir de células en suspensión de Neem (Azadirachta indica) que comprende las siguientes etapas: 1. A process to obtain an extract from Neem suspension cells (Azadirachta indica) comprising the following steps:
a) cultivar y propagar células de Neem (Azadirachta indica) en condiciones de cultivo adecuadas en un medio de cultivo MS suplementado con sacarosa, ácido indolbutírico y bencilaminopurina;  a) culturing and propagating Neem cells (Azadirachta indica) under suitable culture conditions in an MS culture medium supplemented with sucrose, indolbutyric acid and benzylaminopurine;
b) someter a estrés las células obtenidas en la etapa a) para favorecer la producción de metabolitos activos;  b) stress the cells obtained in step a) to favor the production of active metabolites;
c) liberar los metabolitos activos de las células mediante extracción; y d) purificar las fracciones obtenidas en c) hasta obtener el extracto.  c) release the active metabolites from cells by extraction; and d) purify the fractions obtained in c) until the extract is obtained.
2. El proceso según la Reivindicación 1, donde las condiciones de cultivo adecuadas de la etapa (a) son: pH entre 5,0 y 6,0; temperatura ambiente; oxígeno disuelto, agitación y ausencia de luz. 2. The process according to Claim 1, wherein the suitable culture conditions of step (a) are: pH between 5.0 and 6.0; room temperature; dissolved oxygen, agitation and absence of light.
3. El proceso según la Reivindicación 1, donde las condiciones de propagación de la etapa a) son: medio MSxl.5 suplementado con sacarosa, ácido indol butírico, bencilaminopurina y acetato de sodio; pH entre 5,0 y 6,0; temperatura ambiente; oxígeno disuelto, agitación y ausencia de luz; 3. The process according to Claim 1, wherein the propagation conditions of step a) are: MSxl.5 medium supplemented with sucrose, indole butyric acid, benzylaminopurine and sodium acetate; pH between 5.0 and 6.0; room temperature; dissolved oxygen, agitation and absence of light;
4. El proceso según la Reivindicación 1, donde las condiciones de estrés de la etapa (b) son: presencia de precursor y elicitores, pH entre 5,0 y 6,0; temperatura ambiente; oxígeno disuelto, agitación y ausencia de luz; 4. The process according to Claim 1, wherein the stress conditions of step (b) are: presence of precursor and elicitors, pH between 5.0 and 6.0; room temperature; dissolved oxygen, agitation and absence of light;
5. El proceso según la Reivindicación 1, donde la extracción de la etapa (c) se realiza mediante uno o más procesos de centrifugación, lisis, filtración de la biomasa y extracción con solventes. 5. The process according to Claim 1, wherein the extraction of step (c) is carried out by one or more centrifugation, lysis, biomass filtration and solvent extraction processes.
6. El proceso según la Reivindicación 1, donde los solventes empleados en la extracción de la etapa (c) se seleccionan del grupo que consiste de metanol, etanol, isopropanol, cloroformo y mezclas de los mismos. 6. The process according to Claim 1, wherein the solvents used in the extraction of step (c) are selected from the group consisting of methanol, ethanol, isopropanol, chloroform and mixtures thereof.
7. El proceso según la Reivindicación 1, donde la purificación de la etapa d) se lleva a cabo mediante secado, adsorción y desorción y vaporización. 7. The process according to Claim 1, wherein the purification of step d) is carried out by drying, adsorption and desorption and vaporization.
8. El proceso según la Reivindicación 7, donde la purificación de la etapa d) se lleva a cabo con resinas poliméricas. 8. The process according to Claim 7, wherein the purification of step d) is carried out with polymeric resins.
9. Un extracto de células de Neem (Azadirachta indica) obtenido según el proceso de la Reivindicación 1. 9. An extract of Neem cells (Azadirachta indica) obtained according to the process of Claim 1.
10. El extracto según la Reivindicación 9, que comprende: ácidos grasos, fitoesteroles, triterpenos, azadiractinas, limonoides y otros terpenoides. 10. The extract according to Claim 9, comprising: fatty acids, phytosterols, triterpenes, azadiractins, limonoids and other terpenoids.
11. El extracto según la Reivindicación 9, que comprende como metabolitos activos: limocinina, azaridactina, aziracdactolio, salanina. 11. The extract according to claim 9, comprising as active metabolites: limocinin, azaridactin, aziracdactolium, salanine.
12. El extracto según la Reivindicación 9, con actividad biocida contra poblaciones de especies de diferentes insectos, entre ellos Spodoptera frugiperda. 12. The extract according to Claim 9, with biocidal activity against populations of species of different insects, including Spodoptera frugiperda.
13. Una composición agroquímica que comprende el extracto según la Reivindicación 9, junto con coadyuvantes y un vehículo aceptable. 13. An agrochemical composition comprising the extract according to Claim 9, together with adjuvants and an acceptable carrier.
14. La composición agroquímica de la Reivindicación 13, en forma de solución, suspensión, emulsión o granulado soluble. 14. The agrochemical composition of Claim 13, in the form of a solution, suspension, emulsion or soluble granulate.
15. La composición agroquímica de la Reivindicación 13, que comprende: 15. The agrochemical composition of Claim 13, comprising:
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000023_0001
Figure imgf000024_0001
16. La composición agroquímica de la Reivindicación 13, que comprende:16. The agrochemical composition of Claim 13, comprising:
Figure imgf000024_0002
Figure imgf000024_0002
PCT/IB2017/053073 2016-05-25 2017-05-24 Method for obtaining an extract of azadirachta indica WO2017203454A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CO16-137010 2016-05-25
CO16137010 2016-05-25

Publications (1)

Publication Number Publication Date
WO2017203454A1 true WO2017203454A1 (en) 2017-11-30

Family

ID=60412745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2017/053073 WO2017203454A1 (en) 2016-05-25 2017-05-24 Method for obtaining an extract of azadirachta indica

Country Status (1)

Country Link
WO (1) WO2017203454A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025141142A1 (en) * 2023-12-29 2025-07-03 Dicot Pharma Ab A novel method for recovering limonoid compounds

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CAPATAZ TAFUR, J. ET AL.: "Efecto antialimentario de los extractos de suspensiones celulares de Azadirachta indica sobre Spodoptera frugiperda JE Smith en condiciones de laboratorio", REVISTA FACULTAD NACIONAL DE AGRONOMIA - MEDELLIN, vol. 60, no. 1, 2007, pages 3703 - 3715, XP055444545, ISSN: 0304-2847, Retrieved from the Internet <URL:http://www.redalyc.org/articulo.oa?id=179914076006> [retrieved on 20170814] *
CRUZ, W. M. ET AL.: "Estimation de variables de operation de un biorreactor con celulas de Azadirachta indica A. Juss.", REVISTA FACULTAD NATIONAL DE AGRONOMIA MEDELLIN, vol. 59, no. 2, 2006, pages 3467 - 3478, XP055444538, Retrieved from the Internet <URL:http://www.redalyc.org/articulo.oa?id=179914075005> [retrieved on 20170814] *
FERNANDEZ DA SILVA, R. ET AL.: "Evaluation de un sistema de regeneration por embriogénesis somática de Neem (Azadirachta indica", ACTA BIOLÓGICA COLOMBIANA, vol. 21, no. 3, 2016, pages 581 - 592, XP055444547 *
PRAKASH, G. ET AL.: "Azadirachtin production in stirred tank reactors by Azadirachta indica suspension culture", PROCESS BIOCHEMISTRY, vol. 42, no. 1, 2007, pages 93 - 97, XP005765901 *
PRAKASH, G. ET AL.: "Statistical elicitor optimization studies for the enhancement of azadirachtin production in bioreactor Azadirachta indica cell cultivation.", BIOCHEMICAL ENGINEERING JOURNAL, vol. 40, no. 2, 2008, pages 218 - 226, XP022680340 *
SATDIVE, R. K. ET AL.: "Enhanced production of azadirachtin by hairy root cultures of Azadirachta indica A. Juss by elicitation and media optimization", JOURNAL OF BIOTECHNOLOGY, vol. 128, no. 2, 2007, pages 281 - 289, XP005829336 *
SRIVASTAVA, S. ET AL.: "Effect of elicitors and precursors on azadirachtin production in hairy root culture of Azadirachta indica", APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, vol. 172, no. 4, 2014, pages 2286 - 2297, XP055444528 *
TRUJILLO RUIZ, P. A. ET AL.: "Determination of the LD50 and the LT 50 ethanol extracts of cellular suspensions from Azadirachta indica over Spodoptera frugiperda", REV.FAC.NAL.AGR.MEDELLIN., vol. 61, no. 2, 2008, pages 4564 - 4575, ISSN: 0304-2847, Retrieved from the Internet <URL:http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0304-28472008000200010&lng=en&nrm=iso> [retrieved on 20170814] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025141142A1 (en) * 2023-12-29 2025-07-03 Dicot Pharma Ab A novel method for recovering limonoid compounds

Similar Documents

Publication Publication Date Title
Koehler Mesostigmata (Gamasina, Uropodina), efficient predators in agroecosystems
CN102805001B (en) Organic prevention and control method for facility strawberry pest and disease damage
EP2713718B1 (en) Liquid composition for biological pest management, method for preparation and use
BR112015003123B1 (en) COMPOSITION UNDERSTANDING WHOLE WHOLE CELL FERMENTATION CELLS OF BACILLUS SP. WITH PESTICIDE ACTIVITY AND PROMOTING GROWTH, METHOD FOR MODULATION OF Fungus INFESTATION AND GROWTH OF PLANTS AND SEED COATED WITH SUCH COMPOSITION
TW201322925A (en) Formula, ingredients, metabolites and methods of use of chromobacter
Xu et al. Autotoxicity in Pogostemon cablin and their allelochemicals
Yanar et al. Ovicidal activity of different plant extracts on two-spotted spider mite (Tetranychus urticae Koch)(Acari: Tetranychidae)
ES2343217T3 (en) BREVIBACILLUS LATEROSPORUS CEPA, COMPOSITIONS CONTAINING THE SAME AND PROCEDURE FOR THE BIOLOGICAL CONTROL OF DIPTEROS.
JP4982384B2 (en) Method for controlling weeds with tenuazonic acid, iso-tenuazonic acid and salts
WO2017203454A1 (en) Method for obtaining an extract of azadirachta indica
Dalen et al. Sources of volatiles mediating host location behaviour of Glypta haesitator, a larval parasitoid of Cydia nigricana
RU2583696C2 (en) Method of cleaning soil of urbanised territories from zinc and copper
CN102578155A (en) Peanut grub prevention and control agent and production method thereof
Lola-Luz et al. Biological control of black vine weevil Otiorhynchus sulcatus in Ireland using Heterorhabditis megidis
KR20190064694A (en) pollinating agents for crop using secondary metabolites of microorganism
CN103271078B (en) Etoxazole-profenofospesticide pesticide composition
McPartland et al. The hemp russet mite
KR101534827B1 (en) A composition for preventing sheath blight of rice containing an extract of ginkgo spermoderm
Dheer et al. Parthenium hysterophorus L.: an overview of management and beneficial aspects
KR100832745B1 (en) A composition for controlling plant diseases containing a lignan compound, a resorcinol compound or a nutmeg extract comprising the same, and a method for controlling plant diseases using the same
RU2558194C1 (en) Method of potato cultivation
KR20070065942A (en) Herbicidal Activity Extract Isolated from Spiny Bak and Method of Separation
ES2988645T3 (en) Humectant comprising at least one fatty acid monoglyceride
JP2019170321A (en) Agent for increasing content of quercetin in onion and onion cultivation method
US20250072433A1 (en) Organic concentrated vitamine-phytohormone with natural bio-stimulant properties as fertilizer concentrated extract of duckweed aracea family of plants formaly known as lemnaceae single or combined species that can include also compounded multiple formulated aquatic plants extracts to naturaly increase plant growth and crop yields

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802294

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802294

Country of ref document: EP

Kind code of ref document: A1